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1. Introduction

The problem of determining conditions under which a lumped active

n-port is stable when each one of its ports is terminated by an

arbitrary linear passive 1-port has long been studied. A considerable

amount of the literature on this subject is devoted to the special case

of linear lumped 2-ports [De. 1], [Woo. 1], [Kuh 1]. Youla in [You. 1]

obtained necessary and sufficient conditions (n.a.s.c.) working with

impedance matrices and later, in [You. 2], n.a.s.c. in terms of the

scattering matrix of the n-port. [Zeh. 1] contains a different set of

n.a.s.c. using the impedance matrix.

In this paper we generalize the classical problem in two directions

by considering distributed n-ports and by allowing a less restrictive

class of terminations. We consider exclusively linear, time-invariant,

causal, active n-ports characterized by Laplace transformable

convolution operators [Sch. 1], [Zem. 1], [Des. 1], [Vid. 1]; and define

the I/O-stability in terms of I/O time-domain concepts in section 2.

For a general class of such n-ports we characterize those that are

stabilizable and those that are absolutely stable in section 3. In

section 4 we define the new concepts of k-terminations and absolute

k-stability and, finally, in section 5, using the function u^ recently

defined in [Doy. 1], we obtain necessary and sufficient conditions for

the absolute k-stability of a class of distributed n-ports.

Notation

a := b means a denotes b; IR is the field of real numbers, C is the

field of complex numbers; R+ is the set of non-negative real numbers;

6. (G .) is the set of complex numbers such that Re z > 0 (Re z > a,
+ a,+ — ~"

respectively). For any positive integer k, k^ := {1,2,-«»,k}. For any
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set A, Anxn denotes the class of all nxn arrays with elements in A, and
o

A denotes the interior of A. IRD(s) denotes the class of all proper

rational functions with coefficients in IR . For any A e Cmxn, a[A] is

the cr [A], the maximum singular value of A. Given a e IR (typically
max ...

00

a > 0), f etf(a) iff f(t) = fa(t) + T f. 6(t-t.), where f. : IR 7* IR , witha 0 i i a

fjt) = 0 for t < 0 and t *+ exp(-a t) fa(t) e 1 ; t = 0, t. > 0, Vi > 0;

Vi, fi e IR and i » f.. exp(- t..) e ^; f e#_(a) iff, for some a-j <a,

f G4(a-|). f denotes the Laplace transform of f. (X :=<?(0),tf_ := d_[Q)
a := {f :f eO},a_ := {f :fe«}. W.r.t. means "with respect to." U.t.c.

means "under these conditions." W.l.o.g. means "without loss of generality."

2. Input-output — stable linear time-invariant n-ports

2.1. Description of linear time-invariant n-ports and definition of

I/O-stability.

We will view linear time-invariant n-ports as being represented by

convolution operators. In order to do this, given an n-port 7T> we choose

n positive resistors ri»,#'»rn with respect to which the scattering matrix

of )f, S, may be defined. To appreciate the generality of this point

of view, recall that L. Schwartz has shown [Sch. 1, p. 162,197] that any

linear time-invariant operator that satisfies some slight continuity
y V

properties has a representation of the form a >-*$*a, where S(t) is a
v

distribution. In the context of this paper, S(s) = «C[S(t)] is the

scattering matrix of the n-port under consideration, a the incident wave

v v

and b = S*a, the reflected wave. S is a causal convolution kernel iff it

is supported on IR+. We make the following assumption:

A.l: The linear time-invariant n-port is causal and is represented by

v v

a convolution operator S, and S is Laplace transformable.

We adopt the following definition of stability:
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Definition: An n-port is said to be I/0-stable iff

i) for all p e [1,«], it takes an L -input, a, into an L -output,

b, with a finite gain; equivalently for some M < °°, IIt>II < Mflall ;

ii) it takes continuous and bounded inputs (periodic inputs, almost

periodic inputs, resp.) into outputs belonging to the same class,

respectively.

Comment: In contrast to many authors [You. 1], [Zeh. 1], we do not

define stability in terms of frequency domain concepts: first, stability

is a time-domain concept; second, it is only for transfer functions that

are known to be proper and rational that analyticity in the closed right

half-plane U+) is equivalent to exponential stability and to the

requirements i).and ii) above. (For a proof of this fact, see [Cal. 1,

p. 124]).

For example, the time-functions f-i(t) := tne sin(e ); f£(t)
fp(t) := tnsin(ta) — where n e IN , a >1 — have Laplace transforms

that are analytic everywhere in C (except at °°). (Such time-functions

have Laplace transforms that are npjt proper rational functions. The

network functions of distributed circuits are, in general, not rational

functions either). Since both f-.(«) and f2(#) are unbounded on IR+ and

do not belong to L-.(IR+), these time-functions cannot be associated with

"stable" circuits. Hence, for distributed circuits, the conventional

definition of stability, based on analyticity in C+, is totally

inappropriate.

To alleviate technical difficulties, we forego a slight extension

and make the following assumption:
v

A2: The kernel, S(«)» (equivalently, the measure) representing an

I/0-stable n-port has no singular continuous part.
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Fact 2.1: Let. the n-port 7t •> described by S, be I/O-stable and let it

satisfy Al, A2; then S(-) eanxn.
v

Proof: Al and I/O-stability give that b = S*a and S* : a ** b maps

L to L , Vp e [1,<»]. Thus, by the Riesz representation theorem [Rud. 1]

S can be represented by a measure. This measure is supported on 1R+,

by Al. From A2, S(t) e#nxn.

2.2. Interconnection of n-ports and transfer functions

Let an n-port 7t be loaded by an n-port, ft** If the interconnection

of TL and ft* is driven in parallel (series) by current (voltage) sources,

it is called 7f. {ft. ). See Fig. 1 (Fig. 2).

We call the interconnection of ft and 7[0, 77+ in Fig. 1 and 7[+
* xi ze

in Fig. 2. S^ will be the scattering matrix representing the "load"

n-port 7( and S the scattering matrix of 7X. For the 7f+ of Fig. 2we
* xe

may write the following equations in the frequency domain:

a« + bp+e = a + b

a* " bi = "a + b

bl =V*
b = Sa

In order to eliminate a« and b.; we add (subtract resp.) the first 2

eqns. to get

a = b - «• (b = a - £ , resp.).

Using the last 2 equations we get,

(a -§) =S^(b -f)

and finally,
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a=(I - S^S)"1 (I-S£) | (2.2.0a)

b=Sa =Sd-S^S)**1 (I-S^) | (2.2.0b)

A similar exercise may be carried out for 7J. of Fig. 1. In summary, for

the circuits of Figs. 1 and 2 we obtain the following transfer functions:

f (I-S^S)"1^) : i ~a (2.2.1a)
1 Lsa-S^Sr^I+S^) :i ^b (2.2.1b)

r(I-SJlsr1(I-S£) :e~a (2.2.1c)

e Isfl-S^sr^I-S^) :e*+b (2.2.Id)

We will study the 1/0-stability of interconnected n-ports T(. ,Yf.
1 e

shown in Figs. 1 and 2. In order to do this, we make the following

(technical) assumption: roughly speaking, we may state it as:

"For all |s| "sufficiently large", S(s) is analytic and bounded away

from 1."

Let p be positive and large

and

Mp := (C+ n {s :|s| > p}

Thus, we may state this assumption more precisely as follows:

A3: ]p >0, ]e > 0 s.t. Vs e M, S(s) is analytic and

iIS(s)I!2 <1 - e <1

(Here HS(s)II2 is the ^-induced norm of S(s) e £nxn.
Comment: This is equivalent to assuming that the n-port represented by

S(s) is strictly passive in M [Kuh 1].
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3. Stabilizability of linear time-invariant n-ports

3.1. Definition of stabilizability

Consider an n-port, 7T, described by a scattering matrix S(s)

(with respect to some choice of positive normalizing resistances,

r. > 0, i e nj. Let assumptions Al, A2 and A3 hold. We say that such

an n-port is stabilizable iff there exists a lumped "Toad"

n-port, Tl^ (described by a scattering matrix S^s) e Kp(s) with
respect to (the same) r. >0, i e n), such that i) 77+ and Z?l are

1 ~ *e i
I/0-stable and ii) each of the four transfer functions of (2.2.1) belong

to #™n.

Comment: This is a little stronger than just 1/0-stability which would

require that the four transfer functions of (2.2.1) each belong to <Z

Consider:

(I-S^S)"1 (3.1.1.a)

(I-SS^r1 (3.1.1b)

S^I-SS^r1 (3.1.1c)
Sd-S^S)'1 (3.1. Id)

The following algebraic fact is true:

Fact 3.1.1: Let 7W be a commutative algebra. U.t.c. the four transfer

-7-

functions of (2.2.1) belong to the matrix algebra /**nxn iff the four

transfer functions of (3.1.1) belong to the same matrix algebra ^/nxn.

Note: In the context of this paper, 7VL is 6L or ^_.

Proof: Note that SU-S^S)'1 =(I-SS^J^S and I-(I-SS^)"1 =SU-S^S)"^.
Then note that each of the 4 transfer functions of (2.2.1) is a linear

combination of the 4 transfer functions of (3.1.1), and conversely. Q



Comments: a) Thus an n-port 7? satisfying Al, A2, A3 is stabilizable

iff there exists 7?^ (described by some S- GIR (s)nxn) such that the four
transfer functions of (3.1.1) belong to<£"xn.

b) Note that some 1-ports are not stabilizable by any stable 1-ports:

e.g., S(s) =| +jw L describes a 1-port that is not stabilizable by
a stable 1-port.

It is now possible to detail a consequence of stabilizability.

Fact 3.1.2: Let the n-port 7t satisfy Al, A2 and A3. U.t.c, if

*T. is stabilizable, then S(s), the scattering matrix of 7t w.r.t. some

choice of normalizing resistors r. > 0, i € r^, has only a finite number

of C+-poles.

Proof: TTis stabilizable hence ]S£(s) e TR (s)nxn such that
(I-S^S)"1, (I-SS^)"1, S^i-SS^)"1, Sd-S^S)"1 ea™n. Let ^ := (I-S^S)"1;
H2 := Sfl-S^S)"1. Then H], H2 G# ™n and det H] Gk_. Hence, for some
e > 0, H-i, Hp and det H, are analytic and bounded in C_ +'.

S (s) is bounded at » since S (s) G IR (s)nxn and, by A3, ]p >0

such that S(s) is bounded in M . Hence, det (I-S«S) = det[H7 ] is bounded

in M . Since det [HT ] = 1/det H-, we conclude that s h- det [H,(s)] is

bounded away from zero in M. We know that s ^ det [H-j(s)] is analytic

in C , hence the zeros of s ^ det [H-.(s)] are isolated [Dieu. 1,

Thm. 9.1.5] and do not belong to M. Now I+\M is a compact set in the

domain of analyticity of det H-.(s); consequently det H, has only a

finite number of zeros in <t,\M . Now (I-S„S) = H7 has a pole in (D.+ p x i l r +

if and only if det [H-.(s)] =0. Since H2 is analytic in t +,

S = H««h7 has only a finite number of (t+-poles. We may write

l V1 -m.+k
S(s) =11 rik(s"Pi) + Sn(S)» Where Re(Pk' > "£ * ° and

1=1 k=0 1K ^ ° K
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s0(s) g an™.

Comment: Suppose that, in Definition 3.1, we did not require ii).

Then by i) (I/O-stability), each of the four transfer functions of

(3.3.1) would belong to#nxn (but not necessary to ^"xn) and we could

then prove the following (weaker) version of Fact 3.

Let the n-port 7C satisfy Al, A2, and A3. U.t.c, if 7? is

stabilizable, then, for any e >0, S(s) the scattering matrix of 7t

w.r.t. some choice of normalizing resistors r.. > 0, i g ^, has only a

finite number of (E +-poles. The point is that there might be an infinite

number of poles in C+ with an accumulation point in C+ on the jco-axis.

3.2. Absolutely stable n-ports — a characterization

Definition: An n-port is said to be absolutely stable iff the

interconnections 71. , 71. are I/0-stable for all lumped passive "load"
ze zi

n-ports,71 ..

Comments: a) Recall that the n-port 71. (described by S-(s)) is 1umped

and passive <> SAs) G R (s)nxn and sup HS0(s)lL <1 [New. 1].
% p Re(s)>0 * c

b) Consider the n-port TTQ, described by SQ. Then, SQ(s) GIR (s)nxn
and S (s) analytic in t and bounded on the jw-axis imply that 7( is

I/0-stable.

The following theorem characterizes absolutely stable n-ports.

Theorem 3.1: Let assumptions Al, A2, A3 hold for a distributed n-port,

7Tj described by a scattering matrix, S(s). U.t.c. 71 is absolutely

stable iff

i) s ^S(s) is analytic in I and bounded in I+;

ii) Vw G R+f HS(ja))[l2 <1.
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Comments: a) Recall that in Fact 2.1.1 above, we have shown that

satisfies Al, A2 and is I/0-stable iff S(s) G4nxn; thus u)H-S(jio) is

bounded but the bound may be larger than 1.

b) In appendix 2 we exhibit a class of linear time-invariant distributed

n-ports (more concretely specified in appendix 2, p. ) which have

scattering matrix in rfnxn.

c) Theorem 3.1 is a generalization, to the distributed case, of a known

theorem for the lumped case.

Proof: (=*) Consider the particular interconnection, 7f+ , in which
R R ^7[o is the n-port of normalizing resistors (hence S = 0). Then, from

eqn. (2.2.0a)

a = 2 e and b = S a= j Se ; or, 2b = Se .

1/0-stability implies that

VeGL" -L
2 in J

llS(ja)) e(jai)ll| du =Il2bll2 <(const.)ilell2

hence u)*-*S(ju>) is bounded on IR+. Now,^2L absolutely stable implies,

in particular, that n t is I/0-stable. Thus, Ve(t) s.t. e GL2 and
supp[e] c ir+, by 1/0-stability b G L2 and b is analytic in C+ so that

S(s) must be analytic in <t+. And, by the theorem of the maximum, S(s)

is bounded in (D+. This proves i)'

To prove ii) we use contradiction. Suppose that \ ojq G ]R+ s.t.

NS(jw0)U2 =1.' The numerical matrix S(jo)Q) can be written as UH, where

'Al, A2 and I/0-stab. for 77 => S(s) G <Znxu =>w^S(jai) uniformly
continuous on IR . Thus we can assume, Ju G ]R+ s.t. ilS(j<j^)II2 =1 w.l.o.g.
for if 3^-j G ^+ s.t. HS(jo)-])il >1, then, the (uniform) continuity of
a) •"»- S(jo)) and A3, which says that for u) sufficiently large flS(joj)ll2 <1-e
< 1, imply, by the intermediate value theorem, that ^co. G IR , s.t.
IS(Job)l2 =1. °
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UGcnxn is unitary and He Cnxn is Hermitian. Note 5[S(jw0)] =5(H) =1.
By a synthesis technique [Car. 1; p. 370, 412 ff.] we can construct

a passive lossless "load" n-port 7f° (scattering matrix S^, w.r.t.
o \ *normalizing resistances r. >0 for S) such that S^jWq) =U.

Consequently, S°(ju>0) S(ju>0) =H. His Hermitian, so Hhas all eigenvalues
real and the largest is 1. Consequently, det (I-S°(jo)o) S(ju)Q)) =0.
Hence sh> (I-S^)"1^) has apole at ju>0 and so (I-S^)"1 £#nxn. This
contradicts 1/0-stability, by Fact 2.1.1.

(<=) We know that i) and ii) hold and i) with Al, A2 gives that S(s) G#nx

Consider an arbitrary lumped passive "load" n-port 71^ described by

SA(s). Then, in particular, S£(s) G#nxn and

Va) GF, HS£(jw)i!2 <1. (*)

Since S^s), S(s) G#nxn, S(s) and SA(s) are analytic in l+ and bounded
in I+. Now,

sup a[S0(jo))S(jo))] < sup [!S,(jw)IL • DS(jai)l2]
cdGR * ajGR .

£ sup HS0(ja))iL sup HS(jo))!U
U)GIR * L ajGIR

< 1

where in the last step (*) and A3 were used. The function s h- a[S^(s)S(s)]

is subharmonic, hence using a useful property of subharmonic functions

[Rud. 1; Them. 17.4, p.362]2, we may write sup a[S (s)S(s)] <1 which
Re s >0 *-

implies that

inf |det(I-S„S)(s)| >0 => (I-S.S)'1 Gflnxn
Re s >0 * *

2
We use theorem 17.4, p. 362, of [Rud. 1] with the < signs replaced by

strict inequality signs, in which form (it is easy to see !) it is still true
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Since S , S e C( (by i)), the 4 transfer functions of (3.1.1) and

hence (Fact 3.1.1) those of (2.2.1) are in tfnxn, so f7t and ft are
ze zi

I/0-stable.

4. Is-terminations and absolute k-stability

In this section we define k-terminations and absolute k-stability

which is a generalization of absolute stability and then derive necessary

and sufficient conditions for absolute k-stability.

4.1. Definitions

Let k =(k, ,"*,kr) Gj\r+ and let the n ports of "77 be partitioned
r

into r sets of k-.,-'»,kr ports each, where £ k.. =n = number of ports

of the given n-port, 77.

Definition 4.1.1: A k-termination of 77 is the following:

the first set of k-. ports is terminated by a k,-port, 7?'. ;

the next set of k2 ports is terminated by a k2-port, 7[u ;

the last set of k ports is terminated by a k -port, 77u .

The n-port made up of 71. ,*"977. is described by scattering matrix
Kl Kr

S^, w.r.t. rp"*>rn (which are the normalizing resistances for 779
which is then described by S).. Note that S- is a block-diagonal matrix

whose successive blocks are of size k-i ,-•• ,k .

Definition 4.1.2: A passive (resp. lumped, I/0-stable) k-termination

is a k-termination with 71, passive (resp. lumped, I/0-stable) for all
Ki

1 €r_.

Notation: Let (P%^ be the class of all lumped passive k-terminations.
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Definition 4.1.3: An n-port, 77, is said to be absolutely k-stable iff

the interconnections 71+ , 77+ are I/0-stable for all lumped passive
e 1k-terminations, 77^, (i.e., for all ^ g 0^).

4.2. Characterization of absolutely k-stable n-ports

The following characterization is an easy algebraic consequence of

facts stated earlier:

Theorem 4.1: Let the distributed n-port, /?, satisfy Al, A2 and be

I/0-stable. Let S(s) be the scattering matrix of /ifw.r.t. some choice

of normalizing resistances, r.. >0, i en. Let S^s) be the scattering

matrix of the n-port 7l% e &\ w.r.t. (the same) r^ >0, i €n. U.t.c,

71 is absolutely k-stable iff for all 77, e fii.9 inf |det(l-S,(s)S(s)| >0
1 K Res>0 *

Proof: (=>) By definition 7( is absolutely k-stable iff the 4 transfer

functions of (2.2.1) belong to 4nxn equivalently, by Fact 3.1.1 iff the

4 transfer functions of 3.1.1 belong to ^nxn. In particular,

(I-SaS)"1 G^nxn which is true iff inf |detd-S.(sT)S(s)) | >0
* Re s >0 *

/\

because both S and S- have elements in d, .

M 77 satisfies Al, A2 and is I/0-stable <* S(s)Gtfnxn,

(comment following thm. 3.1). Consider an arbitrary n-port ft'^ <Pl^ then
S„(s) eiR"xn(s), (Comment a) preceding thm. 3.1). inf |det(I-S,(s)S(s))|

36 p sG{C+
>0 o (I-S0S) Gtfnxn. Now, by closure under multiplication in the

algebra tf nxn, the 4 transfer functions of (2.2.1) belong to <#nxn which
is true iff the 4 transfer functions of (3.1.1) belong to A x . Since

the 77Q in Ql. was arbitrary we have shown 77 to be absolutely k-stable.
X» IN
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In section 5.2 we will use the tools developed in section 5.1 below

and our knowledge of the structure of S^s) to obtain a more useful

characterization than the one above.

5. Characterization of absolute k-stability in terms of Doyles u|< function

5.1. Definition and required properties of Doyle's function u [Doy. 1]

Notation

IB^k) := {block diagonal matrices in (Cnxn, with r square
* ~ k.xk.

blocks G 2 , i g r_ and with lUIL-norm of each

block < 6 G ]R+}

„ r
Recall that k := (klf---,kr) en £ and that I k1 =n

Bjk) := u B6(k); in-words, Bw(k) is the set of block diagonal
5G3N ~ matrices with structure determined by k

Z^(k) := (unitary matrices} HB^k); in words, UL(k) is the set of all

unitary matrices with block-diagonal structure determined

by k.

Definition 5.1: uk : Cnxn -»- R+ is a function defined as follows:

VM G £nxn S 1
^ - min {a(A) such that det(I-MA) = 0}

Uk(M) =0 if 3 AG Bjk) such that det(I-MA) =0

Comment: Intuitively if we think of a(A) as measuring the "size" of

AG Boo(k) then l/uk(M) is the minimum size of AGB^k) such that

det (I-MA) = 0 (for all "smaller" A e Boo(k), det(I-MA) f 0).

From Definition 5.1 the following proposition is immediate.
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Proposition 5.1:

VM Gcnxn, VA GB6(k)f det(I-MA) =det (I-AM) t 0 <* 6«uk(M) <1
Proposition 5.2: Given s^-M(s) G(Cnxn analytic in (t+,

VAGB,(k), inf |det(I-AM(s)| > 0 ~ sup uJM(s)) < 1
1 ~ ser+ s=jw *

Proof: Appendix

The following proposition, first stated in [Doy. 1], is the last item

we need:

Proposition 5.3: VM G Cnxn, max p(UM) =ujM), where p(A) := spectral
UG^k) 5

radius of A = max {|X|}.
XGa(A)

Proof: Appendix

5.2. A characterization of absolute k-stability

Using Proposition 5.2, the following equivalent formulation of Theorem

4.1 is immediate.

Theorem 5.1: Let the distributed n-port, 7t, satisfy Al, A2 and be

I/0-stable. Let S(s) be its scattering matrix of 77 vi.r.t. some choice

of positive normalizing resistances r. > 0, i.Gn. U.t.c.

77 is absolutely k-stable * sup u. (S(s)) < 1
s=joj »

Proof: Immediate from Theorem 3.1 and Proposition 5.2 with M=S(s) and

the fact that 7^ G <fy - Vs Gc+, S£(s) =: AGB^k) (see comment a)
following definition 3.2). n

Now we use Proposition 5.3 to arrive at the most useful (from a

computational point of view) equivalent formulation of Theorem 4.1.

Theorem 5.2: Let the distributed n-port/? satisfy Al, A2 and be
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I/O-stable. Let S(s) be its scattering matrix w.r.t. some choice of

positive normalizing resistances, r. > 0, i en, U.t.c.

7X Is absolutely k-stable <> sup ( max p(US)) < 1
S=jw UG^(k)

Proof: Immediate from Theorem 5.1 and Proposition 5.3.

Comments: a) A reactance n-port 7t0 (made up of k,-,-«-,k -ports with
y» ~~"" x» I r

I k- =n) has a scattering matrix S0(jo>) G #(k), VSu. Thus,
i=l *
Theorem 5.2 is a precise statement and proof of the conjecture that the

absolute k-stability of an n-port can be checked by closing its ports,

partitioned according to k, on reactive k,-,k9-,«-»,k -ports. In
~n times ' c r

particular, the absolute (1,•••,!)-stability (simply called absolute

stability in the literature) of an n-port can be checked by closing

each of its ports on reactive one-ports. This special case of Theorem 5.2

above was proved for 1umped LT-I n-ports by Youla [You. 2].

b) See [Doy. 1] for some details on the computation of uk.

-16-



Appendix 1

nxnProposition 5.2: Given s *+ M(s) G (E , analytic in C+,

VAGB-j(k), inf |det(I-AM(s)) | >0 ~ sup uk(M(jw)) <1
sGC+ w

Proof: (=>) By assumption inf |det(I-AM(s)) | > 0, hence
sGC

VA G B,(k), Vs G (C+ det(I-AM(s)) ^0; consequently Vs G c+, uk(M(s)) <1

(from Proposition 1, with 6 = 1, since AG B-j(k)). Furthermore,

sup uu(M(ju>)) < 1, for if ] {s,}, s. € C+, Vi s.t. lim uk(M(s,)) =1

then ] AGB-,(k) s.t. lim |det(I-AM(s.)) | = 0 contradicting the
•j-KO

hypothesis.

(•*•) As shown in (j\. 1.2) (see the proof of Proposition 5.3 below)

VA G £nxn, P(A) < u(A). Thus,

sup p(AM(ja))) <_ sup u(AM(ja))) = supu(M(jco)) < 1

where the equality holds because AS B-j(k). By the maximum modulus

theorem, sup p(AM(s)) = sup p(AM(ju))). Thus sup p(AM(s)) < 1 which
sG(E.

implies that

sG(E+ co sG(D.

inf |det(I-AM(s))| > 0 . n
sGC+

Lemma Al [Block diagonal singular value decomposition (SVD))

Va g B (k), ] U5 VG Z£(k), ] Z a diag. matrix with diag. entries

in R+, s.t. A= US V*

Proof: Clear from standard SVD and definitions of ft{k), Bjk).

Lemma A2 (Doyle, [Doy. 1])

Let f : C^ •+• C polynomial in p complex variables, of degree no more

than q in each variable.

-17-



Let y:= arg min {ilyil^ :y G(Cp and f(y) =0}. U.t.c.

1vGcp :f(v) =0 and |Vj| =llyll^ Vj G£

Proof bv contradiction? if for some minimizer y g cp defined above,

l^jl s ^L' VJ eR> Psatisfies the theorem and there is nothing to
prove. (Introduce the notation y =: (z,u>) with z Gc^1, u 6 C.) If

not, choose the smallest component of y, say u Gc, let y = (z,w) and
we have

Ifil < ^ • •*•„ .

Abusing notation we write f(y) = f(z,w), z e d3"1, oj € t. We also have

f(y) = f(z,<3) = 0. Now view f as a polynomial in oj with coefficients

that are polynomials in z; f : <d »->f(z,u>). By the Weierstrass preparation

theorem [Die. 1], [Rud. 1] there exist an integer r and r functions h.(z),

analytic in a neighborhood V of z G Cp-1 such that

f(z,ci>) =(J +hj (zjc/"1 +••• +hr(z)) g(z,oj)

for all a) in some disc D(aj;e) centered on uj with radius e; g is

analytic in V x D(aS;e). For e sufficiently small, f(z,w) has exactly

rsolutions z =̂ (w)- in VxD(w.e). Choose z1 GV and ^ in D(S;e) such that
u1f(z1,oj1) GCp is a zero of f, f^) =fU^) =0, and II u^ <lyl^.
Thus f has a zero at u-j of smaller norm than y which contradicts the

definition of y. Hence there is always aminimizer y with the property

claimed.

Corollary to Lemma A.2: If y is real and nonnegative [Im(z.) = 0 and
j

Re(z\j) >0, Vj], then 3 v G]Rp nonnegative s.t. f(v) =0 and
vd • "PI. Vj G£

-18-



Proposition 5.3: VM 6 tnm, max p(UM) =uk(M).
UG *4.\ KJ "•

Proof: We first show:

max p(UM) <u,(M) (A*1-1)
UG#(k) 5

If k=(l^^l) then B5(k) ={XI :XGC, |X| <6} and then uk(M)
n times , . . „«. , /t,\ -,

= p(M)(:= max |X|), and det (1 - XM) f 0, V|X| < 6 iff 6p(M) < 1.
X6j(M) . , . . /Mx _ 1

But 6 is the solution to a constrained minimization problem and ukW - -

and since uR(M) =p(M) for k=(1 ,•••,!) it follows that, for general k,

p(M) <Uk(M) . (AJ*2)3
AGBr(k), UG K{k) hence Ua, AU g B (k). Also, det (I-UMa)

= det (UU*-UMA) - det(U(I-MAU)U*) = det (I-MAU)

Hence,

Uk(MU) =yk(UM) =U|C(M) (A.1.3)

From (A.1.2) and (A.1.3) we have max p(UM) < y(M) which is (A.1.1).
UG#(k)

We now prove the proposition.

If u. (M) = 0 then the result follows immediately from (A.l.l).
K

Otherwise, let ufc(M) = (1/6) >0. Then ] AGB5(k) such that
5(A) = <5 and det (I-AM) = 0. By lemma A.l ] U, VG #(k) and ] Z, a

diagonal nxn matrix with diagonal entries in IR+ such that A= UZV* then

det(I-AM) = 0 iff det (I-UZV*M) = 0 which is a polynomial in the diagonal

elements of Zand by definition of uk, Z is the minimum norm solution

to this polynomial equation. By the corollary to lemma A.2, z may be

replaced by 51 with 5 = UsII . Thus,

3Equation (A.l .2) was used in the proof of proposition 5.2.
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det (I-UZV*M) =0 => det(I-<5UV*M) =0

•* P(UV*M) >1= yk(M)

But, by (A.1.1), we also have p(UV*M) <uk(M), since U,V* G«(k)
Hence

max p(UM) = y.(M).

_9n-



Appendix 2

Theorem Al: Consider an n-port/? made up of linear time-invariant
passive R, L, Celements, gyrators and voltage-controlled current-sources

(VCCS's). Let the "gains" of the VCCS's have the following form:

9m
1

1+j ±
m

where g e R, u> 6 IR , ("large"). Let 7[ be described by
°m m +

scattering'matrix S(s) w.r.t. r. >0, i Gn and let S(s) be analytic

in C+. Then S(s) G^nxn.
Comments: a) It is sufficient to consider only VCCS's since it can

be shown that one can represent any other kind of controlled source by

pre- and/or port-cascading a VCCS with gyrator(s). It should also be

noted that ideal transformers can be represented by controlled sources

and hence by a suitable combination of VCCS's and gyrators.

b) It is the nature of the elements (passive R, L, C, gyrators, VCCS's

with gains g_ i— ) that ensures that S(s) G#nxn, so that
1+j ^

Theorem Al is not a mathematical fact. In fact if the gain of the VCCS's

were a constant, Theorem Al would be false and, indeed, some entries

of S(s) could be made to behave like polynomials in s.

Proof: Since^is made up of lumped linear time-invariant elements, its

scattering matrix S(s) € ]R(s)nxn. Further, since S(s) is analytic in

C , it only remains to show that S(s) is bounded at » on the jw-axis to

conclude that S(s) G^nxn.
Let 77 "contain" k VCCS's. The first step is to "extract" all the

VCCS 2-ports: after extracting the "voltage-sensing" ports and the

corresponding controlled current-sources, an (n+2k)-port, 7f >is

created. Since 7( "contains" only passive R, L, C elements and gyrators

we know that [New. 1, p.98j
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S(s) eRp(s)nxn is analytic in C+ (/L2J)

Va) GIR , i _ s*(joj) S(jaj) is positive semi-definite (A.2.2)

Inspection of Fig. A.l shows that we need to examine 3 kinds of

transfer functions for boundedness

i) the transfer function from an "original" port such as © to
a voltage-sensing "created" open-circuit port such as (2);

ii) the transfer function from a (controlled) current-source terminated

"created" port, such as (3), to an "original" port such as ©; and

iii) the transfer function from a CCS-terminated "created" port, such

as © , to a "created" o.c. port, such as @.

Inspection of Figs. A.2., A.3, and A.4 gives the following expressions

for the transfer functions in terms of scattering-parameters and impedance

parameters

2s21
V2=T3%ISl (A.2.3)
(T - S21 Th =i^7Is1 (a-2-4)

V2 =z21 \ (A.2.5)
s s

It now remains to show that the transfer functions , 21 and -, 21 of
i-s22 i-s^

(A.2.3), (A.2.4) are bounded; and that under the assumption on the

behavior of the "gains" of the controlled-current-sources the RHS-of

(A.2.5) is bounded at ».

We first prove ii)

s21Claim: ^ is bounded at °° on the jco-axis.
'"Sll

Proof: Equation (A.2.2) implies that the s-.'s 'are bounded and

specifically that:
-22-



1-(|snl2) +|s21|2) >0 (A.2.6)

C

21 can only be unbounded if s^ +1faster than s21 +0(which is
required by (A.2.6) if s-j-j -»• 1). We must therefore examine rates of

convergence: s-.-, is rational, hence a-Taylor expansion (evaluated at

s = oo) gives

sn =(1 +\ +.-. +... +)+ j(2L +X. +...) (A.2.7)
O) CO

From (A.2.7),

Using (A.2.8) in (.A.2.6) gives, 1- [1 +2-^£ +0(-^)] >|s21|2

s,.,l2 =1+SL+2B.+ o(\) (A.2.8)

s I2 <^-s2l' - 2 »

- s21=<)

CO CO

1From (A.2.7) 1 - s^ =O(^)

s21Thus, y~I— tends to a finite constant as id ^ *.
'"sll

We now prove i)

s21Claim: -j ^ is bounded at « on the jco-axis.i-s22

21Proof: (by contradiction) For v-f— to. be unbounded at » we must havei-s22

s2-| bounded away from 0 at » while s«2 -»• 1 (since by passivity, all the

s. .'s of Tpr are bounded). Thus, in terms of Taylor expansions,

s21 =To+S+ ••* +"'*: (A*2-9)
s22 =1+i +- (A-2J0)

where we assume t f 0.

-23-



Let I- So(jco) So(jo)) =:

Then,

all a12

a*2 a22

ln := "J - (Is-nl2 + |s91|2)'ii *21

a12 : slls12 + s21s22

a?9 := 1 " (1*1*1 + |So,r)12 '22

and passivity of 7(Q (see Fig. A.2) implies that I
equivalently

a22 1 °

a-i-Ia«rt - |a-ip| > u

From (A.2.10), (A.2.11.c) and (A.2.12b)

S12 =»<±i
and thus from (A.2.10) and (A.2.13)

a22 =1-(|s12|2 +|s22|2) =0(-^-)
CO

From (A.2.9) and (A.2.11a)

a-p = 0(1)

(A.2.11a)

(A.2.lib)

(A.2.lie)

SQ(jco) So(joj) >0

(A.2.12a)

(A.2.12b)

(A.2.12c)

(A.2.13)

(A.2.14)

(A.2.15)

Now, from (A.2.15), (A.2.14) and (A.2.12c) we must have

a12 = S12 Sll + S22 S21 =0(j^

From (A.2.9), (A.2.10), s* s9, = 0(1) and hence
22°21

l12 = S12ill ' °22°21
•k

a10 - SnoS-n + soos01 = 0(1)
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is easily seen for characteristic impedance terminations on all ports;

entries are then either zero or of the form e"Tis, iG k. For other

choices of normalizing resistances, the scattering matrix S^ is similar
to Sd, see [New. 1, p. 74]).

We now partition the (n + m) ports of 71%according to "original"

or external variables, subscripted with an e; and "created" or internal

variables, subscripted with an i. Thus,

e ee e ei i

b. = S. a + S..a.
i le e n i

Note that: i) Since the partitioned matrix n

m

n m

"S S •"
ee ei

S. S..
le n

(A.2.19)

(A.2.20)

is a permutation

Lof S, 6 £(m«i)*(iHm) m have s 6 ^nxn> s e ^ s afrm, s efrm
X* w w w I IC II

ii) To arrive at S(s) we seek the relation between b and a

when ^7 - is loaded at its m "internal" ports by the m-port/^j. Denoting

port-variables of77 d with a ~, we have,

bi = Sdai

The interconnection equations are:

b. = a.
i l

a. = b.
i l

We may now state theorem A.2
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Theorem A2: Consider an LT-I n-port^ made up of passive R, L, C elements,

gyrators, VCCS's whose "gains" are of the form gm( —) and a finite
1 + ir

CO
m

number, k, or uniform lossless transmission lines attached to m"internal"

ports. Assume that,

Vco G]R , IIS..(jto)tl2 <1 (see eqn, A.2.20 above for defn. of S^)

Then the scattering matrix of^ , S(s) G &

Proof: Solving equations (A.2.19), (A.2.20), (A.2.21) and (A.2.22) for be

in terms of a gives

S =S +s .(I - S.S..)"1 S.S.
ee eiv d iv d le

Thus if (I - SjS^)"1 e dwm then closure properties of the algebra dnxn
imply that Se <2nxn. (I - S^..)"1 g dmm iff R™?0 |det(I - SdS..)| >0
Since ft * is made up of lossless transission lines Sd is unitary on the

jco-axis, i.e. US .(jco)!!« = 1. Now,

sup a [Sd(jco) S..(jco)] < sup [USd(ja))lI2 • IIS. .(j(o)IL]
co'GIR coGjR

< sup HS.(jco)lL sup HS..(jco)(L
coGR a <coG]R n L

< 1

By subharminicity of s >-*a[S .(s)S. .(s)] we may write sup o[S .(s)S. .(s)] < 1
a " Res>0 a "

which implies that inf |det(I -S.S..) | > 0. (For details see pf. of thm.

SGCt
3.1)
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Figure Captions

Fig. 1. The circuit *?t1 consists of the given n-port-7? terminated by

the load n-port ^ and driven by the current-source i.

Fig. 2. The circuit 77^ consists of the given n-port *7 terminated by

the load n-port 77 and driven by the voltage-source e.

Fig. A.l. The figure shows the n-port *7 after the extraction of the VCCS's

Fig. A.2. The type (i) transfer function relates V2 to I$,.

Fig. A.3. The type (ii) transfer function relates E2 to I$1

Fig. A.4. The type (iii) transfer function relates V2 to I$1.
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