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ABSTRACT: We describe the design and single chip implementation of a small data cache
memory and associated controllers. The chip can be used as a building block of a multiprocessor
system, positioned between the main memory bus and an individual processor. It implements an
ownership-based cache consistency protocol. The chip has been designed to be interfaced to the

MultiBus? system bus and the Motorola 68000 processor. In this paper, we present our cache con-
sistency protocol and its evaluation, and the chip architecture, design decisions, and implementa-
tion details.
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1. Introduction

Advances in integrated circuit technology make it possible to achieve even denser levels of
integration. However, bigger chips do not necessarily mean faster systems. The limited informa-
tion that can flow across a chip's pins per unit of time, the pin bandwidth, remains the fundamen-
tal bottleneck. A way for microprocessor architectures to take advantage of the increasing
transistor density, while reducing pin bandwidth demands, is to place more memory on chip for
instruction and data caches. We already see the next generation of commercial microprocessors
dedicating some of their transistor resources to on-chip instruction memories (e.g., Motorola

68020).

Modern microprocessors achieve a level of performance that is competitive with many com-
mércially available minicomputers. A very high performance system can be constructed at low

cost by building it from multiple microprocessors. In this paper, we adopt an architectural mode]
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based on a small number of microprocessors {from four to twelve) connected to a shared memory

through a system bus.

On-chip caches in a multiprocessor system require some mechanism for maintaining con-
sistency across the caches, ie., at no point in time should the entries in different caches for the
same block of memory have different values. These mechanisms are called cache consistency pro-
tocols. The performance of a shared memory multimicroprocessor will be critically dependent on
system bus utilization and memory system latency. Cache consistency protocols should be
designed to minimize their affect on these aspects of system performance, while still keeping the

caches consistent.

In this paper we describe the design and rapid prototype implementation of an integrated
snooping data cache, a single chip system consisting of (1) a data cache memory, (2) a cache con-
troller that interfaces with the processor, and (3) a “‘snooping controller” that monitors the sys-

tem bus. The cache and snoop controllers together implement a cache consistency protocol.

In the next section, we describe the project’s starting assumptions and intended goals. In
section 3, the multiprocessor cache consistency problem is described. We present our cache con-
sistency protocol, and compare it with other candidates for implementation. Section 4 describes
the chip architecture and the interactions among its major components. The implementation
details are given in section 5. In section 6, we review the design methodology employed and the
implementation lessons learned. The current status of the implementation is given in section 7,

and future directions are discussed in section 8.

2. Assumptions and Goals

The design and implementation of the integrated snooping data cache was undertaken by a
group of students (the authors of this paper, nominally led by Professor Randy Katz) who partici-
pated in Berkeley’s VLSI Implementation Seminar in the Spring of 1984. The course had been the
basis of the RISC [PATTS81, PATT83] and SOAR [UNGA84| implementation efforts in previous

years.



Software development remains a difficult problem for multiprocessor systems. An inexpen-
sive multiprocessor workstation would be a good starting point for software experimentation. To
get programmers to use such a workstation, even its uniprocessor performance must be competi-
tive with existing workstations. The workstation offers an additional incentive in that program-
‘mers can exploit the parallelism inherent in multiple processors should they wish to do so. To
facilitate multiprocessor application development, some data sharing among processors should be

supported by the hardware.

Thus, a basic assumption is that a multiprocessor system built from a small number of fast
processors, connected together on a shared memory bus, would be an interesting research system.
Such an architecture represents an evolutionary, rather than a revolutionary, path to multiproces-
sor systems. The single pathway to memory, in conjunction with the desire for high performance,
dictated that caches be associated with each processor. We have assumed that write sharing
occurs frequently enough that programmmers will not want to deal with it in software. The

hardware will support write sharing.

The primary goal was to implement a single chip system that would contain a small data
cache memory, cache controller, and snoop controller. The immediate objective was to build a
rapid prototype of the cache chip in an effort to discover the implementation complexity of an
integrated snocoping cache. As such, we were more concerned with functional correctness and
completeness than high performance. All design decisions were heavily weighted towards a quick
implementation. To make the rapid prototype immediately useful, the Intel MultiBus was chosen
as the system bus and the Motorola 68000 was selected as the target processor. This gave us the
opportunity to build a multiprocessor system quickly, primarily with off-the-shelf parts, and to
collect critical system design parameters for the future design of a single chip processor with on-

chip caches.



3. Multiprocessor Cache Consistency

3.1. Conslstency Issues and Protocols

A Snooping Data Cache is a data cache system whose control includes a bus monitor, which
is called the Snoop. Besides servicing its own processor’s requests, the cache monitors system bus
transactions and may perform operations based on these external requests. The level of sophisti-

cation of the snoop control varies with the cache consistency protocol it implements.

Three kinds of consistency protocols have been proposed that use a snooping cache. A
write-through strategy |[AGRAT7| writes all cache updates through to the memory system.
Caches of other processors on the bus must monitor bus transactions, and invalidate (or copy to)
any entries that match when the memory block is written through. A processor's performance is
degraded whenever it performs a write, because of the additional latency of writing through to

memory.

A second strategy is called write-first [GOOD83, THAC83|. On the first write to a cached
entry, the update is written through to memory. This forces other caches to invalidate a match-
ing entry, thus guaranteeing the writing processor that its holds the only cached copy. Subse-
quent writes can be performed in the cache. A processor read will be serviced either by the
memory or by a cache, whichever has the most up-to-date version of the block. Snooping caches
implementing this protocol are more complicated than those implementing write-through, because
they must service external read requests in addition to performing invalidations. Note that
write-first incurs an initial write to memory even when a memory block is not being shared. This
represents an extra memory write if subsequent processor writes are directed to that block

because of the copy-through to memory.

The third strategy, a version of which we have implemented, is called ownership (e.g.,
[FRAN84]). In this approach, a processor must “own” a block of memory before it is allowed to
update it. Ownership is acquired through special read and write operations. By thus predeclaring

an intention to update a portion of memory, the extra writes exhibited in the above protocols are
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avoided, because the updating cache does not need to signal the invalidation to the other caches
in the system. However, additional bus transactions may be incurred if the processor does not
correctly predeclare its intentions. Reducing the number of necessary transactions improves sys-
tem performance by reducing bus utilization, thus making the bus available to more processors,

and avoiding memory system latency.

Some subtle differences exist among the proposed protocols, independent of the strategy
employed. For example, how does memory know that it is not supposed to respond to a bus
request? In some variations, memory is inhibited by the cache that will respond. In others,
memory is smart enough to remember that it does not own the requested block. Another issue is
whether globally requested blocks are returned to memory. For example, both [GOOD83] (write-
first) and [FRANS84] (ownership) require that the cache return a block to main memory after it
has been accessed by another processor. The Berkeley Protocol is based on ownership, owning

caches inhibit memory, and owned blocks are kept in the cache.

3.2. The Berkeley Ownership Protocol: Concepts and Examples

Before describing the protocol, some cache terminology must be introduced. A block is a
logical unit of memory consisting of one or a small number of words. It is identified by its
address, and is the unit of transfer between main memory and the caches. A copy of a block’s

contents can simultaneously reside in main memory and/or in several of the cache memories.

A cache entry is a physical slot within cache memory that consists of a data portion, a tag,
and a state. It is analogous to a page frame in a virtual memory system. The data portion holds
the cached copy of a memory block. The tag is the portion of the block address that is used by
cache’s address mapping algorithm to determine whether the block is in the cache. Different
blocks can be mapped to the same cache entry, and the tag is used to distinguish among these.
The state encodes the state of the data portion of the cache entry, which is determined by the

ownership protocol. The four possible state values are: Invalld, UnOwned, Owned



Exclusively, or Owned NonExclusively.® To understand the values, we must introduce the

concept of ownership.

A copy of a memory block can reside in one of a cache's entries. To own the block bestows
on the cache the right to update it by updating the entry’s data. Ownership also makes the cache
responsible for providing the data to other requesting caches and for updating main memory when
the data is replaced in the cache. If the state is Owned Exclusively, then the owning cache
holds the only cached copy of the block. Thus, local updates can occur without informing the
other caches. Conversely, a state of Owned NonExclusively implies that other caches have
copies and must be informed about updates to the block. Both states imply the obligation to
fulfill the ownership responsibilities. The UnOwned state carries neither rights nor responsibili-
ties for a cache. In this case, multiple caches may have copies and main memory is the implicit

owner. A brief summary of the implications of each state are given in Table 3.1.

A state of an entry changes values in response to a system bus or processor operation that
affects the entry’'s validity or exclusiveness. The system bus operations are the conventional bus
Read and Write, augmented with special versions that help implement the protocol. A brief
description of these operations is given in Table 3.2. A more complete description of each opera-

tion will be given in the next section.

Table 3.1 -- Summary of Cache Entry States

State Description
Invalid does not contain useful data.
UnOwned contains a valid block, possibly shared among other caches; can-
not be written locally without acquiring ownership first.
Owned Exclusively the entry’s block is unique, therefore data can be updated locally;

its data must be given to any requesting cache and (eventually)
flushed back to main memory.

Owned NonExclusively || the entry’s block is owned, but it cannot be updated without in-
forming the other caches.

® States are shown in boldface, while Bus Operations are shown in italics. In addition, new concepts are introduced
in italics.



Table 3.2 — Bus Operation Summary
Operation Description

Read a conventional read, gives a cache an UnOwned copy of the
block; the data may be provided by a cache owner rather than
by main memory.

Write a conventional write, causes main memory to be updated and all
cached copies to be invalidated; only issued by 1/O devices and
other bus users without caches.

Read-For-Ownership like a normal read except that the requesting cache becomes the
exclusive owner after the read completes.
Write-For-Invalidation a quick version of the conventional write; need not entirely up-

date main memory, but is guaranteed to invalidate any other
cached copies; main memory will be updated correctly later when
the (owned) block is flushed from its cache.

Write-Without-Invalidation || main memory is updated, but any cached copies are kept valid;
used for flushing owned blocks to memory, but not necessary for
correct operation since a normal Write could be used; having the
extra operation avoids unnecessary invalidations.

We can now present some examples to show how the protocol behaves for different processor
requests in various states. Each of the following four figures shows the states of different caches
containing copies of the same block both before and after the operation. We adopt a three letter
abbreviation to indicate the state of the entry. The abbreviations are: INV for Invalid, UNO
for UnOwned, EXC for Owned Exclusively, and NON for Owned NonExclusively. All
entries with an “A” next to their state contain the same data. A dotted line indicates that data

was sent along the system bus. Each diagram will now be explained in turn.

Figure 3.1 indicates a processor read request being fulfilled by main memory. The Cache
Controller of the requesting processor noticed that its entry was Invalid, so it signaled a Read on
the system bus, which was handled by main memory in the usual fashion. The new entry is
marked UnOwned, since it now contains a valid but read-only copy of the block. Notice that
another cache already had a copy of the block. Since that cache did not own the block, it was not

required to respond to the request.

Figure 3.2 depicts a processor read request in which the block is supplied by a cache and not

by main memory. The Cache Controller of the requesting processor noticed that its block was

-7-



INV: Invalld UNO: UnOwned EXC: Owned Exclusively NON: Owned NonExclusively
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Figure 3.1 — Processor Read on Invalid Data
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The Cache Controller in Cache N misses and sends out a Read request over the system bus to get
the data. Main memory, the implicit owner here, replies to the request. The data (“A”) travels
along the system bus (as indicated by the broken line), and is placed into an entry in Cache N. This
entry is then marked UnOwned. Note that although Cache £ had a copy of the data requested, it
was not the owner and did not need to respond.
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Figure 3.2 — Processor Read on Invalid/Exclusively-Owned Data

The Cache Controller in Cache N misses and sends out a Read request over the system bus to get
the data. Cache 1, which owns the data, must respond to the request and supply the data. The
data (“A") travels along the system bus (as indicated by the broken line}, and is placed into an entry
in Cache N. This entry is then marked UnOwned. Note that Cache ! must change its entry for
“A" to Owned NonEzclusively, since it no longer contains a unique copy of A.

Invalld and sent out a normal Read request on the system bus. The leftmost cache’s Snoop
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Controller detected that the read was for a block that it owned. It therefore inhibited main
memory from responding, and sent the data over the system bus itself. In addition, its snoop
changed the entry’s state to Owned NonExclusively, because another cache had been given a
copy of the block. This other cache marks its copy UnOwned, as before. If additional requests
are made for the same block, the owning Snoop will continue to supply the data but will not need

to change its local state again — it can remain Owned NonExclusively.

Figure 3.3 shows a processor write being handled by the rightmost Cache Controller. Since
that cache has a valid copy of the block, it does not need to perform a Read-For-Ownership to
acquire the data. It can ‘“steal” ownership by sending a Write-For-Invalidation over the bus and
then updating its copy locally. When the Snoops in the other caches see this write, they will
invalidate their local copies of the data. The rightmost cache can mark its newly updated entry
as Owned Exclusively, since it is now guaranteed to contain unique data. If the entry’s state
had originally been Owned NonExclusively rather than UnOwned, the same procedure would

have been followed.

The last example, figure 3.4, is again a processor write request, but here the requesting pro-
cessor does not have a copy of the block in its cache. Therefore its Cache Controller must do a
Read-For-Ownership to obtain the data before it can update it. As in the previous example, the
rightmost Cache Controller changes its newly written entry to Owned Exclusively while the
other caches invalidate their copies. Any further writes to this block can now be performed

locally without any system bus traffic.

3.3. The Berkeley Ownership Protocol: Detalled Description

. We will now present the protocol in more detail. The protocol will be described in terms of
two independent finite state machines: the Cache Controller and the Snoop Controller. We will
describe each in turn. The Cache Controller is primarily responsible for its own processor’s use of
the cache, interposing itself between the processor and memory. In addition, it assists in main-

taining multiprocessor cache consistency: it must update the state of the cached block whenever it
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Figure 3.3 — Processor Write on Valid UnOwned Data

The Cache Controller in Cache NN has a current copy of the data (“A”), and so does not need to per-
form a read. It “steals” ownership with a Write-For-Invalidation, which causes both Cache 1 and
Cache 2 to invalidate their local entries containing A. No data travels along the system bus. Cache

N modifies its entry locally (to A’), and the entry is then marked Owned Exclustvely, since it con-
tains a unique copy of A'.
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Figure 3.4 - Processor Write on Invalid Data

Cache N misses and needs to read the data (“A”). It must also modify this data, so it sends out »
Read-For-Ounerehip request over the bus. Cache 1, the owner, responds (as shown by the broken
line above), and sets its entry containing A to Invalld, because A is about to be updated elsewhere.
Cache 2, noticing the ownership transfer, invalidates its entry for A. Cache N now updates the data
locally (from A to A’) and can then mark its entry Owned Exclustvely, since it now contains 3
unique copy of A'.
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obtains or relinquishes ownership, and it must synchronize its actions with the Snoop Controller
whenever it enters a critical section, e.g., to change an entry’s state bits. The Cache Controller is

not responsible for responding to actions of other processors. This is the job of the Snoop.

3.3.1. The Cache Controller

The Cache Controller’s behavior depends on: its processor’s request (read or write), whether
the data is in the cache (hit or miss), and the state of the cache entry (if a hit). When a processor
read results in a cache hit (see figure 3.5), the appropriate word is provided to the processor. On
a miss, the controller must first find an available cache entry, flushing data back to memory with

a Write-Without-Invalidation if the replaced entry had been owned by the cache. It then issues a

PROCESSOR READ

HIT MISS

OWNED (EXC & NON): UNOWNED
Write-Without- (UNO & INV)

Inv ali‘{/

Read
mark UNO

DONE

Figure 3.5 — The Cache Controller Handling A Processor Read Request

INV: Invalid UNO: UnOwned EXC: Owned Exclusively NON: Owned NonExclusively
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Read for the desired block and changes its state to UnOwned.

On a processor write to a block in the cache, a different procedure is followed, depending on
the state of the block (see figure 3.6). If the entry hit is Owned Exclusively, then the processor
can write to it without broadcasting on the bus. The Cache Controller must, however, obtain
exclusive control of the cache from the Snoop before it does its writing. If the state of the hit
block is Owned NonExclusively or UnOwned, then the Cache Controller must signal to the
Snoops of other processors its intention to write before it modifies the block, so the other caches

can invalidate their matching entries. An Invalid state indicates that the Snoop invalidated the

PROCESSOR WRITE

MISS
NON & UNO: NV: EXC & NON: UNO & INV:
lock from Write-For- Write-Without-

Invalidation

\}Ownemhip

modify the block
mark EXC

snoop Invalidation

DONE

Figure 3.6 — The Cache Controller Handling A Processor Write Request

INV: Invallid UNO: UnOwned EXC: Owned Exclusively NON: Owned NonExclusively




block in response to detecting a Read-For-Ownership or a Write-For-Invalidation from another
processor, after the Cache Controller had recorded a hit. In this case the processor write is han-
dled as though the Cache Controller had originally detected a cache miss. Once again, a block
must be chosen for replacement on a.miss. If the chosen block is owned, then it is written to
memory using Write-Without-Invalidation. The requested block is then read with a Read-For-
Ownership and is updated. Whether a hit or miss, and independent of initial state, the final state
must be changed to Owned Exclusively, indicating that this is the only cached copy of the

block, and that it is writable by this processor.

Some processor reads and writes do not cause bus activity. These occur when a processor

reads a block already in its cache, or when it writes to a block it owns exclusively.

3.3.2. The Snoop Controller

The Snoop Controller monitors the bus for reads and writes from other processors. It
accesses its cache only in response to some other processor’s use of the blocks stored there, and
only to invalidate a block written by another processor or to provide owned blocks to a requesting
processor. In the latter case, it must also change the entry’s state from Owned Exclusively to
Owned NonExclusively. As in the case of the Cache Controller, the Snoop actions depend on
the nature of the bus activity (read or write), whether it recorded a hit or miss on its cache, and

the state of the block.

If the Snoop detects a read on the bus (see figure 3.7), it first determines whether the data
being read is in its own cache. If not (a cache miss), no Snoop action is necessary. If the address
tag comparison results in a hit, the Snoop’s response depends on the type of read (Read or Read-

For-Ownership) and the state of the block hit (Owned Exclusively, Owned NonExclusively,

or Unowned).* If the block is owned, the Snoop must inhibit memory from responding to the bus
read and instead provide the data to the requesting processor. For a block that is Owned

Exclusively, the Snoop must first obtain sole use of the cache memory before responding, since

¢ A hit on a block marked Invalid is equivalent to a miss.

-15-



SNOOP DETECTS A READ

T T

Read-For-Ownership /RCMN
EXC NON UNO INV EXC NON UNO
inhibit inhibit ‘ inhibit inhibit
lock respond lock respond
respond respond

mark NON

DONE

Figure 3.7 — The Snoop Controller Handling A System Bus Read Request

INV: Invalld UNO: UnOwned EXC: Owned Exclusively NON: Owned NonExclusively

the Cache Controller may attempt to simultaneously update some entry. Under certain cir-
cumstances, the Snoop must change the state of the block. If the system bus request is a Read-
For-Ownership that hits, then the Snoop must invalidate the state of its copy. A Read on the
system bus that hits causes the Snoop to change that block’s state to Owned NonExclusively
if it was previously Owned Exclusively. For the other state and bus operation combinations,

no action is necessary. The owning Snoop will respond to the bus request.

The Snoop actions for a bus write are simpler (see figure 3.8). On a cache hit, the Snoop
only responds in the case of a Write or a Write-For-Invalidation. This means that some bus mas-

ter is updating a copy of the block, and the Snoop must invalidate its own copy. If the write is a



SNOOP DETECTS A WRITE

Write & Write-Without-
Write-For- Invalidation
Invalidation
mark INV
DONE

Figure 3.8 — The Snoop Controller Handling A System Bus Write Request

INV: Invalld UNO: UnOwned EXC: Owned Exclusively NON: Owned NonExclusively

Write-Without-Invalidation, then another processor is flushing its cache, and the Sncop need do

nothing. This completes the detailed description of the protocol.

3.4. Comparison and Evaluation

This section describes the trade-offs between several possible cache consistency protocols and
motivates some of the choices we have made. We will present a qualitative comparison between
Goodman's write-first protocol {GOOD83, RAVI83] and the Berkeley ownership protocol. Write-
through [AGRA77] was immediately rejected because it will always generate more bus traffic than
the other two approaches. The adequacy of a given protocol depends on the expected workload;
therefore we examine the protocols under varying degrees of sharing: (1) no sharing, (2) read-only

sharing, and (3) arbitrary read-write sharing.

Both the ownership protocol and Goodman’s write-first protocol are based on copy-back.
Dirty blocks are retained in the cache as long as possible, and main memory is updated when the

block is forced out of the cache. [NORTS82] has shown that multiple writes to the same block

-17-



occur frequently. Thus copy-back, which generates a single memory write, will create less

memory traffic than write-through, which generates a memory write for each cache write.

Unless the processor can explicitly request Read or Read-With-Ownership, the cache must
predict whether a block should be read with ownership because it will be updated later. The cost
of guessing wrong, i.e., not acquiring ownership when a block is read for later update, is an extra
read operation to acquire ownership at the time of the write. Table 3.3 shows that ownership
requires less bbus transactions than write-first if the prediction is always correct, and more
memory operations than write-first if the prediction is never correct. In practice, the actual pred-

iction rate will fall somewhere between the two extremes.

Two possible static prediction algorithms are possible: always fetch with ownership, or

always fetch (first) without ownership. Table 3.4 illustrates the behavior of these two strategies.

Table 3.3 -- Comparison of Ownership with Write-First

Single Write

Write-Without-Invalidation

Write-With-Invalidation
Write-Without-Invalidation

Ownership Ownership
(correct prediction) (Incorrect prediction) Write-First
Read-For-Ownership
Read Read (UnOwned) Write-Without-Invalidation | ¢
Read-For-Ownership Read (UnOwned) Read

First write

Multiple Writes

Read-For-Ownership
Write-Without-Invalidation

Read (UnOwned)
Write-With-Invalidation
Write-Without-Invalidation

Read
First write
Write on flush

Table 3.4 -- Comparison of Static Prediction Strategies

Ownership Ownership
(Read UnOwned) (Read OwnedExclusively) Write-First
Read-For-Ownership
Read Read (UnOwned) Write-Without-Invalidation | 124
Read (UnOwned) Read-For-Ownership Read
Single Write Write-With-Invalidation . . c1 s . .
Write-Without-Invalidation Write-Without-Invalidation First write
Read (UnOwned) Read-For-Ownership Read
Multiple Writes || Write-With-Invalidation . . Cr First write
Write-Without-Invalidation Write-Without-lnvalidation Write on flush
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With no sharing, always fetching with ownership is roughly equivalent to write-first. The actual
performance depends on the percentage of blocks that are read-only, written only once, and wrib;
ten more than once. Recall that owned blocks are written back to memory when they are
replaced, whether or not they have been updated. The protocol does not recognize dirty blocks,
since it assumes that blocks are acquired with ownership only when they are to be updated.
Unfortunately, this generates unnecessary memory writes for read-only blocks that have been
acquired with ownership. This is corrected by a simple extension of the protocol. The state is
extended with a dirty bit, which must be transmitted with the block when ownership is
transferred to another cache. Only owned blocks that are actually dirty are written back to
memory. With this modification, ownership would always require fewer bus transactions than

write-first.

When there is some sharing, always fetching with ownership is not a good strategy. Read-
for-Ownership defeats read sharing by causing other cached copies of the requested block to be
invalidated. Since the Multics results [MONT77] indicate that most sharing is read-sharing, this is

a serious shortcoming.

The performance of ‘“fetch without ownership” is also roughly equivalent to write-first.
Again the actual performance depends on the reference pattern to the blocks in the cache, as well
as the difference in cost between the Write-For-Invalidation and a conventional Write. This stra-
tegy and write-first both support read-sharing very efficiently, allowing multiple copies to proli-
ferate throughout the caches. When the fetch without ownership strategy is employed, the owner-
ship protocol degenerates to a slightly different version of write-first. An abbreviated write is used
to signal the invalidation, rather than a full write, and it is always necessary to flush dirtied

blocks.

It is obvious that the static prediction strategies are insufficient to fully utilize the power of
the ownership protocol. The compiler, which has much more information about how variables will

be used, could pass hints about block usage to the cache. While no analysis of such prediction
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strategies has been made, we expect them to lie closer to 100% correct prediction than to 0%. In

the following, we will assume nearly 100% correct predication.

As was seen in Table 3.3, ownership with 100% correct prediction is an optimal algorithm,
making no unnecessary bus transfers. This holds in the case where no sharing exists, and also

where there is read-only sharing. Let us now examine the read/write sharing case.

Suppose we have a block that is being continually read and updated, as might well be the
case for a test-and-set lock. In the ownership protocol, this block is acquired with Read-for-
Ouwnership and is modified in the cache. If the block is forced out of the cache and is flushed to
memory, then the number of bus transactions is the same as if there is no sharing. However,
requests for this block occur frequently, and it will likely pass to another cache before being forced
out. Thus, updating the block only requires one bus transaction: to read it into the cache initially.
In the write-first protocol, the block is read, modified in the cache, and then written to memory to
invalidate other copies. Since two bus transactions are required to perform the update, write-first

incurs twice the overhead of ownership for read/write sharing.

In summary, the performance of ownership is highly dependent on the cache’s ability to
correctly predict the usage of a block. The degree to which it is possible to make correct predic-
tions is still an open research question. Assuming that correct predictions are possible, we have

shown that ownership incurs less overhead for all cases, especially when sharing is frequent.

4. Chip Subsystems and Their Interactions

In this section, we discuss the function of each subsystem and how it interacts with the other

subsystems of the chip.

4.1. Overview

The snooping data cache system consists of five distinct subsystems (see figure 4.1): a Data
Cache Memory, a (processor) Cache Controller, a Snoop Controller, a Processor Bus Interface,

and a System Bus Interface. Each is described briefly below, and in more detail in the following
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Figure 4.1 — A Block Diagram of the Data Cache Chip

The data cache chip is partitioned into the subsystems illustrated above. Data lines are solid arcs;
control lines are broken. Data transfer between the cache memory and the processor is performed
by the Processor Bus Interface subsystem. Data transfer between the cache memory and the system
bus is performed by the System Bus Interface subsystem. The Cache Controller handles the actual
processor reads and writes on the cache. The Snoop Controller watches the system bus and imple-
ments much of the cache consistency protocol.

subsections.

The Cache Memory is organized as a direct mapped array of 64-bit cache blocks with associ-
ated state and tag bits. This organization was chosen for its simplicity. Additional circuitry
includes tag match logic to determine cache hits, and assembly registers to map 16-bit external

data to and from 64-bit internal data blocks.

The Cache Controller accepts read or write requests from the processor through the Proces-
sor Bus Interface. It queries the cache memory to determine if the requested memory block is
available locally. If not, it interacts with the System Bus Interface to read it from main memory
into the cache. If the processor operation is a read, the Cache Controller delivers the selected

word or byte to the Processor Bus Interface. If it is a write, the word or byte provided by the
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Processor Bus Interface replaces the corresponding portion of the block in the data cache memory.
The Cache Controller also assists in implementing the cache consistency protocol by modifying

the state bits of cache entries in the appropriate way.

The Snoop Controller interfaces to the system bus, monitors bus traffic, and implements
most of the details of the cache consistency protocol. An external read or write request triggers
the snoop to initiate a lookup in the cache. If a match is found, state bits may be changed and/or
the cache block may be written out to the system bus, according to the protocol specifics

described earlier.

The Processor Bus Interface implements the handshake with the 68000 processor bus. It
insulates the Cache Controller from the details of interfacing to the processor bus. Thus, it

should be possible to change the processor bus without affecting the Cache Controller design.

The System Bus Interface’s function is very much like that of the Processor Bus Interface:
the details of communicating with the system bus are localized. Both the Cache Controller and

the Snoop Controller must interface with the system bus.

4.2. The Cache Memory Subsystem

The chip’s datapath is the cache memory subsystem (see figure 4.2). The cache itself is
organized into sixteen entries, each entry containing a sixty-four bit data block (4 x 16-bit words},
two state bits, and thirteen tag bits. The state bits can be modified independently of the data
and tag portions of the cache. The datapath contains two sets of decode circuitry (Adec and
Bdec). On a read, these can be driven independently, but on a write they are driven by the same

inputs.

Data is read from and written to the cache from two 64-bit assembly registers (Aassembly
and Bassembly). On a read, these registers deliver a 16-bit portion of the data to the system bus
or an 8 or 16-bit portion to the processor bus. On a write, they assemble four 16-bit words from

either the processor or the system bus into one 64-bit block and then transfer it to the cache The
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Figure 4.2 — The Datapath
This diagram illustrates the datapath assumed by the Snoop and Cache Controllers.

Processor Bus Interface is directly connected to the Bassembly register, while the System Bus
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Interface is directly connected to the Aassembly register. This organization simplifies dataflow
and pad assignment, but introduces some complexity in control routing. Although the Snoop
Controller only accesses the system bus side of the datapath, the Cache Controller needs access to

both.

The 68000 provides a word address, of which nineteen bits are decoded. The low order two
bits ( Adr[2..1] ) select a word from within the four word memory block. These address lines con-
trol sixteen 4:1 multiplexors/demultiplexors on each side of the data portion of the cache memory.
The next highest four bits ( Adr[6..3] ) select one of the sixteen entries of the cache, and are input
to the decoders. The highest order thirteen bits ( Adr(19..7] ) are compared with the tag portion
of the selected entry. If they match, and if the state is not Invalld, then the addressed word is
hit in the cache and the appropriate match line is asserted ( MatchA or MatchB ); otherwise it is

a miss.

The datapath is accessed via two mutually exclusive read and write cycles. Each cycle
employs a standard two-phase clock. The cycles are distinguished by a special WriteCycle signal,
asserted to initiate a write cycle. The clock phases operate in an identical fashion for both cycles.
During the first phase, Phil, the decoders and word lines are driven. During the second phase,
Phi2, the bit-lines are driven either by the cache cells or the assembly registers. The datapath
timing influences the timing of the entire chip. The simple two phase clock, derived from the
processor’s clock, is used throughout. Every subsystem obeys the standard convention of inputs

sampled on Phil, outputs valid on Phi2.

4.3. The Cache and Snoop Controllers

The signals used by the controllers to access the memory subsystem are also shown in figure
4.2. To begin a processor (system bus) read request, the cache (snoop) controller initiates address
decode by asserting ProcAdrB (BusAdrA)on Phil. The cache (snoop) controller reads into the B
(A) registers by asserting the LoadBData, LoadBTags, and LoadBState (LoadAData, LoadATags,

LoadAState) signals on Phi2. When writing the data and tag portions of the cache, the cache
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controller asserts both decode signals ( ProcAAdr and ProcBAdr ), and writes with WrBData and
WrBTags. Note that the snoop never updates these portions of the cache. However, either con-

troller can change the state. This requires an extra phase to set ( SetAState ) the new state value

( StateValue ) into Astate.

4.4. Interlocks Between the Controllers

Because the Snoop and Cache Controllers operate independently, they contend for access to
the cache memory. Possible sources of contention are classified as read-read, read-write, and
write-write. The datapath has been implemented with a dual-ported read capability to eliminate
read-read contention. Since the datapath is single-ported for write, only one controller can be
active if it desires to write into the datapath. Read-write contention is eliminated by requiring
the controllers to adhere to a separate read cycle/write cycle protocol for accessing the cache
memory. Lastly, write-write contention is eliminated by an interlock mechanism described later

in this subsection.

To illustrate how read-write contention could arise, consider the case where the processor
issues a read request that hits in the cache, and simultaneously, the Snoop detects a Write-For-
Invalidation for the same block. The Snoop needs to change the state to Invalid, while the
Cache Controller needs to read from the cache. Because reads and writes occur on different cache
cycles, the Snoop invalidates the entry only after the Cache Controller has read it. While a con-
sistent view of memory is maintained by the separate cycles, higher level software, implementing
application level locking, is responsible for insuring that one processor cannot read data being

updated by another processor.

Write-write conflicts occur when both controllers need to update the cache at the same time.
For example, the Snoop may need to invalidate an entry while the Cache Controller steals owner-
ship by changing an entry’s state from UnOwned to Owned Exclusively. Besides these
intra-cache write conflicts, there are other inter-cache update anomalies, as figure 4.3 shows.

Therefore, interlocks within and among caches are needed.
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Figure 4.3 — Example of an Update Anomaly

In (a), processors 1 and 2 each have UnOwned copies of the same memory block to which they
wish to write. Under the Berkeley protocol, they must obtain ownership by issuing a Write-For-
Invalidation before the writes can be performed. In (b), the Cache Controllers simultaneously read
and discover that the entries are UnOwned. In (c), they update the state to Owned Exclusively,
and (in sequence) send Write-For-Invalidation requests to the system bus. The respective Snoops in-
validate the entries in their caches. In (d), the controllers now update their caches, which they still
believe to be Owned Exclustvely. An inconsistent state has been reached.

Two interlock schemes are used to prevent write-write conflicts. In the first, the system bus
is used as a semaphore. Before the Cache Controller can update the cache, it must acquire the
system bus. Once it is in control of the bus, no other cache can generate requests on the bus, and

therefore its Snoop is inactive. The bus is released only after the update is complete.

Using the system bus in this way has performance implications. Once a Cache Controller

has obtained the bus, other Cache Controllers are prevented from using it until it has been
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released. This is acceptable as long as the first Cache Controller either requires a data transfer to
satisfy its processor write request or must signal a Write-For-Invalidation to other processors.
Neither is true for updates to Owned Exclusively blocks, since such writes can be done locally.
Figure 4.4 shows how a conflict can arise when a processor writes to an Owned Exclusively

block, and there is an external read request for the same block.

An additional interlock mechanism is needed for writes to Owned Exclusively blocks (see
figure 4.5). We expect write sharing to be infrequent: a processor is likely to write to its Owned
Exclusively blocks more frequently than they will be read by other caches. The interlock has

been designed to be asymmetric on purpose. The Cache Controller frequently wins ties because it

System Bus
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Figure 4.4 — Conflicts with Blocks that are Owned Exclusively

In (a), processor 2's Cache Controller tries to read a block in its cache and misses. Its Cache Con-
troller then issues a Read for the block. In (b}, processor 1 accesses the same block and discovers
that it has a state of Owned Exclustvely. It therefore believes it can update the entry. Simul-
taneously, its Snoop responds to processor 2's Read request, placing the block’s data on the system
bus and changing its entry to Owned NonExclustvely. In (c), the cache controller for processor 2
changes the state of its copy to UnOwned. The Cache Controller of processor 1 updates its copy,
causing an inconsistent state.
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“ProcHas / SnoopWants

“SnoopWants /

Figure 4.5 — Asymmetric Interlock Scheme

The state diagram above shows how the processor (P) and the snoop (S) should act to avoid entering
their crticial sections at the same time. This interlock is only needed when an entry must be updat-
ed but it is Owned Exclusively, since otherwise the processor would have first waited to get the
system bus, thus effectively locking out the snoop. The ProcHas line can be asserted by the proces-
sor right away, as long as SnoopWants is not already asserted, and the processor is safe while in
state P2. The SnoopWants line can be asserted anytime, but the snoop must wait a cycle and check
ProcHas before entering its safe state, S3. Note that the processor is purposely given the upper
hand, since an ordering where the snoop wins first causes some wasted processor actions (such as
rereading the data).

can obtain the lock in the same cycle it is needed, while the Snoop must request it a full cycle in
advance. Thus, there is a one cycle penalty whenever another cache accesses an Owned
Exclusively block. Once the state has been changed to Owned NonExclusively by an exter-

nal access, the owning cache will no longer need to use the interlock.
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4.5. The 68000 and The Processor Bus Interface

The 68000 bus signals can be organized into three functional groups: data, address and con-
trol (see figure 4.6). Word addresses are available on a 23-bit unidirectional bus, of which 19 bits
are decoded by the cache chip. Thé effective address space is 1 MByte. Data is transferred
between the 68000 and the cache chip via a 16-bit bidirectional data bus. When the processor
asserts ~AS, indicating that there is a valid address on the address bus, a high signal on the R/"W
line will signal a read from the cache onto the data bus. When R/"W line is low, the processor is
writing to the cache. The upper and lower data strobes ("UDS, "LDS) control the data on the
data bus. Byte oriented instructions are signaled by asserting either “UDS or "LDS. The appropri-
ate byte should be gated onto the data bus by the data cache or the processor, depending on
whether a read or write was requested. Word addressing is supported by asserting both “"UDS and

“LDS.

The handshake between the processor and the cache chip follows a four cycle signaling

scheme. After the processor has placed a valid address on the address lines, it asserts “AS” low.

Address

—Bw > AL-A23
D0-D15

68000
Processor
"AS
RI'W | To Data
ups
—LDS __, [ Cache
ﬁ DTACK.

Figure 4.6 — 68000 Processor Bus Signals
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If a read, the cache chip provides a word on the data lines, and when valid, asserts "TDTACK low.
On a write, the cache chip updates the word or byte in cache, and then asserts "TDTACK. When
the 68000 detects that "DTACK is low, it removes its request. The cache chip resets the

handshake by driving "'DTACK high.

The Processor Bus Interface lies between the processor bus and the cache memory, and is
controlled by the Cache Controller. It should satisfy a processor read request that hits in the
cache with as few waitstates as possible. In addition, it maps thé 68000 bus signals into a smaller,
simpler set of signals for the Cache Controller. Finally, it plays a major role in the implementa-

tion of the atomic Read-And-Set operation.

The Processor Bus Interface consists of a three state finite state machine, a buffered ‘‘tran-
sceiver” on the 68000 data bus, and some random logic. Figure 4.7 illustrates this module and its

interface to the cache controller.

The default condition of the Cache Controller is to read a block whenever possible. Thus, if
the B decoder is free (i.e., if BusAdrB and there not been raised by the Snoop), and there are no
pending processor requests, then AutoRead is raised and a block is read. The Processor Bus Inter-
face monitors the processor request lines, "UDS, "LDS, and "AS. When one of these lines drops, a
delay circuit is activated that detects when the cache has actually performed a read. The read
takes place while Phi2 and AutoRead are both high, and the detection of a hit is determined on
the following Phil. If the read hits, the data is latched into ProcDataOut during Phil, SendDa-
taOut is raised, and "DTACK is lowered. SendDataOut and "DTACK are asserted until the

68000 removes its request.

In the case of a miss, the ProcReadReq signal is raised to invoke the Cache Controller. The
finite state machine goes into the Execute state, and waits until the Cache Controller has per-
formed the necessary operations for a read. When the Cache Controller raises ProcAck, the finite
state machine moves into the Complete state, the data is latched into ProcDataOut, SendDa-

taOut is raised, and "DTACK is lowered. When the 68000 removes the request, the finite state
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Figure 4.7 — Interaction Between the Processor Interface (bottom)

and the Cache Controller (top)

machine moves into the Ready state again, and all the signals are unasserted. The third state is
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necessary to prevent the false detection of another request.

Processor writes, whether they hit or miss, are handled by the Cache Controller. Upon
receipt of a write-request, the Processor Bus Interface raises the ProcWriteReq signal, transferring
control to the Cache Controller. Thé Cache Controller signals completion of the operation by
raising the ProcAck signal. Notice that the interface to the Cache Controller is much simpler
than the 68000 interface. This reduces the number of lines that must be routed, as well as mak-

ing the Cache Controller PLAs smaller.

The Processor Bus Interface also supports an atomic bus transaction. Due to the design of
the 68000, it is not possible to detect that the processor is performing a test-and-set instruction
before the read request is made. This makes it difficult to implement the operation atomically.
To simplify the problem, we have implemented an atomic Read-And-Set operation within the
cache. The semantics of the operation are to read the contents of a word and set the word to all
ones, atomically. The program can now examine the old contents of the word; if it was zero, then
the process succeeded in obtaining the lock, otherwise it failed and must try again later. The pro-

gram gives up the lock by writing zero back to the word.

The Read-And-Set operation is signaled by the 68000 by issuing a read operation on an

address with the high order address bit high.® Since the MultiBus only supports a 20-bit byte
address space, allocating the high order bit does not reduce the address space. The Processor Bus
Interface detects the Read-and-Set, and passes control to the Cache Controller by raising both the
ProcReadReg and ProcWriteReg signals. In addition, the Processor Bus Interface asserts the Set-
Dataln signal, which forces the ProcDataln buffer to be all ones. Under control of the Cache
Controller, the word is read into ProcDataOut, and then set with the contents of ProcDataln.

The normal handshake is then completed with the 68000.

8 Dedicated address bits could also have been used to distinguish among the different reads and writes of the cache
consistency protocol
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4.6. MultiBus and System Bus Interface

The Intel MultiBus is an asynchronous bus with a 20-bit address bus and a 16-bit data bus.
The bus signals can be grouped into five functional groups, as shown in figure 4.8: address lines
that can address 1Mbyte; data lines for 16-bit word transfers; control lines that implement
memory or 1/O read and write operations, a memory inhibit line and an acknowledge line; bus
exchange lines that include bus clock, priority resolution, bus request, and bus acquisition lines;
and miscellaneous clock, interrupt, and initialization lines. Our cache consistency protocol must
distinguish between two kinds of reads and two kinds of writes.? To have this capability, we have

added an additional line to the control lines group of the MultiBus.

ADDRESS (21)
20 address lines and BHEN

DATA (16)
16 data lines

COMMANDS (7)
read/write commands, XACK, INH and Extra Signal

BUS ARBITRATION (7
BCLK, BREQ, CBRQ, BPRN, BPRO, LOCK and BUSY

MISCELLANEOUS &4
clock, ref, INT, and INIT

4/\\ //\\ //\\ A/\\ //\\
\\// \\/ \\// \\/ \\//

Figure 4.8 — MultiBus Summary

® Write and Write-For-Invalidation use the same system bus signaling conventions.
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There are two types of devices on the MultiBus: masters and slaves. Masters can control
the MultiBus and initiate data transactions. Slaves can only respond to the requests of the mas-
ters. Since the MultiBus is an asynchronous bus, the command and acknowledge lines employ a
four-cycle handshake to effect a data ’transfer. However, the bus exchange and arbitration lines
are all synchronous to the 10MHz bus clock to guarantee the proper priority resolution. There
can only be one master on the bus at any one time, and only one transaction can be taking place
at any given time. This last aspect of the MultiBus allows us to use it as a system wide sema-

phore.

When a master needs to acquire control of the bus, it asserts its bus request lines. If the bus
is idle, it can immediately take control and proceed with its transactions. If not, it must first wait
for the current master to relinquish control and for priority to be resolved among requesting mas-

ters. Once 2 master has control of the bus, no other device will be able to use it.

Both the Snoop Controller and the Cache Controller are interfaced through the System Bus
Interface to the MultiBus. In keeping with our rapid prototype strategy, we employed a MultiBus
Design Frame |BORR84] to accomplish these interfacing tasks. A MultiBus Design Frame is a
collection of circuitry that interfaces directly to the MultiBus and provides a greatly simplified
interface to the circuitry on the inside. The idiosyncratic details of MultiBus data transfer, set-up
times, and bus exchange protocols are hidden from the circuitry. It only needs to deal with the
finite-state-machine-like interface of the frame. The frame also concerns itself with synchroniza-

tion issues between the system bus and the cache clock.

The System Bus Interface generates signals that are high for a single cycle. However, the
Snoop requires that some signals stay high during the entire transaction. For example, the Sys-
tem Bus Interface generates a one cycle SlaveRead signal, whenever there is a memory read
operation on the bus. The Snoop requires the signal to remain high until it has had a chance to
examine it. Set/reset flip-flops are used to hold the signal for the Snoop. They have no effect on

the Sysiem Bus Interface's functionality.
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From the point of view of the Snoop Controller, the System Bus Interface performs three
functions. First, it must signal the start of any external transaction on the system bus. Secondly,
it must inhibit main memory from responding to a read request, should the Snoop determine that
the requested block is owned by its cache. Finally, it must be able to supply the requested block,
located in an assembly register, in response to an inhibited read request. From the point of view
of the Cache Controller, the interface must be able to obtain and release control of the bus, and
to read (write) a block of memory into (from) the assembly register. The signals used for com-

munication between the controllers and the interface are shown in figure 4.9.

The Cache Controller is a MultiBus master. To accomplish a memory read or write the
Cache Controller simply exerts a combination of the MasterRead, MasterWrite and MasterSpe-
cial signals for a single cycle and then waits for a one cycle signal on Master Ack to signify the
end of the tramsaction. A conventional Read is initiated by raising only the MasterRead signal.
If MasterSpecial is also asserted, then a Read-For-Ownership operation is initiated, causing other
caches to invalidate their copies of the block. To flush a block to main memory, the Cache Con-
troller raises the MasterWrite and MasterSpecial signals ( Write-Without-Invalidation. ). If only
the MasterWrite signal is raised, then other caches will invalidate their copies of the block (
Write-For-Invalidation ). Note that the cache never generates a Write operation; these are
reserved for 1/O devices and other bus masters without caches. The MultiBus address and data
to be written need to be valid while the MasterRead or MasterWrite signals are high, and data
being read will be valid as soon as MasterAck goes high. The design frame circuitry is responsible

for obtaining the bus and performing the data transfer.

Since the Smoop is a MultiBus slave, it should not be activated if its local cache is the
current bus master (indicated by HaveBus asserted). Therefore, a SlaveRead or SlaveWrite is
only signaled to the Smoop if another cache has control of the bus (refer to figure 4.9). The
address lines to the Snoop will be valid by the time the SlaveRead or SlaveWrite signals go high.

The dashed line in the figure indicates a reasonable boundary between the System Bus Interface
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Figure 4.9 - Interaction between the Controllers and the System Bus Interface

This diagram illustrates the signals used for communication between the System Bus Interface and
Cache and Snoop Controllers. The Master signals are used by the Cache Controller to initiate a
read/write operation on the system bus (MultiBus). The Slave signals are used by the System Bus
Interface to alert the Snoop to the presence of a read/write operation on the system bus. The Sys-
tem Bus Interface ignores the SlaveAck signal if Inhibit has not been raised. Every signal generated
by these subsystems (with the exception of HaveBus ) is high for a single cycle. The set/reset flip-
flops are required since the Snoop may be recovering from an earlier operation when the next one
begins.

and the Snoop.

The Snoop must generate SlaveAck for every bus tramsaction, even those that are to be
ignored (e.g., Write-Without-Invalidation ), to insure that the System Bus Interface continues to
function in the proper mannmer. This is a requirement of the MultiBus Design Frame, which
expects to be able to answer the command with an acknowledge. However, the Design Frame has

been modified to repeat the acknowledgement on the MultiBus only if the Inhibit line is also high,



signifying that the Smoop was actually going to handle the bus transaction. The Inhibit signal,
once raised by the Snoop, is latched by the System Bus Interface. It is lowered after the external

read request has been satisfied.

Due to the difference between the MultiBus’s 16-bit data bus and the cache’s 64-bit blocks,
the System Bus Interface must provide for the transfer of an entire block atomically. This block
transfer is accomplished through the GetBus and ReleaseBus signals. When the Cache Controller
needs to do a block transfer, it asserts GetBus along with the first MasterRead or MasterWrite.
Once the System Bus Interface has obtained the bus, it responds with the HaveBus signal, which
is asserted throughout the transfer. The Cache Controller then proceeds to perform the four
transfers required in the normal fashion. When they are completed, the Cache Controller asserts

ReleaseBus to relinquish control of the bus.

5. Implementation

In this section, we will describe the detailed implementation of the different functional

modules of the design: the Datapath and the Snoop and Cache Controllers.

5.1. The Technology

We have chosen CMOS as our implementation technology. It is the preferred future tech-
nology because of its potential for high speed at low power. Future implementation services avail-
able to us will support a 2.0 micron N-Well process and a more aggressive 1.25 micron N-Well
process, although only 3.0 micron P-Well technology is currently supported. While we are more
experienced in NMOS design, the rapid prototype in CMOS gave us the opportunity to test our
automated design tools on CMOS (especially the PLA generation tools and design rule checkers)

and to gain design experience with the technology.

5.2. Datapath

While the organization of the cache, e.g., its set associativity, number of words per entry,

pumber of entries in the cache, etc., can have a significant aflect on performance, we have
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assumed a simple organization. Throughout the project, emphasis has been placed on the design
and implementation of the controllers and their interlocks, rather than an aggressive memory
organization. A directed mapped organization was selected because it avoids the complexities and
extra silicon area required by associaﬁve circuitry. The size of the cache was chosen to be 16
entries of 64 bits each, a small, but non-trivial amount of memory on-chip. This allows the
memory array and the control circuitry to fit on a single chip. The entire memory array is 79 bits

wide: 64 bits of data, 13 bits of tag address, and 2 bits of state.

The memory cell was designed to be small and fast. We considered two alternative designs:
the CMOS analogs of the cells used in the RISC I and RISC II [SHER82] processors. The first cell
(RISC 1) contains two read ports and one write port. The cell is written by (1) breaking a feed-
back loop between the input and the output of the cell, and (2) driving the input. This cell is easy
to write, but requires extra control lines running through the array to control the refresh transis-
tor and the extra port. The second cell (RISC II) is also dual ported, but in this case, they func-
tion as both read and write ports. A cell write is performed by activating both ports (WriteAData)
and driving the data and its inverse on the complementary bit lines (see figure 5.1). The second
cell design was chosen because of its smaller size and fewer control signals. The operation of this
six transistor cell was verified through extensive SPICE simulation. The completed cell was 55
lambda by 42 lambda. The time for the cell to be written from the time the word lines went high

until the bit lines were active was 35 ns. The time for a read was 25 ns.

A two ported cell supports simultaneous read access to the cache array for the snoop and
processor cache controllers. The alternative to a dual ported cache is two duplicate tag and state
arrays, which is too expensive in area. The implications of the single ported write, and its effects
on the the controllers, have already been described in section 4.4. Note there is only one situation
where a dual ported write capability is useful, i.e., when the cache and the snoop controllers need
to simultaneously update different state bits. In a future implementation, it might be worthwhile

to design a dual ported write cell specifically for this section of the cache.
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Figure 5.1 — Cache Cell
(Cell cifplot in Appendix 11)

We evaluated both precharged and static cell designs. The precharged memory cell has a
precharge PMOS transistor at the top of each bit line. On a read, the bit lines are first precharged
to a logic one, and then one line is selectively discharged. On a write, after the precharge phase,
write transistors at the base of the bit lines drive the data and its complement on the two bit
lines, and the cell is written by this push-pull action. The precharged pull-up has no real speed
advantage over the non-precharged cell. Although read/write operations are faster, the advantage
is lost because of the need for an extra precharge clock phase. Another disadvantage is the need

to run the precharge clock lines through the array. However, the precharged cell requires less
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power, since the pullup is off during the evaluation phase.

The non-precharged pull-up design is not purely static. It uses a pseudo-static bit line pullup
which consists of a PMOS transistor that has its gate tied to its drain. This pull-up dissipates
more power than the precharged pull-up, since it is on most of the time during cache operations.
However, the power dissipation is not a significant disadvantage, since the remainder of the chip
circuitry is static and dissipates virtually no power. In addition, the pseudo static pull-up elim-
inates the need for extra precharge clock cycles and control lines. For these reasons, we chose the

pseudo-static design of figure 5.1.

Several NOR and a single NAND decoder designs were considered, ranging from full static
to domino. The NAND based decoder (see figure 5.2) consists of a four input NAND gate and a
PMOS pullup transistor with its gate tied to ground. It drives a CMOS buffer, which in turn
drives the word line. Each design was laid out, simulated, and evaluated for area and speed. The
NOR decoder designs were large and are not significantly faster than the NAND decoder. Hence,

we chose the NAND decoder. SPICE simulations indicate that it can drive the word lines in 7 ns.

F 3‘2/4 '_1 aVM/Q word line Wik

Aerec[o]—-'-T——I 8/2 l—4 8/2

AdrDec|1] ————f 8/2 -
AdrDec|2] ————{ [ 8/2
AdrDec|3] ———{ [ 8/2

Figure 5.2 ~ Word Line Decoder
(Cell cifplot in Appendix 11)
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Since the cache was 79 bits wide, the array was divided into two halves of 39 and 40 bits
each. The decoders are placed in the center of the cache array. They are laid out so that each of
four word lines is driven by one decoder. The decoders are nested so that two decoders are driven
by the same address lines. Hence, only two address buses are necessary in the center of the cache.
The two buses service either the snoop or cache controllers, or both in the case of a write into the

cache.

The decoders were designed to drive the word lines. The small size of the arrays made
precharged word lines unnecessary; SPICE simulations of the decoder designs indicated that these
word lines could be driven in a reasonable amount of time. The decoder bus drivers were designed
to allow an address to be driven from the processor side to the system side of the chip and vice

versa. This is done by making the driver support a bidirectional bus. (see figure 5.3).

The assembly registers must be able to assemble four 16-bit words from either the processor
or the system bus into one 64-bit block and then deliver it to the cache. These registers must also
be able to read a 64-bit block from the cache and deliver a 16-bit portion of it to the system bus
or an 8 or 16-bit portion of it to the processor bus. The assembly register cell was designed as a
two inverter cell with CMOS pass gates to perform the various feedback functions (see figure 5.4).
On a write into the assembly register from either processor or system bus, the data are gated to
the correct cell by the appropriate mux (A or B). The bits are stored in an interleaved fashion to
ease the routing associated with the mux. For example, bit 4 of words 0 through 3 are stored con-
secutively. Once the data are gated through the multiplexor, the NoLoad Data signal is
unasserted. This breaks the feedback loop in the assembly register cell by turning off the feedback
transistor. The inverters can then be written without contention for the input node. To read from
the assembly register cell, the NoLoad Data is asserted. This closes the feedback loop in the cell

and establishes a path to the bus multiplexor.

To write from the assembly register to the cache, the outputs of the two inverters in the

assembly register cell are each connected to a pull down transistor whose drain is connected
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Figure 5.4 — Assembly Register Cell
(Cell cifplot in Appendix 11)

through a pass gate to the bit line. On a write, these pass gates are activated by a WrFrom sig-
nal, and the outputs of the assembly register inverters are allowed to put complementary data on
each of the two bit lines. On a read from the cache, these WrFrom pass gates are inactive, discon-
necting the write transistors from the bit lines. Instead, a LoadData control line is asserted which
closes a pass gate connecting one of the bit lines to the input of the assembly register cell. The

NoLoad signal is again unasserted to avoid driving the input node with two signals.

The bus multiplexors (see figure 5.5), Amux and Bmux, assist the function of the assembly
registers by providing a path from the appropriate bus to the assembly registers. These multiplex-
ors consist of two levels of CMOS pass gates that implicitly decode the select signals. The implicit

decoding is accomplished because CMOS pass gates are driven by complementary signals.
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Figure 5.5 — Assembly Register Multiplexor
(Cell cifplot in Appendix 11)

The processor bus multiplexor has an extra level of multiplexors to do the “UDS/ LDS
selection required by the 68000. Hence, the processor side of the cache can deliver the high or low

byte or the entire sixteen bits addressed.

Comparators match the tag data read from the cache array and the corresponding address
bits from the system or processor buses (see figure 5.6). The comparator affects a match line
based on the result of this comparison. The comparator design was constrained by the pitch of the
memory cell. The pitch of the memory cell basically defined the pitch of all of the peripheral cir-
cuitry such as the assembly register, comparator, and superbuffers. The first design we considered

was a distributed NOR gate. This NOR gate consisted of a line running through all of the com-
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Figure 5.6 — Comparator and Match Logic
(Cell cifplot in Appendix 11)

parator cells, and was the output node of an and-or-invert tree driven by the logical equation (A
AND "B) OR ("A AND B). This type of comparator cell requires A, “A, B, and "B to be routed

through the middle of the cell. Unfortunately, given the pitch constraints, this was not possible.

Hence, we selected a design which is based on the familiar crosscoupled inverters, where the
inputwlines drive the gate of one pull down and the source of the other. In CMOS, there is no need
for pull-up resistors on the input nodes of this circuit. However, since the output node must be
driven through a pass gate, drivers on the inputs are necessary. The output of each of these com-
parator cells is inverted to provide the appropriate polarity, and then drive a pull down that is
part of the distributed NOR gate which runs the width of the tag array. The Match line is the
output node of this distributed NOR gate. It is pulled up by a pseudo-static PMOS device with its

gate tied to ground.

5.3. Implementation of the Snoop and Cache Controllers

This section contains a description of the implementation of the Snoop and Cache controll-

ers. This implementation proceeded through the following stages:
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1) Detailed description of protocol

2) Analysis of protocol for critical sections
3) Initial datapath design

4) Initial description of finite-state machines
5) Final datapath design

6) Final descriptions of finite-state machines
7) Timing characteristics

8) Functional simulation

9) CMOS implementation

5.3.1. A Detalled Description of the Protocol

A detailed description of the protocol is given in Appendix 1. This description was used as a
basis for the analysis of the protocol for critical sections, and for the preliminary descriptions of
the datapath and the finite state machines (FSMs) implementing the Snoop and Cache Controll-
ers. This analysis is necessary to insure the atomicity of the actions of the controllers in response

to requests from the Multibus and the associated processor.

Looking ahead, the similarity between the Cache Controller’s responses to write and Read-
And-Set requests indicates that those tasks can be combined in that controller’s FSM. This is no
accident. The Read-And-Set primitive was designed after we realized that its implementation was

practically free.

5.3.2. Analysis of the Protocol for Critical Sections

There are two resources for which the Snoop and Cache Controllers can contend: the two
cache memory decoders, and the cache memory contents. Contention for these two resources

were analyzed separately. A discussion of contention for these resources appears in Appendix 2.

Since a controller can write to the cache memory only when in a critical section, a simple

scheme could be used to avoid contention for the memory decoders: a simple oscillator (WriteCy-
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Cache is bus master? Yes | No | No | No | No
Snoop in critical section? - - Yes | No | No
Cache in critical section? - - No | Yes | No
WriteCycle? - No | Yes | Yes | Yes
Cache can read Yes { Yes | No | No | No
Cache can write Yes | No | No | Yes | No
Snoop can read No [ Yes | No | No | No
Snoop can write No | No | Yes | No | No

Table 5.1 — Resolving contention for the cache memory decoders

The Snoop and Cache Controllers could contend for the two memory decoders. Writing to the cache
memory requires both decoders, reading only one. By requiring each controller to observe the Wri-
teCycle signal, and by allowing writing to the cache memory only within critical sections, this con-
tention is eliminated. The decision table above specifies those situations in which each controller can
read or write the cache memory without contention.

cle) marks every other cycle as being suitable for writing the cache memory. The
ProcHas/SnoopWants protocol (see Section 4) is used by the controllers to prevent more than one
controller from being in a critical section. Table 5.1 shows when the Snoop and Cache Controllers

may read and write the cache memory.

5.3.3. Initial Datapath Design

The initial design for the cache memory is illustrated in figure 5.7. The assembly registers
on one side (the top of the diagram) are used exclusively by the Snoop Controller; those on the
other are used by the Cache Controller. The System Bus Interface must be able to access both
data assembly registers. A list of the signals and registers used to control this datapath is given

in Appendix 3.

5.3.4. Initial Controller Specification

The initial specification for the Snoop and Cache Controllers are given in Appendix 4 and
Appendix 5, respectively. These specifications are based on the initial datapath described above.

Each controller is described as a simple Mealy machine. This choice was made for simplicity; no

-47-



ﬁbusAddrIn

i snoopState ‘
' ‘\t\ l snoopTag

i
|
i
|
< : !r snoopAssembly I
; : G R
| 1
| |
71 TAG | DATA
i I
I ]
| LTV T VT I T
<\% ){ procAssembly
i procState
; “’\HmealeTlTlT‘LT
~—— ] ’/
[busAddrOut kX s / \
( ;'“Addf | [ procDataln procDataOut I

i 7 U

Figure 5.7 — The initial datapath

This datapath was the basis of the initial descriptions of the Snoop and Cache Controllers. The Sys-
tem Bus Interface (to the left of this picture) includes the bueAddrin and busAddrOut registers.
The Processor Bus Interface (below this picture) includes the procAddr, procDataln, and procDa-
taOut registers. Since the registers used by the Snoop and Cache Controllers are isolated, the Sys-
tem Bus Interface requires access to both assembly registers.

separate next-state circuitry would be required in the implementation of these FSMs.

There are three significant differences between the initial and final controller descriptions.
First, the initial Cache Controller had no provision for a Read-And-Set operation. As noted
above, the Read-And-Set synchronization primitive was designed after we noted how easy it

would be to implement.

The other differences involve two different methods of resolving contention between the

Snoop and Cache Controllers. Mutual exclusion within critical sections was initially obtained by
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means of a hardware semaphore. Each controller has Set and Clear output signals which are used
to obtain and release the semaphore. The semaphore produces two OK signals to indicate which

controller currently owns it.

Contention over the two memory decoders is resolved by means of a hardware arbitrator.
All tag/data read/write signals from the controllers are monitored by the arbitrator. The pres-
ence of any read signal from one controller causes the arbitrator to inhibit any write signal from
the other controller. Similarly, if both controllers issue write signals, then the arbitrator inhibits
one and allows the other to pass. When a controller issues a write signal, it must be prepared to

wait for confirmation from the arbitrator.

5.3.5. Analysls of the Initial Datapath and Controller Designs

The fatal flaw of the initial datapath was its requirement that the System Bus Interface be
able to access both assembly registers. The final datapath design (described section 5.2) avoids
this problem by forcing the Cache Controller to interact with the System Bus Interface through

the registers normally used by the Snoop Controller.

The initial approach to handling contention between the Snoop and Cache Controllers was
considered to be too complex: nine signals and two black boxes were required. The final approach

(using only the ProcHas, SnoopWants, and WriteCycle signals) involves no black boxes.

The size of the initial Cache Controller was cause for alarm. A PLA-based implementation
of that controller’'s FSM would involve approximately 40 minterms, resulting in a 70ns delay (if

implemented in NMOS).

5.3.6. Final Controller Design

The final controller design differs from the original. It reflects the final datapath design (sec-
tion 5.2), and the Cache Controller is described in terms of four cooperating FSMs. Each FSM
responds to a subset of the possible processor requests ( Read, Write, or Read-And-Set ) on a sub-

set of the possible block states:
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a) Read to an UnOwned, Owned Exclusively, or Owned NonExcluslvely block
b) Read to an Invalid block
c) Write or Read-And-Set to an Owned Exclusively block

d) Write or Read-And-Set to an Invalid, UnOwned, or Owned NonExclusively, block

The first of these FSMs is trivial (see the initial Cache Controller description) and so was
incorporated into the Processor Bus Interface. In this way, a single controller (within the interface)
could respond to processor read-requests to valid blocks within the cache memory. The problem of
reading the block into the BState, BTags, and BAssembly registers was answered by causing the
block to be read whenever possible while waiting for the next processor request. In this way, the
Processor Bus Interface does not have to explicitly assert the control lines which read values into

those registers.

The rest of these FSMs are termed the (b) Read, (c) Writel, and (d) Write2 FSMs. If the
Processor Interface is unable to handle a processor read-request, then it passes control to the Read
FSM. If a Write request or a Read-And-Set request is received, then control is passed to the
Writel FSM. If the block is not Owned Exclusively, then the Writel FSM passes control to
the Write2 FSM. When finished, the Write2 FSM signals the Writel FSM, which then signals
completion to the Processor Bus Iﬁterface. The structure of the Cache Controller is illustrated in
figure 5.8.

Note that since the Read and Writel FSMs both generate a ProcAck signal, the actual value

for that signal is the OR of the values generated by the FSMs. Such treatment is common to all

output signals issued by more than one FSM in the Cache Controller.

The signals used by the Snoop and Cache Controllers are given in Appendix 6. The final
descriptions of the Snoop, Read, Writel, and Write2 FSMs are given in Appendices 7, 8, 9, and
10, respectively. By splitting the Cache controller into these FSMs, the largest FSM (i.e. that with

the largest number of terms) is now the Snoop.
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Figure 5.8 — The Structure of the (Processor) Cache Controller

The task of responding to requests from the processor is divided among four finite state machines
(FSMs). Typically, only one of these machines is active. The Processor Bus Interface responds to
read requests for words resident in the cache. The Read FSM responds to read requests that require
a3 bus transaction. The Write! and Write2 FSMs respond to Write and Read-And-Set requests. The
signals shown in the diagram are those used to pass control from one of these machines to another.

5.3.7. Timing Conslderations

Preliminary timings of the memory subsystem indicated that a minor cycle of at least 40
nanoseconds is required. The clocking of the processor is very close to what is required by the
memory subsystem. Further, there are significant performance advantages if the cache controller
can run synchronously with the processor: a processor request could then be detected with no wait
states. The clock from a 10 megahertz M68000 can be translated into a two-phase clock suitable
for use with the memory subsystem as shown in figure 5.9. This yields a 50 nanosecond minor
cycle, with a 20 ns high time and a 30 ns low time. The memory decoders are driven while Phi! is

high. The memory cells are read or written while Phi2 is high.

The low-phase of the M68000 clock is associated with Phil to minimize the time required to
acknowledge a processor read-request to a (valid) line within the cache. In the M68000 read

sequence, the address strobe (AS) is raised while the clock is high to initiate a read/write opera-
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Figure 5.9 — Derivation of Two Phase Clock

The two phase clock used throughout the controller is derived from the M68000 clock as shown
above. The association of the low phase of the processor’s clock with Phi! is due to the Address
Strobe (AS) signal. This signal is activated by the processor during a high phase (Phi2) to signal a
read/write request. By generating the two phase clock in this way, the Processor Bus Interface can
sample AS during Phi! to detect a read/write request without delay.

tion. When this signal is raised, the address lines can be assumed to be valid. Since the address
cannot be considered to have reached the decoders before the M6800O enters a low-phase, and
since the address must be valid at the start of Phil (to drive the decoders), Phil is associated

with the low-phase of the 68000 clock.

All PLAs are clocked in the conventional way, with inputs sampled during Phil, and outputs
valid during Phi2 The decision is based on the observation that since the tag is read from the
cache memory on PhiZ, it not safe to propagate the result of the tag comparison to the inputs of

the PLAs during the same phase.

5.3.8. Functlional Simulation

Once the decision was made to use a simple two-phase clocking scheme, a simple simulator
was produced which modeled the subsystems in the data cache chip and which allowed a simula-

tion of a multiprocessor system including a number of these data caches.

The simulation of the FSMs within the controller was accomplished by translating the FSM
specifications into C procedures and executing those procedures directly. In this way, we could be

more certain of the correctness of the FSM specifications. The simulation system generated
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random requests to memory, given a specification of the number of memory blocks, the amount of
sharing, and the frequency of read and write requests to shared and private memory blocks. A

simulation of a three-processor system executed for 50,000 simulated clock cycles without error.

5.3.9. CMOS Implementation

Due to the presence of a good PLA generator (tpla), the decision was made to use a PLA-
based implementation for the controller FSMs. A translator was written to convert the FSM
descriptions into truth-tables suitable for PLA generation. Both static and dynamic (precharged)
CMOS PLAs were available. Preliminary timings of the static PLAs indicated that a minor cycle

of 90 nanoseconds would be required. As a result, the dynamic CMOS PLAs were chosen.

The precharge clocks for the AND and OR planes are generated as follows. Since the inputs
to the PLA (and to the AND plane) are not valid until the falling edge of Phil, the AND plane is
precharged while Phi! is high. Since the outputs from the PLA (and from the OR plane) must be
valid by the falling edge of Phi2, the OR plane is evaluated while Phi2 is high. This implies that
both planes must be precharged while their inputs are being evaluated. To accomplish this, the
precharge time for each plane is considerably longer than the evaluation time. The precharge time
for the AND plane begins with the falling edge of Phi2, and the precharge time for the OR plane

begins when Phil goes high. The relationship between these clocks is illustrated in figure 5.10.

The CRYSTAL simulation parameters and results are given in Tables 5.2a and 5.2b. To
achieve the desired 50 ns minor cycle time, the sum of the AND plane and OR plane delays must
be less than 50 ns (the time between the falling edges of Phil and Phi2). Both the Write2 PLA
and the Snoop PLA fail to meet this objective, the latter by a wide margin. The controller imple-

mentation needs further refinement if the cache chip is to use the same clock as the processor.

In addition to a PLA, each FSM requires clocked input/output inverters. By transmitting
control signals in an inverted state, the FSM output can be taken directly from the clocked output
inverters. Finally, circuitry is associated with each FSM in order to implement shared output sig-

nals. Since these signals are inverted, this circuitry consists of a collection of static AND gates,
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Figure 5.10 — Generating PLA precharge clocks based on Phil and Phi2

The relationship between the clocks which latch PLA inputs (Phil) and outputs (Phi2) and those
which precharge the AND and OR planes of each PLA is illustrated above. A plane within a PLA is
being precharge while its associated clock is low.

Table 5.2a — CRYSTAL SIMULATION PARAMETERS

areatocap diff
perimetertocap diff
areatocap poly
areatocap metal
areatocap poly/diff
capthreshold

400
65
52

637
0.1

Table 5.2b — CRYSTAL SIMULATION RESULTS

PLA And Plane Delay Or Plane Delay
WritelPla 29.99 nsec 19.68 nsec
Write2Pla 31.50 nsec 36.81 nsec

ReadPla 21.72 nsec 24.48 nsec
SnoopPla 61.55 nsec 31.54 nsec

one gate for each shared signal. The floorplan for a single FSM is illustrated in figure 5.11.

The floorplan for the controller (showing its relationship to the datapath) is illustrated in

figure 5.12. The signals within the control bus which deal with the A-side of the cache or with the

System Bus Interface terminate on the left, those which deal with the B-side or the Processor Bus

Interface terminate on the right.
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Figure 5.11 - The floorplan of a finite-state machine (FSM)

The FSMs implementing the Snoop and Cache controllers are based on dynamic PLAs. Clocked in-
verters latch the input and output signals. If this FSM generates a signal which already is present in
the Control Bus (i.e. that signa! is generated by another FSM), then the two values (from the PLA
and from the Control Bus) are combined in an AND gate to form the updated value.

-55-



Snoop Read || Writel Write2
FSM FSM FSM || FSM

Control Bus

Cache Memory (A-side)

Figure 5.12 — The floorplan for the Snoop and Cache controllers

The FSMs implementing the Snoop and Cache controllers are laid out in a horizontal array in the
upper-right corner of the chip. Signals involving the Processor Bus Interface (shown above) and the
B-side of the Cache Memory are presented on the right edge of the Control Bus. Signals involving
the System Bus Interface (not shown) and the A-side of the Cache Memory are presented on the left
edge of the Control Bus. Signals heading toward the B-side must travel down the right edge of the
Cache Memory.

Additional circuitry is required to provide the exact signals required by the datapath. This
circuitry is illustrated in figure 5.13. Note that signals leave each FSM PLA when Phi2 falls, and
that they must arrive at the datapath before Phil falls. Exceptions to this rule are the signals
that drive the decoders: BusAdrA, BusAdrB, ProcAdrA, and ProcAdrB. These signals must
arrive at the datapath by the rising edge of Phil to drive the decoders while Phi! is high. These
leads us to believe that the critical path for the control signals consists of the circuitry which pro-
duces ProcAdrB. This circuitry (including PLA output inverters, AND gates for shared signals,
and interconnect) was timed at 26.5 nanoseconds using Crystal. This result indicates that there is
sufficient time (30 nanoseconds) to deliver signals from the controller to the datapath, if the con-

troller PLAs can be redesigned to operate within 50 ns between the falling PhiI and Phi?2 edges.

-56-



o
=
(%)
)
E.
—

SetOwnExc _LT[ _____ _ ™ I ’]L_LD‘? AState0]
SetOwnNEx¢_ Do —mime Fipso AState[l]
SetUnOv;vn f_f[ _______ riﬁ_bc SetAState
SetInvalid Lo — - RefrAState
LoadAState —LT[ ..... _ J‘_L‘-Dc LoadAState
WrAState WrAState
SR Apo—— _
-[— RefrBState
LoadBState Ly B V—DI_DOJ_—-}:,_It ;:df:taw
rATags
St LD | 1oLt
t
B ks e
rBTags
LoadBTags T[ _______ _D_L’:Dr_l‘-: LoadBTags
WrBTags o ——— | _L WrBTags
RefrAAdr
SetAAd L {_-DO—TD‘: SetAAdr
oo LD e
BusAdrA  ~. [ Fito BusAdrA
BusAdrB‘ %[ _______ l | I:TL_LD° BusAdrB
ProcAdrA l _______ [ T‘D‘ ProcAdrA
ProcAdrB | . ProcAdrB
e Do~
Busy SetAData
—_— e YPo———
SaDwn D L RefrAData
LoadADats 4 | i LoadADuta
W_’APL‘;‘_rJﬁDO _______ | WrAData
—B——T*» ------- e
rBData
LoadBData _l_ _______ L_D‘::D’FLT: LoadBData
WrBData ! m
._—__I_LW

AutoRead

|

to Proc Interface

Figure 5.13 — Generation of signals required by the Cache Memory

Initial layout of the controller has been completed. The controller (including an area for the
Processor Bus Interface) measures 2700 lambda wide by 800 lambda high. Figure 5.14 is a plot of

the controller PLAs and the datapath.
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Figure 5.14 — Controller and Datapath Cifplot

6. Discussion

8.1. Methodology

The designers’ work divided up according to functional modules of the system: the Data-

path, the Snoop Controller, the Cache Controller, the Processor Bus Interface, and the System
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Bus Interface. In addition, several members of the team played special roles: design tool assis-
tance, SPICE expert, and SLANG describers. Interestingly enough, none of the designers were

very keen on doing layout, and in retrospect, more people should have been devoted to this task.

The block diagram view of the .chip was determined very early, in fact, before the course
began. The most pressing objective was to select or design a correct cache consistency protocol
for implementation. While relatively easy to specify at the functional level, a detailed
specification was needed to insure that the implementation would be correct and free of race con-
ditions. This was accomplished by iteratively developing a SLANG functional description of the
protocol throughout the semester. The controller design did not begin in earnest until this

specification was complete.

The Datapath implementation proceeded in parallel with the SLANG development. It is
unfortunate that we did not have a complete SLANG description before we started layout, but
this was not possible because of the short time schedule. This caused a number of problems later

(see section 7).

Unfortunately, SLANG is not as useful as we would have wished. To obtain the level of
detail necessary to verify that the protocol implementation would be free of race conditions
required a low-level and very complete specification. This required an effort almost equivalent to
designing the control PLAs, generating and then simulating them. In fact, a separate language
was designed and a translator was written from it to SLANG to avoid having to enter all the
detail by hand. This new language provided some higher level ways of thinking about the opera-
tion of the controllers, and it could be translated into SLANG whenever the system was to be
simulated. The effort was not wasted, as we also developed some tools for generating the PLAs
and other control logic directly from this new language. Thus, the description of the controllers in
this language was the central one, all others derived from it. These descriptions appear in the

later Appendices.
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6.2. Experiences/Lessons Learned

Undertaking the construction of a system of such complexity turned out to be more ambi-
tious than we expected. We needed to design a cache consistency protocol, and convince ourselves
that it was correct, before we could really begin designing the chip. Roughly half the effort was
spent in this activity!

We believe that a snooping data cache is approximately four times as complex to design as
an instruction cache. A simple data cache is about twice as complex as an instruction cache
because of the need to support processor read and write operations, and the need to copy blocks
back to memory when a cache entry is replaced. The complexity is doubled again when a snoop
controller is also added to the system, because it needs to be synchronized with the processor

cache controller during accesses to the cache memory.

While we are convinced that the ownership protocol is correct, we cannot yet argue that it is
the best possible. However, we believe that no snooping cache protocol can be implemented with
substantially less complexity. A dual-ported cache memory is still required, as are the interlocks
between the snoop and the cache controllers. Several of the published protocols ignore some
issues, such as support for atomic bus operations, which we have tried to address. The protocol

we have implemented is at least functionally complete.

The project revealed a glaring deficiency in our battery of design tools: we have very weak
support for functional simulation. No tools were available for quickly verifying the functional
correctness of our design. Generating a SLANG [MAY083] description by hand is difficult and
tedious. Using the description for multilevel simulation with a tool like ESIM [MAYO83] requires

it to be specified with such a fine level of detail that the goal of functional description is defeated.

7. Status of Implementation

At the time of this writing, the completed cache chip is not available. The Datapath, Cache

Controller, and Snoop Controller have been completely laid out and verified for correctness. The
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Processor Bus Interface and the System Bus Interface, although designed, have not been laid out.

A number of things went wrong on the way to completing the chip. The Datapath was laid
out well before the final form of the control was determined. However, the Datapath and Con-
troller designers were different groups that had never really decided on a common interface. Not
all controller generated output signals are compatible with the control lines they drive in the
Datapath. A considerable amount of random “‘glue” logic remains to be laid out to make these

compatible.

Because the final floorplan placement of the controllers was not determined until late in the
design, the datapath was implemented with a poor control signal interconnection topology. For
example, some control wires need to be routed around the sides of the datapath because they can-
not be reached from the top where the control PLAs have been placed. This significantly
increases an already large layout area, and adds additional RC delay between the controllers and
the datapath control points. Future iterations on the implementation will have to pay more care-
ful attention to the interconnect topology, overall chip floorplan, and interface between control
and datapath.

Based on 2 CRYSTAL performance evaluation of the implemented pieces of the design, we
have discovered that we cannot meet our goal of a 100 ns clock cycle. The critical path through
the controller should have been not more than 20 ns, but it is actually about 40 ns. A completely

new controller implementation is necessary to obtain the needed performance.

Evaluation of the datapath is currently underway, and we hope to have some real numbers

before this report is officially published.

8. Conclusions and Future Directions

We have described a multiprocessor cache consistency protocol, its evaluation, and its design
and implementation by a single chip snooping data cache. While snooping caches have been built

before, to our knowledge this is the first attempt to construct a version that integrates the
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memory and the controllers on a single chip.

The implementation effort was directed towards completing a rapid prototype in a single
fifteen week semester, a rather ambitious task. While the design is complete, the chip layout is
still incomplete. This indicates some of the difficulties in undertaking a large design project that

cannot be finished in a single semester.

We had hoped to be able to use the chip, in conjunction with the 68020 and the MultiBus,
to perform experiments on the utility of snooping caches and our particular consistency protocol.
While the protocol specification and the completed chip design are notable successes, our inability
to complete the implementation is something of a disappointment. The attempt to complete the
prototype was worthwhile, nonetheless, as it reenforced many of the guiding principles of VLSI

design.

A future objective is to undertake the design and implementation of a single chip multipro-
cessor building block that incorporates on-chip instruction and snooping data caches as well as the
processor. The result would be a very high performance system at very low cost. The lessons
learned by this rapid prototype implementation will be used to guide the implementation of this

next project.
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10. Appendix 1 - Detalled Description of the Snoop and Cache Controllers

The Snoop Controller:

It the Snoop Controller overhears a Read for a block owned by the cache, then the main memory
is inhibited, and the block’s state becomes Owned NonExclusively.

Invalid or UnOwned:
Ignored.
Owned Exclusively:
Raise the Multibus INHIBIT signal and supply the desired word.
Change the block’s state to Owned NonExclusively.
Owned NonExclusively:
Raise the Multibus INHIBIT signal and supply the desired word.

If the Snoop Controller overhears a Read-For-Ownership for a block owned by the cache, then the
main memory in inhibited, and the block’s state becomes Invalid.

Invalid:
Ignored.
UnOwned:
Change the block’s state to Invalid.
Owned Exclusively or Owned NonExclusively:
Raise the Multibus INHIBIT signal and supply the desired word.
Change the block’s state to Invalid.

If the Snoop Controller overhears a Write-For-Invalidation, then the block state becomes
Invalid.

Invalid:
Ignored.

UnOwned, Owned Exclusively, or Owned NonExclusively:
Change the block’s state to Invalid.

The Snoop Controller ignores all Write-Without-Invalidation operations.

The Cache Controller:

In response to a processor Read request, the Cache Controller can immediately supply a word
from any valid block in the cache memory. Otherwise, an UnOwned copy of the block must be
read through the Multibus.

Invalid:
Obtain control of the Multibus.
Write (without invalidation) any bumped block to main memory.
Read (publicly) the requested block.
Mark the block’s state as UnOwned.
Release control of the Multibus.
Supply the requested word to the processor.
UnOwned, Owned Exclusively, or Owned NonExclusively:
Supply the requested word to the processor.

In response to a processor Write request, the Cache controller can immediately alter a word from
any exclusively owned block in the cache memory. Otherwise, an exclusively owned copy of the
block must first be obtained. To prevent another cache from stealing ownership of the block, the
Cache Controller releases control of the Multibus after storing the modified block in the cache
memory.
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Invalid:
Obtain control of the Multibus.
Write (without invalidation) any bumped block to main memory.
Read (for ownership) the requested block.
Mark the block’s state as Owned Exclusively.
Write the modified block into the cache memory.
Release control of the Multibus.
UnOwned or Owned NonExclusively:
Obtain control of the Multibus.
Write (without invalidation) any bumped block to main memory.
Write (with invalidation) the requested block.
Mark the block’s state as Owned Exclusively.
Write the modified block into the cache memory.
Release control of the Multibus.
Owned Exclusively:
Write the modified block into the cache memory.

In response to a processor Read-And-Set request, the Cache Controller behaves much as for a
write-request. The only difference is that the original contents of the word is saved and returned
to the processor before the block is altered.

Invalid:
Obtain control of the Multibus.
Write (without invalidation) any bumped block to main memory.
Read (for ownership) the requested block.
Mark the block’s state as Owned Exclusively.
Supply the requested word to the processor.
Write the modified block into the cache memory.
Release control of the Multibus.
UnOwned or Owned NonExclusively:
Obtain control of the Multibus.
Write (without invalidation) any bumped block to main memory.
Write (with invalidation) the requested block.
Mark the block’s state as Owned Exclusively.
Supply the requested word to the processor.
Write the modified block into the cache memory.
Release control of the Multibus.
Owned Exclusively:
Supply the requested word to the processor.
Write the modified block into the cache memory.
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11. Appendix 2 - Analysis of the Cache Consistency Protocol Implementation

This analysis determines the “critical sections” in the behavior of the Snoop and Cache Controll-
ers. We claim that if the two controllers are never simultaneously in a critical section, then their
responses to external requests can be considered to be atomic, thereby preserving the correctness
of the cache-consistency protocol.

Contention for the Cache Memory:

We argue that in no case will the Cache Controller interfere with the Snoop while servicing a pro-
cessor Read request. Suppose that the block being read is Invalid. In this case, the Cache Con-
troller must first obtain control of the Multibus. Once it is obtained, the Snoop is disabled, pre-
cluding any snooping activity.

Otherwise, the Snoop is active and could either be reading the block or altering the tag field. If
the Snoop is altering the block’s tag to Invalid, then the processor’s request can still be handled.
The processor will either see the Invalld state, indicating that the read happened after the write,
or the state of the block before it was invalidated, indicating that the write happened before the
read. To avoid this non-deterministic result, a program must be structured with the appropriate
synchronization primitives to insure proper mutual exclusion.

In the event of a processor Write request to an Invalid, UnOwned, or Owned NonEx-
clusively block, control of the Multibus is required before the Write request can be serviced. If
the Cache Controller does nothing before obtaining control of the Multibus, no contention exists,
since the Snoop will be inactive while the Cache Controller is reading/modifying the cache
memory. Note that the Cache controller must reexamine the tag after control of the Multibus is
obtained.

Furthermore, conflict cannot occur between a processor Write request and a Write-For-
Invalidation to an OwnedExcluslively block. Since a Write-For-Invalidation can only be issued
by a cache with a valid copy of the block, no other cache could initiate this bus command. And if
the processor and an 1/O controller are trying to simultaneously write into a block (i.e. and 1/O
bufer), then mutual exclusion is again being violated at the program level.

So for the purposes of this discussion, we only need consider two possible conflicts on an
OwnedExclusively block: between a processor write-request and bus read-request (with or
without invalidation). Since the snooping behaviors for these two external requests are similar,
their treatment can be combined.

Let's look at this snooping behavior more closely:

* Read the block

* Raise the Multibus INHIBIT signal

* Place the appropriate word on the Multibus

* Store the new tag (Owned NonExclusively or Invalid)
* Lower INHIBIT

Now, let's look at the activity resulting from a processor write-request:

* Read the block
* Form the modified block in the assembly register
* Rewrite the block

The critical section for the Snoop includes reading the block from the cache memory and storing
the new state. The critical section for the Cache Controller includes reading the tag (to insure
that the state of the block still has an Owned Exclusively state) and writing the modified
block. The danger is that the Snoop might supply the old block and that the modified block is
written into the cache with an erroneous state: Owned NonExclusively or Invalid.
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The revised snooping behavior:

* Read the state (Owned Exclusively), tag, and data

* Raise the Multibus INHIBIT signal

* Obtain mutual exclusion

* Re-read the data

* Place the appropriate word on the Multibus and raise ACK
* Store the new tag (Owned NonExclusively or Invalid)

* Release mutual exclusion

* Lower INHIBIT

The revised behavior of the Cache Controller:

* Read the state (Owned Exclusively), tag, and data
* Obtain mutual exclusion
* Re-read the state
* If the state is still Owned Exclusively, then
- Form the modified block in the assembly register
- Write the block into the cache memory
- Release mutual exclusion
* If the state is not Owned Exclusively, then
- Release mutual exclusion
- Handle the write-request as for any Invalid / Owned NonExclusively block

The behavior of a Read-And-Set request from the processor has the same effect as a Write
request, as far as contention is concerned. So, the Cache Controller has a critical section while
servicing a Read-And-Set request to 3 Owned Exclusively block. This critical section (as for a
write-request) includes reading the tag and writing the modified block.

Contention for the Cache Memory Decoders

Contention for the two cache memory decoders occurs only when one of the two controllers is try-
ing to write to the cache memory. Nate that the Cache controller only writes into the cache
when it has control of the Multibus (implying an inactive Snoop) or when it is in a critical section
(above). So, by forcing the Snoop to enter a critical section before writing a new state into the
cache memory, we are certain that the two controllers can never simultaneously attempt to write.
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12. Appendix 3 - Registers and Signals in the Initial Controller Descriptions

Reglsters:.

busAddrin - :
the address of the block being read or written by the current bus master.

busAddrOut -
the address of a block to be read/written on the bus.

procAddr -
the address of the word which the processor wishes to read/write.

procAssembly -
the Cache controller's data assembly register.

procDataln -
the data supplied by the processor in a write-request.

procDataOut -
the data to be supplied to the processor in response to a read-request.

procState, procTag -
the registers containing a block’s state and tag, respectively.

snoopAssembly -
the Snoop's data assembly register.

snoopState, snoopTag -
the registers containing a block’s state and tag.

Signals used in the controller descriptions:

ackRead - Cache OUTPUT
The servicing of a processor read-request is complete. The requested word has been loaded

into the procDataQOut register.

ackWrite - Cache OUTPUT
The servicing of a processor write-request is complete.

answerDone - Snoop INPUT
The system bus interface has finished supplying the block in the snoopAssembly register in
response to a bus read-request.

answerRead - Snoop OUTPUT
Cause the system bus interface to respond to the current read-request on the Multibus, using
the block currently in the assembly register.

busMaster - Cache/Snoop INPUT
This cache currently has control of the Multibus. This is the only signal shared by the
Cache and Snoop controllers.

busRead - Snoop INPUT
A read-request is being issued on the Multibus; the address of the requested block is in the
buaAddrin register.

busSpecial - Snoop INPUT
The current Multibus read/write operation is special: Read-For-Ownership or Write-
Without-Invalidation.



busWrite - Snoop INPUT
A write-request is being issued on the Multibus; the address of the requested block is in the

busAddrin register.

ioDone - Cache INPUT
The System Bus Interface has completed a block read/write operation.

loadAddrFromProc - Cache OUTPUT
The busAddrOut register is to be loaded with an address derived from the current contents
of the procAddr register.

loadAddrFromTag - Cache OUTPUT
The busAddrOut register is to be loaded with an address derived from the current contents
of the procTag register.

loadDataOut - Cache OUTPUT
Using the address in the procAddr register, load the procDataOut register with a word taken
from the procAssembly register.

loadTagFromProc - Cache OUTPUT
The procTag register is to be loaded with the tag-value in the procAddr register.

modQuad - Cache OUTPUT
The procAssembly register is modified, based on the contents of the procDataln register and
on the address in the procAddr register.

procClear - Cache OUTPUT
The controller is leaving a critical section and clears the semaphore.

procDataAck - Cache INPUT
When high, indicates that a procDateWrite completed successfully.

procDataRead - Cache OUTPUT
The block (indexed by the address in the procAddr register) is read into the procAssembly
register.

procDataWrite - Cache OUTPUT

A block is written from the procAssembly register into the cache data memory. procDataAck
is raised if the write is successful.

procHit - Cache INPUT
The tag-value in the procTag register matches that in the procAddr register, and the value
of the procState register is other than Invalid.

procOK - Cache INPUT
The controller has obtained control of the semaphore. See procSet.

procOwned - Cache INPUT
The value of the procState register is Owned Exclusively or Owned NonExclusively.

procOwnedExc - Cache INPUT
The value of the procState register is Owned Excluslively.

procOwnedNonExc - Cache INPUT
The value of the procState register is Owned NonExclusively.

procReadReq - Cache INPUT
The processor is issuing a read-request. The controller is to latch the data into the procDa-
taOut register and raise ackRead.

procSet - Cache OUTPUT
The controller is about to enter a critical section and is trying to set the semaphore. procOK
will be raised if it succeeds.
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procTagAck - Cache INPUT
When high, indicates that a procTagWrite completed successfully.

procTagRead - Cache OUTPUT
The tag and status of the block specified by the procAddr register are read into the procTag
and procState registers.

procTagWrite - Cache OUTPUT
A block’s tag and status are written from the procTag and procState registers. procTagAck is
raised if the write completed successfully.

procWriteReq - Cache INPUT

The processor is issuing a write request. The data to be written has been latched in the
procDataln register. The controller is to raise ackWrite when the operation is completed.

readOwnership - Cache OUTPUT
The block currently in the procAssembly register is to be read (for ownership), using the
address in the busAddrOut register.

readPublic - Cache OUTPUT
The block currently in the procAssembly register is to be read (publicly), using the address in
the busAddrOut register.

releaseBus - Cache OUTPUT
The control of the Multibus is to be released by the System Bus Interface.

requestBus - Cache OUTPUT
The Cache controller wishes to obtain control of the bus. The busMaster signal will be
raised high when control is obtained. The Cache controller will raise releaseBus to release
control of the bus.

setInvalid - Snoop OUTPUT
Set the value of the snoopState register to Invalid.

setOwnedExc - Cache OUTPUT
Set the procState register to Owned Exclusively.

setOwnedNonExc - Snoop OUTPUT
Set the value of the snoopState register to Owned NonExclusively.

setUnOwned - Cache OUTPUT
Set the procState register to UnOwned.

snoopClear - Snoop OUTPUT
The snoop is leaving its critical section and clears the semaphore.

snoopDataRead - Snoop OUTPUT
The data portion of the block indexed by the busAddrin register is read into the
snoopAssembly register.

snooplnvalid - Snoop INPUT
The entry in the tag-memory indexed by the contents of the busAddrIn register is invalid.
Either the current value of the snoopState register is Invalld or the tag-value in the snoop-
Tag register doesn’t match that in the busAddrin register.

snoopOK - Snoop INPUT
The snoop can enter its critical section (see snoopSet ).

snoopOwnedExc - Snoop INPUT
The value of the snoopState register is Owned Exclusively and the tag-value in the
snoopTag register matches that in the

snoopOwnedNonExc - Snoop INPUT
The value of the snoopState register is Owned NonExclusively and the tag-value in the
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snoopTag register matches that in the busAddrin register.

snoopSet - Snoop OUTPUT
The snoop wants to enter its critical section is trying to set the semaphore. snoopOK will be
raised if the Snoop can proceed.

snoopTagAck - Snoop INPUT
The tag-memory entry was written (see snoopTagWrite ).

snoopTagRead - Snoop OUTPUT
The tag-memory is to be read into the sanoopTag and snoopState registers. The line-index is
taken from the address in the register.

snoopTagWrite - Snoop OUTPUT
Write the contents of the snoopState and snoopTag registers to the tag-memory, raising
snoopTagAck if the write is successful.

snoopUnOwned - Snoop INPUT

The value of the snoopState register is UnOwned and the tag-value in the snoopTag regis-
ter matches that in the busAddrin register.

writeWithoutInv - Cache OUTPUT
The block currently in the procAssembly register is to be written (without invalidation) to
memory, using the address in the busAddrOut register.

writeWithInv - Cache OUTPUT
The block currently in the procAssembly register is to be written (with invalidation) to
memory, using the address in the busAddrOut register.
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13. Appendix 4 - Initial Specification of the Snoop Controller

Home: — The “busRead” and ‘‘busWrite”’
- lines indicate a new request on
— the bus. As these lines go high,
— the address is latched into the
— “busAddrIn” register.

if busMaster | “busRead & “busWrite | busWrite & busSpecial
then Home
if busRead & busSpecial & “busMaster
then OwnRead( snoopTagRead, snoopDataRead )
if busRead & “busSpecial & “busMaster
then PubRead( snoopTagRead, snoopDataRead )
if busWrite & “busSpecial & “busMaster
then Writelnvalid( snoopTagRead )

OwnRead: — Respond to a “‘Read-For-Ownership”
— request on the Multibus.
— If the block is “‘Invalid,” then
-- ignore this request.
if snooplnvalid
then Home
if snoopUnOwned
then WriteTag( setlnvalid, snoopTagWrite )
if snoopOwnedExc
then ReadExc( inhibit, snoopSet, setInvalid )
if snoopOwnedNonExc
then OwnReadPub( inhibit, answerRead, setInvalid )

WriteTag: -~ Wait until the modified tag is
— written in the cache, then go “Home”
if snoopTagAck
then Home
else WriteTag( snoopTagWrite )

AllDone: - Wait until the bus transaction is
- completed, then go “Home”
if answerDone

then Home
else AllDone
OwnReadPub: - Handle a “Read-For-Ownership'’ request

— to a Owned NonExclusively block.
— The block’s state is made Invalid.
if snoopTagAck
then AllDone
else OwnReadPub( snoopTagWrite )

ReadExc: — Handle a read request to
— an exclusively owned block.
— The snoop reads the block only after
— obtaining ownership of the semaphore.
if snoopOK
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then ReadExc2( snoopDataRead )
else ReadExc( snoopSet )

Appendix 4 - The initial specification of the Snoop controller (cont.)

ReadExc2:
ReadExc3( answerRead, snoopTagWrite )

ReadExc3:
if snoopTagAck
then AllDone( snoopClear )
else ReadExc3( snoopTagWrite )

PubRead: -- Handle 2 Read request
if snooplnvalid | snoopUnOwned
then Home
if snoopOwnedExc
then ReadExc( inhibit, snoopSet, setOwnedNonExc )
if snoopOwnedNonExc
then ReadNotExc( inhibit, snoopDataRead )

ReadNotExc:
AllDone( answerRead )
Writelnvalid: —~ Handle a Write-For-Invalidation
— request

if snooplnvalid
then Home
else WriteTag( setlnvalid )
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14. Appendix 5 - Initial Specification of the Processor Cache Controller

Home: — Wait for a read/write request from
— the processor.
if procReadReq
then Read( procTagRead, procDataRead )
if procWriteReq ‘
then Write( procTagRead, procDataRead )
if “procReadReq & ~“procWriteReq

then Home
Read: — Handle a “read” request from the
—~ processor. If we have a cache hit,
— then we can service the request
— immediately. Otherwise, we have to
- read the block from the bus.
if procHit

then ReadDone( loadDataOut )
else Read2( requestBus )

ReadDone:
Home( ackRead )

Read]1: -~ Wait to become master of the bus
- then re-read the block, since its
— state may have changed during the
- wait,.
if busMaster
then Read?2( procTagRead, procDataRead )
else Readl( requestBus )

Read?2: = If we’re bumping an owned block, then
- we first have to write it to memory.
— Any UnOwned block can be overwritten.
if procOwned
then FlushRead( loadAddrFromTag, writeWithoutlnv )
else Read3( loadAddrFromProc, readPublic,
setUnOwned, loadTagFromProc )

FlushRead: — Write a bumped block to memory
if ioDone
then Read3( loadAddrFromProc, readPublic,
setUnOwned, loadTagFromProc )
else FlushRead

Read3: — While waiting for the block to be
- read, update the tag memory.
if procTagAck
then Read4
else Read3( procTagWrite )

Read4: — Wait until the block requested by

- the processor has been read, then
— store the block in the cache.
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if ioDone
then Read5( loadDataOut, procDataWrite )
else Read4

Read5: — Wait until the block has been
— written into the cache
if procDataAck
then Home( ackRead, releaseBus )
else Read5( procDataWrite )

Write: — Handle a “write” request from the
~ processor
if procHit & procOwnPrivate
then WritePriv( procSet )
else Writel( requestBus )

Writel: — Wait until control of the bus is
— obtained, then re-read the block.
if busMaster
then Write2( procTagRead, procDataRead )
else Writel( requestBus )

Write2: — We first have to obtain exclusive
— ownership of the block. For an
— Owned NonExclusively block, we write
— it with invalidation. Anything else
- is read for ownership.
— And don’t forget to write any bumped
- block that we own!
if procHit & procOwned
then Write3( loadAddrFromProc, writeWithlnv,
loadTagFromProc, setOwnedExc )
if “procHit & procOwned
then WriteFlush( loadAddrFromTag, writeWithoutlnv )
if “procOwned
then Write3( loadAddrFromProc, readOwnership,
loadTagFromProc, setOwnedExc )

Write3: — Wait for the tag-write and the
- block-read to complete
if procTagAck
then Writed
else Write3( procTagWrite )

Write4: — When the block has been read,
— modify it (in the assembly register)
if ioDone
then Write5( modQuad, ackWrite )
else Write4
Write5:

if procDataAck
then Home( releaseBus )
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else Write5( procDataWrite )

WritePriv: — Modify an Owned Exclusively block.
— The block is re-read after mutual
— exclusion is obtained.
if procOK :
then WritePriv2( procTagRead, procDataRead )
else WritePriv( procSet )

WritePriv2: — If the block is still Owned Exclusively,
— then we can update it in place.
— Otherwise, it's a write to a
—~ Owned NonExclusively or Invalid block.
if procHit & procOwnedExc
then WritePriv3( modQuad, ackWrite )
if procHit & ~procOwnedExc
then Write3( loadAddrFromProc, writeWithlnv,
loadTagFromProc, setOwnedExc )
if ~procHit
then Write3( loadAddrFromProc, readOwnership,
loadTagFromProc, setOwnedExc )

WritePriv3:
if procDataAck
then Home( procClear )
else WritePriv3( procDataWrite )

FlushWrite: — Write a bumped block as a resuit
— of trying to handle a processor
-- write request.
if ioDone
then Write3( loadAddrFromProc, readOwnership,
loadTagFromProc, setOwnedExc )
else FlushWrite
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15. Appendix 68 - Signals Used in the Final Controller Descriptions
Memory control signals:

BusAdrA The A-decoder is driven by the bus-address
BusAdrB The B-decoder is driven by the bus-address
LoadAData “AAssembly” is loaded from the A-lines
LoadAState “AState" is loaded from the A-lines
LoadATags “ATags" is loaded from the A-lines
LoadBData “BAssembly” is loaded from the B-lines
LoadBState “BState” is loaded from the B-lines
LoadBTags “BTags” is loaded from the B-lines
ProcAdrA The A-decoder is driven by the processor-address
ProcAdrB The B-decoder is driven by the processor-address
WrAData “AAssembly” is written into the data memory
WrAState “AState” is written into the state memory
WrBData “BAssembly” is written into the data memory
WrBTags “BTags" is written into the tag memory

Register control signals:
ModQuad Multiplex processor-supplied data into “BAssembly”
SetAAdr Load the “AAdr" register from the A-decoder lines
SetBTags Load the “BTags" register from the processor-address
SetOwnedExc Set the ‘“AState’’ register to OwnedExclusively
Setlnvalid Set the ‘“AState’ register to Invalid
SetOwnedNonExc Set the ‘“‘AState” register to Owned NonExclusively
SetUnOwned Set the “‘AState” register to UnOwned

System bus Interface signals:
GetBus This cache wants to control the bus
HaveBus This cache controls the bus?
Inhibit The Multibus INHIBIT line is to be raised
MasterAck The Multibus read/write request has completed?
MasterRead Initiate a read operation on the Multibus
MasterWrite Initiate a write operation on the Multibus
MasterSpecial Read-For-Ownership or Write-Without-Invalidation
ReleaseBus Control of the bus is to be relinquished
SlaveAck The block in “‘Aassembly” is to be placed on the bus
SlaveRead There is a read request pending on the bus?
SlaveSpecial The read/write request is ‘‘special’’?
SlaveWrite There is a write request pending on the bus?

Processor interface signals:

LoadDataOut Load the “ProcDataQut” register from ‘“‘BAssembly”
ProcAck The read/write operation is complete

ProcReadReq The processor has issued a read request?
ProcWriteReq The processor has issued a write request?

Both “ProcReadReq” and ‘ProcWriteReq”’ are high
if a Read-And-Set operation was issued.

State signals:

ProcHit The “BTags” match and the “Bstate” is valid?

ProcOwned The “BState” is Owned Exclusively or Owned NonExclusively?
ProcPublic The “BState” is UnOwned or Owned NonExclusively?
SnoopHit The “ATags” match and the “Astate’ is valid?
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SnoopOwned
SnoopPublic

Synchronization:
Busy
ProcHas
SnoopWants
WriteCall
WriteCycle
WriteReturn

The “AState” is Owned Exclusively or Owned NonExclusively?
The “AState’ is UnOwned or Owned NonExclusively?

The cache controller is handling a request

The processor cache-controller is in a critical section
The snoop is in (or wants to be in) a critical section
The slave write-controller (Write2) is to begin

High during an allowed write-cycle

The slave write-controller (Write2) is done
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16. Appendix 7 - Final Specification of the Snoop Controller
— The SNOOP controller...

- This controller responds to “‘private’ requests by invalidating any
- copy of the quad being read or written. If a “‘read” request to any
- quad owned by this cache occurs, then the snoop raises the INHIBIT
- line and supplies the quad. The “SlaveAck’ and “Inhibit”
- signals are used to communicate with the system bus interface,
- which performs the 4-cycle handshake with the current bus master.
- The “Inhibit"” signal is raised if the Snoop intends to supply the
- quad in service of the current read-request; the “SlaveAck” signal
- is raised when the quad is in the “AAssembly” register. The
- Snoop raises the “SlaveAck’ signal for every bus request, indicating
- that the “SlaveRead’’ and “SlaveWrite” signals are to be lowered
- until the next bus request.
- It is assumed that neither “SlaveRead’’ nor “‘SlaveWrite” will be
- raised while this cache has control of the system bus.
Snoop:
input — Input signals

ProcHas = 0..1;

SlaveSpecial = 0.1;

SnoopHit == 0..1;

SnoopOwned = 0..1;

SnoopPublic = 0..1;

WriteCycle = 0..1;

SlaveRead = 0..1;

SlaveWrite = 0.1;
output — Output signals

BusAdrA =0.1:=0;

BusAdrB =0.1:=0;

Inhibit =0.1:=0;

LoadAData = 0..1:=0;

LoadAState = 0.1:=0;

LoadATags = 0.1:=0;

Setlnvalid = 0.1 :=0;

SetOwnedNonExc =0.1:=0;

SlaveAck =0.1:=0;

SnoopWants = 0..1 := 0;

WrAState =0.1:=0;
begin

Home: — The “SlaveRead” and ‘‘SlaveWrite”

- lines indicate a new request on
— the bus. As these lines go high,
— the address lines from the bus
— interface become valid.
if WriteCycle
then Home;
if “SlaveRead & “SlaveWrite & “WriteCycle
then Home;
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if ~SlaveRead & SlaveWrite & SlaveSpecial & ~WriteCycle
then Home( SlaveAck );

if ~SlaveWrite & SlaveRead & SlaveSpecial & “~WriteCycle
then ReadOwn( BusAdrA, LoadAState, LoadATags, LoadAData );

if ~“SlaveWrite & SlaveRead & ~SlaveSpecial & “WriteCycle
then ReadPub( BusAdrA, LoadAState, LoadATags, LoadAData );

if ~SlaveRead & SlaveWrite & “SlaveSpecial & “WriteCycle
then Writelnv( BusAdrA, LoadAState, LoadATags );

ReadOwn: — Respond to a ‘“‘read for ownership”
— request on the Multibus.
— Wait for the comparison result.
~ ASSERT: WriteCycle
ReadOwn2;

ReadOwn2: - If the block is “Invalid”, then
— ignore this request.
— If “Public”’, then invalidate it.
- If owned, then invalidate the
— block, and inhibit main memory
- from answering the request.
— ASSERT: “WriteCycle
if “SnoopHit
then Home( SlaveAck );
if SnoopHit & ~SnoopOwned
then WriteState( Setlnvalid, SnoopWants, SlaveAck );
if SnoopHit & SnoopOwned & ~SnoopPublic
then ReadPriv( Inhibit, SnoopWants, Setlnvalid );
if SnoopHit & SnoopOwned & SnoopPublic
then WriteState( SetInvalid, SnoopWants, SlaveAck, Inhibit );

WriteState: - Write the block’s new state from
— the “Astate”, then go “Home"’.
~ ASSERT: SnoopWants

if ProcHas
then WriteState( SnoopWants );
if "ProcHas & ~“WriteCycle
then WriteState( SnoopWants );
if "ProcHas & WriteCycle
then Home( SnoopWants, BusAdrA, BusAdrB, WrAState );

ReadPriv: ~ On 2 read request to an exclusively

— owned block, mutual exclusion has
- to be obtained before the data can
— be read.
— ASSERT: SnoopWants

if ProcHas

then ReadPriv( SnoopWants );
if "ProcHas & “WriteCycle



then ReadPriv( SnoopWants );

if "ProcHas & WriteCycle
then Home( SnoopWants, SlaveAck,
BusAdrA, BusAdrB, WrAState, LoadAData );

ReadPub: _ ~ Handle a “public read” request.
- Wait for “SnoopHit”.
~ ASSERT: WriteCycle

ReadPub?2;
— Handle this request almost like

— a ‘“read for ownership”’.
— ASSERT: ~“WriteCycle

ReadPub2:

if “SnoopHit
then Home( SlaveAck );
if SnoopHit & ~SnoopOwned
then Home( SlaveAck );
if SnoopHit & SnoopOwned & ~SnoopPublic
then ReadPriv( Inhibit, SnoopWants, SetOwnedNonExc );
if SnoopHit & SnoopOwned & SnoopPublic
then Home( Inhibit, SlaveAck );

3

— Handle a “‘write with invalidation’

Writelnv:
- request by invalidating the quad.
— Wait for ‘‘SnoopHit’'.
Writelnv2;
Writelnv2:

if SnoopHit

then WriteState( SlaveAck, SnoopWants, Setlnvalid );
if “SnoopHit

then Home( SlaveAck );

where
Home = 0;
ReadOwn2 = 8;
ReadPub2 = 9;

Writelnv2 = 10;
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17. Appendix 8 - Specification of the Cache Controller Read FSM

— The CACHE controller: handling a “missed” read

The “ReadReq” signal is raised (and the “WriteReq" signal is kept low)
if a processor read request could not be handled ‘‘automatically”

(i.e. if there was a “miss”) by the Processor Bus Interface.

The “ProcAck’ signal is raised when the quad has been loaded into

the “ProcDataOut’’ register.

Read:

input

output

begin

HaveBus
MasterAck
ProcOwned
ProcReadReq
ProcWriteReq

Busy

GetBus
LoadAData
LoadATags
LoadBData
LoadBState
LoadBTags
LoadDataOut
MasterRead
MasterSpecial
MasterWrite
ProcAck
ProcAdrA
ProcAdrB
ReleaseBus
SetAAdr
SetBTags
SetUnOwned
WrAData
WrAState
WrBTags

Home:

.-ng.-.—n.-‘;-‘
-

SO RLRRRRREY

-

— Wait for a read request that missed.
— Nothing is assumed about the state
~ of the B-side registers.

if ProcReadReq & “ProcWriteReq
then Readl( GetBus );

if “ProcReadReq
then Home( “Busy );

if ProcWriteReq
then Home( “Busy );

Readl:

- Wait to become master of the bus.
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— Once master, we can do anything
— since the Snoop is hibernating.
if "HaveBus
then Read1( GetBus );
if HaveBus
then Read2( ProcAdrB, LoadBState, LoadBTags );

Read2: — Wait for the quad to be read.
Read3;

Read3: — If we're bumping an owned quad, then
~ we first have to write it to memory.
— Any UnOwned block can be overwritten.
if ProcOwned
then FlushRead( ProcAdrA, LoadATags, LoadAData, SetAAdr,
MasterWrite, MasterSpecial );
if "ProcOwned
then Read4( SetBTags );

Read4: — Transfer the address to the A-side,
— and initiate the public read.
Read5( ProcAdrA, ProcAdrB, WrBTags, LoadATags, SetAAdr, SetUnOwned,
MasterRead );

Read5: — Wait until the quad requested by
— the processor has been read, then
— store the quad in the cache and in
— the “Bassembly’’ register.
if MasterAck
then Read6( ProcAdrA, ProcAdrB, WrAState, WrAData,
LoadBData, ReleaseBus );
if “MasterAck
then Read5;

Read6:
Read7( LoadDataOut, ProcAck );

Read7: — Wait for “ProcReadReq” to drop.
Home( "Busy );

FlushRead: — Write a bumped quad to memory
if MasterAck
then Read5( ProcAdrA, ProcAdrB, WrBTags, LoadATags,
SetUnOwned, MasterRead );
if “"MasterAck
then FlushRead( SetBTags );

where
Home = 0;
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18. Appendix 9 - Specification of the Cache Controller Writel FSM

— The CACHE controller: responding to a processor write request

- This finite-state machine controls the handling of a processor
- write request, signaled when “ProcWriteReq” goes high. The
- request is satisfied when the quad has been modified and the
- “ProcAck’ signal is raised.
- The task of responding to write requests has been split between
- two controllers: a master and a slave. This controller is the
- master, and signals the slave to begin by raising ‘‘WriteCall”.
- The slave signals completion by raising ‘‘WriteReturn'.
- The slave is not invoked if an Owned Exclusively block is involved.
Writel:
input

ProcHit = 0..1;

ProcOwned = 0..1;

ProcPublic = 0..1;

ProcReadReq = 0..1;

ProcWriteReq = 0..1;

SnoopWants = 0..1;

WriteCycle = 0..1;

WriteReturn = 0..1;
output

Busy =0.1:=1,

LoadBData =0.1:=0;

LoadBState = 0..1:=0;

LoadBTags =0.1:=0;

LoadDataOut = 0..1:=0;

ModQuad = 0..1 :=0;

ProcAck =0.1:=0;

ProcAdrA = 0..1 ;== 0;

ProcAdrB = 0.1:= 0;

ProcHas =0.1:=0;

SetDataln = 0..1 :=0;

WrBData =0.1:=0;

WriteCall =0..1:=0;
begin

Home: — Wait for a processor write request.

if ProcWriteReq & ~WriteCycle

then Write( ProcAdrB, LoadBState, LoadBTags, LoadBData );
if “ProcWriteReq

then Home( “Busy );
if WriteCycle

then Home( "Busy );

Write: — Wait for the comparison result.
Writel;
WriteX: —~ Wait, but with mutual exclusion(?)

Writel( ProcHas );
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Writel:

if

— Handle a “write” request from the
— Processor.
— We need exclusive (private) ownership
- if we don’t already have it.
— ASSERT: ~“WriteCycle
ProcHit & ProcOwned & ~ProcPublic & SnoopWants
then WriteX( ProcHas, ProcAdrB,
LoadBState, LoadBTags, LoadBData );
ProcHit & ProcOwned & “ProcPublic & “SnoopWants & “ProcReadReq
then WritePriv( ProcHas, ModQuad, ProcAck );

if ProcHit & ProcOwned & “ProcPublic & ~SnoopWants & ProcReadReq
then ReadSet( LoadDataOut );
if “ProcHit
then Write2( WriteCall );
if "ProcOwned
then Write2( WriteCall );
if ProcPublic
then Write2( WriteCall );
Write2: — Wait ’til the other FSM is done.
if WriteReturn
then Home( ProcAck );
if “WriteReturn
then Write2;
WritePriv: - Finish the job of writing the

— exclusively owned block.

— The block had already been modified.
— Mutual exclusion has been obtained.
— ASSERT: WriteCycle

Home( ProcHas, ProcAdrA, ProcAdrB, WrBData )

ReadSet: — Finish the job of reading and

— modifying an OwnedExc block.
— ASSERT: WriteCycle

ReadSet2( ProcHas, ModQuad );

ReadSet2:
WritePriv( ProcHas, ProcAck );

where

Home = 0;
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19. Appendix 10 - The Specification of the Cache Controller Write2 FSM

— The CACHE controller: responding to a processor write request (continued)
- This finite-state machine controls the handling of a processor

- write request to other than an exclusively owned block.

- This controller is a slave to the other “write” controller and

- is activated when the “WriteCall” signal is raised.

- This controller signals completion by raising the “WriteReturn” signal.

Write2:

input
HaveBus =
MasterAck =
ProcHit =
ProcOwned =
ProcReadReq =
WriteCall =

output

GetBus = 0..
LoadAData =

LoadATags =0..
LoadBData =
LoadBState = 0.
LoadBTags = 0.
LoadDataOut =
MasterRead = 0..
MasterSpecial =
MasterWrite = 0..
ModQuad =0..
ProcAdrA = 0..
ProcAdrB =
ReleaseBus =
SetAAdr = 0.
SetBTags = 0.
SetOwnedExc = 0..
WrAData = 0..
WrAState = 0.
WrBData =
WrBTags =
WriteReturn =

R

oo

begin
Home: — Wait for a signal from the other
~ ‘“write” controller.
if “WriteCall
then Home;
if WriteCall
then Write2{ GetBus );

Write2: —~ Wait ’til we're the bus master,

—~ then read the quad (again).
if HaveBus
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then Write3( ProcAdrB, LoadBState, LoadBTags );

if "HaveBus
then Write2( GetBus );

Write3: — Wait for the read...
Writed;
Write4: — We first have to obtain exclusive

— ownership of the quad. If there'’s
— a “hit”, then the block is UnOwned
— or OwnedNonExc and we can
— write-with-invalidation.
— Otherwise, read-for-ownership.
- And don’t forget to write any bumped
- quad that we own!
if ProcHit
then Write6( ProcAdrA, ProcAdrB, LoadATags, SetAAdr, LoadAData,
WrBTags, MasterWrite, SetOwnedExc );
if "ProcHit & ProcOwned
then FlushWrite( ProcAdrA, LoadATags, LoadAData, SetAAdr,
MasterWrite, MasterSpecial );
it "ProcHit & "ProcOwned
then Write5( SetBTags );

Write5: — For a read-private, we have to
— transfer the tag through the
— tag memory to the A-side.
Write6( ProcAdrA, ProcAdrB, LoadATags, SetAAdr, WrBTags,
MasterRead, MasterSpecial, SetOwnedExc );

Write6: —~ When the quad has been read,
— send it to the B-side.
if MasterAck
then Write7( ProcAdrA, ProcAdrB, WrAData, WrAState,
LoadBData );
if “MasterAck
then Write6;

Write7: — Modify the quad in “Bassembly”...
— (for “ReadAndSet”, save the word’s
— original contents before modifying)
if "ProcReadReq
then Write8( ModQuad );
if ProcReadReq
then ReadSet( LoadDataOut );

ReadSet:
Write8( ModQuad );

Write8: — Replace the quad and go home.
Home( ProcAdrA, ProcAdrB, WrBData, ReleaseBus, WriteReturn );

FlushWrite: — Write a bumped quad as a result
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— of trying to handle a processor
— write request.
if MasterAck
then Write6( ProcAdrA, ProcAdrB, LoadATags, SetAAdr,
WrBTags, MasterRead, MasterSpecial,
SetOwnedExc );
if "MasterAck
then FlushWrite( SetBTags );

where
Home = 0;
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20. Appendix 11 - Cifplots of Important Cells

Cache Cell
Decoder

Decoder Driver
Assembly Register
Multiplexor

Comparator
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