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Higher order corrections to the quasilinear diffusion coefficient are obtained

for Hamiltonian maps which are locally approximated by the standard

map. Using the Fermi map as an example we numerically integrate the

Fokker-Planck equation for the action and compare the resulting distribu-

tion function with direct solutions of the mapping equations. The second

moment of the distribution is compared with the diffusion measured in the

numerical experiments. Both show oscillations (as a function of the initial

velocity) similar to those found in the standard map. In addition we nu

merically find the invariant distribution in the Fermi map. We observe dips

in the distribution of actions. We calculate the size of islands surround

ing stable fixed points and show that the dips correspond to these islands.

Thus chaotic orbits uniformly fill the phase spaceavailable to them.
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I. Introduction

The study of non-linear dynamical systems has revealedmany examples of

chaotic behavior. The simplest systems in which such behavior is observed are

two degree of freedom Hamiltonian systems. Two dimensional area preserving

mappings which have their own Hamiltonian structure may be used to model

such systems.

The motion of chaotic orbits cannot be described analytically, as one de

scribes regular orbits. Rather than describing the detailed motion of a chaotic

orbit, we would like to predict the statistical properties of families of orbits. In

many problems, such as ion or electron cyclotron resonance heating, the evolu

tion of only one of the two phasespacevariables, the action (or the energy), is

of interest. We assume that the other variable, angle or phase, is randomized

much more rapidly than the action. Based on these assumptions we describe the

dynamics using a Fokker-Planck equation in action alone. The Fokker-Planck

equation describes the evolution of the distribution of actions, as represented

by the distribution function /(u,n), where v is the action and n is the 'time".

For a Hamiltonian system, the Fokker-Planck equation is specified by giv

ing the diffusion coefficient D(u). The quasilinear diffusion coefficient Dqi has

been used by many authors1'3to describe the evolution of the action in an area

preserving map. However there are stringent limits on the validity of the quasi-

linear approximation, which assumes phase randomization on each mapping

iteration. Approximations to the diffusion coefficient that incorporate longer

correlation times are thus of great interest. The global diffusion coefficient of

the action for the standard map, which has been calculated by Rechester et
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al.8',4 includes phase correlations over many mapping periods. In this paper

we apply their results to more general maps, restricting ourselves to those maps

locally approximated by the standard map.

We wish to describe the evolution of a distribution function f(u,n) in the

action alone. We assume that the phase evolves randomly and the evolution

in action is a Markov process. In addition we assume that the change in ac

tion is small on the time scale over which the phases become random. These

assumptions lead one to a Fokker-Planck equation for the action6 :

where D(u) is the local diffusion coefficient

D(u) =±fdv! («' -uf Wt («,0; ti', An) , (2)
and B(u) is the local friction coefficient

B(«) =̂ Jdu'(«' - u) Wt (u,0;«', An) . (3)
The transition probability Wt(u,0;u\An) is the probability density that a

particle has action u' at time An given that it had action « at time 0. The

time An is assumed to be small compared to the evolution time, ration, of

the action distribution function, but must be longer than the phase relaxation

time, Tpkatf We assume that only the first and second moments of Wt are

proportional to An and that coefficients correspondingto higher order moments

vanish as An —• 0. For Hamiltonian systems with action-angle variables (i.e.

with periodic dependence on the angles) and assuming random phases, it may

be shown that6
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We are interested in radial twist mappings of the form7

Un+iSttn + esin*,,
(5)

*n+l = *n + A(ttn+i),

which are area preserving and therefore have a Hamiltonian form. An example

b the Fermi map, whose mapping equations in the surface of section phase

plane are1

tt^+issttn + sinV'n

^n+i=^n + (mod2ir).
«»+i

These equations describe a model for the motion of a ball bouncing between two

walls, one of which b fixed and the other oscillating sinusoidally. The action

tin b the normalized velocity of the ball just before the nth collision with the

moving wall. The angle rj>n b the phase of the moving wall just before the nth

collision. The quantity M = JL/(2*a), where L b the distance between the

walls, and o « L b the maximum amplitude of the wall oscillation. Typically,

M » 1. We will choose M = 10,000 in all figures to illustrate features of the

phase plane. %

As shown in Fig. 1, the phase plane of the mapping divides naturally into

three regions: (1) At low velocities phase space b predominantly stochastic, and

all periodone fixed points areunstable. We denote by u, the action belowwhich

there exbt no stable period one fixed points; (2) At intermediate" velocities,

stable blands (around elliptic fixed points) are embedded in the stochastic sea;

(3) At high velocities, the motion b predominantly regular, with only thin

stochastic regions near the separatrices joininghyperbolic fixed points. Regions

(2) and (3) are separated by a KAM barrier. The average action (averaged over

phase) at the barrier b denoted by n*. Simple stability calculations, as well as
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numerical results, give u, « (xM/2)1/2 and ub « 2.5u#. In thb paper we focus

our attention on the first two regions.

II. The Local Diffusion Coefficient

In order to use the Fokker-Planck equation to describe the Fermi map we

must determine the diffusion coefficient D. The simplest procedure b to set

An = 1 in (2) and assume a uniform distribution of initial phases. Averaging

over the phases we find the quasilinear diffusion coefficient Dqi —1/2, and the

Fokker-Planck equation

*/(tt,n) iaa/(tt,n) m
dn "4 dti* * K)

The result in (7) ignores phase correlations which may exist over many

steps. An alternative procedure, which b valid in the limit of An large, b the "

Fourier path method applied by Rechesteret al.8* to diffusion in the standard

map

/»+i = In + K sinen (mod 2*) ,
(8)

*n+i = *•» + /« (mod2ir).

Note that, in contrast to the Fermi map, the standard map b 2* periodic in

the action /. The Fourier path calculation depends on the periodicity of the

standard map in action. Thus the long time diffusion b an average over the

2ir interval in action, depending only on the stochasticity parameter K. To

ensure that the procedure converged, a small external nobe was added to the

mapping (8). However,the noisecan be taken equal to zero after the calculation,

obtaining for K > 2* 4

D^K) =K* [i -J2(K) +Ji(K) +O(jL)] (»)
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where D^ b the average long-time diffusion coefficient. For smaller K, the

Fourier paths must be integrated numerically, obtaining for Kcrit < K < 2n

the result shown in Fig. 24\8 For K < Kent « 0.9716 a KAM barrier exists

and there b no long-time diffusion.

The Fourier path method depends on the peculiar periodicity in action of

the standard map to evaluate the Fourier integrals in the limit of long times

(An —• oo). Because of thb, the method of Fourier paths cannot be applied

in the long time limit to maps without thb periodicity. In principle, the long

time diffusion coefficient for any map having motion bounded by KAM tori b

Doo = 0. However, the Fokker-Planck equation only requires an intermediate

time diffusion coefficient, that b, raction » An » fpjm*. in equation (2). In

addition, the standard map b a local approximation in action to a wide variety

of maps. Thus the possibility arises that £>»(#) may be used to approximate

the local diffusion coefficient D(«) for a general map. For those cases where

the stochasticity parameter K depends on the action, D(u) will depend on the

action, through K. H

Although thb can be formally done, as we shall show below, there are

some inherent limitations. For sharply peaked (in action) initial distributions,

we cannot expect good agreement over short timescales between the predicted

diffusion and the actual diffusion obtained by numerically iterating the map

ping. Abo, the presence of stable blands embedded within the stochastic sea

will modify the diffusion when the timescale of interest b short compared to

the timescale for extrinsic diffusion (noise) to diffuse phase points into and out

of the blands. The modifications required to deal with these limitations are

developed in the following sections.
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To use Doo(K) to obtain a local (in action) diffusion coefficient D for a

more general map, we consider the example of the Fermi map (6). Linearizing

around a given fixed point uj = M/l, with I an integer and %j>\ —ir, we obtain

Auw+i = Attn- sin Bn

*n+l = *n g-Attn+i (mod 2*) .

Letting K = 2xM/uf and J» = —ifAttn puts the map in the standard form

(8).

To use thb result in finding a diffusion coefficient, we examine the Fokker-

Planck equation for J:

*/(/) _ a
at di \°-«m

Thb equation b only valid for [l/f){df/dl) « l/(2ir). Thb b because Dee

b obtained in the long time limit, implying averaging over many 2* intervals

in the action /. Correspondingly, for the Fermi map we write

Bg(x
at du |2 K' du J

Since d/du = K(ut)d/dl locally, thb suggests that

Appendix A gives a derivation of thb result. For an initial broad dbtribution

(l/g)(dg/du) « K{u)/(2r) we expect (10) to yield good correspondence to

the numerically determmed distribution. For a sharply peaked dbtribution, we

expect good agreement only for times exceeding the time required for the dis

tribution to broaden overmany primary resonances, n» 1/(K2D) = 1/A»-
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For « < M1/3, using (9), we obtain

"<•> - \~J^) +* p=r) +°(*") • <">
For larger actions u, we apply (10) to Fig. (2). For small values of v, D

oscillates rapidly around the quasilinear value Dqi = 1/2, while for large values

of tt it drops rapidly to zero at K = Kent-

The calculationsof Rechesteret als*assumethe presence of nobe, enabling

particles to diffuse into and out of stable blands. When the particles are in the

blands, they behave as though they aretrapped and do not diffuse globally. The

diffusion coefficient obtained in thb manner averages two populations: particles

outside blands with a non-zero diffusion coefficient and particles inside blands

with a negligibly small diffusion coefficient.

In thb study we are primarily interested in heating problems. In such

problems, particles will generally start at low velocities, where the stable is

lands have negligibly small area. As the particles are heated their velocities

increase, and they enter regions of phase space within which large blands exist.

Without extrinsic stochasticity the particles will not become trapped within

the blands. Thus we are interested only in averaging the diffusion over the un

trapped dbtribution. For an ergodic phase space, the equilibrium distribution

b uniform.9 With embedded blands one would expect that the equilibrium

(infinite time) dbtribution in the connected portions of the phase space would

abo be uniform. Thus to extract the diffusion of the untrapped species, alone,

from the results of Rechesteret al., we divide their diffusion coefficient by the

fraction of phase space occupied by stochastic orbits. We denote the stochastic

population dbtribution by f»(Ktl) and the trapped dbtribution function by
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fi(K,I), where /, (if, 7)+ /*(#, J) = 1. These arethe equilibrium distributions

for the standard map with stochasticity parameter K. We define the relevant

diffusion coefficient for the Fermi map as

"W - K*(u) < f.(K(tt,),/(A«)) >/ l";

where K(m) = 2nM/xif and /(Av) = -KAu. The average over a 2* interval

in / ignores rapid variations in the diffusion coefficient, which b consistent with

(10). If rapid variations in D were kept, they would be smoothed rapidly in

integrating the Fokker-Planck equation. Nevertheless, as we see below, the

rapid variations in the dbtribution function must be retained.

We have investigated the correctness of thb picture using the Fermi map.

In appendix B we calculate the size of the last stable orbit surrounding each

stable period one and period two fixed point. We use the approximation that

the width of the separatrix layersurroundingthe bland (s) can be obtained from
r

-=5> overlap of second order blands of the appropriate separatix mapping31.7 These

"last" bland KAM curves yield the fractions f,(u,M) (solid curves) shown in

Fig. 3. The two variables u, M correspond to the variables Au, uj in (12). We

assume a fixed M and therefore suppress the M dependence in /». We expect

the size of the blands having fixed point periods greater than two to decrease

sufficiently rapidly with period that the sum of their areas b negligible.

To compare with thb analytical calculation, we have numerically calcu

lated the equilibrium dbtribution function /•(«)• Iterating 64 initial conditions

10 million times yields the distribution function shown as dots in Fig. 3. The

action space between u = 0 and u = 250 was divided into 6000 bins. The height

of the curve represents the total number of vbits to a particular bin, suitably
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normalized. The dips in /(tt,n) persbt over a large range in the number of

iterations (from n = 10s to n = 107)and donot change when a double precbion

calculation b made. The primary difference between the theoretical and nu

merical valuesof /»(«) b the stairstep pattern of the dips in the numerical value

compared to the smooth increase in the magnitude of the dips with increasing u

as determined from the perturbation calculation. The stairstep pattern in the

numerical results b due to the discreteness of the second order blands. A more

exact perturbation calculation has been done on a related problem, bringing

theory and numerical results into closeagreement.10

Figure 4 shows the averagefraction < f,(K>I) >/ of the phase space occu

pied by stochastic orbits, obtained by averaging /, over / for a given stochas

ticity parameter K. We have also plotted < /•(«) >U~l, the average fraction

of the phase space occupied by stochastic orbits in the Fermi map. The average

-^> b taken over the action interval from the center of the bland at uj = M/l

to the center of the next bland at uj_i = M/(l - 1). Thb corresponds to

< /,(#,/) >t with K = 2*A//u3. For greater accuracy in comparing the re-

suits of integrating the Fokker-Planck equation with numerical results, we have

used < /,(«) >Z'rl is calculating the diffusion coefficient (12). The resulting

diffusion coefficient b shown in Fig. 5.

m. Uze of the Diffusion Coefficient

The diffusion coefficient may be compared to numerical measurements ob

tained by direct iteration of the mapping equations. However it b difficult to

make thb comparison due to the rapid oscillations of the diffusion. In numer

ical calculations of D, we must iterate the map a number of times. As the
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particles diffuse away from the initial action, they experience different local

diffusions. In addition the friction coefficient B b non zero, which produces a

net flux of particles in action, further complicating the comparison. Choosing

large values of M increases the size of the stochastic region and the oscillation

period of D(u), yielding better agreement between the diffusion coefficient and

the numerical calculations. But for sufficiently small values of u or sufficiently

long iteration times, peaks and dips in the diffusion distort and change their

positions in action, and the agreement b poor.

To account for these effects we integrate the Fokker-Planck equation using

the theoretical diffusion coefficient (12) and a delta function at action uQ as

an initial condition. Thb yields the predicted theoretical distribution function

/(u,n), where the dependence on the initial action u0 b suppressed. Recall,

however, the existence of stable blands embedded in the stochastic sea. As

dbcussed above, we expect that for times greater than the action evolution

time, the total equilibrium dbtribution function /»(«, fff) = limn-*ee /(«»V\ »)

will be uniform in those regions of phase space accessible to stochastic orbits.9

When the integration over phase b performed to obtain /«(«), the blands

will appear as dips. However, if we use the Fokker-Planck equation with (4),

limn—ee /(«»») will be constant for u < ub. Therefore, the Fokker-Planck de

scription must be modified to account for the blands. For example, to obtain

limn—ee /(«,n) = /•(«), Chirikov modifies (4) to11

where /,(«) b obtained numerically. Thb procedure only ensures the correct

invariant dbtribution, while we are interested in the short and intermediate
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time behavior as well. Rather than modifying (4), we re-interpret /(u,n).

The information about the size and location of blands b contained in /«(u).

To incorporate thb information into the Fokker-Planck approach, we multiply

/(tt,n) by /,(«) to obtain the observed dbtribution function:

FU it - /(tt,n)/,(tt) . .

Dividing by the integral ensures that the number of particles b conserved.

Clearly as n —» oo and /(«,n) becomes uniform, F(u,n) -* /,(«), which b in

agreement with Chirikov's approach. However, for finite n, F(u, n) will differ

from the dbtribution obtained using (13). For example, initial conditions near

a large bland will result in large dips in F(u,n) while the value obtained by

use of (13) will be fairly smooth.

In addition to comparing F(u,n) directly with distributions obtained by

iterating the mapping equations, it b useful to calculate the second moment or

variance of F(u,n). Thb variance can be compared to the variance measured

by iterating the map. That b, we compare the measured value of the variance

a\ to the theoretical value

x/(i.-u.„)F(«,n)<lu
°?lU»n) =n /f(.,»H„ • (15)

where

_ JttF(tt,n)tttt
J%n)dti

We use uavt rather than uc in (15) because the friction may cause the entire

dbtribution to drift. Thb would cause an anomalously large variance. The

variance b a function of u0 through its dependance on the initial value used to

calculate F.
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We use a modified Crank-Nicolson method12to integrate the Fokker-Planck

equation, with a small but finite width delta function in u as the initial dbtri

bution. The boundary conditions specify no flux at u = 0 and at u = it*, where

«* b the action at the first KAM barrier that spans the phases in the («,V>)

phase space. For the Fermi map «* « 2.5(irAf/2)1'3 « 250 for M = 10,000.

From (4) the diffusion (10) yields a friction coefficient (for u « u„ where

there are no significant stable blands)

*Af

(*(¥)-*("))•
which diverges as 0(l/u3) for « small. Thb affects the convergence of the

Crank-Nicolson method. To improve the convergence, the friction coefficient b

set equal to zero for very small values of u, usually « < 3 or 4.

IV. Numerical Experiments

The mapping equations were solved numericallyto see how well the theory

corresponded to the actual dynamics. We followed m initial conditions (with

m ranging from 1000 to 64000) having random initial phases at a fixed action

it = tt0 for n between 1 and 1000 iterations. Figure 6 gives two examples of

numerically obtained dbtribution functions. The action axis was divided into

bins of width Au = .025, and after iterating the map, the number of orbits

residing in each bin was recorded. Thus each dot represents the number of

particles within an interval Au about a particular action. The solid lines are

the predictions of the Fokker-Planck equation.

In Fig. 6a we note that the distribution b not symmetric due to the

inhomogeneity of D(u). The theory and experiment are in excellent agreement
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regardingthb fact. We note abo that F(u}n) b the same as the result obtained

from (13) since there are no stable blands at thb action. The bump in the

distribution obtained in the numerical experiment at 100 < « < 105 b due to

particles in a small region of phase space streaming upward in action. Thb

streaming behavior will be discussed below.

Figure 6b shows a region of action where large stable blands exist. Since

there were no initial conditions inside the bland centered at u = 185, the bland

manifests itself as a dip in the distribution function. Evidence of neighboring

period one blands may be seen on the skirts of the dbtribution function at

« = 189 and « = 182. The effects of the two iteration blands at u = 183 and

« ss 187 are also vbible. The predictions of the Fokker-Planck equation using

(13) and (14) are shown for comparison. We see that (14) agrees much better

than (13) with the numerical results.

The variance was abo calculated, using

t=i

The use of many initial conditions provides a way to estimate the error in the

variance. We can calculate the variance for subgroups of m0 < m initial condi

tions and then use the standard deviation as a measure of the uncertainty. Using

m sb 64000 initial conditions and me = 16000, a typical standard deviation b

about one percent.

The results after an iteration time n ss 20 are shown in Fig. 7a . The solid

line b a linear interpolation of several hundred calculations of the variance,

each at a different initial u0. Each calculationwas performed using the method
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of Sec. HI, that b, by integrating the Fokker-Planck equation and using (15).

From now on the result (15) will be referred to as the theoretical variance.

The dots in Fig. 7a represent several hundred measurements of the variance

using (16). The variances in Fig. 7a both show the characteristic oscillations

observed in the standard map, for large values of the stochasticity parameter

K. Both variances drop rapidly toward zero as K approaches one, as in the

standard map. However, the oscillations occur in action space rather than in

parameter space. For u < 40, both the theoretical and measured variances no

longer exhibit oscillations. Thb b because as particles diffuse, they experience

different localdiffusions. The result b that rapidvariations in D(u) areaveraged

to the quasilinear value of 1/2.

We can estimate the limits of validity of quasilinear diffusion. We expect

that quasilinear diffusion b adequate if large blands do not exbt (u < ut) and

if particles diffuse over a range of action 6u comparable to or larger than the

local period of the oscillations in D{u). For large K the diffusion oscillates as

cos(K) so we expect averaging when (dK/du)6u « */2. Using 6u = y/nDqi

and

BK 4*M

du ti8

for the Fermi map, we find quasilinear diffusion for

« < (32Af3n),/e < tt. . (17)

The validity of (17) has been studied numerically for 103 < M < 108 and

10 < n < 1000. For actions satisfying (17), the variance b within five percent

of the quasilinear value.
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Another effect of the variation of D with « b seen by comparing results of

calculations made at different times n. Fig. 7b shows results at time n = 40.

Comparing Fig. 7a to Fig. 7b, we see that the location of the maxima and

minima of the variance change with n. Near u = 75 in Fig. 7b, a maximum

and a minimum are merging, forming an irregular hump. Examination of Figs.

7a and 7b makes it clear that the maxima and minima of the variance do not

always correspond to the maxima and minima of the diffusion coefficient in

Fig. 5. These results are expected on physical grounds. As particles diffuse

they experience different local diffusion rates. Particles starting near a local

minimum diffuse into regions of higher diffusion rates. There they diffuse more

rapidly than they would at the minimum, and thus the measured variance b

greater than the local diffusion coefficient. A similar but opposite effect b seen

nearlocal ir^vimft. of D, reducing the variance. Particles startingbetween max

ima and minima diffuse more rapidly toward regions of increasing D, thereby

experiencing a friction given by (4).

For actions greater than u « 200, i.e. for actions near ub, the numeri

cally determined values of the variance exceed the theoretical values. Note,

however, that the numerical value of the variance after 40 iterations b roughly

halfthe value after20iterations. Any initial conditions started near the isolat

ing KAM curve around a stable fixed point will tend to "stick" to the bland

border, being carried around the bland. Thb effect will produce an anoma

lous variance which decays as 1/n. As n -* oo we expect that the numerical

variance will agree with the theoretical predictions. Numerically iterating the

mapping equations for longer times verifies thb 1/n decay. In calculating the

variances, we have attempted to select only initial conditions outside of stable
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blands. Thb b possible for period one fixed points, but for higher order fixed

points our code was inadequate. Initial conditions started in such blands abo

produce variances which decay as 1/n. These initial conditions do not produce

long-time diffusion and therefore over sufficiently long times would lead to a nu

merical variance lower than that calculated from the Fokker-Planck equation,

as observed numerically.

When we examine phase space portraits for initial conditions at these large

actions (corresponding to K near Kern)y we Me some interesting behavior.

Particles diffuse rapidly up and down in action up to certain limits, beyond

which they will not pass, at least initially. After repeated iterations particles

will leak through these apparent barriers and again diffuse rapidly until they

reach the next apparent barrier. Thb process repeats itself until the particles

reach the isolating KAM curve at u*, or until they diffuse toward lower actions

where the behavior gradually passes into a more uniform diffusion.

Similar behavior has been described in a paper by Mackay, Mebs, and

Percival.13 They referto these barriers ascanton. They givea theory describing

the behavior and calculate a diffusion coefficient. By using the Fourier path

diffusion coefficient we have averaged over a finite range of actions between

primary resonances. In doing so, we have averaged the very slow "diffusion"

across the cantorus with the much faster diffusion on either side.

The measured value of the variance also exceeds the theoretical value near

values of ti corresponding to K ss 2xM/u2 ss 2*7 where / b an integer, and

nearu ss 145 (K —2.95). The standard map (8) exhibits "accelerator" modes

near these values of K. An accelerator mode in the standard map b a stable

fixed point of the map that corresponds to monotonic increase or decrease of
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the action with each iteration of the map. Since the standard map b periodic

in the action, these fixed points are encircled by KAM curves, and there b an

"bland of stability".3 Orbits started inside the bland remain inside and vice

versa.

Locally, any small region of the Fermi map lying between adjacent (period

one) bland centers resembles the standard map. Thus, we expect the Fermi

map to show behavior similar to that of acceleratormodes in the standard map.

However, generic maps such as the Fermi map are not periodic in the action.

Because a change in u corresponds to a change in A\ and accelerator modes

in the standard map exist only for limited ranges of K, the Fermi map cannot

have true accelerator modes. The corresponding fixed points and associated

KAM curves do not exbt. Thb allows orbits in the Fermi map to diffuse into

and out of regions of phase space where they may be accelerated for a number

of iterations that will depend on both K and M. Large values of M correspond

to Fermi maps that closely resemble the standard map over many adjacent

bland centers, and thus exhibit orbits resembling accelerator modes for long

times. An example of such behavior was seen in Fig. 6a near u = 100. The

effect of such orbits on the variance b shown in Fig. 7a, where evidence of these

"quasi-accelerator" modes may be seen at u = 145. and u ss 100., corresponding

to A* ss 2.95 and K ss 2ir. The effect of "quasi-accelerator" modes b the only

major disagreement between our theory of diffusion and numerical experiments.
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V. Conclusions

Using a local diffusion coefficient that includes the higher order correlations

of diffusion in the standard map, the Fokker-Planck equation b integrated to

obtain the evolution of the distribution function for stochastic orbits of generic

Hamiltonian twist mappings. Oscillations of the variance as a function of the

action are observed. For theFermi map with « < (32Af3n)1/6, these oscillations

in the variance average to zero, yielding the quasilinear value. For larger values

of tt, the variance may exceed the quasilinear value by as much as a factor of two.

For tt approaching the KAM barrier, the variance tends to zero. In addition,

peaks and dips in the diffusion interact in a complicated manner. These effects

are predicted by the Fokker-Planck equation, using a local diffusion coefficient

derived from a locally equivalent standard mapping.

Dips observed in the invariant (steady state) dbtribution are due to the

exbtence of KAM barriers around stable fixed points. When these blands

are taken into account the invariant distribution b homogeneous (to a good

approximation), in agreement with the prediction of ergodic theory.
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Appendix A: Derivation of the Local Diffusion Coefficient

In thb appendix we derive a local, intermediate time, diffusion coefficient

for radial twist mappings of the form

tt„+i ssttn + esinfl*
(Al)

**+i = *» + ^(t*«+i) .

For the Fermi map our result will be equation (10).

Following Rechester et al.",4 we introduce the Vlasov equation for the

distribution function P(0,tt,t),

at at as at au ~ 2 a$2 * '

We have introduced nobe in the system, represented by the last term on the

left hand side of (A2), corresponding to diffusion in 6 with variance o\ Since

we are interested in calculating an action diffusion coefficient, we let

P(tf,tt,t =0) =̂ (tt-ttD),

that b, a line of initial conditions with random phases and initial action «0.

With thb initial condition P(6,u,t) b just the probabilbtic form of the transi

tion probability Wt used in the main text.

Equation (A2) may be solved using a Green's function. We find

P(0,tt,t) ss / G($ - $,tu)P($'yu +esinf,* - l)d*\ (A3)

where

"•.-.-sfr.fi.-(-I","y*''*)- ia"
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From the Pobson summation formula,14 we have

nss—oo ^ ' m'=s—eo

where 4> b the Fourier transform of <t>. Choosing &{k) ss y/xc~k /4,

'(^•^[-(tS)'/']-
with A= (<r/2) •/». For t = «-«'- A(u) we have

_ 1 V^ =•=£ „»'(#-#'-*(»))
2* «

m'ss—oo

Using thb relation in (A4) and inserting into (A3), we obtain

P(*,tt,t)= £ ei£r1e<w',e-,'n'AW
m's—oo

j-t-**" 9P(B\«+csin f, t- - 1) .

Introducing the Fourier transform of P(0,u,t),

«m(*) =/"<»/""*< e-'m'+*«lP(«.t.,*),

we find

•a*

m'=-ec *• '-»

/Sir ja/

^e-'m'''P(^,u+csin *', t- 1) .

(A5)
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Performing the $ integration yields a Kronecker delta, 6m,m«, and after doing

the sum over m', we obtain

«!•(*) =e^ ['&' «"'m#' f°° ** e-'!*«+mAWlp(0',tt+csin 0\t - 1) .
^o ^—eo

(A6)

We now focus our attention on the « integral, treating 0' as fixed:

Jw =f°° du «-fl**+*A(«)lp(^|„+esin 0\*- 1) . (A7)
«/—eo

As dbcussed in sec. I, we would like to describe the evolution of a dbtri

bution function in action alone, using the Fokker-Planck equation. Thus we are

interested in calculating a diffusion coefficient for times t (An in sec. I) short

enough that the action does not change by much, but long enough so that each

particle in the distribution receives many uncorrelated kicks, i.e., we assume

a separation of time scales Taction » t » •>*•«• Thb means that in the

expression for oJn(fc), t b short enough that P(0',tt + esin0',t —1) in (A7) b

still sharply peaked. Becauseof thb fact, we may expand A(u) in the exponent

around the initial action ««,: *

AM -4-)+(- -«.)(^ +1{.-«.)' (S)„+-

=ct(ue) + uK(uo) + •••.

Then we obtain

lu =e~im* f du e-«*+"»*)«p(0', tt +€sin f,i - 1) .
J—eo

Letting u; = u + esin0', we see that

Iu ss e-<moe<t(fc+mJf) eio #' f ^ e-'(*+m,r)~P(0', «>, t- 1) .
* — eo

(A8)
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Using thb in (A6) we obtain

«!»(*) =£ /.(It'eDe^e—-
fs-oo

/ d0' A du; e~iK'n-l***lk+mK))9'+lk+'"K)*>}pytWtt _i) .
yo «/—eo

where we have also used the identity

e±",dD'=£ Ji(fle*fli , 0>0.
l=-eo

Using the definition (A5) in the double integral, but at time t —1, we obtain

the recursion relation

MUM).2-*
|s—eo

where

•LM = £ Jidfc'cDt^.-—ClW (A9)

ro' = m-isgnJb'.

Thb result differs from that in reference (4) by the term e~*mo in (A9), and by

the expression for k'. The difference in k' results in a change in the arguments

of the Bessel functions. In the case of the standard map k b an integer. In the

more general case k b K times an integer (or sero).

With (A9) we can obtain the diffusion coefficient from the following argu

ment4'7 . Using equation (A5) in the definition ofthe diffusion coefficient (2)

and integrating by parts, we find

D(0.) =tIj»-IiLar(t)i (A10)
where T » Tpnai)tt, and we have neglected terms proportional to 1/7. From

thb expression wesee that the path in Fourier space must endat (m, k) = (0,0).
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Furthermore, we are interested in the case cK > .9716, that b, where diffusion

occurs in the absence of external nobe. In thb case 7 >> (2/JCc)3 and the

path must alsobegin at (0,0).4 Because the path must begin and end at (m,Jb)

the sum £f m< = 0. Therefore Jlt t"im*a s= 1,so that the t~im* term in (A9)

has no effect on the diffusion coefficient. If each m in the recursion (A9) b

equal to sero, then

•£(*)-WM)1T<(*)

and from (A10), treating ke as small, J0(|&|) « 1- (&/2)a so that

!>(tt0) = c3/2.

Considering now paths that leavethe originwe see from (A9) that for the first

step away from (0,0), m' ss -fegnfc' and Jb' = ib. That b, the first step must be

(0,0) -> (-/sgnJb',0), from which we obtain a factor J|(|*€|), where ib tends to

sero. Furthermore, since the path must end at the origin we must have a step

(/,-/#) -* (0,0), giving a factor Ji{\kc\). For k small, Ji{kc) « (fc/2)1. These

steps will contribute a factor of fc31, which will give a sero contribution to the

diffusion unless / = ±1 and one derivative in (A10) operates on each i|(|M)-

These two steps will contribute a factor of e3/4 to each path that leaves the

origin. The simplest example of a path which leaves the origin b given by

(0,0) -• (1,0) -• (-1,IT) -• (0,0), (and its mirror image), which gives

al(k) =2(7 - 2) [Jo(M)]T-8 J-i(M)*(l(* +*M)«-*/3WW)'"'2.

and contributes a term

-c8J3(|*e|)e-"

to the diffusion.
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We may proceed in thb manner to sum more paths to obtain more accurate

values of D(u0). But notice that whenever e appears in the argument of a Bessel

function, it will always be multiplied by Jb' ss k + mK. Bessel functions with

m ss 0 contribute factors of Jo(0) = 1, J/(0) ss 0, or c/2, where the last term

corresponds to entering or leaving the origin. Because of thb simple rule, we

may take over the results of reference (4) simply by letting e —• Ke. However,

we must divide the result by K2 to cancel the extra K2 in (c/2)3 -> (e/JT/2)3

corresponding to the steps entering and leaving the origin. Thb must also be

done for the path which does not leave the origin. Symbolically,

DM =jpDm(tK)%
where K ss (dA/du)Uo. For maps such as the Fermi map, c = 1, and

which b equation (10). For the Fermi map, A(u) —2*M/u, so that K(u0) =

-2nM/ul , and if K » 1 we obtain

which b equation (11).

For the expansion (A8) to be valid, we must have

, X6M 1, .9a2A

or

J0a*/3tt)>>i(tt-tto). (All)
As an estimate we have |u —v0| « e\/7\ using the quasilinear diffusion. For

the Fermi map (All) becomes

tte» y/f
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which b usually easily satisfied.

Appendix B: Island Sise Calculation

We outline here the perturbation calculation for the size of the stable is

lands in the standard map.

First we convert the standard map to a Hamiltonian. Using a periodic

delta function,
eo eo

53 *(»-«)= 51 "W2***)
fs»oo ess—»eo

where n b the "time", the map may be written in the Hamiltonian form

£T(J,0;n) =ij3 +jr £ cos(0 - 2*nq).
fS—OO

Moving to extended phase space, we obtain

5(/,0,J,^)ss2irJ+i/3 +/f f; cos(0-*i),
fss-eo

where J ss -H/2* and 4> = 2irn. The new Hamiltonian b independent of

the new "time" £ . Letting 0 -• ir+ 0, we find the Hamiltonian for a driven

pendulum

H=\t2 +2*J-Kco*9
^ (Bl)-tf£cos(0-g*).
t#o

We have a slow motion described by the (7,0) variables and a fast motion

described by the [Jy4>) variables. Near the pendulum separatrix, the interaction

between the two oscillations leads to chaotic motion and jumps in the actions

I and J. The jump in J may be calculated overa half-period of the separatrix
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motion. Since E b linear in J we may write 4>{t) = fit + w0, where ft = 2*r

b the period of the J motion and v0 b an initial phase. For 0(t) we use the

expression for 0 on the separatrix: 0(f) = 4tan'1 e~w#* - jr. Keeping only the

leading term in the interaction we obtain

AJ J a<f>

=Ksin*n P ~cos(0(r) +n—\

ss —A2 [— )sin(*n)

where wn b the phase after n half-periods and w0 = y/K b the period of

small librations of the pendulum. The maximum amplitude of the jump b thus

AJ0 = (K/u0) A?(fi/u/0), where the Melnikov-Arnold integral A-i{Q0) b given

by

, , 4irQ0exp(irQ0/2)
2\Wo) - sinh(irQe)

The change in the phase v b 07, where

r-(i/^)h(»/|2^|)
b the half-period of the motion near the separatrix. These relations may be

expressed as a mapping (called the separatrix map3),

UAJo . .

• . +nh s> (B2)*n+l = *» + — In 1 r
W0 |tt>«+i|

where w(J) —(H - K)/K, which b the deviation of the energy H = -fiJ

from its value of A" on the separatrix. The width of the stochastic layer in the

separatrix map corresponds to the width of the separatrix around the resonance
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in the standard map. Thb width b found by using the 2/3 rule7or by approx

imating the separatrix map by the standard map and solving K(wb) = Kent-

The result b

ftftAJe
tt>6 =

ue K

-¥*© •
We then use J ss -A"(l+u>)/fi , and the sign of wh that describes the separatrix

widening into the bland to obtain

J6 = -7T + fti4as«*o-
Returningto the Hamiltonian (Bl), we solve for 7 = 7,(0). Thb b the equation

of the outer-most stable orbit which determines the sbe of the bland:

jgr =ftj6 +l7?-iirco80

or, since H s 0,

7?(0) =2ffcos0 +2tf-2naA2(—)
U)0

' Ki smh(2£)

To apply thb result to the Fermi map, we note that K(u0) = 2irA7/u3 and

Au ss [l/K)I so that

Att6W-.;^,,^^ e^«*(*Vv^)=̂l(l+cos0)-
K6/38inh(2ir3/v/^)'

Thb b the equation of the bland surrounding the stable fixed point at u0 = A///,

where / b an integer.
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The calculation of the size of the blands surrounding period two fixed

points b similar. We start with the same Hamiltonian:

£(7,0,J,4) =i73 +2irJ+tf f) cos(0-e*)
2 t^oo (B3)

= 27o + fi,

with S0 =(1/2J73 +2irJ and Sx ss TT ££_» cos(0 - o^). We are interested
in sero order orbits at 7 = (2p+1)* and 0 ss 7n, so that

wi _ 2p+1

U>2 2

We see that £Ti has no first order resonances. Since the perturbation term in

(B3) does not exhibit thb resonance in lowest order, the calculation must be

carried out to second order. It b therefore convenient to use Lie transformation

methods7to obtainthe analog of Bl. We wbh to obtaina canonical transforma

tion t&(7,0, J,4) to a new Hamiltonian Kr that has no oscillatory part (along

the sero order orbits). We do thb by solving the following set of equations:

Os=Ko-Ho

7>ett»i=Ki-5i (B4)

D0w2 =2(K3 - -5a) - [«!, (Si +Kj)]

and so on. Here Dcw =^ +L, jsf0] where [, ]bthe Pobson bracket in
extended phase space. We pick Ki to eliminate secular terms on the right-

hand side of the first order equation. Then *>i b chosen to solve the resulting

equation. We then use tt>i in the second order equation and follow the same

procedure to find K3 and w2. The new Hamiltonian Kr describes the motion

near the period two fixed point at / = (2p + 1)jt.
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Since Ki =< H\ >, we have Kx ss0. Solving for wi, we obtain

=-7r f) cos(0-<tf),

such that

^ stn(0~^)
f=—eo '

We note that the denominator b non resonant. Proceeding to second order, we

have S2 = 0, so that the right-hand side of (B4) b —[wit£Ti]. We choose K2

to eliminate 1/2 < [tt>i,i7i] >, where < > denotes averaging over 0:

„ _ lldwxdSA
K2"'2\ar'af/

_ K2 /^ sin(0 - oflsin(0 - gV) \
" 2 \tt (/-M» /

TT3 /~ cosfo - ?/)* - cos[20 - (q +<f)4>) \
" 2 ^ (7-2*o)3 / •

Performing the sums and averaging, we find

K2 =̂ -^cos[20-(2p+lM.
The transformed Hamiltonian (including the averaged terms) b then

Kr =ll3 +2irJ- ^ cos[20 - (2p +1)*]
2 16

+tf£cos(0-<tf)-T £ (7-2*o)3 '

To put Kr in the form of a driven pendulum we use

F2 = (20 - (2p +1)*)Ji + +J2
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to makea final transformation 7 ss2Ji, J = J2 - (2p+1)Ji, 0i = 20- (2p+l)tf,

02 ss 4>. Expanding to second order around the fixed point at J\0 = (ir/2)(2p +

1), we find

AKr(Ji,0i,Ja,0a) =|4(AJ,)3+2»rJ3 - ^cos'i
+K52cos(i0,-r(p-g+i)02)

K2 ^ CQB[$l +((2p +l)-(g+q'))$2]
"leva 2* (p-c+i)3

The rest of the calculation exactly paralleb that given after (Bl). For the

Hamiltonian AK the frequency of small librations b ur0 = K/2, and there are

two types of perturbations. The dominant term b Kcoa((l/2)$i - (1/2)02J.
Thb calculation gives an estimate for the equation of the stable bland

wt*\ /ff2„ , I 32ir3 exp(^)/o(0) =̂ T(l-rcos0)-—_j£-.
For the bland size around the v ss 2M/(2p + 1) fixed point of the Fermi map

we find

a IhT. ^ 32ir» exp(£)

The results of these calculations are shown as the solid lines in Fig. 3.
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Figixre Captions

Fig. 1. The Fermi map for M ss 10,000. Thirty-two initial conditions started

near « ss 10 were iterated 1,400,000 times; tte marks the KAM barrier and

«t the stochastic barrier. Twenty initial conditions were started above ttD and

iterated 200 times to illustrate regular orbits.

Fig. 2. Doo{K) vs. K, from A. B. Rechester and R. B. White, private com

munication.

Fig. 3. The equilibrium distribution function obtained from 10 million itera

tions of 64 initial conditions started at low initial velocities. The phase space

b projected onto the action axb, which b divided into 6000 bins. The dots

represent the (normalized) number of vbits to each bin. The solid lines are the

fraction of phase space outside stable blands, as calculated in the appendix.

Fig.-4. The (averaged) fraction of the area accessible to stochastic orbits in

the Fermi map, < /*(«) >«!"*,and in the standard map, < f,(K,I) >/. The

deviation for large u b due to insufficient iteration time in the Fermi map.

Fig. 5. The local diffusion coefficient given in (12) as a function of action, u.

Fig. 6. (a) The dbtribution function obtained by iterating 6400 initial con

ditions with tt0 as 90 and random phases. The dots indicate the number of

particles within Au = .025 at a given action. The solid line b the prediction of

the Fokker-Planck equation with the diffusion coefficient (12); (b) The same as

(a), with tt0= 186. The dashed line b obtained using (13).
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Fig. 7. The variance plotted as a function of initial action. Each dot corre

sponds to a measurement of the diffusion obtained by iterating the Fermi map.

The solid line b the theoretical variance obtained by integrating the Fokker-

Planck equation; (a) after 20 iterations; (b) after 40 iterations.
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