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Abstract

Advances ip integrated circuit density are permitting the implemen-
tation on a single chip of functions and performance enhancements
beyond those of a basic processors. One performance enbancement
of proven value is a cache memory; placing a cache oo the processor
chip can reduce botb meas memory access time and bus traflic. In
this paper we use trace drives simulation to study design tradeofls
for small (on-chip) caches. Miss ratio and traflic ratio {bus traflic)
are the metrics for cache performance. Particular attention is paid
to sub-block caches (also known as sector caches), in which address
tags are associated with blocks, each of which contains multiple
sub-blocks; sub-blocks are the transfer unit. Using traces from two
16-bit architectures (28000, PDP-11) and two 32-bit architectures
{VAX-11, System/370), we find that general purpose cacbes of 64
bytes (net size) are marginally useful in some cases, while 1024-byte
caches perform fairly well; typical miss and traffic ratios for 2 1024
byte {pet size) cache, 4-way set associative with 8 byte blocks are:
PDP-11: .039, .156, 28000: .015, .060, VAX 11: .080, .160, Sys/370:
244, .489. (These figures are based on traces of user programs and
the performance obtained in practice is likely to be less good.) The
use of sub-blocks allows tradeofis between miss ratio and traflic ratio
for a given cache size. Load forward is quite useful. Extensive simu-
lation results are presented.

1. Introduction

Advances in integrated circuit density are permitting the sin-
gle chip implementation of features, functions and performance
enbancements bevond those of basic eight and sixteen bit processors.
Processors now being designed include not only full 32-bit architec-
ture instruction seta, but also have sufficient area for performance
ephancements such as buflering, pipelining, and cache memories.
However, the chip area will ot be sufficient for 2 bumber of years
to include all of these performance ephancing features in their full
generality. Ip this paper we study the design and use of on-chip
cache memories, which we believe to be one of the best uses for
additional chip area.

Caches are s time-tested mechanism for improving memory
system performance by reducing access time and memory traflic
through the exploitation of temporal and spatial locality of refer-
ence. Temporal locality specifies that s location recently referenced
is likely to be referenced again in the pear future, or conversely,
that information used in the pear future is likely to consist primarily
of information used recently. Spatial locality is the identical con-
cept for locations pear the recent reference. A complete survey of
cache memories can be found in Smith [1].

Obp~hip caches will generally difier from traditional caches.
Initially these caches will be small {32 to 2048 bytes) because the
limited chip ares must be allocated among the instruction set imple-
mentation, the cache, and other possible performance enbancements.
As fabrication techniques provide room, some of the additional area
will be used to increase cache size. Blocks in on—chip caches will
tend to be smaller than traditional cache blocks because packaging
limitations prevent large parallel loads. In microprocessor eystems,
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relative to mini and mainframe computers, bus traflic can seriously
limit system performance. This problem is particularly acute if the
bus is to be shared among two or more microprocessors. Concern
over bus traflic should favor schemes that exploit temporal locality
more thap spatial locality. On-chip caches will tend to be more
intelligent than traditional caches because special-purpose cache
control logic is relatively inexpepsive in VLSI and can easily access
processor state information.

This paper examines the performance of small caches, using
trace driven simulations. In particular, we examine a cache organi-
zation called sub-dlock placement ( Sub-block placement has also
been called sector placement in the IBM System/360 Model 85 {2]. )
In sub-block placement, the address tags in the cache are associated
with a larger amount of data thas is usually brought into the cache
on a single miss. This larger amount is known as s block. Smaller
units, called sub-blocke, are used as the unit of memory transfer,
Basically a block is composed of an address tag and two or more
sub-blocks. When 3 reference is made to a location not in the
cache, an entire block is allocated but only the missing sub-block is
loaded. Address tags are associated with the larger sized blocks in
order to minimize the chip area devoted to address tags, and in the
case of the 360/85, to minimize the extent of the associative search.
Sub-blocks are used as the unit of memory transfers to minimize bus
traflic. The expectation in sub-block placement is that the savings
in tag overhead will compensate for the rigidity of the mapping.

This paper is organized ipto six sections. This section con-
cludes with a review of the literature. Section 2 examines the design
of op-chip caches, outlines the eflects of VLSI on cache design, and
proposes some examples. Section 3 explains cache design parame-
ters, performance and cost metrics, and the choice of tracedriven
simulation. Section 4 presents the results of our simulations. We
find that sub-block placement is a flexible cache structure for trad-
ing off memory access latency and bus traflic. The use of "nibble
mode™ memories suggests the use of larger block sizes than would
otberwise be optimal. "Load forward™ is found to be helpful in
significantly cutting bus traflic at a cost of a small increase in the
miss ratio. Conclusions are presented in Section 5.

1.1. Review of Literature

The first cache memory implementation was for the IBM Sys-
tem /360 Model 85. Results were published by Liptay [2] in 1968.
This cache is the only early eache to use a sub-block placement
structure. (Liptay called this design the sector cache.) Results in
Section 4.1 show that it performs poorly by today's standards.

Few cache studies in the literature have been done for the
small cache sizes {less than 2048 bytes of data) that we propose for
initial on-chip caches. In 1974, Bell, Casasent, and Bell 13] published
results on small caches with single-word (16-bit) blocks and direct-
mapped placement for the DEC PDP-8, using traces of two scientific
programs and the PDP-8 Assembler. The miss ratios that they
reported are geperally higher than we bave found, perhaps due to
their use of direct mapping. For example, 3 cache of 512 data bytes
was found to have a miss ratio between 0.46 and 0.62. We found a



miss ratio of 0.10 for s comparable PDP-11 cache.

In 1976, Strecker [4] summarized the research that led to the
design of the cache memory in the DEC PDP-11/70. He used traces
of scientific applications and a2 assembler. For direct-mapped
caches with a block size of 4 bytes (2 PDP-11 words), the miss ratio
dropped from 0.15 through 0.10, 0.05, and 0.02 as the cache data
size was doubled from 256 bytes up to 2048 bytes; these results are
similar to our own. Strecker also potes that improved performance
is obtaived as the associativity in » sel-associative cache increases
from 1 to 2 to 4, but that little is gained for degrees of associativity
of greater than 4. He also presented results showing that there is
little difference in the performance of LRU, FIFO, and RANDOM
replacement algorithms. The PDP-11/70 cache was designed to be
1024 data bytes, with 4-byte blocks, and two-way set associative
with random replacement.

Recent work by Goodman [5| examines small caches within 2
multiprocessor epvirooment. Among other issues, he examines the
sub-block structure (sector cache) used in the Sys!.etn/.'!o(?b()-&").l His
results, based on six UNIX? traces, support sub-block placement.

2. On-Chip Caches

This section is concerned with design issues for on-chip caches.
The Grst sub-section discusses the eflects of VLSI on onchip caches,
including the disparity between op-chip and off-chip communication
and the ability to inexpensively build specialized cache control.
Next, two examples are proposed: the minimum cache and the
smor! cache. The minimum cache costs very little and can reduce
off-chip accesses by one-third; the smart cache out-performs current
caches of the same size. Finally, the RISC II instruction cache is
presented as an implemented example.

2.1, Effects of VLSI

On-chip caches will differ from MSI (Medium Scale Integra-
tion) cache memories for at least four reasons. First, block sizes will
tend to be smaller, because integrated circuit packaging limitations
limit the number of bits that can be bandled in parallel. If large
blocks are used, long latency times resuit because the blocks must
be time-multiplexed over only a few pins. Second, since most suc-
cessful microprocessors today are bus-limited [6], on-chip caches will
be increasingly concerned with minimizing bus traffic. This trend
will reduce the main memory-to-cache transfer size. Third, intra-
chip communication is less expensive than inter-chip communica~
tion. Therefore more processor state information can be used to
control the on-chip cache. Data communication off<chip requires
that signals be scaled to reasonable levels, such as TTL compatible
{5 voits), and be abie o drive large capacitive loada. This costs chip
area, power, and delay. The cost of the intra<chip transfer of infor-
mation, e.g. the current instruction-in-execution, may be low enough
to justify their incremental improvements to cache performance.
Last, the current freedom from standard building blocks in VLSI
can allow on-chip caches to use more complex custom control. For
example, wide associative searches can be easily implemented in
VLSI with content-addressable memory (CAM) cells.

2.2. Two Proposals for On-Chlip Cache Architectures

The two architectures for on-chip caches proposed here were
not explicitly studied but serve to illustrate the potential for VLSI
on-chip caches. The first, called a minimum cache, is a croes
between an instruction buffer and a cache. The second, » smart
cache, is similar to a traditional cache but uses custom VLSI to cap-
jtalize on the processor state information that is available on~chip.

An instruction bufler bolds one or more blocks of the instruc-
tion address space|7], feeds into the instruction letch stage of the

} Goodman refers to the block a0 & sddreas block and to the snb-block as a tremsfer
block
$ UNIX is » trademark of Bell Laboratories.
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CPU pipeline, and may or may not be capable of recognizing when a
branch target hits s location already in the buffer. lmstruction
bullers which do npot recognize branch targets difler from caches
because while they reduce latency for cossecutive instruction
accesses, they do not reduce the number of bytes required from the
memory system. For example, the DEC VAX-11/780 and 750 bave
instruction buffers that contain only eight contiguous bytes [8]. The
CRAY-] has four instruction bufiers that can each hold 64 contigu-
ous 16-bit instructions for a total size of 512 bytes [9]; the CRAY-1's
instruction buffers recognize branch targets, and thus can hold entire
loops.

Minimum caches can improve performance, even with rela-
tively bigh miss ratios, since they may significantly cut the traflic
ratio. One possible architecture for a minimum cache is 32 data
words broken into 16 2-word blocks, where only the requested word
is loaded oo a miss. For this architecture, it is reasonable to use 2-
way set-associative placement with RANDOM replacement. A
minimum cache for a 32-bit machine would require about 190 bytes
of RAM (16 blocks » [29 tag bits + 2 valid bits + 64 data bits] / 8
bits/byte), plus some overhead for buffers and matching logic.
Minimum caches tend to have their best eBect on performance when
used as instruction buffers.

Smart caches require more ares than the minimum cache,
perhaps up to 2048 bytes of data storage. Their performance is
enbanced by exploiting the processor state information available
on-chip. Special-purpose logic can examine reference patterns to
prefetch instruction codes and operands from maip memory or pre-
fetch information out of the cache memory into even faster buffers.
For example, the S-1 [10] attempts to dynamically predict jump tar-
gets, and the RISC II instruction cache prefetches instruction data
from its private store (see Section 2.3). Lee and Smith [7] present
empirical evidence supporting the use of 3 cache for recent jump
targets Lo reduce the detrimental eflects of branches on pipelined
machines. Alterpatively, the tops of certain stacks io a program-
ming environment could be cached. These "intelligent” schemes
may work better than methods which are ignorant of the semantics
of data reference patterns. Eflective prefetching reduces latency at a
cost of increased memory traflic and at a risk of memory pollution
{fetching data which is not subsequently used, while replacing data

that may yet be used) [11]. Intelligent data replacement reduces
memory pollution, thereby reducing bus traffic and latency.

2.3. An Implemented Example: RISC II Instruction Cache

The RISC Il instruction cache [12] is a single—chip instruction
cache implementation used to study architectural concepts for on-
chip cache memories. The cache includes two architecture innova-
tions: a remote program counter for decreased access time, and sup-
port for dypamic code expansion for increased eflective cache size.

. The RISC Il instruction cache is s single 45,000 transistor
NMOS chip designed specifically to work with the RISC I imple-
mentation {13] of the RISC architecture [14]. The cache operates
with an access time of 250 ns. It boids 512 bytes arranged in 64
direct-mapped blocks of 8 bytes each. Results quoted in this sub-
section are from simulations with limited beachmarks done for [12].
Various cache sizes performed with miss ratios of 0.148 (512 bytes),
0.125 (1024 bytes), 0.098 (2048 bytes), and 0.078 (4096 bytes). Thus
for these sizes, doubling the cache size reduced miss ratio by about
20 percent.

The remote program counfer is special-purpose logic that
reduces the eflective access time on cache hits. The remote program
counter attempts to guess the next instruction address, so the cache
can begin to fetch data out of its private store before the processor
presents the actual instruction fetch address. The remote program
counter correctly predicted 89.9 percent of the next-instruction
addresses using limited instruction-decode ability and static jump-
likeiy hints. This reduced the access time seen from the processor
by 42.2 percent.



The efective size of an instruction cache can be increased with
code-compaction. The RISC 11 instruction cache allows selected
haif-word (16-bit) instructions to be used to reduce code size by 20
percent. These half-word instructions are expanded to their stan-
dard 32-bit representation before they are given to the processor.
Miss ratios are improved by 27.0 percent over runs with standard
code without impacting the processor’s simple instruction-decode

PLA.

3. Methods

This section presents the rationale for the choice of cache
design parameters in this study, discusses performance metrics, and
justifies the use of trace driven simulation as the evaluation tool.
Miss and traffic ratios are used to measure performance for caches of
different pet size (data size), block size, and sub-block size. Gross
cache size (the size of address tags and data) is used to measure

cost.

3.1. Cache Deslgn Parameters

Table 1  presents cache design parameter choices used in our
simulation studies. Cache size, sub-biock size, and block size are all
important to cache performance. Cache size directly afects perfor-
mance and cost in a way that dominates all other design decisions.
Thbe miss ratio of a cache declines monotonically with cache size,
but the cost, pbysical size, and access time will increase with
increasing cache size. Optimal cache sizes thus must be selected
with regard for these factors.

Sub-block #ize is the pumber of bytes moved to the cache by a
minimum size data transfer. Block #ize, also called line #ize, is the
maximum pumber of bytes of data that are associated with a single
address tag. In most caches, the sub-block size and the block size
are identical and are collectively referred to as the block #ize. Divid-
ing large blocks into smaller sub-blocks aflects performance in two
ways. First, the miss ratio will increase because more than one miss
can occur within a single block. Second, the traflic ratio will
decrease because only the parts of the block that are used will be
loaded. In VLSI we expect the smaller sub-block size to reduce the
cost of a miss, because less data is brought across limited pios.
Sub-block placement can also be viewed as a way of grouping n
small blocks under ope address tag. This grouping reduces data
placement freedom by restricting the n sub-blocks to consecutive
Jocations. This loss in flexibility of placement will cause the miss
and traffic ratios to increase. However, the cache will be more cost-
eflective since address tag overhead is reduced by a factor of nt

Cache design parameters not varied in the studies of this paper
are associativity, replacement algorithm, fetch algorithm, and
write-back algorithm. All experiments were performed with 4-way
set-associative caches. Smith [15] and others bave shown that 4¢way
set-associative mapping provides hit ratios very close to those of a
fully associative design. Changes i associativity have been exten-
sively studied and have smaller eflecta than the parameters studied
bere [1,4]. Experiments were dove using LRU replacement since
LRU permits more efficient simulation {16} and reasonable alterna-
tives perform comparably. All cache fetches were done on demand,
although sub-block placement with load-forward is analogous to pre-
fetching. Prefetching studies were beyond the scope of this study.
Write~back issues were filtered out of our results by calculating per-
formance metrics for oply data reads and instruction fetches. The
caches studied hold both instructions and data. Further studies
should look at partitioning instruction and data caches, prefetching,
and write through ve. copy back [actors.

3.2. Cache Performance Metries

The purpose of a cache is to improve memory system perfor-
mance by reducing the eflective access time to memory and
processor-memory bandwidth requirements. Eflective access time

® We neglect the lower-order effects of changes in the number of bits is the address tag.

¢,7, s most simply modeled as:
ll// = ek ? (1 - m) + laem *Mm,

where m is the miss ratio of the cache, {,,,, is the access time of
the cache, and {o,a is the accems time of main memory. !, sad
{w,a Are DOt easy Lo obtain through apy method that does oot inti-
mately consider a particular implementation of & mackine. ., is
a function of the technology, organization, and complexity of a
cache. ., i8 related to memory technology, organization, com-
plexity, bus interferepce, cache sub-block size, and whether loading
and fetching are overlapped. Miss ratios are often quoted for eaches
because they are largely implementation-independent (if the
processor-to-cache datapath width is held constant) and thus can be
computed in architectural studies. Nevertheless, a reduction in miss
ratio will not guarantee an improvement in memory system perfor-
mance. For example, prefetching data should reduce the misses
when the data is actually requested. Still {,;; may grow if the addi-
tional logic increases 1,.,. Other aspects of cache design which
aflect performance include the methods of updating main memory
and maintaining multi~cache consistency.

The two most important architectural performance metrics are
miss ratio and frafic ratio. The miss ratio is the number of cache
misses divided by the pumber of cache accesses. The miss ratio is
always less than or equal to 1 because the number of misses cannot
be more than the number of cache accesses. It is of primary impor-
tance if sufficient bus bandwidth is available so that reduced latency
is the overriding goal, as is geperally the case for bhigh end main-
frames. The relative importance of miss ratio and traflic ratio vary
with the ratio of cache and main memory access times; the smaller
the ratio, the less important are reductions in the miss ratio.

The traffic ratio is the ratio of memory bus traflic in a system
with a cache to that in a system without a cache. The scaled traflic
ratio (see section 4.3) scales the traflic ratio to reflect the fact that
in some designs, as with nibble or page mode memories, transfer
times are not linear with transfer sizes. Two competing factors
affect the traflic ratio. First, repeated references to words already in
the cache reduce the traflic ratio. For example, if words are brought
into the cache and used n times before they are removed, the traflic

ratio will be % Second, block sizes that are bigger than a single

word will tend to increase the traflic ratio because some data
brought into the cache will never be referenced. For example, if
only ope reference is made to a block of w words while it is in the

cache, the traffic ratio will be % Consequently, the traffic ratio for

3 cache with w-word blocks will be less than 1 if and only if on the
average more thag w references are made to a block each time the
block is resident in the cache. The traflic ratio is important if the
memory bus is the bottleneck, either because the single processor is
too fast for the bus, or because there are multiple processors on the
same bus. It is also important because of the contention between
the processor, which wants to use the cache, and the bus which is
loading and unloading it.

The results of Section 4.3 model the bus traflic to fetch w
sequential words in a single transaction by a cost of the form
6 + bsw. This form reflects transfer times in systems with pibble-
mode memories {17] or shared busses with transactional overhead.

The most important cost metrics are gross csche aze and
cache complenity. By gross cache size we mean the size of the data
and tag area together. Historically, cache performance numbers
bave been given with respect to cache data size (net cache size)
only. However, on-chip caches can have nop-trivial tag 2reas because
block sizes are smaller, associativity may be greater, and address
spaces for the newer architectures are large (32-bit). The gross
cache sizes calculated in this paper assume a 32-bit address space
even though some of the traces come from 16-bit machines, since we
are interested in the newer 32-bit architectures. The efects of cache
complexity are important, but are not studied bere because they are



unplemcntzt.ion-dependeut and are poorly measured by

architecture-level, trace-driven simulation.

3.3. Trace-Driven Simulation

Trace-driven simulation experiments were used in these studies
for several reasons. First, such simulations are repeatable and allow
cache design parameters to be varied so that eflects can be isolated.
They are cheaper tban hardware monitoring and do not require
access Lo or the existeoce of the machine being studied. Simulation
results can be obtained in many situations where analytic model
solutions are intractable without questionable simplifying assump-
tions. Further, there does not currently exist any generally accepted
model for program behaviot, Jet alone one that is suitable for cache
evaluation; workloads in trace-driven simulation are represented by
gamples of real workloads and contain complex embedded correla-
tions that synthetic workjoads often lack. Lastly, a tracedtiven
simulation is guaranteed to be representative of at {eas! onec program
in execution.

A trace-driven cache simulator (18] was written which can
vary, among other parameters, cache size and cache block size and
associativity. It supports sub-blocks and load forward.

Tables 2, 3, 4, and 5 present be traces used to produce the
results of this paper. They are pormal production programs; no syb-
thetic benchmarks have been used. Traces were rup for 1 million
addresses without context switches. Traces were created for the
28000 and PDP-11 by assumiog 2 byte data paths and for the Sys-
tem/370 and VAX-11 assuming 4 byte data paths to memory.
Multiple-trace miss and traffic ratios are the unweighted average of
the miss and traffic ratios of individual runs. We npote that it is
likely that our results will indicate better performance than will
actually be achieved in practice. First, the omission of task switch-
ing eflects will bias our estimated performance upward, although the
small sizes of the caches studied make this eflect minor. More
significant is the fact that it is kpown [1] that most misses occur in
the operating system, and we have pot used, or had available, any
operating system traces. Finally, it bas often been observed that
even when the two factors noted have been taken into account,
measurements made on production systems show higher miss ratios
than previously predicted. Anyone designing a system using these
results should keep these comments in mind, and should appropri-
ately interpret either our results or their own.

4. Results

This section presents the results of trace-driven simulations of
small memory caches with various block and sub-block sizes. First,
the original use of sub-block placement in the IBM System/360
Model 85 {the &rst machine with 3 cache memory) is examined.
Second, the results from PDP-11, 28000, and VAX-11 traces show
caches as small as 64 words are somewhat useful, while 1024-byte
op-chip caches can have miss and traflic ratios lower than 0.10 and
0.70. System/370 traces do not perform as well. Third, an evalua-
tion based on the use of paged-mode memories, nibble-mode
memories, and a transactional bus are shown to double optimum
sub-block size. Last, a way of prefetching sub-blocks called [oad-
forward is introduced.

4.1. Early Sub-Block Placement

The only early cache to use a sub-block placement structure is
the IBM System/360 Model 85 Cacbe [2]. This 16-Kbyte cache asso-
ciates an address tag with a 1024-byte block, but does memory
transfers with 64-byte sub—blocksfs beginning with the address the
processor requested. This organization was used because it required
only 16 entries in expensive associative address-matching bardware.

13
. Liptay refers to the block as a sector and to the subblock as a block

To our knowiedge, these are the only public studies companng the the 360/85's
mappisg scheme to today's set-associative mapping
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Technological advancements over the last 15 years have
reduced the cost of associative search logic, and our results show
that the sub-block or sector cache performs poorll relative to the set
associative design most commonly used today. = Table 6 compares
the 360/85 o 4-, &, and 16-way set associative mappings of 64-byte
blocks with LRU replacement. This figure is three times grealer
than the miss ratio for 3 4-way set associative cache. The reason [or
the 360/85 cache’s poor performance is that data can be residest in
the cache in only ome of 16 blocks that sre much too large (1024
bytes). We End that 72 percent of the sub-blocks iz a block (11.52
of 16 sub-blocks) are never referenced i the period a block is
resident.

4.2. Sub-Block Placement for On-Chlp Caches

Before presenting PDP-11, 78000, VAX-11, and System,370
results, let us explain how to read the figures in this paper. Figure
1, for example, shows the miss ratio versus the traffic ratio from
PDP-11 runs for various block, sub-block, and cache sizes. Solid
lines conpect caches with constant block size bz, and dashed lines
conpect caches with constant sub-block size sz. For example, the
cache with block size 16 and sub-block size 4 s found at the inter-
section of 416 and #4. The miss ralio, the number of cache misses
divided by the pumber of cache sccesses, is » measure of the
eflectiveness of a cache in reducing memory access latency. The
traffic ralio, the ratio of bus traflic in a system with a cache divided
by the bus traffic without a cache, is a measure of the eflectiveness
of a cache in reducing memory bandwidth requirements. The gross
cache size, the combined size of the tag and data area of the cache,
is a measure of the cost of a cache. Gross cache size is used because
the different schemes presented here require widely varying amounts
of address tag area.

4.2.1. PDP-11 Results

Figures 1 and 2 show the miss ratio versus the traffic ratio for
PDP-11 traces; see Table 2 for description of traces. Table 7
present the gross cache sizes for the results of Figure 2.

Figure 1 shows that some organizations of caches with net
sizes of 32, 128, and 512 bytes can actually increase bus traffic; ie.
their traflic ratio is greater than 1.0. For example, the 128-byte
cache (net} with block and sub-block sizes of 16 bytes almost dou-
bles bus trafiic. This bappens when too masy words in a sub-block
are brought into the cache and never referenced. Caches with a
sub-block size of 1 word will always have traflic ratios less than or
equal to 1.0.

Doubliag the block size aflects the gross cache size by halving
the total address tag area. This is significant if blocks are small.
For example, the 512-byte cache with block and sub-block size of 2-
bytes (2,2) occupies 50.0 percest more area (1536 bytes vs. 1024
bytes) than the 512-byte cache with 4-byte blocks and 2-byte sub-
blocks {4.2). Yet, it only performs 16.7 percent better in miss ratio
and 16.9 percent better in traflic ratio.

Doubling the sub-block size halves the pumber of sub-block-
valid bits in a cache block. This does not significantly aflect cache
size because the number of sub-block-valid bits in a block is small
compared to the tag and data area. For example, going from a 32,4
to a 32,8-cache decreases the total size by only 1.4 percent. A cache
with the capability of varying sub-block size can be set to run at
diflerent operating points depending on the relative importance of
miss ratio and trafic ratio. Such 3 cache requires somewhat more
control and epough sub-block-valid bits for the smallest sub-block
size. Figure 2 shows a solid live labeled 532 with net cache size
1024 that intersects all sub-block sizes between 2 and 32 bytes.
These various sub-block sizes allow a system implementor to trade
the miss ratio against the traffic ratio. In 2 system with coosider-
able unused bus bandwidth, the sub-block size could be set to 32
bytes to realize miss and traflic ratios of 0.033 and 0.533 (Table 7).



In another system that is bus-limited either by a siower bus or more
devices (processors) using the bus, the sub-block size could be set as
Jow as 2 bytes. This would increase the miss ratio by a factor of 6
to 0.190 but decrease the trafiic ratio by a factor of 3 to0 0.190.

A minimum cache for these results is a 64-byte cache with 4
byte blocks and 2-byte sub-blocks. This 4,2 64-byte cache can cut
memory references and bus traflic by one-third as compared to a
systemn witbout 2 cache. On the other hand, s 16,8, 1024 byte cache
results in miss and traffic ratios of 0.052 and 0.206.

4.2.2. Z8000 Results

Figures 3 and 4, and part of Table 7 show results from UNIX
utilities written in C and compiled for the Z80OO {see lazt Sve traces
in Table 3). These traces yield better performance than the PDP-11
traces; they are plotted on the same scale for comparison. The
results quoted are warm-start ratios. (Warm-start ratios do not
count the misses taken to initially fill the cache with relevant data)
As previously noted, the warm-start ratios are slightly optimistic.

As with the PDP-11 results, a 4,2 64-byte minimum cache is a
start. A 16,8 1024-byte cache can be implemented a gross cost of
1264 bytes to yield miss and traffic ratios of 0.023 and 0.092.
(These results for the Z8000 are so much better than for any other
architecture and set of traces that we consider these results overly
optimistic and unrepresentative. Since these same traces were used
in {19] we have some doubts about the performance projections for
the 280,000.)

4.2.3. VAX-11 Results

Figure 5 and part of Table 7 show results from six VAX-11
traces (see Table 4). A 8,4 64byte minimum cache bas miss and
traflic ratios of 0.6072 and 0.6072. A 16,8 1024-byte cache reduces
these numbers to 0.1058 and 0.2116.

4.2.4. System/370 Results

Figure 6 and part of Table 7 show results from four Sys-
tem/370 traces (see Table 5). For clarity, Figure 6 is scaled
diflerently than Figures 1 through 5. Minimum caches do not work
well with our System/370 rups. A 8,8 64byte cache will reduce
memory reference in half (miss ratio 0.5475), but will actually
slightly increase bus traflic with respect to a system with no cache
{traflic ratio 1.0950). Tbe best cache studied here for the Sys-
tem/370 traces was 16,8 1024-byte cache that bhas miss and traffic
ratios of 0.2632 and 0.5264.

4.2.5. Inter-Architectyre Comparisons

It is clear from Table 7 that miss ratios are generally increas-
ing a5 one goes from the Z8000 to the PDP-11 to the VAX 11 to the
System/370 trace driven simulation results. We believe that these
diflerences are not reflective of the architectures, except for address
space size, 50 much as the traces used. Tbe Z8000 traces are all
Unix utilities, ported from the PDP-11 version of Unix, and are
mostly small, compact pieces of code. The PDP-11 programs are
also relatively small, running as they do i a 16 bit address space.
{Io both cases, the 16 bit address is one cause of the good results.)
The VAX programs are a mixture of small and large, and the Sys-
tem /370 programs are large, using bundreds of kilobytes of storage.
We believe that the 370 programs are the most reliable indicator of
actual performance for a 32-bit microprocessor, since “real” work-
loads, to be experienced in practice, are likely to contain many
large, complex, memory intensive programs.

4.3. Nibble-Mode Results

All the traffic ratio results so far assume that the cost of a
memory access is directly proportional to the number of bytes read.
This assumption is accurate for many current microprocessor sys-
tems, often because of bus protocol compatibility constraints. How-
ever, some new memory chips provide paging or mibbling addressing

modes, and some multiprocessor memory busses incur an overbead
with each transaction. Both of these conditions will produce a cost
to referepce w sequential words of the form ¢ + dey. Therelore,
the average cost is reduced if several words are simultaneously
fetched from adjacent locations. On-chip caches can expioit nibble-
mode memories for loading sub-blocks. Caches with larger sub-
blocks derive more benefit than those with smaller sub-blocks. Bur-
sky [17] reports that typical access times are 160 ns for the first
word and 55 ns for subsequent words. If we approximate the ratio
of 160 to 55 as 3 to 1 and assign unit-cost to getting one word, then

the cost of getting w sequential words is 1 + %(w - 1). A cache
with a sub-block size of w words wil! always ask for w sequential
words at an average cost of lw [1+ %(w - 1). The standard

traffic ratio multiplied by the above factor produces s scaled traflic
ratio for nibble-mode memories. This equation also refiects the cost
of using 2 bus cycle to present an address to the memory before
waiting 105 ps for the first word and 55 ps for subsequent words.

Figures 7 and 8 show PDP-11 results scaled to reflect the
economies-of-scale for transferring more than one 16-bit word in a
single access (See also, Table 7). Scaling with 16-bit words should
put an upper bound on the improvement that can be expected from
scaling with 32-bit words. Curves of constant block size and vary-
ing sub-block size (solid lines) minimize the scaled traflic ratio at a
sub-block size of 4 or 8 bytes, rather than 2-byte result with the
standard memory interface. Since the scaled traflic ratio penality
for bringing in additional data is smaller than in the case of 2 stan-
dard memory interface, a cache designed for these addressing modes
will tend to bave a larger sub-blocks We observe that the optimum
sub-block size under the assumptions of this section approximately
doubles from the optimum results of Section 4.2.

4.4. Load-Forward Results

Load-forward is a mechanism for combining the miss ratio
bepefits of a large block size with the low bus traffic of sub-block
placement. Load forward involves fetching the target sub-block and
the subsequent sub-blocks within the same block; it is thus a limited
form of prefetching. Load forward is being used in the 256-byte
on-chip cache of the Z80,000 {19]. The 280,000 cache has 16 blocks
of 16 bytes. The blocks are replaced using an LRU stack on-chip.
Data is fetched from memory in one-word (two-byte) sub-blocks
with an option to load-forward :

Program and data references within a cache block exhibit a
forward bias. A program typically branches to a random location
within a cache block, proceeds sequentially forward. and then
branches again. Data references also tend to proceed forward
because of processing of arrays, character strings, and individuyal
variables whose storage is defined by the programmer in order ol use
[11]. For this reason, data Jjust before a reference is less likely to be
referenced than data just after it. Thus, a larger block size will
result in more data being loaded from memory locations that are
before the point of reference. Load-forward, by fetching only the
part of the block forward of the target of the fetch, should be Jess
likely to Joad unneeded information than a feteh which gets the
entire block. Load forward may or may not remember which sub-
blocks bave already been loaded and if it does remember, it can load
only those sub-blocks not already cache resident. Such optimized
operation is more complex. The simpler scheme has redundant bys
traflic in the few instances of a backwards reference within a cache
block, but allows the main memory system to function auto-
nomously.

Load-forward was studied with traces CPP, C1 and C? using
the latter redundant-load scheme. Since results (Figure 9 and Table
8) show that few redundant loads were made, there was not enough
gain to justify experimcn&in; with the optimized scheme. The point
labeled 516-¢2-LF-5328" on the 256-byte cache curve in Figure 9

" LF nasds for load-forward, and g328 for gross cache sise of 328 bytes



corresponds to the performance of the 280,000 cache for these par-
ticular benchmarks.

The load-forward mechanism reduces bus traffic at a small cost
in miss ratio. For the 280,000 design, changing from » sub-block
size equal to the block size to a 2-byte sub-block size with load-
forward reduces the trafiic ratio by 20 percent for a cost of 7.0 per-
cent in the miss ratio. Therefore, load-forward is useful if it is easy
to implement and the traflic ratio is of some concern. We expect
that load-forward will be especially eflective in the instruction space.

§. Conclusions and Summary

We believe and the simulations presented in this paper suggest
that some of the limited area op high-end microprocessor chips is
best used as the top of the memory hierarchy rather than providing
additional special-purpose logic.

Very small minimum on-chip caches are somewbat useful in
reducing latency and ofi-chip traflic for all but the System/370 runs.
A 64-byte cache with s block size of 2 words and a sub-block size of
1 word reduces memory accesses and bus traflic by ope-third in
PDP-11, 28000, and VAX-11 rups. Oa the 32-bit VAX-11, this
cache requires oply 95 bytes of RAM cells to bold address tags and
data. Unfortunately, s minimum cache of this size reduced Sys-
tem/370 misses by only 16 percent.

A more aggressive goal for a on~chip cache is to reduce refer-
ences by a factor of ten (miss ratio 0.10) and bus traffic by a factor
of five (traffic ratio 0.20). This is achieved with a 512-byte (net)
cache with 4-byte blocks and 4-byte sub-blocks (4,4 512-byte) in
PDP-11 runs, with a 8,4 512-byte cache in Z8000 runs, and with a
16,8 1024-byte cache in VAX-11 runs. ‘The best cache studied here
for the System/370 traces is 3 16,8 1024-byte cache that can cut
references by a factor of four and halve bus traffic.

It is possible to trade off the miss and traffic ratios by varying
the sub-block size, for a fixed block size. As the sub-block size
decreases, the miss ratio increases and the traffic ratio decreases.

When either nibble-mode (paged-mode) memories or 3 memory
bus with transactional overhead are used, the bus traffic cost should
be modeled as & + bsw, where w is the pumber of single words
fetched oo a single transaction. For nibble-mode memories that
required 160 ns for the first word and 55 ns for subsequent words,
the optimum sub-block size roughly doubled relative to to the
optimum size found in other results.

Load-forward increases the traflic ratio slightly but cuts the
miss ratio by a much larger factor, relative to the same block and
sub-block sizes but without load forward. It appears to be advanta-
geous if the processor and memory designs permit; compatibility
with previous designs may be an inbibiting factor.

On-chip caches are one good use for the microprocessor chip
area available for performance enbancements whenever the on-chip
cache cap be at least 32 to 128, words, depending on the workload.
On-chip caches are especially eflective when at least 256 words.
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Tabls L Simalatios Panmetes - Table 3 s d
Farameter — Values Tnce Language Comments
cache nse (byves) 82, 64, 128, 256, 512, 1024 CPP C: irst phase of C compiier
block sise {bytes) 2,4, 8,16, 32, 64 Ci C: second phase of C compiler
sub-block sise (bytes) 2,4, 8,18, 82 c2 C: third phase of C compier
associativity +way oD C: Uaix wutility for demping files in
cache partitioning dats & isstructions mixed ASCIIl B . .
replacemest algorithm LRU GREP C: Uaix wtility for striag searching Tt Lol
fesch algorithm demand SORT C: Ustx utility for sortiag able 8. Load-Forward (LF) Resalts .
toad-forward LS C: Uax atiliny for lutiag fle Net Biock
NM C: Usix utility for pnatiag a specially Grom  Sub- | Mim Tnfic Tnfic
Table 2. PDP-11 Workioad compiled object fle's symbol table Cache Block | Ratie  Ratio Ratie
Trce Tangoage Commesnts PR C: Unix wtility for formatiag text Kles for Size Sise (nibble)
OPSYS C toy operating rysem priatiag bv::ll (bytes)
PLOT Fortras: prister plotter progrm C Takls 4 VAX-1: Workicad 4 88 02857 1028 0614
SIMP Fortraa: pipeline nmula-hon program Trice Tatgoage Comments o7 $2LF | 0263 osss
TRACE PDP-11 Assembly. tracing program trac- apice Fortraa Circais nimolation 07 3.2 0878 0878 0.878
g ED . otmd! Pascal: constructs LR(0) parver 192 22 0812 o612 0.812
ROFF PDP-11 Amembly: text ostput aad for- redx C: sream editor 258
matiisg program R 314 16,18 0.120  0.960 0.400
ED C-text editor qrort C: Quick sont 3 182LF | 0128 o072
trof C: text formatter s 18,2 0.4890 0.439 0.438
Table & Cvetem 370 W 2 C- third phase of C compiler 378 [ X ] 0.164 0858 0.323
Trace Laogoage Comments Tabie 8. IBM System/380 Model 85 Resul :: .':';‘r :::: :2:;’ 54564
- able 8. em e esulte g } : .
FGot ::3;:: Go Step: magle preanca facior (Based on. 1 Eoncru Go Step, 1 F[‘onn: Cou;pil:, 2 Cobol 788 22 0402 0402 0402
. Steps. and 2 PL/I Go Steps
FCOMP} Compile of a program that solves Rey- 2.1 L00, )
polds partial differential equation or!s':x?:““ ::‘:; ::;'/':5
PGO1 PL/1 Go Step 360,85 00258 1.000
PGO2 PL/l Go Step: progm does CCW vy 0.0088 0.341
analysie Sway 0.0081 0.514
18-way 0 0078 0.204
Table 1 PDP-11 —Z8000 VAX-11 1EM Srnem/3T0
Net, Biock,
Gross Ssb | Miss Tnflic Trafic | Miss  Trafic  Traflic Miss Trafic Traflic Miss Tnfic Tnfic
Cache Block | Ratio Ratio  Ratio |Ratio Ratio  Ratio Ratio Ratio  Ratie Ratio Ratio Raio
Sise Sise (nibbie) (nibble) (sibbile) (nibble)
{brtes) (bytes)
[ 1}
70 163 0300 1.506 0.708 0330 1.320 0.880 0.4249 08408 0.5885 05704 1.1638 0.7725
80 18,4 0.557 1.114 0.743 0508 1.018 0677 0.6488 0.6483 0.6433 08726 08728 0.3726
22 16,2 0.857 0.857 0.857
04 8 0339 1358 0873 0.298 1192 0.50¢ 03882 0.7784 05189 0.5475 10050 0.7300
1 2] 34 0479 0958 0630 0461 0022 0815 06072 08072 0.6072 0.8375 08375 0.8375
o7 8.2 0.738 0.73¢9 0.739 0.762 0.762 0782
128 44 0425 0830 0.567 0.432 0.864 0.578 0.5852 05852 0.5852 0.8180 038180 0.8180
128 4.2 0668 0668 0.668 0671 0871 0.671
192 2.2 0620 0620 0.620 0.583 0583 0.683
258
204 3232 | 0148 2338 0876 0.078 1.284 0.474 0.1528 12224 0.5093 0.2377 19016 0.7923
285 32,16 | 0191 1528 0637 0.107 0.85 0.357 0.2081 0.8244 04122 0.3234 1.2038 0.6403
287 2 0.291 1.184 0.582 0.156 0624 0.312 0.3003 0.8006 0.4004 0.4881 00332 0.6255
291 s2, 0.413 03838 0.557 0.245 0.490 0.327 0.4759 0.4750 0.4759 0.7331 0.7331 0.7331
209 32,2 0.590 0.599 0.509 0421 0421 0.421
314 16,16 | 0144 1152 0.480 0.082 0.658 0.273 0.173¢ 06958 0.3478 0.2722 1.0888 0.5444
38 16,8 0.204 0816 0.408 0.124 0.498 0.248 0.2614 0.5228 0.3485 0.40086 08012 0.5341
320 18,4 0302 0604 0 403 0203 0408 0. 0.4207 0.4207 04207 0.6300 06300 0.6300
2t 186.2 0478 0478 0.478 0355 0.358 0.355
376 88 0.188 0672 0.338 0.108 0.432 0.218 0.2387 04734 03158 0.3845 0.7200 0.4880
380 84 0.254 0508 0.339 0.175 0.3%0 0.233 0.3596 €.3508 0.3508 0.57904 05794 0.579+¢
p2 ] 8.2 0407 0407 0.407 0312 02312 03812
504 44 0218  0.438 0.281 0.157 0.314 0.20% 0.3553 0.3553 0.3553 05438 0.5438 0.5438
512 42 0.351 0351 0351 0.287 0287 0.287
768 2,2 0297 0297 0.297 0.273 0.273 0.273
1024
1084 64,16 | 0.081 0846 0.280 0041 02323 0.187 0.1088 0.4352 0.217¢ 0.2042 08188 04084
1082 64,8 0118 0472 0.238 0.083 0.252 0.126 0.1704 0.3408 02272 0.3092 06184 0.4123
1108 64,4 0.178 0.3% 0.237 0.104 0.208 0.139 0.2825 02825 0.2825 0.4970 04970 0.4970
1108 64,2 0.104 0.104 0.104
1138 32,82 | 0.033 0533 0.200 0013 0.208 0.078 0.0588 04704 0.1960 0.1268 10128 0.4220
1140 32,16 | 0040 0301 0.183 0024 0.192 0.840 0.0863 0.3452 01726 0.1850 0.74386 0.3718
1148 32t 0.075 0.298 0.149 0.03¢6 0.158 0.078 0.1380 0.2720 0.1%13 0.2855 05710 0.3807
1164 32,4 0116 0232 0.155 0085 0130 0.087 0.2267 0.2267 0.2287 0.4845 04645 0.4845
1106 32,2 0190 0160 0.190 0.047 0.047 0.047
1258 16,16 | 0.033 0.265 0.110 0.013 0.104 0.043 00675 02700 0.1350 0.1700 0.6800 0.3400
1264 16,8 0.052 0.206 0.108 0.028 0092 0.045 0.1058 0.2116 0.1411 0.2632 0.56284 0.3509
1280 16.4 0081 0.162 0.108 0.03% 0078 0.052 0.1748 0.1748 01743 0.4308 04308 04308
1312 18,2 0133 0133 0.133 0072 0072 0.072
1504 82 0030 0158 0.078 0.0156 0.080 0.030 0.0804 0.1808 01072 0.2443 0.4338 03257
1520 8.4 0061 0122 0081 0.0 0.080 0.040 0.1332 0.1332 0.1332 0.4017 04017 0.4017
1552 82 0.101 0.101 0.101 0055 0.055 0.055
2016 44 0048 0.096 0.064 0022 0.044 0.020 0.1044 0.1044 0.1044 0.3742 03742 0.3742
2048 4.2 008! 0081 0.081 0.045 0.045 0.045
3072 2.2 0072 0072 0072 0037 0037 0 037
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