THEORETICAL ISSUES CONCERNING PROTECTION IN OPERATING SYSTEMS

Michael A. Harrison

Computer Science Division
University of California
Berkeley, CA 94720

1.1

3.1
2.2
2.3
3.4

3.1
3.3
3.3

A Specialized Model .....oouniuiiniittiiiiii e i e 2
The Take-Grant Model. .. ..cvinrtriaiereiiaanitotneiatatentssetssssaresseresssraestonaones 3
A Uniform Approach to Modeling Protection .........cooiieiuiiiiiiiiiiiiiiiiiiiiina. 6
The HRU MoOAel . ciitiiiiiiiei it ieeeaaeotscsatesasassoassasseanssnsasassessssssonsosanse 7
oy L T L IR T 12
Some Mathematical Results ........coviriieiiiiiniiiiiieiiirearetertarneeraaseoracasosncanss 13
Y (e L1 0L 11 1> 2 R TR IR TR 18
Logic and Protection Systems.........cveeiueiieuoeeititiineienuineriateiiiaetenioetenans 24
Logical Theories and Safety .........c.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiaiieiiiaeiinaaaanans 25
Incompleteness of Protection Systems .......c.iieiiiniimiiiiiiiiiiiiiiiiiiiiiiiiiaieaanns 26
Finiteness Conditions and Reducibilities...........cooviiniiiiiiieniniiiiiiiiiiiiiiine 28
COMOIISIOMS - o o e et ettt aereeneneeaanseeeacaesasaossesnsassosessasensonsassasannsssassosss 30
Acknowledgements . .. ...ieoi ettt i it eee sttt 31
210 10T+ 21 03 13 g R R 32

The research reported in this paper was sponsored by the National Science Foundation under Grant

MCS-8311781.



Introduction

Modern computer systems contain important information and unauthorized access caa result in significant
problems. Omne need only think of certain examples like electronic funds transfer systems, internal revenue
service applications, as well as command and control computers used in military applications to realize the
significance and scope of the problem of guaranteeing secure computation.

In the real world, there are many techniques used for penetrating systems which involve subverting
people (or machines), tapping communication lines, and breaching physical security. There is no way in
which such complex interactions can be modeled in their entirety even with the aid of computers. Instead,
one must focus on the most important aspects of the systems and create specialized models in order to
understand these parts of the system. Moreover the modeler must decide how specific to be. For example,
we could invent a simple model to abstract the function of a particular circuit in the control unit of a
computer. A more grandiose scheme might be to model all computer systems at once by studying a uniform
model of computation such as a RAM or a Turing machine.

In this chapter, we are interested in protection and security from an operating systems point of view.
That forces us to make a number of simplifying assumptions. The remarkable part of our treatment will be
that even with severe assumptions, the security question remains “hard” in a technical sense.

In our first model, somewhat akin to the example of modeling a circuit, we shall ignore the computer
and operating system and concentrate on the access to an object by a subject. Our first goal is to arrive at
a model which is rich enough to describe actual systems but is sufficiently restricted so that one can utilize
simple and efficient techniques.



1. A Specialised Model

Introduction

We shall begin our study of models for operating systems by taking a dramatic simplification of a real
operating system. The one we bave chosen comes from the PhL.D. thesis of Cohen, 1976. Also see Denning
and Graham, 1972 and Lipton and Soyder 1977. We have abstracted everything except the relationships
between various processes or users in the system. We do model the dynamic changes of access which can
occur in the system. This is done by having a sequence of transformation rules on a directed grapb which
indicates these relationships. We shall explain the various transformations and see that the system has more
power than we first realized to access information.

We shall be able to give an algorithm for telling if an arbitrary process p can obtain an arbitrary right
ag to an arbitrary object g. The algorithm has the advantage of being very efficient to compute. Then
we shall interpret the theorem that we have proven to give a statement of the protection policy which
was implemented in this system. The policy will turn out to be more discriminating than one might have

expected.



1.1 The Take-Grant Model

The basic idea is to use a type of dynamically changing labeled directed graph as the model. The nodes of
the graph represent “users” and the labels on a directed arc are some nonempty subset of {r,w,c} where r
stands for “read”, w for “write” and c for “call’. Formally, the model consists of a finite directed graph with
o self-loops and each branch labeled as above. Each graph may be transformed by any of the five rewriting
rules.

1. Take: Let z, y, and z be three distinct vertices in a protection graph, and let there be an arc from z
to y with label v such that r € 4 and an arc from y to z with some label a C {r,w,c}. The take rule
allows one to add the arc from z to : with label a, yielding a new graph G'. Intuitively, z takes the
ability to do a to z from y. We represent this as shown below: ¢

2. Grant: Let z, y, and z be three distinct vertices in a protection graph G, and let there be an arc from
z to y with label v such that w € v and an arc from z to z with label v C {r,w,c}. The grant rule
allows one to add an are from y to z with label a, yielding a new graph G'. Intuitively, z grants y the
ability to do a to z. In our representation:

3. Create: Let z be any vertex in a protection graph; the create operation aliows one to add a new vertex
n and an arc from z to n with label {r,w,c}, yielding a new graph G'. Intuitively, z creates a new user
that it can read, write and call . In our representation:

rwe

Xe D &—re——e—oeeo N
X

+ Here we write an exnlicit right as an arc label (. - y ) to mean the arc label contains that
right (i. e. «x — T v suchthatren.)



4. Call: Let z,y and z be distinct vertices in a protection graph G, and let a € {r,w,c} be the label on
an arc from z to y and v the label on an arc from z to z such that ¢ € 4. The call rule allows one to
add a new vertex n, an arc from n to y with label a, and an arc from n to z with label r, yielding a
new graph G'. Intuitively z is calling a program z and passing parameters y. The “process” is created
to effect the call: n can read the program z and can a the parameters. In our representation:

X
x
A > Y 2
y S
n

5. Remove: Let z and y be distinct vertices in a protection graph G with an arc from z to y with label
a. The remove rule allows one to remove the arc from z to y, yielding a new graph G'. Intuitively,
z removes its rights to y. In our representation

Q .
x y © x

~<®

The remove rule is defined mainly for completeness, since real protection systems tend to have such a
rule.

The operation of applying one of the rules to a protection graph G yielding a new protection graph G'
is written G F G'. As usual, * denotes the reflexive, transitive closure of I-.

An important technical point is that these rules are monotone in the sense that if a rule can be applied,
then adding arcs cannot change this.

The basic application of this model is to answer questions of the form:“ Can paq?” where a € {r,w,c}.
As an example, we shall show that if z can call y then z can read y. This is just the kind of property we wish
to deduce from such a model since the fact that z can read y may have been an unintentional consequence
of allowing z to call y.
Example 1. In a protection graph G x —F ey implies x —TIS .y

implies

Proof. Apply the following rules:

——Y Xo——— Y
1
¢ :
Twe
e e I - 1
P ocreate ; 5 ocabi rwe T
x Yy ‘ ;
b !
n,ée---o---- en
ny 1 rwc 2

rwg¢

It can be shown that there are two simple conditions that are necessary and sufficient to determine if
vertex p can a vertex ¢. Let G be a protection graph and a € {r,w,c}. Call p and ¢ connected if there

4



exists a path between p and ¢ independent of orientation or labels of the arcs. Define the predicates:

Condition 1: p and g are connected in G.

Condition 2: There exists a “ertex z in G and an arc from z to ¢ with label 4 such that a = r implies
{r,c}n 3 #8, or a =w implies w € , or a = ¢ implies ¢ € 8.

Informally these conditions state that p can aq if and only if there is an undirected path between p and
¢ (condition 1) and some vertex z a’s ¢ (condition 2).

It is not hard to see that conditions 1 and 2 are necessary. By a sequence of lemmas, quite similar to
the previous example, sufficiency can be established. One can draw the following inferences.

Theorem 1.1.1. Let p and g be distinct vertices in a protection graph and a a label. Conditions 1 and 2
are necessary and sufficient to imply p can aq.

The consequence of the main theorem is that the protection policy for this take-grant system can be
precisely stated.
Policy: If p can read (write) [call] ¢, then any user in the connected componeat containing p and ¢ can
attain the right to read (write and call) q.

This policy may appear to be more undiscriminating than one might have expected. A primary reason
for this is that the take-grant system treats all elements of the system the same whereas most protection
models recognize two different entities: subjects and objects. If we dichotomize the vertices of our model
into subject and object sets, by coloring the vertices, and require (as is usually the case) that only subjects
can initiate the application of our rules, then the system becomes much more difficult to analyze. Such an
analysis has been reported in [JLS]. It should be noted that in the dichtomized model there are protection
graphs that satisfy conditions 1 and 2 for which p can aq is false.

Another generalization would involve additional labels which could be passed around. These would
represent more complex types of interaction between the subjects. Again the main theorem proven in this
section would no longer be true.

Additional work has been done in which “conspiracy” has been treated. We can consider some of the
vertices to be conspirators. Then one can ask questions like, if p can ag, can it do so with a bounded number
of conspirators in the sub-graph? The reader is referred to [BiS] [Sny].

This simple system gives us an idea of what to expect of a simple model. We learned something and
were able to sharpen our notion of the policy being implemented. On the other band, stating a more general
result about the security of an overall system would be unjustified by this model alone.



3. A Uniform Approach to Modeling Protection

Introduction

We are now about to take a very high level and ambitious approach to modeling security. In this extreme
approach, the goal is to find a uniform model which is sufficiently genezal to be able to model all types of
protection mechanisms. Continuing the analogy of the introductioa, this model is like a Turing machine
because of its uniformity. This model has become known as the HILU model in the literature becaunse the
model was originally introduced by Harrison, Ruzzo, and Ullman in 1076.



2.1 The HRU Model

Our first task is to arrive at a model which is general but captures t_: c:sence of “safety” from unau-
thorized access. Towards this end, let us assume that a computer contairs 2 collection of abstract objects
whose security is important. In practice, these objects would be interprered as files containing important
data. Let us furthermore postulate the existence of a “reference n.onitor” vLich is to be interposed between
the world and the protected objects as in Figure. 1 which is intended to re7z sent a modern computer system
with multiple users or even multiple processors. By assuming that all 2ccesses to the protected objects go
through thesreference monitor, and further that all the hardware is inZ=Yi}le, one can model these systems
by examining the dynamic behavior of the monitor. One should note thzt the effect of the users and of
the operating system itself, are assumed to affect access to the objects cz!y t*rough the “commands” which
enter the monitor. The perfect hardware implements each access.

It is now time to get more precise concerning the model.

Definition. A protection system consists of the following parts: a fizitc set of generic rights R, a finite
set of commands of the form:

command a(X;,X3,...,Xk)
if r, € (X,,,X,,) and
rq € (X,,,Xo,) and

rm € (X, Xo,)

then
op1
op2
Opn
end

or if m is zero, simply
command o(X;, X3,...,Xk)
opy
ops3
OPn
end

In our definition a is a name and X, ..., X are formal parameters. I=ch op; is one of the six following
primitive operations.

enter r into (X,, X,) dclce r from (X,, X,)
create subject X, destr:y subject X,
create object X, dact=:v object X,

By convention r,ry,r3,...,rr denote generic rights. We use s,4;,52,...,4m and 0,01,02,...,0m to
denote states and objects respectively. We also need to discuss the “con’ cacations” of a protection system.
Intuitively, these correspond to the instantaneous configurations used ‘r. the usual definition of automata.
See Harrison 1978.

Definition. A configuration of a protection system is a triple (S,0, P), where S is the set of “current
subjects”, O is the set of “current objects”, S C O, and P is an access xatrix, which has a row for each
subject in S and a column for each object in O. Pls, o] is a subset of 12, the set of generic rights and gives
the rights that s enjoys with respect to o.

Before proceeding further, let us consider a simple example whick exposes the most common interpre-
tation of the model.

Example 1. We assume that each subject is a process and that the objects other than the subjects are
files. Each file is owned by a process, and we shall model this notion by saying that the owner of the file

7



user 1 : . . user n

computer

reference monitor

objects

Figure 1
A computer system with a reference monitor.

has the right own to that file. The other generic rights are read, wrile, and execute. The allowable
operations are as follows.
(1) A process may create a new file. The process which creates the file has ownership of it. This may
be represented by a procedure:
command CREATE (process,file)
create object file
enter own Into (process, file)
end
(2) The owner of a file may confer any right to that file, other thaa ewn, on any subject including the
owner himself). We thus have three commands of the form:
command CONFER,(owner, friend, file)
If own in (owner,fle)
enter r Into (friend file)
end
where r is read, write, or execute. Technically the r here is rot a parameter but is used as an
abbreviation for three similar procedures, one for each value of r.
(3) Similarly, we have three commands by which the ownership cf = file may revoke anctlier subject’s
access rights to the file.
command REMOV E,(owner, exfriend, file)
If own in (owner,file) and
r in (exfriend,file)
then delete r from (exfriend,file)



end

where r is read, write, or execute.
This completes the specification of most of the example protection system.

To formally describe the effect of the commands, we must give the rules for changing the state of the
access matrix

A typical access matrix is shown in Figure 2.

cbjects
R —
r
subjects
B N
I ) o
(
subjects <
S
rights of subject
s to abject ©
~
Figure 2

Ap Access Matrix

Note that the s-th row may be thought of as 2 “capability list” while the o-th column is an “access-control
list”.

Next, we need the rules for changing configurations in a protection system.
Definition. Let (S,0, P) and (S’,0', P') be coulgurations of a protection system, and let op be one of the
six primitive operations. We shall say that:

(S,0,P) = (s',0',P")

[which is read (S, O, P) yields (S’, O', P’) under op| if either:

1. op = enter r Into (s,0) and S=5',0=0',3€ S,0€ O, P'[s;,6] = Play,01] if (41,01) # (4,0)
and P'[s,0] = P[s,0] U {r}, or

2. op = delete r from (s,0) and S = S',0 =0, 4 € S, 0 € O, P'[s},01] = P[sy,01] if (81,01) # (2,0)
and P'[s,0] = Pls,0] - {r},

3. op = create subject s ,where s’ is a new symbol not in O , §' = SU {#'}, 0' = O U {4}, P'ls,0] =
Pls,0} for all (s,0) € S x O, P'[s,0] =@ forall o € O', and P'[s,s’| =D for all s € §', or

4. op = create object o',where o' is a new symbol not in O , §' = S, O' = O U (o'}, P'[s,0] = P[s, ]
for all (s,0) € S x O, and P'[s,0'| =@{foralls €S, or

5. op = destroy subject &', where s’ € S, S' = 5 - {#'}, O’ = O = {5'}, and P'[s,0] = Pls,0| for all
(s,0) € 5'x O, or

6. op = destroy object o', where o' € 0 -5, 5' =5, 0' = O — {0'}, and P'[s,0] = P|s,0] for all
(s,0) € S' xO". )

Next we indicate how a protection system can execute a command.
Definition. Let Q@ = (S, 0, P) be a configuration of a protection system containing:

9



command a(X,,Xy,...,Xk)
ifr €(X,,.X,,) and

o € (X'ﬂi‘YOm)
then
opx
op3

OPn
end
Then we can say that .
FQ

a(Zyyeeer®ar)

where Q' is the configuration defined as follows:
1. If a’s conditions are not satisfied, i.e. if there is some 1 < i < m such that r; is not in P|z,,,z,,], then
QR=Q".
2. Otherwise, i.e. if for all { between 1 and m, r; € P|z,,,2,,], then let there exist configurations
Qo,Q1,...,Q@n such that
Q=Qo = Q1 = - = Qu=¢
op} op} oph

where op;* denotes the primitive operation op; with the actual parameters zj,...,z; replacing all

occurrences of the formal parameters X),..., Xy, respectively. Then Q' is Q.

Similarly, Q Fo Q' if there are parameters z,,...,z; such that Q Fo(s,,.. 2,) Q- Also Q F Q' if there exists
a command a such that Q F, Q'.

It is also convenient to write Q F*Q’, where F° is the reflexive and transitive closure of F. That is, +*
represents zero or more applications of F.

Each command is given in terms of formal parameters. At execution time, the formal parameters are
replaced by actual parameters which are object names. Although the same symbols are often used in this
exposition for formal and actual parameters, this should not cause confusion. The “type checking” involved
in determining that a command may be executed takes place with respect to actual parameters.

These protection systems compute like nondeterministic devices. Tkis makes intuitive sense as the
sequence of accesses of the protected objects may come in an unpredictable fashion.

Example: These techniques can be used to model the protection aspects of the UNIX * operating system.

In this simple system, each file has an owner who may specify whether he or she can read, write or
execute a file. Also the privileges of other members of the same group, or other users can be specified.
Thus, we will need an own right. Normally, the rights of s to f would go into the (s, f) entry. But when [
is created, how could we give all subjects the right to read f since there are a potentially unbounded number
of subjects? One trick is to put the rights in the (f, f) entry and to treat a file as a subject. Thus s can read
J if either

1. own € (s, f) and owner _can read € (f, ) or
2. anyone_can_read € (f, f).

This solution creates a new problem however. How do we encode tkis disjunctive condition inte the
limited formalism of this model? The trick is to use commands which have identical bodies but with different
conditions. The detailed procedures follow:

command CREATE FILE (u, f)

create subject f
enter own Into (u, f)
end

* UNIX is a trademark of Bell Laboratories.

10



command LET OWNER_READ (u, f)
if own € (u, f)
then enter owner_can _read !nto (/f, f)
end

command LET ANYONE_READ (u,f)
if own € (u, f)
then enter anyone_can _read into (/, f)
end

command READ {u, f)
If either
own € (u, f) and
owner.can read € (f, f)
or
anyone_can read € (f, f)
then
enter read into (u, f)
delete read from (u, f)
end
The procedures that we have displayed are just for read. Similar procedures must be written for write
and execute. Note that the use of read here is purely symbolic. It will never exist in the matrix between
commands.
The ability of the model to describe the policies used in real systems has been demonstrated by Harrison,
Ruzzo, and Ullman 1976.

11



2.2. Safety

It is important to be able to discuss safe (and herce unsafe) systems precisely. We shall approach the notion
of “safety” by attempting to characterize “unsafety”. That, in turn, requires a definition of what it means
for 3 command to “leak” a right.
Definition. Given a protection system, we say command a(X),...,Xi) lezks generic right r from conflg-
uration Q = (S,0,P) if a, when run on Q, can execute a primitive operation which enters r into a cell
of the access matrix which did not previously contain r. More formally, there is some assignment of actual
parameters zy,...,Zx such that
1. a(zy,...,zx) has its conditions satisfied in Q, i e. for each clause “r in (X;, X;)” in a’s conditions we
have r € P|z,,z,], and
2. if a’s body is opy, . .., 0P, then there is an m, 1 < m < n, and confgurations Q=Q0, Q11 @m-1=
(s',0', P'), and Qm = (5",0", P"), such that

Qo => Q@ = - = Qnm

op} op3 op o,

where op;* denotes op; after the substitution of z;,...,zx for Xi,..., X and there exists some s and

o such that r ¢ P'[s,0] but r € P"[s,0]. (Of course, op, must be enter r Into (s,0)).

Notice that given Q,a and r, it is easy to check whether a leaks r fromQ even if a deletes r after
entering it. This latter condition may seem unnatural but even having the r in the matrix for one unit of
time is enough to cause a leak. We could arrange for a system to “block” in the middle of a command and
to interrupt a procedure.

It is important to note that leaks are not necessarily bad. The judgement about whether or not a leak
is unfortunate depends on whether or not the subjects are trusted.

Definition. Given a particular protection system and generic right r, we say that the initial configuration
Qo is unsafe for r (or leaks r) if there is a configuration Q and a command a such that

1. Qo +*Q, and

2. o leaks r from Q.
We say that Q, is safe for r if Qo is not unsafe for r.

Now, let us pause a moment to examine what we have accomplished with the HRU model. We started
with a concern about real security issues. A model was introduced which attempted to capture the ways in
which objects might be accessed by processes. The model was progressively simplified until we now have a
somewhat limited object of study. We have found a technically reasonabic “safety question” wkich we would
like to solve. A solution could mean several different things. It would be nice to have a uniform procedure
for solving any safety question for any protection system. If this is not possible, we could consider settling
for a less general result.

It we were to derive an efficient algorithm for solving the safety question, it could be challenged on the
grounds of the simplicity of the model, e.g. “Has the problem been defined away?”. In fact, the results are
somewhat surprising at first glance. It will be shown that there is no algorithm which can solve the safety
question. Even in our restricted model, the problem is unsolvable wkich means that in any more realistic
version, the same argument will carry over and the result will hold. In the next section, we shall summarize
what is known about safety questions.

12



2.8 Some Mathematical Results

Now that we have a model, we will mention some of the results that are known about the safety question.
First, the “good news”.

Definition. A protection system is mono-operational if each command’s interpretation is a single primitive

operation.
It is possible to find an algorithm to test for safety in such systems.

Theorem 2.3.1. There is an algorithm which decides whether a given morno-operational protection system
and given ipitial configuration is unsafe for a given generic right r.

Proof. The proof hinges on two simple observations. First, commands can test for the presence of right,
but not for the absence of rights or objects. This allows delete and destroy commands 1 to be removed from
computations leading to a leak. Second, a command can only identify objects by the rights in their row and
column of the access matrix. No mono-operational command can both create an object and enter rights, so
multiple creates can be removed from computations, leaving the creation of only one subject. This allows
the length of the shortest “leaky” computation to be bounded.

Suppose

QL @kl -k Qn (2.3.1)

is a minimal length computation reaching some configuration Qm for wlich there is a8 command a leaking
r. Let Qi = (Si, 04, Py).

Claim. C;.2 <i < m, is an enter command. Moreover, C is either an ctar or create subject command.

Proof of the clalm. Suppose not, and let C, be the last non-enter cormmend in the sequence {2.3.1). Then
we could form a shorter computation

Quir F o 5 O

’
a1

Qo 5. o5 C’," .- Qa1
as follows:

a. if C, is a delete or destroy command, let C! = C; and Q; = Q; plus the right, subject or object which
would have been deleted or destroyed by C,. By the first observation ebove, C; cannot distinguish Qi—,
from Q;_,,s0 Q{_, k¢ Q! holds. Likewise, a leaks r from Q' since it did so from Qn.

b. Suppose that 1) C, is a create subject command and | Se—1 | 2 1 or 2) that C, is a create object
command. Note that a leaks r from Q,, by assumption, so a is an enter command. Further, we must
have | S; | 2 1 and

|Sm|=|Sm=1|= ... =|Sa |21

because Cp,...,Cnsy are enter commands by assumption and herce do not change the number of
subjects. Thus | Sa—y | > 1 even if C, is a create object command. Let s € Sp_;. Let o be the name of
the object created by C,. Now we can let C{ = C; with s replacing all occurrences of o, and Q; = Q;
with s and o merged. For example, if 0 € Oy — Sy we would have

S!=5; and O;=0; - {o}

wd P'[z u] - Pi[zv !I] ify ;ﬁ <5
o Pi[z,s|U Pi[z,0] fy=s.

Clearly,
Pi[z,0] C P{[z, 4],

so for any condition in C; satisfied by o, the corresponding conditica in C{ is satisfied by s. Likewise
for the conditions of a.

4+ Since the system is mono-operational, we can identify the command by the type of primitive operation.

13



Figure 3
A Turing machine in state ¢ reading ga;.

¢. Otherwise, we have | Sy} |= 0, C, is a create subject command. If n < 2 then there is nothing to prove
30 we can assume n > 2. The construction in this case is slightly different - the create subject command
cannot be deleted (subsequent “enters” would have no place to enter into). However, the commands
preceding C, can be skipped (provided that the names of objects created by them are replaced), giving

3 !
Qo g_Q- c{'“ nt+1 c:i,”' C';Qm
where, if S, = {s}, we have that C| is C; with s replacing the names of all objects in Op—;, and Q. is

Q; with s merged with all 0 € O,_;.
In each of these cases we have created a shorter “leaky” computation, contradicting the supposed
minimality of (2.3.1). Now we note that no C; enters a right r into a cell of the access matrix already
containing r, else we could get a shorter sequence by deleting C;. Thus we have the following upper bound

on m:
m < g(| So | +1)(] 0o [ +1) +1 (2.32)

where g is the number of generic rights. This follows because the size of the original matrix can increase
by at most one. An obvious decision procedure now presents itself. Try all sequences of enter commands,
of length up to the bound given in equation (2.3.2). The sequences to be tested can be constrained by the
claims established in order to save work.

The algorithm given in the previous proof is exponential in the matrix size. However, by using dynamic
programming, an algorithm can be derived for any given protection system which is polynomial in the size of
the initial matrix. It is worth noting that if we wish a decision procedure for all mono-operational systems,
where the commands are a parameter of the problem, then the decision problem is NP -complete. Thus the
above problem is almost certainly of exponential time complexity in the size of the matrix. An argument
will be sketched by reducing the k-clique problem to the problem: given a mono-operational system, a right
r and an initial access matrix, determine if that matrix is safe for r. Given a graph and an integer k, we can
produce a protection system whose initial access matrix is the adjacency matrix for the graph and which
has one command. This command’s conditions test its k parameters to see if they form a k-clique, and its
body enters some right r somewhere. The matrix will be unsafe for r in this system if and only if the graph
has a k-clique. The argument given sbove is a polynomial reduction of the clique problem, which is NP
-complete, to our problem. Thus our problem is at best NP -complete. It is easy to find a nondeterministic
polynomial time algorithm to test safety, so our problem is in fact NP -complete and no worse.

Oune obvious corollary of the above is that any family of protection systems which includes the mono-
operational systems must have a general decision problem which is at least as difficult as the NP -complete
problems, although individual members of the family could have easier decision problems.

Now let us consider general protection systems. Is it possible to solve the safety problem in a uniform
manuner for all protection systems? We are about to prove a negative result which becomes all the more
significant because of the weakness of the model.

Theorem 2.8.2. It is undecidable whether a given configuration of a given protecticn systzm is safe for 2
given generic right.

14



83 83 84

8 {w} {own}
s {X.q} | {owm}

23 {v} {own}
'R {Z,end}
Figure 4
Matrix which simulates machine in Figure. 3.

I 83 L £ Lz
" {W,p} {own}
s {v} | {own}
s {Y} | {own}
'y {Z,end}

Figure 5. Representing a tape.

Proof. There are a number of ways to prove this result. The access control matrix can be used to
encode a string of potentially unbounded length on the main diagonal. If we have a Turizg mwach:ize as shown
in Figure 3, we encode it into the matrix as shown in Figure 4.

We will now formalize this idea.

We are now going to prove that the general safety problem is not decidable. We assume the rezlcris familiar
with the notion of a Turing machine. Cf. Harrison 1978. Each Turing machine T consisis of a finite set
of states K and a distinct finite set of tape symbols T'. One of the tape symbols is the blaz: B, which
initially appears on each cell of a tape which is infinite to the right only (that is, the tape cells are numbered
1,2,...,i,...). There is a tape head which is always scanning (located at) some cell of the tzpe.

The moves of T are specified by a function 6 from K xT to K xI' x {L,R}. If §(¢,X) = (3, Y, R) for
states p and q and tape symbols X and Y, then should the Turing machine 7" find itself in state ¢, with its
tape head scanning a cell holding symbol X, then T enters state p, erases X and prints Y on the tape cell
scanned and moves its tape head ome cell to the right. If 6(¢, X} = (p,Y, L), the same things heppens, but
the tape head moves one cell left (but never off the left end of the tape at cell 1).

Initially, T is in state go, the initial state , with its head at cell 1. Each tape cell bolds the blank. There
is a particular state ¢y, known as the final state , and it is a fact that it is undecidable whether started as
above, an arbitrary Turing machine T will eventually enter state g,.

Theorem 2.3.8. It is undecidable whether a given configuration of a given protection system is safe for a
given generic right.

Proof. We shall show that safety is undecidable by showing that a protection system, as we Liave defined
the term, can simulate the behavior of an arbitrary Turing machine, with leakage of a right corresponding to
the Turing machine entering a final state, a condition we know to be undecidable. The set of generic rights
of our protection system will include the states and tape symbols of the Turing machine. At sny time, the
Turing machine will have some £nite initial prefix of its tape cells, say 1,2,...,k, which it has ever scanned.
This situation will be represented by a sequence of k subjects, 8y,83,...,8x, such that s; “owns” 8,4, for
1 < i < k. Thus we use the ownership relation to order subjects into a linear list representing the tape of the
Turing machine. Subject s; represents cell §, and the fact that cell i now holds tape symbol X is represented
by giving s; generic right X to itself. The fact that ¢ is the current state and that the tape kead is scanning
the jth cell is represented by giving s, generic right ¢ to itself. Note that we have assumed the states distinct
from the tape symbols, so no confusion can resuit.

There is a special generic right end , which marks the last subject #,. That is, s has generic right end
to itself, indicating that we have not yet created the subject sx4; which s is to own. The generic right own
completes the set of generic rights. An example showing how a tape whose first four cells hold A XY Z, with
the tape head at the second cell and the machine in state ¢, is shown in Figure 5.

15



The moves of the Turing machine are reflected in commands as folicz. First, if
8(¢,X) = (p,Y, L)

then there d

command C,x(s,¢')
if
own in (s,4') and
g in (4', 8') and
X in (¢,8')

then
delete ¢ from (+',4')
delete X from (¢',4')
enter pinto (s,9)
enter Y Into (4,¢')

end

That is, s and &' must represent two consecutive cells of the tape, with tke machine in state ¢, scanning the
cell represented by #’. The body of the command changes X to Y and moves the head left, changing state
from q to p. For example, Figure 4 becomes Figure 5 when command C,x is applied.
If
6(¢,X)=(p,Y,R)

that is, the tape head moves right, then we have two commands, deperding whether or not the head passes
the current end of the tape, that is, the end right. There is

command C;x(s,9')
if own € (s,¢') and
¢ in (s, ) and
X in (s,8)
then
delete ¢ from (s,3)
delete X from (s,3)
enter pinto (#,s')
enter Y Into (s,9¢)
end

To handle the case where the Turing machine moves into new territory, there is also

command D;x(s,4')
if end € (s,¢) and
g in (s, s) and
X in (s,8)
then
delete ¢ from (s, 3)
delete X from (s,3)
create subject o
enter B Into (s',9')
enter pinto (#,4')
enter Y into (s,3)
delete end from (s,3)
enter end into (4',4')
enter own Into (s,s')
end

If we begin with the initial matrix baving one subject #,, with rights 2, B (blank) and end to itself,
then the access matrix will always have exactly one generic right that is a sizte. This follows because each

16



command deletes a state known by the conditions of that command to exi:t. Each command also enters one
state into the matrix. Also, no entry in the access matrix can have more than one generic right that is a
tape symbol by a similar argument. Likewise, end appears in only one extry of the matrix, the diagonal
entry for the last created subject.

Thus, in each configuration of the protection system reachable from the initial configuration, there is
at most one command applicable. This follows from the fact that the Turing machine has at most one
applicable move in any situation, and the fact that C,x and D,x can never be simultaneously applicable.
The protection system must therefore exactly simulate the Turing machine using the representation we
have described. If the Turing machine enters state q;, then the protection system can leak generic right
gy, otherwise, it is safe for g;. Since it is undecidablie whether the Turiny machine enters gy, it must be
undecidable whether the protection system is safe for ¢;.

While this result is discouraging from the point of view of guaranteeing safety, perhaps there are less
general results to be obtained which are still valuable. Although Thecrem 2.3.2. says that there is no
single algorithm which can decide safety for all protection systems, one might hope that for each protection
system, one could find a particular algorithm to decide safety. It can easily be seen that this is cot possible.
The simulation technique which was used previously can be applied to a universal Turing machine on an
arbitrary input. This leads to a particular protection system for which it is undecidable whether a given
initial configuration is safe for a given right. While we could give different algorithms to decide safety for
different classes of systems there is no hope of covering all systems with a finite or even an infinite class of
algorithms.

It might be the case that the power of these systems is caused by only one or two of the operations.
It is natural to investigate the power of the fundamental operations. The first idea would be to limit the
growth of such systems. While such a limitation of resources does make safety decidable, we can show the
following.

Theorem 32.8.8. The question of safety for protection systems without create commands is complete in
polynomial space.

Proof. A construction similar to Theorem 2.3.2 proves that any polynomial space bounded Turing machine
can be reduced in polynomial time to an initial access matrix whose size is polynomial in the length of the
Turing machine input.

The proof techniques which were employed in Harrison, Ruzzo, and Ullman, 1976 and also in Harrison
and Ruzzo, 1978 all made use of the diagonal of the access matrix in an essential way. What would happen
of there were only a finite number of subjects and the number of objects which are not subjects was still
unconstrained? Would the safety problem become “tractable”? Lipton and Snyder, 1977 have provided the
following answer.

Theorem 2.8.4. The safety problem for protection system with a finite umber of subjects is decidable.

Moreover, it is shown that such protection systems are recursively equivalent to“ vector addition sys-
tems” and a connection between the safety question for the former and the covering problem for the latter
is obtained. Although the safety question is decidable, it is again not something one would care to compute.

+ This suggesis that it probably takes exponential time.

17



2.4 Monotonlicity

In an attempt to better understand wherein lies the computational power of protection systems, we sheil
now consider systems which can only increase in both size and in the entries in the matrix.

Definltion. A protection system is monotonic if no command contains a primitive operation of the form

destroy subject s
destroy object ¢
delete r from (s,0)

A number of our colleagues who are familiar with operating systems constructs conjectured that mono-
tonicity would reduce the computing power of protection systems. We shall show that it does not do so. It
merely requires a different kind of proof which is more intricate and heace more interesting.

Theorem 3.4.1. It is undecidable whether a given configuration of a given monotonic protection system is
safe for a given generic right.

Proof. The idea of the proof is to encode an instance of the Post correspondence problem. See Post

1946. on the main diagonal of the access matrix. We would like to be able to grow an z-list and a y-list and
at a suitable point in time, to compare them. Because of the monotonic restriction, the z and y lists must
be “interlaced” and the check for equality is done by “pointer chasing”.
Proof. The idea of the proof would be to encode an instance of the Post Correspondence Problem, Post
1046. on the main diagonal of the access matrix. We would like to be able to grow an z-list and a y-list and
at a suitable point in time, to compare them. Because of the monotonic restriction, the z and y lists must
be “interlaced” and the check for equality is done by “pointer-chasing.”

Formally, suppose we have an instance of the Post Correspondence Problem given by

x = (21,-..,22) 80d ¥y =(y1,.-- ¥n)
where z;,y; € {0,1}%. It is convenient to define
Zi =22y, aud ¥ = VUi o Yim,

where z,;,yix € {0,1} for all i, j,k such that 1 <i <n, 1<j <y, and 1 <k <m,.
We shall construct a protection system which has the following set of generic rights

R = {0,1,link, start, match, yx-end ,leak}

and the following commands: For each i,1 < i < n, we have a procedure:

command START; (Xi,.--, X, 11,0 Ym,)
for j :=1 to I; do create subject X; {

for j:=1to I, do enter z; Into (X;,Xj)
for j:=1to l;-; do enter link Into (X, X;41)
for j:=1to m; do create subject Y,

for j:=1to m, do enter y; Into (Y}, Y;)
for j:=1to m,., do enter link into (¥;,Y;4,)
enter yx-end into (Ym,,Xi,)
enter match Into (Y, Xi;) E ym, =21, §
enter start into (Y}, X))
end
For each §,1 <i < n, we have a procedure

command GROW,(YEND,XEND.X,,...,X1,, Y1, ,Ym,)

+ This notation is a shorthand for create sukject X, ... create sub}zct Xi,.
{ The notation means that the primitive operation is included
in the command if y, = z;,.

18



if yx-end € (YEND,XEND)

then
for j:=1to !, do create subject X;

for j:=1to l; do enter z;; into (Xj;, X;)

for j:=1to l;—; do enter link Into (X;,X;4,)

for j:=1to m; do create subject Y;

for j:=1to m; do enter y,; into (Y} Y;)

for j:=1to m;., do enter link Into (Y;,Y;41)

enter yx-end into (Y, Xi,)

enter match Into (Ym,,Xi,) if ym; = 7,

enter link Into (XEND, X,)

enter link into (YEND,Y))

end
For each b € {0,1}, we have a procedure

command MATCH,(Y, X, AY, AX)
if match € (Y, X) and
link € (AY,Y) and
link € (AX, AX) and
b € (AY, AY)
then
enter match Into (AY, AX)
end

Lastly,

command LEAK(Y, X)
if start € (Y, X) and
match € (Y, X)
then
enter leak Into (Y, X)
end

Intuitively, this protection system “computes”, starting with an empty configuration, as follows: Each
command START; encodes strings o z; and y; into the protection matrix. The location of the frst pair of
symbols, (z,,y:1), is marked by start while the last pair, (2i1,, Yim,), is marked by yx-end .

Each command GROW, adds z; and y; to the end of some sequence of z's and y's which have been
previously entered into the matrix. The locations of the ends of such a sequence are indicated by the yx-end
right. Similarly, GROW, marks the end of the new sequence with yx-end .

Notice that GROW, is conditional only upon some yx-end , which is never deleted. Thus, several
different GROW,; commands may be applied to the same yx-end . Each GROW; may then be thought of
as growing a new branch on each of two trees - one in which paths from the root represent sequences of z's,
the other representing corresponding sequences of y’s. The start right associates the roots of the two trees
while the link rights associate ancestors and descendents, and finally the yx-end rights indicate ends of
corresponding paths. Moreover, the START; commands are unconditional so that we may actually get a
forest of these pairs of trees.

Before starting the formal proof, an intuitive example will be worked. Suppose

x=(01,1) and y=(0,11)

19



X1 Xa i Xs X Y2 Xs Y3 )7

X, 1 link 1=k
start
Y match | yx-end (1] link link
leak

X4 1
Y, yx-end 0
Xs 1
Ys match 1 Enk
Y, vx-end 1

Figure 6

Imagine that the following sequence of commands is executed.

START\ (X1, X3, 1)
GROW;(Y,,Xz, X3! Xh Yﬁ)
GROW;3(Yh, X1, X5,Y3,Y4)
MATCH] (Y{,Xs' Y;,Xz)
MATCH,(Ys, X3, Y1, X))
LEAK (Y1, X))

Figure 6 displays the matrix after this sequence has been executed.

We attempt to match corresponding z and y sequences by working from the bottom of the tree to the
top. This seems easier than working down from the root, since there is a unique chain of links to follow
from any node to the root in each tree, whereas working down from the root, it is not clear how to arrange
to follow corresponding paths through the two trees. The START; and GROW; commands stzrt matching
two corresponding sequences by matching their last symbols. The MATCHy commands then compare the
two predecessors (i.e., ancestors in the tree) of any pair of matched nodes.

The leak right can be entered if and only if matching proceeds all the way up to the root nodes. Next,
we show that this can happen if and only if the Post Correspondence Problem has a solution; this is known
to be a recursively unsolvable problem, Post 1946. Thus, we will have shown that is recursively unsolvable
whether or not this protection system is safe for the right leak and the empty initial configuration.

Notation . Let @ be the empty configuration (@, @, @8). For any configuration (5,0, P), and any X € S,
let A(X) = {Y € S| link € P|Y,X]|}. (In our tree interpretation, A(z) is the parent of node (X, X).) We
may extend this notation by defining 4‘*!(X) = A(A*(X)). Let C(X) be the contents of P|X, X].

Lemma 2.4.1. If+°Q = (S, 0, P), then for all X € S we have

1 PIX,X]={0} or {1}

2 |AX) <1

3 A(X) =0 if and only if there is 8 Y such that start € P(X,Y) orctart € P(Y, X). Tuithermore,
any such Y is unique.

4 ForeachY € S, if yx-end € P(Y,X) then there exist m > 1, iy,...,%m each i, between I =zd n such
that

z=2z,,...2;, = C(A¥®(X))...CA(X})C(X).

5 For eack Y € S, if match is in P(Y,X) then there exist m > 1, X" Y' € S suckh that yx-end

20



€(Y',X'),Y =A™ 1Y"), X = A™~}(X'), and for each j,0 < j <m, we trve C(AN(X") = CLAT(Y"). ¢
sy = wir b, = CLAKI=1(¥)). C(A(Y))C(Y), aad start € P(4B(KI=1(Y), 4€=1(X)).

This claim formalizes the discussion above. In (1), it is shown how strings are encoded on the diagonal.
In parts (2) and (3) every node has a unique parent, except the root. In part {3), the root and only the root
of every tree is paired with some other tree, and that tree is uniquely determined. yx-end joins the ends
of corresponding sequences in paired trees according to part (1). Finally, in (5), matching proceeds along
corresponding sequences.

We are now ready to do the formal argument.

The argument is an induction on the length of the computation of § F* .
Basls: The argument is trivial for o
#ro
Induction Step: Assume that Q = (S, O, P) satisfies the conditions. We w1l show that

QrQ
(-4

where Q' = (S',0', P') implies that Q' does also.

If « = START,, it is clear that all the rights eatered are placed into created entries so that the “old
portion” of P’ is unchanged. } Moreover, the “new portion” of P' satisSes conditions (1) through (5) by
construction. There is no possible connection between the old and new portions of P! because

P'X, X'] = P'IX', X] = 0

with X € 5, X' € §' = S. Thus F, where a = START; preserves (1) through (5).
If « = GROW;,, it is clear that cne of 0 and 1 is entered in each rew diagonal element, and all other
entries are made off the diagonal, so condition (1),

PlX,X]={0} or {1}

will still bold. The link right is never entered in an old object, and only eztered once in each new object,
so condition {2) (| A(X) |€ 1) still holds. The start right is not eatered so (3) still holds. If yx-end
€ P'[Y,X] with $ ¥, X € S (ot S’ — S), then (4) holds in P'[Y,X] with Y, X € §' — S, then it is easy to
see that (4) holds with z; and y; continuing the sequence ending at (YEND,XEND). That is, we have
yx-end € (YEND,XEND) and there exist m 2 1, $1,...,0m such thet
(i) z=z2,...2i, = C(AS®~YXEND)).. .C(XEND)
(i) y=0i, - Yim = C(A¥W~Y(YEND))...C(YEND) and
(iii) start € (AS(-Y{(YEND), A¥)-{(XEND)).
Finally, (5) is not affected at all in the old portion of P’ and moreover it holds vacuously in the naw portion
of P' except possibly for (Ym,, Xi,) in the case where ym, = z;,. In that case it bolds with m = 1. Thus,
Fo where a = GROW, preserves properties (1) through (5).

If a is MATCH,, we see that the link right is not entered anywhere so conditions (2) through (4) are
not affected. The other rights are entered by this command off the mai diagonal so properly (1) is also
unaffected. If o is

MATCH,(Y, X, AY, AX)

then we must have had match in P[Y,X]. Then, by property (5), there must have been m 2 L,X'.Y'esS
such that

+ There is a natural identification taking place here. If we concatenate the contents of the appropriate
cells of the matrix, this line becomes something like z = zyz3 =011 = “pnezrE>.

t We prefer to say “old portion™ of P’ rather than PA(Sx0x 2R) 2nd “new portion” of P’ instead
of P'n(S' - S)x (0 -0)x2”

+ Assume that command GROW; is called with actual parameters (Y ZND,XEND). Ti:Y and X
here are formal parameters.

21



yx-end € P{Y',X’]
Y = AmH(Y'), X = AmH(X)

and

C(4'(X")) = C(a’(Y"))
for each j,0 < j < m. It is clear that after the M ATCH, command 5 executed, similar conditions hold in
P’ since
AY = A(Y), AX = A(X),
C(AY) = C(AX),

and the other entries are unchanged, so (5) is satisfied by m +1,X’, 223 Y.

If a is LEAK, then no rights are entered on the diagonal so property (1) still holds and link, start
and march are not entered, so properties (2) - {5) are unaffected.

Thus, the induction is extended, and we see that Lemma 2.4.1 is t:ue.

We are now ready to prove Theorem 2.4.1. Suppose the Post Correzpondence Problem has a solution,
say (¢1,i2,...,im). Then commands

START,,,GROW,,....,GROW,

could be executed with appropriate parameters so that the indicated solution is constructed. Since a solution
ends with i,,, we certainly must have the “enter match ...” command in “GROW;_", so executioz of several
“MATCH,” commands with appropriate parameters would result in placing the match right in the same
position as the start right, thus allowing the LEAK command to enter the leak right. Conversely, if
leak is ever entered, it must be becanse start and match appear in the same position of the matrix.
By property (5) of Lemma 2.4.1, we see that there must be some Y', X’ such that yx-end € PlY'. X'],
and their predecessors match. But then by property (4) for Y'. X', we see that their predecessors must
be corresponding sequences of z;'s and y;’s, i.e., the Post Correspondence Problem must have a solution.
Thus, the protection system is safe for the right leak and the initial configuration @ if and only if the Post
Correspondence Problem has no solution, and hence safety is recursively unsolvable.

A studyof the proof reveals that most of the commands have one or two conditions attached to them. It
is necessary to use one command which requires five conditions. By using some coding tricks, these commands
may be replaced by six commands each of which needs two conditions. This leads to the following result.

Theorem 2.4.3. The safety question for monotonic protection systems is undecidable even when each
command has at most two conditions.

Proof. The construction is similar to the one used in the proof of the preceding theorem, except that
a more complex sequence of commands must be used for the matching. The set of generic rights is

R = {0, 1, link, start, match, yx-end, leak, my, myx, myx0, myx1}

The set of commands includes the START;, GROW,;, and LEAK commands cf tke previous proof. Note that
these commands all have only one or two conditions. The M ATCH, commands, which had five conditions,
are replaced by the following six commands baving two conditions each.

command FOLLOWY(Y, X, AY)
if match € (Y, X) and link € (AY,Y)
then
enter my into (AY,X)
end
command FOLLOW (AY, X, AX)
If my €(AY,X) and ink € (4X, X)
then



enter myx Into (AY, AX)
end

For each b € {0,1}, we have

command GETY,(AY, AX)
if myx € (AY,AX) and b € (AY,AY)
then A
enter myxb into (AY, AX) ¢
end

for each b € {0,1}, we have

command MATCHX,(AY, AX)
if myxb € (AY, AX) and b € (AX, AX)
then
enter match into (AY, AX)
end

Next, we need a result which characterizes computation in the new system.

Lemma 2.4.23. If§°Q = (S, 0, P), then for each X € S, we have {1} - (5) of Lemma 2.4.1 =5 well as the
following conditions.

(6) If my € P(Y,X) then there exists Y’ € S such that ¥ = A(Y’) and match € P(Y',X).

(7) If myx € P(Y, X) then there exists X’ € S such that X = A(X') and my € P(Y, X').

(8) If myxb € P(Y,X) with b=0,1 then myx € P(Y,X) and b € P(Y,Y).

Proof. Since (1) through (4) of Lemma 2.4.1 were unaffected by the M ATCH, command in the previous
construction, the absence of that command does not matter. Similarly, the six new commands do not
enter the start, link , or yx-end rights so (2) = (4) are not affected. Since these commands don’t enter
rights on the diagomal, they preserve property (1} also. Since the original commands do not use any of
the rights my, myx, myx0, or myxl , they will not effect (6) - (8). Thus (6) - (8) just reflect the
conditions and actions of the commands FOLLOWY, FOLLOW X, and GETY, respectively, so they will
hold. Finally, looking at the M ATCHX, commands, and combining its conditions with properties (8), (7)
and (6) we see that MATCHX, enters the match right in (Y,X) just in case there exist ¥', X' € S such
that ¥ = A(Y'),X = A(X'),C(Y) = C(X), and match € (Y',X'). These are precisely the conditions
which allow us to inductively extend property (5). Hence the claim is proven.

Now to complete the proof of Theorem 2.4.2.

Proof of the Theorem. The argument parallels the proof c¢f Theorem 2.4.1 but uses Lemma 2.4.2
instead of Lemma 2.4.1.

Theorem 2.4.1 shows that the safety question for monotonic protection systems is undecidable, even if
each command has at most two conditions. However, in many important practical situations, commands
need only one condition. For example, a procedure for updating a file may only need to check that the user
has the “update” right to the file. In contrast to the undecidability of the cases discussed in the preceding
section, the safety question is decidable if each command of 8 monotonic protection system has at most one
condition.

Definition. A mono-conditional protection system is one in which each command has at mos: condition.

Mono-conditional protection systems are much more complicated than one might anticipate. It is still
pot known whether or not the safety problem is solvable for such systems.

We state the best result known on this topic without proof. More details may be found in Harrison and
Tuazzo, 1978.

Theorem 2.4.3. Safety of mono-conditional protection systems witk crcate, enter, and delcts (but with-
out destroy) commands is decidable.

t If 5 =0, then myx0 is to be entered.



8. Logic and Protection Systemns

Introduction

The results of the previous sections are not encouraging. Can we do beiter by changing cur perspective?
Suppose we just want to know if a system is secure. Perhaps we can prove a system to be correct so that
potential users can be guaranteed to be safe in using the system. Even partial results wounld be helpful
because certain subsystems could be certified and then special considerations could be nsed in the rest of
the system. For example, if the file system were provably secure and the mail system was not, it would give
some guidance to a system administrator who might decide to shut off the mail system when sensitive work
was to be done.

We shall now begin to investigate trying to prove that systems are safe.

24



3.1 Logical Theories and Safety
In slightly different but more mathematical language, Theorem 2.3.2 can be restated as follows.

Theorem 8.1.1. The set of safe protection systems is not recursive.

We can generate a list of all unsafe systems by systematically enumerating all protection systems and
all sequences of commands in each system, outputting the description of any system for which there is a
sequence of commands causing 8 leak. Hence, the following is true:

Theorem 3.1.3. The set of unsafe protection systems is recursive enumerable.

We cannot, of course, also enumerate all safe systems, for a set is recursive if and only if both it and its
complement are recursively enumerable. The bounded case, discussed in Theorem 2.3.3, is recursive though
not computationally attractive.

Could we avoid the problems inherent in these results by shifting our perspective towards proving
properties of the system in some particular formal language rather than dealing with algorithms directly?
The idea is similar to some of the work on program verification.

To pursue this idea we shall say that a formal language L is a recursive subset of the set of all strings
over a given finite alphabet; the members of L are called sentences.

A deductive theory T over a formal language L consists of a set A of axioms, where A C L, and a finite
set of rules of inference, which are recursive relations over L. The set of theorems of T is defined inductively
by:

(a) if t is any axiom (i.e. if t € A), then t is a theorem of T'; and
(b) ifty,..., 2k are theorems of T and < #;,...,t, ¢ > € R for some rule of inference R, theu ¢ is a theorem

of T.

Thus every theorem ¢ of T has a proof which is a finite sequence < f;,...,fs > of sentences such that ¢t = 1,
and each ¢; is either an axiom or follows from some subset of ¢;,...,f;_; by a rule of inference. We write
T F ¢ to indicate that ¢ is a theorem of T or is provable in T.

Two theories T and 7' are said to be equivalent if they have the same set of theorems though not
necessarily the same axioms or rules of inference.

A theory T is recursively axiomatizable if it has (or is equivalent to a theory with) a recursive set
of axioms. The set of theorems of any recursively axiomatizable theory is recursively enumerable: we can
generate all finite sequences of sentences, check each to see if it is a proof, and enter in the enumeration the
final sentence of any sequence which is a proof.

A theory T is decidable if its theorems form a recursive set.

Since the set of safe protection systems is not recursively enumerable, it cannot be the set of theorems of
a recursively axiomatizable theory. This means that the set of all safe protection systems cannot be generated
effectively by rules of inference from a finite (or even recursive ) set of safe systems. This does not rule out
the possibility of effectively generating smaller, but still interesting classes of safe systems. This observation
can be refined, as we proceed to do, to establish further limitations on any recursively axiomatizable theory
of protection.

Definition A representation of safety over a formal language L is an effective mapping p — ¢, from
protection systems to sentences of L.

We wish to interpret ¢, as a statement of the safety of the protection system p. The following dcanition
captures what is necessary before such a deflnition is useful.

Definition A theory T is adequate for proving safety if there is a representation p — ¢, ol safety such that
Tt t, if and only if p is safe.

25



3.2 Incompleteness of Protection Systems

The notions of the previous section are quite appealing but analogs of the classic Church and Godel theo-
rems for the undecidability and incompleteness of formal theories of arithmetic hold for formal theories of
protection systems.

Theorem 3.2.1. Any theory T adequate for proving safety must be undecidable.

This theorem follows from Theorem 3.1.1 by noting that, were there an adequate decidable theory T,
we could decide whether or not a protection system p was safe by checking whether or not T - £,.

Theorem 3.3.3. There is no recursively axiomatizable theory T which is adequate for proving safety.

Proof. This theorem follows from Theorems 3.1.1 and 3.1.2. If T were adequate and recursively axiom-
atizable, we could decide the safety of p by enumerating simultaneously the theorems of T and the set of
unsafe systems; eventually, either ¢, will appear in the list of theorems or p will appear in the list of unsafe
systems, enabling us to decide the safety of p.

Theorem 3.2.2 shows that, given any recursively axiomatizable theory T and any representation p — f,
of safety, there is some protection system whose safety either is established incorrectly by T or is not
established when it should be. This result in itself is of limited interest for ¢éwo reasons: it is not constructive
(i.e., it does not show how to find such a p); and, in practice, we may be willing to settle for inadequate
theories as long as they are sound, that is as long as they do not err by falsely establishing the safety of
unsafe systems.

The next theorem overcomes the first limitation, showing how to construct a proteciion system p which
is unsafe if and only if T F {,; the idea is to design the commands of p so that they can simulate a Turing
machine that “hunts” for a proof of the safety of p; if and when a sequence of commards £1ds such a proof,
it generates a leak. If the theory T is sound, then such a protection system p must be safe but its safety
cannot be provable in T
Definition. A theory T together with a representation p — f, of safety is sound if and only if p is safe
whenever T - ¢,.

Theorem 3.3.3. Given any recursively axiomatizable theory T and any representation of safety in T, one
can construct a protection system p for which T  t, if and only if p is unsafe. Furthermore, if T is sound,
then p must be safe, but its safety is not provable in T.

Proof. The proof of Theorem 2.3.2 shows how to define, given an indexing { M} of Turizg machines and
an indexing {p;} of protection systems, a recursive function f such that
(a) M; halts if and only if py(,) is unsafe.
Since T is recursively axiomatizable and the map p — ¢, is computable, there is a recursive function g such
that
(b) T F ¢,, if and only if My(;) halts;
the Turing machine M ;) simply enumerates all theorems of T, halting if ¢,, is found. By the recursion
theorem, Rogers, 1967, one can effectively find an index j such that
(¢) M, halts if and only if My(s(;)) halts.
Combining (a),(b), and (c), and letting p = py(y), we get
(d) T + ¢, if and only if My(s(,)) halts

if and only if M; halts

if and only if p = py(,) is unsafe
as was to be shown.

Now suppose that T is sound. Then ¢, cannot be a theorem of T lest p be simultzzeously safe by
soundness and unsafe by {d). Hence ¢, is not a theorem of T and so p is safe by (d). |

The unprovability of the safety of a protection system p in a given sound theory T does not imply
that the safety of P is unprovable in every theory. We can, for example, augment T' by adding ¢, to its
axioms. However, Theorem 3.2.3 states that there will exist another safe p’ whose safety is unprovable in
the new theory T". In other words, this abstract view shows that systems for proving safety are necessarily
incomplete: no single effective deduction system can be used to settle all questions of safety.

The process of extending protection theories to encompass systems not provably safe in previous theories
creates a progression of ever stronger deductive theories. With the stronger theories, proofs of safety can

26



be shortened by unbounded amounts relative to weaker theories. This phenomena is ! "z in logic and
complexity theory.

Theorems 3.2.2 and 3.2.3 force us to settle for attempting to construct sound, but necessarily inadequate,
theories of protection. What goals might we seek to achieve in constructing such a tkeory T'?7 At the
least, T should be nontrivial; theories that were sound because they had no theorems would be singularly
uninteresting. We might also hope that the systems whose safety was provable in T, when a2dded to the
recursively enumerable set of unsafe systems, would form a recursive set. If this were so, then we could at
least determine whether T were of any use in attempting to establish the safety or ursafety of a particular
protection system p before beginning a search for a proof or disproof of the safety of P. Th:e next theorem
shows that this hope cannot be fulfilled.

Theorem 3.3.4. Given any recursively axiomatizable theory T and any sound representsticn of safety in
T, the set
X = {p| T V¥ t, or p unsafe}

is not recursive.

Proof. If X were recursive, then the safety of a protection system p could be decided as fcl'ows. First, we
check to see if p is in X. If it is not, then it must be safe. If it is, then we enumerate simulianeously the
theorems of T and the unsafe systems, stopping when we eventually find either a proof of p’'s safety or the
fact that p is unsafe.

27



8.3 Finiteness Conditions and Reducibilities

If we consider finite systems in which the number of objects * cannot grow beycnd the aumi or rresent in the
initial configuration, then the safety question becomes decidable, although any decision procedure is likely
to require enormous amounts of time (cf. Theorem 2.3.3.). This doubtless rules out practical mechanical
safety test for these systems. However this does not rule out successful safety tests constructed by hand.
Ingenious or lucky people might be able to find proofs faster than any mechanical method. We show now
that even this hope is ill-founded.

Although we can always obtain shorter safety proofs by choosing a proof system in which the rules of
inference are more complicated, it makes little sense to employ proof systems whose rules are so complex that
it is difficult to decide whether an alleged proof is valid. We shall regard a logical system as “reasonable” if we
can decide whether a given string of symbols constitutes a proof in the system in time which is a polynomial
function of the string’s length. Practical logical systems are reasonable by this deflnition. Ve show now
that, corresponding to any reasonable proof system, there are protection systems which are bounded in size,
but whose safety proofs or disproofs cannot be expected to have lengths bounded by polynomial functions
of the size of the protection system.

Theorem 3.3.1. For the class of protection systems in which the number of objectstis bounded, safety (or
unsafety) is polynomially verifiable by some reasonable logical system if and only if PSPACE = NP , that
is, if and only if any problem solvable in polynomial space is solvable in polynomial time. 1

Proof. By Theorem 2.3.3, the safety and unsafety problems for systems of bounded size are both in
PSPACE . Hence, if PSPACE = NP, then there would be NP-time Turing machines to decide both
safety and unsafety. Given such machines, we could define a reasonable logical system in wkich safety and
unsafety were polynomially verifiable: the “axioms” would correspond to the initial configurations of the
Turing machines and the “rules of inference” to the transition tables from the machines.

Also by Theorem 2.3.3, any problem in PSPACE is reducible to a question concerning the safety (or
unsafety) of a protection system whose size is bounded by a polynomial function of the size of the original
problem. Now if the safety (or unsafety) of protection systems with bounded size were polynomizl verifiable,
we could decide safety {or unsafety) in NP-time by first “guessing” a proof and then verifying that it was
a proof (performing both tasks in polynomial time). By Theorem 2.3.3, we could then solve any problem in
PSPACE in NP-time, showing that PSPACE = NP .

Since the above result applies equally to proofs of safety and unsafety, one must expect that there are
systems for which it will be just as difficult and costly to penetrate the system as to prove tLat it can (or
cannot) be done. In mono-operational systems, however, the situation is quite different.

Theorem 3.8.3. The safety of mono-operational systems is polynomially verifiable.

Proof. This result follows from Theorem 2.3.1 whose proof shows that the unsafety question of mono-
operational systems is solvable in NP-time. Although we simply observe that to demonstrate unsafety, one
need only exhibit a command sequence leading to a leak. We know that there are short unsafe command
sequences if any exists at all: an upper bound on the length of such sequences was given in equation (2).
Thus an unsafe sequence (if it exists) has a length bounded by a some polynomial functicn of the system
size.

By Theorems 2.3.3 and 3.3.2, proofs of unsafety for mono-cperational systems are short, but the time
to find the proofs cannot be guaranteed to be short; at the worst we might have to enumcrate each of the
sequences of length at most g(m + 1)(n + 1) that could produce a leak. However, while proofs of unsafety
are short for mono-operational systems, proofs of safety are not.

Theorem 3.3.8. For mono-operational systems, safety is polynomial verifiable if acd or!y if NP is close
under complementation. }

* hence, subjects also

+ PSPACE is the class of all problems which can be solved in pelynomial space. It is known that any
problem which can be solved nondeterministically in polynomial space is in PSPACE , but it is widely
believed that PSPACE # NP .

t It is unlikely that NP is closed under complement.

28



Proof. If NP were closed under complement, then safety would be in C% tecanse unsaf:tvisin NP by
Theorem 3.3.1. Thus there would be a nondeterministic Turing machine {oz ctecking safety in polynomial
time, which would demonstrate that safety is polynomial verifiable.

Conversely, suppose that safety were polynomially verifiable. We could then construct a nondeterministic
Turing machine which would guess a proof of safety and then check it in polynomial time; hence safety would
be in NP . But unsafety is in NP by Theorem 3.3.1 and if any NP complete problem has itz complement
in NP , then NP is closed under complement.

These result imply that system penetrators have a slight advantage when challenging mozo-cperational
systems: any system that can be penetrated has a short commard sequence for doing so. Hcwever, it may
still take enormous amounts of time to find such sequences, as no systematic method of finding an unsafe
command sequence in polynomially bounded time is likely to be found.



4. Conclusions

Theoretical Conclusions

On the one hand, our desire to model operating systems as simply as possible led us to consider the take-
grant system. This is a straightforward system to model and has a comparatively simple safety problem..
The only unattractive feature of this model is that it dealt with only one trivial operating system. In order
to get something practically useful, it is necessary to extend this work to consider a family of such models,
ever more complicated and expressive. This line of research has been investigated by Larry Snyder and his
collaborators. The results are interesting but the models stop far short of real operating systems.

On the other hand, the HRU model is both expressive and very general. Unfortunately undecidable
problems and unproven conjectures abound. The problem is that HRU systems are very complicated models
and it is not clear that mathematical results are going to be useful for operating systems work. The techniques
which are needed in order to express operating systems constructs in the model are quite ingenious but
somewhat unnatural. It may be unrealistic to expect programmers to exp:ess operating system features in
these formalisms.

The most important future theoretical research direction is to invent new models which comtine natural
modes of expression of operating system constructs with ellcient or at least feasible algoritkms.

30



Practical Conclusions
There are certain inescapable conclusions from the theoretical work report: i Lere.

1. Do not try to be too general! The HRU results tell us that there can “e no algorithm to t21 i some
right can even get into a certain cell of the access matrix. Any complizzted schemes which dzpend on
such information cannot be implemented in full generality.

2. Do not expect to be able to verify operating systems! A practical arguimeat to justify this maxim is in
the experience of a decade of research into program verification. Of ccuzse, the theoretical results of
Section 3 are relevant also.

3. Be sceptical of the literature! Some of the recent material in the litcro-ure has suggested thot secure
operating systems are now here. This is particularly true of the 1083 =pccial issue * of the Comyuler on
secure computation. There are a number of techniques which are known which improve the security of
operating systems. Unfortunately, relatively few of them are general ard this area is an art more than
a science.

4. Do not give up! While the theoretical results are discouraging, they are not fatal. There are many
techniques which can be used to improve glaring weakncsses in present systems. One will be mentioned
directly.

The present situation is not unlike the problem that one faces with respect to physical security. There is
a constant tension between the abilities of a criminal and the counter measures that (say) a homcowaer can
take. One can envision a classification of security according to the complexity of penetration. For example,
certain locks are known to take a certain level of time to break using hand tools. When power tools are
available, the classification level changes. For example, a certain kind of lcck may hold for five mizutes under
attack with power tools. Perhaps it is possible to classify certain syster:s with respect to the teciniques
needed to penetrate them.

It now appears that the best simple technique that one can utilize is scme sort of encryptica method
to protect sensitive data bases and ordinary computer files. It is poscitle to encode encrypted data into
such form as it can be transmitted across a mail system. For example, in the UNIX system, there are several
encryption methods available and there are companion functions, e.g. suencode and sedecode, whizh allow
encrypted messages to be transmitted mailed through various networks. Users should be aware however,
that it is known how to break crypt. Moreover the program which is distributed with UNIX which 2ppears
to implement DES does not do so.

It is hard to understand why large commercial systems, particularly those involved in clectroric fund
transfer and commercial data bases, are not protected more. As time goes by, it will be more essential to
provide some sort of security mechanisms for these commercial systems beczuse it it expected thzt computer
crime will increase.

5. Acknowledgements

The paper is the result of several years of investigation and involves work with a number of people. It has
been a pleasure to acknowledge stimulating conversations and joint work =vith Richard DeMillo, Dorothy
Denning, Peter Denning, Steve Garland, Arnita Jones, Dick Lipton, Larty Ruzzo, Larry Snyder, and Jeff
Ullman.

* Computer, 18, Number 7, July, 1983.

21



8. Bibllography

Aho, A. V., Hoperoft, J. E., and Ullman, J. D. (1974). The Desiga ond Arclyns of Computer Algorithma.
Addison-Wesley Publishing Company, Reading, Mass..

Bishop M.(1981). Hierarchical Take-Grant Systems. Proceedings of the Eighth Symposism on Operating
System Principles, pp. 109-122.

Bishop, M. and Snyder, L. (1979). The Transfer of Information and Authority in a Protection System,
Proceedings of the Seventh Symposism on Operating System Principles, pp. 45-54.

Budd, T. and Lipton, R. J. (1978). On Classes of Protection Systems, in DeMillo, R. A. et al (editors),
Foundations of Secure Computation, Academic Press, Inc. New York.

Cheheyl, M. H., Gasser, M., Huff, G. A., and Millen J. K. (1981). Ve.iag Security. ACM Computing
Serveys. 18, pp. 279-340.

Cohen, Ellis S. (1976). Problems, Mechanisms and Solutions, Ph. D. Dissci<ztion, Carnegie-Mellon Univer-
sity.

Denning, P. J. and Graham, G. S.(1972). Protection - principles and ;i.ctise, Proc. AFIPS 1972 SJCC,
AFTIPS Press, Montvale, N.J. pp. 417-429.

Denning, D. E., Denning, P. J., Garland, S. J., Harrison, M. A., and Ruzzo, ¥ L.(1977). Proving Protection
Systems Safe, Technical Report 209, Computer Science Department, Purcue University.

DeMillo, R. A. et al (editors), (1978). Fosndations of Secure Compstatiorn, .cademic Press, Inc. New York.

Harrison, M. A. (1978). Introdsction to Formal Language Theory, Adliscn-Wesley Publishing Company,
Reading, Mass..

Harrison, M. A. and Ruzzo, W. L. (1978). Monotonic Protection Systems, i1 DeMillo, R. A. et =l {editors),
Fosndations of Secure Computation, Academic Press, Inc. New York.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976). Protection in Op<roting Systems, Commaunicalions
of the Association for Computing Machinery, 19, pp. 461-471.

Jones, Anita K.(1973). Protection in Programmed Systems, Ph. D. Dissertztion, Carnegie-Mellon University.

Jones, A. K. (1978). Protection Mechanism Models : Their Usefulness. In DeMillo, R. A. et ol (editors),
(1978). Fosndations of Secure Compstation, Academic Press, Inc. New York, pp. 237-254.

Jones, A. K. and Lipton, R. J. (1978). The Enforcement of Security Poliics for Computation. Joxrnal of
Computer and System Sciences. 17, pp. 35-55.

Jones, A. K., Lipton, R. J., and Snyder, L. (1976). A Linear Time A!-critkm for Deciding Security, in
Proceedings of the 17th Symposism on Foundations of Computer Science, pp. 33-41.

Lampson, Butler W. (1971). Protection, Proceedings of the Fifth Princ:icn Conference on Liormation
Science and Systems, pp. 437-443.

Landwehr, C. E. (1981). Formal Models for Computer Security. ACM Coirputing Surveys. 13, p. 247-278.
Landwehr, C. E. (1983). The Best Available Technologies for Computer Security. Compsuter. 13, rp. 86-100.

Lipton, R. J. (1978). On Classes of Protection Systems. In DeMillo, R. A. ¢t ¢! {editors), (1978). [-:xdations
of Secare Computation, Academic Press, Inc. New York, pp. 281-296.

Lipton, R. J. and Snyder, L. (1977). A linear time algorithm for decidir subject Security, Jouri: 2 of the
Association for Computing Machsnery, 24, pp. 455-464.

Lipton, R. J. and Snyder, L. (1978). On Synchronizaticn and Security. 11 DeMillo, R. A. et ¢! (cditors),
Foundations of Secure Compsutation, Academic Press, Inc. New York, pp. 17-286.

32



Millen, J. K. (1978). Constraints, Part II- Constraints and Multi-Levc! Toousity. In DeMillo, R AL et ol
(editors), Foundations of Secure Compuiation, Academic Press, Inc. New ok, pp. 205-222.

Minsky, N. (1978). The Principle of Attenuation of Privileges and Its lar{%z2tions. In DeMillo, R. A. ¢t ol
(editors), Foundations of Secure Computation, Academic Press, Inc. New York, pp. 255-278.

Popek, G. J. and Kline, C. (1975). A Verifiable Protection System. Prozzccings of en Imternzt’z- <1 Confer-
ence on Reliable Software, pp. 294-304.

Post, E. L. (1046). A variant of a recursively unsolvable problem, Ballc’ia of the American ! ' :matical
Socsety, 53, pp. 264-268.

Rogers, H. Jr. (1967). Theory of Recurrive Functions end Effective Corp vtchbdity, Mc-Graw-I2 . ook Co.,
New York.

Snyder,L. (1977). Analysis and Synthesis in the Take-Grant System. Pricecdings of the Sizth Symposiam
on Operating System Principles, pp. 141-150.

Snyder,L. (1981). Formal Models of Capability-Based Protection Systems, ITTX% Transactions on Computers,
C-30, pp. 172-181.

Snyder,L. (1981). Theft and Conspiracy in the Take-Grant Protection I.I:del. Jowrnal of Computer and
System Sciences. 28, pp. 333-3417.

a3





