
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A COMPARATIVE STUDY OF LINEAR AND NONLINEAR

MIMO FEEDBACK CONFIGURATIONS

by

C. A. Desoer and C. A. Lin

Memorandum No. UCB/ERL M84/11

17 January 1984



A COMPARATIVE STUDY OF LINEAR AND NONLINEAR

MIMO FEEDBACK CONFIGURATIONS

by

C. A. Desoer and C. A. Lin

Memorandum No. UCB/ERL M84/11

17 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Comparative Study of Linear and Nonlinear

MIMO Feedback Configurations

by

C. A. Desoer and C. A. Lin

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley CA 94720

Abstract

In this paper, we compare several feedback configurations which

have appeared in the literature (e.g. unity-feedback, model-reference,

etc.). We first consider the linear time-invariant multi-input multi-

output case. For each configuration, we specify the stability conditions,

the set of all achievable I/O maps and the set of all achievable

disturbance-to-output maps, and study the effect of various subsystem

perturbations on the system performance. In terms of these considera

tions, we demonstrate that one of the configurations considered is better

than all the others. The results are then extended to the nonlinear

multi-input multi-output case.
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I. Introduction

The control system designer must meet various design specifications

and to achieve them he has many design configurations to choose from.

The standard unity-feedback linear system is the subject of most

control textbooks [D'Az. 1, Dor. 1, etc.]. Horowitz discusses briefly

a number of different configurations and, in particular the "two-degree

of freedom" designs [Hor. 1]. We note also the two-input one-output

controller proposed by Astrom [Ast. 1] and developed by Pernebo [Per. 1]

and by Desoer and Gustafson [Des. 1] as well as the controller structures

used in the model reference adaptive control systems [Lan. 1, Sas. 1].

In this paper, we compare, in a systematic way, several design

configurations which have been proposed in the literature. We study

first the linear multi-input multi-output case; some of the results are

then extended to the nonlinear case.

We adopt the following notations throughout this paper. Let

JR(£) denote the field of real (complex, resp.) numbers. Let

lR(s)(IR (s),IR 0(s)) denote the set of all rational functions

(proper rational functions, strictly proper rational functions,resp.)

in swith real coefficients. Let IRp(s)mxn(lRp>0(s)mxn,Cmxn) denote the
set of mxn matrices with elements in 1R (s)(lR Q(s), (C, resp.). For

Pe IR(s)mxn, let <P[P] (Z[P]) denote the list of all poles (all zeros,

resp.) of P. For A e cmxn, let a[A] denote the maximal singular value of A.

For the given linear time-invariant multi-input multi-output plant

P(s), any linear output feedback design can be represented as the system

Z(P,K) shown in Fig. 1, where the compensator K has two inputs u, and

y2» and one output y,. Since K is linear, it is uniquely specified by

the transfer function from u, to y, and the transfer function from y« to

y-, denoted respectively by K , and K w . More precisely, with
1 ylul yly2
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tt := Kw and F := -Kw w , the system Z(P,K) and the system shown in
ylul yly2

Fig. 2 have the same system I/O map H :(u1 ,u2,d0)«-^ (y-j,y2). From

Fig. 2, H can be obtained by inspection:
Jr W

(I+FP)"1* -FP(I+FP)
-1

-F(I+PF) -1

yu

Pfl+FP)"1^ P(I+FP) -1
(I+PF)

-1

(1.1)

The matrix H in (1.1) shows that only two submatrices of H can be
Jr U Jr **

independently specified by a suitable choice of ir and F. Therefore,

however complicated the structure of the linear compensator K may be,

there are only two closed-loop maps that can be independently specified.

In most design problems, the two most important maps are HM and
y2ul

Hw a : Hw .. 1S tne map from input u, to output y0 and H„ A is the map
y2a0 y2ul ' d y2a0

from output-disturbance dQ to output y«. They specify respectively the

servo-performance and regulator-performance of the feedback system

]Z(P,K).

In general, the compensator K is implemented as interconnections of

several subsystems. Different interconnections of such subsystems result

in different feedback configurations. Following Horowitz, [Hor. 1]

we say that a feedback configuration is a two-degree of freedom design

iff an appropriate choice of the compensation subsystems (i.e. any

subsystems that are not the given plant) will change the input-output map

Hw without affecting the disturbance-to-output map Hw . , or vice versay2u1 y2dQ
A feedback configuration is said to be a* single-degree of freedom design

iff it is not a two-degree of freedom design. A transfer function

H(s) e IR (s)mxn is said to be exp. stable iff a) H(s) is proper and b)

all its poles have negative real part. A linear time-invariant feedback
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configuration is said to be exp. stable iff the system I/O map from any

exogenous input to ari£ subsystem input and to an^ subsystem output is

exp. stable.

Throughout Section I-Section IV, we assume that

(A.l) All subsystems which make up the feedback configuration under

study are represented by transfer functions P(s), C(s), ••• etc.

with elements in ]R (s); furthermore none of these subsystems have

unstable hidden modes;
n.xn.

(A.2) PQ(s), P(s) eIRpj0(s) ° \ C(s), CQ(s), C^s), C2(s), Q(s).
n xn.

Q0(s) andQ^s) eiRp(s) ° \

We say that the map H is an achievable I/O map (disturbance-to-

2 1
output map, resp.) of the linear feedback configuration Z(P,K) iff by

some appropriate choice of the compensation subsystems satisfying (A.l),

(i) Hv „ =H, (Hv H =H, resp.); (ii) ^(P.K) is exp. stable.
y2ul y2a0
For each feedback configuration studied in this paper, we obtain

stability conditions, the set of all achievable I/O maps and the set

of all achievable disturbance-to-output maps; we compute the effects

of various subsystem perturbations on the I/O map Hw „ . Based on these
y2ul

considerations, we demonstrate that the configuration Z. (in Section III)

is the best among the configurations considered.

The paper is organized as follows: Section II reviews the properties

of the unity-feedback configuration S(P,C); the various two-degree

of freedom design configurations are studied in Section III and

Section IV. Section V extends the results of Section III to-the nonlinear

case. Section VI is a brief summary of the paper.
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II. Single-degree of freedom design: the unity feedback system S(P,C)

The unity feedback system S(P,C) shown in Fig. 3 has been studied

extensively in the control literature [For. 1, Kai. 1, Oga. 1, Cal. 2,

Des. 2, Doy. 1, Vid. 1, Chen. 1]. In this section, we review some of the

properties associated with this configuration for the linear time-

invariant lumped multi-input multi-output case. Equation (2.1) below

shows that S(P,C) is a single-degree of freedom design.

II.l. The system I/O map

Let P and C satisfy (A.2). For S(P,C), the system I/O map

Hyu : ("i,u2,d0)»-^ (yn sy2) is given by

C(I+PC)-1 -CP(I+CP)-1 -C(I+PC) -1

yu

PC(I+PC) -1
P(I+CP)-1 (I+PC)-1

Assumption (A.2) guarantees that all the inverses are well-defined

matrices with elements in KD(s).

II.2. Stability conditions of 1S(P,C)

(2.1)

It is easy to check (using the summing node equations) that S(P,C)

is exp. stable iff H is exp. stable. Hence, by inspection of (2.1)
Jr W

and the identity I-Mfl+M)"1 = (I+M)"1, we have that

^(P.C) is exp. stable oC(I+PC)-1, (I+CP)"1, (I+PC)"1 and Pfl+CP)'1

are exp. stable (2.3)

Note that any one of the four maps in (2.3) can be unstable, while the

other three are exp. stable [Des. 2]. It is well-known [Des. 2] that

if P is exp. stable, then
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]S(P,C) is exp. stable ^Cfl+PC)"1 is exp. stable (2.4)

For the discussions to follow, it is convenient to note that [Des. 3]

a) Q := Cfl+PC)'1 o C=Q(I-PQ)"1

b) Q is proper (strictly proper) if and only if C is proper

(strictly proper, resp.); and

c) with Q:= Cfl+PC)"1,

-QP -Q

yu

PQ P(I-QP) I-PQ

(2.5)

(2.5a)

(2.1a)

1The importance of Eq. (2.1a) is that all the I/O properties of S(P,C)

are specified by P and Q, without requiring any inverse.

II.3. Properties of S(P,C)

• Dependence of the I/O map and the disturbance-to-output map

Equation (2.1a) shows that the choice of Q := C(I+PC) determines

simultaneously the I/O map H., „ = PQ and the disturbance-to-output map
y2ul

Hu A - I-PQ; clearly we have
y2a0

H + Hw j = I
y2Ul y2d0

(2.6)

• Achievable I/O and disturbance-to-output maps

Recall that the map H is an achievable I/O map (disturbance-to-output

= H,
1 niXnn

map) of S(P,C) iff for some choice of C e 1R (s) , (i) H, „
p y^u-i

(Hy d =H, resp.); (ii) ^(P.C) is exp. stable. Let }fy u()fy d)
denote the set of all achievable I/O maps Hw .. , (the set of all

y2ul
achievable disturbance-to-output maps H . , resp.). Then clearly,
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VL „(p) ={PQ|Q := C(I+PC)"], where Cis such that ]S(P,C) is exp. stable}
y2ul

(2.7a)

^fy d(p) ={I"PQIQ := ^(I+PC)"1, where Cis such that ^(P.C) is exp. stable}
(2.7b)

Let Q(?) be the set of all compensators C that result in S(P,C) exp.

stable. Equations (2.7) show that £(P) completely characterizes

Xy2u/P)and^2d0(p>-
If the plant P is exp. stable, then examination of (2.4), (2.5) and

(2.5a) shows that Eqs. (2.7) can be more explicitly written as

^y u (p) =W|Q is exp. stable} (2.8a)

>J? .(P) = {I-PQ|Q is exp. stable} (2.8b)

If the plant is not exp. stable, then (2.1a) shows that further

constraints on Q, in addition to exp. stability, are needed to ensure

exp. stability of S(P,C). There are two-approaches in the literature

in characterizing the class of all compensators C which result in an

exp. stable ^(P.C) for a given unstable plant P. The first approach

is the two-step stabilization scheme proposed by Zames [Zam. 1] and

extended by Desoer and Lin [Des. 4]. The second approach uses fractional

representations for the plant and the compensator. Youla, Bongiorno and

Jabr [You. 1] used polynomial factorization to characterize the class

of all stabilizing compensators for a given linear lumped (not necessarily

stable) plant. Using more general factorizations Callier and Desoer

extended the results to the linear distributed case [Cal. 2]. Further

extension into a general algebraic setting was obtained by Desoer, Liu,

Murray and Saeks [Des. 5], and by Vidyasagar, Schneider and Francis
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[Vid. 1]. For the special case where the unstable plant P contains

only one or a few unstable poles, Desoer and Gustafson [Des. 6] obtained

\?i/ ,. (p) by explicitly specifying the additional constraints on Q
2 1

required for stability.

• Plant perturbation

In practice, the given plant P is usually not known exactly, therefore

the design must be based on a certain nominal value of the plant, say

Pq. Plant variation also contributes to make P different from PQ. By

plant perturbation, we mean the difference between the actual plant P and

the nominal PQ. For S(PQ,C) with the given nominal plant PQ, the plant

perturbation PQ «-PQ +AP := P entails

^v u := Hv u -Hv u =d+PO"1 APCd+PgC)-1 (2.9)
y2ul y2ul y2ul u

where H„ m is the nominal input-output map. Standard derivation of (2.9)
y2ul

can be found in [Cru. 1, Cal. 1].

• Remark

Equation (2.6) of the S(P,C) configuration constrains the design,

hence a compromise between servo performance and regulation (desensitization)

is necessary. For example, suppose the design objectives are

W ^Hy d^u)] =a[I-PQ(ju))] « 1 for all oj e [0,a)d]; and

(ii) ^[H u (jw)] =o[PQ(Jw)] « 1 for all oj € (w ,«>), with o)Q <aid.

It is clear that there are conflicting requirements over the frequency

interval (ojq>ua) : objective (i) requires that the product PQ be close

to the identity matrix over (w .^j, while objective (ii) requires that

PQ be close to the zero matrix over (oj ,ajd).
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III. Two-degree of freedom design-group 1: the four configurations

Za, Zb, Zc, and Zd

In this section, we study the four feedback configurations

Za, Z^, Z , and Z. shown in Fig. 4. It is assumed that CQ and Q are

related by QQ =^(M-P^)"1 or equivalents CQ =(^(I-PoPo)"1 • As
shown in Fig. 4, each of these four configurations falls into the scheme

of Fig. 1: K is the two-input, namely u-j and y2, one-output, namely y-j,

compensator. In these four cases, Kw ,, = (I+C,Pn)Qn and Kw w = -C-,.
y-jU-j i u u yly2

Therefore Za, Z. , Z , and Zd have the same system I/O map H : (u,,u2,dQ)

*"*• (y-j^)' Equation (3.1) below shows that each of the four configurations

is a two-degree of freedom design: indeed, for P = PQ, H = PQQ0»

Vo =(I+p°Cir1-
Z& has a model reference structure: P is the given plant, PQ is the

nominal plant model, Q is the precompensator, and C, is the "comparator."

Note that if the plant is nominal (i.e. P= PQ) and if there is no

disturbance (i.e. n-. = dQ = u2 =0), then there is no feedback in this

configuration. Z has been called conditional feedback in [Hor. 1,

p. 246] for the single-input single-output case.

Zl has also a model reference structure. The important difference

between Z and Z. is the following: in Z. , the map H~ : u-j *-* C-i is

the result of a closed-loop configuration, whereas in Z_, Hr ,, is the
11

result of an open-loop configuration. The structure of Z. has been used

by Meyer et al. in the design of flight control systems [Mey. 1]. For

the configuration Z., it is easy to see that H~ = QQ.

Z consists of the given plant P, the precompensator (I+C-jPq)Qq,

and the feedback compensator C-,. We assume that the compensator

(I+C-jPq)Q0 is built as one transfer function. Zames used the structure

of Z in the study of effects of plant uncertainty [Zam. 1, p. 316].
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Z . is obtained from Z by introducing the transfer function pair tt and

tt"1 as shown in Fig. 4d. We assume that the precompensator tt" (I+C-|Pq)Q0

and the feedback compensator' ir" C-j a) are each built as a single transfer

function, and t) have all their elements in Kp(s).

When the given plant is nominal i.e., P= PQ, we call the resulting

nominal feedback configuration and denote it by Za, Zb, Zc, and Zd

respectively. We use H°, H° „ ,and H° . to denote respectively the
yu y2ul y2a0

system I/O map, the input-output map and the disturbance-to-output map

of Zfl, Zb, Zc, and Z^.

Ill-1• The system I/O map

The system I/O map Hyu :(u^u^Ug)*-* {y^^) of Zfl, Zb, Zc, and Zd

is given by (3.1), for the nominal system, and by (3.2) for the case where

i° =
yu

Lp<Po

-ciP0(I+cipo>
-i

p0(I+cipo)
-1

-C^I+P^)

"W1

When P f PQ, (see derivation in Appendix)

-1

-1(I+^P) ,(I+C1P0)Q0 -c^d+c^)

P(I+C1P)"1

-1 -^(I+PC,)-1

1° =
yu

-1JHI+^P) '(I+C^qJQq (I+p^)-1

(3.1)

(3.2)

III.2. Stability conditions of Z°, Z?, Z°, and Z°.
a d c d

Recall the definition of the exp. stability of a linear feedback

configuration. It can be easily checked (using the summing node equations)

that Z° is exp. stable iff the map H° :(u-, ,u2,d0,n.j)*-* (y-, ,y2,y0,^) of
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Z° is exp. stable. Hence, by (i) Eq. (3.1), (ii) inspection of the

configuration Za in Fig. 4a, and (iii) that the composition of exp.

stable maps is exp. stable, we conclude that

Z° is exp. stable <* PQ, QQ, and SfPg,^) are exp. stable (3.3)

Similarly, we have

Zb is exp. stable <> S(PQ,C0) and S(Pq,C|) are exp. stable (3.4)

Z° is exp. stable <* (I+C-|P0)Q0 and SfPg.C^ are exp. stable (3.5)

With the system S(P,Tr,iT C,) defined in Fig. 5,

Zd is exp. stable <=> it" (I+C-jPq)Q0 and S(P0,tt,it" C-j) are stable
(3.6)

The following fact relates the exp. stability of Z° and the exp.

stability of Zd.

Fact 3.1: If tt and tt" are exp. stable, then

Z° is exp. stable *> Z? is exp. stable. (3.7)

Proof: (see Appendix)

Remarks

a) Z is the.only configuration that requires the nominal plant PQ be

stable, because there is no feedback around the model Pq.

b) The stability conditions (3.3)-(3.6) are robust in the following sense

suppose that in the configuration Z°, Z?, Z° and Zd, we impose
arbitrary but small (in the graph topology) perturbations on all

subsystems, then [Vid. 1, Chen 2] each of the resulting perturbed

systems Za, Zb, Z and Zd is also exp. stable.
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III.3. Properties of Z°, zjj, Z°, and Zd
• Nominal design

The four nominal configurations Z°, z£, Z°, and Zd have the same
system I/O map H° ; furthermore Q specifies the nominal I/O map

^ •Wo •• (3'8)

C-i specifies the nominal disturbance-to-output map

Hy2dQ =d+W"1 (3'9)
Any achievable I/O map (disturbance-to-output map) must have the form

specified by (3.8) for some Qq ((3.9) for some C-., resp.) where QQ,

(C., resp.) satisfies (A.2) and each configuration satisfies the stability

requirements.

• Achievable I/O maps

We denote the set of all achievable I/O maps for z°, Zb, Z°, and

Ed b* >fy2Ul' "tfy^ •̂ y^' and ^u,•respectively.
(a) For S°:

a

(i) If PQ is not exp. stable, then (3.3) shows that the configuration

Z° is unstable for all QQ- and C-, satisfying (A.2).

(ii) If PQ is exp. stable, then

>*v u (P0} ={P0QolQ0 is exp* stable} (3Jla)
yZ 1

Proof of (ii):

Let lA :- {PqQqIQo is exp* stable}- lt is clear'from (3.8) and (3.3)
that every achievable I/O map of Z° is of the form PqQq for some exp.
stable QQ. Hence, ^* u (PQ) c X To show>f Ctf* u (PQ), we note

-11-



that 1) for any He ~j\, there exists an exp. stable QQ such that
H° =P0Q0 =H, 2) from (3.3), given that PQ and QQ are- exp. stable,

r\ 1

Z is exp. stable iff S(Pq,C-|) is exp. stable, 3) there are many C-j's

such that S(Pq,C-j) is exp. stable; for example C, = 0. 1), 2), and 3)

together show that He)l implies H€>1f (pn), hence # c)ta (p ).
y2ulu/r0 y2ulu-,v'0-

This proves the assertion.

,o(b) For Z£:

sincePoe*P,o
n xn. nixnn

(s) ° \ there exists C] €-R (s) n ° such that

S(Pq,C-j) is exp. stable [Bra. 1, You. 1]. By using similar arguments

as those in the proof of (3.11a), it is easily shown that

y2u1(p0) "J P0%
\.

Q0 =CqII+PqCq)"1 where CQ is such that ^(Pq.Cq)

. is exp. stable j (3.nD)

(c) For Z°: By Eq. (3.8) and the stability condition (3.5), we see that

y2u/V - )P0%
""N

Q0 is such that (I+C-|Pq)Qq is exp. stable for

some C| which yields S(Pq,C|) exp. stable

Note that the QQ's in (3.11c) are necessarily exp. stable, because

ZCHVq] • PCd+c^o)"1] c*--

(d) For Zd with it and ir" exp. stable: Since in this case Zd is exp.

stable iff Z° is exp stable (Fact 3.1), and Zd and Z° have the same
input-output map H., M , we have

y2ul

(3.11c)

*J^/V =^y2Ul(po) (3.lid)
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• Achievable disturbance-to^output maps

We denote the set of all achievable disturbance-to-output maps for

Z° Z° Z° and Z° by ?fa , l\b d , >f<; . , and tf (J . , respectively,a d c a y2aQ y2aQ y2aQ y2aQ

(a) For Z°:
a

(i) If Pq is not exp. stable, then no stable design is possible,

(ii) If Pq is exp. stable, then (3.3) and (3.9) imply that

"^y d(Po) =*(I+poci)"1'Cl 1s such that ls(p0,Cl^ 1s exp* stable}(3.13a)

Alternatively, if we set Q1 := C-|(I+PqC|) — hence S(Pq,C-|) is exp.

stable iff Q-j is exp. stable — then,

"tfy d (Po} ={I"P0QllQl 1s exp* stable}

(b) For zb: The stability condition (3.4) and Eq. (3.9) show that

^v d^V =J(I+P0C1' Cl is such that s(pn,Cl) is exp* stable; and
S(P«,Cq) is exp. stable for some CQ

n xn1 n.xnQ
Since PQ e ]R (s) , there always exists CQ e IR (s) ' wsuch

that S(Pq,Cq) is exp. stable. Therefore, the above expression simplies

to

^y d(*V ={(I+Pocl)"Vi is such tnat ^(Pq,^) isexp. stable} (3.13b)

(c) For z°: The stability condition (3.5) and Eq. (3.9) show that

*Wp°)=J(I+p°Cirl C, is such that S(Pq,C,) is exp. stable and

such that (I+CiPq)Qq is exp. stable for
some Q0

-13-
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(d) For Zd with both ir and tt" exp. stable: Since in this case, Zd is

exp. stable iff Z is exp. stable (Fact 3.1), we have that
V*

yd^V = ^^O0!'"1 Cl is such that 1s(po,Cl^ is exp' stable
^

'2"0
>and such that (I+C-.Pq)Qq ^s exP* stable for

some Qq

"^W^
Remarks

J

(3.13d)

(i) For the configurations Z° and Z?, we can simultaneously achieve

*D* »y2Ul e^y2u/P0).' ^u^' "*P-> a"d 5DX H^ €̂ (Pq),
(3f d(Pq)> resp.) i.e., the choices of H° and H° d (hence the choices
of Qq and C,) are independent. For the configurations Z° and Z?, the

choices of H° ,, and H? A are constrained: indeed, Qn and C, must be
y2ul y2d0 ° ]

chosen so that the transfer function [(I+C,Pq)Qq] is exp. stable.

(ii) Although Z° and zd have the same achievable I/O maps and
achievable disturbance-to-output maps, Zd offers more flexibility in

implementation: for example, ir may be used to adjust the signal-level

at the summing node.

• Plant perturbation

For Z°, Z?, Z°, and Zd, the plant perturbation Pg«- Pq+AP := P
entails

AH
-1

¥.:=VrH¥r(I+PC')Apq»
(3.17) follows by the same calculation for (2.9).

• Model perturbation (for Z° and Z?)

By model perturbation we mean any inaccuracy and variation in the

model P0 (of Z° and z£).

-14-
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(a) For Z° the I/O map H° „ is sensitive to perturbations in thea y^

model P . Indeed, the perturbation PQ <- P0 +APm in the model implies

that (see Appendix)

"\u, := \U] "Hy2Ul "WWX % (3.18)

* APmQ0 over ^d

where &d is the frequency band of interest for disturbance rejection.

Note that an arbitrary small but unstable AP will in general cause

system instability.

(b) For Zb, the I/O map H is relatively insensitive to perturbations
1Q

in the model PQ, compared to Zfl. Indeed, the perturbation PQ «- PQ+APm := P,

in the model implies that (see Appendix)

Ay2«l == """W^l =U1+P0C0^-lI+W']WmC0(l+?CQ)-' (3.19)
=[(I+PoC0)"1_(I+P0Cl)"1](I+iPmQo)"lAPniC'o <3-19a>

Note that if the perturbation is small, more precisely, if

<J[&Pm(ju>)] 5[(^(ja))] « 1 for all oj e [0, »), then (3.19a) shows that

A^ - [(I+PqCq)-1 -(I+PqC^-^AP^o (3.19b)

• Perturbation in precompensator

For za, Zc and zd, the precompensator is not under feedback hence the

I/O map H is sensitive to perturbations in the precompensator:
y2ul

namely, QQ in Za, (1+^PqJQq in Zc, and tt (I+^RqJQq in Zd-
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• Conclusions

a) Z. is better than Z :
o a

1) Z is more sensitive to changes in the model Pq (see (3.18) and

(3.19)).

2) Zb can accommodate unstable Pq's.

b) Zb is better than Z ,Z ,and Zd:

Z ,Z ,and Zd are sensitive to changes in the precompensator. (In Zb,

the precompensator is realized as a feedback configuration, hence Zb is

less sensitive, if well designed).

c) Zb is better than Z and Zd:

In Z. , the choices of the I/O map vP. and the disturbance-to-output map

H d are independent, whereas in Z and Zd, the choices are constrained.

IV. Two-degree of freedom design-group 2: the configurations Z and Z-

The configuration Z has the same model reference structure as that

of Z, except that the output of the comparator C« in Z. is feedback to
a c e

the input of Qq, rather than as in Z ,. to the plant input. For the single-

input single-output case, Z has been called model feedback by Horowitz

[Hor. 1, p. 246].

The structure of zf has been considered by Cruz, et al. [Cru. 1]

among others. Note that for the special case when C2 = I, the configuration

Z.f reduces to the unity-feedback configuration S(P,CQ), with

We use z° and z2 to denote the nominal feedback configurations, and

H° to denote the nominal I/O map.

IV.1. The system I/O map

For the nominal system Z° (i.e., when P=PQ), the system I/O map

He :(V^'V0!^ (yl'y2,y0,el) is glven by
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-%C2P0 -QnC
(T2 %C2P0

po% Po(i-Q0c2p0) ^W; P0Q0C2P0

He =

po% -W2P0 -P0Q0C2

-C2P0 -c. C2P0

For the nominal system e2 (i.e., when P=Pq), the system I/O map
H° : (upUj.dg) '-••(y1,y2,e^) is given by

"Wo ! "Q0C2

"?" p0(i-QoC2p0) ; i-p0q0c2

J"C2P0Q0 -C2(I-P0QoC2)P0i-C2(I-PQQ0C2)__

When P f PQ, ze and z* have the same system I/O map

HyU : (u-,,u2,d0) «-* (y-[,yz\ :indeed, with AP := P-PQ, (see Appendix)

(4.1)

(4.2)

q0(i+c2apq0) -1 -1,-(I+Q0C2AP) 'Q0C2P -q0c2(i+apq0c2)

yu

-1

PQo(I+C2APQ0) -1 -1(I-PoQ0C2)(I+APQqC2) lP (I-P0QqC2)(I+APQqC2) -1

(4.3)
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IV.2. Stability conditions of Z° and Z°

It can be checked (using the summing node equations) that

the nominal configuration Z° (Z?) is exp. stable

iff the system I/O map H°, (H°, resp.), is exp. stable.

Hence, by inspection of (4.1), we have that

Z° is exp. stable <> PQ, QQ and C2 are exp-. stable (4.5)

To test the exp. stability of Z°, we have to check all the submatrices

in (4.2). However, in the special case where PQ is-exp. stable, QQ and
C2 are exp. stable implies that Z° is exp stable.

IV.3. Properties of Z° and Z°

• Nominal design

For Z° and Z°, QQ specifies the nominal I/O map

Hy2Ul =?0% • (4-6)

C2 and Qq together specifies the nominal disturbance-to-output map

In the following, we specify the set of all achievable I/O maps and the

set of all achievable disturbance-to-output map for z° and Z?.

* Achievable I/O maps

(a) For Z°:
e

(i) If Pq is not exp. stable, then Z° is not exp. stable for any
choice of QQ and C« satisfying (A.2)

(4.4)

(ii) If PQ is exp. stable, then (4.5) and (4.6) together show that
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#y2Ul(lV " {P0%i% is exP- stab1e} <4-8>

(b) For r2: By the stability condition (4.4) and Eq. (4.6), we have that

Xy u (po) ={poQoiQ0 is such that 3 c2 which yields H? exP- stable}
(4.10a)

For the special case where PQ is exp. stable, it can be easily checked

that

'K u(P0} ={P0QolQ0 is exp* stable> (4-10b)

Achievable disturbance-to-output maps

.0(a) For z": If PQ is exp. stable, then (4.5) and (4.7) together show

>fy u (P0} ={I*P0Q0C2lQ0 and C2 are exp* stable>y 2U1

={I-P0Q|Q is exp. stable} (4.11)

(b) For Z?: By the stability condition. (4.4) and Eq. (4.7), we have that

"Jfy d ^V =^"P0^0C2^0 and C2 are such that Hf is exp' stable* (4.12a)

For the special case where PQ is exp. stable, we have that QQ and C«

are exp. stable implies that zS is exp. stable, hence,

l\fy d(P0} D{I"P0Q0C2lQ0 and C2 are exp* stable>-
Therefore,

"tfy d (P0} D{I-p0QlQ is €xp* stable>- (4-12b)

However, the stability condition (4.4) and Eq. (4.2) show that Z? is

exp. stable implies that, the product QQC2 is exp.- stable, hence
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"tf yd(FV c {I"P0Q0C2lQ0C2 is exp* stable> (4.12c)

= {I-PqQ|Q is exp. stable}

We conlcude from (4.12b) and (4.12c) that if PQ is exp. stable, then

*^y d(P) ={I"P0QIQ is exp* stable> (4.12d)

• Plant perturbation

For £g and z°> the plant perturbation PQ *• PQ+AP entails

AVi:= Vr^i= [i-po%cz^p%cz^^% <4-i3)

(see Appendix for the derivation of (4.13))

• Model perturbation (for Z )

For Z°, the I/O map H° is sensitive to perturbations in the modele r y2u-j

Pq. Indeed, the model perturbation PQ «- PQ+ Pm implies that AmH® u,the
corresponding change in H° „ , is given by (see Appendix)

y2ul

" hWWMV'^JIo (4J5)
If 5[APm(ja))] 5[Q0C2(ja))] « 1 for all a) €^ and if ||Hy d (ja>)|| « 1
for all ai € Q., then, from (4.15),

aV , - AP On over Q. (4.16)y2u-j nro d

where ft. is the frequency band of interest for disturbance rejection.
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• Perturbation in the compensators QQ and C2 in Z

By inspection of Z in Fig. 6(a), it is clear.that when the plant

is nominal (P=PQ), there is no feedback in Z° i.e., Z° is an open-loop
system. If the compensators QQ and C2 undergo the perturbations

Qq «*- Qq+AQ0 and C2 «• C2+AC2, then the resulting I/O map H^ and the

resulting disturbance-to-output map H** d are given by

Hy2Ul-W*W- and

Hy2d0 =I-p0(VAV(C2+4C2)

• Conclusion

Zb and Z. are better than Z : indeed,

1) Z requires that PQ be exp. stable;

2) Z is sensitive to changes in the model PQ; and

3) Z is sensitive to changes in the compensation subsystems Qq and C2<

• Generalization

So far, in studying feedback configurations, we restrict ourselves

to the continuous linear time-invariant lumped systems. However, it

should be noted that in deriving stability conditions and various

properties of each configuration, the only necessary restrictions are

linearity and time-invariance. Hence, all the results developed in the

present section and Section II and III can be easily generalized to the

discrete linear time-invariant case and to the continuous linear time-

invariant distributed case.

V. Configurations Z , z. , Z , and Z.: the nonlinear case

In Section III, we compare the four configurations Z , Z. , Z , and

Zd for the linear .case. We specify the set of all achievable I/O maps
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and the set of all achievable disturbance-to-output maps, and study the

effects of various subsystem perturbations on the I/O map Hu .In
y2ul

this section, we do the same comparison for this four configurations in

the nonlinear context. We shall see that,under suitable assumptions,

most of the results in Section III still hold for the nonlinear case.

We use an input-output description of the nonlinear system. Let

(JC,I1*I) be a normed space of "time functions": CT -* 2/ where 3ci+

G=R+ (W , resp.) for the continuous-time case (discrete-time case, resp.)),

if is a normed space and a-II is the chosen norm in X. Let I be the

corresponding extended space [Wil. 1], [Des. 7], [Vid. 2]. A function

<J> : IR+ -+ R+ is said to belong to class K (denoted by $ € K) iff <J> is

continuous and increasing. <|> is said to belong to class Kq iff <{> € K
ni no H

and <j>(0) = 0. A nonlinear causal map H:£ ~*£a 1#s sai'd t0 be ^-stable
n

iff ] (J) € KS.t. Vx €£^ , VT € J,

BHxflT <<j>(HxflT) .

His said to be increment'al 1y jo -stab!e (incr. ^-stable) iff

(i) His J-stable, (ii) ] $€ KQ s.t. Vx, x» ejC^, VT e 3 ,

qhx-hx1 qt <$(ax-x« aT) .

Note that if <|> :x •*yx> y constant ($ :x -*yx» y constant), then we have

finite-gain stability, (finite incremental gain stability, resp.). It

can be easily checked that the sum and the composition of %-stable maps,

(incr. ^5-stable maps) are J-stable, (incre. >3-stable, resp.)..

We make the following assumptions throughout this section:

ni nn no ni
(N.l) Pq, P :£ ^£e and % :£e ~* e are non1inear causal maps;

n n.

(N.2) C, :<£ -•<£ is linear and causal;
i e e
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1 ni r,i(N.3) ir"\ *:£Q ^£n are linear and causal;

(N.4) for each configuration, both the nominal and perturbed system are

well-posed i.e., the relation from the exogenous inputs into each

subsystem variable (i.e., input or output) is a well-defined

nonlinear causal map between the corresponding extended-spaces;

(N.5) The nonlinear maps CQ and QQ are related by

c0 =Qo '̂W"1 or equivalents QQ =CqU+PqCq)"1 .

We say that a well-posed feedback configuration is Ji-stable iff

the map from the exogenous inputs to any subsystem variable (i.e., input

or output) is & -stable. The map H:jC° -+JC ° is said to be an achievable

I/O map (achievable disturbance-to-output map, resp.) of the nonlinear

feedback configuration Za (Zb, Z , Zd, resp.) iff by some appropriate

choice of the compensation sybsystems satisfying (N.1)-(N.5),

(i) Hy u =H, (Hy d =H, resp.); (ii) Zfl, (Zb, Zc, Zd, resp.) is J-stable

It is crucial to note that although the formulas belows have the

same form as those in the linear case, they have here a completely

different meaning: for example in the previous sections PC meant the

product of the transfer function P with the transfer function C, in the

nonlinear case PC means the composition of the function P with the

function C: e.g., when we write PCe, we mean P(C(e)) or equivalently

P°C(e).

V.l. The system I/O map

With the assumption that C, and tt are linear, it can be easily

verified that the partial system I/O maps of the four configurations are

given by the Eqs. (5.1) and (5.2) below; each entry of (5.1) and (5.2) is
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composition of nonlinear causal maps. By assumption (N.4), all the

inverses in (5.1) and (5.2) are well-defined causal maps. Let for

k == 1,2, Fk : (u-|,u2,d0) ^y^; so F^ and F2 specify the closed-.loop map.

We denote the partial maps by the same notation as in Section III: for

example in terms of partial maps, we have Hw „ := F,(u,,0,0) and
ylul ' '

Hy2dQ := F2(0,0,d2). When P=PQ, the partial maps relating (u-,,u2,dQ)

to (y-|,y2) are given by

HVl
H°
V2 Vd

Vl
H°

, y2u2 iVo

When P f Pq,

H., .. , H. H.
ylul. ylu2| yld0

Vl! Hy2u2 !Vo

-c1P0(I+cipo)"1'"ciCl-po("ci,rl

Vo PqOi^Pq)

-1(i+c^) '(i+^p^Qq

-1Pd+C^) '(I+^PqJQq

-i -lCi-p0(-c,)]

-c^d+c^) -1

pd-H^p) -1

(5.1)

-1-C^I-Pt-C,)]

[i-pk^]-1

(5.2)

In the following all the symbols Z°, "Ha u(PQ), ^(Pq.Cq), etc. have the
same meaning as in Section III except that they are -associated with the

nonlinear configurations Z_, Zb, ... etc.

V.2. Stability conditions of the nominal nonlinear feedback configurations

ooo .0Za, Zb, Ze and z\

Unlike the linear case, each partial map of (5.1) being A -stable

does not imply that the nominal nonlinear feedback configurations are
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-stable. The following stability conditions can be obtained by

(i) that the composition of -4-stable maps are m-stable, and

(ii) inspection of the block diagrams of the nonlinear configurations

in Fig. 4.

(a) z° is J'-stable ~Qq, PQ and 1S(C1,PQ) are J.-stable (5.3a)
(b) z£ is ^-stable ~^(Pq.Cq) and ^(C^Pq) are ^-stable (5.3b)
(c) Z° is J -stable ~(I+C1P())Q0 and 1S(C1 ,PQ) are i-stable (5.3c)
(d) Zd isi-stable <* ^(I+^PqJQq and 1S(P0,tt,tt"1C1 ) are ^-stable (5.3d)
Fact 5.1. If ir and ir are linear and incr. J-stable,then

Z? is J-stable <> Z° is i-stable (5.3e)
a c

Proof: (See Appendix).

V.3. Properties of nonlinear configurations Z°, Z?, Z°, and Zd

• Nominal design

As in the linear case, for the nonlinear feedback configurations

Z°, Z?, Z°, and Zd, Q0 specifies the nominal I/O map

Hy°2Ul " P0% > <5-4>

C, specifies the nominal disturbance-to-output map

= Li - I'nl'hiJ"
r2u0

n.

H^odn - [I - Pflt-C,)]"1 (5.5)

Remark: With C-j linear, Vx €£q° ,

[I-PqC-C^W = x-PqC^-x) =-(-xJ-PqC^-x) = -d-Hty^M-x)

In the following, we specify the set of all achievable I/O maps and

the set of all achievable disturbance-to-output maps for each
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configuration. We assume that there exists a 1inear C^ such that

^(C^Pq) is ^-stable, and that there exists aCQ such that S(Pq,Cq)
is jO-stable.

• Achievable I/O maps

(a) For Z°:
a

(i) If Pq is not J-stable, (5.3a) shows that the configurati
Za is not -O-stable,
a

(ii) If Pq is incr. J-stable, then [Des. 8]

'flyjju/'V =<P0Q0|Q0 is i-stable}

on

(5.6)

(b) For Z°:

4(Po)=PoQo -1
"N

% =C0^I+P0C0^ wnere Go is such that

^(Pq.Cq) is i-stable
(5.7)

(c) ForZ°:

tfy u(P0} =fP0Q0 Q0 1s such that (I+C1P0)Q0 is ^"stable for
] some C| which yields S(Cj,Pq) ,4-stable J

(5.8)

(d) For Zd with tt and ir linear and incr. ^-stable:

^y u(fV =jP0Q0 Q0 is such that (I+C1P0)Q0 1s ^-stable for
• i 1 9some C, which yields S(C-j,Pq) ^-stable

=*WPo>

-26-
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Remark: For Z° and zd, we did not need that C| be linear.

• Achievable disturbance-to-output maps

(a) For Z°:
a

If PQ is incr. A-stable, then
-\

^y2d0(V= J[i-"oHn>] -1 C-j is linear and is such that

S^.Pq) is /-stable

(b) For Z°:

b (ry2d0(roVIa (PJ " ([I-PQf-C^r1

(5.10)

C-j is linear and is such that I (5.11)
^(C^Pq) is ^-stable

^

(c) For Z°c:
r

,-1^y2d0(po)= ICi-PoC-c^H C-j is such that S(Cj ,PQ) is </-stable
and that (I+C-jPqJQq is ./-stable for
some Qq.

(d) For Zd with tt and ir linear and incr. A-stable:

My d(IV = fCl—PqC-C-,>3"1 C1 is such that ^(C^Pq) is ^-stable.
{ and that (I+C-jPqJQq is 4-stable

r

>^

- -ft. „ (p„>
w °"

Remarks

(5.12)

for some QQ
J

(5.13)

(i) From (5.6),'(5.7), (5.10), and (5.11), it is clear that for

the configurations Z° and z£, we can simultaneously achieve arrv_
H. ,Ul e^y2U/Po)' O^V•™»P-) *nd ^ Hy2dQ S^y2d0(po)>
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Qfy d(p0^» resP-) i-e-' tne choices of H° y and H° d,(hence the
choices of QQ and C,) are independent. For the.configurations Z° and zS,

the choices of H° „ and H° . are constrained: indeed, Qn and C, must
y2ul y2d0 T ° ]

be chosen so that the map [(I+C^Qq], ([^"'(I+C^qJQq], resp.) is
A -stable.

(ii) As in the linear case, Z^ offers more flexibility in implementation
than Z° does,

c

• Plant perturbation

For each of the four configurations Z°, z£, Z°, and Zd»where C1
is assumed linear, the plant perturbation PQ <- PQ+AP := Phas the same

effect on the I/O map H° . More- precisely, let AH, „ := H, ' -H° „ .
y2ul y2ul y2ul y2ul

n

Then for any input u-j e £ °,

AHy u(ii,) =[ [I+D(P)C1]"1da.APQ0(u1) (5.14)

where D(P) is the Frechet derivative of P, (see [Die. 1], [Des. 9]), and

is evaluated at (I+C1P)'1[(I+C1Pq)Q0(u1) +aCjAPQ0(u1)] with a<= [0,1].
See Appendix for derivation of (5.14).

Remark: Equation (5.14) tells us that if the linear compensator C, is

chosen so that along the trajectory, defined in (5.14), where D(P) is

evaluated, all the linear maps D(P)Cj has "large gain," then, for

za* 2b' "* sd9 the outPut ^i (corresponding to the fixed input u-.) is very
insensitive to perturbations in the nominal plant PQ (in comparison with

the equivalent open-loop system).

• Model perturbation

(i) For Z°, let aV „ be the change in the I/O map H° , caused by
a y2ul nft y2ul

the model perturbation PQ «- Pq+AP , then Vu, € £
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AmH?,.. (u,) =flpT """" x' ^[I-d+DtPQjC^'^da-AP^tu,) (5.15)
u/uly2Ul

where D(PQ) is evaluated at (I+C^Qr^d+C^QQ^) +aC1APmQQ(u1)]
with a e [0,1]. See Appendix.

(ii) For Z?, if we assume that both CQ and C, are linear, then it
can be checked that Vu, ej^0, aV u(u,) =Pofl+C-jPQj'̂ tC^CQ)

1 2 1

•j" (I+DWCq)""^ AP^d+PQCQi^fu,)] where P:= Pq+AP^ and D(P) is
evaluated at

CQd+PCQj'̂ ^+oAP^Qd+PQCQ)"^^)) for a€ [0,1].

• Perturbation in the precompensators

For za, Z„ and zA9 the I/O map H, „ is sensitive to changes in the
a c u y?^i

precompensators, namely Q0 in Za, (I+C1Pq)Qq in Zc and ir" (I+C-|Pq)Qq

in Zd, since they are outside the feedback loop.

• Conclusions. For nonlinear PQ, P, linear G, and it,

(i) Z. is better than Z in that Zu can accommodate unstable plants,

(ii) Zb is better than Z&, Zc and Zd: the latter are sensitive to

changes in the precompensator. (In Zu, the precompensator is realized as

a feedback configuration, hence is less sensitive if well-designed).

(iii) Zb is better than ZQ and Z.: In Zu, the choices of the I/O map
o oH u and the disturbance-to-output map H d are independent, whereas

in Z and Zd the choices are constrained.

Conclusions

In this paper, we study several feedback configurations which have

appeared in the control literature. We start with the definitions of

two-degree of freedom design and of achievable I/O and disturbance-to-
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output map. In section II, we show the basic limitation of linear unity

feedback configuration S(P,C), namely the dependence of the I/O and

disturbance-to-output map. We study the four two-degree of freedom

design configurations Za, Zfa, Zc and Zd in section III, in terms of their
achievable I/O maps and disturbance-to-output maps and their sensitivity

to subsystem perturbations, we demonstrate that Zb is better than

Z , Z^ and Z .. In section IV, the two-degree of freedom design
a c a

configurations Z and Zf are studied and compared to Zu. In our discussion,

we have restricted ourselves to the linear time-invariant lumped case,

however the same results hold for the linear time-invariant distributed

and the linear time-invariant discrete-time cases. Finally, we study

Z , Z. , Z„ and Z^ in the nonlinear context, it is seen that some of the
a b c d

linear properties are also held for the nonlinear case.
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Appendix

Derivation of (3.2):

(i) For za and zb:

(a) Let u« = dQ = n-. =0, then we obtain successively

yi =Vi"cifpyi-poVi]

(I+C1P)y1 = (I+C1Pq)Q0u1

y] =(I+C1P)"1(I+C1P0)Q0u1 (A.l)

y2 =Pd+C^J'̂ I+C^QjQQ^ (A.2)

From (A.l) and (A.2), we have

Hy2u1-p<1*HP>"1<I+ClP0><>0
Vi =»+c1P)"1(i*<n",o)<'o-

(b) Let u1 = dQ = n-j =0, then ^ =yQ = 0. Thus by inspection,

V2 =p(I+ClPr1
Hyiu2 • -^Pd^p)"1

(c) Let n, = u, = u2 = 0, then £, = yQ = 0. Again by inspection

VoHv„d„ =(I+PCl)''

H " !yid0 =-MI+PCi>

(ii) For Zc and Zd, Eq. (3.2) can be easily verified by inspection
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Proof of Fact 3.1: It can be seen from Fig. 5that the system ^(Pq.tt.tt""1^)
is exp. stable iff the map Heu : (u-pUgdg) -• {e-[,ez,yz) is exp. stable.

By simple calculation, we have

P-l -1ir '(I+C^QpTr -ir'̂ Pod+C^o)"1 -ff^d+p^r1

eu
(I+C^q)"1^ -C^I+PqC^ -1 (A.3)

po(I+Wlir po(I+cipo>
-1 (I+Pq^) -1

-1By assumption, ir and ir are exp. stable, hence (i) (I+^PqJQq is

exp. stable <> if1 (I+^PqJQq is exp. stable; and from (A.3), (ii) ^(Pq.Cj)
is exp. stable *> ^(Pq.imt"1^) is exp. stable. Therefore, (3.7)
follows from (i), (ii), (3.5) and (3.6). n

Derivation of (3.18): By computation, we have that the corresponding

perturbed I/O map mHa u =Pgd+^PQj^d+^PjqQ. Therefore,

-1=PoQo +Po(I+C1P0)-»C1APmQQ-PQQQ

-1=P0C1(I+P0C1)"'APmQ0

Derivation of (3.19): By computation, we have that the corresponding

perturbed I/O map mHby u =[Pod+C^Q)"1+PqC1(I+PqC1)"1P]Cq(I+PCq)"1 .
Therefore,
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(9'V)

•LZ-

^^(Obdv^+i)^=L>c

Ln(°bdVZD+l)=L9

Ln=La[°Q(°d-d)2D+I]

L9°b(°d-d)23-Ln=l9

A"[9ALSS9D0nSULB^qO9«U9LJ^'04^P"**0=°P=^n=LU}9"1(B)

:a2jioj(L)

:(£*17)J-0U014BAU9Q

iO^1"uo0.0
L.(uDd+I)u0u'dV[L.(L3ud+I)-LJu0ud+l)]=

0^0^TX/0n0^TX,00J"JT7/0.0lO.ui
^ffd+iiiYd+D^i^d+indvLjuoud+i)+^rod+nvdv^

L.(°3°d+I

[LJ0Dd+l)°3Vl]LJ0D°d+l)+L.(°0d+l)°3lUdVl.(

L_(°3°d+I

[^(^d+DtVd+Dl^t^d+D+̂f^d+DVdv^C

'<U)JlT>QJ«O^tu
L.(U3Ud+l)u3dVL.(u3d+l)+^("Od+irOdVL„(

0.0
L.(u3ud+

L.(°Dd+l)03d+L.(00d+l)°3dL.(LD°d+l)-LJ°3d+l)°3°dL.

UO.0.0
,J^Od+l)O0Od-l.(O3d+l)00d[l.(L3°d+l)-l]+L.(°3d+l)°3°dL„

•OoO-t^Oj.tOU0JJT\U0 L_(u3ud+l)u0ud-L_(u0d+l)u0[dLJL3ud+I)L3ud+L_(ud

3°d+l)-=

3°d+l)-=

niu
u3dv

o°d+n-=

0Ul
U0dV

3Ud+l)-=

3°d+l)-=

)°3°d-

L3°d+l)=

l3°d+l)=

3+1)°d]=

Ln2/CLn2^...Ln2/C
M-cfSiiqW



y2 =PQ(I+C2APQ0)"1u1 (A.7)

From (A.6) and (A.7), we have

HylUl "<VI+C2i,V~1
Vi =PQo^APQo)"1

(b) Let u, = n-| = dQ =0, and u2 t 0, then

yl = -Q0C2ed = -Q0C2(P(yi+u2> - W _ -Q0C2(APyi+Pu2)

Hence,

y1 =-(I+QQCgAPj'̂ QCgPug; thus

\u2 =-(I+Q0C2AP)"1Q0C2P

Since y2 = P{y-[+u2),

Hv u = P(Hv u +I)y2u2 ylu2

=P^d+Qo^APj^QQCgP+I]

=[I-PQ0C2(I+aPQqC2)"1]P

=(i+apQqC2-pq0c2)(i+apq0c2)"1p

=(I-PqQ0C2)(I+APQqC2)"1P .

(c) Let u, = u2 = n-j =0, and dQ f 0, then

yi = "Qoc2ed= -Qo^i+Wi) =-W^W

Hence,

y1 =-(I+QQCgAPj'^QCgdQ; thus

Hyid0 =-(i+QoC2APrV2= -W^W1
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Since y2 = Py^dQ

-1

y2d0 =! +PHyld0 =l " PQ0C2(I+APQ0C2)
=(I+APQQ^-PQQC^d+APQQCg)"1

=(I-PQQQCgJd+APQjjCg)"1

(ii) For Zf, (4.3) can be easily verified by inspection of Fig. 6(b)

and simple computations. °

Derivation of (4.13): By definition and the system I/O map (4.3),

-1

y2ul != VfHy2ul =PQ0(I+C2APQ0r " P0Q0

=[PQ0-p0Q0(I+C2APQ0}](I+C2APQ0}"]

=(I-PQQQC^APQQd+CgAPQQ)"1

=(I-P0QqC2)(I+APQqC2)"1APQq- «

Derivation of (4.14): By simple computations, we have the corresponding

perturbed I/O map "H® u =PoV^^nfV"1- Hence'
AmHe ._ mHe Ho

y2u1 •" y^ ~ y2u}

•W^W"1 -P0Q0

=P0Q0[(I-C2APmQo)-1 -I]

-P0Q0[I -(I -C2APmQ0)](I-C2APniQ0)-1

=PoQo^APQQd-C^QQ)-1
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Proof of Fact 5.1:

Since it and tt" are incr.J-stable, (I+C-iPq)Qq is Ji-stable iff
tt'^I+^PqJQq is Jo -stable. Thus from (5.3c) and (5.3d), to show (5.3e)
we only have to show that S(Cq,Pq) is -O-stable iff ^(Pq.tmT1^) is
JS -stable.

Since tt is linear, it can be easily seen, from Fig. 5, that

S(PQ,Tr,7r" C-|) is ,6-stable implies that S(C-j,Pq) is J -stable. The
proof is complete if we show that S(C-|,Pq) is Jl-stable implies that
S(Pqstt,tt"1C1) is <0-stable; we prove this next.

Consider the system S(PQ ,ir,if1 C-j) shown in Fig. 5with input
(u-|,u2,d0); write the equations determining e2 and y«:

e2 =irfu^ir" C^) +u2 (A.8)

y2 = d0 + P0e2 (A*9)

Let u2 :=iTfu^Tr'X-jyg) -Tr(-ir"1C1y2), and (A.10)

d0 := dQ; (A.11)

and then rewrite (A.8) and (A.9) as

e2 =u2 +u2 +ir(-ir"1C1y2) =u2 +u2 -C,y2 (A.12)

y2 = d0 + P0e2 (A'13)

where in (A.12) we have used the linearity of tt.

Note that (A.12) and (A.13) describe the system ^(C^Pq) with input
(u2+u2,3q). Since by assumption S(C-j ,PQ) isxD -stable, for the system

S(Pq,tt,tt" C-j), the map H:(d0,u2+u2) *•»• (e2,y2) is x3-stable. Since ir is

incre.^i -stable, it can be easily shown that the map t|> :(u, ,u2,dQ)
h- (d0,u2+u2) is A-stable. Therefore, for S(P0,Tr,7r C-j), the composite
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map H4»: {u^,u2id0) h> (e2,y2) is J-stable. Since y1 =e2 - u2 and
el =ir" yT the map (ui»u2'do^ ^ (e-| >y-|) is also J-stable, consequently,
the system S^tt^C-,) is ^-stable. h

Derivation of (5.14): By definition of AH, „ and Eq. (5.2),
y2ul

my2u} =P(I+C1P)-1(I+C1P0)Q0-P0Q0

- P(i+c1P)"1(i«1Po)Qo-PQ0 +p<Jo-poclo
=p(i-k:1p)'1(i+c1Pq)Qq-p(i+c1p)'1(i+c1p)q0+ apq0

n

For u} e.£e0, let x\} := (I+^PqJQq^), A^ := ^APQq^), then

AHy u (Ul) =Pd+^Pj'̂ n^-Pd+C^)"1^*^) +apq0(Ui)

Using Taylor's formula, [Die. 1, Theorem 8.14.3],

AHy u(a,) =[-J DCPd+C^J^K^+oAn^.^do +APQq(Ui)]

=[-| D(P) [I+C1D(P)]-1An1,da+APQ0(u1)]

where in both instances D(P) is evaluated at (I+^Pr^r^+aAn-,). Note that
in the last step we only used the chain rule, the inverse function rule

and the linearity of C1 [Die. 1, Theorems 8.2.1, 8.2.3]. Now, since C.

is linear

AHy u(Ul) =[-[ D(P)(I+C1D(P))'1C1APQ0(u1)da +APQq(Ui)]

=|[I -D(P)C1(I+D(P)Cir1]APQ0(u1)da

=| (I+D(P)C1)~1da.APQ0(u1) . h
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Derivation of (5.15): By definition,

A1^3 = Hm - H°
y2ul y2ul y2ul

•po(I+cip0)"1»+cip)Qo-po(»o
=PQd+C^Qj^d+C^jQQ - Pod+C^Qj^d+C^QjQQ

n

For u} ejee°, let ^ := (I+C1PQ)Q0(u1)

An1 := CjAP^q^) , then

AXu <ul> =P0<I+W <VAV - Pod+^PQ)-1^)

By using Taylor's expansion,

^y u(ul} =( DCP0(I+C1P0)"13(n1+oAn1)-An1da

=| DtPQjd+C^fPQjJ^^AP^u^da

where D(PQ) is evaluated at (I+C-.Pq)" (n-j+aATTj). Now since C-j is linear.

AmRy2ul(Ul) =l] D(P0)Cl(I+D(P0)Cl)"ldaAPm%(ul)
=| [I-d+DtPQ)^)"1]^ AP^u,
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List of Figure Captions

Fig. 1. The system ^(P.K).

Fig. 2. Z(P,K) with the controller K replaced by the two subsystems

tt and F.

Fig. 3. Single degree of freedom design: ^(P.C) which takes (u19u2,d0)
into {y},y2).

Fig. 4. Two-degree of freedom designs-group 1: feedback configurations

Za, Zb, Zc, and Zd. It is assumed that QQ =CqII+PqCq)"1

(b) Eb

(0 zc

(d) Ed .

Fig. 5. The system S(P,ir,Tr C,)

Fig. 6. Two-degree of freedom designs-group 2: feedback configurations

Z and Zf

(a) Ee

(b) Zf .
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