MATCHING MODULO DIVISORS, AND A SIMPLE NY* FACTORING ALGORITHM

Eric Bach!

Computer Science Division
University of California
Berkeley, CA 94720

ABSTRACT

We present an algorithm for the following problem: given z,, ..., z,, distinct
modulo N, find two numbers in the list that are congruent modulo a proper divisor of
N. The number of steps required is less than m times a polynomial in logN. This
gives a simple proof that N can be factored in expected time O(Nl/““), for any ¢>0.

1. INTRODUCTION

Consider the following simple algorithm for factoring an integer N: generate a list of
numbers modulo N, and see if two members of this list are congruent modulo a prime divisor of
N. Since we don’t know the factorization of N, we look for two entries, say z, and z,, that
satisfy ged(z,-z,,N)>1. Then the result of the ged computation is a divisor of N, and if we are
lucky, it will split NV into two smaller factors. We then repeat until NV is completely factored.

A closer look at this method leads to two questions:

1) How big should the list be?
2) How do we extract a divisor from the list?

The first question can be asked precisely as follows: Let p and ¢ be two relatively prime
divisors of N. If z,, ... ,z, are selected at random, how big must m be before there are good
odds that two members of the list are congruent modulo p but not modulo ¢? The answer is pro-
portional to the square root of p; the constant of proportionality depends on what "good odds”
means, and on how big ¢ is.

We can also restate the second question: given distinct z,, . . ., z,, modulo N, how fast can
we find a match modulo a divisor of N; that is, d, i, and j such that d | N, 1<d<N, and
z,=z,(mod d)? The answer is surprising: finding a match can be done in time that is almost
linear in the size of the list.

We now have a rough idea of how our factoring algorithm should behave: to have a good
chance of removing the smallest prime factor p of N, we should generate O(Vp) random

numbers modulo N. The match-finding will also take time about O(Vp), and since some p | N
must be less than VN, we see that N can be split in expected time that is about O(N)Y4,

The rest of this paper makes the above argument precise.

2. HOW MANY NUMBERS DO WE NEED?

As explained in the introduction, to split N we choose z,, ... ,z, at random, and hope
that two entries, say z, and z,, satisfy 1<ged(z,~z,,N)<N. To make this precise, consider the
following process:

YThis research was sponsored by NSF Grant MCS 82-04506.

-2

Let N have two relatively prime divisors, say p and ¢, with p <g. We pick z,,z, - - - at
random satisfying 0<z, <N-1 until two of them, say z, and z;, agree modulo p. We say we
have succeeded if z,5£z,(mod ¢), and failed otherwise.

We now show that if the process runs long enough, there is a good chance that it will be a
success. Precisely, if €>1/p and m>[2In(e-1/p)"|'/*>Vp + 1, then with probability >1-¢, the
process terminates successfully in m steps or less.

First, the probability P, that the process requires more than m steps is

P=fl0-%)

k=1
(see [2], p. 49). Using In(1-z)<-z for 0<z<1,
M-l (m 1)2
InP, <-
Ex P 2p
By the hypothesis on m, -(m-1)°<2pln(e-1/p), so
P.<e1/p.

Next, we estimate the probability P, that the process fails in m steps or less. For 1<i<7,
let S,, be the event that we stop with z,=z,(mod p) . Then

P;= Y, PrlS, 8 z;=z,(mod g)],
1<1<y<m
since the S,,’s are disjoint. Since p and ¢ are relatively prime,
Pr[S, & z,=z,(mod ¢)|=Pr[S,| Pr|z,=z,(mod g)].
Therefore,
1

l
Pj= Y PriS)]—<—
1I<1y<m q p

Now the probability P, of success in m steps or less satisfies
P, 21-(e-1/p)}-1/p=1-¢,
as desired.

We now make the following observation: the chance that there exist any numbers that
agree modulo p but not modulo [V is at least as good as the chance that two agree modulo p and
the earliest such ones are distinct modulo ¢. This proves

THEOREM 1

Let N have at least two distinct prime factors, and let p be the smallest one. Then for any
e>1/p, if we select at least

[2n(e-1/p) Y2 VP + 1

random numbers between 0 and V-1, two will agree modulo p but not modulo N with pro-
bability at least 1-e.

3. HOW DO WE FIND A MATCH MODULO A DIVISOR?

Assume now that we have enough numbers to expect the difference of two of them to split
N. The problem is now to find them in time roughly proportional to the size of the list.

To fix ideas, let z,, . . ., z, be distinct integers between 0 and N-1; we will first decide if
something in the first half of the list is congruent modulo a divisor of N to something in the
second half of the list. To do this, we form

-3

fX)= I (X-z)(mod N);
1<1<m /2

this is the monic polynomial having the the numbers in the first half of the list for roots. Then,
generalizing a trick in [5], we evaluate f at each number in the remainder of the list. We have
the desired match if and only if there is a j, m/2<j<m, with ged(f(z,),N)>1, for this true
exactly when f(z,)=0(mod p) for some prime p | N. If this is the case, then there must be some
i, 1<i<mf2, with z =z (mod p), and since the =z’s are distinct, some i with
1<ged(z,-2,,N)<N.

The most expensive part of the above algorithm is the construction and evaluation of f,
and so we digress a bit and mention some results in polynomial algebra. Specifically, we are
interested in Z y|X], the ring of polynomials with integer coefficients modulo N; to be definite,
let the members of the coeflicient ring Zy be 0, ..., N-1. We imagine that we are using mul-
tiprecision arithmetic, and so we count operations on integers of some fixed "word size”.

First, multiplication in ZZ y[X] can be done quickly: if / and g are polynomials in Z y[X] of
degree at most k<N, then we can compute fg in O(Ic(logN)zloglogN) steps.

To do this as explained in [5], we set D=(k+ 1)N? and recover the coeflicients of fg from
the integer product f(D)-g(D). Using a fast integer multiplication algorithm ([6]) , this takes
O(nlognloglogn) steps, where each factor has n bits. Using the hypothesis that k<N, we get
the bound advertised.

Next, we need the corresponding result for polynomial division. Let a,0€Z y[X], with
degrees k£ and ! respectively, and assume that [<k<N, with the leading coefficient of 5 a unit
modulo N. Then we can find polynomials ¢ and r with a=bg+r, deg(r)<deg(d) in
O(k{logN)*loglog N) steps.

This can be proved using the argument in [1], p. 95, provided that B(X)=X'b(1/X) is a
unit in the power series ring Z y{[X]|. For this to be true we need the constant term of B to be
invertible mod N, and this is exactly the hypothesis on b.

Now that we have fast polynomial multiplication and division, the methods in [1] will suffice
to prove the following results:

a) Letz,...,z,€Zy, and k<N. We can compute
k

f(X)=H(X—:L‘,)

1=l
in O(k{logN)’loglogN) steps.

b) Let f(X)EZn[X], with deg(f)<k<N. Then we can evaluate f at z;,...,z,€Zy in

O(k(logN)®loglog V) steps.

We can now solve the problem of finding a match modulo a divisor of N in an arbitrary list
Zy, . ..,32,. Since duplicates are of no use, we remove them by first sorting the list at a cost of
O(mlogmlogN). Then we look for a match between the two halves of the list, using the above
algorithm. This constructs one polynomial of degree at most m/2, evaluates it at about m /2
points, and then does m ged calculations. Since the Euclidean algorithm takes O(log/V)? steps on
numbers less than N { [3], p. 320), this all requires time that is O(m(logN)®loglogN). If we don’t
find a match between the first and the second halves of the list, we can run the algorithm
separately on each half, then on each quarter, and so on; each recursive stage requires the same
amount of time, and there are at most logm stages. Adding everything up, we have proved

THEOREM 2

Let m<N and let 0<zy,...,2,<N. Then we can find z,,z,, and d | N (if any) with
z,=z,(mod d) and z,5%z,(mod N)in O(m(logN)%loglog N) steps.

4. SPLITTING N IN ABOUT NY* STEPS
Combining the last two sections, here is an incarnation of our factoring algorithm; it will
split a composite N with probability at least 1-(1/2)*:
a) Verify that N is not a perfect power, and that it has no factors less than 5. (Then N has a
prime factor p with p <N'Y4 and 1/p <1/4.)

b) Let m>2VIn2N'4+1, and generate k-m random numbers from O,...,N-1. (Using
theorem 1 with e=1/2, each block of m numbers contains a pair that agree modulo p but
not modulo N with probability >1/2, and so the whole list contains such a pair with proba-
bility >1-(1/2)*. Since we select each random number with about log N flips of a fair coin,
this takes O (kN/*logN) steps.)

¢) Run the algorithm in the last section to find two numbers z and y in the above list with
1<ged(z-y,N)<N. (This takes O(km(logN)'loglogN) steps.)

Since k=log(]1/2|*) and m=0(N'4), we have proved

THEOREM 3
Let ¢>0. Then the above algorithm will split a composite number N with probability at
least 1-¢ in O(|loge| N*/*(logN)*loglog N) steps.
Now a caveat: this is an asymptotic result, not a practical method. We require space equal
to the running time, and fast polynomial algebra of high precision.

Seeking something more tractable, one is tempted to apply the above analysis to Pollard’s

p-method [4], which generates z), ...,z, by a rule such as z;=2, z,41=2-1(mod N), and
extracts a factor of N using a small amount of space. This apparently takes time about N'/4 but
Zy, . ..,Zy, is in no sense random, and so our argument does not apply here.

We are left with two unanswered questions, replacing the two in the introduction:

1) The algorithm presented here is an analyzable version of the p-method, but needs too much
space to be practical. Can this requirement be gotten rid of?

2) Let f(X) be a polynomial with integer coefficients. How 1is the sequence
2,/ (z,),f(f(2,)), - - - distributed modulo N? Can we prove that the original p-method
works?

5. ACKNOWLEDGEMENTS

Thanks are due to Manuel Blum, Martin Hellman, Shafi Goldwasser, Michael Luby, and Jeff
Shallit for discussions and suggestions concerning these ideas.

6. REFERENCES

[1] A. Borodin and I. Munro, The Computational Complezity of Algebraic and Numeric Prob-
lems, New York : American Elsevier (1975).

[2] W. Feller, An Introduction to Probability Theory and its Applications (volume 1), New York :
Wiley (1968).

[3] D. Knuth, The Art of Computer Programming (volume 2), Reading : Addison-Wesley (1969).

[4] J. Pollard, A Monte Carlo Method for Factorization, BIT 15, pp. 331-334 (1975).

-5

[5] J. Pollard, Theorems on Factorization and Primality Testing, Proceedings of the Cambridge
Philosophical Society 76, pp. 521-528 (1974).

[6] A. Schonhage and V. Strassen, Schnelle Multiplikation Grosser Zahlen, Computing 7, pp.
281-292 (1971).

