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1. Introduction

The problem of determining conditions under which a lumped active
n-port is stable when each one of its ports is terminated by an
arbitrary linear passive 1-port has long been studied. A considerable
amount of the literature on this subject is devoted to the special case
of linear lumped 2-ports [De. 1], [Woo. 1], [Kuh 1]. Youla in [You. 1]
obtained necessary and sufficient conditions (n.a.s.c.) working with
impedance matrices and later, in [You. 2], n.a.s.c. in terms of the
scattering matrix of the n-port. [Zeh. 1] contains a different set of
n.a.s.c. using the impedance matrix.

In this paper we generalize the classical problem in two directions
by considering distributed n-ports and by allowing a less restrictive
class of terminations. We consider exclusively linear, time-invariant,
causal, active n-ports characterized by Laplace transformable

convolution operators [Sch. 1], [Zem. 1], [Des. 1], [Vid. 1]; and define

the I/0-stability in terms of I/0 time-domain concepts in section 2.

For a general class of such n-ports we characterize those that are
stabilizable and those that are absolutely stable in section 3. In

section 4 we define the new concepts of k-terminations and absolute

k-stability and, finally, in section 5, using the function My recently
defined in [Doy. 1], we obtain necessary and sufficient conditions for

the absolute k-stability of a class of distributed n-ports.

Notation
a := b means a denotes b; R is the field of real numbers, € is the

field of complex numbers; R, is the set of non-negative real numbers;

+
c, ((I0 ;) is the set of complex numbers such that Re z > 0 (Re z > o,

respectively). For any positive integer k, k := {1,2,+<,k}. For any
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set A, AN Genotes the class of all nxn arrays with elements in A, and

R denotes the interior of A. Blp(s) denotes the class of all proper
rational functions with coefficients in R. For any A € ¢™N | S[A] is

the omax[A], the maximum singular value of A. Given 0 € R (typically

o >0), fEdo) iff f(t) = fa(t) + :2; f 6(t-t1.), where f_ : R = R, with
fa(t) =0 for t <0 and t »exp(-ot) fa(t) €Lys t, =0, t; >0, ¥i >0;
Vi, f; €R and i+ f, exp(- ti) SEAHA € (o) iff, for some gy < 0,

f Gd(c]). f denotes the Laplace transform of f. & :=Q(0),Z_ :=4_(0)
a:={F:¢ ed},&_ = {f i f €4 }. W.r.t. means "with respect to." U.t.c.

means "under these conditions." W.1.0.g. means "without loss of generality."

2. Input-output -- stable linear time-invariant n-ports

2.1. Description of linear time-invariant n-ports and definition of

I1/0-stability.

We will view linear time-invariant n-ports as being represented by
convolution operators. In order to do this, given an n-port 7C , we choose
n positive resistors Fyseeesry with respect to which the scattering matrix
of Vi, s, may be defined. To appreciate the generality of this point
of view, recall that L. Schwartz has shown [Sch. 1, p. 162,197] that any
linear time-invariant operator that satisfies some slight continuity
properties has a representation of the form a » §*a, where \S,(t) is a
distribution. In the context of this paper, S(s) = £[\Sl(t)] is the
scattering matrix of the n-port under consideration, a the incident wave
and b = g*a, the reflected wave. $ is a causal convolution kernel iff it
is supported on R . We make the following assumption:

A.1: The linear time-invariant n-port is causal and is represented by

v \"
a convolution operator S, and S is Laplace transformable.

We adopt the following definition of stability:
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Definition: An n-port is said to be I/0-stable iff

i) for all p € [1,»], it takes an L_-input, a, into an L_-output,

p P
b, with a finite gain; equivalently for some M < «, ﬂbﬂp < MHaﬂp;

ii) it takes continuous and bounded inputs (periodic inputs, almost
periodic inputs, resp.) into outputs belonging to the same class,

respectively.

Comment: In contrast to many authors [You. 1], [Zeh. 1], we do not
define stability in terms of frequency domain concepts: first, stability
is a time-domain concept; second, it is only for transfer functions that
are known to be proper and rational that analyticity in the closed right
half-plane (¢+) is equivalent to exponential stability and to the
requirements i).and ii) above. (For a proof of this fact, see [Cal. 1,
p. 124]).

For example, the time-functions f](t) = tnetsin(et); fz(t) ‘
fz(t) = tnsin(ta) — where n € N, o > 1 — have Laplace transforms
that are analytic everywhere in € (except at ). (Such time-functions
have Laplace transforms that are not proper rational functions. The
network functions of distributed circuits are, in general, not rational
functions either). Since both f](-) and fz(-) are unbounded on R, and
do not belong to L](H2+), these time-functions cannot be associated with
"stable" circuits. Hence, for distributed circuits, the conventional
definition of stability, based on analyticity in C,. is totally
inappropriate.

To alleviate technical difficulties, we forego a slight extension
and make the following assumption:

\"
A2: The kernel, S(+), (equivalently, the measure) representing an

I/0-stable n-port has no singular continuous part.



Fact 2.1: Let.the n-port 7, described by S, be I/0-stable and let it
\"
satisfy Al, A2; then S(-) €aA™".

v
Proof: Al and I/0-stability give that b = S*a and S*:a # b maps
Lp to Lp, ¥p € [1,»]. Thus, by the Riesz representation theorem [Rud. 1]
S can be represented by a measure. This measure is supported on R,

by Al. From A2, g(t) eq™n,

2.2. Interconnection of n-ports and transfer functions

Let an n-port 7C be loaded by an n-port, 77&. If the interconnection
of 7( and 772 is driven in parallel (series) by current (voltage) sources,
it is called 77ti(7{te). See Fig. 1 (Fig. 2).

We call the interconnection of 77 and 77,, 77;1 in Fig. 1 and 77te
in Fig. 2. Sy will be the scattering matrix representing the "load"
n-port 7{2 and S the scattering matrix of 7. For the 7?%e of Fig. 2 we

may write the following equations in the frequency domain:

a, + bz +e=a+b
a, - bz =-a+b
b2 = Szaz
b = Sa

In order to eliminate a, and bz; we add (subtract resp.) the first 2
egns. to get
a =b- %— (b =a - g-, resp.).

Using the last 2 equations we get,
€y = €
(a -5 =5,(b-3%

and finally,



<34
1]

(1-5,87" (1 -5,) 5 (2.2.0a)

o
1]

Sa = S(I -525)4 (1-5,) & (2.2.0b)

A similar exercise may be carried out for 77t of Fig. 1. In summary, for
i

the circuits of Figs. 1 and 2 we obtain the following transfer functions:

(I-SJLS)'](I+52) . ira (2.2.1a)

72’1:;
L 5(1-525)'1(1+sz) i kb (2.2.1b)
(1-5,5) 7 (1-5,) :era (2.2.1¢)

7
¢ s(1-5,5)71(1-5,) e +>b (2.2.1d)

We will study the I/0-stability of interconhected n-ports 7(ti, 77%e
shown in Figs. 1 and 2. In order to do this, we make the following
(technical) assumption: roughly speaking, we may state it as:

"For all |s| "sufficiently large", S(s) is analytic and bounded away
from 1."

Let p be positive and large

and

My =€ 0 {s:]|s| > o}

Thus, we may state this assumption more precisely as follows:

A3: Jp >0, Je >0s.t. ¥s € Mp, S(s) is analytic and
HS(s)ﬂz <1-ex<1

(Here "S(s)il2 is the 2,-induced norm of S(s) € ¢™N,

Comment: This is equivalent to assuming that the n-port represented by

S(s) is strictly passive in Mp [Kuh 1].



3. Stabilijzability of linear time-invariant n-ports

3.1. Definition of stabilizability

Consider an n-port, 77, described by a scattering matrix S(s)
(with respect to some choice of positive normalizing resistances,
ry > 0, i €n). Let assumptions Al, A2 and A3 hold. We say that such
an n-port is stabilizable iff there exists a lumped "toad"
n-port, 712, (described by a scattering matrix Sz(s) € IRp(s)nxn with
respect to (the same) r; >0, 1 € n), such that i) ﬁte and Z?rti are

I/0-stable and ii) each of the four transfer functions of (2.2.1) belong
to ™M

Comment: This is a little stronger than just I/0-stability which would

require that the four transfer functions of (2.2.1) each belong to aQ™n,

Consider:

(1-525)" : (3.1.1.a)

(1-552)“ (3.1.1b)
-1

5,(1-58)) (3.1.1¢)

5(1-525)‘] (3.1.1d)

The following algebraic fact is true:
Fact 3.1.1: Let 7/ be a commutative algebra. U.t.c. the four transfer
functions of (2.2.1) belong to the matrix algebra 7Y nxn iff the four
transfer functions of (3.1.1) belong to the same matrix algebra 2

Note: In the context of this paper, #L is & or 2!_.
Proof: Note that S(I-5,5)7' = (I-55,)7'S and I - (1-s5,)"" = 5(1-525)’152.
Then note that each of the 4 transfer functions of (2.2.1) is a linear

combination of the 4 transfer functions of (3.1.1), and conversely. =



Comments: a) Thus an n-port 7¢ satisfying Al, A2, A3 is stabilizable

iff there exists 772 (described by some S, € Rp(s)"xn) such that the four
transfer functions of (3.1.1) belong todAfx".

b) Note that some 1-ports are not stabilizable by any stable 1-ports:

Si]s'l_z describes a 1-port that is not stabilizable by

e.g., S(s) =

a stable 1-port.

It is now possible to detail a consequence of stabilizability.

Fact 3.1.2: Let the n-port 77 satisfy Al, A2 and A3. U.t.c., if

7L is stabilizable, then S(s), the scattering matrix of 7 w.r.t. some
choice of normalizing resistors r; >0, 1 €n, has only a finite number

of C -poles.

Proof: 7 is stabilizable hence HSZ(S) € ]Rp(s)nxn such that

(1-5,8) 7", (1-55,)71, 5, (i-55,) 7!, 5(1-5,5)71 € 4™, Let 1y = (1-5,5)7;
Hy = S(I'SSLS)-]' Then Hy, H, € 4™ and det Hy € 4 . Hence, for some

e >0, HP H, and det H] are analytic and bounded ‘in C_e,_,_'.

Sz(s) is bounded at = since Sz(s) € lRp(s)nxn and, by A3, Jp >0
such that S(s) is bounded in Mp. Hence, det (I-SQS) = det[H;]] is bounded
in Mp. Since det [H;]] = 1/det H, we conclude that s~ det [H](s)] is
bounded away from zero in Mp. We know that s ~ det [H](s)] is analytic
in C_€,+ hence the zeros of s ~ det [H](s)] are isolated [Dieu. 1,

Thm. 9.1.5] and do not belong to Mp. Now G:+\Mp is a compact set in the
domain of analyticity of det H1(s); consequently det Hy has only a
finite number of zeros in m+\Mp. Now (I-SQS) = H;] has a pole in C_
if and only if det [H](s)] = 0. Since H, is analytic in E-e,-l-’
S = Hon{] has only a finite number of E,,_-po]es. We may write

g Ml -m, +K
S(s) = } 1} rik(s-pi) Voo So(s), where Re(pk) > -¢ < 0 and

i=1 k=0
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5,(s) € A™",

Comment: Suppose that, in Definition 3.1, we did not require ii).

Then by i) (I/0-stability), each of the four transfer functions of
(3.3.1) would belong to dA"X" (but not necessary to ZA'_W') and we could
then prove the following (weaker) version of Fact 3.

Let the n-port 77 satisfy Al, A2, and A3. U.t.c., if 7C is
stabilizable, then, for any € > 0, S(s) the scattefing matrix of 7C
w.r.t. some choice of normalizing resistors r. >0, i €n, has only a
finite number of ¢E+-poles. The point is that there might be an infinite

number of poles in c, with an accumulation point in t+ on the jw-axis.

- 3.2. Absolutely stable n-ports -- a characterization

Definition: An n-port is said to be absolutely stable iff the

interconnections 7?t s 77% are I/0-stable for all lumped passive "load"
e i

‘n-ports,77 .

Comments: a) Recall that the n-port 77£ (described by Sg(s)) is lumped

and passive ¢ Sz(s) €R _(s)™" and su Ilspv(s)ll2 < 1 [New. 1].
P Re(sgzp

b) Consider the n-port 770, described by S,. Then, So(s) € Hip(s)nx"
and So(s) analytic in §+ and bounded on the jw-axis imply that 7?6 is
I/0-stable.

The following theorem characterizes absolutely stable n-ports.

Theorem 3.1: Let assumptions Al, A2, A3 hold for a distributed n-port,
77, described by a scattering matrix, S(s). U.t.c. Z is absolutely
stable iff

i) s+~ S(s) is analytic in §+ and bounded in €C_;

1) Yo € R, IS(iw)l, < 1.
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Comments: a) Recall that in Fact 2.1.1 above, we have shown that
satisfies Al, A2 and is I/0-stable iff S(s) € ™" thus w » S(ju) is
bounded but the bound may be larger than 1.

b) In appendix 2 we exhibit a class of linear time-invariant distributed
n-ports (more concretely specified in appendix 2, p. ) which have
scattering matrix in d"nxn.

c) Theorem 3.1 is a generalization, to the distributed case, of a known
theorem for the lumped case,

Proof: (=) Consider the particular interconnection, 7(t , in which

7/{2 is the n-port of normalizing resistors (hence Sz = 0)? Then, from

eqn. (2.2.0a)

a e and b=Sa=5Se; or, 2b =Se .

N|—‘
N| —

[/0-stability implies that
ve €], 2‘_ﬂ (1530} (gt} aw = 12bl, < (const.)lel,

hence w + S(jw) is bounded on R . Now,”’Z absolutely stable implies,
in particular, that"'"t is I/0-stable. Thus, ¥&(t) s.t. & € Lg and
supp[t\a'] CR,, by I/O-siabi]ity b €L, and b is analytic in '§+ so that
S(s) must be analytic in €_. And, by the theorem of the maximum, S(s)
is bounded in €. This proves i)

To prove ii) we use contradiction. Suppose that ] w, € R, s.t

1

ﬂS(.jooo)U2 = 1." The numerical matrix S(jw,) can be written as UH, where

]Al A2 and I/0-stab. for 7{ = S(s) € qmn = S(Jw) uniformly
continuous on R. Thus we can assume, Jw, € R 1s(j ubt)ll =1 w.l.0.q.
for 1f3m] € R, s.t. ||S(Jw-|)" > 1, then, the (umform) continuity of

w+~ S(jw) and A3 which says that for w sufficiently large llS(Jw)(I < 1-e
ﬁ 1(, 1)m“p'|y, by the intermediate value theorem, that ﬂw €R,, s. £2
S{jw
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U ™" is unitary and H € ¢"™" is Hermitian. Note G[S(jwo)] = g(H) = 1.
By a synthesis technique [Car. 1; p. 370, 412 ff.] we can construct

a passive lossiess "load" n-port 7(2 (scattering matrix 53,’ w.r.t.

*
normalizing resistances r; > 0 for S) such that Sg(jwo) =U.

Consequently, 52(5%) S(jwo) = H. H is Hermitian, so H has all eigenvalues
real and the largest is 1. Consequently, det (I-So(jmo) S(jwo)) = 0.
Hence s (I-S°S)'](s) has a pole at jug and so (I-S°S)'] ﬁﬁ"x". This
contradicts I/0-stability, by Fact 2.1.1.

(=) We know that i) and ii) hold and i) with Al, A2 gives that S(s) € L™".
Consider an arbitrary lumped passive "load" n-port 72'2, described by

Sz(s). Then, in particular, Sk(s) ed‘nxn and
Yo € R, llsjl(jw)ﬂ2 < 1. (%)
Since Sz(s), S(s) ec’inxn, S(s) and Sz(s) are analytic in &+ and bounded
in €,. Now, '
sup O[S, (ju)S(jw)] < sup [IS,(Gu)l, - IS(juw)l,]
wER wER 4
< sup Ilsyv(jm)il2 sup llS(jm)[l2
w€R w€R
<1
where in the last step (*) and A3 were used. The function s H&[Sz(s)s(s)]

is subharmonic, hence using a useful property of subharmonic functions

[Rud. 1; Them. 17.4, p.362]2, we may write sup o[S (s)S(s)] < 1 which
Res>0 %
implies that

inf  |det(I-5,5)(s)] >0 = (I-5,5)7" €d™"
Re s >0

2We.use theorem 17.4, p. 362, of [Rud. 1] with the < signs replaced by
strict inequality signs, in which form (it is easy to see !) it is still true.

-11-



Since S, S € aA™™ (by i)), the 4 transfer functions of (3.1.1) and
hence (Fact 3.1.1) those of (2.2.1) are in cinxn, so 7?; and 17£. are

e i
I/0-stable.

4. k-terminations and absolute k-stability

In this section we define k-terminations and absolute k-stability
which is a generalization of absolute stability and then derive necessary

and sufficient conditions for absolute k-stability.

4.1. Definitions

Let k = (kyseeesk)) € N: and let the n ports of 77 be partitioned

r
into r sets of k]""’kr ports each, where } k; = n = number of ports
i=1

of the given n-port, 77.

Definition 4.1.1: A k-termination of 77 is the following:

the first set of k] ports is terminated by a k]-port, 77k];
the next set of k2 ports is terminated by a kz-port, 77k2;

the last set of kr ports is terminated by a kr-port, 77k .
Y\

The n-port made up of 77k ,-~-,77L is described by scattering matrix
1 r
Sz, w.r.t. rys®eesry (which are the normalizing resistances for 77,

which is then described by S).. Note that S2 is a block-diagonal matrix

whose successive blocks are of size k1,---,kr.

Definition 4.1.2: A passive (resp. lumped, I/0-stable) k-termination

is a k-termination with 77k passive (resp. lumped, I/0-stable) for all
i

i €r,

Notation: Let @Ek be the class of all lumped passive k-terminations.
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Definition 4.1.3: An n-port, 7/, is said to be absolutely _lg-stab]e iff

the interconnections 77t . 7Zt are I/0-stable for all lumped passive
1
k-terminations, 772, (i.e., for all 772 € @’lk)'

4.2. Characterization of absolutely k-stable n-ports

The following characterization is an easy algebraic consequence of

facts stated earlier:

Theorem 4.1: Let the distributed n-port, /7, satisfy Al, A2 and be

I/0-stable. Let S(s) be the scattering matrix of J7 w.r.t. some choice

of normalizing resistances, r; >0, i €n. Let Sg‘(s) be the scattering

matrix of the n-port 7[2 € @R‘k w.r.t. (the same) r; >0, i €n. U.t.c.,

77 is absolutely k-stable iff for all 7[2 € !sz, . inf Idet(l-Sz(s)S(s)l >0.
es>0

Proof: (=) By definition 77 is absolutely k-stable iff the 4 transfer

functions of (2.2.1) belong to q"nxn equivalently, by Fact 3.1.1 iff the

4 transfer functions of 3.1.1 belong to &nxn' In particular,

(1-5,5)"1 € A™ which is true iff inf [det(I-S,($)S(s))| > O
Re s >0

because both S and S, have elements in dA |

(<) 71 satisfies Al, A2 and is I/0-stable = S(s)€d™",
(comment following thm. 3.1). Consider an arbitrary n-port 7726 0’2k then
Sz(s) S ]R';x"(s), (Comment a) preceding thm.v3.]). ségf [det(I-Sz(s)S(s))|
>0 (I-SRS)'] e q@™n, Now, by closure under mu1t’1i'ph‘cat‘ion in the
algebra &"x", the 4 transfer functions of (2.2.1) belong to AN which
a"nxn'

is true iff the 4 transfer functions of (3.1.1) belong to Since

the 7(2 in 02.k was arbitrary we have shown 7(.to be absolutely k-stable.

=4
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In section 5.2 we will use the tools developed in section 5.1 below
and our knowledge of the structure of Sl(s) to obtain a more useful

characterization than the one above.

5. Characterization of absolute k-stability in terms of Doyles Mk function

5.1. Definition and required properties of Doyle's function u [Doy. 1]

Notation

B (k) := {block diagonal matrices in ¢hxn
§= K. xk.

blocks €¢ ' ', i € r and with I+1,-norm of each

, With r square

block < § € R }

r
Recall that k := (kq,+=+,k.) €N | and that § k; =n

i=1 '
B (k) := U 35(5)5 in words, B (k) is the set of block diagonal
6€EN matrices with structure determined by 15

(k) := {unitary matrices} N B1(5); in words, U(k) is the set of all
unitary matrices with block-diagonal structure determined

by 'S

Definition 5.1: W C"x" -> IR+ is a function defined as follows:

-~

J’uk(M) =0 if 3 A € B_(k) such that det(I-MA) = 0
wme ™ (

1 . -
= min  {o(A) such that det(I-MA) = 0}

™ aes ()

Comment: Intuitively if we think of u(A) as measuring the "size" of

A €B_(k) then ]/uk(M) is the minimum size of A € Bm(ls) such that

det (I-MA) = 0 (for all "smaller" A € B_(k), det(I-MA) # 0).

From Definition 5.1 the following proposition is immediate.



Proposition 5.1:

vm € ¢, va € B ((k), det(I-Ma) = det(I-aM) # 0 « & (M) <1
nxn

Proposition 5.2: Given s —=>M(s) €€ analytic in C_,

YA € B](Is), inf |det(I-AM(s)| >0 <« sup uK(M(S)) <1
s€C, s=Jw

Proof: Appendix

The following proposition, first stated in [Doy. 1], is the last item

we need:

Proposition 5.3: WM € ¢"XN, maxk p(UM) = u, (M), where p(A) := spectral

radius of A = max {|x|}.
X

Ea(A)

Proof: -Appendix

5.2. A characterization of absolute k-stability

Using Proposition 5.2, the following equivalent formulation of Theorem

4.1 is immediate.

Theorem 5.1: Let the distributed n-port, 77, satisfy Al, A2 and be
[/0-stable. Let S(s) be its scattering matrix of 7 w.r.t. some choice

of positive normalizing resistances r; >0, i.€n. U.t.c.

M is absolutely k-stable < sup p (S(s)) <1
s:jw -IS

Proof: Immediate from Theorem 3.1 and Proposition 5.2 with M =S(s) and
the fact that 7(2 € (P!Lk = ¥s €, Sz(s) =: A € B](ls) (see comment a)

following definition 3.2). H

Now we use Proposition 5.3 to arrive at the most useful (from a

computational point of view) equivalent formulation of Theorem 4.1.

Theorem 5.2: Let the distributed n-port77 satisfy Al, A2 and be
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[/0-stable. Let S(s) be its scattering matrix w.r.t. some choice of

positive normalizing resistances, r; >0, i €n. U.t.c.

7T is absolutely k-stable < sup ( max p(US)) <1
s=ju UEH(k)

Proof: Immediate from Theorem 5.1 and Proposition 5.3.

Cgmments: a) A reactance n-port 77£ (made up of Ky=s***,k-ports with
iZI k; = n) has a scattering matrix S,(jw) € Z(k), Yu. Thus,

T;eorem 5.2 is a precise statement and proof of the conjeéture that the
absolute k-stability of an n-port can be checked by closing its ports,

partitioned according to k, on reactive k]-,kz-,-",kr-ports. In
n times

particular, the absolute (1:7tjj3)-stabi1ity (sfmply called absolute
stability in the literature) of an n-port can be checked by closing

each of its ports on reactive one-ports. This special case of Theorem 5.2
above was proved for lumped LT-I n-ports by Youla [You. 2].

b) See [Doy. 1] for some details on the computation of yu,.
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Appendix 1

nxn

Proposition 5.2: Given s M(s) €T, analytic in C_,

yao € B(k), inf |det(1-aM(s))| >0 = sup uk(M(Jm)) <1
T seC,

Proof: (=) By assumption inf |det(I-AM(s))| > 0, hence

YA € B-](k) ¥s € €, det(I- iﬁ%S)) # 03 consequently ¥s € C_, uk(M(s))
(from Proposition 1, with § =1, since A€ B (5)). Furthermore,
sup uk(M(Jm)) <1, for if ] {s }, s; €0y, ¥i s.t. 1lim uk( (s )) = 1

jo0 =

then 3 A€ B(k) s.t. lim |det(I-aM(s;))| = O contradicting the

-0

hypothesis.

(<) As shown in (A.1.2) (see the proof of Proposition 5.3 below)
VA € €™, o(A) < u(A). Thus,

sup p(AM(Jw)) < sup u(AM(jw)) = sup u(M(jw)) <1
w W W

where the equality hold$ because A € B 1(15). By the maximum modulus

theorem, sup p(AM(s)) = sup p(AM(jw)). Thus sup p(AM(s)) < 1 which

5602+ W s€¢+

implies that

inf |det(I-AM(s))| >0 . o
s,

Lemma Al {Block diagonal singular value decomposition (SVD))
¥a € B_(k), ] U, ve#(k), { z a diag. matrix with diag. entries

in R_+, gk A= DEY®

Proof: Clear from standard SVD and definitions of Z((k), B(”(g).

Lemma A2 (Doyle, [Doy. 1])

Let f:¢P = ¢ polynomial in p complex variables, of degree no more .

than q in each variable.

by =



Let Y:= arg min {Iyl_:y €¢P and f(y) = 0}. U.t.c.
TvecP:f(v) =0 and lvsl =130, viep

Proof by contradiction: If for some minimizer y € ¢P defined above,

lyjl = Iyl_, ¥j €p, § satisfies the theorem and there is nothing to
prove. (Introduce the notation y =: (z,w) with z € Cp'], w€C.) If
not, choose the smallest component of ¥, say & € ¢, let ¥y = (%,8) and

we have
IGI < ﬂi[lw = llj?[lm

Abusing notation we write f(y) = f(z,uw), z € Cp'1, w € ¢C. We also have
f(y) = f(2,8) = 0. Now view f as a polynomial in w with coefficients
that are polynomials in z; f:ww— f(z,0). By the Weierstrass preparation
theorem [Die. 1], [Rud. 1] there exist an intgger r and r functions hj(z),

analytic in a neighborhood V of 2 € ¢P~! such that
flzw) = @+ (2™ 4 e v h () glzow)

for all w in some disc D(&3e) centered on & with radius e; g is

analytic in V x D(@;e). For e sufficiently small, f(z,w) has exactly
rsolutions z = ¢ (w) in VxD(@,e). Choose 2y €V and w; in D(@;&) such that
Uy (z] ,w]) € ¢P is a zero of f, f(u1) = f(z] ,w]) = 0, and llu1llm < nyuw.

Thus f has a zero at Uy of smaller norm than y which contradicts the

definition of y. Hence there is always aminimizer § with the property
claimed.

Corollary to Lemma A.2: If y is real and nonnegative [Im(ij) = 0 and

Re('ij) >0, ¥j], thend v € RrP nonnegative s.t. f(v) = 0 and

v = HS;H@ ¥j €p

-18-



Proposition 5.3: ¥YM € ¢"*N . max o(UM) = pk(M).

b (k)
Proof: We first show:
max p(UM) g_pk(M) (A1)

e %(k) £

If k = (1,2¢+,1) then }36(3) = {AI: A €C, |A] <8} and then uE(M)
n times

= o(M){:= max |A]), and det (1-- AM) # O, ¥|A| < 8 iff sp(M) < 1.

ASo (M)

But § is the solution to a constrained minimization problem and uk(M) =-%

and since y, (M) = o(M) for k = (1,e++,1) it follows that, for general K,
o(M) < u (M) . (A.1.2)3

A € BS(L(), Ue Z((_If) hence Ua, AU € Bs(_lg). Also, det (I-UMap)
= det (UU*-UMA) - det(U(I-MaU)U*) = det (I-MaAU)
Hence,

Uk(MU) = UE(UM) = Uk(M) (A-]-3)

~

From (A.1.2) and (A.1.3) we have max p(UM) < u(M) which is (A.1.7).
ve A(k)

We now prove the proposition.

It uk(M) = 0 then the result follows immediately from (A.1.1).

Otherwise, let uk(M) = (1/8) > 0. Then 9 A& € B (k) such that

6(~
5(A) = & and det (I-AM) = 0. By lemma A.1 U, V € (k) and Jz,a

diagonal nxn matrix with diagonal entries in R such that A = UZV* then

+

det (I-AM) = 0 iff det (I-UZV*M) = O which is a polynomial in the diagonal
elements of £ and by definition of My s T is the minimum norm solution

to this polynomial equation. By the corollary to lemma A.2, T may be

replacad by 6I with § = Izl _. Thus,

Equation (A.1.2) was used in the proof of proposition 5.2,
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det (I-UZV*M) = 0 = det(I-SUV*M) = 0
= p(Uv*m) 3-35-= uE(M)

But, by (A.1.1), we also have o(UV*M) < uk(M), since U,V* € ‘J((lf).
Hence

E{lg;( o(UM) = LIE(M) .



Appendix 2

Theorem Al: Consider an n-port 77 made up of linear time-invariant
passive R, L, C elements, gyrators and voltage-controlled current-sources
(VeCS's). Let the "gains" of the VCCS's have the following form:
. 1)
1+‘]L—D_-
m

scattering matrix S(s) w.r.t. ry > 0, i €n and let S(s) be analytic

Then S(s) € ' L

gm[f—_l‘_—} where g €R, w, €ER, ("large"). Let 7{ be described by

in C,.
Comments: a) It is sufficient to consider only VCCS's since it can

be shown that one can represent any other kind of controlled source by
pre- and/or port-cascading a VCCS with gyrator(s). It should also be
noted that ideal transformers can be represented by controlled sources
and hence by a suitable combination of VCCS's and gyrators.

b) It is the nature of the elements (passive R, L, C, gyrators, VCCS's

1

with gains gm{———~—?j ) that ensures that S(s) e d™", so that
1+ 2
w

Theorem Al is not a mathematical fact. In fact if the gain of the VCCS's
were a constant, Theorem Al would be false and, indeed, some entries

of S(s) could be made to behave Tike polynomials in s.

Proof: Since”7is made up of lumped linear time-invariant elements, its

()", Further, since S(s) is analytic in

scattering matrix S(s) € R
C.» it only remains to show that S(s) is bounded at « on the jw-axis to
conclude that S(s) € anmn

Let 77 "contain" k VCCS's. The first step is to "extract" all the
VCCS 2-ports: after extracting the "voltage-sensing" ports and the

corresponding controlled current-sources, an (n+2k)-port, 775, is

created. Since 77, "contains" only passive R, L, C elements and gyrators
we know that [New. 1, p.98]

oY =



S(s) € R ()™ 45 analytic in €, (A.2.1)

Yo € R, I - S*(jw) S(jw) is positive semi-definite (A.2.2)

Inspection of Fig. A.1 shows that we need to examine 3 kinds of
transfer functions for boundedness
i) the transfer function from an "original" port such as () to
a voltage-sensing "created" open-circuit port such as (@ ;
ii) the transfer function from a (controlled) current-source terminated
"created" port, such as @, to an "original" port such as (8 ; and
iii) the transfer function from a CCS-terminated "created" port, such
as @, to a "created" o.c. port, such as (@).
Inspection of Figs. A.2., A.3, and A.4 gives the following expressions

for the transfer functions in terms of scattering-parameters and impedance

parameters
2s
21
v, = I (AiE.3)
2] (A.2.4)
Es = I nes
Vo = 254 Is] (A.2.5)
21 *21
It now remains to show that the transfer functions Tes ot ==——=uf
22 11

(A.2.3), (A.2.4) are bounded; and that under the assumption on the
behavior of the "gains" of the controlled-current-sources the RHS:of
(A.2.5) is bounded at .

We first prove ii)
s

Claim: Tos

is bounded at « on the jw-axis.

11

Proof: Equation (A.2.2) implies that the Sijls “are bounded and

specifically that:
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1= (512 + 55719 20 (A.2.6)
S L3 3
T:%%;-can only be unbounded if sS11 1 faster than s,; + 0 (which is
required by (A.2.6) if s11 ™ 1). We must therefore examine rates of
convergence: Sqj is rational, hence & Taylor expansion (evaluated at
S = =) gives

= —B- eeo cseoe i g— l— [ X XY ’
sqp = (1 + ¥ +. + +) + J(w + 3 +eos) (A.2.7)

From (A.2.7),

2
2 +2 1
[sq917 =1 + = 5 B + 0(—g) (A.2.8)
W w
2
Using (A.2.8) in (A.2.6) gives, 1 - [1 + 2428+ o(1)1 > |51
w w
2§
=lspl" <7
w
= (]

From (A.2.7) 1 - sqq = O(j%ﬁ

S
Thus, il] tends to a finite constant as w »> «.
1

We now prove i)

s
Claim: T:él- is bounded at = on the jw-axis.
22
s
Proof: (by contradiction) For TJEL-
- S22
Sp1 bounded away from 0 at = while s,, -+ 1 (since by passivity, all the

to. be unbounded at «» we must have

sij S df)ﬁ?.o are bounded). Thus, in terms of Taylor expansions,

T

521 = TO -+ j—‘l- + oee + XX 34 (A'z'g)
522 = 'I + _%)_ + oee 4 (A.Z.]O)

where we assume T # 0.



* a a
Let I -5 (ju) S (ju) =: e

Then,

*

= 511512 * S21522

*

*
2z A

1= (Isqq1% + [551%)

2 2
1= (|5]2| i |522[ )

(A.2.

(A:2.

(A.2.

and passivity of 775 (see Fig. A.2) implies that I - S:(jw) SO(jw) >0

equivalently

&1

899

>0

>0

2
3173, - lap]" 20

From (A.2.10), (A.2.11.c) and (A.2.12b)

S

= 0(3)

and thus from (A.2.10) and (A.2.13)

3y = 1= ([5151% + [55]°) = O(jﬁ)

From (A.2.9) and (A.2.11a)

&0

Now, from (A.2.15), (A.2.14) and (A.2.12c) we must have

*

1y

From (A.2.9), (A.2.10), s

*

412

= 0(1)

= 0()

3 * *
= Syp Sy *Sgp Spp =T,

*
~ R

+ 5

*

22521

52591

= 0(1) and hence

= 0(1)
4.

(A.2.

(A.2

(B2,

{A.2.

(A.2.

(A.2.

(B2,

(A.2.

11a)

11b)

11c)

12a)

.12b)

12¢)

13)

14)

15)

16)

17)
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is easily seen for characteristic impedance terminations on all ports;
entries are then either zero or of the form e 1%, i e k. For other
choices of normalizing resistances, the scattering matrix Sc'l is similar
to S,. see [New. 1, p. 74]).

We now partition the (n + m) ports of 722 according to "original"
or external variables, subscripted with an e; and "created" or internal

variables, subscripted with an i. Thus,

be = Seeae + seiai (A.2.19)

bi = Sieae + Sﬁai (A.2.20)
n m

Note that: i) Since the partitioned matrix n See Sei is a permutation
M Sie Sij

of S, € 4 (n#m)x(nem) (o S, € a_"nxn’ s . e A™N 5. ed™n 5. . cqmxm

ii) To arrive at S(s) we seek the relation between be and 3,

when 772 is loaded at its m "internal" ports by the m-portfld. Denoting

port-variables of/?'d with a ~, we have,
by = S43; | (A.2.21)

The interconnection equations are:
b, = a (A.2.22a)

a. = b. (A.2.22b)

We may now state theorem A.2.
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Theorem A2: Consider an LT-I n-port?7 made up of passive R, L, C elements,
1

1+ 32
“m

number, k, or uniform lossless transmission lines attached to m "internal"

gyrators, VCCS's whose "gains" are of the form gm( ) and a finite

ports. Assume that,

Yw€R, "Sii(jw)ﬂ2 <1 (see eqn, A.2.20 above for defn. of 511)

Then the scattering matrix of77 , S(s) € amn,

Proof: Solving equations (A.2.19), (A.2.20), (A.2.21) and (A.2.22) for be

in terms of 3y gives

_ -1
S =See * Seill = SgSi1) SgSie

Thus if (I - SdSﬁ)'.l S Cfmxm then closure properties of the algebra éi"x"
. 2nxn -1 amxm inf
imply that se &a™". (I - SdSﬁ) e iff Res >0 |det(I - Sdsii)l >0 .

Since 77d is made up of lossless transission lines Sd is unitary on the
Jjw-axis, i.e. ilSd(jm)ll2 = 1. Now,

wg% o [S4(Jw) S;;(3w)] sws&t}% (1S 4(dw)l,y « IS4 (Gw)l,]

< sup IS (jw)l, sup IS, . (jw)l
wER d ZwGR ii 2

<1

By subharminicity of s.—>5[sd(s)sii(s)] we may write sup 5[Sd(s)Sii(s)] <1
Res>0
which implies that inf |det(I-—SdSii)| > 0. (For details see pf. of thm.
Seﬁt
3.1)
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Figure Captions

Fig. 1.

Fig.

Fig.
Fig.
Fig.
Fig.

2.

A.1.
A.2.
A.3.
A.4.

The circuit ’7'ti consists of the given n-port” terminated by
the load n-port 772 and driven by the current-source i.
The circuit 77te consists of the given n-port /7 terminated by
the load n-port‘€7z and driven by the voltage-source e.
The figure shows the n-port 77 after the extraction of the VCCS's.
The type (i) transfer function relates Vy to IS]'
The type (ii) transfer function relates E, to It
The type (iii) transfer function relates V2 to IS]’
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