Well-Solved Special Cases of the Traveling

Salesman Problem

P. C Gilmore

Computer Science Department
University of British Columbia

E. L. Lawler
D. B. Shmaoys

Computer Science Division
University of California at Berkeley
Berkeley, CA 94720

1. Introduction

Despite the general pessimuism. contributed by both theory and practice,
there is a bright side to the TSP. Many special cases can be easily and efficiently
solved. We survey these special cases in this chapter, with the expectation that
the reader will find them interesting, instructive and possibly even useful.

There are two broad categories of special cases of the TSP. In one category
are problems that are special because of restrictions on the matrix C of arc
lengths. For example, C may be upper triangular or a circulant matrix. In a
second category are problems in which the TSP is to be solved over a network
with a particular structure but with no restriction on the lengths of the arcs.
For example, the network may have limited bandwidth.

The majority of the results presented here involve special cases of the first
type, with the best known example being the single state-variable sequencing
problem [Gilmore & Gomory 1964]. The solution to this problem involves first
solving an assignment problem for the distance matrix C and then patching
together subtours so as to obtain an optimal solution to the TSP. Since several
other special cases involve a similar approach, we have introduced a general
theory of subtour patching in an effort to unify results.

Several of the results in this chapter are either new or are presented in an
original manner. For example, we believe the formulation of the wallpapering
problem presented here is original, and we have obtained more general results
than were known previously. In addition, we believe the results on bandwidth-
limited graphs and the generalizations of the Gilmore-Gomory model are origi-
nal. Some of the results contained in this chapter were drawn from the Soviet
literature, and were largely unknown in the West. Unpublished notes by E. Ya.
Gabovich were extremely valuable in pointing out the most important {and the
most obscure) Soviet results.

Throughout this chapter we will make extensive use of concepts related to
the symmetric group of permutations on 7 elements. It is expected that the
reader has some familiarity with the concepts, so we briefly note only some of
the more important points. Consider an arbitrary permutation ¢; e(i)=7
denotes that 7 is mapped to j by ¥. Since the set of all permutations on n ele-
ments forms a group, for any two permutations T and ¢ there exists a unique
permutation ¥ such that T=¢¥. Asis customary, pe(i) denotes p(¢(1)) and also
7-1(j)=1 is equivalent to 7(i)=j. It is well known that every permutation ¢ has a
unique set of disjoint factors. We write permutations in their factored form, e.g.
if 7(1)=2, 7(2)=1, 7(3)=4, and 7(4)=3 we write that 7=(1,2)(3,4).

There is a one-to-one correspondence between permutations and feasible
solutions to the assignment problem; ¢(i1)=7 has the interpretation that element
ci; is used in the assignment. Therefore, tours correspond to permutations
where all of the elements (cities) are contained within one factor, that is, cyclic
permutations or cycles. Also note that cycles on disjoint sets of elernents com-
mute, in contrast to the case of two arbitrary permutations. For an assignment
that is not a tour, factors correspond to subtours. The cost of a permutation ¢
is

n
c (50):2 Cigli)

i=1

Often we will modify one assignment ¢ by multiplying it by another permutation
¢, we will be interested in the additional cost of this permutation

-3.

ce(¥) = c(p¥)—c(e)

above the original cost of ¢. When the bottleneck criterion is used we will denote
the bottleneck cost

€(p)=max;Cig(i)
and, parallel to the case above, we let
co(y)=c(py)—c ().

We have indicated only the basic concepts about the symmetric group of permu-
tations that will be used throughout the chapter; the interested reader is
referred to [Herstein 1975] for a more comprehensive treatment.

2. The Constant TSP

In this section we consider conditions on the distance matrix € under which
all Hamiltonian cycles have the same length. For such a constant TSP, one sim-
ply needs to find any Hamiltonian cycle in the underlying network.

Let C be the collection of alln X n matrices C such that ¢ (1) is constant for
all cyclic permutations 7 of the n cities. Cis evidently a linear subspace of the
space of all n x7n matrices. That is, if C), Co€C, with ¢,(1) = ay, co(T) = g,
then C' = A; C; + Az C2€C, because c(T)y = Aoy + Ag g forall 7.

lemma 1 The dimension of Cis2n — 1.

Proof: Let T = {70, 7@ 7@} where w={(n - 1)!, denote the set of all
cyclic permutations on n cities. Let

1 it TR =7,

(k) —
ttJ 0 otherwise.
It follows that
=L P k=120 (1)
™=l
iR

In order for a matrix C to belong to C, there must exist a number « such that

i tF) cy —a=0, k=12..0. (2)
ij=1
T2)

Equations (2) give us a homogeneous system in n{(n —1) +1 variables
{Cy2, C13.--,Cnn-1, aNd a). The coefficient matrix for this systemn has w rows and
n(n —1) + 1 columns. The column vectors will be denoted by £y = (tigl),...,t.;g“))T

-4-

(i,7 =12,..n:i# j) and t, = (—1,,...—1)T. By (1), we see that t, is a linear
combination of the t;;. Further,

()= L3 glk) 5 k) =

t\H n-z‘-,,-ziztw igzt"’" 1,
inj

k). 1 (k) (k) g =

t*) = —— t\e) 5 ¢t E=1,.

sil 77.—2"]2:2 1'] 122 h], 1 it
i)

so that t,; and fp; h =2,...,n, are linear combinations of the t;; with 1,7 # 1.

We claim the remaining (n — 1)}{n — 2) vectors £y (ij=2..n; 1#j)are
linearly independent. For suppose that

{2 k)

Aii t(‘, =0, k=1,..w.
ij=2 >

i#j

Consider the cyclic permutation %) = (1,2,...,n) with
t(écs) = t(écdt) =...= tn(—kl),n =1, tf- = 0 otherwise, and also the permutations
(1.3.4,....n —1,n.2), (1,4,5,....,n,2.3 ..{(1n.2..n=-3,n-2n-1) (Note that
we have eliminated t 3, tp; from the problem.) From these permutations we
obtain

Azg + Aag + +)‘n—z.n-—l +)\n—l.n =0
Aag + Ns+ 0 FAn-in + An2=0
)\n,z + Azt - F >‘n—3.n—2 +)\n—z,n—-l =0

Adding all of these equations yields

Aes + Aaa + - + An-in F A2 =0.

Subtracting this equation from each of the former ones gives
Aeg=Nsa= " T Aa-in =2 =0.

In this way we can prove that all Ay; = 0.

Thus, the rank of the coefficient matrix is (n —1) (n —2). It follows that the
dimension of Cisn{n —1) +1—(n -=1)(n -2) =2n —- L U

Let R; (C;) be the n x n matrix whose ith row (jth column) contains ones
and all other elements are zeros.

-5-

Lemma 2 Any subset of 2n — 1 matrices from the set {Ry,....Rn. C1.....Calls
a basis of C.

Proof: The 2n matrices Ky,....fn. Cr.s G, all belong to C, but they are not
linearly independent, since

It is easily seen, however, that any 2n — 1 of them are linearly independent and
thus, by Lemma 1, form a basis of C. []

Theorem 1 The only matrices C for which all cyclic permutations on the n
cities have the same length are those of the formc;; = @; + b;.

Proof: Follows immediately from Lemma 2. 0

Consider a transformation C' = t{C) on distance matrices for which there
exist constants a and 8 such that

c'(T) =a+ Bc(T)

for all tours 7. Such a transformation is called a linear admissible transforma-
tion; depending upon the sign of B8, it preserves or reverses the total ordering of
tours according to length.

Theorem 2 The only linear admissible transformations are those obtained by
adding constants a; to the ith row and b; to the jth column of a scalar multiple
of C.

Proof: Let C' = t(C) be such that c'(7) =a + 8 c(7) for all tours 7. Defining
C" = C — B C,we have ¢"(7) = « for all 7. By Lemma 2, C" is a linear combina-
tion of Ry.....8n, C1.....Ca. Hence C' = C' + 8 C can be obtained in the way
stated in the theorem. []

Theorems 1 and 2 follow from results of [Berenguer 1979] which were origi-
nally stated for the muitisalesmen problem (see also [Gabovich 1976]). The
proof of Lemma 1 is adapted from [Lenstra & Rinnooy Kan 1979]. Note that
Theorem 1 remains true if the adjective "cyclic” is deleted. That is, matrices of
the form ¢; = a; + b; are also the only ones for which all permutations, 1. e.

y
assignments, have the same length.

Let G = (V, A) be an arbitrary digraph and C be a distance matrix such that

@ + b, if(ij)e4,

Cij = .
+ oo otherwise .

Then the TSP is simply the problem of finding one of the Familtonian cycles, if
any, in G. If G has some special structure, this may be easy. For example, if G

- -8 -

is the line digraph of an Eulerian digraph then G is necessarily Hamiltonian and
the problem is easily solved [Syslo 1973]. Other cases in which it is easy to find
a Hamiltonian cycle are discussed in Chapter 11.

It does not seem to be possible to obtain such simple conditions on the
matrix C for all Hamiltonian cycles to have the same bottleneck length. How-
ever, the reader should keep some simple facts in mind, as indicated by the fol-
lowing propesitions.

Proposition 1 Adding a constant to all elements of C adds the same constant
to the bottleneck length of each tour.

Proposition 2 If C and C' are two matrices whose elements are similarly
ordered, 1. e.

Cij < Cpi if and only if ci’j < Cl;l'

then the ordering of tours according to bottleneck length is the same for both c
and C".

Proposition 3 Let k < c{r*), where 7* is a bottleneck optimal tour. Then
replacing C by C', where

Cyj = maz {c;;. k}

leaves the bottleneck length of all tours unchanged.

Suppose ¢ is a bottleneck optimal assignment for C. Then by Propositions 1
and 3, the matrix ', where

Cij = maz {ci; — € (). 08,

is nonnegative and preserves the order of tours with respect to the bottleneck
criterion.

Exercise
1. Devise an algorithm to test whether or not a given matrix C is of the form
C‘;j =a; + b]

3. The Small TSP

In this section we examine the TSP for small matrices. The results
presented are from [Gabovich 1970]. Let us call an n xn matrix C small if
there exist n-dimensional vectors a and b such that ci,-=min§a.¢,bj§. For simpli-
city of notation, assume that @, < az< ... <a,. A small matrix where all of the
a; and b; are distinct is said to have distinct values. Let 4; be the ith smallest
of the 2n distinct values a; and b; and thenlet D = fd,.dz....dp3. In addition, let

n
d=) d;. Consider solving the TSP for the distance matrix C. The length of an
i=1
optimal tour can be found easily, and is limited to only a handful of different
values.

Theorem 3. Let C be a small matrix with distinct values. The length of an
optimal tour for C is d if and only if one of the following three conditions holds:

(S1) For some city i, both a; and b; are in D.
(S2) D = {a.a,,....an).
(S3) D = {b1.ba...bal.

Proof: Suppose that (S1) holds. The cities can be partitioned into four sets:
those with neither a; nor b; in D; those with only a; in D: those with only b; in D;
those with both a; and b; in D. Call these sets Do, D, Dy and Dy, respectively.
By a very simple counting argument, | Dol =| D2|. Construct a tour as follows.
Start at a city in Dp. Then, in any order, visit the cities of D;. Next, go to a city
in Dy. This is followed by visiting the cities of D, in any order. The tour is com-
pleted by visiting the remaining cities in D and Dy alternately: that is, one from
D, then one from Dg, and so on. It is not hard to see that the cost of this tour is
d. Since the values are distinct, each arc of a tour must have a different value,
and thus the cost of any tour must be at least d. Next suppose that (S2) holds.
This is a constant TSP and the cost of any tour is d. The same is true for {S3).

Finally, assume that (S1), (S2), and (S3) all do not hold. It follows that
D={a,,...,q, bgsy....bp} for some 1<k=n-1. Suppose that a tour of length d
existed. The costs of the arcs in this tour must correspond precisely to those
costs in D. Therefore, in this tour some arcs have costs that correspond to a
values and some that correspond to b values. Therefore, at some point in the
tour an arc with cost b; must be followed by one with cost @;. But for this to
happen, i must equal j, which is impossible. 0

An almost identical proof will give a slightly stronger version of this
theorem.

Theorem 3. Let C be a small matrix with distinct values. Let
D'=id';, d'g, ... ,d'n} be some set of a; and b; values. Then there exists a tour
that uses precisely those costs if and only if one of the following three conditions
holds:

(S1') For some city 1, both of the values a; and b; are in D".
(SZ') D’ = ialiazv'--aﬂ;'
(S3) D' = {b1.ba.....bn 1.

In Theorem 3, it was shown that d cannot be attained under certain condi-
tions. In this case, what is the optimal value? This question is answered by the
next result.

Theorem 4. Let C be a small matrix with distinct values The length of the
shortest tour for the TSP given by C 1is either d, d-d,+dp4, oOr
min{d —dp, +dy, y2,d —dn 1 +dn +1]. Furthermore, suppose that the optimal cost is
not d; then the optimal cost is greater than d —d, +d, +; if and only if one of the
following three conditions holds:

(S4) k=1; dp=bg; dns1=a2
(S5) k=n—1; dp=0n-1; dn+1=bp -1
(SB) 2<k<n —2; either (d,=a; and d,,1=b;) or (dy=bi+; and dps1= 0k 41)-

Here k is the largest indexed city that has its a value in D, the set of the n
smallest values.

Proof: Since the case of an optimal tour of length d was completely charac-
terized by Theorem 3, assume that the optimal tour costs more than d. The
next best possible value is d'=d —d, +d,_,, and to see if this can be attained, con-
sider D'=Duidy +1}—{dn}. By Theorem 3, d"is attainable if and only if D' satisfies
(S17), (S2). or (S3).

It is possible to list precisely those cases when all three of these conditions
fail. As indicated in the proof of Theorem 3, if the optimal value is not d,
D={a,.....@.bg1,....bn}. First, note that if d,=b, and dn,,;=b;, (S1) will be
satisfied. Therefore, for all three to fail, either d, =g, Or dny =04+ SUpPpOSe
that d, =a; it is easy to see that condition {S1') will be satisfied unless dy1=bg.
If d,,, does equal b, then D'= $ay... 2 _p,be.. bpi. 1f k=1, this implies that
(S3') holds; otherwise (S1'), (S21), and (S3') all fail to hold. Finally, suppose that
d, .+, =+, Again, condition (S1) will hold unless dp=bg,;. In this case,
D'=fay...,Qs1.Dg sz .bp . 1f k= —1, it follows that (S2') is satisfied, but other-
wise all three conditions fail. These cases are precisely those stipulated by (S4),
(S5), and (S6).

To complete the proof of the theorem, suppose that d' is not attainable. It
is straightforward to show that the restrictions placed on dp and dns+; insure
that both D—{dnlUidn.+z} and D—{dn-1}Uldni) must satisfy one of (S1'), (82,
and (S3'). Since both d—d, +dn +2 and d—d, - +dn+; are attainable, the optimum
is simply the minimum of the two values.

It is interesting to consider the case where the values a; and b; are not neces-
sarily distinct.

Theorem 5. Consider an instance of the TSP given by a small distance matrix.
The length of an optimal tour is equal to d if and only if one of the following four
conditions holds:

(S7) (S1),(S2), or (S3) holds.

(S8) d, =dn41; none of (S4), (85) and (S6) holds.
(39) dp=dn+i1=dn+2

(S10) d -1 =dp =dp 41-

Proof: Left as an exercise. []

Exercises

2. Prove Theorem 5.

3. Formulate and prove the theorem corresponding to Theorem 4 when gy and
b; are not assumed to be distinct.

-9-

4. Construct an O(n) time algorithm to find an optimal tour for small
matrices. (The input must be a and b.) Hint: 1t is possible to find the
median of n numbers in O(n) time.

5. Prove that if C is a symmetric small matrix then the length of the optimal
tour is d.

4. Circulant Matrices

In this section we show how to find a shortest Hamiltonian path in the case
that C is a circulant matrix. Although we do not know of a polynomial algorithm
for the TSP for circulants, the Hamiltonian path result does enable us to obtain
an approximate solution that is quite close to the optimum in many cases.

A circulant is ann X n matrix of the form

g € Cg Cn-2Cn-1
€n-1C¢ €1 ... Cn-3fn-2
Cn-2Cn-1€C¢ -+ Crn-4Cn-3 |
kC1 Cz C3 Cn-1Co0)

The cells (i,7) such that (j —1) =k (mod n) have the same value ¢;; these cells
comprise the kth stripe of C. Note that each stripe yields a feasible solution to
the assignment problem defined by C.

Theorem 8 [Garfinkel 1977] The number of subtours in the assignment given
by the kth stripe is ged (k,n).

Proof: Citiesi and j are in the same subtour if and only if there exist integers
m,, mz such that j —1 = m,k + mpn. It follows from elementary number
theory that i and j are in the same subtour if and only if i = (mod g). where
g = ged(k,n). Hence there are ged (k, n) subtours, each of which contains
n/ged{k, n) cities. []

Corollary 1 1f ged (k,n) = 1, then the kth stripe yields a Familtonian cycle.

Corollary 2 If n is prime then each stripe, other than the Oth, yields a Hamil-
tonian cycle.

Let Ck(c) < Ci!{1) < Ck(2) <. .. = Ck(n_l) and let

go = ged (k(0).n),
gis1 = ged (k(1 + 1),94)

Lemma3 A lower bound on the length of a shortest Eamiltonian path is given
by

-10 -

(n —go) Cr(o) + (go—g1)cemy + - + (gn-2 = Gn-1) Ck(n-1)

Proof sketch: Ignore directions of arcs and consider the undirected multi-
graph that results. Edges from stripe k(0), with cost cg(g), yield a subgraph with
go connected components. Edges from stripes k(0) and k(1) yield a subgraph
with g, connected components, and so forth. It is now seen that a shortest span-
ning tree, such as one obtained by Kruskal's algorithm, has length equal to the
asserted lower bound. Since every Hamiltonian path is a spanning tree, the
length of a shortest spanning tree is a lower bound on the length of a shortest
Hamiltonian path. [}

Theorem 7 [Bach, Luby & Goldwasser 1982] The nearest neighbor rule, start-
ing from any city, yields a shortest Hamiltonian path.

Proof sketch: Show that the nearest neighbor rule yields a Hamiltonian path
whose length is equal to the lower bound given in Lemma 3. 0

Corollary 3 The nearest neighbor rule, starting from any city, yields a tour
that differs in length from the optimum by no more than Cg(n-1) — Ck{0)-

Proof: No tour can be shorter than the length of a shortest Hamiltonian path
plus Cg(g). The nearest neighbor rule chooses one arc in addition to a shortest
Hamiltonian path and its length cannot exceed Cg(n-1)- 0

We comment that the Hamiltonian path produced by the nearest neighbor
rule is optimal in a very strong sense--its kth shortest arc is as short as the kth
shortest arc in any other Hamiltonian path. In particular the path is bottleneck
optimal.

Fxercises

6. Let C be ann x n circulant, where
c, =ak +b (modn)

with ged (a,n) = 1. The elements of C are thus 0,1,2,...,n — 1.

(a) Show that g, =1 for C (where Ce(g) = 0. Ce()) = 1). (Hint: It may be easi-
est to show ged (k(1) — k(0), n) = 1, which implies the desired result.)

(b) Show that the length of any Hamiltonian cycle is a multiple of n.

(c) Use the above results to show that the nearest neighbor rule yields an
optimal Hamiltonian cycle.

7. (Open question) Is there a polynomial-time algorithm for solving the TSP
for circulants, or is this problem NP-hard?

5. Upper Triangular Matrices

We say that C is upper triangular if i>j implies ¢;j=0. In this section we
shall show that the TSP for upper triangular matrices is essentially as easy as

-11-

the assignment problem [Lawler 1972).

Lemma 4 Let C be upper triangular and g be an assignment that is optimal
subject to the constraint that ¢(n)=1. Then c(p) is a lower bound on the length
of an optimal tour.

Proof: Call an arc (i,7) backward if i=j; for such an arc ¢;; = 0. Let T be an
optimal tour. Remove each backward arc from the part of T that extends from
city n to city 1. The result is a set of paths, each extending from a city j to a
city i, with j<i. Now turn each of these paths into a cycle by adding a backward
arc from i to j. The resultis an assignment ¢ with ¢(n)=1landc¢ (p)=c(m). U

Theorem 8 Let C be upper triangular and ¢ be an assignment that is optimal
subject to the constraint that ¢(n)=1. Then c¢(g) is equal to the length of an
optimal tour 7 that can be easily constructed from ¢.

Praof: Llet ¢ be an assignment that is optimal subject to the constraint that
¢(n)=1. If ¢ is not a tour then it consists of s subtours, where s=2, each of each
contains at least one backward arc (as defined in the proof of Lemma 4).
Remove arc {n,1) from the subtour containing cities 1 and n and any one back-
ward arc from each of the other subtours. The result is a set of paths, one
extending from city 1 to city m, and the others from j; to i, jz2 to ig ... Js-1 tO
’i‘s—lv where J1>]2> M >js_1 and i12j1>j2, i22j2>j3, ...,1:,_12'7'5_1)1. Now add
backward arcs (n.j1), (injz).... (s-2Js-1) (is-1.1) to obtain a tour 7 with
¢(7)=c(¢). Since, by Lemma 4, ¢ (¢) is a lower bound on the length of an optimal
tour, T is optimal.

Note that an assignment g that is optimal subject to the constraint that
¢(n)=1is easily obtained by applying any algorithm for the assignment problem
to the (n—1)x(n-1) matrix C’ that results from the deletion of column 1 and
row n from C. Standard assignment algorithms require no more than 0(n?3)
time. The construction of an optimal tour, as indicated in the proof of Theorem
8 requires considerably less time. The reader may be interested in verifying
that the construction requires no more than O(n) time.

As a simple example, let

017 -20 3 -2 5|
00 12 8 18 9 B8
00 0 3 7 6 2
c=l00 o 0 4 4 9
o0 0O O O —18 -1
00 0O 0 O O 3
oo 0 0 0 0 O
Then
-1 7 203 -2 5|
0 12 8 16 9 8
, o 0 3 7 6 2
C=lo o 0 4 4 9
O 0 0 0 -18 -1
0 0 0 0 O 3|

-12-

and an optimal solution to the assignment problem is indicated in bold face.
This is converted to an optimal solution to the TSP as shown in Figure 1.

— Insert Figure 1 about here --

Exercises

8. Devise a procedure to determine whether or not a matrix C can be made
upper triangular by adding constants to its rows and columns and by
renumbering the cities (effecting a symmetric permutation of rows and
columns). (Hint: Guess at the identity of the cities to be numbered 1 and
n. This determines the constants to be added to rows and columns, almost
uniquely. Then see if it is possible to renumber the remaining n —2 cities to
achieve upper triangularity. This question is essentially equivalent to deter-
mining whether or not a given matrix is the adjacency matrix of an acyclic
digraph.)

9. Suppose C is upper triangular and nonnegative. Show that the length of a
shortest path from city 1 to city n is equal to the length of an optimal tour.
(This means that an 0(n?) shortest path computation suffices, instead of an
0(n3) assignment computation.)

10. What adaptations of the algorithm of this section are required to solve the
bottleneck TSP? (The bottleneck assignment problem can be solved in
0(n??log n) time [Hopcroft & Karp 1973].)

11. An author is writing a book with n sections. She would prefer that certain
sections precede others, because of the relationships in their contents. She
is able to specify a partial order, <, describing the desired precedence rela-
tions. How should she order the sections so as to minimize the number of
times that there is a section z in the book immediately preceding y, with
z#y? Formulate as a TSP with an upper triangular distance matrix. (Note:
A feasible solution to the TSP may not be consistent with the partial order,
in the sense that there may be a section z preceding a section y, with y=z.
If consistency with the partial order is demanded, the resulting "optimal
linear extension” problem is known to be I_IP-hard.)

8. Graded Matrices

We say that a matrix C is graded across its rows if ¢y < ¢y ;4 for all1,j and
graded up its columns if ¢;; = Cy4y 5, for all i,j. A matrix is doubly graded if it is
graded both across its rows and up its columns.

The TSP is NP-hard for graded, even doubly graded, matrices since any

matrix can be made doubly graded by a linear admissible transformation, that
is, by adding constants to its rows and columns. However, it is possible to obtain
a useful approximation result for graded matrices, as we show below. In Section
10 we show that there is a polynomial algorithm for obtaining an optimal solu-
tion to the bottleneck TSP for graded matrices.

Theorem 9. Let C be nonnegative and graded up its columns. Given an
optimal assignment ¢ it is easy to construct a tour 7 such that

-13-

c(7) < c(p) + max; fcy;4.

Proof: If ¢ is a tour, let 7 = ¢. Else choose one city from each of the m =2
subtours of ¢, and let these cities be 1, ig, ..., i, Withi, <iz < ... <ipn. Remove
arcs (i, ¢(i1)... (im. 9(im)) from ¢ and substitute arcs (iz ¢(11)).
(ig. ¢(i2)). ... (im-1, @{im-2)). (tm, P(im-1)) and (i1, ¢(im)). From

Ci g(iy) = Cipeliy).
Cigplip) = Cizalia):

Cipy 1 #lim—1) = Cim 9 1)
it follows that
c{m)<c(p) + Ciyplim) ~ Cim #lim)

< c(p) + max; {ci; i

As a very simple example, let

543210]
432100
321000
C=lz210000 3
100000
000000

with an optimal assignment ¢ indicated by the bold entries. Note that ¢ has
three subtours: (1, 6), (2, 5), and (3, 4). Lettingi; = 1,12 = 2, 13 = 3, we convert
to a tour 7T as shown in Figure 2. This gives us

c(r) =cp) +ca —car = cp) +3.

-- Insert Figure 2 about here --

7. Pyramidal Tours

Let us say that a tour 7 on cities 1,2,...,m is pyramidal if, for each city
j.1<j<m, either T71(j)<j <7(j) or +1(3)>j > 7(j). In other words 7 is
pyramidal if it is of the form (1, 1,3, T, J1oJn-r—2), where i; <ip<... < i
and j‘i > jg > ... > jn_r~2.

An equivalent characterization of pyramidal tours is as follows. Let A,
denote the set of all pyramidal tours on cities 1,2,...,n. Then A = §(1,2)} and
An +1, for n = 2, contains all permutations of the form (n,n + 1)7Tor Tn,n + 1),
where 7 € A,,, and only such permutations.

For any distance matrix C it is possible to compute a shortest pyramidal
tour by the following dynamic programming scheme. Let C(i,j) denote the
length of a shortest Hamiltonian path from i to j on cities 1,2,..., maz {1,7}, sub-
ject to the condition that the path passes through cities in descending order of

-14 -

index from i to 1 and then through the complementary subset in ascending
order of index from 1 to j. By the usual sort of argument involving the principle
of optimality, we have

C(i,j—1)+cj1j fori <j -1,
Mming¢; § C(1.k) + Cp§ fori =75 -1,

C.I) =)l - 1, j) + cigm1 fori>j+1, (4)
ming; §C(k.j) + cae} fori =7 + 1.

It is possible to compute C(i,n) and C(n,i), for all i <n in O(n?) time,
starting from the initial conditions C(1, 2) = ¢,z and C(2,1) = ¢z;. The length of
a shortest pyramidal tour is then given by

min {C(n — 1, n) + Cpn_1s Cln,n —1)+ch_1n}l.

Let us now consider conditions under which we can be assured that there
exists an optimal tour that is pyramidal. For a given matrix C, let

dij = €y * Cisrj-1 ~ Cij-1 7 Cisrj s (5)

where by definitionc;; = 0ifi =n + 1 or 7 = 0. It is easy to establish that

Cij=iidu

k=il=1

If the matrix D = (dy;). as defined by (5), is nonnegative, we say that C is a
(cumulative) distribution matrix generated by the density matrix D.

Lemma 5 If Cis a distribution matrix then

cij' + c'l;'j > cij + Ci.'j' .

foralli <t',j <j"
Proaof: Left as an exercise. {]

Corollary 4 If C is a distribution matrix then the identity permutation (i) =1
is an optimal assignment.

Proof: Let ¢ be an optimal assignment. If ¢ is not the identity permutation,
then there are cities 7,1, with i < i’ such that (i) > ¢(i’). Apply Lemma 5, with
j =), 7 =) to obtain an assignment @, where
e(i)=7.9@) =7 ¢ (k)=p(k)for k #1,1' and c(¢') < c(g¢). Afinite sequence
of such rearrangements yieclds the identity permutation, which must therefore
be optimal. []

-15-

Theorem 10 If C is a distribution matrix then there exists an optimal tour
that is pyramidal.

Proof: By induction on the number of cities. The theorem is trivially true for
two cities. So let us assume it is true for n — 1 cities and consider a probiem
with n cities. Let T be an optimal tour. If 7 is not pyramidal then there is a
“peak’ j #n such that 771(j) <j > 7(j). (The reader may care to show that
the number of “'peaks” is equal to the number of “‘valleys,”” where a valley j is
such that 77Y(j) > 7 <7(j).) Leti=j, 1= “14), 7' = 7(j) and apply Lemma 5.
The result is a permutation 7', with ~(j)y=3. @A) =3, 7(k) = 7(k) for k #1',]
and with c(7) < c(7). The permutation 7' has two subtours, one containing j
only and the other containing the other n — 1 cities. By inductive assumption, if
the latter subtour is not pyramidal, it can be replaced by a pyrarnidal tour of no
greater length. (A submatrix of a distribution matrix is a distribution matrix.)
We now "patch” j back into 7' Let i be such that i <j < 7(i). Now apply Lemma
5withi' = j and j' = 7(i). Theresultisa pyramidal tour 7' on the n cities with
c(7") < ¢(7) < c(7) and the theorem is proved. 0

As a simple application of Theorem 10, consider the distribution matrix €
generated by the density matrix D, where

[4 18 20 23 40| [

1311 1

3 12 15 17 33 0200 0
cC=1{310131531|, D=|2421 4,
1 4 5 618 1010 2

0 3 3 4 14 030110

Solving for a shortest pyramidal tour by the recurrence relations (4), we obtain
T=(1,4,5,3,2) withc(T) = 45.

As we have seen, if the matrix C is a distribution matrix then the TSP can
be solved in O0(n?®) time by applying the dynamic programming technique for
finding a shortest pyramidal tour. As we show in the exercises below and in the
next section, there are other conditions under which there exists an optimal
tour that is pyramidal so that the same dynamic programming technique can be
applied. In Section 13 we shall show that there are also special cases of distribu-
tion matrices for which it is possible to solve the TSP in less than 0(n?) time.

Fxercises

12. Prove that the two characterizations of pyramidal tours given in the begin-
ning of this section are equivalent.

13. Prove that C is equivalent to a distribution matrix by a linear admissible
transformation if and only if d.‘j >0 fori=12,. ., n—-17j7=23..n where
d; is as defined by (5).

14. Prove Lemma 5.

15. Suppose that

cg = maz {cyj, Cied

- 16 -
Ci = ™ax {Cs, Cej!

for all i <j <k. Prove that there exists a bottleneck optimal tour that is
pyramidal.

16. Leta,>ap,> . 208,20, 0= b,<by<. <b, Show that each of the fol-
lowing matrices is a distribution matrix:

(a) Cyj =a; + b)

(b) C“j = &b,
(¢} ©y =iy —a;i.
(d) ¢y =min fa;, byi.

(e) ¢y =maz {8 —+1. 051

8. The Demidenko Conditions

In the previous section it was shown that for certain classes of matrices,
there must be an optimal tour that is pyramidal. It was further shown that an
optimal pyramidal tour can be found in O(n?) time. In this section, we show that
a broad class of matrices has the property that there exists an optimal tour that
is pyramidal. This result subsumes several results from the Soviet literature,
which show that more restricted classes of matrices have optimal solutions that
are pyramidal (for examnple, see Exercise 17).

The class of TSP instances C is defined by a set of conditions, each of which
depends only on four cities. For any four cities, (i.7.7+1.l) where i<J <j+1<i,
the following conditions must hold: the path

/_@ is at least as long as

. > - > (6
L 60\ £ 1
¢ & o 4
and the symmetric condition that the path
'@\v is at least as long as . - < (7
T i PRI

the pair of arcs

/‘7“ is at least aslong as o~ v (8)

and its symmetric counterpart that the pair

m is at least as long as «— —_ . (9

i’ ‘ é*\ A - v J 4t ¥

-17-

First, two preliminary lemmas are given,

Lemma 8 Let C€C, and ij.J+1...0+k €§1,..n] where 1<J, j+k<l, and
1<k<n—j-1. It follows that

/Z\ _ is at least as long as
31 é Aok x . J
and that, symmetrically,

/ZS\ is at least as long 85 e e

i ¥ st £ i 4 e 2
(Throughout this section, a “wiggly' arc from 1 to j denotes the path 1,1+1,....7.
In addition, from here on, the obvious = will be used to denote the words ‘'is at
least as long as".)

Y

>
k V4

) -
v o
a#

Proof: By induction on k. For k=1, these inequalities reduce to the conditions
(6) and (7) which must hold (since C €C). Suppose that the lemma were true for
k—-1. Then,

TS T~ s e TN

1) A+k-\ yrk 2 i 4 jrer gk 2

by the inductive hypothesis. But, by (8),

L J)*k-\ Jrk Y L J. J-rk-\ J'_..k

Y

Add the two inequalities to get

7N\ . N

1 4 rk-l itk Az i 4 gri=t J:-k £)

The arcs (i,j+k—1) and (j +k—1,1) on both sides cancel, giving the desired
result. The symmetric case has an exactly parallel proof. 0

Consider the conditions,

/——.K\ > —— 3 e (10)

L } k £ T) Kk A

and
/7<* > e - . (11)
i‘ ‘ k L L 3 k L

for arbitrary (,j.k.l) where i<j<k<l. Clearly these conditions imply (8) and

-18-

(9); however, the converse is also true.

Lemma 7 The conditions (8) and (9) hold for arbitrary (1,5.7+L1), i<j<j+1<L,
if and only if conditions (10) and (11) hold for arbitrary (i,7.k.1) where i<j<k<l.

Proof: Left as an exercise to the reader. []

Consider an arbitrary tour 7. As in Section 7. call i a peak of T if
r1(i)<i>7(i); call i a valley of T if 71(1)>i<7(i); otherwise i is called an inter-
mediate term. P(7), V(7). and /(7) denote the sets of peaks, valleys, and inter-
mediate terms, respectively.

Consider the cycle on eight cities, +=(1,3,5,4,7.8,6,2). We can “*graph’ this
cycle as is depicted in Figure 3.

— Insert Figure 3 about here —

In Figure 3 it is easy to see that 5 and 8 are the only peaks, whereas 1 and 4 are
the only valleys. For every peak 1 € P(7). define the set S(7.1) to be the slopes
of the peak: that is, include all points that form a decreasing sequence by
repeatedly applying 7 to 1, or repeatedly applying 77! to 1, up to, but not includ-
ing the next valleys. Therefore, in the above example, S(7.5)={3.5{ and
S(7.8)=17.8,6,2}. Furthermore, if 7 is pyramidal there is exactly one peak, n,
and S(r.,n) = {23,...n}.
The following lemma is an equivalent characterization of pyramidal tours.

Lemma 8 A tour 7 is pyramidal if and only if it satisfies the following condi-
tion: for any peak & € P(1), 3<k<n, and any i, 0<i<k -3

tk,. . k=}cS(rk)=>(k-i-1 € P(r)ork—-i—-1€ S(7.k)).

Proof: Let k be a peak in P(7). Suppose that the property above does not
hold for some k and i within the specified range, but does hold for all 7,
k >j >1. In this case, k and i will be called a bad (ki) pair. The claimis that 7
is pyramidal if and only if there are no bad pairs. For a pyrarmidal tour 7,
S(7.n)={2,...,n}, so by checking the boundary conditions, it follows that no bad
pairs exist. To prove the other direction, assurme that a tour has no bad pairs.
Find Lhe peak k of smallest size. Consider S(r.k); for some i, k=i € S(7.k) and
k—i—1£S(7 k). But T has no bad pairs, and by the choice of k, k—=i1—1is not a
peak. Therefore, k —i=2 and since the valleys on either side of k must be less
than k —i, both of these valleys must be 1. But then k is the only peak. and
hence T is pyramidal. [}

Theorem 11 [Demidenko 1980] Let C € C. For any tour 7 there exists a pyrami-
dal tour T¢ of no greater cost.

Proof: We shall make critical use of Lemma 8. Suppose that 7 is a non-
pyramidal tour. We give a construction for finding a pyramidal tour of no
greater cost by eliminating all of the bad pairs in 7. For any bad pair (k,i), the
structure of the peak k& and its relationship to k—-i—1 is limited to a small
number of cases. For each of these cases we define an elementary transforma-
tion that removes the bad pair without increasing the length the tour. These

-19 -

elementary transformations are used to construct a set of composite transfor-
mations. These composite transformations will have the following property: if
(k,i) is the bad pair that a particular transformation is designed to remove, not
only does it fix (k,i), but no new bad pair (ki) with k'—i'>k —i is created. Thus,
by finding the bad (k.i) pair with the largest k—i and fixing that pair, these
composite transformations can be used to remove all bad (k,i) pairs where
k—i=3.

To complete the proof of the theorem, all that is left is to show is that these
composite transformations can indeed be constructed. The proof given by Dem-
idenko is very technical and only a sketch of it is given here.

Consider an arbitrary bad pair (ki) for some permutation 7. There are two
basic cases: either (1) k—i—1€ V(7), or (lI) k—i-1 € S(7.1), 1>k . (Since none of
k — 1, .k —1i are peaks, note that k —i~1 cannot be on a slope of a peak lower
than k.) Within both of these cases there are several subcases. For case 1,
k—i—1 can either be a valley of the peak k, or it can be a valley of another peak.
From this breakdown we get the three cases that are depicted in Figure 4, and
their mirror images.

— Insert Figure 4 about here --

In case I(b), as well as in the cases that follow, the point k —i+g denotes the
smallest point on the right slope that is larger than k —i. The points k—i+p and
k —i+r are, respectively, the consecutive points on the left slope that are just
lower and just higher than k —i+g. (Note that 7 need not be p + 2.)

Consider case 1{a). The elementary transformation for this case alters the
tour by visiting city k-1 —-11n between cities 7 }{k —i) and k —i. This is depicted
in Figure 5. The dashed line superimposed on the original tour indicates the
tour after the transformation has been made.

-- Insert Figure 5 about here --

To prove that the new tour is no longer than T two cases must be considered.
Suppose that 77'(k —i—1) > 7(k —i—-1). In this case, the relevant arcs of 7 are as
depicted in Figure 6.

— Insert Figure 8 about here —

The dashed arc from k—i to k—i—-1is a dummy arc that will cancel out at the
end. This technique of adding dummy arcs is a very powerful tool, and it
requires a bit of cleverness to determine which arcs are the correct ones to add.
Condition (8) can be used to show that the collection of arcs in Figure 7 is no
longer than the collection in Figure 6.

— Insert Figure 7 about here --

Applying condition (11) to the collection of arcs in Figure 7 we get the desired
result; that is, the solid arcs in Figure 8 are precisely the arcs that replace the
solid arcs in Figure 6 depicting 7.

— Insert Figure 8 about here --

The case T{k—i—1)<T '(k—i—1) is left as an exercise to the reader. It is impor-
tant to note that this transformation already has the property that no new bad
pairs (k',i') are created where k'—iz=k —i.

-20-

Next consider case I(b). In this case, the elementary transformation is
more complicated; the resulting tour is depicted Figure 9.

— Insert Figure 9 about here —

As above, it can be shown that the new tour is no longer than 7. However, it is
not true that no new bad pairs (k'i') are created that have k' —i'=k —1. In fact,
it is easy to see that (k.i—r) has become a bad pair. However, as shown by the
graph of the new tour, the essential structure of the tour is exactly as it was
before that transformation, only the left slope is shorter. The result of repeated
applications of similar transformations to 7 is given in Figure 10,

— Insert Figure 10 about here

and this new tour has length no greater than 7. This is the composite transfor-
mation to fix bad pairs in case I(b).

Next consider case I{c). In this case, the elementary transformation
changes 7 into the tour givenin Figure 11.

— Insert Figure 11 about here —

Again, we must form a composite transformation. This is done 1s a manner very
similar to the case above.

Finally, consider case Il, k —i-1€S(7.l). 1>k, k—i—1can either be an inter-
mediate term on a "left slope” or a "right slope”. The two cases and their ele-
mentary transformations are shown in Figure 12.

— Insert Figure 12 about here -

It is left as a somewhat tedious exercise to show that the necessary composite
transformations can be formed, and that the resulting tours in these cases are
indeed no longer than 7. []

Exercises

17. [Kiyaus 1976] Suppose that

ci +¢;5 =0,

§
C“kZCij +cjk ,

Cha cj‘L + ck] .

foralli <j <k.

(a) Prove that these conditions are a special case of the Demidenko condi-
tions.

(b) Prove directly that there exists an optimal tour that is pyramidal.
(Hint: Structure a proof similar to that of Theorem 10 of Section 7.)

18. Prove Lemma 7.

19. Complete the proof of Theorem 11. (This exercise should be attempted only
by those who have a great deal of stamina. An interesting open problem is

-21-
to find a more elegant proof for this result.)

9. The Theory of Subtour Patching

In this section we shall consider the following strategy for finding an optimal
tour: First find an optimal assignment ¢. If ¢ is a tour, it is clearly an optimal
tour, and we are done. Otherwise, it consists of several cycles or subtours.
Modify ¢ so as to patch these subtours together to yield a single tour T that is
optimal. Thus our strategy is: given an optimal assignment ¢, find a ¥ such that
¢V is an optimal tour.

Our first task is to investigate conditions on ¥ under which g¥ is a tour. We
shall assume that the reader is somewhat familiar with the notion of a hyper-
graph. (A hypergraph is like an ordinary graph except that its ‘‘hyperedges’’
may be incident to arbitrary subsets of vertices, instead of to only subsets of
size two.)

Let P = {p1.p2 .. om) be a set of (not necessarily disjoint) cycles on subsets
of V=1{1.2,..n} Let H =(V,P) be a hypergraph with vertex set V and with
hyperedges corresponding to cycles in P. The hyperedge for p; is incident to
exactly those elements of V on which p; acts. For example, if we have
p1 = (2.3.4), p2 = (1,5), ps = (1.3.2,4), then H=(V,P) is as shown in Figure 13.
Note that 7= p; p2p3 = (1,2,3,4,5) is a tour.

— Insert Figure 13 about here —

A hypergraph A = (V,P) is disconnected if it is possible to partition its ver-
tex set V into two nonemnpty parts S and T such that no hyperedge is incident to
a vertex in S and also to a vertex in T. A hypergraph is connected if it is not
disconnected.

Theorem 12 1f 7 = p,pz...om is @ tour, then H =(V, P) is connected.

Proof: Consider the contrapositive. Suppose H =(V,P) is disconnected.
Then there exist nonempty S and T such that p; (7)€ S if and only if jE€S, for
all cycles p; and cities j. Thus 7(j)€ S if and only if j €5, where T = 01 P2 Pm
and T cannot be a tour. []

Corollary 5 Let ¢, ¥ have factors ;.1 = 1,2,....7, and ¥;.j = 1.2,...,s, respec-
tively. 1f p¥ is a tour then H={(V, {¢} ut¥;}) is connected.

Corollary 5 gives a necessary condition on ¥ for g¥ to be a tour. We now
seek a sufficient condition.

A hypergraph H =(V, P) with n vertices and m edges py.. .Pm is a tree if it
is connected and if

g(!Pii'l)’—"ﬂ—l,
i=1

where |p;| is the number of vertices incident to p;. Note that this definition
generalizes the well-known condition for a graph G to be a tree, i. e. G is

-22-

connected and m = n — 1. Also note that this definition allows a tree to have
edges that are incident to a single vertex and that such edges (self loops) can be
added to or deleted from the hypergraph without aflecting its status as a tree.
It is a straightforward exercise to show that if # =(V,P) is connected, then

i({pi —-1)=zn-1
i=1

It follows that if H =(V.P) is a tree, then the deletion of any edge p;, with
| pi | =2, disconnects H. Moreover, any edge p; must be incident to exactly one
vertex in each of the subtrees formed by its deletion. With these observations, it
is not difficult to provide an inductive proof of the following.

Theorem 13 If H=(V.P) is a tree, then T =p1p2 - Pm is a tour (where the
order in which the cycles p; are multiplied to obtain 7 is immaterial).

Corollary 6 Let ¢, ¢ have factors ¢, i=12. ., andy; Jj =12 .5, respec-
tively. If H=(V.l¢g.}vi¥;]) isatree then ¢¥ is a tour.

We can now reinterpret the procedure for upper triangular matrices
presented in Section 5. The permutation ¥ that is found is in the form of a sin-
gle cycle acting on exactly one city in each subtour of ¢. It follows that
H=(V. {g:lul¥;}) is a tree and, by Corollary 6, ¢¥ is a tour. The tour ¢¥ is
optimal because ¢ {¢) is a lower bound on the length of a tour and c{g¥y) = c{¢).
(Recall that in this case ¢ is not necessarily an optimal assignment, but is only
optimal subject to the condition that ¢(n) = 1; the fact that c(y) is a lower
bound is a nontrivial result.)

The case of upper triangular matrices suggests that we investigate condi-
tions under which there exists a % such that H=(V {g}vi¥;}) is a tree and ¢y
is an optimal tour either of the ordinary or the bottleneck variety. For simpli-
city, when considering the bottleneck TSP, we shall always assume that €(¢) =0,
in order to have ¢g(y) = c(¢¥). (If this is not so, apply the transformation
Cy = max §0, ¢y — ki, where k is the value of a bottleneck optimal assignment.)

Theorem 14 Let ¥ have factors y;, J = 1.2.....s. Then

co(y) = 2, co(¥;).

i
Se(¥) = maz; e e(¥;)} -

Proof: Note that

cle¥;) —cl¢)
Z Ci.gp;(0) ~ 2 Ci.0(2)
% t

Y Gy Y s

i:ij(i)#i i:fj(i)#t

c ¢ (¥;)

It follows that

-23-

Loy = ; Cogvi) = O, Cield)
b t9)m e

= 2; Co.py{i) ~ Z Ci (i)

= ¢ (py) —c (¢)

=cp(¥).

The proof for £ ¢ (¥) is similar. 0

Theorem 14 tells us that we can deal with the factors of ¥ independently of
each other. This fact is useful, but by itself does not help us much in finding a ¥
such that ¢¥ is an optimal tour. We shall adopt the approach of building up ¥ as
the product of transpositions (cycles of length two). Of necessity, these transpo-
sitions will generally not be factors of ¥ (i. e. they will not be disjoint), so
Theorem 14 will not apply.

As an example, suppose We have an eight-city problem, with
¢ = (1,2.3), (4.5). (6,7), (8). The hypergraph H = (V. {.}) is as shown in Figure
14(a). If we add edges for the transpositions (2.4), (5,7) and (7.8). we obtain the
hypergraph tree shown in Figure 14(b). By Theorem 13, postmultiplication of ¢
by the transpositions (2.4), (5.7), (7.8), in any order, results is a tour. The order

in which the transpositions are multiplied determines y. For example, we can
have either

y = (2.4) (5,7) (7.8) = (2.4) (5.7.8)

or

y = (2.4) (7.8) (57) = (2.4) (5.8.7).

But no matter in what order the transpositions are multiplied, the cyclic factors
¥ correspond to the connected components of the graph of transpositions, as
.shown in Figure 14(c).

— Insert Figure 14 about bere -

With respect to a given optimal assignment ¢, let us assign a length to each
transposition (1.7):

cp((1.5)) = Cigty) + Cjgli) ~ Cigl) ~ Ciel)
or
c¢((i.7)) = maz {Cp() gl -

We can find a minimum length set of transpositions p;pz2 ... Pt such that the
hypergraph H =(V, {gi§ Vv tp;}) is a tree, by solving a minimum spanning tree

-24 -

problem for the (multi)graph that is obtained by contracting each of the
hyperedges of H = (V, {g:}). (Note that after contraction of the subtours
(1,2.3), (4.5), (6.7) the transpositions (2.4), (5,7), (7,8) form a tree as shown in
Figure 14(d).) We shall say that a set of transpositions is a minimum spanning
tree (with respect to ¢) if it is an optimal solution to such a spanning tree prob-
lemn.

What relationship is there between the length of a minimum spanning tree
and the length of an optimal tour? In the following two theorems we state condi-
tions under which a minimum spanning tree yields a lower bound or an upper
bound on the length of an optimal tour.

Theorem 15 Given an optimal assignment g with respect to matrix C, suppose
for any cyclic permutation p there exists a set T of transpositions connecting
the same subtours in which there are cities on which p acts, such that
ce(T) < celp) (or g¢(T) < t¢(p)). Then if T is a minimum spanning tree,
cp{T)<cep(r) (or Tp(T) < £ ¢(7)), where 7 is an optimal tour.

Proof: Let 7 be an optimal tour and let ¥ = ¢! 7T have factors Y1, .¥s. Then
co(¥) = Y, cp(¥;), by Theorem 14. By hypothesis, there exists a connecting set
of transpositions T; for each ¥;, with ceg(T;)<c ¢(¥;). Moreover, there exists a
tree T C T,u Tpu...u T, that spans all the subtours of ¢ with c¢(T) < c¢(¥). The
proof of the bottleneck case is similar. []

Theorem 16 Given an optimal assignment ¢ with respect to matrix C, suppose
for any set T of transpositions there exists a cyclic permutation p, acting on the
same cities acted on by the transpositions in T such that c¢{p) < ce(T) (or

to(p)<ce(T)). Then if T is a minimum spanning tree, cg(T)=¢ (1)
(or €¢(T) = €¢(7)), where T is an optimal tour.

Proof: Let T be a minimum spanning tree. Consider the graph with vertex set
V and edge set T (as in Figure 14(c)). Bach connected component of this graph
is a tree 7; and by hypothesis there exists a cyclic permutation ¥;, acting on the
same cities spanned by 7j. for which cely;) < c¢(Tj). By Corollary B, gy is a
tour, where the permutation ¥ has the ¥, as its factors. By Theorem 14,
co(y) = ZJ. c¢(¥;). Hence there exists a tour ¢y whose length is bounded from

above by c ¢(T). The proof of the bottleneck case is similar. [J

In the sections that follow we shall consider some special classes of
matrices for which the hypotheses of Theorems 15 or 18, or both, are satisfied.

Exercise
20. Show that if H =(V,P) is connected then

m n
Y (lpii-1)=n-1
i=1

10. The Bottleneck TSP for Graded Matrices

-25-

We shall now apply the theory developed in the previous section to obtain an
efficient algorithm for solving the bottieneck TSP for graded matrices. (Recall
that in Section 6 we gave an algorithm for obtaining an approximate solution for
the ordinary TSP for the same class of matrices.)

Let C be graded up its columns and let ¢ be a bottleneck optirmal assign-
ment. (Such an assignment can be found in O(n?) time; see Exercises.) Without
loss of generality, assume

cy = E(p), forallij. (12)

If (12) does not hold, then apply the transformation

cy := max {0, e — € (o)}

(This transformation preserves grading.)

Suppose we now permute the columns of C into the order
¢ (1), p(2), ¢(n). Assuming that (12) holds, we now have a permuted upper
triangular matrix C* that is graded up its columns. {Note the ¢y, still refers to
the (i,7)th entry of the original matrix; ¢,4;) designates the (i,7)th entry in the
permuted matrix.) As an example, consider the permuted version of the matrix

(3):

012345
001234
000223
C’=lp000012 (13)
000001
l0 00000
654321

Here, as suggested by the listing of indices at the bottom of the matrix,
e(1)=86,¢(2)=5 ..., ¢(6) = 1.

We first want to show that the lower bound property of Theorem 15 holds.
We must show that, for any cyclic permutation p, there exists a tree T of tran-
spositions, spanning the same subtours of ¢ in which there are cities on which p
acts, such that Z¢(T)<c¢(p). So let p be an arbitrary cycle. Because (¥ is a
permuted upper triangular matrix,

cp(p) = max § C1gpti) bicp(i)
Because C is graded up its columns, we have for all i<i'<p(i).
Ego(('i',p(‘i))) = Cippli) < Cipp(t) = E¢((i ,p(‘i))).

It follows that the set of transpositions

- 26 -

T = {(i'p(1)) | i<i’<p(i)} (14)

connects the cities acted on by p, with £ ¢(T) = € p(p). If this set of transposi-
tions is not a tree then transpositions can be removed from the set to obtain a
tree T satisfying the hypotheses of the theorem.

In our example (13), ¢ has three subtours: (1,8), (2,5), (3.4). Let
p = (1,6,2,4), with € g(p) = € ¢((1.6)) = ¢y, = 5. The set defined by (14) is

T = {(1.6), (2.6), (3.6), (4.8). (5.6). (2.4). (3.4)}.

From this set we can select, for example, (4,5) and (5,6) to obtain a tree. Note
that & ¢((4,5)) = c4z = 1 and € ¢((5.8)) = ¢52 = 0, so the bottleneck length of this
tree is unity.

Now let us show that the upper bound property of Theorem 16 holds. We
must show that for any tree T of transpositions there exists a cyclic permuta-
tion p, acting on the same cities spanned by T. such that Z¢{p)<c¢(T). Let us
define a partial order "<" on transpositions: (1.j y=<(i',j') if i'<i and j=<j', where
i<j and 1'<j’. Now remove from T all transpositions that are not maximal with
respect to the partial order. The remaining transpositions are of the form
(ing1).(izd2), - - (ip.dr). where i,<i< - - - <i, and iy, jr are the cities of smal-
lest and largest index spanned by 7. Because the transpositions in T connect
the cities on which they act, we must have ji1 =1z j2= 13 .. Jra >1.. Let
k,>kz> - . >ks be the cities different from 1,, iz, &, J1, J2. ..., Jr that are
acted on by transpositions in T.

For example, suppose T = {(1,3), (2.4). (3,7), (4,5), (5,6)}. The transposi-
tions in T that are maximal with respect to "< are
(i, 71) = (1,3), (i J2) = (2.4). (is, j3) = (3,7), and k, =6, kz =5 Note that
j1=3>i2=2,j2=4>1:3=3.

We assert that if we take the sequence (iy, ji. iz, J2. .-+ % Jrs ki, ...ks)
strike out the second occurrence of any index from within it, and treat the
result as a cycle p, we have € ¢(p) <€ ¢(T), as required. (The reader is asked to
verify that this fact as an exercise.) In the case of our running example (13),
suppose T = {{(4,5), (5,8)}. Then we obtain p = {4,5.6), with
tolp)=1<tp(T)=1

The algorithm for solving the bottleneck TSP for graded matrices is as fol-
lows:

(1) Find a bottleneck optimal assignment ¢. This requires O(n?) time.
(2) Determine the subtours of ¢. This can be done in O{n) time.

(3) Find a minimum spanning tree T of transpositions spanning the sub-
tours of ¢. This can be done in essentially 0(n? time by the current
champion algorithm given [Galil & Gabow 1984].

(4) For each connected component Tj of the graph G(V.T), find a cyclic
permutation ¥;, with ce(y;)=C¥(T;), as described above. This requires
at most O(n log n) time.

(5) Multiply ¢ by ¥ in O(n) time.

It is seen that the overall running time 1is essentially 0(n?), the time
required for the minimum spanning tree computation. As we shall see, this time

-27-

bound can be reduced for the more specialized case of permuted doubly graded
matrices.

Recall that a matrix is doubly graded if it is both graded across its rows and
up its columns, i.e. both €y <C; j+1 and Cyj=Cis+1 j-

Theorem 17 If C is doubly graded then a bottleneck optimal tour is given by
the permutation (1.2, n-1n).

Proof: Suppose we apply the nearest neighbor rule, starting at city 1. We
shall show by induction that the path 1,2,k contains no arc longer than the
longest arc in a bottleneck optimal tour. Combining this result for k =n with the
fact that {(n,1) must be as short as any arc from 1, we get the desired result.
The basis is easy, since (1,2) must be as short as any arc leaving 1. Suppose, by
the inductive assumption, the path 1,2, ...,J contains no arc longer than the
longest arc in a bottleneck optimal tour. Since arc (j.j+1) is as short as any arc
from the subset of cities {1,2, . . . ,j} to the subset {j+1, ... n} the path may
be extended to j+1. []

A matrix C is permuted doubly graded if there exists a permutation ¢ such
that both Cig(j) = Cig(j+1) and Cig(j) = Ci+le():

Theorem 18 1f C is permuted doubly graded with respect to ¢, then ¢ is a
bottleneck optimal assignment.

Proof: Left as an exercise. 0

The principal difference between the ordinary graded case, discussed
above, and the permuted doubly graded case is that in the latter case there
exists a minimum spanning tree composed of only transpositions of the form
(i,i+1). Since there are at most n—1 transpositions to consider the time bound
for the spanning tree computation can be reduced to essentially O(n).

In order to prove the assertion of the previous paragraph, it is sufficient to
show that

cp(iti+1) < ce(ig).
for all i<i'<j. We leave the details to the reader as an exercise.

Fxercises

21. Show that it is possible to solve the bottleneck assignment problem for
graded matrices in O(n?) time. (Hint: Assuming that C is graded up its
columns, consider the following procedure. Find the smallest element in
row 1. Suppose that this is in colurmn k. Then cross out row 1 and column k
and repeat.)

22. Justify the assertion that the sequence (i, J1o 2 Joo oo Tro Ir kq ...\ ks,
with the second occurrence of any index removed, yields a cycle p with

€ p(p) < € o(T).
23 Note that the proof of Theorem 17 shows that the nearest neighbor rule
constructs a bottleneck optimal tour if one starts from city 1. Show that

-28 -

the nearest neighbor rule does not necessarily yield a bottleneck optimal
tour if one starts from any other city.

24. Let C be graded up its columns and “contragraded’’ across its rows, Le.
both ci =c¢;j4+1 and Cy = Cieyj. Show that (nn-1n-2, ...,21) is a
bottleneck optimal tour.

25. Prove Theorem 18.

11. An Application: Cutting Wallpaper

The problem dealt with in this section was formulated and solved in the con-
text of reading records from a rotating storage device [Fuller 1972]. A much
more specialized version of this problem was dealt with in [Garfinkel 1977].

Suppose we are to cut n — 1 sheets of wallpaper from a very long roll of
stock with a pattern that repeats at intervals of one unit. Sheet
i, i = 1,2,....n — 1, starts at s; (mod 1) and finishes at f; (mod 1), with refer-
ence to the zero point of the pattern. If we cut sheet i from the roll immedi-
ately before sheet j, the intersheet waste is the distance from f; tos;, L. e.

S"fi iffiSSj,
cﬁz{ ’ (15)

1+s;-f; otherwise,

=s; = fi(mod 1) .

Suppose the roll begins at the zero point on the pattern and after cutting
our n — 1 sheets from the roll we must make one more cut to restore the roll to
the zero point. In other words, we must minimize the total intersheet waste,
rounded up to the nearest pattern unit. To formulate this problem as a TSP, we
introduce an nth dummy sheet with s, = f, = 0.

For example, suppose we wish to cut four sheets of wallpaper, with
§,=.1,5,=8,s3= 6,5,=.4and f,=.8, f2=.7 fa=.7 fa= 2 After creat-
ing a durmnmy fifth sheet with ss = f5 = 0, we obtain a five-city TSP with

3 0 .8 6.2
4 .1.9.7 3
cC={.4.1.9.7 3}
9 8 4 2 8
186 40

Let us apply a linear admissible transformation to the matrix C = (cy) by
adding f; to row i and subtracting s; from colurmn j. The result is a (0, 1)
matrix C', where

’ o iUfi=s;,
€y 1 otherwise.

(16)

If the sheets are indexed so that f,= fp>...> f,, the matrix (" is graded up
its columns. In the case of our example, we now have

O

I
O =
oNeoNoNeNe
QO O o
OO = e

O = s e

For any tour 7, ¢(T) = c{m) + Z 55 — Y fi- In other words, the cost of an
optimal tour for the TSP for C' differs from the cost of an optimal tour for the
TSP for C by a constant, 3, 55 = 2, fi

Since the matrix C' is graded up its columns, we can apply Theorem 9 and
solve an assignment problem over C' to obtain an approximate solution to the
TSP whose length differs from that of an optimal tour by no more than the value
of the largest element in ', namely one unit. However, we can do better than
this. In the following we shall show how to obtain a strictly optimal solution and,
moreover, to obtain it in O(n log n) time.

There is a trick that simplifies matters and this involves changing the zero
point of the pattern. Suppose we add a constant 6 to each of the f; and s;
values and redefine the problem in terms of f;" and s5;’ values, where

fi=fi+9d {mod 1),

s;'=s;+6 (mod1).

j
Such a translation does not affect the matrix C, as defined by (15), since
SJ" —fi'sz' "ff_ (mod 1)

However, this translation does change the matrix C' as defined in (18).
In the case of our example, if we take 6 =.3, we obtain
= 4,5, =.1,53=.9,5, =7, ss =.3, and fi=.1Lf2=0f3=0
f4 =.5 fs =.3. The matrix €' then becomes

—_—

Q

|
O»—-OOS_‘
O O O
QOO0 Oo
oo oo
O - O O O

Suppose it is possible to find a & such that €’ can be made upper triangular
and doubly graded after (independent) permutations of rows and columns. If
such permutations exist, they can be effected by renumbering so that
fi=f2=..2fg and then applying a permutation of » to the columns so that
S'e1) = S'g2) = .- = S'g(n) Since the permuted matrix is upper triangular, we
have c'(¢) = 0. Since C' is a (0,1)-matrix. it follows from Theorem 9 that an
optimal tour T is such that either c¢'(r) =0orc'(7) =1 But the case c'(7) =0
holds if and only if there is a tour with bottleneck length zero. And we know how
to find a bottleneck optimal tour, in essentially O(n) time, by the methods of

the previous section.

-30 -

Now all that remains is to show that it is always possible to find a é such
that the matrix C' becomes upper triangular and doubly graded after permuta-
tions of its rows and columns. This will be achieved if we can find a ¢ such that
the largest s;' is no smaller than any of the n f;' values, the second largest s;' is
no smaller than n — 1 of the f;' values, and so forth.

To see that there is such a 6, we adapt a problem and its solution from
[Lovasz 1979, Problem 21, p. 27). Suppose we are to walk around a circle on
which there are n points f; at which we are paid one dollar and n points s; at
which we must pay one dollar. Is there any point on the circle at which we can
start with an empty wallet and never be financially embarrassed? And if so, how
can we find this point?

The solution: Take a wallet full of money and start walking around the cir-
cle, starting at any point. Since we take in #n and give out %n, we have the
same amount of money in our wallet when we return to the starting point. Now
remember where on the circle we had the least money. This was surely in an
interval between an s; and an fi. Make that f; our new starting point, i.e. set
6 = — f; and we shall have accomplished our objective.

To summarize the procedure for the wallpapering problem:

(1) Sort the f; and s; values, in O(n log n) time.
(2) Find the value § and an optimal assignment ¢ in O(n) time.

(3) Apply the algorithm for solving the bottleneck TSP for permuted doubly
graded matrices. This requires essentially O(n) time.

(4) If the bottleneck optimal tour found in (3) has zero length, it is an
optimal solution to the problem. Else apply the approximation method
of Theorem 9, to obtain an optimal tour. In this case, since an optimal
assignment ¢ is already known, only O(n) additional time is required.

The running time for solving the problem is dominated by the O{n log)
time required to sort the fi and s; values.

In the case of our example, an optimal solution is given by the tour
(1, 4,3, 2,5), witha length of 1.5.

Exercise

26. We have formulated the wallpaper cutting problem with the objective of
minimizing total waste, rounded up to the nearest pattern unit. To do this,
we introduced a dummy sheet n, with s, = fn = 0. Now suppose we wish to
minimize the absolute amount of waste. That is, the roll begins at the zero
point of the pattern and we are charged for the total amount of paper used,
regardless of where we make our final cut with reference to the zero point.
To do this, let us replace the dummy job with a ““pseudo-job” n with Jan=0
and s, being equal to the fi of whatever job precedes it. Then

Cin = Sn _fi
=fi—Jfi
=0,

Cnj = §j _fn

=Sj'

-31-

Investigate what happens to coeflicients ¢ 'y, C'n; for the pseudo-job when
the pattern origin is translated. In particular, show that it is unnecessary
to consider the pseudo-job in finding a new origin.

12. Permuted Distribution Matrices

We say that C is a permuted distribution matrix if there exists a permuta-
tion ¢ such that C¥ = (Ciw(j)) is a distribution matrix. Recall that in Section 7 it
was shown that the identity permutation is an optimal assignment for a distribu-
tion matrix; that is, the main diagonal of the matrix constitutes an optimal
assignment. Therefore, if C is a permuted distribution matrix where C? is a dis-
tribution matrix, then is an optimal assignment for C. Throughout this section
@ will be used to denote the optimal assignment for which C? is a distribution
matrix.

In this section we show that permuted distribution matrices always have
optimal tours that are of a specific form. In the following two sections we use
this result to compute optimal tours for special cases of permuted distribution
matrices.

Consider a permutation T=py where p is an optimal assignment. The
assignment T is said to be basic relative to ¢ if H ={V,{pi}ulys}) is a tree. Furth-
ermore, T is pyramidal with respect to ¢ if each of the factors of ¥ is a pyrami-
dal cycle. Finally, 7 1s dense with respect to ¢ if each of the subtours of ¥ acts
on a set of cities of the form {i,i+1, . .. itk

The following theorem is the main result of this section.

Theorem 19 Let C be a permuted distribution matrix. Then C has an optimal
tour T=¢y where T is basic, pyramidal, and dense with respect to .

This theorem will follow from & number of intermediate results about the struc-
ture of assignments and tours for permuted distribution matrices.

Lemma 9 Let C be a permuted distribution matrix. If 7=¢y is a permutation
such that H =(V.{g:}ut¥:}) is connected, then there exists a permutation 0=¢p
where H=(V.{g:}ulpi}) is connected, @ is pyramidal with respect to ¢, and

c(o)<c (7).

Proof: This result follows from Theorem 10, which states that any distribution
matrix has a pyramidal optimal tour. Consider the distribution matrix C?%; any
submatrix of C¥ is also a distribution matrix. Furthermore, the cost ¢@(¥;) is
the cost of the subtour ¥; with respect to the matrix C®. This factor ¥; is a tour
for some submatrix of C¥. Thus, by Theorem 10, there is some pyramidal tour p;
for this submatrix of C¥ with no greater cost. Therefore, ¢ ¢{(p;)<c @(¥:)-

By repeating this procedure for each factor y¥; we obtain a permutation
p=Ilp; such that o=¢p is pyramidal with respect to , and cg(p)<c p(7). Furth-
1

ermore, since p; and Ty act on an identical set of cities,
H=(V.igiulpd) = H= (V. {g:ilulys}) whichis connected. (]

Throughout this section we will refer to the following example.

-132.-

24 16 32 40 56 48 64
21 14 28 35 49 42 56
18 12 24 30 42 36 48
15 10 20 25 35 30 40
12 8 16 20 28 24 32|
6 12 15 21 18 24
4 8 10 14 12 16
2 4 5 7 6 8

= N WO N ®

W @

This has an optimal assignment ¢ = (2,3) (6.7) and is generated.by a density
matrix D =(dy) where dy =1 for all i,j. Consider the ‘tour
7= oy = (2.3) (6.7) (1.4.25) (3.7.8) = (1.4,3,6.7.8.2,5); c(7) = 160. The factor
(1,4,2,5) is not pyramidal. It does correspond to a tour in the submatrix of C?,

L4

e 16° 32 40 |
7 14 28 35°
5° 10 20 25
4 8 18" 20

where the bold-face entries indicate the costs used. Using the techniques
described in Section 7, we find an optimal pyramidal tour for this matrix. This
optimal tour, indicated by the starred entries corresponds to the factor
(1,2,5,4). Thus the transformation indicated in Lemma 9 yields the permutation
2 = (2.3) (8,7) (1.2,5,4) (3,7.8) = (1,3,6,7.8,2,5,4); ¢ (72) = 151.

By the definition of a permuted distribution matrix, if C is a permuted dis-
tribution matrix, then for all i<l and j<m

Cig(m)*Cloli) = Cip(y) HClop(m)- (17)

Lemma 10 Let C be a permuted distribution matrix. If 7=¢¥ is a permutation
that is pyramidal with respect to ¢ such that H =(V.{¢:lui¥i}) is connected,
then there exists a permutation o=¢p that satisfies the following conditions:

(a) H=(V.igi}ulp:}) is connected;
(b) o is pyramidal and dense with respect to ¢ and
(c) c{o)=c(7).

Proaf: Assume that T=¢¥ is not dense with respect to ¢. We first check
whether there exist two factors of ¥, ¥, and ¥,. where the peaks of ¥p and ¥4
are jp and j,, respectively, and the valleys of ¥, and ¥4 are i, and 14, where
ip <ig <Jp <Jgq-

If there are two such overlapping factors, we shall show how to construct a
permutation g=¢p where the factors of p are identical to ¥, with the exception of
¥p and Y, these factors have been combined into one new factor Y, that acts
on the set of cities that is precisely the union of the sets of cities acted on by ¥p
and Y. Furthermore, ¢ ¢(Yp¥q)=C @ (Vpq)-

First consider the simplest such case, where Jp is the only city on which ¥p
acts that is greater than iy, and iy is the only city on which ¥, acts that is

-33-

smaller than jp. Let L=y, (jp) and m =y4 '(ig); by our assumptions about ¥p and
Yy we know that L <ty <jp<m. Form V¥pq =¥p Vg (,m); this patches the two pyrami-
dal factors into one pyramidal factor. It is not hard to see that the cost of this
patching operation, c ¢(¥pq)—C ¢(¥p¥q) is me(jp)"'Cta(iq)"cla(jp)—cmw(iq)- which is
nonpositive, since C satisfies (17). Therefore, p=(#l;1 q”s(’i)'!/’pq satisfies the proper-

ties specified in the previous paragraph.

Next consider the case where ¥p acts on some other city k& where Jp ok >ig.
In this case we shall transform Yp and Yg into two new pyramidal factors Yp' and
¥, where Jp has been inserted into ¥4 (and has been deleted from ¥p): further-
more, ¢¢{Yp¥q)=C ¢(¥p'¥q'). By repeated use of this transformation, and the
analogous one that inserts the valley of ¥4 into ¥p, we eventually reach the easy
situation dealt with above. At this stage, the two factors can be patched into cne
pyramidal factor that acts on all of the cities acted on by ¥p and ¥q.

Therefore, suppose that ¥, acts on k, Jp>k >ig. Let j1=¥p (Gp)» 72=¥5 'Up):
and ¥, =V (Jp.J o); this deletes j, from the factor ¥,. Find the city of Yq. say L,
such that I>jp but m =y, (1) <Jp- (Since i,<Jjp and Jjg>Jp there must be some
such L.) Let ¥4'=¥q (Jp.l): this inserts jp into Yq between { and m. The difference
of the costs is

c(¥pi) —co(¥p ¥ = Cjgo(sp) FCrpalin) ~Cizeti)+ Clolm) TCLolin) TCipelm)

(cij(jp)+cjp¢(j1)_cjz¢(jl)—cjp¢(jp))+(ijv(jp)+Cl’(m)—c’-ﬂ(jp)-cipv(m))'

Since C satisfles (17), both parenthesized quantities are nonnegative. Notice
that these transformations can be used obtain a permutation o = ¥p where no
two factors of p overlap in this interlaced manner, where 0 1S pyramidal with
respect to ¢ and A =(V.{¢:} v {pi}) is connected.

Next consider two pyramidal factors Yp and Yq where the peaks of ¥, and
Y, are Jp and jq. respectively, the valleys of ¥, and yq are i, and iy, respec-
tively, and i, <ig<Jq <jp- Two such nested factors can be transformed in much
the same way as was done above, to form a new factor ¥, that acts on all of the
cities contained in ¥, and ¥4, and ¢ ¢(Ypq)=C o(¥p¥q). The essential idea is that
the valley of ¥4. iy, can be deleted from that factor and inserted in the appropri-
ate place into ¥, while maintaining pyramidality, without increasing the cost.
The details are exactly the same as the case above, and are left to the reader.
By repeating this procedure, the two factors will be merged into one factor Ypq-
As in the case above, it is easy to see that the required connectivity property is
maintained as well.

As a result of the transformations mentioned above, we may assume without
loss of generality that the factors ¥, can be ordered so that the peak of Yr 1S
less than the valley of ¥r41. If T=¢¥y is not dense with respect to g, then one fac-
tor ¥, must act on cities i and j, but not on k, i<k <j. There must exist some
city L acted on by ¥r such that I <k but m=y,(1)>k. Let Y=Y, (1,k); this inserts
k in between |l and k in ¥;. The change in the costs,

¢ ‘p('¢’r)—c ¢(1/’r')=c (¢1l/r)—c (‘P#’r’)

=Cry(k) F Cip(m) "Chp(m) " Clyk)

is nonnegative, since C satisfies (17). This transformation does not affect the
desired connectivity and pyramidality properties. As a result, we can transform

-34 -

T=¢Y¥ into a permutation 0=¢p where o satisfies properties (a) through (c). [

Let us return to our example. The factors (1,2,5,4) and (3,7.8) overlap; in
fact, both 4 and 5 are greater than 3, the valley of (3.7.8). As a result we first
use the transformation that deletes 5 from (1,2,5,4) and inserts it into (3,7.8).
This yields 73 = (2.3) (8.7) (1.2.4) (3,7.8,5) = (1,3,6,7,8,5.2,4); c(73) = 142. Next
we merge (1,2,4) and (3,7.8,5) into (1.2,4) (3,7,8,5) (2,5) = (1,2,3,7.8.5,4). There-
fore T4 =(2.3)(6.7) (1,2,3,7.8,5.4) = (1,3.6,7.8,5,4) which is not a tour:
c(74) = 139. Note that although Tz and Tg are tours, Lemmas 9 and 10 do not
insure that the resulting permutations will be tours. Finally, T4 is still not dense
with respect to ¢; the factor (1,2,3,7.8,5,4) omits 8. This is rectified by the last
transformation (1,2.3,7,8,5.4) (3.8) = (1.2,3,6,7.8,5,4). So
75 = (2.3) (6.7) (1,2.3,6,7.8,5,4) = (1,3,7.8,5,4); ¢ (7s) = 136.

A (hyper)cycle in a hypergraph H =(V.,{p;}) is an alternating sequence of
hyperedges and vertices, (po.i1.P1 %2 - - - - im.Pm) Where pg=pPm, but p; #Pk and
i; #1, for all {5k} C {1,...,mjand i; € p; N Pj+1 for all j = 1,...,m, m > 1. Note
that this is just an extension of the usual definition for a cycle ina graph.

Lemma 11 If a hypergraph is connected and is not a tree, then it contains a
cycle.

Proof: left as an exercise to the reader. []

Corollary 7 Let T=¢¥ be a permutation that is dense and pyramidal with
respect to ¢ and H = (V.{9i}ui¥i}) is connected. Then there exists a permuta-
tion o=gp that is dense, pyramidal, and basic with respect to ¢ where ¢ (o)=c (7).

Proaf: Assume that 7 is not basic with respect to ¢. Since H = (V.ig:ulsl) is
not a tree, and it is connected, there must exist some cycle in H = (V. 4@ utsl).
Some hyperedge of this cycle must be a factor of ¥, say ¥i: suppose that 1 and j
are the cities {vertices) that link the hyperedge ¥, in the cycle, where i<j. Itis
clear that either ¥, (1)>i or ¥ '(1)>i; without loss of generality suppose that the
former is true. Let p=¥,(i) and let l be the city such that {>1 but ¥, (I)=m=<i.
(Note that either p or l is i+1.) Then form ¥, =¥x (i,1); ¥ has two pyramidal,
dense factors ¥,; and ¥,z that together act on the same set of cities as the one
factor ¥, . Furthermore, the change in the costs,

c (¥) —€ ¢ (Wi 1¥k2) =Cip(m) tCrpip) ~Cla(p) "Cig(m)

which is nonnegative, since C satisfies (17). Most importantly, since ¥, was part
of a cycle, the transformation does not destroy the required connectivity con-
straint. In addition, the quantity ({494 |—1) must decrease by 1 as result of this
transformation. Therefore, after a sufficient number of such splitting opera-
tions, the resulting permutation p is such that g =¢p is basic with respect to ¢.

0

Let us return one last time to our example. The hypergraph

H=(V,{§2,3}, {6.74, {1,2.3.6,7.8.5,4}3) contains the cycle
(2,34, 3. §1,2,3,6,7.8,5.4}, 2, {2,3}]). We perform the splitting operation
(1,2,3,6,7.8,5,4) (2,4) = (1.2) (3,6,7.8,5.4). So

76 = (2.3) (6,7) (1.2) (3.6,7.8,5,4) = (1,3,7.8,54,2) and c(7e) = 132. The

-135-

hypergraph H =(V.{{2,3}, 16,7}, {1,2}, {3,6,7.8,5,4}]) contains the cycle
(§6,7}. 6, {3,6,7.8.5,4.5, 7, §6,73). The factor (3,6,7,8,5,4) is split into (3,6,5,4) and
(7,8) to give the tour 77 = (2,3), (8,7) (1.2), (3,6,5,4), (7.8) = (1,3,7,8,6,5,4,2)
which is basic, pyramidal and dense with respect to (2,3) (6,7). Furthermore
C(T7) = 128.

By combining Lemma 9, Lemma 10 and Corollary 7 we get the desired result
that every permuted distribution matrix has an optimal tour that is basic,
dense, and pyramidal with respect to ¢.

Exercises

27. Prove Lemma 11.

28. Construct a polynomial-time algorithm to determine if C is a permuted dis-
tribution matrix; if C is a permuted distribution matrix the algorithm
should output the corresponding density matrix and permutation ¢.

13. An Application: Sequencing a Single State-Variable Machine

A certain factory manufactures specialty refractory products. There are
n — 1 different jobs that are ready for burning in the kiln. Job i requires a
starting temperature s; and after some prescribed variations in temperature
(over which we have no control) the job is finished at temperature fi. 1l jobj
immediately follows job 7 in the kiln, the temperature must be changed from f;
to s;. The cost of changing the kiln temperature between jobs i and J is

fff(x)dx if fi <sj,

5 = s (18)
fg(:c)d.z if s; < f1,
5

\

where f and g are cost density functions. It is natural that f and g should be
different functions, since the cost density for raising the temperature of the kiln
is probably quite different from that for lowering it. Neither f nor g need be
strictly nonnegative, but it conforms to reality to require that

f(z)+g(z)=0

for all z. (Else one could cycle the temperature of the kiln up and down and
make money without manufacturing anything.)

Our objective, of course, is to prescribe a sequence for the jobs that minim-
izes the total cost of changing the temperature of the kiln between jobs. In
order to properly set this problem, we must specify an initial temperature fnat
which we find the kiln and a final temperature S, at which we must leave it. We
let s, and f, prescribe an nth dummy job and we have a proper TSP.

-36 -

Let us index the jobs (which we hereafter call cities) so that f1< fz< ... fa.
Let ¢ be a permutation such that Sy(1) < Se@2) % - = Sg(n) We assert that when
the columns of C have been permuted in this way, C? is equivalent by a linear
admissible transformation to a distribution matrix. That is, for 1 <i<n -1
and2<j<n,

d«g‘ = diy(j) = Cigl) t Cirip(i-1) ~ CielG-1) 7 Citr0() =0

(Recall Exercise 13, Section 7.) Specifically, for C defined by (18) we have

i

]
i,y = f [f (@) + g(z)]dz =0,

where @ = max{fi. Seig-n} ® min {fis1, Seii)} and dipp) = 0if @ > b.

Because C? is a distribution matrix, it follows from the results of the previ-
ous section that there exists an optimal tour ¢y, where ¥ is minimal, dense, and
pyramidal. Moreover, the lower bound property is satisfied and there exists a
minimal spanning tree composed of transpositions of the form (i,i+1). In
order to obtain an eflicient algorithm, we must now establish the upper bound
property for such minimal spanning trees.

Our task quite simply is the following. Show that for all 1,7, 1 <j.there
exists a pyramidal cyclic permutation 2 acting on cities 1, i + 1,...,7 such that

cold) =5 cplh b + 1) =Y dugarn (19)

J,
h=1 h=t

Qur proof is by induction on the value of j - i. For j —1 =1, we have
co((i, i + 1)) = digi+1), SO ¥ =(i,1 +1). So assume there exists a pyramidal
cycle ¥ acting on 1, i + 1,...,7 that satisfies (19). We shall show that this implies
the existence of such a ¥’ on i,1+1,...,J + 1L

Suppose we let ¥' = (7,7 + 1)¥. Then city 7 + 1 is inserted between 7 and
its immediate predecessor ¥7(j) iny. Lety7'(j) = k and we have

cp((F. 7 + 1Y)

co(¥) + Crgier) + Ciriel) ~ Ckp() ~ Citlel+1)

-1
cp(¥) + digen + ’Z dpg(s+1) -
h=k

On the other hand, if we let ¥ = ¢(j,j + 1), thencity 7 + 11s inserted between j
and its immediate successor ¥(j) in ¥. Let ¥(j) = k and we have

co(¥(G. 7 + 1)

c (W) + Cjpii+1) T Cirtptk) ~ Ciele) T Citrel+1)

co(¥) + djpieny * i dig(h)-
h=k +1

-37-
Butfor 1 <h <j - 1 we have
b
Qnoi+1) = f (f (z) + g{=z))d=z,
a
where @ = max{fr. Sgy)}, & = min{fasn SeG+) }. And for 2 < h < j we have

>
diginy = [(f(z) + g(z))ez.

where @' = max{f;. Sgn-1}, b’ = min{f+ S o) }-
There are two possibilities:
(1) f; =S4() inwhichcase fre1<Sgy)y a=b,and

dpyjery =0, for 1<sh<j -1

() fj > sg() inwhich case fj > Sem)y a'=b"and

dign) = 0, for2=<h<j.

Thus if f; <sgy) the desired permutation is ¥ =(j,j + 1)y, whereas if
fi > Sy wewant ¥ = ¥(j. j + 1). We have thus proved the following.

Theorem 20 Let C* be a distribution matrix defined by (18). For any
.7, 1 <], let i<i(1) <i(®) <..<i(r)<sj -1 be such that
fitn) < Seii(a), 1<h <7, and let i=j(1) <j(®) <.. <j(s)<j —1be such that
fj(h) > SeiG) 1< h <s. Then

Y= (i(r), i(r)*+1) (@(r -1, i(r ~1)+1) .. (1(1). {(1)+1)
G(D. §(D)+1) . G (s =1, (s =1)+1) ((s). G (s)+1)

is a pyramidal cyclic permutation actingoni, i + 1,...,7, with

i~1
co(y) = E dic ok +1) -

k=1

We are now prepared to state the algorithm for solving the single state-
variable machine sequence problem [Gilmore & Gomory 1964]:

(1) Sort the I values so that
Fi1s 2= .. [Se1)SSp@2) S - = Sgn)- This can be done in
O(n log n) time.

)
(3)

(4)

(5)

-138 -

Find the subtours of the optimal assignment . This requires only O(n)
time.

Find a minimum length tree T of (i, ¢ + 1) transpositions spanning the
subtours of ¢. This requires computation of the values dj,(i+)), Which
we assume can be done in O(n) time. A minimum spanning tree can be
found in essentially O(n) time.

For each connected component T; of the graph G(V, T), find a pyrami-
dal cyclic permutation as indicated by Theorem 20 and thereby find ¥.
This requires only O(n) time.

Multiply @ by ¥ to obtain an optimal tour. O(n) time.

Exercises

29.

30.

31.

(a) You are givenn —1 trapezoids, where each trapezoid j is specified by
two parameters, g; and b;, j = 1,2,....n — 1, as shown in Figure 15(a). The
object is to arrange these trapezoids in a line, no two of them overlapping
(a typical feasible arrangement is shown in Figure 15(b)). so that the total
length of the arrangement is as short as possible. Show that this problem
can be formulated and solved as an m—city TSP of the Gilmore-Gomory
type, with a distance matrix of the form (18).

(b) Consider the following scheduling problem. There are n — 1 jobs to be
worked on by each of two machines. Job J requires a@; units of processing
on the first machine and b; units on the second. As soon as the processing
of job j is completed on the first machine, its processing must begin on
the second machine. {There is no buffering of jobs possible between the
two machines.) The object is to find a sequence for the jobs such that all
the jobs will be completed as early as possible. Verify that the trapezoid
problem of part (a) is an appropriate model for this problem. (Note: the
three-machine generalization of this problem is NP-hard [Rock 1984;

Chapter 3]).

— Insert Figure 15 about here --

[Gilmore & Gomory 1964]. Let 7 be an optimal tour for a problem instance
with density functions f and g. Prove that 7 is also an optimal tour for

any

problem instance with functions [and g° where

fz)+g(z)=f'(z)+g'{z) (The parameters f;, s; remain unchanged.)

[Gilmore & Gomory 1964]. Suppose that a number of jobs are to be
sequenced on a machine with costs related to a single state-variable T.
Assume that g(z) = 0. Prove the following:

(a)

(b)

(c)

If the initial value of the state-variable must be fg but its final value is

unrestricted, then the sequencing problem is equivalent to a TSP with

an additional job O with starting value so, where Sg = lrsniix {s;] and final
18N

value fo.

If any value of the state-variable is available at the beginning, but the
final value must be s, then the sequencing problem is equivalent to a
TSP with an additional job O with starting value sq and final value fg

where fo= max {f:}.
15i<n

If any value of the state-variable is availabie at the beginning and its
final value is unrestricted, the sequencing problem is equivalent to a

-39-

TSP with an additional job 0 with

So< mi i3
o< min tfi)

> m Si5 .
fO ls'iasxni l;

32. Modify the algorithm to solve the bottleneck version of the Gilmore-
Gomory TSP, subject to the assumption that f (z)y=0and g(z) = 0.

93, Construct an example to show that a bottleneck optimal tour is not neces-
sarily a shortest tour, for the Gilmore-Gomory TSP. Show that in the case
S; = [o) for all i, there is a tour that is optimal with respect to both cri-
teria. éAssurne f(z)=0,g(z)=0)

14. The TSP for Product Matrices

An n X n matrix C'=(c,;j) is called a product matrix if there exists two n-
dimensional vectors a and b such that ¢y =0,b; for all1,j. Recall that ann Xn
matrix C is called a permuted distribution matrix if there exist a nonnegative

n
matrix D, and a permutation ¢, such that ¢ig() = Y 2(1;4. It is a straightfor-
k=i i=1
ward exercise to show that all product matrices can be transformed into a per-
muted distribution matrix by a linear admissible transformation. In this sec-
tion, we present negative and positive results for product matrices. We show
that, in general, computing an optimal tour is NP-hard, but for many special

cases, including symmetric product matrices, there exists a polynomial-time
algorithm.

Theorem 21 [Sarvanov 1980] The TSP restricted to product matrices is NP-
hard.

To prove this result, an intermediate problem is introduced. Before this
can be done, some additional terminology must be defined. Let II={Ny,....Np}
be a partition of N = {1,...,nj. For any partition Il let the spine graph of the
partition be G{ID=(N,E) where E={{ii+1} 1 €N, i+1EN, k»l]. Let
G'=(N.E’) be a subgraph of G. The vertex set of G’ is the entire vertex set of G.
Define the partition graph of G' to be P(G)=(ILEp) where Ep = {{Ng, N} | there
exists ani such thati€ N, i+1€N, {i,i+1] € E'}. All of these graphs are
undirected. As an example, consider I = §11,4} , 12,3}, {5}}. The corresponding
spine graph G(I1) is given in Figure 16(a). For the subgraph G' shown in Figure
16(b), the corresponding partition graph P(G") is given in Figure 16(c). In addi-
tion, call G' a matching if the degree of every vertex is 0 or 1.

-- Insert Figure 16 about here --
Consider the following decision problem.

PARIITION GRAPF: SPANNING TREE
INSTANCE: N = §1,....,n} and I = {N,,.. N,], a partition of N.

QUESTION: If G(I)=(N,E) is the spine graph of [, does there exist a

- 40 -

subgraph G'=(N,E") of G(I]) that is a matching, such that the partition
graph P(G’) = (ILEp) is a spanning tree of the vertex set I1?

A matching is said to be good if its partition graph is a spanning tree.

Notice that there is a connection between the tools that we have defined for
this problem and those that were defined for the theory of subtour patching.
The fact that a given set of {i,i+1] edges form a spanning tree of P(G') implies
that those edges, together with the hyperedges induced by the partition (which
corresponds to a permutation ¢) form a spanning (hypergraph) tree. Further-
more, the fact that the {i,i+1} edges form a matching in the spine graph implies
that they could be factors of ¥ and therefore their costs are independent of
each other.

Proof: It is easy to verify that PARTITION GRAPE SPANNING TREE is in NP. To

show that it is NP-hard, we reduce from the Hamiltonian path problem for cubic

graphs (see Chapter 3). Recall that a cubic graph is a graph where the degree of
every vertex is three. Given a cubic graph G=(V,E) we will construct an
instance of PARTITION GRAPH SPANNING TREE. Note that ' V,=n must be even
and that | £|=3n/2. The set N constructed is §1,2,....9n} and there will be 3n
parts in the partition; n each of types 1, 2, and 3 as we shall define below. For
each part Ny, 1=123, Jj=1,..m, the second index may be thought of as
corresponding to a vertex in V. From G, construct a multigraph G*=(V.E")
where E*=EU§11,2},13.4}.....in-1,n}}. The n/2 new edges will remain dis-
tinguished throughout this construction. Since the degree of every vertex of G*
is 4, it is Bulerian, so an Bulerian tour T={e,.2z,....e2n} can be constructed 1n
polynomial time. The edges e; are now oriented in the direction of the tour. The
partition TI={¥y; | 1=1,2,3, j=1,..,n} is constructed by “following” the Eulerian
tour. It is easiest to understand the construction in terms of the corresponding
spine graph. To differentiate between vertices of G and vertices of the spine
graph, those of the spine graph will be called elements. Suppose e,=(v,w) and
is not a distinguished edge; in this case the initial portion of the resulting spine
graph is shown in Figure 17(a). If (v,w) is distinguished, then the alternate con-
struction is shown in Figure 17(b).

- Insert Figure 17 about here —~

In general, for any edge e;, the next six elements will be used if it is dis-
tinguished and four otherwise. Furthermore, the same construction as above
will be used. Suppose that j—1 elements have been used before reaching
e;=(v,w). Then add the construction shown in either Figure 18(a) or 18(b)
depending on whether e; is undistinguished or distinguished, respectively.

-- Insert Figure 18 about here --

Every N,, and Np, contains four elements, whereas Ng, contains only one.
Since the tail vertex of e; is equal to the head vertex of e;_;, the spine has 2n
components, each of which corresponds to an edge of the tour. Now we must
show that a suitable matching can be found if and only if G has a FEamiltonian
path.

- 41 -

Suppose that U,V ... Un} is Hamiltonian path of G. For every dis-
tinguished edge, include in the matching the marked edges shown in Figure
19(a). For every edge in the Hamiltonian path, choose the edges as shown in Fig-
ure 19(b).

— Insert Figure 19 about here --

There are %—+1 components of the spine that have not yet been marked. By a

simple counting argument, these components contain elements that belong to
every Ny, and Nz,. All but one of the components will be marked as shown in
Figure 20(a), and the last will be marked as depicted in either Figure 20(b) or
20(c). It is easy to see that the corresponding partition graph is the spanning
tree given in Figure 21.

-- Insert Figures 20 and 21 about here -

Suppose that there exists a good matching. It will be shown that the span-
ning tree must be of the above form. Consider the vertices of the partition
graph of type 3. Each set N3, contains only one element; thus there are only
two possible sets that the vertex Na, could be adjacent to in the spanning tree.
Consider the component of the spine in which this element appears (see Figure
22).

-- Insert Figure 22 about here -

If the edge between the Na, and N3, elements were in the matching, the
corresponding edge in the partition graph must be a separate component, and
therefore could not be in the spanning tree. Thus, for every distinguished com-
ponent of the spine fv,wi, the matching must contain the edges between the
Noy, N3 and New, Naw elements, as shown in Figure 19(a). Similarly, by exa-
mining the structure of the spine, it is easy to see that any N, must be adja-
cent only to the corresponding Ng, vertex in the spanning tree. Thus, the struc-
ture of the spanning tree is forced to be as depicted in Figure 23, and the tree is
connected by forming a spanning tree on the vertices of type 2.

— Insert Figure 23 about here -

But what form can the tree take? In creating the edges shown, a maximal set of
edges from the distinguished components of the spine has been forced to be in
the matching. Thus all the {N1y,N2y] edges have been taken from undis-
tinguished components. Since the undistinguished components correspond to
edges of G, each Nz contains exactly three elements from these components.
To form the §N,.N2} edges, one of these has been used. Thus, for each v there
are at most two available elements in the spine that are contained in Ng,.
Therefore, in the spanning tree on vertices of type 2 in the partition graph,
these vertices must all have degree at most 2. But the only spanning tree with
each degree lor2is a Hamiltonian path. Thus the spanning tree must be of the
form claimed above. For each edge {Nay, Now} in the Eamiltonian path, there
exists an edge {v,w} in the original graph G. Therefore, G has a Familtonian

path. []

- 42 -

Lemma 13 PARTITION GRAPH SPANNING TREE a TSP for product matrices

Proof: Given an instance of PARTIT}OI_\I GRAPH SPANNING TREE we must con-
struct a corresponding instance of the TSP for product matrices; that is, we

must construct a product matrix C and a bound K such that C has a tour of
length at most K if and only if the instance of PARTIT’]O\ GRAPH SPANMNG TREE

admits a good matching.

Let 1= {N,, - - ,Ny} be the partition of an instance of
PARTITION GRAPH SPANNING TREE. Let ¢ be any permutation with the same

cycle structure as II. For example, if IT = §§1,4},§2,3},{5{. then 0=(1,4)(2,3)(5).
In general there may be many such permutations. The matrix C is given by a
and b where ci=a;b; and a;=n—i+1 and b,;)=j. The bound for this instance of
n
the TSPis K =),i{n—i+1) +m—1.
=1
Since C is a permuted distribution matrix, an optimal assignment can be
specified as the assignment that permutes the columns to yield a distribution
matrix. It is not hard to see that ¢ is this permutation for C. This assignment
has the cycle structure of IT and these cycles must be patched together to form
an optimal TSP tour. The cost of the optimal assignment will always be

ii(n-un.

Suppose that there exists a good matching, E={e,,....em_1}. If e;={7.j+1},
let ¥; be the interchange (J j+1). It follows that c¢(y;)=1. Since the partition
graph generated by E is a spanning tree, it follows that 7= eYv=¢¥vi¥z ¥Ym-1
is a Hamiltonian cycle. Furthermore, since the interchanges ¥; are disjoint, the
cost of this tour is precisely K.

Now suppose that there is a tour 7 with ¢ (r)<K. Since C is a permuted dis-
tribution matrix, there must exist a tour 7 that is pyramidal and dense relative
to ¢ with ¢(7) < K. Therefore, assume that T=¢Y=¢Yy ¥z - ¥p where the ¥; are
dense and pyramidal.

We will show that if p is not an (i,i+1) transposition then celp)=|pi. The
proof is by induction on jp|. For the basis of the proof consider |p;=3. Since
there are only two different dense pyramidal tours on three elements it is sim-
ple to verify this case, and we leave it as an exercise to the reader. Next, we
complete the induction by showing that if there exists a dense pyramidal permu-
tation with ¢ ¢(p)<|p| =k +1 then there exists a dense pyramidal permutation g’
with c¢(p)<ip'|=k. Suppose that p is a dense pyramidal permutation on the
cities §i,i+1, .. ,i+k] such that cp(p)<k+1. Suppose that p(i+k)=i+j and
that p~}(i+k)=i+l. Let p'=p(i+l.q +k); p' is simply the cycle formed by deleting
i+k. A straightforward computation gives that c¢(p)—ce(p)=(k—7)(k-1)=1
(actually it is at least 2) which shows that ce(p)< p' ' =k. This completes the
proof that cg(p)=!p] for ! p|=3. For transpositions p not of the form (i,i+1) it is
easy to see that c¢{p)=2. Thus we have proved the claim that for all factors p
that are not {(i,i+1) transpositions, celp)=!pl.

Furthermore, since T is a tour it follows from the fact that

H = {N,{¢:}vi¥:}) must be connected, that i {%; =m—1+l. However, since the

1=1
cost of the tour is at most K, cg(¥)<m—1. Suppose that g of the y, are (G.j+1)
transpositions. Then we find that

m-12cp(y) = Tep) =3 v —gm-1+p-g

i=1

-43 -

Therefore, p =g and all of the factors of ¥ are (i,i+1) transpositions. These tran-
spositions must correspond to a matching that generates a spanning tree of the
partition graph. []

This completes the proof of Theorem 21.

In the remainder of this section we turn to some more positive results for
special classes of product matrices. The result presented here shows that there
is a broad class of product matrices for which there is a polynomial-time algo-
rithm.

Let ¢ be an arbitrary permutation and let I1 be the corresponding partition
of {1,...,n}. For simplicity of notation, let G, denote P(G(I1)), the partition
graph of the spine graph of IL

Theorem 22 Let C be a permuted distribution matrix, and let ¢ be the optimal
assignment where (7 is a distribution matrix. If G, is a tree, then there is a
polynomial-time algorithm to find an optimal tour for C.

Proof: Left to the reader as an exercise. []

Corollary B [Gaikov 1980] Let C be a product matrix such that ci=ayd; and
@,<a< - - <a,. Let ¢ be the optimal assignment. If G, is a tree, then there is a
_ polynomial-time algorithm to find an optimal tour for C.

The Soviet literature contains a great number of papers with results that
were superseded by Corollary 8. An easy corollary to this result is the case of
the symmetric product matrices; that is ¢;;=a;b; and ¢y =Cji-

Corollary 9 For a symmetric product matrix C where ¢y =o;b; where
a,€a,< - - - <a,, there exists a polynomial-time algorithm to find an optimal
tour.

Proof: As noted above, an optimal assignment ¢ is given by the permutation
that sorts the b’s; that is by)2bge@™. . Zbg(n)- Since C is symmetric, a;b; =b;a;
for all1,7. Equivalently,

=X

.9'].9
o'|\‘g

J
Thus, a;=Ab;. Therefore, ¢ is (1)(2)...{(n) or (1, n)(2,n—1)...([g-—}, [%]r) depending

on whether A is negative or positive, respectively. In either case, G, is a path. 0

Note that this shows that there are cases where the symmetric case of the
TSP is provably easier than the asymmetric case, of course under the assump-
tion that P#NP

Fxercises

34. Construct a polynomial-time algorithm that either constructs ¢ and b, or
shows that C is not a product matrix.

- 44 -

75 Prove Theorem 22. Hint: The following observations may be useful in con-
structing a polynomial-time algorithm based on dynamic programming.

(a) There exists an optimal tour 7=y that is basic, pyramidal and dense
with respect to ¢ (see Section 12).

(b) Given the set of cities on which a factor of ¥ acts, it is possible to com-
pute the factor in polynomial time (see Section 7).

(¢) Since more than one (i,1+1) transposition may support the existence of
a particular edge in the tree G, it may be convenient to view G, as a
“multitree’’. Note however, that exactly one factor of ¥ will contain both
endpoints of a set of multiedges of the tree.

d) Every factor of ¥ corresponds to a path in G,. Determining the factors
[
of ¥ amounts to covering the edges of G, with paths. (Note that the
paths will be edge-disjoint, but not vertex-disjoint.)

(e) Since the costs c¢(y;) and c¢(¥;) are independent for disjoint factors,
subproblems for edge-disjoint trees can be solved independently.

(f) Root G, at an arbitrary node. For each node v of G, at most one edge
to a child of v is contained on the path that includes v and the parent
of v. Suppose that the edge to the child u is used on that path. Then the
path covering problem for the subtree rooted at v with the subtree
rooted at u deleted can be solved as an independent subproblem.

(g) Suppose that v is the endpoint of the path that includes its parent.
(This is, in effect, the case of the root of G, as well.) The edge to each
child of v must be covered by some path, and some (possibly more than
one) of these paths pass through v. Thus, there is a matching problem
among the children of v to determine which children (if any) get paired
on a path through v.

15. Bandwidth Limited Networks

Let A be the adjacency matrix of a digraph G. That is,

|1 if (1,7) is an edge,
T = lo otherwise .

It is customary to say that A and G have bandwidth k if |1 —7| >k implies
a; = 0. The principal result of this section is to show that for any fixed k, there
exists an algorithm with O(n) running time that will solve the TSP for networks
with bandwidth . (The distance matrices for such a class of problem instances
have the property that cy = + 00 if i—jl >k.)

Let H be a Hamiltonian cycle in an undirected graph of bandwidth k. Con-
sider the subgraph H; that A induces on vertices 1,2....,j where 1<j<smn — 1.
Each of the vertices 1,2,...,j —k — 1 has degree 2. because of the bandwidth of
G. Moreover, H; contains no cycles (else H is not a Hamiltonian cycle), hence
each connected component of H; is a directed path. The endpoints of these
paths are in the set {7 — k., j -k +1,...738

Let us define an equivalence relation on the subgraphs induced by Hamil-

tonian cycles. For given j, subgraphs H; and Hj are eguivalent if

- 45 -

(1) the degrees of verticesj —k, j —k +1,..j are the same, and

(2) for each path (connected component) in Hj thereis a path in H; with
the same endpoints, and conversely.

The significance of the subgraphs H; and the equivalence relation we have
defined on them is suggested by the following observation. Let H be an optimal

Hamiltonian cycle and let A induce H; on vertices 1,2,....j. Then for each Hj in

the same equivalence class as Hj, it must be the case that ¢ (H") = c(H;). Elsea
shorter tour H' could be obtained by removing the edges of f; from H and sub-
stituting those of H'-. It follows that we can state a necessary condition for the
optimality of tours in terms of the lengths of shortest equivalent subgraphs.

It turns out that knowledge of shortest equivalent subgraphs is also
sufficient to enable us to find an optimal tour. Our strategy is as follows. Having
found a shortest subgraph in each equivalence class for vertices 1,2,...7. we
then use this information to find a shortest subgraph in each equivalence class
for 1.2,....7 + 1. Finally, having found a shortest subgraph in each equivalence
class for 1,2....,n, we find an optimal tour.

Let S denote an equivalence class of subgraphs on 1,2,....j + 1. Each sub-
graph Hj4 in S induces a unique subgraph H; on vertices 1,2,....7. The
equivalence class to which H; belongs depends upon the set A of zero, one, Or
two edges incident to J + 1in Hj+r Conversely, for each equivalence class S’ of
subgraphs on 1,2,....7, there are various subsets A of edges incident toj + 1that
yield legitimate subgraphs on vertices 1,2,....j + 1, and each A yields a subgraph
in a different equivalence class. Thus we can define a mapping 7 where 7(S’, 4)
denotes the equivalence class of a subgraph in S', when the subgraph is aug-
mented by the edges in A (7(S', 4)is undefined if the augmented subgraph 1s
not legitimate.)

Let C(S, j + 1) denote the length of a shortest subgraph in the equivalence
class S on 1,2,...,7 + 1, and let ¢; 4, (A) denote the length of the subset A of edges
incident to j + 1. Then, by the usual sort of dynamic programiming argumenta-
tion we have

C(S. j +1) = min$C(S".) + ¢j4a(8) 1 S = 7(S") (20)

Now notice that every Hamiltonian cycle A contains exactly two edges
incident to vertex m, say (a,n) and (b.n). These edges determine the
equivalence class Sg. to which Hn belongs. There are only a finite number of
choices of a and b. Minimizing over them, we find that the length of a shortest
tour is

rnina.bic(sa,bv n —1)+ Can + Cem} (21)

With appropriate initial conditions, equations (20) and (21) provide the basis
for a dynamic programming solution to the TSP. We note that, for any fixed
bandwidth k, the number of equivalence classes S, the number of sets 4, and
the number of choices of vertices a, b, is each fixed. It follows that the egqua-
tions (20) and (21) can be solved in O(n) time.

- 46 -

Of course, we should like to have an estimate of how rapidly the computa-
tional effort grows with k. The most difficult part of making such an estimate is
to determine the number N(k) of equivalence classes S for a given bandwidth k.
We make a counting argument as follows. Let us partition the equivalence
classes of subgraphs on 1,2,...,5 into three groups, determined by the degree of
vertex j — k:

(0) Vertexj —k cannot have degree O unless k <j <n — 1, sowe ignore
this possibility.

(1) Inthecasev rtex j — k has degree 1, it is the endpoint of a path and
the other endpoint is I, where j —k + 1<l<j. For each of the
k — 1 possibilities for {, there are N(k —2) equivalence classes,
determined by the other k — 2 vertices betweenj —k + 1 and J.

(2) In the case vertex j —k has degree 2, there are N{k = 1)

equivalence classes, determined by vertices j —k +1,....7.
Thus we have

N{k)=N(= 1)+ {k =1) Nk —2) . (22)

with the initial conditions N(1) =0, N(2) =1. A tabulation of values as deter-
mined by (22) is as follows:

e |1t 2 3 4 5 86 7 8 9 10 11 12 13

Nk)lo 1 1 7 11 46 112 434 1,130 5,236 18,536 76,132 298,564

Although N(k) grows quite slowly at first, its growth rate soon becomes
quite explosive. Noting that N{k) is O({(k — 1)!) and that the number of A's is
0(k?), we can easily verify that the running time of the dynamic programming
computation, expressed in terms of both k and n, is O{{k + 1)!n).

The dynamic programming computation described here was suggested by
ideas of [Monien & Sudborough 1981; Ratliff & Rosenthal 1983]. We leave certain
extensions and generalizations as exercises.

Exercises)

36, Extend the dynamic programrming computation to the asymmetric
bandwidth limited TSP. Compute N(k) for this case.

37. Consider the stripe-width limited problem: (j —i) > k (mod n) implies
¢y = + o0, Show that the difficulty of solving the TSP for stripe-width k 1s
about the same as for bandwidth 2k.

16. Reducible Networks

Some instances of the TSP can be easily solved, or at least significantly
simplified, because the underlying network is wholly or partially reducible, as we
shall describe.

Let G = (V.A) be a directed graph. A directed cut of G is a bipartition of its
vertex set V into nonempty subsets S,T such that no arc extends from a vertex

-47 -

in T to a vertex in S. (That is, all arcs extending across the cut are directed
from S to T.) Let us say that a bipartition (S,T) defines an almost directed cut
if there is exactly one arc (u,v) such thatueT,v €S.

If an instance of the TSP is defined over a network that contains a directed
cut {(S,T). then it clearly has no feasible solution, since there is no way to reach
a city in S from a city in 7. Suppose we have a network that contains an almost
directed cut {S,T). Then we know that (u,v). the only arc from T to S, must be
contained in any feasible tour and hence in an optimal tour, if one exists. 1t fol-
lows that we can delete from the network all arcs (u,y), wherey # v, and (z.,v),
where = # u, because such arcs cannot be contained in a feasible tour. The
elimination of such arcs may create additional almost directed cuts, where such
cuts did not exist before.

Let us call a directed network reducible if it can be transformed to a tour
by the deletion of arcs through the repeated discovery of almost directed cuts.
(This notion of reducibility is, eflectively, a generalization of the notion of redu-
cibility for so-called flow graphs. See, for example, [Hecht & Ullman 1972].) As a
very simple example, the directed graph shown in Figure 24 is reducible and
contains exactly one tour, namely (1,2,3,4). Even if a network is not reducible,
the deletion of arcs through the discovery of almost directed cuts may yield a
significant simplification.

-- Insert Figure 24 about here --

17. Halin Graphs and 3-Edge Cutsets

A Halin graph is constructed as follows: Start with a tree T in which each
nonleaf vertex has a degree of at least three. Embed the graph in the plane and
then add new edges to form a cycle C containing all the leaves of T in such a
way that the resulting graph A = T v C remains planar (see Figure 25.) These
graphs were introduced by R. Halin as an example of a class of edge-minimal
planar 3-connected graphs. Halin graphs are Hamiltonian and remain so if any
single vertex is deleted. Also, every edge belongs to a Hamiltonian cycle and the
number of such cycles can grow exponentially with the size of the graph.

In [Cornuéjols, Naddef & Pulleyblank 1984] it is shown how to solve the TSP
when the underlying network is a Halin graph, or more generally, when it can be
decomposed by the discovery of 3-edge cutsets; we shall follow their exposition
closely. First some definitions.

An edge cutset of a connected (undirected) graph G is a minimal set of
edges whose deletion leaves a disconnected graph. If it contains exactly k
edges, then it is a k-edge cutset. The following is apparent: Fvery Hamiltonian
cycle contains exactly two edges of every 3-edge cutset.

Let H = TuC be a Halin graph. 1f T is a star, i.e. a single vertex v joined to
n — 1 other vertices, then H is a wheel and is the simplest type of Halin graph.
Suppose H is not a wheel, and let w be a nonleaf that is adjacent to exactly one
other nonleaf of T. (At least two such nonleafs must exist.) The set of leaves of
T adjacent to w, which we denote by C{w), comprises a consecutive subse-
quence of the cycle C. We call the subgraph of H induced by {w] v C{w) a fan
and call w the center of the fan. In Figure 25 the black nodes are the centers of
the fans indicated by dotted lines. Now notice that there are exactly three
edges extending between a fan and the remainder of the Halin graph. These

- 48 -

edges constitute a 3-edge cutset.

-- Insert Figure 25 about here --

Let u and v be the endpoints of the portion of the cycle C that is induced
by C(w). We know that any tour of H must enter and leave the fan at either (a)
x and w, (b) v and w, or (c) » and v, and describe a Familtonian path within
the fan between those pairs of vertices. For cases (a) and (b) the Hamiltonian
path is uniquely prescribed, as shown in Figure 26. And in case (c) there are
only a limited number of possibilities for the Hamiltonian path, as shown in the
figure. It follows that we can easily compute the length of a shortest Hamil-
tonian path for each of these three cases.

-- Insert Figure 26 about here --

Now what we propose to do is this: We shall condense all the vertices of a fan
fw} v C(w) into a single vertex z, thereby obtaining a smaller Halin graph A".
The edges of the 3-edge cutset associated with the fan will have their lengths
modified in A’ so that an optimal tour in H' is identified with an optimal tour in
h. We shall continue condensing fans in this way until finally we obtain a Halin
graph that is a wheel. {Wheels are easy to solve.) We shall then backtrace our
steps, constructing an optimal tour in the original Halin graph.

In order to modify the lengths of the edges in the 3-edge custset, we need
only solve a system of three linear equations in three unknowns. Let
(w,w'), (w,u), (v, v) be the edges of the 3-edge cutset, with lengths
Cunw's Cuw'» Cwu Tespectively. These edges become (z,w'), (z,u’) (z,v') in the
condensed graph H', with lengths Crw's Czu' Czu Let
C*(u,w), C* (v, w), C*(u, v) denote the lengths of shortest Hamiltonian paths
in C{(w) between u,w, between v,w and between u,v. Then we have the system

Cow + Czu' = Cynw' + Cr + C*'(u,w),
Cow + Czv' = Cuw + Cov ¥+ C* (v, w),

Cou + Czp' = Cuu + Cupr + C7 (w0, V).
-- Insert Figure 27 about here --

We now illustrate with a small example. Consider the Halin graph in Figure
27(a). In order to condense the fan whose center is w, into a single node z,, we
must solve the eguations:

*
Czlws + Cz:lu2 - Gwl’w5 + culv2 +C (uh wl)

1+2+9

= 12,
- [4
Czlw3 + C:zlv:3 - c'a.u]w3 + Cvlvz3 + C (’U 1s wl)
=1+7+8
= 16,

*
czluz + Czlus h Cuxuz + Cu103 + C (u 1s 1}1)

- 49 -

=2+7+7
= 16.
This yields the solution
czle = 6'
Capvp = B
Cziug = 10,

and the network shown in Figure 27(b). Carrying the process one step further,
we obtain the wheel shown in Figure 27(c) which has a shortest tour as shown by
wiggly lines. This implies that the tour shown in Figure 27(b) is optimal and that
in turn implies that the tour shown in Figure 27(a) is optimal.

In [Cornuéjols, Naddef & Pulleyblank 1984], an explicit description of the
traveling salesman polytope for a Halin graph is also given.

Exercise

28. Consider the generalization of Halin graphs in which nonleaf nodes may
have degree 2. Show how the TSP for such graphs can be solved by the
approach described here.

18. Conclusion

In this chapter we have shown that a number of special cases of the TSP can
indeed be easily solved. Among these cases are the constant TSP, the upper tri-
angular TSP, the small TSP, the Demidenko TSP, the bottleneck TSP for graded
matrices, the Gilmore-Gomory TSP, the bandwidth-limited TSP, and the TSP for
reducible networks and Halin graphs. Many of our results were obtained through
subtour patching and we have indicated some basic theory of this technique.

We have noted some interesting demarcations between easy problems and
hard problems. The ordinary TSP is NP-hard for graded matrices, whereas the

bottleneck TSP is easy. The TSP is NP-hard for asymmetric product matrices

but easy for symmetric ones. 1t is eas-y to find a shortest Hamiltonian path for
circulants, but there is not much we can say about the TSP for these matrices.

We hope that at least a few of the special cases dealt with in this chapter
may have direct practical application. We believe, however, that in the long run
the greatest importance of these special cases will be for approximation algo-
rithms. Much remains to be done in this area.

-850 -
Bibliography

[Berenguer, 1979] X. Berenguer, "A Characterization of Linear Admissible
Transformations for the m-Travelling Sales Problem,” Eur J. Operational Kes. 3
(1979) 232-249.

[Cornugjols et al, 1983] G. Cornuéjols, D. Naddef and W.R. Pulleyblank, "Halin
Graphs and the Traveling Salesman Problem’’, Math. Programming, 26 (1983)
287-294.

[Demidenko, 1979] V. M. Demidenko, "The Traveling Salesman Problem with
Asymmetric Matrices”, Vesit. Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1, (1979)
29-35.

[Fuller, 1972] Samuel H. Fuller, “An Optimal Drum Scheduling Algorithm,” [EEE
Trans. Computers, C-21 (1972) 1153-1165.

[Gabovich, 1970] E. Ya. Gabovich, "The Small Travelling-Salesman Problem” (in
Russian), Trudy Vychisl. Tsentra Tartusk. Gos. Univ. 19, (1970) 27-51.

[Gabovich, 1976] E. Ya. Gabovich, "Constant Discrete Programming Problems on
Substitution Sets”, Cybernetics (1977) 786-793.

[Garfinkel, 1977] R.S. Garfinkel, Minimizing Wallpaper Waste, part I: a class of
traveling salesman problems. Oper. Res. 25 (1977) 741-751.

[Gilmore and Gomory, 1964] P. C. Gilmore and R. E. Gomory, "Sequencing a One
State-Variable Machine: A Solvable Case of the Travelling Salesman Problem,”
Operations Res. 12 (1964) 655-679.

[Hecht & Ullman, 1972] M.S. Hecht and J.D. Ullman, ""Flow Graph Reducibility”,
SIAM J. Comput. 1 (1972) 188-202.

[Herstein, 1975] L. Herstein, Topics in Algebra, Xerox College Pub., Lexington, MA
(1975).

[Johnson, 1954] S. M. Johnson, "Optimal Two- and Three-Stage Production
Schedules with Setup Times Included,” Naval Res. Log. Quart. 1 (1954) 61-68.

[Klyaus, 1976] P.S. Klyaus, “Structure of the Optimal Solutions of Certain Classes
of Traveling Salesman Problems,"'", Vesti Akad. Nauk BSSR 8, (1980) 95-98.

[Lawler, 1971] Eugene L. Lawler, "A Solvable Case of the Travelling Salesman
Problem,” Math. Programming 1 (1971) 267-269.

[Lenstra and Rinnooy Kan, 1975] J. K. Lenstra and A E. G. Rinnooy Kan, "Some
Simple Applications of the Traveling Salesman Problem,” Op. Res. @, 26 (1975)
717-733.

-51-

[Lenstra and Rinooy Kan, 1979] J. K. Lenstra and A. K. G. Rinnooy Kan, "A Char-
acterization of Linear Admissible Transformations for the m-Travelling Salesmen
Problem: A Result of Berenguer,” Eur. J. Operational Kes. 3 (1979) 250-252.

[Monien & Sudborough ???] To be supplied.
[Ratliff and Rosenthal ?2?] To be supplied.

[Sarvanov, 1980] V.I. Sarvanov, "On the Complexity of Minimizing a Linear Form
on a Set of Cyclic Permutations”, Dokl. Akad. Nauk SSSR 253, (1980) ?? (Trans-
lation: Soviet Math. Dokl. 22, (1980) 118-120.)

[Syslo, 1973] Maciej M. Syslo, " A New Solvable Case of the Travelling Salesman
Problem,” Math. Programming, 4 (1973) 347-348.

CHAPTER 4

—~20

o

(4) Opbmat o
m ltion to (S
Fleure 1 P

CHAPTER 4

- =5
(@) Optimal assighment @ (b) Tour ¥ obbained fom @
Ficure 2

Cage I(a) k-<-1 \\

Case 1(b) et et

< (k-1-1)

Case I(c)
Comiinre 4

CHAPTER 4

) Tk-1oY)

FIGurRe 5

Tik-¢) £ k-i-1 < k-t < Tlk-1-1) < Tlh-1-1)

FicureE 6

{ T(k-1-1)

(k<) k-<-1 k-4 < (h-1-1)
FlGgurRE 7
”’ ——\\\
~———r0——>® o———0
(k1) k-t-1 k-t T --1) Tlk-t=1)

CHAPTER «

_____ T lk-t+g)

FlcurE 1

CHAPTER 4

Case 11()

Case [1(b)....

T (k-¢-1)

Fieure 12

CHAPTER 4

Ficure 13. Hypergraph H(V,P)

@
‘XK
e @

®

@) Hypergraph H(V,{@d)

() Groph of tromspositions

() Treo o)l tmmpogih'ons a'f ter contrachon dj'i
Feure 14

subtowrs @

CHAPTER 4

oy

(o) Tmm'co,(‘t‘mpezoid

< length

(b) Feosible s
Faure 15

CHAPTER 4

)

3

4 4 @
5 5
@G (o) G © P@)
Ficure 16
1€ Niw
1€ Niy 1€ N,y
2eN,, 3€ Ny,
3€ Npw 4€ Ny
4€ N 5¢ Now
6 € Nqw
() (k)
Fiaure 17
5oEN,
i €Ny J*1EN,,
1€ Ny j+2€ Ny,
J+2E Ny JH3EN,
j+3€ Nyw J+4€ Npw
7+5€ Ny
(a) (b)

Flgure 18

CHAPTER 4

(@) (b)
Ficure 19

@) (k) ()
Feure 20

type 1 1 3
vertex v,
fa

Vin

Fgure 21

CHAPTER 4

€ N,
€ Noy
€ Na..
€ Ny
€ Noar

eN,..
Flecure 22

type 1 2 3
vertex \r{1 *—eo—@

KA

V- e—eo—@

n

Ficure 23

@
Fieure 24. A reducible digraph

CHAFTER 4

Fioure 25. A Halin graph

u v

(&) Unique Hawmiltonian path between w and w

w

Uu v

(b) Unique Hami(tonian path between v ond w

w A
u&v w v U

(c) All Hamiltonian paths betweon w omd v
Fleure 26

w-

CHAPTER 4

Feure 27. Solution of TSP tor Halin 3mph

