User Interface Considerations for Algebraic
Manipulation Systems
Gregg Foster

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley

ABSTRACT

The background of mathematical manipulation systems is
presented. Current user interface tools and issues are then sur-
veyed, with a focus on the special problems of algebraic manipula-
tion systems. A mathematical expression editor is used as an illus-
trative example.

1. Background

Mathematical manipulation systems have been around for a long time. The
first mathematical display system was the “finger in the dust”? (FITD) system
developed thousands of years ago. FITD was cheap, readily available (weather
permitting), and the workspace could be arbitrarily large. But it suffered on
several accounts: it had no long term memory, its computational backing was

the human brain, and it provided few tools for expression manipuiation.

Hundreds of years ago, *‘paper and pencil” (PAP) became firmly recognized
as the dominant mathematical display technology. PAP retained most of the
benefits of FITD and added a form of expression memory. Once on paper an
expression could be preserved and referred to later. Computational backing
was the human brain augmented by bits of paper with previous techniques and
results preserved. PAP, now with more sophisticated backing, is still the dom-
inant mathematical display technology.

In the 1960s, computer-based “algebraic manipulation systems’ (AMS) were
built for the first time. These systems of algorithms were inferior to PAP in
many ways, particularly as display systems since they were usually lirited to

¥ There is some controversy over whether the finger in the dust came before the the “stick
in the sand™ (SITS). SIS may have been the first formel display technology, but it is safe to
assume that FITD was first used for mathematical displey. There is suggestive evidence that
FITD technology was used by pre-mathematical primates several millions of years ago.

-2-

small, fixed size character sets. Early AMSs also required users to adapt to the
sequential nature of the programs. This ‘‘unnaturalness’” made the systems
difficult to learn and use. However, the AMSs did make the algorithmic power of
computers accessible to mathematical manipulation. Some manipulations too
large or complex for human beings to do in reasonable time (celestial mechan-
ics calculations, for example) could be performed by an AMS in reasonable time.
AMSs are powerful, but not pretty({1,2, 3].

The algorithmic promise of AMSs can be beautiful and generally useful.
Recently, many forms of display and manipulation technology have come
together making displays of at least PAP quality possible and supporting a new

class of natural manipulations.

2. Display Technology Dramatis Personae

We start with an introduction to the available hardware advances and
software tools. It is always desirable to have a system design so strong and true
that it does not depend on any particular technology. On the other hand, it is
usually wise, when designing systems, to create systems that use available tech-
nology. Since it is our intention to build systems, the design considerations that

follow necessarily focus on current technology.

2.1. Bitmapped Screens

A bitmapped screen is a raster display device where each picture element
is under software control. This provides excellent display flexibility. Any char-
acter that can be represented by a pattern of bits can be placed on the screen.
This certainly includes the traditional symbols of mathematics (integral signs,
matrix braces, and the rest). This also encompasses any new symbols system
designers (or users) may find useful. Bitmapped screens are typically capable
of displaying many more characters than the usual 24 lines by 80 characters
Ccrr.}

¥'We are using Sun Workstations(tm) which can display sbout 45 lines of 115 “CRT-sized"
characters at once.

2.2. Pointing Devices
The ability to point to things on the computer screen is the most powerful

new tool in the mathematical manipulation armamentarium.

The usual pointing device is the mouse. A mouse is small box (about half
the size of a pocket calculator) with 1 to 4 buttons on top. A mouse moves easily
on a table top and has rollers, an optical position pad, or magnetic sensors to
keep track of its motion. Moving the mouse gives asynchronous feedback of a
screen cursor position. The mouse movement and buttons are used as input

devices.

A pointing device (mouse, light pen, or finger) can be used to indicate any
point or logical object visible on the screen. An object or point once indicated

can be saved or manipulated subject only to software limitations.

2.3. Menus

A menu is & list of currently active possibilities. It is usually a small window
containing a list of keywords or short command names. A menu can be used to
assist memory or specify @ command. If a user wants to do something with an
object, he points at it and calls up a menu The menu will usuaily contain only

commands that make sense in the current working environment.

There are several different flavors of menus. Constani menus are on the
screen all the time. They are predictable but take up valuable workspace. A
Pop-up menu appears only when the user asks for one. It may cover existing
information temporarily, but it is invisible most of the time. A compromise
form is Pull-doun menu. Pull-down menus have the name of the menu visible
most of the time, but the whole menu is exposed only when the name is selected.
The usual method of command selection from a menu is by mouse (or other
pointing device). Once the menu bas been made active (by moving into it or
requesting it or pulling it down), commands can be selected by pointing. Feed-
back is provided by highlighting. A command is chosen by releasing the mouse
button when the desired command is highlighted. If a menu is used simply as a

memory aid, no command need be issued: no menu item need be selected.

There is a trade-off between short and long menus. Short menus are easy
to scan and don't take up much screen space. But if many entries are active,
some not visible on the short menu, it will be necessary to go through one or

more levels of menu indirection to get to the needed command. Long menus

-4-

tend to have the needed command immediately visible, but a particular com-
mand may be difficult to find in a long list of commands. Moreover, long menus

may cover up too much valuable display space.

An often-touted advantage of menus is that they help prevent command
errors by making only reasonable commands available. It is true that menus do
prevent the “‘syntax error’” mistakes that command languages are prone to.
However, menus promote a sneakier error: the user may mistakenly pick the
wrong menu entry and do something reasonable, but not what he intended.
Worse still, the user may not even notice that the wrong thing was done and
blithely carry on.

2 4. Windows and Icons

Windows can be thought of as paper-thin computer screens scattered on a
desk (the real screen). Windows allow many objects and processes to be visible
and active on the screen at once. Windows may overlap (some may even be com-
pletely be hidden), moved about, exposed, hidden, stretched and shrunk.} In an
AMS, each interesting sub-expressions could be given a separate manipulation
window. There could be several, normally not displayed, windows for infre-
quently needed displays such as command audit trails’ or system status.

One way to let a user know that a window or object is available but not
currently displayed is to leave a reminder on the screen. Icons are windows
replaced by a reminder, a small graphic symbol. For instance, the audit trail
window, when not in use, might be displayed as a postage stamp sized picture of
a ledger book placed near the edge of the screen. An AMS display is a busy place
and icons will make noticeable targets.

2.5. Fonts

A variety of font disciplines and font faces are currently available. Variable
sized (vector) fonts are flexible: they can be grown, shrunk, or stretched in vir-
tually any way desired. Unfortunately, since they are necessarily generated on
the fly (you don't get all that flexibility for nothing), they are slow. Static fonts

¥ There are also strong advocates of screens vtiled” with non-overlapping windows. There is
a tradeoff between having a few completely visible windows and having many partially visible
(or totally invisible) windows. Judicious use of icons, we feel, tips the scale in favor of over-
pping windows.
An audil b'dlisaﬁstofthepreviouscommnndsm'checkpoints.

-5-

are less flexible, but much faster and, if bit-tuned, more attractive. We believe
static fonts are best for most mathematical applications where only a few font

sizes are required.

A range of font faces and sizesis a valuable asset to an AMS display. Tradi-
tional mathematical forms, such as large integral signs, special alphabets, and
small sub- and super-scripts, can be faithfully rendered. Different font styles (or
colors!) are useful in suggesting different mathematical “types’ (for example,

matrices can be shown in bold type and polynomials can be shown in script).

3, User Interface Considerations

Many user interface issues were hinted at above. Now we get more specific

about the ideas driving AMS interfaces.

3.1. Expression Input
Current AMSs primarily use FORTRAN style input, such as:
x**2+2%x+1

A better approach might be to parse the input character by character, for-
matting and displaying the system's guess of what the expression is as it parses.
Aesthetic advantages aside, this technique also avoids errors since the user gets
immediate feedback of what the system thinks he typed in. Figure 1 shows a
character by character example of system response to typing in the above
expression. There are difficulties to overcome in this area, but work is being
done[4]. ‘

Another possibility is to accept user drawn input using a stylus and sensi-
tive pad. The computer then tries to make sense of the user’s scribblings. This
may become useful in the future, but, in spite of a history of attempts, no
current system does an adequate job of processing human drawn mathemat-
ics[5).

3.2. Beginners and Experts

1t is difficult for a system to satisfy both beginners and expert users. The
experts want to be able to specify their commands easily; they know what they
want to do and want to do it as quickly as possible. Beginners, on the other
hand, want much more informative displays to help them find their way through
the system; they are willing trade some speed for some assistance.

,————f‘,—_—_—_—.—-—-—————————_——__.'_—t
Input Displayed expression
x z
. z?
L x ?
2 z?
+ z2+°?
2 z2+2
. z2+27
x z2+ 2z
+ z2+2z +?
1 z2+22 +1
Feedback bitmapped input
Figure 1.

Unfortunately, the amount of help desired is not the only issue (if it were,
novices and experts could both be satisfied with a ‘“‘terse/noterse” flag).
Experts prefer the faster naming conventions in command languages and
beginners prefer the slower, but more helpful, menus[6]. More on this below.

In AMSs there is a second dimension to the the expertise problem: there are
mathematical experts and mathematical novices. In fact, there may be an
inverse correlation between computer-system expertise and math-applications
sophistication.

3.3. Workspace Management

Screen ‘‘real estate’’ is a major concern in AMSs, where several large
expressions (as well as other objects) may be displayed at the same time. The
object of current interest should be displayed prominently. Other objects may
need to be mnemonically accessable (perhaps as icons). The problem here is
that users may focus their attention on many objects over a very small time
period. One approach is to have many objects visible at once with, possibly, vari-
ous levels of completeness. For example, in a window based display, there might
be several windows visible at once: some as icons, some partially covered, and
some completely visible. Each window would take up only a portion of the
screen, allowing the user's eyes to scan the imperfect, but adequate,

-7-

information. Human beings have done reasonably well with messy desk tops for

some time.

3 4. Menus vs. Command Languages

“Factors that increase infarmativeness tend to decrease the amount of available

workspace and system responsiveness.”'{68]

N As suggested earlier: beginners want big informative displays to assist them
in negotiating the complexities of a system; experts know what they want the
system to do and how to tell the system to do it — they simply want it done with

a minimum of fuss.

Both menu-based systems and command-language-based systems have
their benefits. Menus tend to appeal more to novice users because they are easy
to use and require little prior knowledge about the system. A user is
encouraged to explore the system by trying out unknown commands he sees on
the menu of possibilities. Menus help maintain integrity since only commands
relevant to the current situation can be chosen. Command languages are gen-
erally attractive to expert users because they are fast and flexible. Command
languages give users the freedom to type in anything they like to the system.
Command languages also can be easily composed into programs, stored, and

called up as modules for more ambitious programs.

Both have their drawbacks as well. Menus are slower, especially if the
number of choices is large, which necessitates large menus or levels of indirec-
tion (in either case, display is slow and information tends to be obscured). Since
all choices on a menu are valid at the moment the menu is invoked, a mistake in
choosing a menu entry will do samething, but perhaps not what the user wants.
The main drawback for command languages is the large amount of knowledge
required to use them. The user must learn the syntax and command names.
Command languages also discoui’age exploration of the system since a user

must know a command name to try it.

Ideally, an interface would use both menus and a command language and
would allow free movement between them. Novices would be the primary users
of the menus. Menus would be used less and less as a user became conversant
with the command language. Alternatively, command-language-written modules
would become part of the menus — giving users some control over the system
abstraction level. An expert might use menus asan occasional memory aid or to
explore an unfamiliar part of the system[7].

3.5. Man-Machine Interaction

Norman[8] refers to four stages of man-machine interaction: Intention,
Choice, Specification, and Evaluation. For man-AMS interaction, there are
apparently five different stages: Intention, Choice, Argument Selection, Com-
mand Setting, and Evaluation; where Argument Selection and Command Setting
are a finer view of specification. If a user wants to change the subscript on a
displayed variable, that is the intention. Choice is the act of settling on a
sequence of activity to accomplish the intented change. Continuing out exam-
ple, indicating the particular expression the user wants to replace the subscript
with is the argument selection. Giving the command to replace the subscript
and indicating where the offending subscript is located is setting the command.
Looking at the result to see what happened is evaluation. Each stage has
different goals, techniques, and problems.

8.5.1. Forming an Intention

The user somehow decides what she wants to do. This is the most amor-
phous stage. What a user wants to do is influenced by knowledge of the system
being used and other analogous situations[9] she has been involved in. The user,
in this stage, sets up goals.

9.6.2. Choosing an Action

The user decides what command or command sequence will achieve the
intention. The user's knowledge of system limits what she thinks she can do
and, therefore, what she really can do. The user may already know a good com-
mand sequence for the current goal, or she may figure one out, or she may have
one suggested. The last possibility shows the most promise for interface assis-
tance. Menus can serve to remind or suggest appropriate commands. A help

command might serve the functionin a command language milieu

3.5.3. Picking the Arguments

The user indicates the (proposed) command erguments. Here the user has
decided on a course of action and indicates the objects to be manipulated. She
may indicate the objects by naming them or by pointing to them. Pointing
versus naming was previously discussed (Beginners and Experts).

3.5.4. Setting the Command

The command is picked and ezxecuted. The user evaluates system feedback
and something is actually done. An expression is moved, changed, evaluated, or
otherwise manipulated. Again, the command may be pointed at, for instance by
mouse and menu, or named by, perhaps, keyboard input. It is at this stage that
system would probably want to "check'poin'c."t the session activity. The system

can return to a checkpoint or repeat a checkpointed command.

3.5.5. Evaluating the result
Is this what the user wanted to happen? This is the stage where the user

decides what to do next. Did the previous command do expected (or at least
interesting) things? Was the user’s goal satisfied? Or, has the goal been
deflected? The procedure returns to the intention stage and a new goal is

chosen.

9.8. Other considerations

A collection of small, but not necessarily minor, things.

3.8.1. Modes

A system should be as “*modeless’ as possible. Commands or mouse clicks
should always have the same meanings regardless of the situation. This isn't
always possible, but should striven for[10]. If more than one mode is necessary,
the modes should be as obviously different as possible. Menus ameliorate some

of the problems with modes by presenting only relevant current commands.

3.8.2 Undoing
It must be possible to undo things. Any system that does not let a user

recover from unexpected results can hardly be considered friendly. It is also a
good idea for un-undoable or hard-to-undo things to be more difficult to do. One
way to make dangerous things more difficult to do is to require confirmation.
Confirmation might be ‘really delete your filespace? (y or n)" from the key-
board, or might require more than one click of a mouse button. Another way is
to put the items in a flashing red menu and start up some klaxons.

fo checkpointing, we mean that a new display /command is in efTect and the previous one is
remembered by the system. -

-10-

3.8.3. WYSIWYG

What you see is what you get. By this we mean two things: the display must
reflect the current state of the displayed expression and a picked sub-
expression must exist as displayed. The first is obvious. An example of the
second is: picking thez in1/=2 should yield z, not z~!. The user should not have
to figure out what expression she's picked; it should be instantly apparent.

9.8.4. Moving between input devices

System design should minimize the need for the user to move between
input devices (for instance, keyboard and mouse). This can’t be completely
avoided, but can be diminished.

4. An Nustrative Example: The "*Safe™ Editor

A visual (screen) editor for mathematics will be a direct result of 2 properly
designed AM user interface. The user will see typeset quality mathematics and,
since subexpressions are manipulable objects, be able to cut and paste existing
expressions to form new expressions. Normally, pieces of existing expressions
can be shipped off to the AMSs algorithms for simplification or evaluation. As an
example, we explore a variation on Andersen’s “Cosmetic Editor"'[11]. The Safe
editor allows only changes to an expression which do not change the semantics
of the expression. It would be used for cosmetic operations like rearranging
terms. This editor would allow a user to rearrange a displayed expression to suit
himself (but only consistent with the original sermmt'.ic:s)fr It assumes everyday
mathematical domains where operators like “4+" and *“*' are associative, and

their operands commute.

Informally, the user picks arguments (subexpressions of the displayed
expression) and puts them into a “'bag”. The bag attempts to make sense of its
contents by traveling up the expression tree until it finds a common operator
for the bag's contents (possibly the expression root). Once the arguments are
chosen, a command is chosen from a (pull-down) menu, and a destination for the
command is indicated. Finally, the user “doesit” and the new expression is

checkpointed. The new expression is made the current display.

T Most AMSs display in canonical form. This is probably necessary as an internal form, but
not particularly desirable for output. Since it's unreascnable to expect the system to always
¥now the best form to display an expression to a particular user, the user must have the
ability to organize his expressions (and his thoughts) a3 he wishes.

-11-

‘The safe editor edits a displayed expression, in place, in a window on a
mouse driven bitmapped display. Pull-down menu names appear along the top
of the window as appropriate. Any mouse button held down over a menu name
will allow the user to pull the menu down; releasing the button over a command

chooses the command.

Three classes of commands are given directly from the mouse by combina-
tions of buttons being held down (figure 2).}

| Command Button Pattern
Right oce
Left 800
Up oee
Down L 1 10
Pick 0e0
Escape 800
Undo o8 e
Mouse Button Commands
Figure 2.

The pick command picks a destination or an argument to be put in the bag. The
doit commands, right and left, are used to place the contents of the bag to the
right or left of the destination. Up and down are the tree traversing commands.
They allow the user to move up and down the expression tree from a picked
sub-expression. Escape empties the bag and returns to the previous checkpoint.
A user would do this to abort a partially completed operation. Undo returns to
the checkpoint before the last. This is useful when the user has just done a doit
(creating a new checkpoint) and doesn't like the result.

The patterns of mouse buttons are intended as graphic mnemonics for the
commands. Pick and escape are roughly duals. Left and right are as expected.

Up and down are more or less mnemonic (harmless experimentation would clear

*The required mouse button virtuosity in this editor is questionable. [t has not been tested.

-12-

up &ny confusion between them). Undo seems to reflect what people do when
frustrated with the mouse.

The basic editing loop is:

pick (bag)
fcommand}
{{destination}}
fdoit}

That is, any number of picks followed by a command, an optional destination,

and a doit.

Each iteration of the loop goes through the previously mentioned five stages
of interaction (intention, choice, argument selection, command setting, and
evaluation). In the example that follows the accent is on what happens in the
last 3 stages (argument selection, setting the command, and evaluating what
happened).

A simple example will make things clearer. The expression to be edited is
y/z +z. We want the to be the first term. We move the cursor over the
expression (possibly traveling up or down the expt;ession tree) until = is
displayed in a reverse video box. We pick z as the argument (it goes into the
bag) by pushing the center mouse button. The bag contents are highlighted in
the expression by drawing open boxes around the sub-expressions that are in
the bag. Next, we pull down the command menu and choose “move’’. Then we
move the cursor over i/ 2 (the destination) and left doit. The expression is now

z + y/z and we're done.

The Safe mathematical expression editor, even in the simple form
presented, does many things right. It is designed to use the new graphics and
display devices. The combination of menus and commands given directly from
the mouse would probably be easy for beginner to learn, but somewhat faster
than a pure menu driven system. The ability to point at objects is used
effectively in this editor. Especially good are the two kinds of higlighting feed-
back (the open boxes drawn around “bagged” sub-expressions and reverse video
highlighting on sub-expressions under the cursor). Since the Safe editor works
in a single window with pull-down menus, display space is not a problem. It
expresses the five stages of interaction in a reasonable fashion. The editor is
largely modeless, supports various levels ot “undoing”, and requires no use of

the keyboard (presumably, direct input was made outside the expression

-13-

editor).

The simple version of Safe presented above illustrates several principles
and techniques, but it is inadequate as a full-ledged mathematical expression
editor. The Safe editor was designed to be simple and safe so this criticism is
unfair, but, since this is an illustrative example, we make it anyway to show how
the editor might be extended. It would have to give the user the ability to save
expression forms or use previously created expression objects. This implies a
more complex window arrangement since the user may want to have several
objects available on the display at once. A directly usable command language
would be needed to give the user command access to the AMS underneath the

expression editor.

5. Conclusion

The strengths of the above basic technologies (high-resolution screens,
pointing devices, high-powered graphics software, and display space manage-
ment) can be used to give the user of an AMS a powerful but natural interface.
The high-resolution bitmapped screens can display more and and can do it
better than fixed-font CRTs. The most useful new tools for users of a mathernati-
cal manipulation interface are the pointing devices. Graphics software (includ-
ing windows, icons, menus, and fonts) give the user display quality and clarity
previously unavailable in computer-based systems.* Software that supports both
menus and a command language encourages system exploration while allowing
speedy manipulations. Space management techniques give the user enough, but
not too much, information to work with.

An AMS with a powerful and natural interface would be useful enough to
replace pencil and paper as the primary mathematical manipulation tool. Given
additional progress in the other areas of knowledge and algebraic algorithms,

the next step for is a more intense consideration of man-machine interaction.

% Color displays are available, but ata higher cost and usually lower spatial resolution. It will
be interesting to see what use can be made of them.

-14 -

References

L

2

10.
11.

John K. Foderaro, Typesetting Macsyma Egquations, December 1878. MS
report (UC Berkeley).

William A. Martin, Symbolic Mathematical LaboratoTy, January 1967. PhD
Thesis (MIT). .

J. K Millen, CHARYBDIS: A Lisp Program to Display Mathematical Ezpres-
sions on Typewriterike Devices, August 1967. ACM Symposium on Interac-
tive Systems for Experimental Applied Mathematics.

John K. Foderaro. Personal Communication.

William M. Newman and Robert F. Sproull, Principles of Interactive Com-
puter Graphics, McGraw-Hill Book Company, 1879.

Donald A. Norman, Design Principles for FBuman-Computer Mmierfaces,
December 1983. CHI 1983 Conference on Human Factors in Computer Sys-

tems.

Tony DeRose and John Gross, Ned/Narc Users’' Monual, November 1983.
Berkeley Computer Graphics Laboratory.

Donald A. Norman, Four Stoges of User Activities, October 1883. Workshop
on Intelligent User Interfaces.

Frank Halasz and Thomas P. Moran, Analogy Considered Haormful, March
1982. Conference on Human Factors in Computer Systems.

Larry Tesler, “The Smalltalk Environment,'* BYTE, pp. 90-162, August 1881.
Carl Andersen, A Cosmetic Ezpression Editor, 1983. Unpublished

Manuscript.

