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1. Introduction

Algebraic manipulation systems (AMSs) have been developed to put scme of
the burden of mathematical expression understanding and manipulation onto
machines. The display (the way a user sees the expressions) is useful if it can
display a good quantity of mathematical notation using a readily understandable
representation of the expression. The power of a notation tool can be judzed by
the richness of the symbols and their ease of manipulation.

DREAMS is a way of representing mathematical expressions. The represen-
tation supports display and manipulation of typeset-quality mathematical expres-
sions on a computer bitmap display. In a display environment that supports
variable font/symbol sizes the display representation must include screen posi-
tion, expression sizes, and font information.

DREAMS® is designed as the display method for a sophisticated interface to
an Algebraic Manipulation system. The display representation allows expressions
to be quickly and accurately displayed in an aesthetically pleasing form. Since
subexpressions are manipulable objects, it facilitates interactive user manipula-
tion of the expression (see section 5 for more on sub-expression indicating). An

—
We use the term ‘DREAMS’ to refer both to the “ExpBox™ data-structure and co the
display system that uses it.
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interface using DREAMS would be an improvement over the traditional diznlay
technology, paper and pencil, since the user could not only see his work in clear
form but also command the underlying AMS to perform the computation an
expression denotes, or some other transformations incidental to the object being
displayed.,'

3. Previous Mathematical Display Systems

AMS display techniques have improved with advances in display technology,
but in the case of widely distributed access, the quality has usually been tied to
typical time-sharing terminal equipment and fixed-character displays. Figure 1
shows the improvement in mathematical display on computer screens in the last
25 years. The “display” of a mathematical expression in FORTRAN is simply a
code listing. The only expression display consideration given in FORTRAN was
the (vast) improvement of using linearized infix over program segments. William
Martin used vector-based (stroke) display devices[l], but this system was rot
exploited because of cost and technical complications. Robert Anderson
developed syntax rules for expression dimensioning in the course of his work in
parsing hand-printed mathematics2]. CHARYBDIS, MathLab, and Project
MAC (Macsyma) brought expression display to the masses by using standard
fixed-character CRTs[3,4,5]. Michael Genesereth explored the semantics of
subexpression indication[6]. John Foderaro made use of high-resolution hard
copy display technology[7].

2.1. CHARYBDIS

CHARYBDIS (CHARacter-composed sYmBolic DISplay) was the output
interface of MathLab[3,4]. It was designed for use on typewriter-like devices
(tele-typewriters, line-printers, and fixed-character CRTs). It used a small char-
acter set (the “FORTRAN set”: upper case, decimal digits, and +-=/.,:()*).
Large symbols, like sigma for summation, were built up of several other charac-
ters. Alternate symbols, like the Greek alphabet (see figure 2), were spelled out.

There is generally an ambiguous mapping between objects displayed and mathematical
intentions. In text this is conveyed by comments. AMSs often miss this point. For ex-
ample, f' (z)=0 could be a statement of fact concerning specific f and z, or an equation
to be solved for f and z, or both. It could denote the class of functions [ satisfying the
equation, or only one of them. The prime could denote differentiation with respect to z
or another variable, or something else entirely. A proper solution to the display problem
must handle not only expressions, but functions, domains, etc.
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FORTRAN (c. 1960) -vs- Macsyma (c. 1968 - present) -vs- DREAMS (1984)
Figure 1.

CHARYBDIS also displayed binary tree structures. CHARYBDIS was a precur-
sor to the display systems of Macsyma, Reduce, and other systems.

2.2. William Martin and Symbolic Mathematical Laboratory

William Martin, at about the same time as Anderson’s expression .dimension-
ing work and Millen’s CHARYBDIS Lisp display (for MathLab), built the Sym-
bolic Mathematical Laboratory (SML). SML had the most ambitious display sys-
tem of recent AMSs. While building SML Martin addressed most of the basic
problems in displaying mathematical expressions. He formalized mathematical
expression dimension structure (see figure 3)[8]. His CRT display was quite
sophisticated: He handled several special symbols (non ASCII), displayed
different font sizes, and had good character positioning. He also addressed
rmulti-line dimensioning and expression breakpointing‘. Martin explored
input/output for various devices (teletype, crt, plotter, light pen) and introduced

Breakpoints are the “sensible”” places to break a long expression (see section 5.1.1).
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Martin’s summation and integral dimension formats

Figure 3.
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the powerful idea that lists (i.e. Lisp trees) are equivalent to expressiozs {and
sub-lists are equivalent to subexpressions).

Martin’s subexpression selection technique involved a light pen and tree
traversal by numeric ordering of expression nodes.

Some limitations of SML were the allowance for only two different font sizes
for characters (a base font and a font half the size), different font types (like
Greek, Roman, bold, script, ... ) were not used, and SML also ran slowly using a
data link between expensive machines (in 1968 —~ performance would be much
better and cheaper in 1984){1].

2.3. Macsyma

Martin’s SML went through several iterations after being transferred to the
Macsyma system. While Macsyma's expression display is a distinet improvement
over 1 dimensional displays (like FORTRAN), it should perhaps be categorized
as a “1.5 dimensional” display. Macsyma uses fixed character size terminals for
output/display, and so cannot properly display large symbols (like integral signs
or Sigmas). It is forced to build up large symbols using fixed size characters (see
figure 1). Similarly, Macsyma's display cannot shrink symbols in exponents or
subscripts.

Other AMS displays of the 1970’s and early 1980’s (Reduce and Maple, for

instance) are similar.

Macsyma users select sub-expressions by a fairly painful encoded walk down
the expression tree[5] (see figure 4).

2.4. Michael Genesereth and Circling Subexpressions

Michael Genesereth proposed using a light pen [6] to indicate sub-expressions
on a screen by drawing circles around them. This avoids the 'part hopping’ of
Macsyma 2nd is flexible to the extent that you can circle anything you want and
then let the program try to make sense out of it. It certainly seems easy to use,
siisough it appears it was never fully implemented. Genesereth planned to have
the expression editing program figure out which sub-expression was indicated by
taking the largest sub-expression completely inside the circle. Users would have
to be careful not to cut any corners when circling an expression. He later sug-
gested heuristics that would assume that if a certain percentage of an expressicn
was circled then that must be what the user had in mind|8}.
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Figure 4.

Circling is too free (see figure 5). It became necessary to develop (many)
heuristics to figure out what the circled subexpressions mean.

The freedom of circling creates topological problems, although alternate
selection systems seem to create other topological problems.

2.5. John Foderaro and Photot

John Foderaro built Photot, a system that takes Macsyma internal forms
and generates EQN‘ commands that can be used to “typeset” (on a Benson-
Varian, for instance) a Macsyma session (see figure 8). The only drawback is that
the user at the terminal during the Macsyma session has a difficult time seeing
what is going on (he sees a stream of EQN commands instead of graphical
mathematics notation)[7]. The main use of Photot has been in preparing already

EQN is a UNIX preprocessor for converting a linear mathematical notation language to
typesetter instructions.
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tested command sequences for use on slides and for inclusion in papers

(c2) x+y/z-w"3:
LEQ (d2)

y over z "+ x =7

w sup 3
.EN

(c3) *integrate(x"3/y.x.0,%inf):
.EQ (d3)

{ int from O to 1inf ( x sup 3) ~"g"

x } over Yy
.EN

Photot EQN stream for Macsyma expression typesetting
' Figure 6.

In theory one could interpose the EQN and associated processors between
the Macsyma system and the user display for real-time typesetting. This has until
recently been difficult because most display terminals have had insufficient
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resolution for the use of font and size variations, and EQN is poorly suited to an
interactive environment — it is usually used via UNIX “pipes’’. A system with
similar formula manipulation , TEX, had similar problems. TEX is comparable
to EQN plus TROFF9, 10, 11}.

Another part of Foderaro's work was his implementation of a more sophisti-
cated expression-breaking that takes into account binding powers at possible
break points (see figure 7). We discuss breakpoints later (see section 5.1).
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Foderaro's binding powers break points
Figure 7.

2.6. Exploratory work

This section describes two of our experiments which familiarized us with

Macsyma, and lead to our final design.
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2.6.1. Numbering Convention Interface

Macsyma has a numbering convention that allows a user to traverse the
expression tree and pick subexpressions to operate on (see figure 3)[5]. We built
a simple interface to Macsyma’s number convention subexpression selection. The
interface allowed the user to traverse the tree semi-graphically by using keyboard
keys to advance along the expression (right), retreat (left), go in (deeper into the
tree), or go out (toward the root expression). The subexpression in current focus
was displayed in reverse video on a conventional CRT. Substitution of subex-
pressions was also allowed. These routines used the UNIX curses package[12] and
were usable by any standard terminal with cursor addressing. This program used
existing Macsyma functions (dpart, substpart,...). This interface was an improve-
ment over the tedious and obscure Macsyma functions it was using, but still
suffered from the lack of flexibility inherent in its tools (the Macsyma functicns).

2.6.2. EQN on the BBN BitGraph

We also built a crude expression displayer specific to the BBN BitCGronh.
The routines used John Foderaro’s Photot program. Photot converted Macsma
internal forms into EQN command sequences (see section 2.5). We piped tle
Photot forms through EQN and then attempted to display the generated bit poi-
terns on the fly. This was definitely the wrong approach. It was slow — 1 to 5
minutes per page. The selection of troff fonts, including scientific symbols, w5
useful (though new glyphs would have been painful to introduce).

3. Criteria for a Display for an Algebraic Manipulation System

Before going further, we would like to lay out design criteria for display svs-
tems. These are somewhat vague but provide some guidance. Any display sys-
tem (whatever the technological constraints) should address the followinz four

criteria.

3.1. Adequate Mathematical Representation

The display, at a minimum, must be capable of displaying things that are
recognized as mathematical expressions by users. Ideally, the display will be seen
as an example of excellent mathematical representation: clear style, aesthetica!!

pleasing, and highly readable.
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3.2. Traditional Mathematical Forms

This is obvious but necessary. Traditional mathematical forms are the stan-
dard mathematics found in journals and textbooks. There is less than total
agreement about what is standard; one journal’s standard is another’s variant.
But the display should use some reasonably accepted standard and should gen-
erally not require users to acquire a new formalism. In cases of ambiguity, new

notations may appear.

The bitmap screen display and mouse pointing device we use with
DREAMS, could be considered a new display/manipulation formalism, replacing
the movement of pencil over paper. This is non-traditional and therefore a disad-
vantage — however, we hope the benefits of this new manipulation formalism will
prevail[13].

3.3. Completeness

Ideally, the display system will display any form of mathematical expression
any user desires. Realistically, the system should be able to display a larze
enough subset of mathematics so that a user isn’t told very often that what he
wants to do is impessible or is given an unreadable display. Furthermore, the
display should provide a level of formality (at least as an option) which removes
some of the ambiguity of traditional mathematics.

3.4. Usability and Interaction

The display internals must be maintainable and extendible to new forms.
The interface should be flexible enough to allow extension and user preferences.
The display should be sufficiently fast as to impose an inconsequential delay for
the user. A user should be able to specify his favorite display conventions (see
The Future, section 7).

4. A High Level Look at DREAMS

This section explains our program in increasing levels of detail.
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4.1. Overview

DREAMS expects expression input in the form of Lisp symbolic expressions
(S-exprasions)‘. These S-expressions could be provided by a separate parser of
user input or generated by machine computation. The input expression is pro-
cessed to form a tree of print-boxes. Once the print-box tree is formed,
DREAMS must figure out how to display the expression sensibly on the screen.
A strategy for displaying the expression is chosen using the size and extent of the
outermost enclosing box. The tree of print-boxes is traversed printing the leaves
(and doing any other chores).

4.1.1. The Input Expression Tree

As mentioned above, the expected input to DREAMS is an S-expressicn
representing the expression to be displayed. The S-expression is a Lisp (list) ver-
sion of an expression tree. The passed S-expression can have other informaticn
attached to it (unique labels, font requests, type information, etc). The =-
expression represents the form the expression will have, not necessarily tl.e
semantics. That is, dz/dy will be given to DREAMS as a quotient form, {/ (z
dy), not something like (derivative z y).

DREAMS currently follows the Macsyma convention and displays products
involving negative exponents as rationals (if possible); from the ‘“what you see 3
what you get” point of view, this is a mistake — negative exponents should ©:2
displayed as negative exponents and rationals as rationals. Form decisions ot
that level should be made by the the AMS/parser. DREAMS should know as It-
tle mathematics as possible. DREAMS can work given Macsyma forms, like
((mplus simp) zy) or given Xi “genrep” forms, like (+ zy). Other expression for-
mats can be accommodated easily.

4.1.2. Forming The ExpBox tree

The input S-expression is converted into a tree of “ExpBoxes”, by a data-
driven process. Each possible operator, like “+ " or “integrate”, has a format-
ting function attached to it, like “plus-box” or ‘“‘integrate-box”. This process
works recursively (depth first), boxing up subexpressions until it gets to atomic
sub-expressions, like 1" or “x".

f T .
For example: an input, z+ y, would be given to DREAMS as one of the two current im-
plemented forms, (+ z y) or ((mplus simp) z3).
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Consider a short example using (+ z y) as input. The “+” indicates that
DREAMS must call a special function, say plus-boz * that arranges its arguments
with “+'s (and little spaces) separating them. Each argument can be an arbi-
trarily complicated expression. A skeleton ExpBox is formed enclosing the entire
expression. It can't be fleshed out until more is known about the
arguments/sub-expressions inside it (“+", “x”, and “y” in this case). ExpBoxes
for the arguments are created. In this simple case all but the real screen position
can be immediately specified. Now that the dimensions of the InnerBoxes (the
boxes enclosing “x”, “‘+ ", and “y") are known, the OuterBox (the box contain-
ing “x + y") can figure out its dimensions and exact screen position. The
OuterBox can then tell the InnerBoxes their screen offsets relative to the Outer-
Box. Of course, had “x” been a more complicated expression, the process would
have needed to recurse down to the atomic level with InnerInnerBoxes telling
InnerBoxes about their dimensions and InnerBoxes telling InnerInnerBoxes about
their screen offsets (see figure 8).

lz3+ y
= N

I + Y

Tree of boxes for Expression
Figure 8.

What really happens is the “‘+ " calls a more general function, n-ary-op-boz, with “+”
as an additional argument (see section 4.1.1).
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4.1.3. Screen Display Strategy

Once the ExpBox tree is complete it must be fit in its allotted space on the
screen. If the whole expression fits on a single line then we simply write it out.
Often, expressions will be too long to fit on a single line; then they must be bro-
ken into several lines. The screen offsets of some subexpressions must be
changed. If the entire (possibly broken) expression will fit in the allocated win-
dow then everything is fine. If it is still too large then we need to hide some of
its subexpressions inside a single symbol, shrink the expression, reformat it,
and/or page through it. For a discussion of these strategies, see section 5.3
(Figuring out How to Fit It on the Screen).

4.1.4. Traverse the ExpBox Tree and Spray Bits on the Screen

Once an ExpBox tree that will fit on the screen is formed, the expression
can finally be displayed. The ExpBox Tree is traversed adding InnerBox screen
offsets to OuterBox screen offsets to get the proper screen position (see figure ).
All subexpression ExpBoxes are logically represented on the screen (and therefore
available for selection, highlighting etc.) but only the atomic subexpressions at
the leaves of the ExpBox tree are printable strings.

In the above example, the (+ z y) subexpression box exists, but subexpres-
sion boxes associated with ‘“x, “+ ", and ‘‘y” are the ones used for printing. If
(+ zy) were the entire expression being displayed then the OuterBox would have

$ig, 1 (X3 (Y] ]

offsets from the screen base coordinates. The InnerBoxes, “x”, “+ ", and “y”,
would then have offsets from the OuterBox.

4.2. The Hierarchical DREAMS Representation for Mathematical
Expressions

Trying to make sense of a random string of symbols (that may represent a
mathematical expression) without an underlying structure to organize them
would be difficult. The central idea that DREAMS expresses is the correspon-
dence between sublists (in a Lisp representation) and sub-expressions (in a
mathematical expression).

4.2.1. DREAMS Objects

DREAMS is a hierarchical tree of ExpBoxes (sub-expressioa boxes). A
subexpression ExpBox is considered the “offspring” of the expression ExpBox
that contains it and it inherits default values from its ancestors. If a slot (or
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InnerBoxes and OuterBoxes
Figure 9.

(+ (" x 3) y) !

Sub-lists and sub-expressions
Figure 10.
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expected data-field) in the current ExpBox of interest is empty then its ancestors
are checked to find the inherited slot value'. For example, all expressions are
handed the font information of their parents; this font information may be used
as given or used as a base from which to grow (for an integral sign), to shrink
(for an exponent or subscript), or to coherently change alphabets.

4.2.2. The Tree of ExpBoxes

Each displayable expression and sub-expression have corresponding
ExpBoxes. Each ExpBox is an object that can be referred to {both on the screen
and internally). Any level of subexpression, from individual atoms to the entire
displayed expression, can be referred to.

These are the basic ExpBox slots (see also figure 11).

~ dimension:
x + y startx: 16
starty: 8
height: 4
i depth: 4
\\ width: 9
\ in: nil
be—P | out: b00013
font:
name: ROMAN
height: 9
width: 9
type: normal
L_ exp: 3
An ExpBox
Figure 11.

An ExpBox:
Dimension contains expression size and screen position information:
start_z — the horizontal offset of the left side of the center line relative

This is not currently true. The ancestors are not checked; slots are given the values of
their parents and permission to change them should circumstances warrant.
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to the enclosing ExpBox.

start_y — the vertical offset of the left side of the center line relative to

the enclosing ExpBox.

height — the height of the box above the center line.

depth — the depth of the box below the center line.

width ~ the width of the box.
In is a list of the labels of ExpBoxes contained by the current ExpBox
(subex pressions contained by the current expression).

Out is the label of the ExpBox that contains the current ExpBox.

Font contains font information:
name — the name of the font this ExpBox thinks is active.
dimensions — the basic width and height of characters for this font.
type — any special things to be done with this font (like making it
bold).

Ezpression is the lisp representation of the expression enclosed by the
current ExpBox. Different representation formats are accepted (currently,
Macsyma forms and Xi forms).

Figure 12 shows a small expression and its associated ExpBoxes.

5. Details of Expression Handling in DREAMS

The general strategy, as explained in the previous section, is to create a tree
of dimensioned (boxed) expression-objects, figure out how to fit the expression
represented by the tree of expression-objects clearly on the screen (possibly
breaking, unrevealing, or otherwise altering the appearance of the expression),
and traverse the expression-object tree actually putting the bits of the display up
on the screen. While putting the expression on the screen, other things (like
attaching actual screen properties to the sub-expressions) can be done.

This section covers details of expression display such as how to fit large
expressions on the screen, how precedences are dealt with, special characters, and

subexpression selection.
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A small expression all ‘boxed up’
Figure 12.

5.1. Figuring out How to Fit Expressions on the Screen

Given a neatly packaged expression we must figure out some way to put it
nicely on the screen. There is no single best way to deal with all cases of large
expressions. Screen real-estate and human comprehension are limited, so the
expression may have to displayed in one of several different forms. Even assum-
ing the existence of a display screen that is somehow expandable to accommodate
an expression of any size and complexity, it is unlikely that anyone would want
to see a ;v\all sized display of small characters — complete perhaps, but hardly
accessible. The display must sometimes choose between clarity and completeness
of expression.

If the expression is less than a screenful in width and height then it czn be
simply displayed. If the expression is more than a screenful in width then it may
be broken up (at breakpoints) and fit on the screen. If an expression takes rore
than a screenful to display then there are several options. The expression can be
shrunk, unrevealed, paged, or scrolled([14].

5.1.1. Expression breaking

The goal of large expression breaking (other than to fit the expression on the
screen) must be to maintain clarity of expression. There is no perfect break algo-
rithm because different things are clear to different people. As far as the details
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are concerned it is largely a matter of taste. But some general principles con be
applied(7, 10].

“Breakpoints’ refer to places where an expression may be broken creating a
minimum of confusion. Low-level/High-binding operators like +, -, and * are
obvious choices. A break near the root of the expression tree of a high-level

operator is generally preferable.

A major is the first line of a multi-line expression. The minors are the rest
of the lines (all indented from the major). The major, in general, establishes the
maximum width for all following lines. The minors are arranged under the major

with appropriate breaks.

Macsyma has undergone various changes in display. Its current ome is an
altered version of Martin’s algorithm. [5] Briefly, if the algorithm can fit the
expression on one line it centers it, otherwise the algorithm breaks the exprecsion
at the first acceptable point beyond 2/3 of a page width. All minors are indented
the same amount so Macsyma can generate its display on the fly (see figure 13),
avoiding a potentially costly back-track display algorithm.

LEFTC - RIGHTC
LHS RLIS

Macsyma Expression Breaking (Majors and Minors)
Figure 13.

Foderaro uses a slightly different algorithm. [{7] Foderaro’s improvement,
briefly, is that operator binding powers are taken into account. Figure 14 shows
how Foderaro’s breaking algorithm would break the same expression into major
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and minor lines.

! LEFTC
LS RIGHTC RHS
! |
a * b
I
s c
|
+ d
I
+ e
1
I

Foderaro Expression Breaking (Majors and Minors)
Figure 14.

This produces better display but may be more costly. In the context of ¢T-line
batch typesetting, the quality is worth the expense.

Neither display program affects the order of expressions much from the
Macsyma simplifier output. This can lead to some moderately peculiar expres-
sion display, even though Macsyma is generally better than alternatives.

5.1.2. Expression Shrinking

On devices supporting many font sizes, shrinking may be a feasible way to
display large expressions. If the expression is only a little larger than a screenful,
shrinking would be almost unnoticable. Even massive shrinking of expressions

might be useful as a mnemonic or preview in an interactive system.

5.1.3. Expression revealing

In some cases, expressions that turn out to need more than one line (or r:cre
than one page) may best be displayed by summarizing them. This is also czlled
unrevealing. This is (perhaps) a precise form of the way people talk zbout
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unwieldy expressions. A mathematician, talking about a sum of many terms,
might well refer to it as “a sum of many terms”. It might be well to display an
enormous sum of terms:

sum_of_97_terms (completely unrevealed)
or as

a+ b+ ¢+ 94 _more_terms (head revealed)
or as

94 _terms + x+ Y+ 2 (tail revealed)

rather than running the expression over several lines or pages. The choice of
methods might be determined by what the user or the system thinks the interest-
ing part of the expression will be. Head unrevealed, perhaps, if the sum was
expected to be dominated by the first few terms. Tail unrevelation might be sug-
gested if the error term is the interesting part.

The user, of course, should be able to force expansion or alteration of any
summarizations (possibly creating multi-page display). In journal articles, really
large expressions are sometimes dealt with by re-naming common subexpressions.
This is beyond the scope of our project. Sometimes these expressions have
enough structure that an alternate display format is used — for example, a 2D

table of coefficients in a bivariate polynomial.

5.1.4. Multi-page display

There are three versions of multi-page display: Paging, scrolling, and scan-
ning. Combinations of the three are a possible.

Displays are often long and may take several times the size of a screen to
completely display an expression. In paging the large expression is displayed one
page a time, waiting for the user to request the next page (--more-). Macsyma
at MIT-MC is initially set for this mode. Paging is normally uni-directional.
Serolling may be bi-directional. The broken expression rolls by the user (prob-
ably with a mechanism for the user to halt or pause the scrolling). Macsyma on
VAX UNIX initially set for this mode. Secanning is left/right scrolling on an
unbroken expression. The large expression is viewed a piece at a time as if
through a moveable window. This has not been implemented on any system we
are aware of. Unrevealing might be used to avoid multi-page displays altogether
(though at the cost of expression details).
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Commands are usually short, but not always (e.g. definitions of progr=::s).
The system should be designed to support short commands while allowing long
commands with a minimum of fuss.

5.2. Special Characters

Currently, characters in the available fonts are simply drawn by the graphics
package in the desired size and location. Special characters like horizontal and
vertical lines and radical symbols are drawn as (a sequence) of appropriately sized
lines using the drawing routines in the graphics package. Boldfzace is achieved by
redrawing the symbol one pixel to the right.

5.3. Precedences and Parentheses

All operators have special precedence properties attached to them. Needed
parentheses can be inferred by comparing the precedence of the InnerBox opera-
tor with the precedence of the OuterBox operator.

5.4. Subexpression Selection

Each ExpBox that contains a valid subexpression is selectable and, there-
fore, manipulable/highlightable. Each ExpBox has its window coordinates
attached as a property to the ExpBox name. For more on subexpression selec-
tion see section 7 (The Future).

Non-highlightable boxes (like the outer box containing parentheses inserted
to preserve operator precedences) are only indirectly manipulable by focusinz on
the expression containing it or the expression inside it.

6. Implementation
8.1. DREAMS in Action

Figure 15 shows an expression on a Sun Workstation {with other processes
present). In Figure 16 DREAMS displays an unlikely matrix. Unrevealing is the
basic way DREAMS handles large expressions (see figure 17). DREAMS can be
used in place of Macsyma'’s usual display (see figure 18).
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8.2. Tools

A benefit of Lisp as a programming language is that it encourages the design
of tailor-made higher-level data-types and functions. To create a higher level
development environment a record package for the DREAMS/ExpBox data-
structure, an ExpBox pretty printer, and many macros were written.

6.2.1. Record package

The record package was designed to meet the needs of this implementation.
It automatically defines the appropriate field access macros when a record type is

declared.

6.2.2. Debugging aid(s)

ExpBoxes are represented internally as nested lists. A box pretty priater
was designed to allow easy inspection of the slot contents of each ExpZox by
displaying the box information in a 2-dimensional form rather than in the I-
dimensional Lisp format (see figure 19). The pretty printer works equally well on
ordinary CRTs and bitmap displays.

6.3. The Sun Workstations

DREAMS was implemented using Sun Workstations® with Core graphics
software and Franz Lisp[15]. Sun Workstations are Motorola 88000-6801C-based
machines with optical mice and bitmap displays (1000x800). The current main
memory configuration is 2 megabytes.

We had hoped that this would be a good test environment to evzliate
DREAMS. This turned out to be partially true. Franz Lisp worked well almost
immediately, but the Sun workstations and the Suncore graphics were sommewhat
frustrating. As Berkeley was a Beta-test site for Sun, we suffered through several
bugs and software changes. The Sun Workstations seem fairly stable now
(March 1984).

—
Sun Microsystems Incorporated.
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=> mle form3

(00046 b00013)

=> b00013

({364 18 17 0 0)
(00017 bO0030 b0O0O031)

nil

(ROMAN (16 16) normal)

nil

((mplus simp)
((%Zintegrate simp) #x #x O xinf)
{(¥integrate simp)
gnplux simp) 8y 8z)

s}
((mplus simp) ((mexpt simp) 8x 2) 1))))
=> see b00013

et font: ROMAN (normal)
h=18 | height: 16
| | width: 16
~[0,0]~ ~l~
| | out: nil
d=17 i in: (H00017 bOOO30 bOOO31)
+ —t
w=364 exp:
((mplus simp) ((¥integrate simp) 6x 8x O xint) ((Xinte
nil
=> b00017

((106 17 17 0 0)

(p00018 b00022 b00024 bOO023 b0002S b00026)
b00013

(ROMAN (16 16) normal)

nil

((¥integrate simp) &x 9x O %inf))
=> see b00017

ot font: ROMAN (normal)
h=17 | height: 16
I ] width: 16
~[0.0]~ Y ~|~ ~
| | out: b00013
d=17 | in: (b00018 bO0D22 bO0024 bO0023 bOOO25S b00026)
e e e
w=106 exp:
((%integrate simp) 8x &x O Xinf)
nil
=> b00018

((24 12 12 0 0) nil bOOO17 (CREEX (24 24) normal) nil {)
=> see b00018

bt font: GREEK (normal)
h=12 | height: 24
| i width: 24
~[0,0]~ ~|~
| | out: b00017
d=12 | in: nil
+ s e o
=24 oexp:
{

a list representation of ExpBoxes and a pretty-printed ExpBoxes
Figure 19.

8.3.1. Suncore

The SunCore graphics routines{16], an augmented version of the ACM core
specification is a decent minimal graphics package. SunCore is written in C and,
for our purposes, it had to be accessible from Franz Lisp. Now, the entire Sun-
Core graphics library is usable from Lisp on a Sun.
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Probably the worst SunCore non-bug fault, from DREAMS’ point of view, is
that, in complying with ACM standards, SunCore does all computation using
floating point operations. This slows things down considerably. The SunCore
documentation looked pretty good, but did not always correspond with the way
functions really worked. A few documented functions turned out not to exist.

Being a test site, we went through experimental releases of SunCore. Each
release usually involved several function and argument changes. This forced us
to fix bugs in formerly bug-free code.

6.3.2. SunFonts

At first the vector fonts provided in SunCore looked good. There were five
different basic fonts (including Greek/Scientific) and each was displayable in any
desired height, width, and orientation. They worked pretty well in toy applica-
tions and can be used (carefully) for demonstrations.

The font stretchability didn't come free. The font quality was poor (thick-
ness, spacing, and size were all uneven). Parentheses were particularly unruly:
they displayed much larger than they were told to. Character size inquiry func-
tions in SunCore did not correspond accurately to text screen postions. Since
characters were generated on the fly, the display was slow. Characters didn’t
seem to be constrained to fit into the space they are assigned. It was usual for
characters to crowd together or to be too far apart. Over all, the Sun fonts con-
vinced us that we needed some high quality, pre-generated, character forts for
speed and beauty.

6.3.3. Frans Liszt

Franz Liszt on the Suns (Motorola 88000/68010) worked well. Lisp code
developed on Vaxes (780/750) ran and compiled on the Suns without alteration.

7. The Future

DREAMS is intended as the basis for a new user interface for algebraic

manipulation systems.



7.1. Subexpression Selecting

Subexpression selecting is the foot-in-the-door leading to expression editing.
The expression trees are further decorated to include the actual window position
of each subexpression ExpBox. This is done after the ExpBox-tree is built (and
after any large-expression alterations have been made). Screen coordinate pro-
perties are added in a separate traversal (though it makes sense to do this during
the display phase).

An ExpBox is chosen with a pointing device (a mouse on the Suns). The
uppermost ExpBox under the mouse cursor is highlighted as feedback. The
highlighted/chosen ExpBox is changed by moving the mouse or by issuing tree
traversal commands.

7.1.1. Mice as Pointing Devices

Mice are admirably suited as pointing devices in AMS systems. Since subex-
pression ExpBoxes are objects and know their screen positions they can be
selected by mouse cursors (or other pointing techniques/devices).

7.1.2. EXED

Using a data structure similar to DREAMS (but limited to a few types of
mathematical structures), Richard Anderson wrote a mouse-driven skeleton of an
expression editor. It successfully demonstrated the usefulpess of subexpression
highlighting and the mouse as a subexpression selector. He extended the
representation and subexpression highlighting to include basic expression evalua-
tion and editing. He relied on a prototype version of SunCore that is no longer
supported|17].

The first use of DREAMS is as a display structure. A logical extension is to
use DREAMS as the basis for editing expressions. There two kinds of editor to
consider. A structural editor that does what the user tells it to regardless of
whether the resultant expression makes any mathematical or other sense, or an
editor that has a semantic component (or access to one) and limits the user to
mathematically sensible expressions.
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7.1.3. Expression Re-arrangement

If subexpressions/ExpBoxes can be cut and pasted onto each other, then
only the changed portions (sub-trees) of the display should have to be redimen-
sioned. Their true (new) screen positions will be re-figured as they are put up on
the screen.

Should the original expression semantics be preserved? This is limiting but
safe. It also would require some (simple?) mathematical knowledge in the display

system(18].

7.1.4. Editing Problems

Invisible operators (°,*,...) have no symbol on the screen and may or may
not have an associated Expbox. This make them difficult to indicate. Re-
arrangement of expressions is also a problem. How are the arguments of n-ary
operators shuffled around? Distributivity of the operator must be checked at some
point. If a symbol is selected, say z, and altered, should that change be global or
local?

7.1.5. Menus and Commands

An editing interface should use both menus and a command language and
allow free movement between them. We believe novices would be the primary
users of menus. Menus might be used less and less as a user became conversant
with the command language. Alternatively, command-language-written modules
could be incorporated into the menus — giving users some control over the system
abstraction level. An expert might use menus as an occasional memory aid or to
explore an unfamiliar part of the system{13].

7.2. Integration into a Window Package

There are many uses for windows in mathematical expression display and
especially in mathematical expression editing. A graphics tool{16] that displayed
and manipulated expressions in graphics sub-windows while accepting input in a
command sub-window is a first cut. Of course pop-up windows for interesting
sub-expressions and unreveals would be nice. Menus will have a place in the
command/manipulation language(13]. -



7.3. System Support
A status area that reports system load, garbage collection, and other infor-
mation would be useful.

A history display of the last several commands (or the last several ‘interest-
ing’ commands) would also be useful. History would probably have a shortened
version of the relevant commands in a window. The history area could be used
to re-issue previous commands as well as a mnemonic.

Related to the history is the Audit Trail. An audit trail is a record of the
user’s every move (probably in executable form). Synthetic audit trails or user
command files could be created and loaded.

7.4. Input/Output Options

Eventually other forms of input (other than keyboard and mouse/select) will
be explored. Possibilites are light pen and finger for pointing, and hand written
input handling.

Displaying input is another area to look at. Input might be parsed character
by character, formatting and displaying the system’s guess of what the expression
is as it parses. Aesthetics advantages aside, this technique avoids errors since the
user gets immediate feedback of what the system thinks he typed.

Various forms of output should be integrated into a DREAMS-spawned sys-
tem. EQN file, screen bit-dump, Laser printers, multi-monitors.

7.5. Personalization and Extensibility

The system should accept an initialization with various user options.
Journal/personal display preferences (font style, indentation/break conventions)
could be reflected. Users should be able to define thresholds for dealing with
large expressions (request reveal/unreveal levels, force breakpoints,... )-

There should be a mechanism for introducing new (alternate)
svmbols/functions and their associated display routines.

7.6. Parting Shots (not really the future - comments on the present)

Running interpreted on a Sun Workstation, DREAMS will display a simple
one line expression in about 5 seconds, more complicated expressions take
corresponding longer. Considering that an AMS takes seconds or minutes (or
hours ...) to create a displayable expression, this is “real time”’. DREAMS should
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be easily portable to machines other than Sun Workstations (assuming bitmap
displays). Only a few percent of the routines are system or machine dependent,
and those few percent are carefully modular.

8. Conclusions

DREAMS is a representation for displaying mathematical expressions on bit-
map displays. It decorates an expression tree with display information, including
screen position (relative and absolute), expression (and sub-expression) size, and
font information — all necessary in a variable sized character/symbol display
environment. Each sub-expression is a manipulable object. Each operator is an
object with associated display /formatting routines. DREAMS forms the basis for
an intelligent display environment for mathematics using current advances in

display technology.
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