Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SIMPL(SIMULATED PROFILES FROM THE LAYOUT)

by

M. A. Grimm

Memorandgm No. UCB/ERL M83/79
14 December 1983

ELECTRONLCS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
' 94720

Abstract

Often times it is necessary to visualize an IC profile from
looking at the layout. The transformation from the planar view
to the cross-sectional view is difficult, especially with complex
mask sets. SIMPL (SIMulated Profiles from the Layout) is a new
CAD tool which automatically generates the cross-section of an
integrated circuit from the layout. SIMPL has several uses.
First, it provides the designer visual feedback on the structures
which will be fabricated. Second, it provides information about
critical design rules. Finally, since SIMPL can give visual feed-
back at every step in the process, it is an aid to process
development.

SIMPL uses simplified models and rectangular approximation
to the structures in order the run very quickly. The models are
not analytic as in other rigorous two dimensional simulators such
as SAMPLE or SUPRA, but this allows SIMPL to run much faster.
Research is continuing on a second version of SIMPL which will
automatically give more detailed topographical and electrical
jnformation from the layout. This will be accomplished by 1link-
ing other process simulators such as SAMPLE, SUPRA and MINIMOS.

SIMPL is written in 1600 lines of C code. Typical CPU time
for the final profile of a CMOS inverter or a bipolar transistor
in approximately 5 seconds on a VAX-11/780.

{1

Michael A. Grimm

Author

SIMPL(SIMulated Profiles from the Layout)

Title

RESEARCH PROJECT
Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,
in partial satisfaction of the requirements for the degree
of Master of Science, Plan 1II.

Approval for the Report and Comprehensive Examination:

Comnittee: MMQ Research Advisor
.A&M /f‘, /’83 Date
¥ L4 ,

(v e Ol

4&5 /‘//, /"//33 Date

SIMPL (Version 1.0 Dec 12, 1983)

SIMulated Profiles from the Layout-version 1.0

Developed by :
Michael Grimm
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California 94720

0]

a;

[

SIMPL
Table of Contents

Abstract

Report
Acknowledgements
SIMPL User Guide
SIMPL Source Code

Abstract

Often times it is necessary to visualize an IC profile from
looking at the layout. The transformation from the planar view
to the cross-sectional view is difficult, especially with complex
mask sets. SIMPL (SIMulated Profiles from the Layout) is a new
CAD tool which automatically generates the cross-section of an
integrated circuit from the layout. SIMPL has several uses.
First, it provides the designer visual feedback on the structures
which will be fabricated. Second, it provides information about
critical design rules. Finally, since SIMPL can give visual feed-
back at every step in the process, it is an aid to process
development.

SIMPL uses simplified models and rectangular approximation
to the structures in order the run very quickly. The models are
not analytic as in other rigorous two dimensional simulators such
as SAMPLE or SUPRA, but this allows SIMPL to run much faster.
Research is continuing on a second version of SIMPL which will
automatically give more detailed topographical and electrical
information from the layout. This will be accomplished by 1link-
ing other process simulators such as SAMPLE, SUPRA and MINIMOS.

SIMPL is written in 1600 lines of C code. Typical CPU time
for the final profile of a CMOS inverter or a bipolar transistor
in approximately 5 seconds on a VAX-11/780.

{1

)

SIMPL Report

Simulation Program

SIMPL(SIMulated Profiles from the Layout - version 1) is a
new CAD tool which automatically generates the cross-section of
an IC from the layout. This gives the designer rapid feedback on
the circuit topology. The 1layout is taken from a KIC or
CIF(CalTech Intermediate Form) file. The cross-section is simu-
lated at an arbitrary cut-plane specified by user. The graphic
output is also in KIC so that it can be displayed on the same
graphics editor as the layout. The input to SIMPL consists of
generalized fabrication steps which can be arranged arbitrarily
to describe many different processes. SIMPL is designed to be
fast, and uses only rectangular shapes trading off accuracy for
speed, which is desirable for on-line operation.

SIMPL takes three types of inputs, one from the user, one
from the 1layout and one from the process file. The user speci-
fies two points which define the cross-section cut-plane and the
scale factor in the Y direction. The Y scale factor makes the
output more readable, compensating for the small dimensions in
the vertical plane of an IC. SIMPL takes the user defined
cross-section plane and intersects it with the layout to get the
mask crossings. The program then executes the commands in the
process file with the proper mask edges and simulates the wafer
topography. :

A flexible grid structure is used to reduce the number of
rectangle required to represent a cross-section. The process
begins with two rectargles, the substrate and the air above,
which are as large as the desired cross-section. As the wafer is
processed, more rectaiigles are introduces to represent mask edges
and layers in the profile.

SIMPL is written in 1600 lines of C code. The C 1language
utilizes data structures and pointers to variables, which are
integral parts of the grid. Each rectangle is represented by a
data structure(node), which contains the physical information
about each rectangle. The node stores the material type, doping
concentration, and the x,y coordinates of the upper left corner
and the lower right corner. In addition every node has a pointer
to its four neighbors. These pointers allow searching movement
in any direction from any node.

Splitting the array as required by new mask edges or pro-
cess effects can be done in both the x and the y direction. The
split is generated by inserting a new row of boxes and setting
the pointers and x,y coordinates accordingly. The pointers are
superior to a two dimensional array, since only three rows of
boxes are affected in a split. If it was an array, then all of
the array below or to the right of the split would be affected.

All operations on the profile are broken down into two sim-
ple operations: splitting boxes and switching node type and dop-
ing. During every step the position of the next rectangle if

SIMPL Report

calculated, the grid is split to accommodate the new box, and
it's type and doping are set to their new values. Quite often,
the rectangle already exists in the grid and only the type and
doping need to be updated. Some of the grid 1lines become
obsolete after some time. In order to minimize the grid and the
run time the grid is checked for grid lines that are not neces-
sary.

For speed the physical process models in SIMPL have been
made very elementary. At the moment lateral etching and diffu-
sion are not included. The doping model is a gaussian with vari-
able peak depth, standard deviation, and implant blocking thick-
ness. SIMPL does not simulate a redistribution of the doping
profile in later high temperature steps, therefor the input
values must include the drive-in component. The oxidation model
input is the oxide thickness if there were no initial oxide. The
new oxide thickness is the square root of the sum of the squares
of the initial oxide thickness and the input oxide thickness.

A six mask bipolar process with 38 process steps and an
eight mask CMOS process with 55 steps have been simulated. Exe-
cution time which occurs for generating the final profile
directly requires only 5 sec. on a VAX 11-T80/UNIX.

0

al

Q4

Acknowledgement

ACKNOWLEDGEMENTS

I would like to express my thanks to Prof. Andy Neureuther
for his time and patience throughout this project. He has been
of the utmost help in completing this work. I would also like to
than my partner and friend Ken Lee for his valuable assistance.
My thanks are also extended to Prof. Bill Oldham for reading the
paper. I would like to acknowledge Ken Keller for his assistance
with KIC. I would also like to thank my wife Brigit for her sup-
port and patience.

A very special thanks is extended to all those at the
University of California, Berkeley who have made my stay here,
both as a graduate and an undergraduate, very memorable and
rewarding.

0

GO BEARS!!!

SSss SSss S S SSsSssss SSSS
S S SS SS SS SsS SS SS
SS SS SSs SSS SS Ss SS
SSs SS SSss SSSs SSSSSS SS
SS SS SS 8§ SS SS SS SS
SS SS SS SSS8S SS SS SS
S S8 SS SS SSS SS SS SS S
SSSSS SSSS SSSS S SSSS SSSS SSSSSSS
SSS S SSSS SSSSSSS SSSSSSS SSSS SSS S SSSS SSSSs SSSSSSS
SS SS S 8 S SS Ss S § 8 S8 8 S S SS S
SS SSS SS SS SS SS SS 8 88 S S8 S8
SS S SsS SSSs SSSSSS SS SS S SS S SS sss8
SS S SS SS SS S SS SS S8 S ss -§S SS SS
SS S SS SS SS S SS S 88 s 8 S Ss S8
SSS SS SsSS S SS S SS S S8 S 88 S S SS S
SSSS SSSSS SSSSSSS SSSS - SSS SSSS SSSS SSSS SSSSS SSSSSSS

SIMPL (Version 1.0 Dec 12, 1¢33)

SIMulated Profiles from the Layout-version 1.0

Developed by :
Michael Grimm, Keunmyung Lee, Andrew Neureuther
Electronics Research Laboratory
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

(C) Copyright notice (1983)
All rights reserved.

0

)

Introduction 2

(C) Copyright Notice (1983). All rights reserved by:

The SAMPLE Group
Room 332 Cory Hall
Electronics Research Laboratory
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720 U.S.A.

The SIMPL program is available through DARPA free of charge to
any interested party on an "as-is" basis, for a nominal handling
fee.

The sale, resale, or the use of this manual for profit without
the express written consent of Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley,
California is forbidden.

No updates or "bug" fixes are promised. No guarantee about reli-
ability or correctness is made. It is the users responsibility
to check the results for sensibility or correctness.

This project has been supported by DARPA.

. The user agrees to acknowledge SIMPL in publications using the

results from the SIMPL program, and have anyone to whom the rou-
tines are further circulated to agree to the same. If modified,
this manual will still be considered to be the original work (lo-
cally modified) unless more than one-half the manual is changed.

0]

II.

III.

Iv.

Introduction

SIMPL USERS GUIDE
Table of Contents

page #

General Information
A. Title and copyright..............1
B. Table of contents and index......3
c. Introduction and overview...oe.eo
D. Telling SIMPL to simulate.cesceesd
E. An input example.................6
SIMPL Commands
A. Introduction.....................11
B. Input and Command 1iStescoccsssessld”
C. Detailed Descriptions

1. Interactive inputs.........13

2. Process CommandS....e.esses15
Program Structure
A. Introduction.....................17
B. List of SUbroutines..ececsscecess18
c. Flow CNETLeeesscosacsssssscssesssl
D. Porgram SLrUCLUr€.eeecscscsssssssl]
D. Compiling SIMPL.eeseocsnsaossessel3
E. Adding New Layers................Zu
F. Memory a110CatioN.ceecaccecncssssdd
Examples’
A. CMOS.............................26
B. Bipolar..........................27
Apendix A - KIC notes..................28

K]

Introduction y

OVERVIEW

SIMPL is a CAD(Computer Aided Design) tool which simulates
the topography of an Integrated Circuit from the layout. It is
capable of simulating the cross-section at every step of the
wafer fabrication. The basic process steps are oxidation, depo-
sition, etching, implantation and diffusion, and masking. The
profiles are modelede with rectangles using simple physical
model. This allows rapid online feedback on the device features
which the layout will generate.

SIMPL presently consists of about 1600 lines of C code.
Typical CPU time is approximately 5 seconds on a VAX-11/780 with
UNIX to simulate the final profile for a cmos inverter. The lay-
outs and profiles can be viewed with the KIC program, while the
data is stored in CIF(CalTech Intermediate Form) which is a lay-
out standard.

The development of SIMPL has been supported by the DARPA.
To encourage open exchange of information SIMPL is available on
an as-is basis for a small handling fee. We appreciate your
feedback on the performance of the program. However, we can not
offer assistance in implementing the program on your computer
system or in training users.

]

Getting Started 5

How to tell SIMPL to simulate:
(A note on the types of input statements to SIMPL.)

The SIMPL program imitates the actual processing sequence
of a wafer. The process flow closely follows the actual sequence
used in the lab. - Steps which do not have an effect on the topog-
raphy such as rinse, prebake, and sintering are not simulated.

There are three types of inputs to SIMPL, general informa-
tion, the process flow and the layout.

The user begins by entering several inputs in interactive
mode. The inputs describe the files needed to run the simula-
tion, the segment of the layout to be simulated and some scale
factors. '

The first input file is the layout command. The layout can
be either CIF or KIC(it is assumed that the user is familiar with
KIC, see Appendix A for details on the KIC program). This file
is a description of the layout which will be simulated.

The other input file contains a list of the process com-
mands. Every processing input into the program conveys the
information necessary to perform one 'step of the process. The
input contains the command and the parameters which characterize
a specific action, as if it were being performed in the lab. The
parameters describe the topographical effects of the action,
rather than the settings on the machines which perform the
actions. This means that the user specifies the oxide thickness
rather than the time and temperature of the oxidation. Therefore
the user must have previously characterized the process before he
can use that information to visually see the profiles. The
details of each input statement are given later. ‘

The inputs commands can be used in an arbitrary sequence,
except for substrate definition. This feature allows SIMPL to
simulate many different technologies such as NMOS, PMOS, CMOS or
bipolar. Here is a list of the current process commands which
make up the process sequence:

SUBS - specify the substrate material

OXID - oxidize the silicon

DEPO - deposit a layer onto the surface

ETCH - selectively etch the surface

DOPE - dope the silicon with implant -or diffusion
MASK - photo transfer the mask to the resist

0]

(¥}

Getting Started 6

A Short Example

This example consists of three parts 1) interactive inputs
2) process file 3) layout file. The following examples assume a
familiarity with UNIX. These examples can be found on ESVAX in
~sam3/simpl/example. Move to this directory to run this example.
To start, alias simpl to “sam3/simpl/prog/simpl. Then give the
command "simpl".
The commands are,

alias simpl ~sam3/simpl/prog/simpl

cd “sam3/simpl/example

simpl

SIMPL will ask for some more information in
an interactive mode.
The responses to the interactive questions are given:

QUESTION ANSWER
split h=horizontally v=vertically? h

microns per lambda? 1.0

start value? =50

stop value? 50

scale factor in y direction? . 10

the y plane you want split? 0

the mask file? ex.mask
the input file? ex.process
the base name for the output files? ex.out

output profile at every step y=yes n=no? n

The meaning of the interactive inputs are,

split h=horizontally v=vertically?
is the cut-line segment of the mask horizontal or
vertical?

microns per lambda?
the number of microns per one lambda of KIC units

start value?
the starting coordinate of the cut-line

stop value?
the final coordinate of the cut-line

scale factor in y direction?
a factor which magnifies the profile in the vertical
plane to make the very small dimensions visible -
the (x,y) plane you want split?
this specifies the coordinate of the plane which the
cut line lies on

Getting Started 7
the mask file?
file which contains the mask layout

the input file?
file which contains the process inputs

the base name for the output files?
this gives the base name for the output files

output profile at every step y=zyes n=no?
specify a profile for every step of the process

The process file contains a simple input-example illustrat-

ing the use of SIMPL. First the example input file is given and |

then its meaning is explained. The example covers all the simple
statements that SIMPL uses.

SIMPL does not put any restrictions the columns in which
the parameters appear, but the parameters must be in the correct
order. No extraneous characters are allowed inside the command
lines except at the end of a line. Comments can be placed at the
end of a command line, or on a separate line with the "C" comment
command. Blank lines are not allowed.

The example process input file called ex.process:

c .

C input process file example

C this example implants a N-WELL into a P substrate
C

SUBS P 1eill comment at end of a line!
OXID 1.0

DEPO RST 0.5

MASK NEG NWEL 0 O

ETCH ERST 0.6

ETCH OX 1.1

ETCH RST 0.6

DOPE N 1.0e16 0.5 1.0 0.5

The meaning of the statements is as follows

c
comments may be added with this command

SUBS P lell
form the substrate with P type material of 1eld doping -

OoXID 1.0
oxidize the silicon to 1.0Omicron

)

Getting Started 8

DEPO RST 0.5
deposit 0.5 micron of resist(RST)

MASK POS NWEL 0 O
photomask the resist with the NWEL mask, over etch
and misalignment are null

ETCH ERST 0.6
etch exposed resist(ERST), this patterns the resist

ETCH OX 1.1
etch or 1.1microns of oxide, this only occurs in the
regions where the resist has been opened

ETCH RST 0.6
etch off all the remaining resist

DOPE N 1.0e16 0.5 1.0 0.5
dope the silicon with N type impurities with Nmax=1e16,
sigma for the gaussian distribution is O.5micron, depth
of the peak is 1.0Omicron below the surface, and the
masking thickness necessary to block the doping
in unwanted areas is O.5micron

The mask file is called ex.mask and is the layout file for
the graphics system. In this example a KIC file is used, but the
CIF format of the same file can be used. This is a very small
file with only one box which lies in the plane that is split.

KIC file comments

(Symbol ex.mask); header

9 ex.mask;

DSO0 1 1;

L NWEL; Layer name is NWEL

B 4400 2400 -2200 O3 box which forms the mask
DF; end of data

E

CIF file for comparison

(CIF file of symbol hierarchy rooted at ex.mask);

DS 11 1;

9 ex.mask;

L NWEL;

B 4400 2400 -2200 0;

F; -
1

magY

Getting Started 9

When SIMPL is run with the test example above, the follow-
ing are the results to expect.
The output to the terminal

OUTPUT COMMENT

split h=horizontally v=vertically?
h

microns per lambda?

1.0

start value?

<50

stop value?

50

scale factor in y direction?
10

the y plane you want split?
0

interactive inputs

the mask file?

ex.mask _

the input file?

ex.process

the base name for the output files?
ex.out

output profile at every step y=yes n=no?
n

NWEL
=44000 O

]
]
[}
]
]
]
]
]
]
]
[]
]
[]
[}
]
$
[]
]
]
]
)
]
]
]
(]
]
[]
]
1]
1
[}
]
]
]
]
[}
[)
]
[]
]
1
1
1
]
]
]
{ mask name

| mask crossings
]

]

[}

1

c commands

C comments may be added with this command

C this example implants a N-WELL into a P substrate

C

201 SUBS TYPE=P DOPE=1.00e+14

#02 OXID THICK=1.00

#03 DEPO TYPE=RST DOPE=0.00e+00 THICK=0.50

#04 MASK POL=NEG MASK=NWEL BLOAT=0.00 SHIFT=0.00
#05 ETCH TYPE=ERST THICK=0.60

#05 ETCH TYPE=OX THICK=1.1

#07 ETCH TYPE=RST THICK=0.60

#08 DOPE TYPE=N PEAK=1.00e+16 DEPTH=1.00 DELTA=0.500 BLOCK=0.50

across and down 3 18 diagnostics

memory used = 2408

- -

The output file, ex.out, is a KIC file which can be viewed

Getting Started 10

by running KIC with this file. The output file is in ascii for-
mat and can be viewed. Note that is is in the same format as
ex.mask. These two files can be viewed at the same time using

KIC.

(Symbol ex.out);

9 ex.out;

DS 0 1 1%;

L OX;

B 5000 1002 7500 10041;

! B 600 1002 300 10041;
L N12;
B 4400 2 2800 8505;
L N13;
B 4400 14 2800 8513;
L Ni4;

B 4400 72 2800 8556;

B 4400 52 2800 9514;

L N15;

B 4400 178 2800 8681;
B 4400 178 2800 9399;
L N16;

B 4400 540 2800 9040;
L P13;

B 4400 2 2800 8503;

L P14;

B 5000 9540 7500 4770;
B 4400 8502 2800 4251;
B 600 9540 300 4770;
L LABL;

94 final profile 0 O;
B 10000 20000 5000 10000;
DF;

o
/é;/;ézééﬁéééééély
///:/// ”:?%;Z%%%%%;4
////// / ” ?} //:,,,/,/'/’2//.} ,/ }

7

z
20
7 7 ///,’%’
7% % i
25 R

7 2

0
7% 52%4%?’ 7 éé?j"
l/l// 7. 5

s

AN 7,
7 9"43/ﬂ
7 s ey 7

8P

4 d
Vel bl
7/ Z, /O

N

e

77 G T /(/”-"",,""'.'," H
oo A4gé%%%g%g%z%ggzzgg%ggg¢%g¢zyJ o

o

Ccnnmmd; 1M

SIMPL Commands

Introduction

This section of the user manual catalogs both the interac-
tive inputs and process input command statements that are
presently contained in SIMPL. The first two lists are a terse
sumary of the inputs and their arguments for quick reference.
Detailed descriptions of each statement follow next.

0

L))

oy

Commands

LIST OF INTERACTIVE INPUTS

(in sequential order)

split h=horizontally v=vertically?
microns per lambda?

start value?

stop value?

scale factor in y direction?

the y plane you want split?

the mask file?

the input file?

the base name for the output files?
output profile at every step y=yes n=no?

12

LIST OF PROCESS INPUTS
User process commands

C comments may be added with this command

SUBS
OXID
DEPO
MASK
ETCH
DOPE
ETCH

(]

TYPE DOPE

THICK

TYPE DOPE THICK

POL MASK BLOAT SHIFT

TYPE THICK

TYPE PEAK DEPTH DELTA BLOCK
TYPE THICK

Commands - Detailed Description 13

INTERACTIVE INPUTS
DETAILED DESCRIPTION

split

h=horizontally v=vertically?

The cross-section is simulated along a line segment of the
layout file. This segment can lie anywhere in the layout,
but must be oriented in the horizontal or vertical direc-
tion. Horizontal means the the start and stop points have
the same y coordinate, and vertical means that the start
and stop points have the same X coordinate. The input is
only valid if 'h' or 'v' is entered.

microns per lambda?

start

scale

The layout is in KIC format with relative units called
lambda which form the coordinate grid of the layout. One
lambda represents a Specific number(or fraction) of
microns. The scale factor is a floating point number.

value? stop value?

‘The start and stop values are integers which are the

starting coordinates for the cut-line segment. The values
are specified in lambda. These values are obtained while
viewing the layout on the KIC terminal.

factor in the y direction?

This scale factor is an integer which makes the cross-
section easier to view. Since the vertical dimensions of
Integrated Circuits are very small(gate oxide ~25nm) com-
pared to the lateral dimensions(gate length “imicron) it is
very hard to see the vertical features in a 1:1 scale. The
scale factor magnifies the vertical dimension.

the (x,y) plane you want split?

The cut-line lies in the horizontal or vertical plane. 1If
it is split horizontally then it is necessary to specify
the y coordinate of the plane which is split. If the split
is vertical then the x coordinate of the plane must be
specified. The coordinate is an integer number in lambda.

the mask file? -

The mask file is the name of the file which contains the
layout. The file must be in the current directory.

)

Commands - Detailed Description 14

the process input file?

The process input file is the name of the file which con-
tains the process input commands This file must be in the
current directory.

the base name for the output files?

The base name is the name for the final profile. If the
profile for every step is output, the the files are named
basename.xx where xx is the process step number.

output profile at every step y=yes n=no?

This input allows the user to specify if Jjust the final
profile or if a profile for every step is created. The
names of the steps follow the convention stated in base
name command.

0]

Commands « Detailed Description 15

PROCESS INPUTS
DETAILED DESCRIPTION

GENERAL USAGE

The process inputs follow a few simpl conventions. These
will be outlined before the commands are specified in detail.

Several commands specify a material type to be operated
upon. There is a fixed 1ist of layers which may be used. When
the material is doped silicon, the doping must be added in addi-
tion to the type(P,N). The list of layer names follow

layer comment

POLY poly silicon

0) ¢ oxide

METL metal

RST resist

ERST exposed resist

NTRD nitride

SI intrinsic silicon

N n-type silicon, doping must be specified
P p-type silicon, doping must be specified
L1 undefined layers

L2 -

L3

L4

LS

The parameters for thickness, depth, delta and sigma are
all floating point numbers in microns. The values for doping are
floating point numbers of atoms per centimeter cubed.

DETAILED COMMAND LIST

C comments may be added with this command

The comment card allows comments to be interspersed with
the process commands. No blank lines are allowed.

SUBS TYPE DOPE
This command forms the substrate material. It must be the
first non-comment input line and can only be used once.
TYPE specifies the material used and DOPE is the dopmg
which is only specified it the TYPE is N or P.

OXID THICK

The oxidation is characterized by the thickness of the new

o}

DEPO

MASK

ETCH

DOPE

0

Commands - Detailed Description 16

oxide. This thickness refers to the thickness which would
grow on bare silicon. There is a correction factor which
accounts for initial oxide, this is the square root of the
sum of the squares of initial thickness plus new thickness.
The model also accounts for the 46% consumption of the sil-
icon.

TYPE DOPE THICK

The deposition command deposits a material on the surface
of the wafer. The material is specified by TYPE and the
optional doping. The layer thickness is specified by
THICK.

POL MASK BLOAT SHIFT

The MASK command exposes the resist with the specified
MASK. The POL term specifies the polarity of the masx, if
the polarity is positive(POS) then the mask is wused to
image the resist, or if the polarity is negative(NEG) then
the inverse of the mask is used to expose the resist. The
BLOAT command allows the user to increase the size of the
mask to approximate lateral effects. If BLOAT is a positive
number then the features on the layout are expanded by this
amount. Bloat is a floating point number and can be nega-
tive to simulate a shrink. SHIFT is also a floating point
number which moves the mask to the right by the specified
distance.

TYPE THICK

The etch command is selective to the specified TYPE. The
etch will proceed to a depth of THICK. If the material is
thinner than THICK then the 1layer will be removed com-
pletely, with the lower layers unaffected.

TYPE PEAK DEPTH DELTA BLOCK

The DOPE command simulates either the implant or diffusion
process. This command does not calculate a redistribution
of the impurities, so the input parameters must also take
the drive-in into consideration. The impurity profile for
each DOPE command is approximated by a gaussian curve. The
gaussian has a peak doping(PEAK), depth below the
surface(DEPTH), sigma of the curve(DELTA), and a critical
thickness for implants (BLOCK). BLOCK is the masking thick-
ness necessary to keep the impurities from entering the
silicon. PEAK is a floating point number of the doping
concentration peak in atoms per centimeter cub:d. DEPTH,
DELTA and BLOCK are both floating po.int numbers in migrons.
The impurity concentration of a region is calculated as the
linear sum of the gaussians plus substrate concentration.

Program Structure 17

The SIMPL program's structure

This section of the SIMPL user's guide contains information
for those who want to modify, customize or become more familiar
with the code. The casual user may not wish to read the contents
following. The following sections will outline the internal
structure of the program and give some ideas on modifying the
code.

0

w)

Subroutines

Subroutine

alloc(n)

boxes(line,node)
checkacross()

dep(layer ,doping,t)
diff(nmax,alpha,offset,ycrit)
diffdown(nmax ,alpha,node,ypeak)
diffup(nmax,alpha,node,ypeak)
dopinglevel (npeak)
doptolayer(doping)

edge()

error(message)

etch(layer,t)

exinit()

expose(start,stop)
gauss(nmax,alpha,Xx)
gettype(line,type,typenum,doping)
init()

inputs()

interact()

kalloc()

kicfile(num,label)
kiclayers(fp)

label (label,line)

main()

maskname(line) .

men()

nalloc()
newboxx(start,new,north,xval)
newboxy(start,new,west,yval)
nextsplit(npeak,nmax)
nodelayer{node)

numacross().

numdown()

numtotype(i)

oxide(depth)
pairs(node,high,low)

palloc()
photo(polarity,name,bloat,shift)
printnode(high, low,fp)
printpairs()
rectangle(x1,x2,y1,y2,node)
searcheaxt (startnode,xval)
searchsouth(startnode,yval)
sgn(n)

splitx(xval)

splity(yval)

sub(n,d)

talloc()

typetonum(type)
validox(node)
wires(line,node)

18

file
alloec.c
boxes.c
check.c
dep.c
diff.c
diff.c
diff.c
dop.c
dop.c
edge.c
inputs.c
etch.c
exinit.c
expose.c
gauss.c
inputs.c
init.c
inputs.c
interact.c
alloc.c
kicfile.c
kiclayers.c
inputs.c
main.c
maskname.c
alloc.c
alloc.c
newbox.c
newbox.c
next.c
node.c
num.¢
num.c
exinit.c
ox.c
pairs.c
alloc.c
photo.c
printnode.c
printpairs.c
rect.c
search.c
search.c
sgn.c
split.c
split.c
sub.c
alloc.c
exinit.c
valid.c
wires.c

alloc:

boxes:
rectangle

check:
nodelayer

dep:
splity

diff:
diffdown
diffup

diffdown:
dopinglevel
gauss
nextsplit

sgn
splity -

diffup:

_ dopinglevel
gauss
nextsplit
sgn
splity

dopinglevel:
doptolayer:

edge:
boxes
maskhome
maskname
nalloc
printpairs
wires

error.

etch:
splity

exinit:

exhbse:
splitx

gauss:

Subroutines

inputs:
checkacross
dep
daiff
error
etch
gettype
kicfile
label _
oxide
photo
sub

interact:

kalloec:
alloc

kicfile:
kiclayers

kiclayers:
kalloc
nodelayer
numtotype
printnode

label :

main:
edge
exinit
init
inputs
interact
mem
numacross
numdown

maskname :
nalloc

mem:

nalloc:
alloc

newboxx:
talloc

newboxy:
talloc

19

pumacross:
numdown:
numtotype:
ox:
splity

validox

pairs:
palloc

palloc:
alloc

photo:
expose

printnode:
printpairs:

rect:
pairs

searcheast:

searchsouth:

sgn:

splitx:
newboxx
searcheast
talloc

splity:
newboxy
searchsouth
talloc

sub:
splity

talloc:
alloc

typetonum:
valid:

wires:

Subroutines 20

gettype: next: rectangle
error sgn
typetonum
node:
init: doptolayer
talloc
STARYT
) ea’t n dehull
™mawn() - ean av ow o> » e
e =222 Fiagw
l N Loe?
EXTECQnL l
viARIAGQLE l
4 DI N1 TS
lexini+ 0> T r Y - -
Frae o’ Avo mMk
v ll P ITL T3] CResS g LAvres
TnfuTg l | wivesCy | _\Jﬂ‘.(_)_‘ mogknamel)
. ;
“*Cd ocd ' l . ;

STORE

H Lochvrons
FiNno | : 0€ CLussgs
MASic _:’J ' Pecte C

EvVGES - A
' €Jge ¢) g e S
N S N

—Y rf: ----- :’m FINISWH

Tensueel |l M Looe
erre I nods()
i)
— - + 1
SiruL e Simay 0TE v
e S ' ! OE £ 02T en €Ten | [PRorevise
£S
depl :
3::::-., Eﬂ 1pC) et L) eheto L)
[znnrs | i
CRELTE \muLdTE
| | [T] | [T
| SeosC) AP oxC
ENoO)
-
OuTPlur
uie Fiv g

Fis. 2 PRO GRAA FlLOw

L xyefle(d

Flowchart 21

Internal Structure of SIMPL

A flexible grid structure is used to reduce the number of
rectangles required to represent a cross-section. The process
begins with two rectangles, the substrate and the air above,
which are as large as the desired cross-section. As the wafer is
processed, more rectangles are introduces to represent mask edges
and layers in the profile as shown in Fig.[3]. Note that the
newly introduced grid lines cross the entire cross-section. A
CMOS inverter with 4 steps requires about 3000 rectangles.

SIMPL-1 is written in 1500 lines of C code. The C language
utilizes data structures and pointers to variables, which are
integral parts of the grid. Each rectangle is represented by a
data structure(node), which contains the physical information
about each rectangle, shown in Fig.[4]. The node stores the
material type, doping concentration, and the x,y coordinates of
the upper left corner and the lower right corner. In addition
every node has a pointer to its four neighbors. These pointers
allow searching movement in any direction from any node.

Splitting the array as required by new mask edges or pro-
cess effects can be done in both the x and the y direction. The
split is generated by inserting a new row of boxes and setting
the [pginters and x,y coordinates accordingly as demonstrated if
Fig.[5].

All operations on the profile are broken down into two sim-
ple operations: splitting boxes and switching node type and dop-
ing. During every step the position of the next rectangle if
calculated, the grid is split to accommodate the new box, and
it's type and doping are set to their new values. Quite often,
the rectangle already exists in the grid and only the type and
doping need to be updated.

]

-\

Program data structure and grid

figures

P

Polysilicon

Substrate !

<

Oxide

v

Fig.3 Sample Grid Structure with Substrate,
Oxide and Polysilicon

x. v)

POINTER UP

EVERY MODE CONTAINS

POINTER
LEFT

MATERIAL TYPE

DOPING CONCENTRATION

POINTER DOWN

POINTER
RIGHT

(x. v)

Fig.4 Contents of Data Node for Rectangles

Betore Split After Split
0. 13 (4, 13 .13 1e. 13) '
M00E 3 O0E 2
Su1DE OXIDE
M00E ¢ nootE 2 0.0 0.0
ox10€ Ox10€ | e, 8 (2.9
0.0 0.0 t0. 8 TAC])
00€ 3 oDt 8
oxioE OXIDE
0.0 0.0
e, _8) (v} [TR-1) 0.9
0.9 6.9 0. 9 6.9
oot 3 NOOE 4 wO0t 3 0L 4
» ’ » »
3 13 13 13
1.8110 1.02130 $.0%80 1.0%10
(4, 0) 7.0 14. 0 7. 0)

Fig.5 Horizontal Splitting Example on Y=90

22

Structure 23

HOW TO COMPILE SIMPL

SIMPL is compiled with the aid of a makefile. The MAKE
program keeps track of which files which have been updated and
will only recompile those. The source code for simpl is located
on ESVAX in “sam3/simpl/prog. When in this directory it is only
necessary to type "make™" and the make program will compile all
new files. The executable code is then put into a file called
nsimpl"®. If it is necessary to recompile the whole program after
a change in the operating system, then you must first remove all
the files which end in ".o". This is done by entering "rm #.o".
Then recompile using the "make" program. The updated executable
is always put in "simpl®".

0]

Structure 24

HOW TO DEFINE NEW LAYERS

SIMPL has five layers which do not have a material name
attached to them. They are called L1,L2,L3,L4 and L5. The user
is free to use these at his disposal. These layers do not have
any special properties such as SI, POLY, OX, RST or ERST. These
layers can be used as masks for doping or etching, they can not
be oxidized or doped, and they can not be exposed to ERST in a
masking step. They can be used as interconnect, insulator or a
nitride like material for local oxidation.

The names of these layers can also be changed to reflect
the name of the material which they represent. The name conven-
tion is one to four characters, starting with at least one capi=-
tal letter and optionally followed by numbers. This convention
is not enforced in SIMPL, but it is enforced on the KIC program.
The code which contains the list of layer names is located in the
file ~sam3/simpl/prog/exinit.c. In this file, the names can be
changed. The program then should be recompiled as in the
jnstructions on the previous page.

If more materials are needed they can be added to the end
of the list of materials in the code. It is imperative that the
value of NLAYER(number of layers) be updated to reflect the addi-
tions. NLAYER is found in the same file as the layer list, but
inside the subroutine exinit(). The program must then be com-
piled.

Layers with special properties can not be added simply. If
the layer has new properties, then the new routines which simu-
late the the property must be added. If the layer has the same
properties as one of the other special layers, then the code must
be updated to make checks for the new layer.

0]

Structure 25

HOW TO INCREASE MEMORY ALLOCATION

The memory allocation of SIMPL is fixed in size. It 1is
currently set at 500k bytes. The buffer is used to store the
nodes of the grid and to produce output files. When all of the
buffer is used, SIMPL gives an error message telling you to
reduce the complexity of the simulation. If all the steps are
being output it is possible to to reduce the buffer requirements
by only outputting the final profile. The buffer size can be
changed to reflect the needs of the users and the machine.

The location of the allocation is in the file
~sam3/simpl/prog/alloc.c. The buffer size is set by ALLOCSIZE in
the definitions. This value can be changed to reflect the
desired size. The program must be recompiled after any change.
Compiling instructions are given earlier in this manual.

Q]

Examples 26

| 4 01ries &g

Ni12 N13-14 N15-18 N17-18 Pl18-

!
', = =
P12 P13-14 P15-18 P17-18 Nig-

Fig.7 Cross—section of Bipolar along the Cut-Line in Fig.8
5X Scale for Y

Fig.8 Layout of an Berkeley CMOS Inverter with Cut-line for SIMPL-1

-t mh b wd SOOI OV EWN

EWN =0

NNNNNNNNN--A-O-A-O
mdo-mszwm-oom-ao-m

SUBS
0X1D
DEPO
DEPO
MASK
ETCH
ETCH
ETCH
OX1D
ETCH
DOPE
ETCH
OX1D
DEPO
DEPO
MASK
ETCH
ETCH
ETCH
DEPO
MASK
ETCH
DOPE
ETCH
OXID
ETCH
DOPE
DEPO
DEPO
MASK
ETCH
ETCH
ETCH
DEPO
MASK
ETCH
DOPE
ETCH
DEPO
MASK
ETCH
DOPE
ETCH
DEPO
DEPO
MASK
ETCH
ETCH
ETCH
DEPO
DEPO
MASK
ETCH
ETCH
ETCH

P 1e13 Examples

0.1

NTRD 0.1

RST 0.5

POS NWEL 0 O
ERST 0.6
NTRD 0.2

RST 0.6

0.5

NTRD 0.2

N 1.1e15
0X 0.7
0.1

NTRD 0.1
RST 0.5

1.5 0 0.2

POS ACTV 0 O

ERST 0.6

NTRD 0.2
RST 0.6

RST 1.0

POS NWEL
ERST 1.1
P 1e21 0.15 0.05 0.2
RST 1.1

00

0.7

NTRD 0.2

P 1e20 0.5 0 0.2
POLY 0.25

RST 0.5

POS POLY 0 O

ERST 0.6

POLY 0.6

RST 0.6

RST 1.0

POS PSD 0 0

ERST 1.1

N 1e21 0.2 0.1 0.2

RST 1.1

RST 1.0

NEG PSD 0 O

ERST 1.1

P 1e21 0.2 0.1 0.2
RST 1.1

OoxX 0.5

RST 1.0

NEG CONT 0 O
ERST 1.1

oX 1.0

RST 1.1
METL 1.0
RST 1.0

POS MTL 0 O
ERST 1.1
METL 1.1
RST 1.1

ﬂ@.?ﬂk«ikumtuﬂlﬁd&ucﬂl«*ﬂqynunImnﬂurduu
the Cut-line in Pig.8. 6X Scals for Y.

Apendix 28

KIC notes)

This section is designed to provide some help getting
started with KIC. KIC is a computer graphics package to aid in
eircuit layout which has been developed at U. C. Berkeley. The
program uses a data base very similar to CIF(CalTech Intermediate
Form) which is a layout standard. The 1layout files which are
created using KIC are interpreted by SIMPL to find the mask
crossings. The output files which are created bye SIMPL are com-
patible with KIC.

SIMPL can not interpret all of the KIC extensions. The
layout must contain only rectangles and wires, no circles or
polygons are interpreted. Also there can not be any heirarchy in
the layout. If the circuit has been laid out with instances, it
must be flattened to be fully interpreted.

when KIC is run, it requires a file in the present direc-
tory which gives the characteristics of all the layers. This
file is the ".KIC" file. There is an example in the directory
~sam3/simpl/example.

The KIC files can be converted to CIF format by running the
KICTOCIF program. Once in CIF format they can be plotted on the
Versatec printer using the CIFPLOT command. CIFPLOT uses a pat-
tern file which contains the pattern for each layer, an example
is also in ~sam3/simpl/example.

]

SOURCE CODE FOR
SIMPL

L)

Dec 12, 1983 makefile Page 1

CPLAGS = =-cvgp
LPLAGS = =-gp

OBJECTS = alloc.o boxes.o check.o dep.o\
diff.o dop.o edge.o etch.o exinit.o\
expose.0 gauss.o init.o inputs.o interact.o\
kicfile.o kiclayers.o main.o maskname.o\
newbox.o next.o node.o num.o 0x.0\
pairs.o photo.o printnode.o printpairs.o rect.o\
search.o sgn.o split.o\
sub.o valid.o wires.o

simpl : $(OBJECTS)
ce $(LFLAGS) $(OBJECTS) -o $@ -1lm

.c.0: 3 cc S$(CFLAGS) $*.c

Dec 12, 1983 defs Page 1

struct tamode {

};

node format ®/
porth west x coordinate, north west y coordinate, south east x */
coordinate, south east y coordinate, material type, pointer up, */
pointer down, pointer left, pointer right &/
doping is positive for n and neg for p and O for non Si */
when a pointer is NULL, there are no more boxes in that direction */
the limit for x,y coordinates is set to LIMIT in microms */

int nwx;

int nwy;

int sex;

int sey;

int type:

float doping;

struct tnode ®north;

struct tnode ®south;

struct tnode %*west;

struct tnode ®east;

struct knode {

/ll
/.
/0

node format */

node points to the tnode */

prev points to the previous node */
struct tnode *high;
struct tnode *low;
struct knode *prev;

struct nnode i

/l'
/0

}s

pame holds the mask name, first holds the first node ®/
nextmask points to the next mask in the list */

char name[10];

struct pnode *first;

struct nnode *nextmask;

struct pnode { .

/l
/0
/.

this is the node which nnode points to */
start contains the start of a box and stop is the stop */
next is the next pair */

int start;

int stop;

struct pnode ®mertpair;

vy

Dec 12, 1983 alloc.c Page 1

#include "defs”
#define ALLOCSIZE 500000

static char allocbuf[ALLOCSIZE];
static char ®gllocp = allocbuf;

men()

Trintf(”nemory used = $d\n",allocp -allocbuf);

char ®*alloc(n)

/* this routine allocates space for n characters */

/®* it returns a pointer to available space or O when not enough space */
int n;

if(allocp + n <= allocbuf + ALLOCSIZE){
allocp += n;
return(allocp - n);

else
printf("not enough memory-decrease gize of profile\n");
exit(1);

}

struct tnode *talloc()
{’ this routine allocates space for the structure tnode */

char %*alloc();
~eturn((struct tnode *) alloc(sizeof(struct tnode)));

struct knode *kalloc()
/® this routine allocates space for the structure knode */

char ®*alloc();
return((struct knode *) alloc(sizeof(struct knode)));

struct pnode ®palloc()
/* this routine allocates space for the structure pnode */

char ®alloc();
return{(struct pnode %) alloc(sizeof(struct pnode)));

struct nnode ®*nalloc()
/* this routine allocates space for the structure nnode */

char ®alloc(); -
return((struct nnode *) alloc(sizeof(struct nnode)));

Dec 12, 1983 boxes.c Page 1

#include <stdio.h>
#include "defs”

boxes(1line,node)

/® this routine takes a cif line and determines the coordinates ®/
/* of the edge of the box */

/®* the line is in the form of "B delta_x delta_y x avg y_avg;" */
char line[]; -

struct nnode ®*node;

int x,y,delx,dely,xi,y!,x2,52;
char box 10];

/®* get arguements */

if(sscanf(line,"%s $d $d ¥4 %d",box,&delx,&dely,&x,&y) != 5)
rintf("wrong num of arguments\n");

elsef

/®* calculate edges */

1 = x - delx/2; /®* left edge */

x2 = x1 + delx; /® right edge %/

yi = y - dely/2; /* bottom edge */

y2 = y1 + dely; /*® top edge */

/% check to see if this box is in the cross-section */

rectangle(x1,x2,y1,y2,n0de);

bl

Dec 12, 1983 check.c Page 1

#include "defs”

checkacross()

/® this routine checks to see if there are any horizontal splits */
/* that are not needed i.e. each box above the split is the same ®/
{' the box below the split */

extern struct tnode *home;

struct tnode *vox, *left, %north;

left = home; /* start in the upper left cormer ®/
/®* loop throught the rows ./
while((left = left->south) != o)
box = left;
/® loop through the columns as long as there is a match */
while(nodelayer(box) == nodelayer(box-)north)){
box = box->east;
/® if we reached the end or the row and all matched then %/
/% remove the split */
if(box == 0){
/* removing a row! */
box = left;
/* loop coulmns to eliminate split */
while(box != 0){
/* adjust the pointers */
porith = box->north;
north->sey = box->sey;
if(box->south == 0)
porth->south = O;
elsel
north->south = box->south;
box->south=>north = north;

box = box->east;

}

break;

}

Dec 12, 1983 dep.c Page 1

#include “defs”

dep(layer,doping,t)

/® deposit a material characterized by layer, doping and thickness */
int layer,t; :

doudble doping:;

{

extern struct tnode ®*home;
struct tnode *top,%*box;
int surf;

/* start in upper left */
top = home;
/* loop through the coulmns */
while(top != 0){
/® move through the air boxes */
box = top;
while(box->type == 0){
box = box->south;
if(box == 0){
printf("never found the surface in dep()\n");
exit(1); -

}

surf = box->nwy + t; /* new surface = old surface + thickness */
splity(surf); /* split at the new surface */
box = box->north;
/®* loop upwards and change the air boxes to the new material */
while((box->nwy) <= surf){

box->type = layer;

box->doping = doping;

box = box->north;

}

top = top->east;

L)

Dec 12, 1983 diff.c Page 1

#include <math.h>
#include "defs”

diff(omax,alpha,offset,ycrit)

/® nmax >0 if n type and <O if p type */

/® diff includes both diffusion and ion implants ./

/®* the doping profile is specified by a gaussian ./

/® with a characeristic width(alpha),peak, and offset below the surf ./
/* yerit is the critical thickness which the implant can not pass */

/% since the impurities do mot diffuse in later steps */

/®* the characteristic values must be adjusted to reflect the profile */
/* after all high temp steps */

doudble alpha,nmax;

int ycrit,offset;

int ysurf,thick,ypeak;
extern struct tnode *home;
struct tnode *surf,®*top;
extern int SI;

top = home; /* start in the upper left corner &/
/* loop across the columns */
while(top != o)
surf = top;
/* loop through air boxes */
vhile(surf->type == O)
surf = surf->south;
ysurf = surf->owy; /* surface of the wafer ®/
/® determine thickness on non silicon ®/
while(surf->type != SI){
surf = surf->south;
if(surf == 0)
break;

/* if surf = 0 then there was no spilicon in that column */
if(surf == 0)
bresak;
thick = ysurf - surf->nwy; /® calculate thickness on non SI ®/
/* if thick is > ycrit then no implant gets into the SI so exit */
if(thick <= yerit){ -
if(thick >= offset) /® if thick>offset then only diffuse down */
diffdown(nmax,alpha,surf,ysurf-offset);
elae{
/® diffuse both up and down around ypeak */
ypeak = ysurf{ - offset;
splity(ypeak);
while(surf->sey >= ypeak)
sur{ = surf=>south;
diffdown(nmax,alpha,surf,ypeak);
surf = sur{->north;
diffup(nmax,alpha,surf,ypeak);

}

Atop = top->east;

Dec 12, 1983 diff.c Page 2

}

diffdown(nmax,alpha,node,ypeak)

/® diffusion of impurities into SI ./

/®* this is a half gaussian with the peak towards the top of the SI */
double alpha,nmax;

int ypeak;

struct tnode *node;

{

"double nmin,npeak,nsplit,nsub,ngauaa.sgn();

double fabs(),log(),sqrt(),dopinglevel().nextsplit(),gauss();
int ysplit,ygauss;

extern int SI;

pmin = 1e10; /* minimum discrete doping */
/* loop as long as in SI */
while(node->type == SI){
nsub = node->doping; /* initial doping */
ygauss = ypeak - node->nwy; /* gaussian distance ®/
npeak * gauss(nmax,alpha,ygauss) + nsub; /®* doping at ygauss ®/
nsplit = dopinglevel(npeak); /* calc the discrete doping level */
ngauss = nsplit - nsubd; /®* calc the new gaussian value ®/
/% if the gaussian value is small then exit ®/
if(fabs(ngauss) < nmin)
break;
if(fabs(ngauss) <= fabs(nmax)){
ygauss = sqrt(alpha’alpha'log(fabs(nmax/ngauss)));
while((ysplit = ypeak - ygauss) >= node->sey)
if(ysplit != node->nwy)
splity(ysplit);
node->doping = 3%*nsplit;
node = node->south;

nsplit = nextsplit(nsplit,nmax);

ngauss = nsplit - nsub;

1£(fabs(ngauss) < omin || sgn(ngauss) != sgn(nmax))

break;
gauss *= aqrt(alpha’alpha’log(fabs(nmax/ngauss)));

if(fabs(ngauss) < nmin || sgn(ngauss) != sgn(nmax))

break;
if(ysplit < pode->aey)

node->doping = 3*nsplit;

node = node->south;
if(node == 0)
break;

}

diffup(nmax,alpha,node,ypeak)

/* diffusion of impurities into SI */
/% this is a half gaussian with the peak towards the bottom of the SI */
doudble alpha,nmax;

int ypeak;

Dec 12, 1983 diff.c Page 3

struct tnode *node;

{ .
double nmin,npeak,nsplit,nsub,ngauss,sgn();

double fabs(),log(),sqrt(),dopinglevel(),nextsplit(),gauss();
int ysplit,ygauss;

extern int SI;

pmin = 1e10; /* minimum discrete doping */
while(node->type == SI){
nsub = node->doping;
ygauss = node->sey = ypeak;
npeak = gauss(nmax,alpha,ygauss) + nsub;
nsplit = dopinglevel(npeak);
ngauss = nsplit - nsub;
if(fabs(ngauss) < nmin)
break;
if(fabs(ngauss) <= fabs(nmax)){
ygauss = sqrt(alpha*alpha®log(fabs(nmax/ngauss)));
while((ysplit = ypeak + ygauss) <= node->nwy){
if(ysplit != node->sey)|{
splity(ysplit);
node = node->south;
node->doping = 3*nsplit;
node = node->north;

nsplit = nextsplit(nsplit,nmax);

ngauss = nsplit - nsub; ,

if(fabs(ngauss) < nmin || sgn(ngauss) != sgn(nmax))

break;
gauss = sqrt(alpha®alpha®log(fabs(nmax/ngauss)));

if(fabs(ngauss) < nmin || sgn(ngauss) != sgn(umax))

break;
if(ysplit > node->nwy)|

node->doping = 3%nsplit;

}

node = node->north;
if(node == 0)
break;

Dec 12, 1983 dop.c Page 1

#include <math.h>

doptolayer(doping)

/®* converts a float doping into a layer pumber for kic output */

/® the doping levels are divide into groups by the log of doping */
doudle doping;

double t,10g10(),fabs();
int layer;
extern int SI;

/® take the log of the doping pluss 0.5 round off factor*/
if(doping == 0)

t = 0;
else

t = log10(fabs(doping)) + 0.5
if(t > 20.0)

t = 20;
/* if the log doping is less than 12 then call it intrinsic &/
/® otherwise calculate the layer pumber for that doping */
if(t < 12.0)

layer = SI;

else if(doping > 0)
layer = SI - 11 + %3

else if(doping < 0)
layer = SI1 = 2 + %3

return(layer);

double dopinglevel(npeak)

/* calc. the discrete doping level for any doping level ®/

/% the doping of 10ex includes doping levels from 3e(x-1) to 3ex */
/% min. doping is tel2 */

double npeak;

l

double abpeak.sgn().fabS();
doudle nhigh = 3el19;
double nlow = Jell;

abpeak = fabs(npeak);
/% if doping is too low then set it to intrinsic */
/® otherwise find discrete level s/
if(abpeak < nlow)

nhigh = O;
else |

while(nhigh > abpeak)

phigh /= 10.0;

}
if(npeak < 0)
phigk ®= -1;
return(nhigh); -

»

Dec 12, 1983 edge.c Page 1

#include “defs”
#include <stdio.h>

#define MAXLINE 200

edge()
/’_find the mask edges in the appropriate area and return inputfile */

extern struct nnode *maskhome;

extern char *MASKFILE!];

struct nnode *maskname(), ®*nalloc(), ®node;
char line[MAXLINE];

FILE *fp,®*fopen();

node = 0O;
/* the mask crossings are stored in a pointer structure %/
/* every mask layer has its own pointer called node */
maskhome = nalloc();
maskhome->nextmask = 0;
fp = fopen(MASKFILE,"r"); /* look in maskfile for cif layout */
if(fp == 0){
printf("maskfile(%¥a) doesn't exist!\n" ,MASKFILE);
exit(1);/* exit if the mask file doesn't exist %/

/® only boxes and rectangles of flattened CIF */
vhile(fgetsfline,HAILINE.fp) 1= 0){
if(line[0] == 'B")
boxesﬁline,node);
if(1ine[0] == 'L")
node = maskname(line);
if(1inel0] == 'vw*)
wires(line,node);

fclose(fp);
Trintpeirs();

Dec 12, 1983 etch.c Page 1

#include "defs”

etch(layer,t)

/* etch a specific layer to a max thickness t */
int layer;

int ¢;

extern struct tnode ®home;
struct tnode *top,®*box;
int depth;

top = home; /* start in upper left */
/* loop columns #/
while(top !=0){
box = top;
/* loop through air */
while(box=->type == 0)
box=box->south;
depth = box->nwy - t; /* final depth after max etch */
splity(depth); /* split at depth */
/® loop boxes while the type is right and not too deep */
while(box->sey >= depth && box->type == layer){
/® switch type to air #/
box->type = O;
box->doping = O;
box = box->south;
if(box == 0)
printf("etch all the way to the bottom\n");

top = top->east;

Dec 12, 1983 exinit.c Page 1

#include <stdio.h>

struct nnode ®maskhome; /* mask is the pointer to the first mask */
struct tnode ®home;

char PRINTALL;/® n-only final step output y-all steps output */
char DIR;/* h-horizontal split of layout v-vertical */

/® filenames '{

char "MASKFILE[20],*INPUTFILE[20],0UTPUTFILE[20];

int PLANE; /* vlaue of the plane in the layout being split */
int LOWER,UPPER; /*® values for the crossection window */

int YLIMIT; /* height of profiles */

int YSCALE;/*® scale factor for y dimensions */

int NLAYER;/* total number of layers */

int SI; /* layer number */

int POLY; /* layer number %/

int OX; /* layer number */

int RST; /* layer number */

int ERST; /* layer number */

float MICPERLAM;/* microns per lambda */

static char 'layers[] = {
"AIR",
"POLY",
woxn’
‘.HETL“.
"RST",
“ERST",
“NTRD",
nSIn’
.N12“,
.N13“,
ﬂn14ﬂ .
'N1 5"9
"N16",
-N1 7'-’
*N18",
wn1 9.' ,
'NZO“,
"P12",
.P13" ,
"P14ﬂ.
“p4 Sn'
“Pi16",
“P17”'
“pig8",
“Pq 9n.
"p20",
"L1", /* user defined layers, do not change the layers */
“L2", /* above this point, you may charge the names of ¢/
*L3", /® these layers L1 - L5 and recompile */
"L4", /* pote any changes in the number of layers in NLAYER ./
L5", / below in exinit() */

Dec 12, 1983 exinit.c Page 2

?xinit()
extern int YLIMIT,KNLAYER,SI,OX,RST,ERST;

YLIMIT = 10000; /* 1limit hieght to +- 1Omicrons */
NLAYER = 30;/* total number of layers */

SI = 7; /* SI layer is #7 ®/

OX = 2; /® OX layer is #2 ®/

RST = 4; /® RST layer is #4 %/

ERST = 5; /®* ERST layer is #5 */

?OLY = 1; /* POLY layer is #1 */

typetonun(type)
/* convert a text layer to its pumber */
ghar type[]

extern int NLAYER;

int n = O;
while(strcmp(type,layers(n]) != 0){
n++;

if(n == NLAYER){

printf("***** invalid layer(%s) sss28\n" type);

exit(1);

}

return(n);

char *numtotype(i)
/* convert type number to string */
int i;

?eturn(layers[i]);

.

Dec 12, 1983 expose.c Page 1

#include “defs”

expose(start,stop)
/% expose the resist in the region between start and stop */
int start,stop;

extern int RST,ERST;
extern struct tnode *home;
struct tnode ®*top,®box;

/® split vertically at start and stop */
splitx(start);
splitx(stop);
top = home;
/®* move over to the first coulmn */
while(top->sex <= start)
top = top->east;
/® loop coulmns till we move past stop */
while(top != 0){
if(top->asex <= stop){
box = top;
/® loop through air */
while(box->type == 0)
box = box->south;

/®* loop through resist and convert it to exposed resist */
while(box->type == RST)|{
box->type = ERST;
box = box->south;

}

fop = top-deast;

Dec 12, 1983 gauss.c Page 1

#include <math.h>

doudble gauas(nmax,alpha,x)

/* perform the function n *® nmax(-(x’x)/(alpha’alpha)) e/
double nmax,alpha;

int x;

double n,ni;
nl1 = x/alpha;

n = nmax*exp(- ni1%nt);
return(n);

Dec 12, 1983 init.c Page 1

#include "defs”

init()
/* initialize the array to ome rectangle of maximum dimensions */

extern strict tnode ®*home;
extern int LOWER,UPPER, YLIMIT;
struct tooue ¥talloc();

home = talloc(); /® create home - upper left corner of grid */
/* the empty rectangle is set to the maximum dimension of the grid

/% LOWER & UPPER are the min and max lateral dimensions of the grid

/% YLIMIT is the max vertical dimension */
home->nwx = LOWER;

home=->nwy = YLIMIT;

home->sex = UPPER;

home->sey = - YLIMIT;

home->type = O; /® type O is 8ir ./
home->doping = O3

/* pointer are null - no boxes in those directioms */
home->north = O;

home=->south = O;

home->west = O3

home->east = O;

*/
*/

w

Dec 12, 1983 inputs.c Page 1

#include <stdio.n>
#define MAXLINE 200

inputs()
/® read the process inputs from the process input file ®/

extern int YSCALE,SI;

extern char PRINTALL,®*INPUTFILE[];

int typenum,thick,d,ycrit,offset,num,bloat,shift,valid;

char conmtzo],type[zo],*1ab1[nAXLINEj,'11ne[nAxLINE],po1[1o],name[1o];
doudble doping,t,y!,off1,bloatl,shift1,fabs();

PILE *fp,*fopen(); .

puz = 1;/* pumber for kic file ®/

if((fp = fopen(INPUTFILE,"r")) == 0){
printf("inputfile(%s) doesn't exist!\n",INPUTFILE);
exit(1);/® exit if input file doesn't exist */

while(fgets(line ,MAXLIRE,fp) != 0){
valid = 1;/* assume that the command is valid ®*/
strcpy(labl,line);
if(sscanf(line,"$s3[*\0]",comm,line) < 1){ /* get command */
printf("$s”,labdl);
error("no command given in this line ");

if(num == 1 &8 strcmp(comm,"SUBS") != O && strcmp(comm,”C") != 0)

error("SUBS must be the first non comment command”);
if(stremp(comm,"SUBS") == 0){

/®* set the substrate type,(doping) */

if(num != 1)

error("SUBS can only be the first command");
gettype(line, type,&typenum,&doping);
sprintf(labl,"#%02d SUBS TYPE=fs DOPE=%.2e\n",
num, type,fabs(doping));

printf("%s",1abl);

label (1labdl);

sub(typenum,doping);

else if(strcmp(comm,"DEPO") == 0)}

/* deposit type,(doping),thickness */

gettype(line,type,&typenunm,&doping);

if(escanf(line,"¥f",&t) < 1)

error("thickness not found");

thick = 1000%t;

sprintf(labl,"#%02d DEPO TYPE=$s DOPE=%.2e THICK=%.2f\n",
num, type,fabs(doping),t);

printf("¥s”,labl);

label (labl);

dep(typenum,doping, thick);

else if(stremp(comm,"DOPE") == 0){
/®* diffuse doping,charcteristic length,offset,block depth */
gettype(line, type,&typenun,&doping);
yerit = 03
if(sacanf(line,"¥f $f $£",&t,80111,8y1) < 3)
error("not enough inputs on this line");

Dec 12, 1983 inputs.c Page 2

sprintf(ladl,
*44024 DOPE TYPE=fs PEAK=%.2e DEPTH=%.2f DELTA=%.3f BLOCK=%.2f\n",
num, type,fabs(doping),of f1,t,y1);
printf("£s",1abl);
t = 1000%¢;
offset = 1000%off1;
yerit = 1000%y1;
label_(1labl);
aiff(doping,t,of fset,ycrit);

else if(stremp(comm,”ETCH") == o) {
/* etch - type,thickness */
if(sscanf(line,"%s $£",type,4t) < 2)
error("not enough inputs on this line");
typenun = typetonum(typeg?
thick = 1000%t;
sprintf(labl,"#%02d EICH TYPE=%s THICK=%.2f\n",num,type,t);
printf("$s”,ladbl);
label (1abl);
etch(typenum, thick);

else if(strcmp(comm,"0XID") == 0){
/* oxidation - thickness for bare silicon */
if(sscanf(line,"$f",&t) < 1)
error("thickness not found");
thick = 1000%¢; .
sprintf(1labdbl,"#%02d OXID THICK=%.2f\n",num, t);
printf("%s”,labl);
label (ladl);
oxide(thick);
checkacross();

else if(strcmp(comm, ASK") == 0){

/* photolithography - polarity, maskname */

1f(sscanf{1line,"%$s $s $f $f",pol,name,8bloatl,&shift1) < 4)
error("not emough inputs on this line");

bloat = bloati * 1000;

ghift = shift1 * 1000;

sprintf(labl,"#%02d MASK POL=%s MASK=%s BLOAT=%.2f SHIFT=%.2f\n",

num, pol,name,bloat!,shiftl);

printf("¥s",1labl);

label (1labl);

hothbol,name,bloat,nhift);

else if{stremp(comm,”C") == 0)f
pum--;
printf("%s”,1ladbl);
valid = O;

else
printf("illegal input command =-=-- €s\n",line);
valid = O;

1£(PRINTALL == 'y’ &3 valid == 1)
kicfile(num,ladl);
num++;

Dec 12, 1983 inputs.c Page 3

}
sprintf(labl.'fina;_profile');
num = O;
kicfile(num,1abl);/® always output final profile 74

gettype(line,type,typenum,doping)

/®* get the_type and _doping of the input string &/
char line[].type 20];

int ®typenunm;

doudble ®*doping;

®#4doping = O;
1f(sscanf(1ine,"$s%[“\0]", type,line) < 1)
error("type not found in this line");
if(stremp(type,"N") == 0 || stremp(type,"P") == 0)|
if(sscanf(line,'%e%[‘\o]",doping.line) < 2)
errorﬁ"doping not found in this line");
if(type[0] == ‘'P')
®4oping = -*doping;
®t{ypenun = SI;

else

|

error(message)
/* print out_an_error message and abor ®/
char message 40];

®typenum = typetonum(type);

printf("%s\n",message);
exit(1);

label_(label,line)
/* convert tne spaces in label to _ for kic files */
char *label,®line;

vhile(*label != '\n°){
if(*label == * ‘) /* replace ' * with ‘' %/
®label = °_°';
label++;

®1abel = ‘\0';

Dec 12, 1983 interact.c Page 1

#include <stdio.h>
interact()
/® get interactive inputs */

extern int LOWER,UPPER,YSCALE,PLANE;
oxtern char DIR,PRINTALL,MASKFILE[),INPUTFILE[],0uTPUTFILE[];
extern double MICPERLAM;
int start,stop;
int tenmp;
/% check for horizontal or vertical split of layout */
printf("split h=horizontally vevertically?\n");
while((DIR= getchar()) != 'nh' && DIR != 'v')

printf(“invalid! input h or v!\n");
printf("microns per lambda?\n");
while(scanf("%$f",8MICPERLAM) < 1)

printf("invalid! MICPERLAM must be positive!\n");
printf("start value?\n"); /* start value for layout split ®/
while(scanf("%#d",&start) < 1)

printf("invalid! input an integer!\n");
printf("stop value?\n"); /* stop value for layout split */
while(scanf("%¥d",&stop) < 1)

printf("invalid! input an integer!\n");
jf(start > stop){ /* make sure stop > start ./

temp = start;

start = stop;

stop = temp;

LOWER = gtart ® 1000 * MICPERLAM;
UPPER = stop ®* 1000 * MICPERLAM;
/* scale factor for cross-section for better visibility &/
printf(”acale factor in y direction?\n");
while(scanf("%d",&YSCALE) < 1)

printf(”invalid! ISCALE must be a positive integer!\n");
if(DIR == ‘h')

printf('the y plane you want split?\n");
else

printf("the x plane you want split?\n");
while(scanf("%a" ,8PLANE) < 1)

printf(*invalid! input an integer!\n");
PLANE = PLANE * 1000 * MICPERLANM;
printf(”the mask file?\n");
wvhile(scanf("%a" ,MASKFILE) < 1)

printf(“invalid! input file name!\n");
printf("the input file?\n"); »
while(scanf("%$s"”,INPUTFILE) < 1)

printf("invalid! input file name!\n");
printf("the base name for the output files?\n");
while(scanf("$s" ,0UTPUTFILE) < 1)

printf("invalid! input file name'\n");
/* set flag for outmut of every step */
printf(“output profile at every step y=yes n=no?\n");
PRINTALL = getchar();/* clear \n from buffer */
while((PRINTALL = getchar()) != 'y’ && PRINTALL != 'n')
} printf("invalid!\n");

A 1]

Dec 12, 1983 kicfile.c Page 1

#include <stdio.h>

kicfile(pum,label)

/* output header and bottom of kic file numbered (nun) */
int num;

char label[]:

{

int n = 03

int height,width;

char ®filel20),*%header[20];

FILE ®*fp,%*fopen();

extern int UPPER,LOWER,YLIMIT,YSCALE;
extern double MICPERLAM;

extern char ®OUTPUTFILEL);

if(oum == 0)
sprintf(file,"$s",0UTPUTFILE);
else
sprintf(file,"%s.%02d",0UTPUTFILE, num);
fp = fopen(file,"vw");
sprintf(header,”(Symbol 4s);\n",file);
fputs(header,fp);
sprintf(header,”9 $s;\n",file);
fputs(header,fp);
sprintf(header,”DS O 1 1;\n");
fputs(header,fp);
kiclayers(fp);/* calculate and put the cross-section into the file */
sprintf(header,”L LABL;\n");
fputs(header,fp);
sprintf(header,”94 %s %d %d4;\n",label,0,0);
fputs(header,fp);
width = (UPPER-LOWER)/(10.0*MICPERLAM);
height = YLIMIT®YSCALE/(10.0*MICPERLAM);
sprintf(header,"B $d %d %d $d;\n",width,2%height,width/2,height);
fputs(header,fp);
sprintf(header,"DF;\n");
fputs(neader,fp);
sprintf{header,"E\n");
fputa(header,fp);
fclose(fp):

Dec 12, 1983 kiclayers.c Page 1

#include “defs”
#include <stdio.h>

kiclayers(fp)
/% transform internal format to kic format ®/
?ILE *£p;s

extern struct tnode ®*home;

extern int KLAYER;

struct tnode ®top,®high,®low,*low!;
struct knode *new,%kalloc(),*x[40];
char w[40],®numtotype();

int i = O;

int hightype,lowtype;

/% set up an empty array to point to each layer %/
vhilefi <= NLAYER)
x[i++] = 0;
top = home;/® begin in upper left cormer 7
/®* sort the grid into an array of each layer ®/
/* loop through the columns */
while(top != 0){
low = top;

lowtype = nodelayer(low);/® nodelayer finds the type of a node */

/* loop down the rows */
while(low !'= 0){

high = lov;

hightype = lowtype;

/% check the mext box down to see if it is the same layer */

/®* if they are the same then move down one more %/
while({lox! = low->south) != o)}
1£((1lowtype =nodelayer(low!)) == hightype)t
low = lowi;

else
break;

}
if(nightype > 0){
pnevw = kalloc();/* create a new node */

new->high = high;/* point to the highest box of the type */
new->low = low;/* point to the lowest box of the type */
new->prev x[hightype];/* point to the previous node */
x[hightype] = pew;/%update the pointer array to last element®/

low = low->south;

}

top = top->east;

/% cgnvert the layer list into a kic file */
i=20;
/* loop through the layers ®/
while(++i <= NLAYER){ -
/®* check to see if the layer is enpty */
if(x[1] 1= 0){
sprintf(v,”L %s;\n",nuntotype(i)); /* put layer label */
fputs(w,fp);

bd

Dec 12, 1983 kiclayers.c Page 2

/® put out boxes */
while(x[1] t= 08{
printnode(x{i)->high,x[1])->1ow,fp);/* output the kic line */
x[i] = x[i]->prev;/* move backwards through the pointers */

Dec 12, 1983 main.c Page 1 .

#include “defs”

main()
/®* main routine to run SIMPL ¢/

exinit(); /* external variables initialized */
interact();/* get interactive inputs */

edge(); /* find the mask edges */

init(); /® initialized the grid */

inputs(); /* read inputfile and simulate steps */

/® diagnostic-print number of rectangles across and down */
pri?;f("\n\nacross and down %4 93\n",numacroes(),nundown());
men();

Dec 12, 1983 maskname.c Page 1

#include <stdio.h>
#include “defs”

struct nnode ®maskname(line)
/®* this take a kic input line and puts the mask name into a node &/
char ®line;

extern struct nnode ®maskhomre;
struct nnode *node,"nalloc();
char mname[6],%index();

/® create a pointer list of the masks and maskcrossings */
node = maskhome; /®maskhame points to the first mask */
/* £ind the mask name from input line */
if(sacanf(line,"L $[*;]",mname) < 1)1
printf(“mask name not found in line gs",line);
exit(1);

/* check to see if we already saw this mask */
while(node->nextmask != 0){
if(strcmp(mname,node->name) == 0)
break;
node = node->nextmask;

/® if it is a new mask then set up a pointer for it */
if(node->nextmask == 0){
strepy(node->name,mname);
node->firat = 0;
node->nextmask = nalloc();
pode-Ynextmask->nextmask = O;

/* return the node which points %o that mask ®/
return(node); :

Dec 12, 1983 newbox.c Page 1

#include "defs”

newboxy(start,nev,vest,yval)

/® insert a new row horizontally */
struct tnode *start,®nevw,%west;

int yval;/* height of new row ./

struct tnode #gtarteast,%newsouth,*talloc();

/% set the values for the new box &/

new->nwx = start->nwx;

nevw->nwy * yval;

new->sex = start->sex;

new->gey = start->sey;

new->type = start->type;

new->doping = start->doping;

new=->north = start;

new->south = start->south;

nev->vest = west;

if((starteast = start->east) == 0)
new->east = 0O;

else
new-Y>east = talloc();

/* update the values of the origional */

start->south = nev;

start->sey = yval;

if((newsouth = new->south) != 0)
(newsouth)=>north = new; .

/* recursive call till the row is finished */

if(starteast !'= 0)
nevboxy(atarteast,nev-)east,new,yval);

pewboxx(start,new,north,xval)

/% insert a new column vertically */
struct tnode ®start,®newv,®north;

int xval;

struct tnode ‘neveast,’atartsuuth,'talloc();

/* set the values for the new box s/
new->nwx = xval;
pew->nwy = start->nwy;
pew->sex * start->sex;
new->sey = start->sey;
nev->type = start->type;
new->doping = start->doping;
new->north = north;
jr((startsouth = start->south) == 0)
pev->south = O3
else
pew->south = talloc();
pevw->west = start;
pew-Yeast = start->east;

Dec 12, 1983 newbox.c Page 2

/®* update the values of the origional ./
start->east = new;
start->sex = xval;
if((neveast = new->east) != 0)
(neveast)=->west = new;
/® recursive call till the column is finished &/
if(startaouth != 0)
nevboxx(startsouth,nev-)south,nev,xval);

Dec 12, 1983 next.c Page 1

double nextsplit(npeak,nmax)
/®calculate the doping value for the next box of the diffusion profile®*/
double npeak,nmax;

i

double abpeak,sgn(),fabs();
double nlow = 3ell;
double nlow! = lell;

abpeak = fabs(npeak);
/* if the peak doping is of opposite sign to the start doping then the
next doping is 10x higher else it is 10x lower &/
if(sgn{opeak) == sgn(nmax))
npeak /= 10.0;
else
npeak ®*= 10.0;
abpeak = fabs(npeak);
/® if the doping is about intrinsic then set it to opposite type
at the minimum level */
if((abpeak) < 1.0)
npeak = -sgn(nmax)®*nlow;
/* if the doping is below the minimum then set it to intrinsic */
else if(abpeak < nlow!)
npeak = 0;
return(npeak);

Dec 12, 1983 node.c Page 1

#include “defs”

nodelayer(node)
/* return the layer name given the node */
struct tnode ®node;

int layer;
extern int SI;

/® if it is silicon the we need to convert the doping to layer */
/* otherwise just return layer %/
if((1ayer = node->type) == SI)
layer = doptolayer(node->doping);
return(layer);

Dec 12, 1983 num.c Page 1

#include "“defs”

numacross() .
/® count the number of boxes across for diagnostics */

extern atruct tnode *honme;
atruct tnode %*box;
int i = 1;

box = home;

vhile((box = box->east) != 0)
i##;

return(i);

pumdown ()
/®* count the number of boxes down for diagnostics */

extern struct tnode *home;
struct tnode ®box;
int 1 = {;

box = home; _

while((box = box->south) != 0)
iee;

return(i);

Dec 12, 1983 ox.c Page 1

finclude <math.h>
#include “defs”

oxide(depth)
/* oxidise SI and POLY - oxide thickness is depth if bare surface */
int depth;

extern struct tnode ®home;

struct tnode ®*top,%*box;

int topox.bottomox,nevox,nevbottom,bottom,surf;
extern int OX;

double tox,ddepth,hypot();

top = home;
/® loop through columns */
while(top != 0){
box = top; ,
/* loop through air to get to surface */
while(box=->type == 0)
box = box->south;
topox = box->nwy; /® locate top of oxide */
/% f£ind initial oxide thickness */
if(vox->type == 0X){
vhile{box->type == 0X)
box = box->south;
bottomox = box=->nwy;
tox = topox - bottomox;/* init. oxide thickness ®/
ddepth = depth;
/* calculate new oxide thickness */
newox = hypot(tox,ddepth) - tox;/®hypot-sqrt of sum of squares®*/

else
/* no initial oxide case */
bottomox = topox;
tox = O3
newox = depth;

newbottom = bottomox - newox®0.46;/%calc. location of oxide bottom*/
bottom = newbottom;
/* if the material is SI or POLY then oxidise it ./
if(validox(box) != 0){ :
/* oxidese down %/
while(box->sey > mewbottom)|
box->type = 0X;
bottom = box->sey;
box = box->south;

/* make sure the last box is split if necessary */
1f(box->nwy != newbottom && validox(box) != 0)
splity(newbottom);
box->type = OX;
bottom = box->sey;

/® calculate the ammount to oxidise up */
surf = topox + (bottomox - bottom)*1.18;
splity(surf);

()]

Dec 12, 1983 ox.c Page 2

/®* move up to top of oxide */
while(box->type == OX){
box = dox->north;

/®* oxidise upwards */
while(box->nwy <= surf)|
box->type = OX;

-box = box->north;

}

top = top->east;

Dec 12, 1983 pairs.c Page 1

#include "defs”

pairs(node,high,lov)

/* pairs stores pairs of mask crossings */

/* nnode pointes to the list of pairs for each mask ./

/* pnodes are the crossings ./

/® low and high are the coordinates of the mask crossings %/
/® the pairs are stored in numerical order %/

/* this also combines overlapping rectangles ®/

struct nnode ®node;

int high,lovw;

struct pnode ®prev, ®pres, ®next, *ins, *palloc();

if(node->first == o)
/® case for the first pair of that mask s/
pres = palloc();/* create a node ./
pres->start = low;
pres->stop = high;
pres->nextpair = 0;/* set the pext pair to null */
pode->first = pres;/* start the link list with this node ®/

else
/* pot the first pair case */
/* must insert the new crossings into the link 1list %/
pres = node->first;
prev = O;
/% loop through the list */
while(pres != 0){
/* if the pair is greater than the present pair ®/
1f(low > pres->stop)i
prev = pres;
pres = pres->nextpair;
/®# if we are at the end then add the node to the end */
if(pres == 0){
pres = palloc();
pres->nextpair = 0;
pres->start = low;
pres->stop *= high;
prev->nextpair = pres;
dbreak;

else if(high < pres->start){

/®if pair is less than present pair then insert the pair*/

ins = palloc();

ins->nextpair = pres;

ins->start = lov;

ins->stop = high;

if(prev == 0)
node~->first = ins;

else -
prev->nextpair = ins;

break;

else

9

Dec 12, 1983 pairs.c Page 2

/® pair overlaps present pair - need only combine pairs */
/® pair over extends on the low end - reset low value */
if(low < pres->start)
pres->start = low;
/%pair overextends on the high end-may cover several pairs®*/
1f(high > pres->stop){
pres->stop = high;
next = pres->nextpair;
pres->nextpair = 0;
vhile(next !'= 0){
if(next->start > high){
pres->nextpair = next;
break;

else if(next->start <= high && next->stop >= high){
pres->stop = next->stop;
pres->nextpair = next->nextpair;
break;

break;

Dec 12, 1983 photo.c Page 1

#include “defs”

photo(polarity,nane,bloat,shift)

/® expose resist with mask(name) and of set polarity ./

/® bloat makes the mask wider and shift is a shift to the right */
char ®polarity,®name;

int dbloat,shift;

extern struct nnode ®maskhome;
extern int LOWER,UPPER;
struct nnode *mask;
struct pnode ®node;
int start,stop,pol;
mask = maskhome;
1f(astremp("NEG",polarity) == 0)
pol = {;
/* if pol = 1 then the mask crossings are the light spots ®/
else if(strcmp("POS",polarity) == 0) '
pol = -1;
/® if pol = -1 then the mask crossings are the dark spots */
/® t?en the pairs to expose are the spaces between the crossings ./
else
printf("type not known"); -
exit(1);

while(strcnp(mask->name,name) != 0){ /* find the right mask */
mask = mask->nextmask;
if(mask == 0){
printf("mask (%s) not found!\n",name);
exit(1);

}

node = mask->first;
if(pol «= .1) /®*if neg polarity, start is the absolute LOWER bound*®*/
start = LOWER;
while(node != 0)] /* loop through the pairs */
if(pol == 1)
start = node->start - bloat + shift;
stop = node->stop + bloat + shift;
expose(start,stop);/* expose the region */

if(pol == -1){
/* ptart is set by the stop of the previous pair */
/* stop is the begining of the present pair */ *
stop * node->start ¢+ bloat + shift;
expose(start,stop);
start = node->stop - bloat + shift;/* update start */

node = node->nextpair;

if(pol == -1){ /® expose the final are to the far right edge */
stop = UPPER; -
expose(start,stop);

Dec 12, 1983 printnode.c Page 1

#include “defs”
f#include <stdio.hr>

printnode(high,lov,fp)

/* print out rectangles for kic files ®/

struct tnode ®high;/® high points to the top of the box */
struct tnode ®*low;/® low points to the bottom of the box */
PILE ®fp;

extern int YSCALE,YLIMIT;
extern int UPPER,LOWER;
extern double MICPERLAM;
int delx,dely,xavg,yavg;
int nwx,nvwy,sex,sey;

char v[40];

/®* check edges against the limits */
if((nwx = high->nwx) > UPPER)
awx = UPPER;
if(owx < LOWER)
nwx = LOWER;
if((nwy = high->nwy) > YLIMIT)
nwy = YLIMIT;
if(nwy < -YLIMIT)
nwy = -YLIMIT;
if((sex = high->sex) > UPPER)
sex = UPPER;
if(sex < LOWER)
sex = LOWER;
if((sey = low->sey) > YLIMIT)
sey = YLIMIT;
if(sey < -YLIMIT)
sey = -YLIMIT;
/% calculate delta x and delta y for the box */
delx = sex - nvx;
dely = nwy - sey;
/® if either delta x or y is O then the box has no area */
if(dely !'= O && delx ‘= O)f{
/* calculate the average values for the rectangle */
zavg = (nwx + sex)/2 - LOWER;
yavg = (pwy + sey)/2 + YLIMIT;
/® scale from .00lu imternal to .01lambda in kic */
dely = dely * YSCALE * 0.1 / MICPERLAM;
yavg = yavg ® YSCALE ® O.1 / MICPERLAM;
delx = delx ® 0.1 / MICPERLAM;
xavg = xavg * 0.1 / MICPERLAM;
/®* output onme box if not null */
if(dely '= O 4& delx != 0){
sprintf(w,”B %4 #d %d ¢d;\n",delx,dely,xavg,yavg);
fputs(w,fp);

Dec 12, 1983 printpairs.c Page 1

#include "defs”

printpairs()
/% print out list of the mask crossings */

extern struct anode ®maskhome;
struct pnode ®node;
struct nnode ®mask;

mask = maskhome; -
/® loop through the masks */
while(mask != 0){
printf("\nfs\n",mask->name);/* print mask name ./
node = mask->first;
/* loop through the pairs */
while(node != 0){
printf("%d €d\n",node->start,node->stop);/* print pair */
node = node->nextpair;

mask = mask->nextmask;

}

Dec 12, 1983 rect.c Page 1

#include "defs”

rectangle(x!,x2,y1,y2,no0de)

/® calculate if the rectangle is cut by the crossection plane */
/* send the crossing points to pairs %/

/®* x1,32 are the lower,higher x coordinates of the rectangle */
/®* y1,y2 are the lower,higher y coordinates of the rectangle %/
int x1,x2,y1,y2;

struct nnode ®node;

extern int UPPER,LOWER,PLANE;
extern char DIR;

extern double MICPERLAM;

int low,high;

/* low and high are the coordinates of the crossing */
low = O;
high = 03

/* convert kic .0O1u to internal 0.001u */
x1 = 10%x1*MICPERLAM;
x2 = {0®"x2*"MICPERLAN;
y! = 10%y1*MICPERLAM;
y2 = 10%y2*MICPERLAN;
if(DIR == 'n'){ /® norizontal aplits */
/% check the bounds of the rectangle and the split plane */
if(yt <= PLANE && y2 >= PLANE){
/®* set high and low */
low = x1;
high = x2;
/®* adjust to min and max bounds */
if(x! < LOWER)
low = LOVWER;
if(x2 > UPPER)
high = UPPER;

else if(DIR == 'v'){ /* vertical splits */
if(x1 <= PLANE & x2 >= PLANE){
low = yi;
high = y2;
12(y1 < LOWER)
low = LOWER;
if(y2 > UPPER)
high = UPPER;

/®* if low is less than high then the rectangle is split by the plane
within the min and max bounds- otherwise they are = or > */
if(low < high)

pairs(node,high,lcw); -

Dec 12, 1983 search.c Page 1

#include “defs”

struct tnode ®searchsouth(startnode,yval)

/® searches south for a box that containe the coordinate yval */
struct tnode ®startnode;

%nt yval;

while(startnode->sey > yval)
startnode = startnode->south;
return(startoode);

struct tnode ’searcheast(atartnode,xval)

/®* searches east for the box containing the coordinate xval ®/
struct tnode ®startnode;

int xval;

vhile(startnode->sex < xval)
startnode = startnode->east;
return(startnode);

Dec 12, 1983 sgn.c Page 1

double sgn{n)
/* return 1 if 220 O if n=0 -1 if n<0 */
doudle n;

{

double n1 = O;

if(n < 0)

n! = =1;
else if(n > 0)
nl = {3

return(nt);

Dec 12, 1983 split.c Page 1

#include “defs”

splity(yval)
/® split the grid horizontally */
int yval;/® height of split ®*/

{

extern struct tnode ®*home;/* upper left corner */
struct tnode ®*startnode,®newnode,®west,®talloc(),®searchsouth();

startnode = searchsouth(home,yval);/#*find (colunm)node containing yval*/
/®* if the south east y value = yval then no split is necessary %/
if(startnode->sey != yval)l
newnode = talloc(gt/’ create a new node */
west = 0;/% the node to the west is null */
nevboxy(startnode.nevnode,vest,yval);/' insert new boxes */

}

splitx(xval)
/* split the grid vertically */
int xval;/®* x location of the split %/

{

extern struct tnode *home;/®* upper left corner ®/
struct tnode ®*startnode,®newnode,¥north,%talloc(),*searcheast();

startnode = searcheast(home,xval); /*find (row)node containing xval®*/
/* if the south east x value = xval then no split is necessary */
if(startnode->sex != xval){

newnode = talloc();/* create a new node %/

north = 0;/* the node to the north is null */

newboxx(startnode,newnode,north,xval);/* insert new boxes %/

Dec 12, 1983 sub.c Page 1

#include “"defs”

sub(n,d)

/® create a substrate by making the south rectangle proper type and %/
/® doping --- only makes sense immediately after initialization ./
int n;

doudle d;

{

extern struct tnode ®home;
struct tnode *node;

splity(0); /* split at gero */

pode = home->south; /* move to bottom half */
node->type = n; /* switch type */
node->doping = d; /* switch doping */

Dec 12, 1983 valid.c Page 1

#include “"defs”

validox(node)

/®* return O if material can't be oxidised or m>0 if it is SI or POLY */
struct tnode *node;

extern int SI,POLY;
" int ¢;

t = node=->type;

if(t == POLY {}| t == SI}
return(t);

else
return(0);

Dec 12, 1983 wires.c Page 1

#include "defs”
#include <stdio.h>

wires(line,node)

/® get the rectangle coordinates of the wire segments ./
char lino[];

struct nnode ®node;

int width,px!,px2,py!,py2,x!,y!,x2,y2;
char wire[10],®*shorten();

/® get width and first x,y coordinates of the rectangle */
if(sscanf(line,"%s%d%a%dg[“\0]",wire,&vwidth,&px!,apyl,line) < 5)
printf("wrong num of arguments in line £s8",line);
width /= 2;/* set width to the half width of the rectangle */
/®* loop through the string pulling out the subsequent pairs &/
while(sscanf(line,"$a%a%[“\0]",&px2,8py2,1ine) > 1){
/® does the pair lie horigontal */
if(pyt == py2){
/®* set ymin and ymax */
y1 = py! - width;
y2 = py2 + width;
/®* set xmin and xmax */
if(px1 <= px2){
x1 = px! - width;
x2 = px2 + width;

if(px2 < px1)i
x1 px2 - width;
x2 = px1 + width;

}

/* does the pair lie vertical %/
if(pxt == px2)}
/®* set zmin and xmax */
x1 = px1 - width;
x2 = px2 + width;
/* set ymin and ymax */
if(pyt <= py2){
y! = py! = width;
2 = py2 + width;

1f(py2 < pyi)i
yi = py2 - width;
12 = py! + width;

rectangle(x1,x2,y1,y2,n0de);
/®* move the second pair to the first spot and loop around ®/
px! = px2;
7?1 - py2;

}

