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ABSTRACT

We show in this paper that Minty's Painting Theorem and Tellegen's

Theorem are equivalent. We also present a generalization of Minty's Theorem to

vector spaces over the real field and a new proof of the theorem.

On leave from the Department ofElectrical Engineering, llT Bombay, 400076 India.

-1-



C 3 3

1. Introduction

Tellegen's Theorem and Minty's painting Theorem are widely recognized as

two of the most basic results in network theory [l], [2]. Since they are both

purely topological it is of some interest to explore their relationship to each

other. We show in this paper that they are essentially equivalent. It is however

rather difficult to give a convincing proof of this fact by simply using one of

these results to prove the other, for, in the process, we could also be using other

properties of graphs implicitly. We therefore proceed as follows: we state

Minty's painting condition for two different graphs and show that if two graphs

satisfy this condition their respective coboundary and cycle spaces must be

complementary orthogonal. Next we generalize Minty's Painting Conditions to

vector spaces over real fields and show that if two spaces V\t Vz are complemen

tary orthogonal they must satisfy Minty's Painting Condition.

2. Preliminaries

We deal with finite sets throughout. If S is a set then | S | is the cardinality

of S. A vector f on S over the real field 1R is a function f: S -* 1R. Addition, scalar

multiplication and linear combination are defined as usual for vectors on the

same set. A collection of vectors is said to be a vector space if it is closed under

addition and scalar multiplicaiton. Rank of a vector space v is denoted r(y).

Support of a vector f is denoted ||f|| and is the set of all elements on which f

takes nonzero values. A vector f is said to be minimal in v iff no g € v such

that ||g|| is properly contained in ||f||. If vectors f, g are on S then

(f.g) s S/(e)^(e)- f>9 are said to be orthogonal iS (f, g^ = 0. The col-

lection of all vectors orthogonal to every vector in a vector space v on S forms

another vector space. We denote it by v . v, v are said to be complementary

orthogonal. Let v be a vector space on S. Then
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vT s \iT: there existsfs e v such thatfr = ls/ T\

vxT s }fr: there existsfs- e 1/ suchthat 1T = f^/ Fand fs(e) =0,e e S-rj

We will use the following simple results without proof (See [3]).

Theorem PI. Let v be a vector space on 5. Then

(a) (0*=i/

(b) (i/)+r(0= \S\

Theorem P2. Let v be a vector space S. LelTcS. Then

(a) (v7)* = i/*xr

(b) (vx7V = i/*.r

We assume familiarity with the usual definitions of directed graphs, circuits,

cutsets, forests, coforests. fundamental circuit matrix, fundamental cutset

matrix, circuit vector, cutset vector, etc. We denote the fundamental circuit of

a forest T of graph Gwith respect to the edge e outside T as L(G,e, T) (L for

'loop') and the fundamental cutset of a coforest T of graph Gwith respect to

the edge e outside 7 as C(G,e,T). The space of vectors generated by the rows

of a fundamental circuit (cutset) matrix of G is called the space of cycles

(coboundaries) of Gand is denoted by v^(G)(vcob(G)).

3. Minty'sPainting TheoremImpliesTellegem'sTheorem

Definition 3.L Let Gbe a directed graph on S. Let Sp,Sq be disjoint subsets of
S . We say that a cutset (circuit) Tis pq-directed iff TcSp \jSq and all the
edges of Tf}Sq are similarly oriented in the cutset (circuit). We say T meets e
iflee7.
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We now state Minty's painting condition for graphs (MPCG).

Definition 3.2: MPCG: Let GltGz be directed graphs on S. We say that the cir

cuits of Gi and the cutsets of G2 satisfy MPCG iff exactly one of (a), (b) below is

true for every partition of S into sets Sr ('red'), Sb ('blue'), Sg ('green') with

e * (dark green) belonging to Sg.

(a) there exists an rg -directed circuit in G\ that meets e *

(b) there exists a bg -directed cutset in Go, that meets e *

We now show that if circuits of Gj and cutsets of Go, satisfy MPCG then

i/c05(G2), vGy(Gi) are complementary orthogonal. Note that this is essentially

the same as saying that Minty's painting theorem (which states that circuits of

Gi and cutsets of Go, satisfy MPCG) implies Tellegen's theorem. We need the fol

lowing simple Lemmas.

Lemma 3.L Let G\Go, be directed graphs on S. Let circuits of Gi and cutsets

of Go, satisfy MPCG. Then no coforest of Ga contains a cutset of Gz i.e., every

coforest of Gi is contained in some coforest of G2.

Proof. Let coforest Tj of Gj contain cutset G2 of Go,, Let eeCg choose (Tj—e)

as Sb (blue), forest T2 as Sr (red) and [e \ as Sg (green). Let e be chosen as

e *. Let L\ —Z(Gj,e ,Ti). Observe that the simultaneous existence ofL\ and C2

constitutes a violation of MPCG for circuits of Gj and cutsets of G2. Hence Tj

contains no cutset of G2.

Lemma 3.2. Let Gx , G2 be directed graphs on S. Let circuits of Gj and cutsets

of G2 satisfy MPCG. Let T2 , T2 be coforests of Gj , G2 respectively such that

TjCTg. ThenT^T*

Proof. Suppose TjCTg but not equal to it. Let e eT2—Ta. Let the correspond-



ing forests of GltG2 be TlfT2 respectively. Choose T2-e as Sb ("blue"), ease*

("dark green") and (e ] as Sg ("green") and T2 as Sr ("red"). Since e \jSr con

tains no circuit of Gj and e [jSb contains no cutset of G2 it follows that circuits

of Gj and cutsets of G2 cannot satisfy MPCG. We conclude that T2—Tj = (p.

Hence Ti = T2.

Theorem 3.1. Let GltGz be directed graphs on S such that the circuits of Gj

and the cutsets of G2 satisfy MPCG. Then

Proof. By Lemmas 3.1, 3.2 every forest of G1 is also a forest of Go. Let T be a

T T5
of Gj and G2. B1 = [u T] be a fundamental circuit matrix of G2 and

¥ T
let Q^ = [Qfj U] be a fundamental cutset matrix of G2 with respect to this

forest. We now show that any row of B1 is orthogonal to any row of Q^. Let

L = L(GveltH) and let C = G(G2,e2,T). Then Cf\L has precisely two ele

ments, namely e 2and e2 with e 2e T and e2 eT. Consider the rows i^of B1 and

V<? of Q?. Now choose \Bltez\ as Sg (green), exas e*(dark green), T-ej as Sb

(blue) and T-e2 as Sr (red). If there is a bg-directed cutset of G2 that meets

e j it can onlybe C and if there is an rg —directed circuit of G1 that meets e ait

can only be L since the fundamental circuit of T with respect to e2 in Gx is

unique and the fundamental cutset of T with respect to e j in G2 is unique. By

MPCG there exists a bg—directed cutset of G2 that meets elor there exists an

rg —directed circuit of Gl that meets e x but not both. We therefore conclude

that iL (e a) •vc(e 2) = -iL (e2) -vc (e2). Hence <i^ ,vc > = 0. Now

r(ycot(^2))+r(^cy(^i)) = l«S| since number of rows B1 + number of rows of



Lh b

Q2 = |S |. Hence (i/^(OJ) *= ucob (G2). Q.E.D.

4. Tellegen's Theorem Implies Minty's PaintingTheorem

In this section we generalize Minty's Painting condition to vector spaces

over the real field. We then show that two vector spaces vltv2 on S are orthogo

nal only if they satisfy Minty's Painting condition. It is then easy to see that

Tellegen's theorem implies Minty's Painting Theorem.

Definition 4.1. Let v be a vector space on S. Let Sp,Sq be disjoint subsets of

5. We say that avector f in v is pq -directed iff ||f|| CSp \jSq and / (e {),/ (e 2)

have the same sign whenever they are nonzero and e1,e2€5g. We say that f
meets e * iff f(e +)&0.

Definition 4.2. (Minty's painting conditions for vector spaces (WMPCV and MPCV

stand for weaker and stronger forms)). Let vltv2 be vector spaces on S over R

(^1^2) satisfy (MPCV) WMPCV iff exactly one of (a), (b) below is true for every
partition of S intosets Sr ,Sb ,Sg with e*€Sg.

(a) There exists a (minimal) vector in vl§ that meets e* and isrg -directed;

(b) There exists a (minimal) vector in i/2 that meets e*and is bg —directed.

Theorem 4.1. Let v be a vector space onS over IR. Then (v,v*) satisfy WMPCV.

Proof. We first show that both (a) and (b) of WMPCV cannot hold simultaneously.

Suppose iev and satisfies (a) and vev* and satisfies (b). Then clearly

i(e)-v(e)5*0 only if e eSg. It follows that if i(e)-v(e) is not equal to zero it

always has the same sign. Hence <i,v> ?£ 0 since i(e *),v(e *) are nonzero. But

this contradicts the fact that i,v belong to v,v* respectively. We conclude that

(a), (b) ofWMPCV cannotbe simultaneously satisfied.



We will now show that at least one of (a), (b) must be true. This is obviously

so if |S | = 1. Suppose this is so for \S\ = n —1. Let \S\ = n. Let S be par

titioned into Sr,Sb ,Sg and e *€ Sg. We nowconsider a number of cases.

Casel. Sb?*<p.

Let e EiSb. Consider v(S-e). By the inductive assumption WMPCV holds

for (yx(S-e),(i/x(S-e))*) with respect to the partition (ST,Sb-e ,Sg) and

the element e * , Le., there exists a bg —directed vector v that meets e * in

v*»(S—e). Or there exists an rg—directed vector i that meets e* in

v* (S-e), since by Theorem P2, (vx(S-e ))* = u**(S-e). Since e e Sb it fol

lows that there must exist a bg —directed vector, that meets e * in v * or an

rg —directed vector, that meets e *, in v.

Case 2. Sb\j(Sg-e*) = (p.

We have, r(i/*Xe*)+r(i/-e *) = 1 by Theorem PI. It follows that we have

either a vector v in v * with \\v || = e * or we have an rg —directed vector in v.

Thus the theorem holds.

Case 3. Sb = tp,Sg—e * 5* (p.

Let e G Sq—2 *. By the inductive assumption the theorem holds for

i/X(S-e),i/*<S-e)) and (i>(5-e),y*x(5-e))f with respect to the partition

(Sr,Sb ,Sg—e ) andthe element e*. Suppose there exists a bg —directed vector

v that meets e* in f #x(S-e) or an rg -directed vector i that meets e * in

VX(S—e). Clearly these vectors can be extended to appropriate vectors which

take zero value on e , meet c* and are bg—directed in u* or rg—directed in

1/ as the case may be. So the theorem holds in this case. Let us therefore

assume the v*x(S—e) does not have vectors that meet e* and are

bg—directed and vx(S—e) does not have vectors that meet e* and are

rg—directed. By the inductive assumption it follows that v(S—e) has an
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rg —directed vector i' that meets e * and v*»(S—e ) has a bg —directed vector

V* that meets e *. Let us without loss of generality assume that i'(e *), v*(e*) are

positive. Now there exists vectors Y$' , 1$' belonging respectively to v * , v such

thatV = Vs/(5-e) andi' = i's/(5-e). We have <V5,i's>= 0. But this means

vs(e)»is(e) = —(y,Vy. The right side is negative since V is bg —directed and i'

is rg—directed and ^(e*), i'(e*) are positive. Hence Vs(e),i's(e) have oppo

site signs. Hence Vs is bg —directed and meets e * or Vs is rg —directed and

meets e * Thus the theorem holds for v,v *.

Lemma 4.1 is needed for the proof of Theorem 4.2.

Lemma 4.1. Let v be a vector space on S over IR. Let v€i/ and let e € ||v||. If v

is not minimal there exists a vector V such that e $. \j\ and ||v*|| C ||v||.

Proof. There exists a minimal vector v" such that lv"|| C||v||. If e g v", we are

done. Otherwise consider minimal v—

required conditions.

v£il
V*(e)

•v". This vector satisfies the

Theorem 4.2. Let v be a vector space on S. Let Sp,Sq be disjoint subsets of S.

Let e € Sq. Let v be apq —directed vector of v that meets e. Then there exists

a niinimal vector in v% that meets e, is pq —directed, and has its support con

tained in the support of v.

Proof. The theorem clearly holds when the cardinality of ||v|| = 1. Assume it

holds when ||'vj|<7b. Let ||"v|| = n. If v is minimal there is nothing to prove. If v is

not minimal we know by Lemma 4.1 that there exists a vector V that does not

meet e and satisfies ||V||C||v||. Let x € |"V*|| be such that

W?\\ =^n JlfaU • Consider the vector to-\^r\- * . This is

pq —directed, meets e and has cardinality less than n. It therefore contains a



minimal vector belonging to v that ispq -directed and meets e

Theorems 4.1 and 4.2 imply

Theorem 4.3. {v,v*) satisfy MPCV.

099

We state the foUowing simple result from graph theory without proof.

Ifimma 4.a Let Gbe a directed graph. If f is a minimal coboundary (cycle) of
Gthere exists a cutset (circuit) Tof Gsuch that the cutset (circuit) vector iT
corresponding to T satisfies f = XfT for some scalar X.

Remark. Although we have generalized Minty's Theorem to vector spaces over
the real field it must be pointed out that the result is useful primarily when all
nonzero entries of a minimal vector can be taken to be of the same magnitude.

This happens only where the vector space is generated by a unimodular matrix.

For such vector spaces essentially every property of graphs, that is provable by
Minty's Theorem, would be true.

Tellegen's Theorem, Theorem 4.3 and Lemma 4.3 imply

Theorem 4.4, (Minty's Painting Theorem for Graphs). The circuits of a directed
graph G and the cutsets of G satisfyMPCG.

Conclusion

We have shown in this paper that Tellegen's Theorem and Minty's Painting
Theorem for graphs are equivalent. We have in the process generalized Minty's
Painting Theorem to vector spaces over the real field and also have given a new
proof for it.

Acknowledgement



The author is grateful to Professor Leon Chua of the Department of Electri

cal Engineering and computer Sciences, University of California, Berkeley, for

suggesting this problem. Research sponsored by National Science Foundation

Grant ECS-8118213.

-10-



References

[1] J. Vandevalle and L. 0. Chua, "The Colored Branch Theorem and its Applica
tions in Circuit Theory," IEEE Trans. Circuits and Systems, vol. CAS-27, pp.
816-825, September 1980.

[2] P. Penfield, Jr.. R. Spence and S. Duinker, Tellegen's Theorem and Electrical
Networks, Cambridge, Mass., M.I.T. Press, 1970.

[3] W. T. Tutte, "Lectures on Matroids," /. Res. NBS. Sect. B, vol. 69B, pp. 1-47,
1965.

-11-


	Copyright notice 1984 - Copy
	ERL-84-107

