Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A Physical Design Tool For Relational Databases

Karel A. Youssefi

Memorandum .No. UCB/ERL M83/9

15 February 1983

ELECTRONICS RESEARCH LABORATORY

This work was supported by the National Science Foundation under
grant ECS 8007683.

A Physical Design Tool For Relational Databases

by
Karel A. Youssefi
Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

1. INTRODUCTION

This document describes a physical design tool to be
used for relational database systems. It was implemented
for the INGRES database management system [1] at UCB. This
tool uses the Dbasic concepts presented in the access path
model |[2] to determine, for a given set of design queries,
what is an optimal set of physical storage structures for

the relations in the database.

In the remaining sections, we will present a sample
session using this physical design tool and a detailed
description of the implementation. Also included in Section
3 is a discussion of the access path model and the simplifi-
cations which we made to it. Finally, in Section 5 is a
description of features we think could be added to this tool
and factors which should be studied <further <to determine

their effect on the design process.

2. SAMPLE SESSION

(Please refer to Appendix A for a description of the database used
here.)

Have you created your database and entered the data?
yor n?y
What is the name of your database?

name? kareltest

Have you entered your query set?
yor n?n

Please senter your queries.

Range of p is patient
Range of w is ward
Range of h is hospital
Range of u is uses
Range of 1 is lab
Range of 4 is doctor
Range of a is ass-to
Range of s is staff

1: retrieve (l.lname)
where p.pname = "Smith" and p.wd no = w.wd _no and

w.hosp_no = n.hosp_no and h. hosp no = u.hosp_no and
u.lab no = l.lab_no

2: retrieve (l.lname)
where d.dname = "Jones" and d.dr _no = s.dr_no and

S.hosp_no = h.hosp no and h. hosp no = u.hosp no and
u.lab no = l.lab _no

3: retrieve (h.hname)
where p.pname = "Smith" and p.pat_no = a.pat_no and
a.dr_no = d.dr_no and d.dr_no = s.dr_no and
Se. hosp_no h. hosp no

4: retrieve (p.pname)
where h.hname = "Merritt" and h. hosp no = s.hosp no and
8.dr_no = d.dr_no and d.dr_no = a. dr_no and
a. pat no = p. pat no

processing query 1

processing query 2

processing query 3

processing query 4

analyzing access path usage ...

assigning storage structures

relation patient was never accessed thru domain wd_no

relation uses was never accessed thru domain 1lab_no
relation ward was never accessed thru domain nosSp_no
COST OF QUERY 1: 8.100000 (optimal cost: 7.200000)
COST OF QUERY 2: 10.670000 (optimal cost: 9.770000)
COST OF QUERY 3: 9.780001 (optimal cost: 7.395000)
COST OF QUERY 4: 496.500000 (optimal cost: 487.100006)
Which query (if any) has an unacceptable relative cost?
query number? 3
COST OF QUERY 1: 7.200000 (optimal cost: 7.200000)
COST OF QUERY 2: 10.670000 (optimal cost: 9.770000)
COST OF QUERY 3: 8.880001 (optimal cost: 7.395000)
COST OF QUERY 4: 946 .500000 optimal cost: 487.100006)
Do you want the physical design?
y or n?7y
physicaldes relation
relation lattribute }structure i
i
lass_to dr_no | HASHED !
ass_to pat_no i SECONDARY INDEX;
doctor dname SECONDARY INDEX|
{doctor dr no HASHED !
yhospital { hname SECONDARY INDEX|
hospital hosp_no HASHED
lab lab _no HASHED
patient pat_no SECONDARY INDEX
patient pname HASHED
staff dr_no HASHED
uses hosp no HASHED
ward wd_no HASHED
query number? 3
COST OF QUERY 1: T.200000 (optimal cost: 7.200000)
COST OF QUERY 2: 10.670000 (optimal cost: 9.770000)
COST OF QUERY 3: 7.395000 (optimal cost: 7.395000)
COST OF QUERY 4: 13592 .000000 (optimal cost: 487.100006)

Do you want the physical design?

yor n?y

physicaldes relation

relation jattribute |structure i
1

ass_to dr_no SECONDARY INDEX;

ass_to pat_no HASHED

doctor dname SECONDARY INDEX

doctor dr_no HASHED

hospital hname SECONDARY INDEX

hospital thosp no { HASHED

lab lab_no HASHED

patient pat_no SECONDARY INDEX

ipatient pname HASHED i

|staff jdr_no | HASHED |
juses ihosp no { HASHED 1
iward iwd_no | HASHED E
I |
query number? 4 ,
COST OF QUERY 1: 8.100000 (optimal cost: T.200000)
COST OF QUERY 2: 10.670000 (optimal cost: 9.770000)
COST OF QUERY 3: 8.295001 (optimal cost: 7.395000)
COST OF QUERY 4: 942.000000 (optimal cost: 487.100006)
Do you want the physical design?
y or n? y
physicaldes relation
relation lattribute |structure i
ass_to dr_no SECONDARY INDEX
ass to pat no HASHED
doctor dname SECONDARY INDEX
doctor dr no HASHED
hospital hname SECONDARY INDEX
hospital hosp no HASHED
lab lab_no HASHED
patient pat_no HASHED
patient pname SECONDARY INDEX
staff dr no HASHED
uses hosp_no HASHED |
gward wd_no HASHED
i
query number? 4
COST OF QUERY 1: 8.100000 (optimal cost: 7.200000)
COST OF QUERY 2: 10.670000 (optimal cost: 9.770000)
COST OF QUERY 3 9.780001 (optimal cost: 7.395000)
COST OF QUERY 4: 496.500000 (optimal cost: 487.100006)
Do you want the physical design?
yorn?y

physicaldes relation

Erelation jattribute i structure
ass_to dr_no HASHED

ass_to paT_no SECONDARY INDEX
doctor dname SECONDARY INDEX
doctor dr_no HASHED

hospital hname SECONDARY INDEX
hospital hosp_no HASHED

lab lab_no HASHED

patient rat_no HASHED

|patient pnanme SECONDARY INDEX
|staff dr no HASHED

juses hosp_no HASHED

iward wd_no HASHED

|

I
query number? 4
COST OF QUERY 1
COST OF QUERY 2
COST OF QUERY 3
COST OF QUERY 4
Do you want the ph
yorn?y

physicaldes relation

ysical design?

9.100000
12.170000
12.030001

495.899994

(optimal cost:
(optimal cost:
(optimal cost:

(optimal cost:

Erelation jattribute | structure

]

ass_to jdr_no { HASHED

ass_to i pat_no SECONDARY INDEX
doctor dname SECONDARY INDEX
doctor dr_no HASHED

hospital hname HASHED

hospital hosp_no SECONDARY INDEX
lab lab_no HASHED

patient pat_no HASHED

patient pname SECONDARY INDEX
staff dr_no HASHED

uses hosp_no HASHED

ward wd_no HASHED

query number? 4

COST
COST
COST

COST OF QUERY
Do you want the p

y or n? y

OF QUERY 1
OF QUERY 2
OF QUERY 3
4
h

physicaldes relation

: 9.100000
: 13.650001
: 14.250000
: 487.100006
ysical design?

(optimal cost:
(optimal cost:
(optimal cost:

(optimal cost:

relation jattribute istructure

ass_to dr_no HASHED

ass_to pat_no SECONDARY INDEX

doctor dname SECONDARY INDEX

doctor dr_no HASHED

hospital hname HASHED

hospital hosp_no SECONDARY INDEX

lab lab_no HASHED

patient pat_no HASHED

patient pname SECONDARY INDEX

staff dr_no SECONDARY INDEX

staff hosp_no HASHED

uses hosp_no HASHED

ward iwd_no | HASHED '
|

7.200000)
9.770000)
7.395000)

487 .100006)

7.200000)
9.7700003
T.395000

487.100006)

3. MODEL

We started originally by examining the access path
model proposed by Katz and Wong [2]. This model consists of
objects and functions between pairs of set of objects.
Basically, relations and the attributes of a relation are
both object sets. Functions define relationships between
object sets. These objects and functions are used to
describe the schema for the database. Consider a database
which stores information about employees, the departments
they work in, and the jobs they are assigned. An obvious
graphical representation of this schema is shown in Figure

h Nang — WRKSIN T e e

Filgure 1. Graphical representation of schema.

where the arrows represent the direction of <functionality.
Notice +that most often, the functions between relations are
actually supported by including a foreign key attribute in

the source relation. For example, the function

works in: EMP -> DEPT

usually means that there is an attributed dept-no which is a
primary key in DEPT and an associated attribute dept-no is

included in EMP as a foreign key. Note that the attributes

used to represent these functions are not named explicitly

in the representation, since they are implied by <the func-

tion.

This logical description of the database expressed in
terms of +the functional data model is called an integrity
schema. In order to <facilitate physical design, this
integrity schema 1is augmented by assigning certain access
characteristics to each function, yielding what is called an
access path schema. The access characteristics to be

assigned to each function f:A->B are:

1) evaluated:
given a in A, f(a) can be found witnout an exhaustive
scan of B, i.e., the cost to access f(a) is less than

the cost to access every element of B.

2) indexed:
given b in B, f‘l(b) can be found without an exhaustive

scan of A.

3) clustered:
the elements of £~1(b) are in close proximity, i.e.,
the cost to access the elements in the inverse is less
than the cost to access an arbitrary subset of the same

cardinality.

4) well-placed:
a and f(a) are stored in close proximity, i.e., the

cost to access both 1is less than the cost to access

them separately.

When trying to associate these characteristics with imple-
mentable storage structures, certain constraints on assign-
ment are implied which make the task of maximal labelling

more difficuls.

Since we were attempting to implement this design aid
for the INGRES database management system, we noted that the
concept of well-placed is not supported in that system for a
function between two relations. To support well-placed, a
storage structure which interleaves tuples of more than one
relation on a single page 1is required. If the access
characteristic well-placed is eliminated from the model,
several simplifications are possible. First, the majority
of the constraints on assignment of the remaining charac-
teristics are removed. Second, and most important, the
remaining access characteristics can be associated directly

with the objects themselves, rather than the functions.

Consider the function

works in: EMP -> DEPT

If works_in is an evaluated function, this can be sup-
ported by DEPT being keyed on the attribute dept_no. If
works in is indexed, this can be supported by having a
secondary index for +the EMP relation on the attribute
dept_no. IIr works_in is clustered, this means that the EMP

relation is keyed on the attribute dept_no. DNote that each

of these characteristics is supported by a structure affect-
ing only one of the relations; no assumption or implication
is made effecting the structure of the other relation
involved in +the function. Thus, if we limit ourselves to
the three access characteristics of evaluated, indexed and
clustered, we may make assignments to the relations them-

selves.
4. PROCESSING ALGORITHM

The program to support this physical design tool is an
EQUEL progranm. As such, the data used by it is stored in
relations. These relations are created and filled by the
program in the user's database and remain there for the life
of the database. As there are only four such relations
needed and the size of each is very small, there should be
no degradation of performance felt by the user in the normal

usage of his database.

It should be mentioned first that only portions of this
design process were actually implemented. The pieces imple-
mented are the portions pertaining %o the actual design
decision-making process. The original entry of the queries
and some initial processing were not implemented but a
description of what should be done and any assumptions about
this portion and how it affects 1later processing will be

included.

When the user initiates this program, the first +tning

that happens is +that the name of the user's database is

requested. The user must have created his database prior to
use of this tool, and he must have entered his data into the
database. Hopefully, he has run a statistics-gathering pro-
gram over his data also. This gathering of statistics could
be an automatic feature included with copy or it could be a
stand-alone program the user initiates. (The UCB version of
INGRES currently has no statistic-gathering feature, this
information must be entered by hand.) Whichever manner is
used, statistical information (minimally, +the count of
unique values in an attribute) must be available for each
attribute, relation pair referenced in the set of design
queries (attributes appearing only in the target list may be

eliminated).

Other information required about the database structure
must currently be entered by hand. This is information con-
cerning the semantics of the data and would be available if
the logical design package had been used (see 3). Basically
what is required is how the relations in the database are

semantically 1linked with each other. This would be stored

in the LINK relation.

LINK relation: this relation contains a description of
the 1logical 1links that exist between relations in the
database. The information in this relation is only
changed when the schema description is changed affect-
ing the logical links. [Note: +this relation is not

used or created by the current working version of phys-

desdb.| The structure of the LINK relation is

relil: cl2
domt: cl2
rel2: cl2
dom2: ci2

Each tuple thus represenfs a link between two relations
specifying +the domains involved in the link. These
would be a primary key attribute in one relation and
its associated foreign key attribute in another rela-
tion. The direction of the function is implied by the

ordering, that is

f: relation 1 => relation 2

Associated with the LINK relation is another relation which
gathers all the data dependent information about the attri-

butes involved in the links.

REL relation: This relation contains a detailed
description of every relation, attribute pair which is
involved in a logical link (i.e. is in LINK relation).

The structure of the REL relation is:

relname: cl2
domname: ct2
key: i1 - code representing key
information for domain
1: primary key
2: foreign key
3: value domain
relcard: i4 - cardinality of relation relname

(number of tuples)

domcard: i4 - cardinality of attribute domname
if primary key: relcard=domcard
if foreign key:
domcard=domcard of attributed
which is associated
primary key
if value domain:
domcard=number of values
in attribute domname

npages: i4 - number of pages occupied by
relation relname

cnt: 4 - frequency count of access to this
relation through this attribute for
gset of design queries.
strstruct: ci - storage structure assigned for this
relation, attribute
H - hashed (clustered)
I -~ secondary index (non-clustered)
N - heap (unstructured)
cost: f4 - the cost per unit value access for
this relation, attribute given the
assigned storage structure.
optcost: f4 - the optimum cost per unit value
access for this relation, attribute.
The last four attributes of the REL relation are calculated
and inserted during +the physical design process. Notice
that optcost could be computed at +this +time and entered,
because 1its value does not depend on any decision. The
current implementation, however, computes optcost at the

same time as cost.

S0, at this point we have the logical structure of the
database represented and data dependent information about
the attributes. The set of design queries should now Dbe
input and processed. These queries will be QUEl queries and

all parsing and name checking should be performed just as it

in INGRES. The original design called for a simplified

version of the INGRES parser to be included at +this point

outputting a parse tree. This parse tree will then be pro-

cessed to produce the QUERY and ONEVAR relations.

QUERY relation: +this relation contains a description
of the queries involved in the design set. There is one
entry per join term in each query plus one entry for

the starting point per query. The structure of the

QUERY relation is:

queryno: i1

squeryno: i1 - subquery number, only # 1 when
query is other than path query

entryno: i1 - only necessary to allow ordering
in this relation to be unimportant

relname: c12 - relation name

domname: cl2 - attribute name, note that this

relname, domname pair must appear
in the REL relation.

ovflag: i1 - flag for one-var restrictions on
this relname. if = 1, must check
ONEVAR relation for additional
selectivity constraints.

runcount: f4 - count of number of tuples to be
passed into this node of query.
Por first entry of query, this = 1;
for first entry of each subsequent
subquery, = O (see discussion).

compcost: f4 - the cost associated with this node
of the query. = Runcount * cost,
where cost is from REL relation for
relname, domname pair.

ONEVAR relation: +this relation contains information

about all one-variable (one-relation) restrictive

clauses which appear in the query set: all information

contained is static for the life of the query set. The

structure of the relation is:

queryno: i1 - the query number of QUERY that
this clause is associated with.

relname: ci2 - relation name (must match a relname
in QUERY for queryno)

domname: cl2 - the attribute involved in the
restriction.

relcard: i4 - cardinality of relname

domcard: i4 - cardinality of domname

(number of distinct values)

It's true that this information can be replicated (i.e.,
same restrictive clause in several queries, relcard same as
in REL relation), but the savings in simplicity of design
and query complexity are believed warranted. In this way,
to get the selectivity of the restriction, only a single-
relation query on ONEVAR is needed, otherwise a query
involving both ONEVAR and REL is needed. However, this
replication of values could be changed if deemed necessary.
If histogram information is used instead of only cardinal-
ity, it may be necessary to add the constant value into this

relation in some manner to give more accurate predictions.

The processing can be done as follows for each query.
Before any other processing is done, the query should be
checked for cycles, since we cannot handle cyclic queries.
This can be done by keeping a map of the relations involved

and marking this map appropriately. Now, all one-variable

restrictive clauses are removed from the parse tree and
inserted into the ONEVAR relation with the appropriate query
number (and possibly into REL as well). Then, having con-
sidered the selectivity of these clauses, a starting rela-

tion is chosen, based on size (number of tuples).

The relation and its associated attribute (either the
1-var clause attribute or the joining-clause attribute) is
the first entry for this query in QUERY. Then, using the
information in this LINK relation, subsequent join terms are
selected from the parse tree to form a naturally linked path
through the data representing the query. Specifically, the
next entry in QUERY will be +the relation, attribute pair
which appears in a Jjoining clause in the query with the
first entry and which also has a corresponding entry in the
LINK relation. If join clauses appear in the query which do
not have corresponding entries in LINK, either +the clause
will be eliminated from consideration or the entire query

will be disqualified.

As each entry is made in QUERY, its appropriate run-
count value can be computed. This value is the count of the
number of tuples which will be input to this node <from the
previous portion of the query. Runcount for the first entry
of each query is 1. Then by using the selectivity informa-
tion, +the number of tuples per value which will be passed
out is calculated (relcard/domcard). This times the previous

Runcount (which is number of values) give us runcount for

the next entry, etc.

If the query is a tree query, that is 1it's processing
path is not a simple path, we treat it as a set of
subqueries. The first subquery is a simple path following
one branch of +the tree to completion. Each subsequent
subquery starts from the root of a subtree and follows that
path to completion. (Subqueries can be nested). The first
entry in each subquery after +the first 1is essentially a
"dummy" node representing the root of that subtree. This is
a dummy entry since runcount is zero for it because runcount
has already been computed for this entry and we don't want

to count it more than once in our computations.

This processing is done for each query in +the design
set. At the end of this portion of the program, we have an
internal representation of the processing path for each
query and a running count of the number of tuples involved
at each node of each query. The current implementation
essentially starts at +this point and continues. The REL
relation, ONEVAR relation and certain columns of the QUERY
relation must be loaded by hand into the database. It is
not important that the data relations themselves exist or
not in +this database as they are never referenced. The
first six elements of the QUERY relation for each node must
be entered. However, the code exists to compute runcount

over the QUERY relation.

Now, for each entry in the REL relation, the QUERY
relation 1is scanned and runcount is gathered wherever that
relation, attribute péir occurs. These runcounts are summed
by relation, attribute pair to give the usage count for that
pair (cnt in REL relation). Then, REL is again examined,
this +time by relation, to determine the attribute witan the
highest usage count. This attribute will be the clustering
domain for +this relation and +thus determine the storage
structure of the relation itself. In our implementation, it
is assigned a structure hashed on that attribute. All other
attributes of the relation which appear in the REL relation
and have a usage count greater than some minimum (currently
zero), will have a secondary index created for them in the
physical design. Associated with each such structure is a
cost to access the set of tuples with a given attribute
value. This cost is computed by using a formula designed
for each structure and dependent on the data characteristics
of the attribute involved. So this cost is computed and
entered as cost in the REL relation along with a code
representing +the actual storage structure assigned for that

attribute (strstruct).

Once this has been done for all relations, we have our
proposed physical design. We now want to compute an approx-
imate cost for processing each of the design queries using
this design. We do this by summing, for each query, the

product of runcount and the cost entry in REL for that rela-

tion, attribute pair. At the same time, we also sum, by
query, the product of runcount and optcost in REL to give us
the optimal processing cost which can be used as a base by

the user. These two costs are displayed for the user.

At this point, the user may request to see the physical
design associated with these costs. This is just a matter
of printing selected columns of the REL relation substitut-

ing an appropriate message for the code strstruct.

Now, the user may indicate a particular query that
should be further optimized. We get the query number for
this query and then examine the QUERY relation. We look at
all the entries for that query and find the entry for which
compcost is maximum. If the storage structure associated
with +the relation, attribute in that entry is hash, we can-
not decrease the cost, so we look for the next largest, etc.
until we find a relation, attribute pair which is not hash
structured. We then change its structure %o hash, recomput-
ing cost and replacing the appropriate values in REL. We
must then change the attribute in this relation which previ-
ously was hash to a secondary index structure. So we search
the REL relation for that tuple and make the appropriate
updates after recomputing its cost. Then, using the new
storage structure costs, the cost of processing for all the

queries 1is recomputed and output for the user, again with

the optimal costs.

This process continues until the user is satisfied with
the results of the design process and the relative costs of
processing each query are acceptable. At this +time, the
user will indicate that the design phase is complete and the
program will write a series of INGRES statements into a file
with the name provided by the user. These statements are
the appropriate MODIFY and CREATE INDEX statements to change
the structure of +the database into that determined by the
final design. This final file write is not currently imple-

mented.

There are certain other features which were included in
the original design but were not implemented and may require
minor modifications. First, the set of design queries may
be input with associated weighting factors. This would
require that these weights be included in the runcount for
the queries. Secondly, it was desired that this package
could also be used for tuning purposes. This would require
a second mode of processing which bypasses the original
input of queries, although modifications could be made to
add to or delete from the original design set. This would
also require possibly gathering new, more current statis-

tics.
5. Areas of Further Study

In this paper, we have presented a new approach to a
physical database design tool which is independent of thne

actual query processing strategies. This approach reduces

the amount of computation required and, we feel, provides

more flexibility to the model which is more conducive to

easy interaction.

Only one set of design queries has been used to test
the design tool. The results seem to indicate that the
design recommended by the tool does result in actual lower
processing costs. Although the cost estimates for process-
ing were not exact (the error was less than an order of mag-
nitude) the relative ordering of processing costs was
correct when compared to actual processing costs (run on the
RTI version of INGRES). These results are preliminary, how-

ever, and much more extensive testing is needed.

The results of these tests and an examination of the
actual processing strategies used did however point to
several areas where further study is needed to determine how

these factors should be incorporated into the model.

Currently, the target 1list of a query is not considered
at any point in the analysis. However, membership in the
target list has an effect on several factors. PFirst, if a
relation is not included in the target list, any appearance
in the qualification requires only a check for existence,
thus all tuples satisfying need not be retrieved. Secondly,
the target list membership determines the number of pages in
intermediate reéult relations. It can also be used to

determine the potential benefits of an intermediate projec-

tion.

In the current implementation which is for +the INGRES
system, the cost functions used to determine the cost of
access for hash and isam structures indicate +that hash is
always Dbetter Dbecause the access will be on a per value
basis. But, when doing a merge-sort join, isam would defin-
itely be preferable because it provides sorted order if the
index and overflow pages are ignored. ©Some method of decid-
ing Dbetween the two structures for a clustered domain based

on factors other than the cost function above is needed.

A possible approach would be to do the analysis wup to
the point when clustering or non-clustering domains are
selected and then do some sort of additional analysis on a
pair-wise basis. This analysis would be based on the sizes
of the relations at that point in the processing path, both
in number of tuples and number of pages. It appears that a
certain relationship between the number of tuples in A and
number of pages in B indicates +that a lookup-scan type
operation (hash preferable) would be better than a merge-

scan type (isam preferable). More work is needed in this

area.

Update queries are not accepted in the current model
because of the added dimension of complexity involved. How-
ever, the model should definitely be extended +to include
them. One ©possible way would be to consider an update to
have essentially two separate components. The first com-~

ponent would be the equivalent retrieval query, for which

the processing is obvious. The second component would be
the updating of all secondary structures effected by the
update. This would require new cost functions for updating
secondary indices and a method of determining which struc-
tures were effected. An obvious feature which would be
desirable for +this approach is a two-component cost figure
and an option to minimize one or the other (or both), thus -
being able +to minimize the overhead of an update by elim-

inating the lest useful of the secondary structures.

Another obvious extension is to compute an estimated
size for the database (in disk pages) given the proposed
physical design and being able to minimize or 1limit this

figure.

One type of query which we do not allow 1is a cyclic
query, such as the parts-explosion query. No way of model-
ling this type of query was found which did not depend on
comparing alternative processing paths and since one of our
goals with this model was to avoid the comparison process,
we have not found an acceptable way of analyzing cyclic

queries.

Currently, all attributes which appear in a query are
not considered as candidate clustering domains. Some attri-
butes which appear only in single-relation restrictive
clauses are considered for their effect on the selectivity
but not as clustering or even non-clustering domains. These

attributes should be considered. However, exactly how their

associated usage count should be determined is not clear.
Logically speaking, access is only made through that attri-
bute once for the entire quéry, since hopefully the process-
ing algorithm is smart enough to do the restriction only
once and save the result, if necessary. But, a usage count
of 1 would mean that this attribute rarely would be chosen
as a clustering domain. Basically, the effect of these
"restrictive" attributes on physical design and how they

should be considered is not fully understood.

A feature which was suggested and could be very useful
is some sort of graphical interface to display the resulting
costs of processing as a curve (graph). The user would be
able to interact through this interface by ihdicating which
portions of the curve to fluctuate and which should remain
fixed. The idea behind this is that the user could indicate
which query to minimize while keeping certain other queries

unchanged.

One last area of work is in determining equivalence of
queries (using the transitive closure property) and which of
the possible paths should be chosen. The transitive closure
property and its application to the qualification of a query
has been used often [4]. Basically, what +this implies is
that we have a cycle involving three nodes in our integrity

Schema.

i.e., retireve (%1
where A.a
=> Aoa

I~

Boa and Boa = Coa
C.a

integrity schema graph

(By using the integrity schema we can also detect certain
cases vwhere the transitive closure property can be applied
which are not obvious, i.e., attribute names are different.)
The main problem is in deciding which direction this cycle
should be traversed. Since it only involves three nodes, it
is possible to consider and compare the alternatives. But
it may be possible to use heuristics to make a better deter-
mination. Possible factors which should be considered are
the direction of functionality (if one goes in the non-
functional direction, the one-to-many direction, there is a
good chance of fan-out) and whether this cycle appears in
the middle of a path, which is the connecting node to the

remainder of the path.

APPENDIX A

Sample Database

Relation: patient
attributes: pat_no
pname
wd_no
tuples: 10000
pages: 1000
Relation: ward
attributes: wd_no
hosp no
tuples: 500
pages: 100
Relation: ward
attributes: hosp_no
hname
tuples: 50
pages: 20
Relation: doctor
attributes: dr_no
dname
tuples: 500
pages: 50
Relation: ass_to
attributes: pat_no

dr_no

tuples: 15000

pages: 150
Relation: staff
attributes: dr_no
hosp no
tuples: 750
pages: 10
Relation: lab
attributes: lab_no
tuples: 100
pages: 20
Relation: uses
attributes: hosp no
lab _no.
tuples: 150

pages: 5

[1]
[2]

[3]

(4]

REFERENCES

Stonebraker, M., et al., "The Design and Implemen-
tation of INGRES", TODS 1,3, Sept. 1976.

Katz, R. H. and E. Wong, "An Access Path Model for
Physical Database Design", Proceedings of SIGMOD,
1980.

DuMont, Lorna, E., "Designing a Database for
INGRES" Memorandum No. UCB/ERL M82/23, February 1,
19820

Kooi, R. P., "The Optimization of Queries in Rela-
tional Databases", Ph.D. Thesis, Dept. of Computer
and Information Science, Case Western Reserve
Univ., Sept. 1980.

	Copyright notice 1983
	ERL-83-9

