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A high performance, flexible and potentially inexpensive speech recognition

system is described in this thesis. The system is based on two special-purpose

integrated circuits that perform the speech recognition algorithms very

efficiently. One of these integrated circuits is the front-end processor. It com

putes spectral coefficients from incoming speech, normalizes these spectra and

finds the start and end of words in the speech. It transmits these spectra to a

second integrated circuit that compares them with spectra from a set of stored

word templates. The system can compare an input word with one thousand word

templates and respond to a user within one quarter of a second. The system

normally responds to words spoken in isolation from a particular speaker, how

ever it can be used with connected speech as well as in a speaker independent

manner. Modifying speech recognition algorithms to work with specially

designed integrated circuits is shown to permit even high performance algo

rithms to be performed inexpensively. Using techniques such as these speech

recognition devices should have a large range of applications within the next few

years.
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INTRODUCTION

0.1. An Overview of Speech Recognition Systems

Everyday voice communication with machines will soon become a real

ity. Although devices that recognize and respond to speech already appear

in the market place, speech recognition systems are not yet household

items. This is primarily due to their cost and some performance inadequa

cies resulting from their lack of computational power. We feel that

integrated circuit technology when properly applied to speech recognition

can remedy these faults and propel us into the age of the listening computer.

Although the ultimate solution to the problem of machine transcription

of speech is still far away, researchers have taken" several different

approaches to building useful speech recognition devices. These approaches

restrict the scope of the speech recognition problem. Vocabularies used

with speech recognition systems are limited and the syntax and semantics of

what can be discussed with the systems is a subset of what can be said in

natural speech. In addition some systems limit the number of different

speakers who may speak to them and some require periods of silence

between spoken words.

0.2. Speech Understanding Systems

One school of thought applies artificial intelligence techniques to the

speech recognition problem.1 They attempt to use all information about the

speech recognition task, from acoustic analysis to general knowledge about

the conversation, to decode the input signal. They restrict the input speech
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to discuss a specific area, for instance a chess game, and to use a restricted

vocabulary and syntax to discuss that area in order to simplify the problem.

As an example of this type of system consider the Hearsay-IIa speech

understanding system developed at Carnegie-Mellon University. It is a

connected-speech recognition system with syntactic constraints.
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Figure 1: Heasay-II System Organization

This system had several "knowledge sources" that cooperated to make a

recognition decision. The first knowledge source extracted linear predictive

spectra, peak to peak amplitudes and zero crossing rates from input speech.

The zero crossings and amplitude were used to divide the speech into short
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segments. These parameters were also used to roughly classify those seg

ments (e.g. silence, fricative, vowel). A word hypothesizer then proposed

words that matched a sequence of labels from the rough classifier. A word

verifier then scored each hypothesis based on a linear predictive spectral

matching scheme. An additional verifier checked for acoustic compatibility

of adjacent words. A syntactic and semantic analyzer looked for high scoring

words (or phrases) anywhere in the input and proposed additional words

before and after these words that complied with the fairly rigid syntax and

semantics of the Hearsay-II system. These sequences were then verified and

the best scoring ones were treated as candidate partial sentences. They

were examined by the syntactic knowledge source and additional words were

hypothesized. This continued until the best scoring complete sentence was

found.

The Hearsay-II system performed fairly well. Although only 77% of the

test sentences had all their words recognized correctly, 91% were understood

(the correct action was performed). However the system was slow. It exe

cuted 250 times real time using a PDP-KA10 computer (capable of executing

400K instructions per second).

Systems such as Hearsay-II attempt to "understand" the speech instead

of recognizing individual words, and in this way deduce the meanings of

ambiguous parts of the speech signal. In a sense this approach to speech

recognition mimics the way people recognize speech. Systems built in this

manner have tried to solve ambitious problems, but their performance has

not been sufficient to make these systems as practical as those that have

attacked simpler problems. The reasons for this are twofold. More research

is required before we discover how people understand speech; thus these sys-
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terns could use algorithmic improvements. Also enormous amounts of com

putational power are required by these systems to simulate machine intelli

gence. These computational resources and their economic implications

make the limited achievements of the artificial intelligence based systems

impractical to implement outside of the laboratory. However, continued

further work in these fundamental areas is necessary towards the ultimate

goal of a dictation machine.

Zue9 and his students at MIT have recently begun a project similar to

that discussed above but one that aims for reasonable computational com

plexity. Goals are to recognize a large vocabulary of isolated words or a small

vocabulary of connected words. In this project the speech recognition sys

tem divides speech segments into "easy to recognize classes" (e.g. strong

turbulence, strong vowel, silence, voiced). When there is insufficient infor

mation for making an informed decision then the decision is put off and thus

some segments may initially be labeled as "don't cares". Once segments are

classified then a list is made of all the words that could be constructed from

these labeled segments. The system performs more detailed analysis on

these words only. Zue stresses that this "late-binding" of decisions is impor

tant, both from a computational point of view and as a way of improving sys

tem accuracy. Should the initial labeling of word segments be accurate and

the lists generated be small, this approach will be a successful one.
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IX

0.3. Statistical Approaches

Another approach to speech recognition is the statistical one.4'9'* Here

parts of speech are modeled as random processes whose statistics can be

estimated. Once the types of processes are decided upon and the statistics

are gathered then recognition can begin. A set of words is decoded if the

probability that those words generated the input speech (given the random

process model of those words) is greater than the probability that any other

set of words generated the input speech. This approach assumes less about

our knowledge of the structure of speech than the previous one as it relies on

measured statistics. However it is difficult to gather meaningful statistics

about the input speech without long training sessions.



IBM4 and Bell Laboratories8 model words as being generated by hidden

markov sources. That is, words are represented by finite state machines,

where the transitions chosen to leave states are random variables, and the

output (spectra) produced by the transitions are also random. Words are

linked together by the syntactic structure of the system. The markov state

transition random variables and output random variables are derived by

using known words and sentences with the system. The random variables are

chosen as ones that maximize the probability that the correct word models

(those corresponding to the known input word) produced the known speech

at the expense of incorrect word models. When unknown speech is input to

the system, the system searches for the path through the markov chain that

with highest probability produced the input sounds. The words correspond

ing to that path are recognized.

These approaches have shown promising results. In a 1980 experiment7

IBM reported 2% sentence error on connected speech with a 250 word res

tricted syntax "Raleigh language". They also report a 3% error rate on a 1000

word vocabulary isolated speech recognition system. However the computa

tional requirements are large for complex problems such as these. IBM

reports 10-80 times real time processing on an IBM 370/168 computer. For

smaller problems, such as isolated speech (the Bell Labs approach), less

complex pattern matching techniques have performed slightly better than

the statistical approaches. This is probably because it is not practical to

gather the large amounts of data required to reliably estimate the statistics

in Bell Lab's systems. In addition much ad hoc adjustment is needed to find

the original structure of the markov model in these systems from which the

transition probabilities are estimated. This is another source of error. A

common criticism of the statistical approach is that these systems make



XL

little use of what is known about the phonological and phonetic nature of

speech. Rather they rely almost completely on the (usually insufficient)

statistics they gather about speech.

An interesting recent approach in this area is the Carnegie-Mellon sys

tem FEATURE.8 It tries to combine the advantages of the artificial intelli

gence and statistical approaches. It is a speaker independent system

designed to recognize the alphabet, a difficult vocabulary. The system allows

knowledgeable linguists to select quantitative cues or features that they con

sider important to distinguish words. Cues are also derived through statisti

cal pattern clustering analysis. The speech recognition system evaluates

these features and decides which to use and when to use them in the follow

ing manner. Statistics are gathered on a speech database about the distri

bution of these linguistically important features (e.g. bandpass energies dur

ing a vowel onset) in various words. The system estimates the distributions

of these features and attempts to build reliable functions that discriminate

between letters or sets of letters in the vocabulary. These features are com

bined in a tree format so that a complete recognition function is built.

Difficult decisions are deferred while more obvious ones are made higher up

in the tree (much like Zue's approach). Now given an input unknown letter

the decision tree is traversed to produce the letter that most likely was just

spoken.

The advantage of this system is that it examines only important cues for

the decisions it is currently making. For instance if it is distinguishing

between b,d and p,t it will only examine the cues important in that decision

(the voicing or low frequency energy at the start of the word). This is

opposed to pattern matching approaches (below) that consider all parts of a
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word when making their distinctions, whether those parts of the word are

important to the decision at hand or not. A disadvantage of this system is

that it is ad hoc. The features are not automatically derived, and it is difficult

to imagine doing so other for than the most basic features. Changing vocabu

laries would require major system redesign. However this system is

reported8 to perform well on a difficult vocabulary with only moderate com

putational requirements.

0.4. Pattern Hatching Approaches

Pattern matching techniques have been used for commercial speech

recognition systems8 and have also been examined in research laboratories

extensively.9,10,11,12 These approaches keep at least one "sample" (or tem

plate) of each word they are to recognize. When an unknown word is spoken

to them, it is compared to each of the sample words and the template that is

most similar to the unknown word is recognized as the word just spoken. In

order to recognize speech from any speaker many different templates of

each word are required representing the different ways words can be pro

nounced. Although this has been done with promising results13,14 most pat

tern recognition systems are designed as speaker dependent. That is, one

must train the system to his voice before using the system by repeating each

word in the vocabulary several times.

The advantages of the pattern matching approach include its relative

simplicity and high performance for speaker-dependent isolated-word tasks.

It is also very versatile; vocabularies and speakers can be changed easily.

These points make this type of system the most useful of the approaches

today.
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A disadvantage is that computation requirements are high when sophis

ticated word comparison techniques are used. One such technique is the

dynamic time-warping technique9,10 described in this thesis. This problem is

severe when many templates are used as in systems that recognize large

vocabularies or that are speaker independent. However specially designed

systems, such as the one to be presented in this thesis, can perform these

algorithms in real time and for low cost. Another disadvantage of this

approach is that it is difficult to extend this system for use with connected

speech. Although, as will be discussed in the third chapter, connected speech

is possible and useful with this system, the amount of word distortion

tolerated is limited. This is because the template words used cannot take

into account the coarticulation between words, and this is a major effect in

connected speech. It is also very tedious to train such a system with large

vocabularies (on the order of one thousand words) because all the words

must be repeated several times. Further, comparisons between very similar

words are unreliable. The pattern matcher does concentrate on the features

that should distinguish close words. Rather it uses all the information in the

words, whether that information is useful or not.

0.5. Cost Effective Implementations

In order for a speech recognition system to be successful it must both

perform well enough so that its users are satisfied and it must be economi

cally feasible for its users. Because of the large amount of computation

necessary for speech recognition systems to achieve high accuracies, past

speech recognition systems have been based on large computers and have

often had slower than real time response. However, in order to be accept

able to its users, a speech recognition system must have real time response.
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Extra compute power has often been supplied by multiprocessor computer

systems, special-purpose hardware and array processor technologies. All of

these approaches are expensive and have forced the price of high perfor

mance speech recognition systems to be prohibitive. Doddington15 in his

evaluation of commercial speech recognition systems notes that the best

performances obtained were those by systems made by Verbex Corporation

and Nippon Electric Corporation both of whom used specially designed and

expensive computers to recognize speech.

Recent progress in large scale integrated circuit (LSI) technology as well

as progress in computer aided design (CAD) of LSI has introduced other pos

sibilities for implementation of speech recognition systems. Now there exist

powerful computer central processing units on single integrated circuits

(IC's) such as the Motorola 68000.18 There are also IC's designed specifically

for signal'processing that are even more promising for speech recognition

than LSI microprocessors. An example of this is the Texas Instruments

TMS320 digital signal processor.17 With the advent of sophisticated CAD tools

and LSI design techniques, it is also possible to design special-purpose IC's

for applications such as speech recognition without high development costs

or turn-around times.18,19 Each of the above three techniques can be used to

take advantage of the economics of integrated circuit technology to produce

a system with high computational capability yet low component count and

system cost.

The three applications of LSI to speech recognition systems discussed

above range from a device that can be used for speech recognition as well as

many other very different applications (68000), to a microprocessor that is

intended for signal processing (TMS320). to a device built specifically to
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implement a certain speech recognition algorithm. This distinction between

generality and specific use is important. Advocates of generality claim that

universal devices will be produced in larger volume and hence costs of these

devices will be lower than devices built for specific problems. Further they

claim that future modifications to systems can be accomplished with minor

changes to software written for the microprocessors instead of major IC

redesigns for special-purpose devices. However, general-purpose machines

pay a price for their universality. Specific algorithms cannot be performed

nearly as quickly on a general-purpose architecture. For instance in its pro

duct description Texas Instruments claims that the TMS 320 can be used to

build a 40 word connected word recognition system. Using the same type of

algorithms our special purpose IC set recognizes 1000 words (templates) and

this limit is not as fundamental as theirs. By using an integrated circuit IC

processes as sophisticated as Texas Instruments used for the TMS 320 (2.7

fim versus 5 /xm channel lengths) our system could more than double its

speed. Furthermore, the general-purpose integrated circuit based machines

are much larger than IC's with specific designs such as ours. This will

decrease the production yields of those machines and cause them to be

more expensive. Finally with the advent of modular integrated circuit design

techniques18 and quicker integrated circuit fabrication turn around times

modification of IC's is not a problem. Advances in algorithmic work can be

quickly incorporated into special-purpose designs.

Not every speech-recognition algorithm can be implemented with

special-purpose integrated circuits. Algorithms implemented with IC's need

to be structured in a regular manner. The more complex the structure of an

algorithm the more difficult the special-purpose approach and a point is

reached when general purpose processors become more practical. For
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instance pattern matching algorithms used in this thesis are more amenable

to special purpose designs than the Hearsay-II algorithms that were

described earlier.

0.6. Some Commercial Approaches

Several other companies have taken one of the three approaches listed

above to build high performance recognition systems at lower cost. Among

them Intel corporation90 has released a speech recognition board consisting

of two Intel 2920 signal processor IC's to perform spectral analysis and an

Intel 8086 microprocessor with much read-only and read-write memory to do

the time-warp computations. They claim high accuracy recognizing up to two

hundred words of isolated speech. A similar approach (perhaps using

different algorithms) was taken by Votan Corporation21 which built a speech

recognition board based on bit slice computers. These two systems have the

disadvantage of using components that are too general purpose for their

needs. A system made of specially designed integrated circuits can have

more performance in two to five components than these systems have with

complete printed circuit boards. Thus it is likely that companies such as

these will compose their systems from a small set of integrated circuits in

the future.

Nippon Electric Corporation28 (NEC) has developed a speech recognition

pattern-matching integrated.circuit that is functionally similar to the one we

have made. The major difference is that theirs is based on a micropro

grammed processor whereas ours is logic specifically designed for the task

ab hand. Although they use a processing technology superior to ours ( 2.5 fim

channel lengths) their computation rate is slower. They claim to be able to

match 180 isolated word templates in real time and use a connected-word
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recognition algorithm with forty templates. The 180 templates can be

increased to 300 with pruning of unlikely candidates. Our IC's with similar

algorithms can process 1000 template words with either the isolated or con

nected algorithms and without pruning. There are two major reasons for the

disparity in speed. One is that ours is a special-purpose design with little

overhead. The NEC microprocessor must "waste time" fetching instructions.

Surprisingly, when implementing pattern matching algorithms used with

speech recognition, the straight-forward design of the algorithm is actually

smaller and simpler than the design of a microprocessor to perform the algo

rithm. Another difference in the approaches is that our circuitry begins to

recognize speech as soon as it detects the onset of a word instead of waiting

for the word's end as does NEC. This gives it more time for the recognition

process. However due to this our system requires extra scratch memory (the

column memory described in section 1.9.3) for the computation that is not

required in the NEC approach.

Burr et. al. a at Bell Laboratories took a different approach to building

IC's for speech recognition. They designed a circuit to compute a small part

of the speech recognition system and replicated these IC's at all nodes in the

algorithm. In this way an enormous amount of pipelining and parallelism was

available with their approach. Their system is able to compare the input iso

lated speech with 10,000 word templates in real time. However they required

hundreds of their IC's to perform this task. Thus their system is an expen

sive system for either a low end or a high end application. Either our system

or the NEC system could be replicated several times to reach the throughput

of the Bell Labs system with a much lower chip count. The effectiveness of

the parallelism in this system is limited by the communication overhead

between the processors.
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0.7. Outline of the Thesis

This thesis discusses a speech recognition system implemented with two

special-purpose integrated circuits. In the first chapter the system is

described in some detail. The algorithms used to recognize speech are

spelled out as well as the details of the system implementation. The second

chapter describes some experiments performed both to evaluate the system

design and to choose from several algorithmic alternatives. These first two

chapters discuss a speaker-dependent isolated-word speech recognition sys

tem. In the third chapter an extension to the system, connected speech, is

introduced. It is shown that with only minor modification the system can

recognize connected speech with reasonable performance. The final chapter

discusses attempts to improve the system, why they were successful or

unsuccessful. It comments about the effectiveness of the current system

and suggests future directions for research in speech recognition.



CHAPTER 1

The Isolated Word Recognition System

1.1. Introduction

Speech recognition has been a active area of research over the past few

years. Several of the projects undertaken t4 have been very ambitious, both

from the viewpoint of investigating new concepts in speech communications

and in the amount of complexity in these systems. However high computa

tional requirements caused by the complexity of these systems have caused

them both to be very expensive to build and to have less than real-time

response times. Thus these projects have been impractical to implement in

environments outside of the research laboratory.

There have also been speech recognition systems introduced as pro

ducts recently.19 The designers of some of these systems, in order to make

their products economically feasible, have been forced to scale down the per

formance of the recognition products. Other designers, while maintaining

high performance rates, have had to sell their systems for very high prices.

These factors combined have caused the speech recognition industry to not

be as profitable a business as had been projected in the past.

We feel that enough is currently understood about the speech signal so

that high performance devices can be built to recognize speech in meaning

ful tasks and that these devices can be economically feasible. Further we

propose that these devices can aid in algorithm refinment and reevaluation

for future research.



To demonstrate this we18,19,24,25,28 have developed such a speech recogni

tion system. It translates the words spoken to it into character strings by

comparing those words with features of previously spoken words. In several

ways this system is similar to other speech recognition systems described

elsewhere.9,10,11 However this system is unique in that it has the qualities

listed below.

• IC Implementation: The system is based on two special-purpose

integrated circuits that permit it to execute sophisticated speech recog

nition algorithms for large vocabularies in real time and with low system

cost.

• DTW Algorithm: The system is based on Dynamic Time Warping (DTW)

techniques which yield the highest recognition accuracy for most appli

cations. In fact ways have been found to improve the performance of

this type of system.

• Large Vocabulary Size: The speech recognition system can compare an

input word with roughly one thousand template words and still maintain

real-time response. This large vocabulary size can be expanded further

by connecting several of the DTW integrated circuits in parallel.

• Expandability Not only can the vocabulary size be expanded, but by a

natural extension of the algorithms the system can be made speaker

independent and can accept connected-speech input.

1.2. Definitions and System Parameters

Currently, in order to design machines that accurately recognize

speech, restrictions must be made on the type of speech recognized by those

systems. A common restriction is requiring the user to speak isolated worfls



to the system. In this case a user must separate his words with short pauses

(typically 100-200 ms.). This restriction has two important effects. First of

all it makes the jobs of finding word endpoints much easier. That is not to

say that there is no problem finding word endpoints in isolated speech. In

fact most of the mistakes made by isolated-word recognition systems are

due to endpoint errors. Isolated speech also avoids the problem of coarticu-

lation between words, which is the effect of having neighboring words

influence the way a given word is pronounced. A system without an isolated-

speech restriction is called a connected-speech recognition system.

Another restriction often placed on speech input is whether the system

is meant to recognize speech from any speaker, a speaker independent sys

tem, or whether only one or a few different speakers can use the system, a

speaker dependent system. In speaker-dependent systems, a user must train

the system to his voice before he can use the system. Allowing only one

speaker to use the system decreases the variability of the pronunciation of

the expected input to the system. Of course even a single talker varies the

way he speaks words a great deal.

Restricting the vocabulary size, the number of unique words that a

speech recognition system can accept, and restricting the difficulty of the

vocabulary are other ways to improve the performance of a speech recogni

tion system. In fact the system's performance is more closely related to the

difficulty of a vocabulary than to its actual size. For example the letter

names of the English alphabet is a particularly difficult vocabulary for use

with a recognition system, much more so than larger vocabularies with words

that are more distinct as will be shown in the next chapter.



Some systems may also require that sequences of words spoken to them

conform to certain syntactic conventions. Then syntactic information can be

used to distinguish otherwise very similar words when one of those words is

syntactically inappropriate.

Whatever the system type, in order for it to be useful it must be able to

recognize speech in real time. In other words the delay between the time the

user ends his word or phrase and the time the system acts on that speech

should not be noticeable to the user. For interactive systems, delays should

be less than about one quarter of a second.

There are several important ways one must evaluate speech recognition

systems. The most obvious is the error rate, or the percentage of incorrect

words in ail the words recognized. Another important parameter is the

rejection rate or the percentage of words spoken to the system that are

ignored. A final evaluation criterion is the false alarm rate or the number of

words that are recognized even though they were not spoken to the recog

nizer and do not appear in the recognition system's vocabulary. Such words

may be in reality words that the system's user speaks to someone in the

room (not meant to be recognized by the system) or even extraneous sounds

such as a door slamming.

1.3. Use of the System

The speech recognition system has many of the restrictions listed above

(mostly as options to improve performance). The following is a brief descrip

tion of the way a user interacts with the system in an isolated-speech user-

dependent mode.

• . Choose a Task: The user picks the tasks he wishes to perform with the

computer, such as integrated circuit (IC) layout or a data base



application. The tasks that are most useful with speech recognition sys

tems are usually those where hands or eyes are already busy. IC layout

is a good example because the IC designer uses his hands to point to

objects on the screen of a graphics terminal while giving commands to

the system by voice.

Pick a Vocabulary The user decides which words he wishes to use to

converse with the application program he has chosen. He chooses words

to fit the application such as wire or John Smith. The words are any

strings that would ordinarily be typed. They can be simple words or

phrases spoken as one word.

Check the Difficulty: The user should check the vocabulary to see if

there are words that are identical in sound (such as right and write) or

that are unnecessarily close in sound (such as nine and mine). If such

words are in the vocabulary, attempts should be made to replace them

with other dissimilar sounding words. Of course sometimes similar

words must remain in the vocabulary (such as when the task at hand is

recognizing the alphabet). This may be done at this point or later dur

ing system use when the user notices that certain words are confused by

the system. This can also be done automatically in the training phase

described below.

Describe the Semantics: The user must also indicate to the system what

he wishes it to do after it recognizes a particular word. For instance he

may tell it to transmit the ASCII erase character control-H every time it

hears the word erase.

Train the System: Once the vocabulary is chosen, the user must repeat

several times each of the words he wishes to use to the speech recogni-
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tion system. During this time the system searches for consistent

pronunciations of each of the words in the vocabulary, and stores the

features and the semantics associated with each of these words into a

template word in a system dictionary that it maintains.

Use the System: After training, one can use the system. Once started up

it constantly "listens" for words spoken to it. That is the input energy

level is examined to see if speech is in progress. An endpoint detection

algorithm tries to extract words from background noise primarily by

using these energy levels. When the system "hears" a word it compares

that word to all words that are stored in its dictionary. When a template

is found that is both more similar to the input than all other words and

is also more similar to it than a predefined rejection threshold, that dic

tionary word is recognized and its associated semantic action is per

formed. If no words are found that satisfy these conditions, no action is

performed and the input word is rejected.

Continued Use of the System: Once the system has been trained it need

not be retrained. The user can reuse the system whenever he likes. How

ever, occasionally words are found that were originally mistrained and

that are not recognized well by the system. These words can be selec

tively retrained. New words that were not part of the original vocabu

lary can be added. Adjustments can also be made to the rejection thres

hold so that a proper balance of rejected correct words versus accepted

extraneous words is achieved.
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Figure 3: Speech Recognition System Block Diagram

1.4. Speech Recognition Algorithms

The speech-recognition system is shown in the above figure. Roughly it

can be divided up into a front-end subsystem and a word-comparison subsys

tem. The front-end subsystem extracts features from its input (the micro

phone) while the comparator compares those features to previously stored

features.

The front-end samples its input time waveform regularly and computes

frames or spectra of the time waveform every 10 milliseconds. While it is

computing the spectra it performs endpoint analysis or decides whether a

word is currently being spoken or not. It then energy normalizes the spectra

in words by adjusting each one to have the same energy. Finally it downsam-

ples the frames. That is it deletes frames that follow others without

significant spectral change. The front-end outputs those normalized down-

sampled frames to the word comparator subsystem.
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The comparator subsystem compares the frames input to it to the

frames of the words in the system dictionary. A score is computed for the

similarity between the input word and every template word in the system

dictionary. The best score is found, and that value is compared to the rejec

tion threshold. If the error score for the best word is less than that

threshold, the semantic action associated with that word is performed. If

not, no action is taken.

1.5. Front End

The following sections describe the front-end portion of the speech

recognition system. These portions are implemented together on the front-

end integrated circuit.

1.5.1. Spectral Analysis

In the ASR system, speech is modeled as a succession of spectra. The

assumption of short-time steady state spectra is generally valid since speech

is produced by vocal tracts as affected by articulators (lips, tongue, velum,

vocal cords), and these articulators move slowly relative to the spectral sam

pling rate. The ASR system samples the speech spectrum one hundred times

per second. A spectrum for the front end is the average voltage a signal has

in several frequency bands.
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1.5.1.1. Bandpass filter Spectral Analyzer

As can be seen from the figure, the front-end computes frames by

bandpass filtering the input speech, rectifying the bandpass outputs and

then lowpass filtering (averaging over a period of time) the rectified signal.

It then takes the logarithm of these values.

As we await the completion of our front end IC, the spectral analysis por

tion of the system has been implemented with commercially available

hardware.87 It is made of third-octave switched-capacitor filters. The 3dB

cutoff frequencies of the bands is shown in the following table.



Filter Bank
3 Db cutoff freauencies in Hz.

filter lower upper filter lower upper

1 200 400 7 1250 1600

2 400 500 8 1600 2000

3 500 630 9 2000 2500

4 630 800 10 2500 3150

5 800 1000 11 3150 4000

6 1000 1250 12 4000 5000

10

The original filter bank consisted of third octave filters from the octave

100-200 hz. to the octave 3200-6400 hz. It became obvious from the start that

the low octave was an unreliable cue to use when differentiating words. The

primary reason for this was that third octave filters at low frequencies are

very narrow, much narrower than the spacing between pitch harmonics.

Therefore pitch variations were harming recognition performance. However

low frequency information is important for accurate speech recognition. For

instance it would be difficult to differentiate between sounds that differ

mainly in voicing, such as /b/ and /p/% without low filters. Therefore we sub

stituted a full octave filter for the three filters in the range of 200-400hz.

The spectral analysis uses six pole bandpass filters, a half wave rectifier,

and a three pole butterworth low pass averaging filter that cut off at 25 hz.

The averaging filters approximate an analysis window that lasts about twenty

milliseconds. Thus the short term spectrum of the input speech (averaged

over twenty milliseconds) is sampled every ten milliseconds.

The averaging filter is a critical part of the design of the front-end. It

restricts the amount of input speech over which the spectral analysis takes

place. It assumes that the speech spectrum is stationary during this analysis

interval Unfortunately different parts of speech require different types of

averaging filters for this assumption to be valid. Some sounds are stationary

for long periods of time (such as long vowels) and others have spectra that
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change rapidly (such as the burst in /b/). For example, figure 5 shows the

output of lowpass averaging filters whose inputs are a steady state vowel that

has been bandpassed (200-400 hz) and rectified. The filters have two poles

and have cut-off frequencies of lOOhz, 50hz, 30hz and 20hz The ripple varies

from 100% of the signal for the high frequency cut-off to 1.2% of the signal for

the 20hz filter. Thus in a steady-state vowel, in order to eliminate ripple

caused by the pitch periodicity a long averaging window is required. However

an impulsive signal such as the burst of a stop consonant requires a short

time window. We have compromised, choosing our twenty millisecond window

implemented by the low pass filter.
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The figures below show a series of normalized spectra made by our front

end for a male speaker repeating several vowel and nasal sounds (/i/heed,

/e/i/head, /a/hod, /aiu/ hawed, Al/ who'd, /m/ and /n/).

r /<-•

V
••> >•••• ••/•

**•
v

17"
"X I \ ! ! ! '/:

4 X- ! * i I-^ I-

Figure 6: The vowel /i/ as in Heed

\
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Figure 8: The vowel /a/ as in Hod

Figure 10: The vowel /u/ as in Who'd
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Figure 11: The nasal /m/ as in M
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Figure 12: The nasal /n/ as in N

1.5.1.2. linear Predictive Coding

Linear Predictive Coding10 (LPC) is another approach to spectral analysis

for speech recognition. It is similar to bandpass filtering (BPF) in that

speech is represented as a series of frequency-smoothed power spectra. LPC

analysis represents speech as a series of all-pole spectra that best fit the

input speech spectra. As the spectra have a limited number of poles, typi

cally 8-20, fine detail of the spectra such as pitch harmonics are not

represented. Thus the spectral envelopes are represented and the excitation

(the fine detail in the spectra) are not. In bandpass filter banks, this spec-
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tral smoothing is accomplished by using wide bandwidths filters to find the

spectral envelopes.

One major difference between the two approaches is that BPF allows any

sort of spectrum to be represented, whereas LPC uses spectra composed of

poles alone. LPC has the advantage that it represents spectra by their reso

nances and thus may use less bits to represent them than bandpass filtering

which explicitly represents each frequency band, not just the locations of the

resonances.

The major difference between LPC and BPF approaches is the spectral

normalization used and the resulting distance measure. As will be stated in

the next section, BPF normalizes spectra by sampling the spectra in bands

and scaling ail the values so that the total spectrum has constant energy.

LPC's normalization also requires constant energy, but the all pole spectra

used are ones that match the peaks (harmonics) of the spectra more than

the other portions. Specifically LPC analysis finds the spectrum which

minimize the error

*** 2rr itp(d)

where P(o) is a spectrum to be modeled, P{q) is the LPC model desired, and

G is a gain factor.® This error is used both to derive the LPC spectrum and

also to compare two spectra during speech recognition. Note that this error

measure weights the areas of the spectrum more where P(u) is greater than

P(p) than where P(u) <P{o). Hence the normalized LPC spectrum closely

follows the harmonic envelope of the speech spectrum, whereas the BPF

spectrum weights all parts of the speech spectrum equally in generating its

smoothed spectrum.
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The LPC error above can be interpreted as the energy in a signal

obtained by passing the signal corresponding to P(cS) through a filter defined

by *, v . For comparison reasons the BPF distance measure is restated
P(u)

below as

Eb"= h" f[ogp(^yiogp(cj)
2* ^

2

do

1 w
= ±- r

2-rr J2* ^ log(^)

As Makhoul2* notes, the two distance measures E^ and Etpj are quite

similar. The major difference are computational expenses in two areas, spec

tral analysis in the front-end and spectral distance measure used when com

paring spectra.

One of the major reasons why we selected BPF analyzers at the start of

this project was that there were integrated circuits27 available off the shelf to

implement them. LPC analyzers required more complex systems. However

now there have been examples of several working LPC analyzer integrated

circuits.28,30 With digital implementation of front-end processors such as

ours, either technique can be implemented.

For spectral comparisons, the distance measure used with LPC

coefficients is more complex than the squared distance metric used with

BPF. A common implementation of the LPC spectral distance is the Itakura

distance measure10

Dist = c + log (br)/(ar)

do.

Here a,a,b and r are vectors of size p (typically 8-12) and (br) means the dot

inner product of the two vectors b and r. c = log(aa) and b (where

i«o
bi = 2 2j f~\—) are computed during spectral analysis and stored with the

i«0 V88!/
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reference pattern. The coefficients a are computed for the unknown pattern

along with the unknown's autocorrelation function r and the dot product

(ar). Computing (br) for each of the spectra in the system's dictionary is the

the major work done to compute spectral distances for LPC. Though this

scheme is more complex than the one for BPF, a special purpose design such

as the approach we've taken for our comparator integrated circuit could

implement this or a BPF approach equally as well.

There have been several studies9,S1,38 done comparing the two techniques

for dynamic time warp based speech recognition systems with mixed results.

We ran a pilot study comparing the techniques with a slight advantage for the

band pass filter approach. It seems that the relative merits of LPC versus

BPF are not completely known, however it seems clear that from a practical

point of view the difference between the two approaches is small.

1.5.2. Logarithmic Conversion and Energy Normalization

After calculating the absolute inband spectral amplitudes, the front-end

processor takes the logarithm of the spectrum and then energy normalizes it

by subtracting from each log filter amplitude the average log filter amplitude

for that frame.

fi-fi —

The processor takes the logarithm of the data spectral amplitudes for

several reasons. Comparisons between two log-spectra are more fair than

between linear spectra since with log spectra the same percentage

difference results in the same error for spectra with different amplitudes. A

side advantage is that a logarithmic representation allows the spectral nor

malization to be performed with simple adds and subtracts instead of



19

multiplys and divides.

In the spectral analysis hardware described above, an off the shelf uZ55

Law analog to digital converter is used to sample the outputs of the low pass

filters and to convert each low pass output to /x255 Law every ten mil

liseconds. The microprocessor converts this eight bit /x255 Law representa

tion to a four bit true log representation in the following manner. The ^i255

Law samples (8 bits) are represented by one sign bit three bits indicating a

chord (C) and four other bits indicating an offset (0). Rare negative numbers

are represented as zeros. Positive numbers are represented as

2c[24+0]-2*. 'The most significant three bits used to convert this to a four

bit logarithmic format are those representing C. The least significant bit is

derived from O by table lookup. If 0 is greater than 5 the least significant

logarithmic bit is one, otherwise it is zero.

Normalization eliminates the overall spectral amplitude from considera

tion when comparing two frames. Thus the speech recognition system does

not penalize a word when it is trained loudly and then spoken softly (or

trained spoken closer to the microphone and then spoken further away from

it). In order to do so two spectra are always compared with the same ampli

tude levels. Given the distance measure to be used (a squared euclidean

metric) the normalization equation can be derived by the following argu

ment.

No error due to a difference in overall spectral gain should be added to

the spectral distance measure. Since the distance measure used is

d(Fa,Fb) =J f/i,-"/tn the normalized distance of frame Fa from Fb should

be
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d(Fa,Fb) =MIN £ [tf-/f+*]* (2)

=MIN£ ffe2+(f^)%2*(f^/f]]. (3)
where ff and ft are the log-amplitude filter coefficients of the vectors Fa

and Fb, p is the number of filter coefficients and A; is a variable gain factor

for one of the frames that acts as a variable gain factor to eliminate

differences in amplitude. Setting the derivative of (3) with respect to k equal

to zero,

i=l i=l

and substituting k into (2),

d(Fa,Fb) =£ \f?^'l£A-lrt-p-l£ft\ • (s)

and the normalization discussed above is derived.

1.5.3. Endpoint Detection

The speech recognition system represents words as a series of frames

that are generated every 10 milliseconds by the front end. It is the job of the

endpoint analyzer to determine which of these frames are part of a word or

phrase being spoken and which are part of the background noise.

The endpoint analyzer is roughly based on one that was proposed by

Rabiner and Sambur.33 It was redesigned and implemented and has since

been modified by Davies.25 The endpoint decision function used is based on

the level of the input signal and knowledge of typical durations of various

speech sounds. The endpoint analyzer, in order to function, needs to know

the current background noise level relative to the current speech level. This
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level is called Ebg. With the background noise level known, the endpoint algo

rithm calculates three thresholds levels Tu,w, 7^,^, and T^. T^,gch is a

level at which the algorithm is confident that "something is happening" to the

input signal. It is 10 dB above the background noise level. 7^, 3 dB. above

the background level, is a lower level which could indicate that some speech

is in progress, or the level may simply be caused by background noise. 7)^

is a high level. The algorithm requires every word to reach the level 7/^

somewhere inside that word to eliminate moderate level room noises and to

keep proper signal levels in the converter and analysis circuits.

The endpoint algorithm starts by searching for words to begin. It does

so by examining the input speech level read from the filter bank. The level is

the average of the unnormalized filter coefficients, the same term J>~l2/i

that is computed by the normalization routine. Should the input level reach

Tgpageh and stay at least that high for MINDUR consecutive frames (the

minimum duration of a word, 80 milliseconds), the "endpoint analyzer

announces that a word or phrase has begun. It considers the speech to have

begun at the last crossing of the Tiow level before the recent crossing of the

7fp««c* level However, in order to accommodate burst-like speech sounds at

the start (and at the end) of words a change is made to this procedure.

Define a burst of speech as a sequence of frames where the speech level

crossed 7*^,,,^ and then fell below it before MINDUR frames had passed.

Then, if the time between when the input speech level of a burst falls below

TfjNBc* and when the level of a following word crosses 7^,^ is less than MAX-

GAP frames that burst is included in the word, from the time that burst origi

nally crossed 7^. MAXGAP is 180 milliseconds which including the smearing

of the burst from the low pass filter in the front end. In order to exclude



22

speech artifacts such as clicks or lip smacks from words, the burst must

have a duration of PULSEWIDTH frames (40 ms.). An example of a word with a

burst included at the start is shown in the figure below.
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Figure 13: The Endpoint Detection Algorithm

Once a word has begun the endpoint analyzer searches for the end of

that word. This occurs when the input level falls and stays below 7^8C^ for

at least MAXGAP frames. MAXGAP is the maximum length of an inword

silence. To find the end of the word the algorithm searches these MAXGAP

frames for the last frame in that sequence that fell below 7^ when the pre

vious PULSEWIDTH frames had been above 7*^. An example of an allowable

inword silence (where the input level falls below T*^.^ for less than MAXGAP

consecutive frames) is the gap between the /d/ and /p/ of the word end-

point.

If the speech has ended but the level has never crossed 7/^ the end-

point analyzer aborts the recognition process on that word, otherwise it

declares the input a legitimate word or phrase.
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MAXGAP affects the response time of the speech recognition system as

no decision on recognition can be made until at least MAXGAP frames after

the word has ended. Only at that time does the system know that the word is

over.

To find the background noise level, the endpoint algorithm constantly

monitors each input frame checking for changes to its guess of Ebg. It does

this in the following manner. It checks if the current input frame is less than

E^. If it is, the algorithm assumes that E^ is too high and decrements it by

a small amount i and then recomputes the various thresholds. If the input

frame is between Ebg and T^ac/i it assumes that Ebg is too low and incre

ments it by 2c. If the input is between 7^.,^, and 7^A then Ebg is incre

mented by s. If the input frame level is above the high threshold it is

assumed that the frame is speech and not noise and Ebg is not changed.

1.5.4. Selective Downsampling

Each normalized filter value that is part of an input word is stored in

template memory (during training mode), the system's dictionary, or sent

on to the word comparator (during recognition mode). However frames

which are very similar to previously transmitted frames are not transmitted

nor is a repeat bit sent. In this way the ASR system dynamically varies the

spectral sampling rate. This both reduces the data rate through the system

and reduces the amount of emphasis the ASR system would otherwise place

on long steady state sounds in its word comparison algorithms. In so doing it

improves the accuracy of the speech recognition system. This reduction of

the frame rate also increases the size of the of vocabulary that the system

can process in real time. It also increases the number of words that can be

stored in template memory. The technique of selectively downsampling has
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been recently discussed by others.84,85,38

Selective downsampling is accomplished in the following way. The first

frame of a word is always transmitted to the comparator. Succeeding frames

are compared to the last frame transmitted. A new frame is only transmitted

if the spectral distance between it and the previously transmitted frame is

greater than a predefined threshold. With the threshold chosen (a distance

of seven units —see the tables in the next chapter), the effective spectral

sampling rate after downsampling is between twenty and twenty-five mil

liseconds when averaged over long periods of speech. In the short term the

spectral sampling rate can be very low, such as during a long steady state

vowel when only one frame in ten is transmitted, or it can be as fast as the

original sampling rate, as during transitional speech.

1.6. Word Comparator

Ultimately a speech recognition system must compare features from its

input word with features in its dictionary. These comparisons have tradition

ally been the most time consuming part of similar speech recognition sys

tems.

The basic unit of comparison in the speech recognition system is the

frame. As each word is composed of a series of frames, words are compared

by summing the spectral distances between corresponding frames of the

words. Two issues then are: how frame errors are computed and how

corresponding frames are discovered.

1.6.1. The Distance Measure

The recognizer compares frames by taking the squared euclidean dis

tance between them. That is the spectral error is defined as the sum of the
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squared difference across all bands of the two spectra. Let two frames be

Fa={/Uh ' • ' J}) and n=(/?./S. ' ' ' ./£)• Then

d(FatFb)=£{f?-ft)2 (6)
i=l

Absolute value distances have also been used with band pass filter front

ends for speech recognition, primarily as a way of avoiding the squaring

operations in (6).9 Such a distance would be

d(Fa.Fb)=£\f?-ft\. (6a)
i»l

However when building special purpose hardware for a speech recogni

tion system the squaring operation is not difficult to implement. The function

(f?~ft)Z can be built as a four bit subtractor followed by a five bit by eight

bit Read Only Memory (ROM), 256 bits of ROM, or a smaller Programmable

Logic Array (PLA). As the subtractor would be needed to compute either

equation (6) or (6a) the extra PLA is not a large price to pay for the squaring

operation. Studies done earlier indicate that the absolute value distance

metric degrades recognition performance.9

1.6.2. Dynamic Time Warping

Finding which frame of one word corresponds to which frame of the

other is a complex issue. This is because repetitions of a given word may

have different durations, and even with similar durations parts of one word

may last longer than their corresponding parts in other repetitions. Thus

when comparing two words that have different durations but are otherwise

similar, if one of the words is uniformly expanded or contracted to be the

length of the other, the j**1 frame of the expanded or contracted word may

correspond to a different speech event than the j**1 frame of the other word.

Figure 14 shows this using as an example the time waveform of two
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repetitions of the word howdy. Note that the first repetition of howdy has a

much longer first vowel, and though it has been uniformly compressed to

about the same time scale as the second repetition, its first vowel now is a

much larger portion of the word than in the second repetition.

•OTMi«*0M

Figure 14: Two repetitions of the word howdy

The problem of nonlinearly warping words can be solved using the follow

ing comparison process. Assume that the corresponding frames of two words

are known. Say that frames Pfn(0 and Ptp(t) of words W^ and W^

correspond for tet^Lp, where the two words have lengths L^ and Lfp. Lp is

the length of the comparison path between the two words. Then the distance

between words W^ and Wtp is the average of the spectral errors along the

path of corresponding frames between the two words.
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*•*(**.**) = T-L*(Pin(*)' Ptp(t)) (7)
•** <«l

This technique is used in the speech recognition system with a minor

modification to Lp as discussed in section 2.4.2.

The technique of finding these corresponding frames is known as

dynamic time warping. To determine this correspondence or equivaiently the

functions P& and Ptp note that the set of corresponding frames of two words

should be the ones that minimize the distance defined above between those

words. Then the distance between two words can be represented as

MIN dxst(Wint-Wtp) for all P^ and Ptp. The job of the word comparator is to

solve this minimization.

The above minimum can be found without trying all possible Pjn's and

Pip's if the following reasonable restrictions are placed on the P functions.

First make the functions monotonic

P(t) <. />(r+l), 1* t * Zp-1. (8)
Second require that the functions be continuous

P(l)=l. />*(/,)=!*, P^)^ (9)

P(t+1)-P(t)*lt l*t*zLp-l.

These restrictions say that the order of the frames in a word may not be

reversed in a comparison and that all parts of both words must be used in

the comparison. Given the above assumptions, the above minimum can be

computed by the following dynamic programming based algorithm.9,111

Let Df)'*9 ( abbreviated Dij) be the minimum cost distance along some

best path that compares the frames of W^ from frame 1 to i with the frames

of Wfp from frame 1 to j. Clearly Diti-d(Win(l)t W^(l)). Since by equations

(8) and (9) every path to i,j must pass through one of either i-l,j, or i,j-l
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ori-l,j-l then

Aj = *(•/*»«. w*U)) + ai/jv(A-u. Aj-i. A-u-i) (10)

Here rf (#«»(*)• F/^0')) is the cost of i,j and #//V(A-i.j. Aj-i. A-ij-i) is the

cost of the best path to approach i,j.

To completely formulate this problem let A.o = &oj = °°» *J >0- Then

Dl^a,-* ^ne stance between fl^ and FV^, can be computed.

The recursion to solve for Aj is evaluated in the following order. First

D\j is computed for j-l,Ltp- These computations are known as the first

column of the algorithm. Then D24 is evaluated; the second column. This

continues until the final column A*J is computed where the top of that

column A^.lto is the desired result. At this point derive a similarity measure

between words which is independent of the length of the words being com

pared by dividing the sum by the path length. The final normalized error

between an input word and a template is the average frame error computed

when comparing those two words.

Though the above technique has the advantage of automatically time

aligning the words it compares (an important consideration in speech recog

nition) it has the disadvantage of requiring computation of ail the L^Up

spectral distances d{Win{i)t Wtp(j)), i^L^.j^Ltp even though only Lp dis

tance measures actually are involved in the final distance computation. Con

sider the following example. If there are N words in the dictionary with an

average duration of Ttp seconds and the frame period was 7/, then there are

T
Zip =-7^-frames per word. JV-£•_'/«, distance measures must be calculated

" T/
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in comparing the input word to each dictionary word. For a dictionary size of

1000 words and an average word length of half a second (7Vp=.5sec) and a 10

ms. frame period (Tf-lOms.), the system would need to compute

1000*50*50 = 2,500,000 distance measures to recognize one word!

The important points to remember about this algorithm are:

• Frame by frame computation: When comparing the Ith frame of an input

word with a set of template words only that frame is used to compute

the spectral distances between that frame and every frame in each of

the template words. The speech recognition system no longer needs to

keep track of previous input frames.

• Template word independence: As the distance from the input word to a

template word is independent of the input's distance to other template

words those computations may be done at the same time,

• High computation rate: Even though only Lp spectral distances eventu

ally figure in a word error score, all Ltp'Lin »ip. distance measures

must be calculated resulting in a high computation rate.

Systems which implement this dynamic programming recursion with a

computer or microprocessor often reduce the number of comparisons

needed using various techniques that restrict the time-warp path.8* After

pruning the paths they wind up having to do about k-Lp « Up-Lin spectral

distance measures where k = 5 or 10. Another time saver is to reject poorly

scoring templates before they are completely compared to the input.

Though the above authors claim that these systems do not suffer significant

performance degradation due to these computation optimizations, the

resulting computation rate is still very large for a 1000 template system.

Further connected speech algorithms discussed in chapter 3 cannot take
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advantage of a path-restricting approach unless they wait until the input

phrase has ended before beginning to execute the dynamic time warp algo

rithm.

Other dynamic time warped systems may have different variations of the

algorithms discussed above. For instance some have slope constraint.** A

version of slope constraint would add the following equation to the list of con

straints shown before.

W) = P*lt)-P*(t) (12)

|A(r+2)-A(*)l <2
We have found that this degrades recognition accuracy. See the section on

testing slope constraints in chapter 2.

1.7. Recognition or Rejection Criteria

After the system computes the error scores for matching the input and

every one of the system's templates, it finds the template with the minimum

error. If that error is less than a threshold value REJJTHRESH then the

action associated with that word is executed (i.e., that word is recognized).

REJJTHRESH affects the tradeoff in number of rejections versus number

of false alarms and errors. Either extreme can be very bothersome and can

be adjusted by the user if necessary.

1.6. TTie Training Algorithm

In order to recognize speech, the ASR system needs at least one tem

plate word ( or typical pronunciations of a word ) for each word in the

system's vocabulary. These templates differ for each speaker in a speaker-

dependent system. Gathering the templates is a very important part of the

speech recognition system. The quality of the templates greatly influences
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the ensuing speech recognition performance.

There are several ways to train a speech recognition system. All of the

techniques below have been used at some point in the design of our system.

In all of the approaches care should be taken to insure that the speech used

to train the system is representative of the type of speech to be recognized

by the system.

• Quick and Dirty: Have the user repeat each word in the vocabulary one

time. That is the template word.

• Repeatabie Pronunciation: Have the user repeat each vocabulary word

several times until N (2 to 10) words are found that are very similar to

each other. The distance computed by the speech recognition algorithm

is used to judge similarity. Words are considered similar if their pair dis

tance is less than a threshold somewhat below the rejection threshold.

When such a group of similar words are found, the one whose distance to

all the rest is minimum is chosen to be the template.

• Cluster Centers Several repetitions of the vocabulary word is spoken

and as above groups of similar words (or clusters) of size SsAf are

desired. If more than one such cluster is found, more than one vocabu

lary word is used for that vocabulary entry. The words that are closest

to the centers of the clusters are used for the templates in the system's

dictionary. The main difference between this method and the one above

is that this technique assumes that the number of words input at first is

large and that N is larger than it was in the previous method. This

allows the algorithm to find multiple templates that are different ways

that the vocabulary word is pronounced by the speaker.
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• Clustering with Averaging: This is the above method except that instead

of picking the training words closest to the centers of the clusters to be

the templates, new templates are constructed that are the average of

the words in the cluster and hence are the real center of the cluster.

All of the above methods except the last are very straight forward. The

first two are much easier on the user, in that he need not repeat each word

in the vocabulary many times. The third technique is a simpler form of the

fourth one. The technique of choice is the fourth as tests of the recognition

system in the next chapter will show.

Averaging templates is tricky because the templates may be of different

durations and the distance metric used is the dynamic time warping, a non

linear function. The following iterative technique works well.

• Pick Initial Template: Choose the word that is closest to the center of

the cluster of words. This is the template that would have been chosen

by the third algorithm above. Refer to this word as We.

• Compute the Distance (saving the path): The time-warped distance is

computed between each word in the cluster Wi and Wct ±£i^Ne where

NG is the number of words in the cluster. However, in contrast to the

normal recognition process, it is now important to store the paths Pi(t)

as well as the interword distances.

• Average the Corresponding Frames: Create a new word Wtp whose

features in its j#Wi frame are the average of the features in each word of

the cluster that correspond by time warping to the jth frame of the tem

plate. Another way to explain this follows. Let J be the set of all frames

from words Wit l^i^Ne such that Pi(t)=j. That is J is the set of all

frames in any word Wi, such that when Wi is warped against We ail
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frames in J^ that warp to the;"1 frame of WG are in J. Then the features

of the 3th frame of the template created Wtp are the averages of the

features in J.

J = W)'.Pi(t)=j

1 •£ i •£ the number of features in a frame

• Check for Convergence: The new template Wtp is composed of all the

. average filter terms. Now compare We and W^. If the distance between

them is small or if too many iterations of this algorithm have already

been used then the algorithm is completed. Otherwise set WG = W^ and

go back to the second step.

In practice this algorithm will iterate two to ten times even when requiring

an exact match between WG and W^.

1.9. IC Based System

1.9.1. A description of the Integrated Circuits

The speech recognition described above is being implemented with two

special purpose integrated circuits. See Lowy,19 Davies25 and Ruetz38 for a

detailed description of those IC's.
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The front-end IC computes short-time spectra of speech (similar to the

filter-bank hardware currently in use) and also performs the functions of tak

ing logarithms of, normalizing and downsampling the data and computes the

endpoint algorithm. It both sends data directly to the comparator IC (in

speech recognition mode) and also to the system microprocessor (in a train

ing mode). It also transmits control information to the rest of the system

(such as STARTJ}F_WORD and ENDjpFJVORD). It has an on-chip pre

amplifier, an anti-alias filter and an analog to digital converter so that a

microphone may be directly connected to it.

The comparator IC reads its input from the front-end IC in recognition

mode and sends the results of its comparisons on to the system micropro

cessor. The microprocessor is not burdened during the recognition task.

During speech recognition its only jobs are minimizing the scores to find the

best match, checking a rejection threshold and performing the action

desired when a particular word is recognized.

The microprocessor will usually perform some application system task

as well as its recognition duties (such as being a terminal controller). The
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microprocessor also must aid in training. It must compute the templates

and must be able to store them and reload the ASR system dictionary when a

user who has trained the system in the past starts using the system. This is

not the case for applications where a speaker-independent vocabulary is

used, pretrained and stored in a non-volatile ASR dictionary memory. In a

connected speech or syntactic input mode there are more burdens placed on

the microprocessor. This will be discussed chapter 3.

Currently the front end IC is being tested . Some of its subsections have

already been tested and found to operate properly.aa,8S Much of the compara

tor IC has already been fabricated and is currently working in the

system. iaa

1.9.2. Speech-Recognition System Timing

The speech recognition system runs in real time. That is, the system

processes frames in the amount of actual time represented by a typical

frame. This is roughly 20 milliseconds with selective downsampiing. Thus

selective downsampiing impacts the performance of the speech recognizer

greatly. Consider the example used above concerning a thousand word voca

bulary. Each Tf seconds (the average frame rate) the system must compute

A J f°r i =l»Ap f°r each of the N words in the dictionary. So with the

assumptions used in the earlier section it would have to compute

JV A7.T

r—2 ^tpn w t ^ stluared euclidean distance measures every 7/ mil

liseconds. With JV=1000 and 7\p=.5 seconds and 7/= 10 ms. (no downsam-

1000* 5s*3C
pling) it has — "T^—:— = 200 nanoseconds to compute each squared

1077XS. *107715.

euclidean distance measure. In addition to these distance measures, the

system also must compute the dynamic programming recursion, perform
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the endpoint analysis, derive the spectral data, normalize the final scores

and so on.

Lowering the effective frame rate reduces the high data rates above. If

the effective frame period 7/ falls to 20 ms. then the time the system has to

compute each distance function becomes 800 nanoseconds, the current rate.

The sections below explain how the circuitry maintains this still high compu

tation rate.
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Figure 16: System Pipelining and Parallelism

The speech recognition system works in a pipelined and parallel manner

as shown in figure 16. The filter bank analyzes the spectrum of the input

speech and passes its information on to the endpoint analyzer. At the same

time the endpoint analyzer decides when words begin and end. Once the end-

point process has determined that a word has begun it transmits what it
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already has of that word to the word comparator despite the fact that it may

not yet have determined the end of that word. This pipelining continues

throughout the system.

Because of all this pipelining the total response time of the system is the

endpoint analyzer's response time plus the time to process one frame. This is

MAXGAP + 20ms. * 200ms (see the above section on endpoints).

To/From \
Column Mamofy

. t TTT. ,

Figure 17: Dynamic Time-Warp Circuitry

The above diagram shows how dynamic time warping is computed on the

comparator IC. A set of programmable logic arrays compute the difference
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squared of two features. These squared differences are summed up to com

pute the total distance function. In order to speed up the distance measure

four differences are computed at the same time and thus four cycles through

the accumulator loop are sufficient to compute the distance function. Hence

with 200 nanosecond cycle times the hardware can compute a squared

euclidean distance measure in four cycles or 800 nanoseconds; sufficient to

process 1000 template words (500 seconds of speech) in real time. Another

adder, comparator and control PLA are used to do the dynamic programming

calculation.

1.0.3. System Memory Requirements

There are two large memories needed by the speech recognition system.

They are the template memory and the column mgmpryr

The system must store all* of its templates locally and access this entire

template memory during each 7/ time interval when the recognizer is

active. The memory required for the previous example is large. It is

~r~£ Ttpn where p is the number of features in each frame and bj is the

number of bits used to represent these features. In the previous example

with p =12 and bj =4 and 7/=20ms., 1,200,000 bits of storage are needed to

represent the 1000 words.

Another memory is needed as well. In order to run the comparison algo

rithm, some information must be passed on from frame to frame. Equation

(5) shows that the values A*3-i for ^^Up and l^tp^N are needed to per

form the comparison algorithm on frame j of the input. Thus the system is

required to remember -=--£ 7V bits for this column memory where bD is

the number of bits used to represent the D^'s. With 6^=12 and the above
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parameters it needs a memory of 300,000 bits.

These memory requirements are relatively large and are the most costly

portion of the system. Work is in progress to reduce this problem. As these

memories are currently configured external to the comparison IC, one

approach is to experiment with intelligent memories that take advantage of

data characteristics to reduce the physical memory size. Robert Kavaler,84

is currently experimenting with vector quantization of the template memory.

It is expected that although there are j> = 12 features per frame each quan

tized to bj=4 bits, very few of the possible 2*8 different possible frames ever

occur from natural speech. In fact it is hoped that from 2fl=64 to 2fl=256

different frames could characterize the entire population of frames within

some acceptable tolerance and still have good recognition accuracies.

Should 2a frames or clusters suffice, the system would be able to represent

each real frame with 8 bit pointers to cluster centers and the system would

Tonly require B-N- -^EH-256-48W200,000 bits for 1000 words of template

memory. This is one sixth of the original memory size. Kavaler's results are

shown below, with the number of vectors used and the percentage of memory

used as compared with no vector quantization for a speech recognition

experiment with four speakers.

The
Speaker

Vector Quantization
KIC vocabulary (errors of 2000)

number of clusters / Percent Memory
no clustering / 100% 100 / 15% 64 / 12.8% 50 / 12.7%

RAK 9 31 34 67
RWB 6 50 53 53
ELD 2 8 26 27
HJM 36 89 104 147
Total 53 (0.6%) 178 (2.2%) 217 (2.7%) 294 (3.7%)
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Rabiner et al5 have done a similar experiment vector quantizing LPC spectra

in a speech recognition system. Their results coincide with Kavaler's and

show that vector quantization can be used to substantially reduce template

memory requirements with still high recognition performance. However the

vector quantization does significantly degrade the system performance.

1.9.3.1. filter Quantization

Since template memory requirements are the most costly part of the

speech recognition system, it is advantageous to use as few bits as possible

to encode the templates. However using few bits to quantize the filter values

will result in quantization noise that can degrade the performance of the

recognition system. At the onset of this project we ran an experiment to

decide on an acceptable amount of quantization error in the recognition sys

tem. As the front end was composed of analog spectral circuitry followed by

a /A-law analog to digital converter, the effect of using the bits in the con

verter or just the six, five, four or three most significant bits to represent
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data. The table and graph below shows the performance of the system. The

vocabulary used in the test is the Alpha-Digits vocabulary discussed at the

start of Chapter 2, with five repetitions used to train the system and five

other repetitions used to test it. The results are given in percent of errors

with no rejection.

Quantization for Filter Values
Percent Incorrect. alDha-digit Vocabulary

The Bits used to quantize filters
Speaker 7 6 5 4 3

BB 4.7 4.7 5.0 5.4 6.1

BE 11.2 10.1 11.9 11.5 12.2
GW 7.7 7.7 7.7 7.4 7.7
HM 3.7 4.0 4.4 4.0 6.2

JK 7.4 7.0 8.1 6.7 8.8
NL 6.4 6.4 6.1 5.7 5.7
NF 8.8 9.1 8.4 8.4 10.5

Average 7.1% 7.0% 7.4% 7.0% 8.2%
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Figure 19: Filter Quantization

Thus quantizing the filter coefficients with four bits does not harm the per

formance of the system. All our further work was carried on with four bit
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quantized features.

1.9.3.2. Word Widths for Column Memory

We represent the distance between two features (fi-fz)2 with 8 bits,

thus there is no error introduced here. We also represent the sum of the

differences in our squared euclidean distance measure, equation (6), by 8

bits. Although this does clip certain values it does not affect the recognition

performance. Good matches have average errors of 10-20 and our rejection

threshold is usually set to 25. Therefore limiting frame error scores to 256

only clips values which will not be considered anyway.

The accumulated score Dij computed in equation (10) is limited to 12

bits, more than is necessary as well. This can be shown as follows. Words are

rejected if their average scores are greater than 25. In order to reach a

score of 4096 (12 bits) the path would have to be 4096/25 or 163 frames long.

More than three seconds of speech at a 20ms. average frame rate. Therefore

it is the number of bits in this accumulated score which limits the length of

the input words for isolated and connected speech.

1.9.4. Features of the IC-Based System

Placing the functions of the speech recognition system on two special-

purpose integrated circuits has several advantages.

• High Performance: The special-purpose design of the speech recognition

system allows it to compute certain functions very quickly that would

cause computational problems when executed on more general purpose

machines. For instance the squared euclidean distance measure compu

tation is done in four clock cycles of the comparator IC (less than a

microsecond). This is more than an order of magnitude faster than what
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could be done on a high performance microprocessor. Thus a special-

purpose design approach allows the speech recognition system to exe

cute algorithms that either could not be considered on general purpose

machines, or that could only be used for small vocabularies. The system

does not need to prune its searches. That is, it need not reject certain

candidate recognition possibilities early (to save computation time), and

perhaps degrade performance. With the IC architecture it is actually

easier to perform the recognition task fully, rather than decide which

words to reject early and which to search fully.

Low System Cost: As a consequence of implementing the algorithms with

integrated circuits, the IC-based system's cost will be very small. Cer

tainly this approach is more cost-effective than one that uses a special-

purpose breadboard to implement a system as the chip count is much

smaller here. However, the IC based system is also more cost-effective

than an approach based upon a general purpose microprocessor. This is

due to the unnecessary generality of the of the microprocessor. Even

though the microprocessor will be made in larger quantities than

speech-recognition IC's, the size and technology required for these

integrated circuits are smaller and lower in cost than for a microproces

sor. Production yields of the smaller devices will be the major effect

deciding production costs and eventual prices.

As an example consider the Texas Instrument TMS-320,17 a family

of modern complex digital signal processors. In fact the 320 has been

considered the highest performance monolithic signal processor today.38

Texas Instruments in its product description for the 320 "boasts" that

the 320 can be used as a forty word speech recognition system. Contrast
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this to the one thousand word capability of our special-purpose system

which is built with less advanced integrated circuit processes and uses

slower internal clocking speeds. Even with only moderate production

volume the special purpose approach is sure to be a more cost effective

solution.

Size: The low chip count of the system makes it very small. All that will

be needed for the speech recognition part of a system is a microphone

two integrated circuits, memory and a host microprocessor.

Flexibility: The speech recognition system can compare an input word

with one thousand word templates in real time. This translates to recog

nizing a vocabulary of five hundred to a thousand words for a single

speaker or fifty words with some speaker independence. This can be

expanded further by placing in parallel replicas of the comparator IC's

with memory. Also because of its computational speed and the fact that

it does not need to prune its searches, the IC based speech recognition

system can recognize connected as well as isolated speech. This will be

discussed in chapter 3.

J\irther Experimentation: Having a system that can compare the input

fully with a thousand template words in real time allows us to experi

ment with systems of this size in real time. In this way research capabili

ties are enhanced. For instance we are able to have real time response

for large vocabularies and in this way examine the special problems that

such vocabularies have without long running computer simulations.
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1.10. Current System Implementation

Our final goal is to develop a speech recognition system that is imple

mented by a set of special-purpose integrated circuits. In the process of

doing this we have designed and have working a prototype system based on

one special purpose IC together with TTL small scale and medium scale

integrated circuits. The prototype speech recognition system shown in the

figure above executes programs on a Digital Equipment Corporation LSI-

11/23 microprocessor and has two associated custom made subsystems, one

to perform spectral analysis of the spoken input,40 and one to perform the

comparison algorithms associated with the speech recognition system.86
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These are analogous to the front-end and comparator integrated circuits in

the IC based system. This system is currently being used primarily as

speech input to integrated circuit layout programs. This section describes

this implementation.

Mic
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Figure 21: Distribution of Functions in the Prototype

1.10.1. The Distribution of Functions

As can be seen on the-above figure, the LSI-11/23 along with the filter-

bank hardware performs the duties of the front-end IC. They compute the
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spectra, take its logarithm, compute endpoints and downsample the data.

The LSI-11/23 along with the pattern-matching circuitry perform the duties

of word-comparison and recognition or rejection. The LSI-11/23 also per

forms the action associated with any recognition decision it makes.

The microprocessor and its speech recognition hardware and console

are interfaced to a VAX-UNIX computer system. The LSI-11/23 receives char

acters from UNIX and sends them to the console's screen. It receives charac

ters from the console's keyboard and sends them to UNIX. Usually the

actions related to recognizing a word also involve sending a character string

to UNIX. Any UNIX program that was originally written to accept keyboard

input can be used with the speech recognition system either accepting typed

input or spoken input translated to characters by the speech recognition

system. Such programs include the KIC 4l and CAESAR * integrated circuit

layout systems designed at Berkeley. In these cases the LSI-ll/23's console

becomes the terminal used with the layout system with its associated bitpad

for pointing at items on the screen. Using the speech recognition system the

user has the option of pointing, typing, or speaking to communicate with the

IC layout programs.
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1.10.2. filter Hardware

When speech enters the ASR system its short-time spectrum is com

puted every 10ms. by the filter-bank hardware. The filter-bank runs continu

ously, not caring whether its data has been read or not. There is a 16-bit

parallel digital port between the filter-bank and the 11/23.

Every ten milliseconds the filter hardware outputs a 16 bit word for each

of the twelve filters it computes. The lower order bits are the /i255-law values

of the filter bands and the upper byte is synchronization information. At sys-
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tern start-up the 11/23 synchronizes itself with the filter-bank hardware by

waiting for the filter bank to begin a frame (start from filter number 1).

From then on whenever the filter bank computes a filter coefficient and

sends that word to the LSI-11/23 port an LSI-ll/23 interrupt is generated.

The 11/23 responds to the interrupt by reading the port and queuing the

filter data in the LSI-ll/23's memory. This data is soon sent to the endpoint

algorithm where frames that are not part of words are stopped. Frames that

are in words are queued up to be sent to the comparator hardware.

1.10.3. Dynamic Time Warp Hardware

The comparator hardware has a non-DMA parallel input port (from the

11/23) and a DMA output port (back to the 11/23). The input port accepts

frame data that has passed through the endpoint algorithm as well as com

mands to alter its mode of operation. The commands choose between "train

ing mode" or "recognition mode", and "isolated speech mode" or "connected

speech mode."

At the start of word recognition the 11/23 sets the dynamic time warp

hardware in the appropriate modes and raises the begin recognition flag. At

this point, when the hardware is ready to accept data, it interrupts the 11/23

which then transmits the 12 features of the first unknown frame's data to the

time warp hardware. The 11/23 also initiates a DMA cycle for the output of

the comparator to that frame's data. When the DMA is complete, the

hardware has completed the computations for the first column of the

dynamic time warp algorithm, the output of the hardware is queued and pro

cessed. This cycle repeats until all frames of the unknown have been

transmitted to the hardware and all columns have been computed. When an

input word is complete the 11/23 (looking at the output of the comparator)
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makes a recognition decision.

1.10.4. Character Input and Output

The 11/23 can also be interrupted by its two RS-232 ports, one commun

ication with its console and the other communication with UNIX. It also has a

DMA link to the UNIX system which is used to download the programs that

run in the 11/23. It is also used to download templates stored on disk to the

recognition system before recognition begins, and to upload templates from

the recognizer to UNIX during the user training mode.

1.10.5. Summary

There are several processes running concurrently inside the speech

recognition system.

The processes internal to the 11/23 are:
• The niter-bank normalization and queuing operation

• The endpoint algorithm

• The process that transmits to the comparator

• The receiver from the comparator

• The recognition decision algorithm

• The character I/O routines to and from the console and UNIX.

The other processes external to the 11/23 are:

• The filter-bank hardware

• The comparator hardware

• The UNIX process with which the user is interacting

The programs that run in the LSI-ll/23 have all been almost completely

written in the C programming language using a standard UNIX C compiler.

The exceptions include low core tables needed to set up interrupt vectors

and some routines that must run very quickly such as the interrupt routines

that handle character I/O.



CHAPTER 2

System Design Decisions

2.1. Introduction

The following sections describe some of the alternatives considered in
the design of the speech recognition system. All of the studies use the sys
tem that was described in the previous chapter; an isolated-word speech-

recognition system that uses whole-word templates, all of which are com
pared to an input word via a dynamic time warped comparison measure
based on a frame by frame spectral distance measure. The input and tem

plate words are represented as aseries of frames- Frames are aset of band
pass power values time windowed in the input speech.

2.2. Testing Data Base

The studies described in this chapter use the following test data base.

The first vocabulary is an augmented version of the Mpha-DigUs vocabidary.
Its words are listed in the table below. Ten repetitions of these words were

recorded from seven different speakers. There were three men (NF.HM.BB)
and four women (MC.KH.GW.CW) recorded. Five of these repetitions were

used to train the recognition system and five were used to test it

The second vocabulary used is one that can be used with the KIC41
integrated circuit layout system. In this case twenty repetitions of each
word were recorded from four speakers, two men (HJM RAK) and two women

(SUE LES). The first ten repetitions were recorded several days before the
last ten and those first ten were used in training whereas the last were used

51
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in testing.

All recordings were made in a low-noise environment with a close talking

microphone (Shure sm-10).4* The bandwidth of the input signal was greater
than the analysis band of the front end. 200-6400hz. The speakers were

prompted to say their words by a computer program. Spectra were then
extracted from these words in real time and placed onto disk files for later

experimentation. Data was also saved on analog reel to reel tapes. In all
cases the test and training data bases were seperate and the same test and

training datawas used in all of the experiments that follow.

The Alpha-Digits vocabulary (47 words)
1 b g newline times
2 c h o u

3 d i p v
4 delete j plus w
5 divide k point x
6 e kill q y
7 equals 1 r zero

8 erase m s

9 error minus space

a f n t
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The KIC vocabulary is avocabulary that is typical for applications of the
speech recognition system. The speech recognizer performs very well with
such vocabularies. The Alpha-Digits vocabulary is a much more difficult
vocabulary for the speech-recognition system because of its many similar
Words. For example about half the errors of the 47 word Alpha-digit vocabu
lary typically come from the 10 word E**t of that vocabulary; the words
3,b,c,d,e,g,p,t,v and z.

Below is atable showing the relative performance of the KIC and Alpha-
Digits vocabularies as well as the performance of men versus women using
the speech recognition system with no rejection of words. Note that as
expected KIC performs much better than Alpha-Digits. Women seem to per-
form slightly better than men.



Percentage of Errors

KIC Alpha-Digits

men women both men women both

0.9% 0.4% 0.6% 4.1% 3.9% 4.0%
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2.3. Front End

2.3.1. Selective Downsampiing

The speech recognition system dynamically varies the spectral sampling

rate of input speech. It does this by sampling the input speech spectra at a

very high rate and downsampiing or disregarding samples according to the

following criteria. Let Fi correspond to an input frame and let Fr correspond

to a reference frame.

If Fi is the first frame in a word

Or d(FifFr)^DS_JHRESH

Accept Fi

Fr=Fi

Else Disregard Fj.

DSJTHRESH is a value determined to optimize the performance of the

system, both in data rate and recognition accuracy. Increasing DSJfHRESH

will decrease the effective spectral sampling rate. The amount of reduction

in data rate is a function of that threshold, the vocabulary in use and the

current speaker. Recall that an effective sampling rate of twenty mil

liseconds was required in order for the system to process 500 seconds of

speech in real time.

The Alpha-Digits and the KIC vocabularies were used to study the effect

of downsampiing. In the alpha-digits vocabulary, downsampiing was expected

to improve performance dramatically because the major distinctions

between the similar words in that vocabulary often lie in the short and spec

trally changing consonants and vowel transitions beginning the words. This is

particularly the case in the previously mentioned E-set. These important

word distinctions can be underemphasized by the recognition system
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because of minor variations in the much longer vowel portion of the words.

Downsampiing eliminates large portions of the steady-state vowel sounds and

reduces their influence on the recognition decision. However, there is little

downsampiing in the changing portions of words. Therefore downsampiing

places increased emphasis on the important changing portions of the words

relative to the steady-state portions.

The study shows that this is true, though only a small amount of down-

sampling is required to attain improved performance levels.

The same advantages of downsampiing described above apply to the KIC

vocabulary as welL However here words are more distinct and thus the main

source of error is not a basic difficulty in distinguishing words. Most errors

are due to errors in the endpoint algorithm. For instance a substantial

period of silence followed by a click may be appended to an input or tem

plate word. Downsampiing decreases emphasis on such silences in words just

as it does with steady-state speech sounds. For this reason downsampiing

substantially improves performance with the KIC vocabulary.

The table below shows results of an experiment where DSJTHRESH was

systematically varied from no downsampiing to a great deal of downsampiing

for the two vocabularies in question and the E-set. It also shows the effective

spectral sampling periods as a function of DSJTHRESH. It shows that good

performance is achieved with spectral sampling periods of more than twenty

milliseconds.
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Variable Bitrate experiment Alpha-Digits (words wrong of 240)
"Thes I Threshold / effective sampling period (ms.)
Speaker 0/10.0 2/12.6 4/17.0 6/21.9 8/25.6 10/29.6 12/32.5
BB
CW
GW
HM
KH
MC
NF

Total

8

18

8
10
17

13
13

85

IN

7

11
8

6

19

2
12

65

8

11
10

8

19

3
12

71

6

9

12
6

16

6
13

68

12

6

10
10
18

6
9

71

Z »| fiipha-Bioi t] Vocabulary
r

r

o *•

r_ -

248

10

9

12

8

24

12
12

87

Effective Sanping Rate

Figure 23: Effective Sampling Rate vs. Errors (Alpha-Digits)

11

9

11

13

23

7

12

86

Variable Bit rate experiment E-set (words wrong of 350)
Threshold / effective sampling period (ms.) "

0/10.0 2/13.5 4/19.0 6/24.3 6/29.2 10/33.8 12/40.3
43 33 36 35 36 42 44Total



Variable Bit rate experiment KIC Vocabulary (words wrong of lOOOj
Threshold / effective sampling period (ms.)

0/10.0 2/11.9 4/15.2 6/18.8 8/22.0 10/25.0 12/27.7
24 15 7 7 10 16 14

6 11112 3
6 5 4 4 4 4 3

20 15 12 10 8 11 12

The
Speaker
HJM
LES

SUE
RAK

Total 58 36 23 22 23 33 32

Effective Sampling Rate
3S

Figure 24: Effective Sampling Rate vs. Errors (Kic)
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2.4. Comparator

a 4.1. Path Selection

As I have discussed in chapter 1 equations 8 and 9. it is necessary to

place some restrictions on the path chosen for the dynamic Ume-warp algo

rithm. There have been several proposed techniques in addition to ours. All

involve changes to the equations that constrain the path functions P* and

Ptk in chapter 1 equations 8, 9 and 10.

Sakoe and Chiba*7 have published a study where they describe several

alternative schemes to dynamic time warping. They conclude that the best
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time warping algorithms are those that are symmetrical (the constraints
treat the template and the unknown identically) and those that impose slope
constraints on the warp path. We have chosen atechnique that they did not
consider. It is symmetrical but does not directly Impose slope constraints on
the warped path. Our scheme (111 on the figure below) performs at least as
Wi as the ones considered by Sakoe and Chiba and it Is more convenient to
Element in an IC based speech recognition system because of smaller
memory requirements.

Below is achart showing path constraints considered by Sakoe and
Chiba as well as the one we have implemented.

111

121:

323:

L

O

O

O O O

O
2/ T i

O O O Aj =distance{i.j) +MIN

O O O

/\j =distance (i.j) +HIN £-ij-i

O.J-.

A-2J-I +2<Hstance(i-\,j)
Aj=distanced.]) *MM *.-».,-, *distanced.])
^J Pi.^t* 2distanced.)-I)

Figure 25: Path Constraints

Note that technique 111 (the one we have chosen) requires one column
of scratch memory for Its implementation. That is. the DTW equations do not
refer to DiS where J<J-1. When computing the i* column, the values of
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Aj-, are required and must be stored. However the values Aj-c *"" n°l
needed and can be discarded. This is important since every column requires
agreat deal of memory. WF words of memory are required per column
where W=the number of words and F=the average number of frames per
word. This is about 1000-25=25.000 12 bit values or 300.000 bits of memory In
the speech recognition system. Method 323 shown above requires two
columns of storage and therefore twice as much scratch memory.

Technique 111 as well as the other two shown above are symmetrical;
either the template or the Input word can be stretched or compressed rela-

tive to one and another.

Finally note that technique 111 does not have aalflES ronstmnt, Slope
constraint restricts the warping pat ,s. Aslope constraint of (2..5) such as in
method 323 would not allow more than two frames of one word to be warped
with only one frame of the other word. Although Sakoe and Chiba report that
slope constraint aids recognition performance our tests show that just the
opposite is true. These experiments point out that endpoint errors, which
are one of the most significant sources of error in the system, are less severe
without slope constraints. This is shown graphically in the figure.



slope constrained path

unconstrained path

Endpoint
error

Unknown
word

Figure 28: Endpoint errors with and without slope constraint
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In figure 26 the path without slope constraint is able to quickly find the
correct path whereas the one with slope constraint never really finds the
correct path. The constrained path also has almost no freedom to warp its
path to avoid local high scores" as in trying to reach the correct path it is
confined to aminimal slope. All the advantages of dynamic programming are
lost. Slope constraint is also difficult to implement with avariable frame
rate scheme as the frame skipping distorts the time axis which slope con-

straint requires.

The advantage of slope constraint is that paths that are "not speech
like" are not allowed. That is. for example, paths that warp one frame of one
word into 20 frames of the other are not allowed. In this example 10 ms. of
one word is being compared to 200 ms. of the other. This is an expansion
that does not normally occur in natural speech. However, as shown in the
previous figure, what may be considered "not speech-like" may indeed occur
due to endpoint errors. 1believe that the positive results Sakoe and Chiba
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achieved were due to the fact that endpoint errors did not figure in their

experiments. However in a realistic system endpoint errors will be a major

concern.

Below is a table showing the results of a speech recognition experiment

where only the dynamic programming equations shown in figure 2are varied.
Recall that algorithms 121 and 323 are identical except that the latter is a
slope constrained version of the former. Note that the algorithms not slope
constrained greatly outperform the slope constrained algorithm The major
difference between algorithm 121 and the algorithm used in the speech
recognition system (both are symmetrical and not slope constrained) is the
type of path normalization used. This will be discussed in the next section.

[Path selection experiment aloha-digit Vnrahularv (words wrong of 240l
The
Speaker

BB
CW
GW
HM
KH
MC
NF

Total

121

14

9

10
12

17

5
11

78

Path algorithm
323

13

10

15
14

22

10

9

93

111

12

6

10
9

18

4

9

68

Path selection ^raeriment XTH Vocabulary 'words wrong of 100QL
Path algorithm

323

17

8

3

24

52

111

8

3

4

10

25 d

2.4.2. Path Normalization

In chapter one equation 7 the error in comparing one word to another

was defined to be
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**(**.*») =i^iw^- p*{0)- (1)
In order to find the value of Lp in the above equation the foUowing calculation
would have to be performed on every iteration of the dynamic time warp cal

culation of A j

Aj =*(**&)- **(*» +̂ (A-w A.;-i. A-u-i).

A.i=

Xtj-i+l if tf/JV(Aj-i.A-w.A-u-i)ssAj-i
lt-u+i « */JV(Aj-i.A-ij.A-u-i)=A-u

A-u-i+1 if AWV(Aj-i.A-ij.A-w-i)ssA-u-i.

(2)

Although the computations for Zhj are trivial since the M1N must be
computed anyway for the DTW calculation, the memory required is not. The

system would have to store one column of Uj or TJgJ1** ^ ^ °r ^^
bits each. That would come to about 150K bits of memory. (These variables

were explained in chapter 1section 2.5.3.)

In the implementation of the speech recognition system the word dis

tance equation is approximated by

Lp is approximated by MAX^.Ltp) in the denominator of equation (11) in
chapter 1. This approximation for L, is the minimum possible value of Lp
and corresponds to the most direct warping path. On the other extreme the
maximum Lp possible is Ln+L* which is a highly warped and "not speech-
like" path. This path would clearly indicate a mismatch. The approximation
introduced encourages less warped paths. It does so because paths that are

more roundabout are still only divided by the minimum length path and
therefore their score is higher than the average spectral error along the
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path. This is an implicit slope constraint that improves performance because

it discourages "un-speech-like" paths while allowing for recovery to endpoint

errors. Experimental results shown indicate that the system actually per

forms better with the approximation used than with the exact calculations

which would have required significant extra memory requirements. Further,

this is the reason that our system outperforms algorithm 121 from last sec

tion, since algorithm 121, similar to the exact normalization for algorithm

111 does not discourage Mun-speech-like" paths.

Path normalization experiment alpha-digit Vocabulary (words wrong of 240)
The Normalization Used

Exact 121 Exact 111 Approximate 111

98 6

10 I 'I
12 9 1R17 20 1B

5 6 t11 11 9 —
68

Path normalization experiment KIC Vocabulary fwords wrong of 1000) I
" The Normalization Used.

Exact 121 Exact 111 Approximate 111
13 15 B
2 6 3
1 1 4

13 13 10

The
Speaker

HJM
SUE
LES
RAK

Total 29 35 25

2.5. Training Algorithms

Aseries of algorithms were introduced in the first chapter that train the
speech recognition system based on aset of input templates for each voca
bulary word. These algorithms range from very simple to complex and the
burden on the user increases with the complexity.
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Astudy of the performance of the recognition system follows comparing
various ways to train it. There are five techniques considered.
. Single: This refers to using only asingle word to train the system. This

word was randomly chosen from the five words that were used to train
the Alpha-Digit vocabulary.

. KNN-1: This algorithm uses all five training repetitions as templates In
recognition mode. It picks as the word recognized the lowest scoring
template of all templates. Each of the forty-seven Alpha-Digit vocabulary
words has five templates thus there are are two hundred and thirty-five
templates used in these recognition runs.

. KNN*. KNN-5 :This is the same as KNN-1 except that it allows the three
(five) best scoring templates to vote for the recognized word.

. Cluster. This is the algorithm described in Chapter one section 2.4 as
the Cluster Centers algorithm.

. Average: This was also described in the earlier section as Oiatart-V vxth
Averaging.

The following study shows that averaging is the best scheme from acon
sideration of performance given memory used. That is averaging uses many
fewer templates than the KNN schemes and typically not many more than a
single template scheme and yet It achieves substantially the performance of
the best scheme using all the templates (KNN-1). The KNN scheme that per
formed best was the one that just used the top scoring template. This is true
because there weren't enough training templates to make a KNN scheme
viable. Astudy in chapter 4shows that when using many copies of each word
KNN schemes with fc>l perform verywell.



Training experiment alpba-digit Vocabulary fwords wrong of 240)
training algorithm

cluster knn-1 knn-3 knn-5 average
The
Speaker

BB
CW
GW
HM
KH
MC
NF

Total

single

23

23

29

25

43

30
28

201

20

13
17

15

24

12
17

117

8 11

13 10

8 9

10 7

10 22

6 4

10 11

65 74

10

8

15
12
19

9
14

87

12

6

10

9

18

4

9

68
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2.6. Comparison with Other Systems

George Doddington" pubUshed a comparison of commercially available
speech recognition systems. We obtained the audio tapes he used to evaluate
these systems and ran them through our recognizer." The table shown below
is taken from Doddington's article with an extra line inserted; the system
labeled Berkeley is our prototype recognition system with clustering (but no
averaging) used to train it, the system labeled cluster above. The averaging
algorithm had not yet been developed at the time this study was done.

The system does do very well in this comparison, especially given the
inferior training method. Though there is no cost associated with our system,
with an integrated circuit implementation it should cost between ten and a

few hundred dollars.

Manufacturer
Verbex
UC Berkeley
Nippon Electric
Threshold Technology
Interstate Electronics
Heuristics
Centigram
Scott Instruments

Model

1800

DP-100
T-500
VRM
7000

MIKE 4725
VET/1

Nominal price errors
10 (0.2%)
45 (0.9%)
60 (1.2%)
73 (1.4%)
147 (2.9%^
300 (5.9%
366(7.1%
646 (12.6%)

$65,000

$65,000
$12,000
$2,400
$3,300
$3,500
$500
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27 Quantization and Rlter Variance

resent the filter coefficients, the euclidean distance measure »se.was
modified by taking into account the dimensional variances of the
space. Instead of computing the distance measure as

i=ll

define it as

Here . is an estimate of the standard delation of the <•> filter coefficient
To reduce the .uantization error for the filter data and to eliminate
dWd. from the distance measure encode the filter coefficients as

p'_ W-^V. CI +C2
4" ffiwhere CI and C2 adjust the range of the filter values so that they properly

cover the range of 0-15 (for four bit ouantization) and Ti is an estimate of the
mean value of the i'h filter coefficient

THe following experiments show the performance of the speech recogni-
Uon system when * and .< were estimated from the training data. In these

tour bit filter coefficients can represent a*, range for the filter data.
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Abetter weighting of the features improves recognition performance.
TKs gain does not reouire any extra computation in the comparison process
^ I the fUter values are modified in the front en. The extra front endpr.
eessing is m*imal,t is only aloo* up *asixteen word table. This techni.ue
is now being used in our speech recognition system.



CHAPTER 3

Connected-Speech Recognition

3.1. Introduction

Speech recognition systems that allow connected-speech input have
several advantages over isolated-word systems. For one thing they are easier
to use. The user need not pause before and after words when interacting
with the system Though this form of speech input is preferable, it is also
more difficult to recognize automatically. Two major problems associated
with connected-speech recognition are finding the beginnings and endings of
individual words in a phrase and allowing for cnnrticulation between con-

nected words.

There have been many attempts at connected-speech recognition over

the past few years. These attempts can be roughly broken up into two
approaches. Knowledeed S>a§eji attempts try to use high and low level infor
mation that has been discovered about speech to find word beginnings and
endings in running speech and to classify those words in the presence of
coarticuiation.1 These attempts typically require much computation time to
search knowledge bases and to make inferences about the input speech.
Though these approaches are very promising, the large system complexity
necessary for systems such as these imply response times that are too slow
to make those systems cost-effective devices today.

Another approach to connected-speech recognition is applying tech
niques that have had success with isolated speech to connected speech. This
type of system can respond to speech in real time and is in use. It

69
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algorithmically solves the problem of finding endpoints of individual words in
aconnected-speech phrase. However it ignores the problem of coarticulation
between the input words. Therefore the performance of this type of system is
related to the amount of coarticulation in the input speech. That is these

systems are more sensitive to how carefully words are articulated.
We have taken the latter approach for our connected-speech recognition

system. The isolated-word based speech-recognition system described ear
lier was adapted to recognize either isolated or connected speech. Further it
can do so with no penalty In response time. It can also be implemented with
the same integrated circuits thatwere described above.

Several other researchers have presented systems that are functionally
similar to this one."""Their results and those in the foUowing studies show
that these systems work well for connected words spoken quite naturally.

3.2. Connected-Word Algorithm

The connected-word recognition system uses the same front-end to
extract speech parameters as the isolated-word system. It also uses the
same endpoint algorithm. In this case however ohxass endfioinis are com
puted instead of word ^points, That is the endpoint algorithm detects
where a series of words begins and ends. This phrase is passed through a
dynamic time-warp algorithm similar to that used for isolated speech. The
output of this algorithm is the string of template words that when con
catenated match the input frames better than any other concatenation of
templates. This series of templates become the recognized templates.
Reject thresholds are again used before any actions are taken on the recog-
nition results.
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The word templates used here are the same ones as those that are used
for isolated-speech recognition.* Therefore this algorithm is known as
isolated-word based connected-word recognition.

This is the time warping algorithm used:

Aj =d(FUi). Wtpij)) +SUN jft-ij. A.,-i. A-U-i) (1)
D0.0 = 0

A.o = °° i>0

A>j =ini±{j), ;>0

X4*i» - ^e accumulated distance between the best set of concatenated
templates and the input.

The above equations (1) are identical to those used for isolated speech
except for the initial column values D» denned as «*<». D». the initial
condition to the Ume-warp algorithm at time j. is the error associated with
the best concatenation of templates to match the input from frames 0to
j -1. One way to compute that value would be to set

(2)wit(f) = M/N 0('p)w-i

That is. pick as the bottom of column,- (for each template) the top of column
*-l for the template which had the minimum top value. This corresponds to
the score associated with asequence of templates best matching the input
from the first frame to frame j-l. CaU that minimum template 7J»(/-1)
which had ascore Top(/ -1). Another value needed is the frame which began
the time warp path for Tp{J -1) that ended at / -1 with score Top(f-1).

tR.btaeret.al." have demoted that'^ff^ST^SS^^^^'pkJttKd to train them are derived from•™™*£?%£&£% auSSaUcaUy to An!the indi-
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Call it link{/-1). For consistency with algorithms to be presented in this
chapter set Ltnk(l) =-1. Then the path that best matches the input frames
from frame Link (J) to frame / corresponds to template 7J>(/) and has a
score of Top (J ). Further the best way to match the input up to frame / with
aconcatenation of templates must include this path.

Once these functions are computed for all / the following algorithm can

be used to find the words (in reverse order) that match aconnected input

string with Ijn frames.

. Initialize: set / =An

. Iterate while / >0. the recognized word is Tp (J ). Set / =Link(f).
Though the above is areasonable algorithm (it is the one published by

Bridle4* ) it has a few flaws.

The above algorithm does not allow for short silences between words.
This neglects the possibility that short pauses can occur between words even
when accepting normally connected strings as input Forcing the recognition
algorithms to match these pauses would degrade performance of the algo-
rithm.

The above algorithm is not completely fair when comparing alternative
paths in its dynamic programming recursion. That is when comparing two
paths, one longer than the other, the shorter one will have the advantage as
there is no form of path normalization.
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40
Long Path

Figure 27: Unfair path comparisons

Consider the comparisons made at the start of the tenth column for a

template with forty frames (shown in the figure). Atthat point the algorithm

examines the sum of ten spectral distances, the path comparing the first

frame of the template with each of the first ten frames of the unknown (the

short path in the figure). This is compared with the sum of forty or more

spectral distances (the long path). These are the sum of the spectral dis

tances along the path that compares the entire template with the first nine

frames of the input and is fed into mi*(10). Even if the latter path has an

average spectral error that is much less than the first path, it will rarely be

chosen since it has many more distances summed up in it than the shorter

path.

The first problem is easy to fix. Instead of defining init(f) as the best

topscore of the previous frame Top(J -1). extend it to be the best topscore

of the previous few columns with penalties associated for skipping frames.

This is done in the equations below.
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init(f)= MIN Top (g)^penalty(g,/ -1)| (3)

penalty (a .6) = 'fcshipcost ( energy (frame f) ) (4)
/-•

sfcipcos£(e) =
Small Number if e -sioii; threshold
Moderate Number if e ^speech threshold (5)

Large Number if e >speec/i threshold

Small number (15) used in the above equations corresponds to the

score of a very good match between an unknown and a template.

Moderate number is a fair match but above the isolated word rejection

threshold. Large number is the score of a very poor match. These numbers

are used to encourage skipping frames during low energy segments. They

also allow skipping at high energy and no skipping at low energy, both at a

higher cost.

Alternatively this problem could be solved by introducing newtemplates

made from silence. These templates should match the silence to be elim

inated.

The second problem discussed above is harder to solve. The dynamic

Ume warp algorithm compares alternative paths fairly if the normalized

spectral error per frame in the path is used to compare the paths. Thus in

the above algorithm, where the total accumulated errors are used to start

the columns, comparisons are unfair.

To remedy this, the topscores are normalized before they are fed into

the time warp matrix again (as the bottom scores inU (f) ) using the follow

ing technique:



init(J)=f-MIN
Toy(f )-init (Link (f ))+sum(Link (f))

max(/ ,sumjength(f))

sumjength{f) =sumJength(Link(f))+length(Tp(f)), (7)

sumjength(-l) - 0. (8)

In the above equations surnlength (frame) is the sum of the lengths of

the templates that have matched the input from the first frame to the

current frame. The accumulated spectral distances are normalized by being

divided by the maximum of the number of frames matched in the input and

the sum length of the templates. This produces a score that can be con

sidered the error per input frame. This is multiplied by the number of input

frames to allow fair comparisons between paths because they all are in terms

of spectral distance per input frame. This is basically the same normalization

technique as is used in isolated speech.

3.3. Performance

When recording the alpha-digits speech data base used in experiments

described in Chapter 2 a series of phrases with connected digits spoken by

the same people were also recorded. The phrases range in length from two to

nine digits per string and are spoken naturally. They are shown in the table

below.

75
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Strings used in the connected-word experiment

146638 15152 15210207 1547 170

187 19 20 254 255

2702145 29 31 3446570 3464

359345 38 4100 4157 43716

439 45 452 47625 486

499849 50245 51 5382151 55543

58861 617 62738 671 686

6864 7337 7357 74 755210

7564 78406 786 787700 7895518

81073 8353 88 91 9559206

98 9844 992642
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Several variations of the connected speech algorithms described above

were evaluated using this data base and the results are shown below.

Connected Speech -normalization (Srinfls wrong of 54)
The Speaker Normalized No normalization

BB 5 14

CW 3 9
GW 8 12

HM 8 21

KH 19 " 33

MC 5 10

NF 12 24

Total 60 123

For the above studies we conclude that normalization is extremely

important for this connected-speech recognition system, as was anticipated

by the unfair path argument Without normalization there were many input

sentences recognized with word deletion errors. Often words were deleted

because one template would often match two input words. This would happen

because the total number of distance measures summed along the incorrect

path (one template) was many less than the number summed along the

correct path (two templates). Normalizing corrected this problem.



Connected Speech - silence elimination (Strings wrong of 54)
The Speaker No elimination Penalty Silence-tps

BB 5 5 5

CW 3 3 3

GW 8 8 6

HM 8 8 6

KH 19 19 20

MC 5 5 5

NF 12 12 9

Total 60 60 54
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Adding silence templates did a better job with in-phrase pauses than the

algorithmic change that allowed skipping of frames. The latter approach

tended to either skip too many frames and cause some errors or to not skip

silences at all when the penalty parameters were set too high. Using silence

templates is similar to using a penalty technique, but the penalties here are

the euclidean distances between speech input and silence. This tends to be a

better silence detector than the energy level technique used with penalties.

Connected Speech - downsampiing (Strings wrong of 54)
The Threshold/ effective sampling period (ms.)
Speaker 0/10.0 2/12.0 4/15.4 6/19.1 8/22.4
BB 5 5 6 8 9

CW 3 3 4 5 5

GW 8 7 7 9 7

HM 8 10 10 7 12
KH 19 18 21 17 16
MC 5 5 8 5 6

NF 12 11 11 11 15

Total 60 59 67 62 70

Note in the above table that the positive effects of downsampiing are not

as visible with connected speech as they are with isolated speech. In fact

performance is degraded substantially with some of the downsampiing rates

(15.4ms. and 22.4ms.) while remaining roughly constant for other rates (10.0,

12.0 and 19.1ms.). One reason for this decrease of the effectiveness of down-

sampling is that endpoint errors are not as much of an issue in the downsam-
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pling algorithm's favor in connected speech. Penalties or silence templates

exist in the connected speech recognition algorithm to correct these prob

lems. However a data rate of close to a 20ms. effective sampling rate must

be maintained in order to maintain the thousand word vocabulary.

The are a few possibilities to solve this problem. One is to eliminate

downsampiing for connected speech which will give acceptable performance,

but only allow the system to compare the input with 250 template words in

real time. Of course the full 1000 template comparison capability could be

maintained with a possible decrease in performance. This decrease may be

offset by other uses for the extra templates that can be compared. For

instance these templates may be used to add syntactic analysis to the sys

tem as will be discussed in the next section. The other alternative is to re

examine the connected algorithm with downsampiing to see why the system

is so sensitive to variations in the downsampiing parameter. This work is

currently underway.

3.4. Syntactic aids

The connected speech algorithm has been modified to accept only syn

tactically correct connected-speech phrases, however the syntax used must

be regular. Further, for convenience, phrases spoken to the machine should

be complete sentences in the grammer. An example of this type of input

would be a system designed to accept a fixed number of digits; for instance

telephone numbers or credit card numbers. The syntactic information avail

able to the program is the number of digits in the input string.

To modify the connected-speech algorithm to accept only grammatically

correct strings the following changes must be made to that algorithm:
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• Replicate each template for each state in the grammer it can appear in.

In the case of a system that accepted seven digit telephone numbers

that would mean making seven copies of each of the digits, one for each

state in the grammer. Here the first state represents the first digit of

the string, state number two represents the second, and state number

seven represents the last.

• Initialize the start of a column as init(f) as computed from only the

topscores of a previous state. For instance initialize the templates

representing the sixth digit as the best normalized score up to this point

of the first five digits.

• Choose as the winning path the least cost path that terminates in a final

state. For instance in the telephone number example, only accept paths

that finish up at state seven (a phrase with seven digits).

Using syntactic constraints to aid recognition of the test data base

obtained the following results.

Syntactic aid to Connected Speech Recognition (Strings wrong of 54)

The Normalized Normalized

Speaker Syntactic Aid No syntax

BB 2 5

CW 2 3

GW 5 8

HM 6 8

KH 13 19

MC 3 5

NF 7 12

Total 38 60

There is a definite performance advantage for the system with syntax,

though there is a large computational cost However a system with a

moderate sized vocabulary and syntactic structure can fit in the 1000 tem

plates provided by the IC based speech recognition system. Certainly a sys-
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tem with a small syntax, such as a digit entry system, can be used with room

to spare for other templates and states as well.

3.5. Hardware Support

Since this connected-speech system is very similar to the isolated-word

system, very little had to be done to make them compatible. The major addi

tions were a counter and memory to compute the value of Link (/ ) . Afacility

was also added to allow initialization of the bottom score of a column init(f).

In isolated speech the bottom score is always initialized to infinity except in

the first column where it is zero.

A single input line on the comparator hardware defines isolated or con

nected mode to see whether Link(f) should be computed and whether the

bottom score is input

A column of memory seven bits wide is used to calculate link(f) . This

translates to an extra -^—Y, 7V. or 175K bits with downsampiing for a
7>»=i "

thousand word vocabulary.

The system microprocessor's role in recognition is increased in this sys

tem as it now must to calculate the bottom scores for succeeding frames (

equations 8,7 and 8). This is a burden on the microprocessor as the normali

zation requires a divide for each word in the vocabulary each input frame.

Further the pipeline is stalled as the microprocessor cannot compute

init (f) until the comparator IC is done with frame / —1 and then it must sit

idle until the microprocessor is done computing init (f ). As it is very desir

able to overlap the microprocessors computations with those of the com

parator, a scheme is used in which init(f+l) is approximated by

init(f)+sJcipcost(f). With this the comparator need not wait for the
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microprocessor to complete its computations. We have simulated the perfor

mance of this approximated system and found it to be very similar to the

performance of the exact system.

Init Approximation (Strings wronir of 54}
The Approximate Exact

Speaker Init Init

BB 4 5

CW 2 3

GW 8 8

HM 8 8

KH 20 19

MC 7 5

NF 11 12

Total 60 60



CHAPTER 4

Speech Recognition Systems with Difficult Vocabularies

4.1. Introduction

The speech recognition system performs very well for tasks where the

vocabulary used is comprised of distinct words. Because of this, when design

ing a vocabulary for the speech recognizer, very similar words should be

avoided whenever possible. This is usually only a minor restriction. For

instance the recognition system performed very well with the hundred word

KIC vocabulary as was shown in chapter 2. Little was changed in that vocabu

lary from the original typed KIC input language. However there are impor

tant vocabularies that force the system to consistently make fine phonetic

distinctions, and in these cases performance is degraded. Consider the com

parison of KIC and Alpha-Digit vocabularies at the start of chapter 2 repro

duced below.

Percentage of Errors

KIC Alpha-Digits

men women both men women both

0.9% 0.4% 0.6% 4.1% 3.9% 4.0%

One reason that the speech recognition system has problems with simi

lar words such as b,dte,p,t in the alphabet is that it weights, after downsam

piing, all parts of the word equally in its decision process. Further it weights

all frequency bands equally in its distance measure. There are occasions,

such as when choosing between b and p, where certain parameters are more

important than others in deciding between words. In the previous example

82
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low frequency bands during the start of the words are relatively more impor

tant to the comparison than bands in other parts of the word.

4.2. Previous Work in the Area

Rabiner et. at.48 Bradshaw et. al.,48 and more recently Cole et. al. 8have

published studies where they attempted to improve the performance of

speech recognition systems that make fine phonetic distinctions. Rabiner

used a two pass algorithm. He first found pairs of similar words in the voca

bulary. Using training samples of those word pairs he found frames where the

words differed the most and weighted those frames heavily in a second pass

of time-warped comparisons. Cole's program FEATURE marked important

times in words such as vowel onset and offset It then used statistics gath

ered about certain features around these times, such as energy in a low fre

quency band, to build functions that best discriminate between the two

words.

Rabiner's technique is attractive because it is easily automated and sim

ple to implement. However, as every pair of similar words requires a second

pass time weighting function, there could be an excessive storage require

ments. Cole's technique is attractive because it uses higher level acoustic

events to trigger the gathering of statistics. For instance, instead of

Rabiner's algorithm implying that "the third, fourth and fifth frames are

important", Cole's technique may imply "Low frequency in the 30 mil

liseconds before vowel onset is important". However it is likely that the time

warping mechanism in Rabiner's algorithm will find the same important

acoustic events as Cole's statistical search. In the above example the third,

fourth and fifth frames would coincide with the thirty milliseconds before

vowel onset
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Rabiner's technique, however, should be extended to weight parts of the

spectrum as well as time. This is easily done in band pass filter front ends by

weighting each band differently,

d(/,*./*) =f;t«t[^<-Jr64]8. (i)
i»l l J

where u\ are the band weights.

4.3. Data Base Used for the Experiments

The following studies have been run in order to examine ways to improve

the performance of dynamic time warped systems with difficult vocabularies.

The data base used with this study was one hundred repetitions of the E-set

(3,b,c,d,e,g,p,t,v,z) vocabulary by one speaker. The speaker deliberately

varied the way he pronounced the letters to make this a more difficult test.

Eighty of the repetitions were used to train the system and twenty were used

to evaluate the performance of various alternative approaches.

4.4. Performance of the Standard System

The standard speech recognition system presented in the first chapter

was used as a control for this experiment. The "clustering with averaging"

training procedure was presented with the eighty training samples each of

the ten words. It came up with forty five templates for the ten words. The

reason that many templates were generated instead of the usual one or two

per word was that the speaker varied his speech greatly during the training

and test sets. System performance was somewhat below the E-set study

shown in chapter 2, primarily because of this wide variability.

The best performance of any system tested was achieved with the stan

dard recognizer by using all eighty training words as templates and employ

ing a k-nearest-neighbor (KNN) selection scheme. This used a total of 800
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templates for the ten word vocabulary as opposed to the 45 used in the

averaging template run. The top K scoring templates voted to find the recog

nized word. KNN was tried with several different values of K from KNN-1 (use

only the best scoring template) to KNN-40 where the top forty templates

voted. Note that the KNN schemes here performed better than those sur

veyed in chapter 2 and considerably better than the "averaging algorithm".

This is due to the better sampling of templates (eighty per word as compared

to five before). Also note that for the KNN schemes a low value for K relative

to the number of templates per word was superior as before.

Template selection and decision criteria
Errors (of 200) using standard system
E-set 20 test repetitions of 10 words

average KNN-1 KNN-5 KNN-10 KNN-15 KNN-20 KNN-30 KNN-40
58 46 35 38 39 42 38 46

e
r

r

o

r

'Avvraaing* Study of KNN nerhod
"Algorithms I ! ! : :
P«rfor»anc»

Nu»b*r of votvrs

Figure 28: K Nearest Neighbor Algorithm: Accuracy vs. K
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4.5. Performance of Feature Weighted Systems

We desired to obtain better system performance by weighting the

features that are important to a given template more than other features.

However, unlike the method suggested by Rabiner, we do not want a different

distance measure for every difficult word pair, and we wish to consider filter

weights as well as time weights. Equation (l) was chosen to implement the

spectral distance measure and was implemented in several ways in the fol

lowing experimental systems.

VARIANCE set all filter values to have uniform variance; /< = — and

11^ =1. Recall that at is the standard deviation of the i"1 filter value across all

frames of all eighty copies of each word. This is the feature variance normal

ization discussed in chapter 2.

For the QUALITY system the same variance normalization is used, but

now

wt = —ZZ-. (2)
wiro

if u^ < 0 uij=0 if Wi > 10 tUi=10

Here o^ is the standard deviation of the filter value when the template

chosen is warped against eighty repetitions of the same word. This is the

variance of the feature in a particular frame. Thus tufc for the second frame of

a template will likely have a different value than tx^ for the third frame.

QUALITY uses as a measure of importance the variability of a feature across

different repetitions of a word. Since features have been normalized to a

standard deviation of one across all frames of all templates, if am > 1 then

that feature has more variability among repetitions of a word than outside

that word. In this case it would have a quality of zero. For a given frame the
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Wi are normalized to add to 1 thus the total distance measure is given as

mn.F*) =2 —as—a (3)

DISTANCE is similar to quality except that equation (2) is replaced by

That is the squared differences in the in word and across word means divided

by the sum of the variances.

Note that all three of the above methods weight filter bands but leave

the time domain unweighted (the opposite of Rabiner's technique). The QUAL

ITY and DISTANCE techniques require twice the template memory of the ori

ginal system as all the wi must be stored with the template, and there is a

weight associated with each feature. The results of a test evaluating the sys

tem is shown below.

Frequency weighting technique
Errors (of 200) using standard system
E-set. 20 test repetitions of 10 words

VARIANCE QUALITY TIME_QUALITY DISTANCE AVERAGE KNN-5
55 50 58 61 58 35

The QUALITY technique improved the performance of the system

although some of the improvement was due to the variance normalization.

However the performance was not near the performance of the KNN-5 sys

tem.

TIMELQUALJTY is time weighting added to the QUALITY distance measure.

The time weights were the sum of the qualities of the features in a given

frame before the quality normalization, £*u^ in equation (3). These time
1*i
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weights were normalized for the entire word. Each frame of a template had

such a time weight and it multiplied the distance measure computed with

that frame. To avoid steering the dynamic time warped paths away from

important parts of the word these weights are applied after the time warped

path is found without time weights in the distance measure. These time

weights slightly degraded the performance of the system. Although they

seemed to help difficult word pairs, words that originally were not confused

were confused with the time weighted system. That is because parts of the

word that differed greatly were decreased in importance by the time weight

ings. It seems that such time weighting is a useful technique for one on one

comparisons (for example just comparing b with p as used by Rabiner) but

get muddled when used for comparisons against many different words.

4.6. Optimization of Templates

The previous section discussed attempts to create templates that were

composed of an averaged template used in conjunction with weights that

described the importance of the individual features. In this section an sys

tem is described where all parts of the template, the weights as well as the

features in the template itself are chosen for best possible performance. This

system with one template per word achieved performance that is close to the

performance of the KNN-5 system with eighty templates per word.

We desired to optimize the parameters of an entire template instead of

just the frequency and time weights. In order to do' so, one may consider the

problem as one of optimizing parameters in a template to best solve a given

problem: getting the best performance in a speech recognition task as

predicted by performance in the training task. However if all those parame

ters were passed to an optimization routine an enormous amount of training
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data and computation time would be required for meaningful results. For

instance in an average template there are 25 frames each with 12 features,

12 frequency weights, and 1 time weight. That would be 25*(12+12+1) = 625

parameters to optimize for each template. Further to measure performance

for any given set of values of those parameters would require performing a

large number of speech recognition trials (eighty copies of each word com

pared against the new templates). Instead the following approach was taken.

Crude mappings were made between frames of each of the sample words

in the training set. An example of such a mapping is that if word one were

being compared with word ten, frame twelve of word one would be compared

with frame fifteen of word ten. After the mappings were set the individual

frames were optimized so that they best distinguished the words, just among

the frames that they mapped to. Once all the frame weights were set this

way, then time weights were optimized to best distinguish words. This algo

rithm was iterated with better and better frame to frame mappings. The

algorithm is presented in more detail below.

• Pick an initial template: For each word W in the vocabulary a template

Tw is chosen by the clustering with averaging training technique.

• Define sets of frames: All the training samples for W are time-warped

against Tw as well as all of those for other words. This defines a mapping

between the frames of 7V, and the frames of all training words. Then all

frames that mapped to the i* frame of Tw are grouped into the set Sj.

All the frames in St that come from training samples for W are placed in

the set Gh and all the frames in S* that don't correspond to If are placed

in the set B*. Then S* = G* \J B^ and Gt O Bk = 0*
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Find the best first frame Fmd a new frame Fl that is composed of 12

artificial filter parameters and 12 frequency weights so that Fx best

separates the sets Gj and Bi using the distance measure shown in equa

tion 1. This is done with a hill climbing optimization algorithm for the 24

coefficients that minimized an error computed by the following algo

rithm.

1) Set error-=0.
2)2) For all frames g in G1#

ifdisr(y,/,1)>80then
error-error+K( dist(gtFi)-Q0 ).

3) For all frames b in B1§
if dist (6 ,Fl)< 120 then

error terror+120--dist (6 ,F{).

The goal is to separate frames in B! from G2 by having frames in G2 have

errors of 80 or less and those in Bj have errors of 120 or more. K is

chosen to increase the significance of Gj errors since there are more

elements of Bj than G^ Thus A= | Bx| / ]Gx |.

Repeat for all other frames: This technique is repeated for all the sets

Si creating the frames Fi.

Run the dynamic time warp algorithm: Rewarp all the correct and

incorrect training words to a template composed of the frames Fi and

keep the warp paths.

Optimize the time weights: Use the hill climbing optimization algorithm

again to set the time weights for fixed warp paths, that best separate

the scores of the training repetitions of W from all the rest of the words

in the training data base.

Repeat for each word W in the vocabulary:
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This algorithm was tested on the above data base with the following results.

Optimized template test
Errors (of 200) using standard system
E-set 20 test repetitions of 10 words

Optimized Opt without time AVERAGE KNN-5
39 46 58 35

The templates optimized for the words performed with improved accu

racy. Time weights were applied as before, by defining the warp path using

the template without time weighting and then adding up all the distances on

the warp path weighted by the time weights. In this case the time weights

improved the performance and the optimized templates (one per word)

worked nearly as well as the eightly template per word k-nearest-neighbor

technique.

The optimization algorithms require many training tokens, more than

what would be practical in most user-dependent environments. This

approach however can be incorporated in a larger system where only sets of

similar words are processed through the optimization algorithm. The optimi

zation technique may also be applied to speaker-independent systems where

a large number of sample words are required anyway.19

The frequency and time weighting portions of the algorithm require

hardware redesign, however they would not pose difficulties. The distance

Wi(A-B)2 could be computed as a four bit subtract followed by an eight

input ROM or PLA that computed wt X2 . Currently the hardware is imple

mented with four bit subtractors and four input X2 PLA's. Template and

column memories would be approximately doubled. The template memory

doubles to accommodate the wt coefficients. The column memory doubles

so that both the time-weighted and not-time-weighted partial accumulated

scores could be kept by the dynamic time warp circuitry. In this way it would
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continue to operate in real time.

4.7. A Future Approach

I believe that the results given above represent the upper limit of per

formance to be achieved by simple extensions to our system. I believe that a

more significant extension of the system is necessary in order to more reli

ably recognize difficult vocabularies such as very large vocabularies that

include many similar words. One possibility for such a system would be to

combine a dynamic time-warped approach with an approach similar to the

FEATURE6 system designed at Carnegie Mellon University as was described in

the introduction. A high performance dynamic time warp based system such

as ours could compare an input word with each word in a large vocabulary.

Classes of words that couldn't be reliably distinguished by the time-warp sys

tem could be distinguished with the feature based system. This hybrid sys

tem would have the advantages of both systems. It would have fiexibility in

changing vocabularies or speakers (if it were speaker dependent). It would

be very accurate for distinct vocabularies and it could differentiate similar

words using significant features. It could perform most of its searching using

our integrated circuits and therefore could be both quick and economical.

The feature based subsystem would only need concern itself with small sets

of similar words. We have begun a preliminary investigation into this area

and believe it to be promising.

4.8. Strengths and Weaknesses of the Current System

The most significant conclusion to be drawn from our speech-recognition

project is the power of the special-purpose integrated circuit. Circuits such

as ours can be built to perform enormous amounts of computation with rela-
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tively little effort. For example in our speech recognition system the dis

tance measure circuitry computes a sixteen feature euclidean distance in

less than a microsecond. That is the equivalent of sixteen million additions,

multiplications and subtractions per second. Thus a relatively small

integrated circuit executes at more than a 50 MIPS rate, two orders of mag

nitude higher than high performance and much larger microprocessors. Of

course the special-purpose system's computations are narrow (some only

four bits wide), and there is a high degree of pipelining and parallelism that

is well suited to execute our algorithms. This is because the problem

(dynamic time-warped speech recognition) was structed in a very regular

way that allowed this high rate and was tolerant of low accuracy computa

tions. The task awaiting knowledge based and statistical approaches to

speech recognition is to find ways to structure those techniques so that they

can also take advantage of integrated circuits. In this way they might

achieve the high computation rates that they sorely need.

Another conclusion reached was that speech recognition devices are

very useful The system in our laboratory was a very helpful device when used

with computer graphics programs. It seems more convenient and natural for

users than a keyboard. In fact it often seemed that fewer errors are made by

the speech recognizer than would be made by a user typing! We wish to con

tinue in this area and integrate speech more fully into the computer environ

ment.

The main weaknesses of the speech recognition system were training

and endpoints. It is difficult for novice users to adequately train the system.

Often the number of repetitions required is too high and a smaller number is

used with occasional poor templates. This is usually cured "on the fly" by
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retraining for only poorly recognized words. However more automatic ways of

adapting the system to users should be considered. Speaker independent

systems is an ideal way to solve this problem but one that still requires some

investigation. Making systems speaker dependent is still quite reasonable for

a large number of tasks.

More sophisticated endpoint detection techniques should be considered.

Systems such as ours would rarely err on non-similar words if endpoint

errors were not a problem.

Although our system does remarkably well distinguishing similar words

(10% error in the E-set), new techniques should be considered. Hybrid pat

tern matching and feature based systems is one approach to this problem as

described above.

4.9. Conclusion

A very powerful, flexible and potentially inexpensive speech recognition

system has been described. It takes advantage of special-purpose integrated

circuits achieve this high performance. With systems such as ours speech

recognition should have a large range of applications within the next few

years.
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Appendix 1.

5.1. Speech Research Facility

A speech research facility has been developed over a period of years in

our Laboratory at Berkeley. It enabled us to experiment with and build vari

ous speech recognition, synthesis and storage systems. The facility is based

around a Digital Equipment Corporation (DEC) PDP-11/750 UNIX computer

system and several LSI-11/02 and LS1-11/23 microprocessors.

Our philosophy has been to perform most of our speech processing tasks

on the UNIX system in order to take advantage of the file system and easy

programmability of that operating system. Tasks which required real-time

response were performed on one of the LSI-11's acting as a satellite proces

sor to the VAX, communicating with it through an RS-232 terminal line and a

DMA based parallel link (a DR11W Unibus card attached to a DRVllb Q-Bus

card).

5.2. Speech Input and Output

There are two methods in the facility that convert analog signals to digi

tal words in UNIX file system as well as that play back UNIX files as analog

output. The major method uses an LPA-11 system supplied by DEC. This is a

set of boards that plug into the Unibus of the VAX and has a set of analog

inputs and outputs. They allow twelve bit digitization or playback of very

long segments of speech (disk space is the only limit) via the UNIX com

mands Panin(audio) and Panout(audio). Sampling rates can be varied, how

ever the LPA-11 cannot be programmed by the user to execute special tasks.
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Another alternative for voice digitization and playback is the Speechlab

system. This system uses an LSI-11 inaddition to the UNIX system. One part

of this system is a program that runs on the LSI-11 and that controls analog-

to-digital and digital-to-analog converters on the LSI-11' s Q-bus. It also uses

a timer device and parallel digital ports on the Q-bus as well as a communica

tion link to the UNDC system The Speechlab system can digitize data and

transmit it to UNIX, or playback data read from a UNIX file. It can plot or edit

the data as well. Due to hardware limitations* the size of the conversions is

limited to the memory size of the LSI-11, about 128K samples. The advantage

of the LSI-11 based system however is that it is programmable (using the C

programming language) and sophisticated operations can be performed dur

ing data acquisition.

There are variable frequency anti-alias and reconstructions filters that

can be used with the speech sampling and playback devices. In addition high

quality microphones, speakers, headphones, tape recorders, preamplifiers

and amplifiers are all connected to an analog patch panel so that the

different devices can be connected to each other and to the computer audio

ports in a variety of ways.

5.3. UNIX Based Speech Analysis and Graphics

Speech files are stored as a series of 16 bit "short-words" on the VAX.

There are several programs that read these files and analyze the data. These

include the fast fourier transform (FFT) program, the linear predictive

analysis (LPC) program, the digital filter program (FILT) and a variety of

other experimental computer programs. These latter programs perform

*The DRVllb DUA card on the LSI-11 that interfaces to the UNDC DRllW card does not allow
overlapping DMA transfers with other LSI-11 bus operations such reading the analog to digital
converter data port.
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pitch tracking, various speech coding schemes and so on. In general a

researcher can easily write a computer program that takes advantage of ail

the other faciUUes already developed for the lab and make his new program

available to others.

There are also a variety of terminal independent graphics routines that

have been written. These routines determine the type of terminal being used

by examining UNIX environment variables and then call the appropriate
driver routines for that type of graphics terminal. Terminals currently sup

ported are Hewlett Packard 2648, Digital Equipment Corp. VT125, and Xerox
1700 as well as standard character oriented terminals with addressable cur

sors such as the ADM 3a or Zenith Z19. New terminals can be added to this

package by including low level graphics routines pertinent to the new termi
nal to a system library. Some general purpose programs use these routines.

They include the FFT program to compute fourier transforms, HPLT the gen
eral purpose plotter, HIST a histogram plotter, and SCATTER the scatter plot
program. Users can also include the graphics library in their own programs.

Hardcopy is obtained through a HP 2631g printer which is attached to one of
our HP2648a graphics terminals. Plots can be submitted to the printer as to

a lineprinter device. Thus one can work on aplot at home using crude graph
ics with a standard character oriented terminal and then submit it for higher

quality graphics.

5.4. Real Time Processing

The LSI-ll's which act as satellite processors to the VAX 11/750 can do

much more than simply digitize and play back data. They can be pro

grammed in the CProgramming language to perform avariety of tasks. Pro
grams are written on the UNIX system and compiled there. They are then
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transmitted to the LSI-11 where they are executed. During execution these

programs can request some services from the UNIX operating system. The

LSI-ll's have been used for testing of several devices built in the laboratory.

In one instance the LSI-11 tested a band pass filter bank. It output analog

signals to the filter bank through the LSI-ll's digital-to-analog device and

read in the filter's analyzed coefficient with its digital ports. In another case

it supplied pitch and spectral parameters out to an experimental linear

predictive coding speech synthesizer when those parameters were requested

by that hardware. Most of these applications are straightforward applica

tions of the Speechlab system, in some cases with small modifications. Every

breadboarded hardware project built in the laboratory over the last several

years has been serviced by the LSI-11.

The most sophisticated use of the LSI-11 was in the speech recognition

project There it controlled a variety of devices necessary for recognizing

speech while maintaining a communications link with UNIX. This is discussed

in more detail in Chapter one of this thesis.
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