

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ITERATED TIMING ANALYSIS AND SPLICE1

by

R. A. Saleh

Memorandum No. UCB/ERL M84/2

4 January 1984

ITERATED TIMING ANALYSIS AND SPLICE!

by

Resve A. Saleh

Memorandum No. UCB/ERL M84/2

4 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

SPLICE1 is a mixed-mode simulation program for large-scale integrated

circuits. It performs concurrent electrical and logic simulation using event-

driven selective-trace techniques. The electrical analysis uses a new algo

rithm, called Iterated Timing Analysis (ITA). which performs accurate electri

cal waveform analysis much faster than SPICE2 for large circuits. The logic

analysis features a new MOS-oriented state model and a fanout dependent

delay model, and handles bidirectional transfer gates in a consistent

manner.

This report describes the new algorithms and the details of the imple

mentation in SPUCE1.7. Program performance characteristics and a

number of simulation results are also included.

Acknowledgements

I would like to express my appreciation to my research advisor Prof. A.

Richard Newton for his patience, encouragement and guidance throughout

course of this work. 1 would also like to thank Prof. Don 0. Pederson and

Prof. Alberto Sangiovanni-Vincentelli for their support.

I wish to thank everyone in the CAD group at Berkeley but a few people

deserve special mention. In particular. I would like to thank JimKleckner for

the many long hours of help generating examples, fixing bugs and engaging

in useful discussions. I would also like to thank Jacob White for the discus

sions on the theoretical aspects of the work. I am grateful to Ben Valdez of

Hughes Aircraft for reviewing the manuscript carefully, providing useful

suggestions for program development and for assistance with examples.

Graeme Boyle. John Crawford, Ian Getreu, Jack Hurt and Steve Potter of Tek

tronix helped me a great deal during the course of the project. I would also

like to express my special thanks to Mike Caughey and the ICCAD group at
MITEL Corp. in Ottawa, Canada for their encouragement.

Anumber of designers have helped during the initial debugging phase of this

work. In particular, I would like to thank Don Herbert of Aerospace Corpora

tion, Professor Miles Copeland of Carleton University, Ottawa, Canada, Ron

Jerdonek of the General Electric Co., and Marcus Paltridge. Chris WUson. and
Craig Mudge of CSIRO VLSI, Australia.

Both the Digital Equipment Corporation and Toshiba Corporation provided

state-of-the-art test circuits and help with debugging. In particular, 1 would

like to thank Ed Burdick of Digital and Takayasu Sakurai of Toshiba Corpora

tion for their help.

Finally, I wish to thank my wife, Lynn, and my family members in Ottawa,

Canada for their continuing support.

This work was supported in part by NSERC (Natural Science and Engineering

Research Council) of Canada, the Hewlett-Packard Company, Digital Equip

ment Corporation and Tektronix.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: Iterated Tuning Analysis 4

2.1 Introduction 4

2.2 The Simulation Problem 4

2.3 Motivation for a New Simulation Approach 5

2.4 Relaxation-based Electrical Simulation 14

2.5 The ITA Algorithm 15

2.5.1 The Gauss-Seidel Iteration Method 15

2.5.2 A Nonlinear Gauss-Seidel Iterative Approach 17

2.5.3 The SOR-Newton Iteration 21

2.5.4 Convergence of the SOR-Newton Iteration 21

2.6 Exploiting Latency 23

2.7 Implementation in SPLICE 23

2.7.1 Program Flow 24

2.7.2 Details of Node Processing 24

2.7.3 Element Models 25

2.8 ITA Simulation Results 26

2.9 Optimizations in the Present Implementation 29

CHAPTER 3: Enhancements to the Logic Analysis 31

3.1 Introduction 31

3.2 The State Model 32

3.2.1 A MOS-oriented Logic Model 32

3.2.2 State Model Definition 34

3.2.3 Using the State Model 35

3.3 The Delay Model 36

3.3.1 Factors Affecting Switching Delay 36

3.3.2 Delay Model for Simple Gates 37

3.3.3 Delay Model for Multi-output Elements 39

3.3.4 Delay Models for Transfer Gates 41

3.3.5 Delay to an Unknown Value 46

3.4 Spike Handling 46

3.5 Transfer Gate Modeling Issues 50

3.5.1 Bidirectional Transfer Gates 50

3.5.2 Unknowns at Gate Inputs 52

3.5.3 Node Decay 54

3.6 Logic Simulation Implementation Details 55

3.6.1 General Program Flow .. 55

3.6.2 Node Processing Details 56

3.7 Switch-level Simulation „ 57

CHAPTER 4: Examples and Results 56

4.1 Program Performance Statistics 59

4.2 Profile Statistics 61

4.3 Factors Affecting Execution Time in Electrical Simulation 62

4.3.1 CPU-time vs. MRT 62

4.3.2 CPU-time vs. MINDVSCH 63

4.3.3 Effect of Floating Capacitors 65

4.3.4 CPU-time vs. SOR 67

4.4 SPICE2 vs. SPLICE1.7 87

4.4.1 CDE Circuit 68

4.4.2 Digital Filter Circuit 72

4.4.3 Industrial Microprocessor Control Circuit 74

11

4.4.4 Industrial 64K CMOS Static RAM Circuit 74

4.4.5 NMOS OpAmp Example 77

4.4.6 CPU-time vs. Circuit Size 83

4.5 Mixed-Mode Examples ~ 84

CHAPTER 5: CONCLUSIONS 91

REFERENCES

APPENDIX I: Example Circuits

APPENDIX II: SPLICE1.7 Data Structures

APPENDIX HI: SPLICE1.7 Electrical Model Equations

APPENDIX IV: SPLICE1 Source Code

CHAPTER 1

1. INTRODUCTION

SPUCEl is a mixed-mode simulation program for large digital MOS

integrated circuits (IC). It performs time-domain transient analysis which

tends to be the most time-consuming and memory-intensive task in simula

tion today. The enhancements made to the program are described in this

report. The starting point for this work was SPLICE1.3 [l]. This early ver

sion of SPUCEl included 4-state logic simulation, simple timing analysis and

a SPICE-like circuit simulation capability [1,2].

While this version provided a degree of functionality, it suffered from

modeling and accuracy problems intrinsic to the algorithms used in the pro

gram. Specifically, the 4-state logic model was not sufficient to perform an

accurate true-value logic simulation of general MOS circuits containing

transfer gates and wired connections (Le., more than one gate controlling

the state of a node). The simple timing analysis algorithm had inherent

accuracy limitations and stability problems and had difficulty analyzing cir

cuits containing floating elements and tight feedback loops. These, and

other issues, are examined in detail elsewhere [3]. and will be elaborated

further in later sections.

The latest version, SPLICE1.7, overcomes these problems by using

state-of-the-art algorithms in place of previous ones.

The electrical analysis is performed using a new technique called

Iterated Timing Analysis (ITA) which can be derived from simple timing

analysis [4,5]. In this approach, the set of nonlinear circuit equations are

solved using a relaxation-based method rather than a method which requires

the direct solution of a set of linear equations, usually found in standard

circuit simulators such as SPICE2 [6], ITA is as accurate as SPICE2, assum

ing identical device models, and has guaranteed convergence and stability

properties. Due to the selective trace feature in SPUCEl. the execution time

can be up to two orders of magnitude faster than SPICE2, with comparable

waveform accuracy, for large circuits. Another key feature of ITA is its abil

ity to perform accurate analysis of complex analog circuits, as will be shown

later. Iterated liming Analysis has shown so much promise that efforts are

being directed to generalize it as a standard technique for accurate electri

cal simulation. Therefore, a matrix-oriented simulation capability is no

longer available in SPUCEl.

The logic analysis capabilities have also been extended to include the

notion of multiple strengths or impedance levels [3] as is available in most

modern MOS-oriented logic simulators [7,8,9,10]. While other simulators

usually limit the number of strengths to three, there is practically no limit in

SPUCE1.7, which allows up to 218 - 1 strengths. More than three strengths

are often required to model the interaction between transfer gates of

differing geometry [3]. Processing of the gates and nodes proceeds in a

manner similar to the electrical analysis. In fact, the logic analysis may be

thought of as a relaxation-based method in which the elements are

represented by simple logic models rather than complex analytical equa

tions. This concept, together with the idea of multiple impedance levels,

allows for a more consistent signal representation and signal conversion in

the mixed-mode environment. Clearly, there is a correspondence between

an electrical voltage and the logic levels. With the notion of strengths, there

is now a natural correspondence between the electrical output conductance

of an element and the logic output strength of the element.

SPUCEl can also be used to perform switch-level simulation [9,10] to

verify circuit functionality at the transistor level. It handles CMOS, NMOS and

PMOS circuits in both static and dynamic configurations.

Although SPUCEl originally included a table look-up scheme to speed up

MOS model evaluation [4,5], it was subsequently dropped from the program.

Research on optimal table models and structures is continuing in an

independent effort [11] and this feature may be reinstated in a later version.

Therefore, this report does not address the issue of table-driven MOS models.

The remainder of this report is divided into four chapters. In Chap. 2,

the ITA algorithm is described in detail The enhancements in the logic

analysis are described in Chap. 3. In Chap. 4, a number of simulation results

and program performance statistics are presented. Finally, in Chapter 5, the

general conclusions are stated with specific mention of future directions.

CHAPTER 2

2. Iterated Timing Analysis

2.1. Introduction

A new form of electrical analysis, called Iterated Timing Analysis (ITA),

is described in this chapter. The motivation for this work is presented using

SPUCE1.3 as an example of Non-iterated Timing Analysis (NTA). A simple

mathematical treatment of the ITA method is presented here although a

complete mathematical analysis of relaxation-based methods, presented in a

rigorous and unified framework, may be found in reference [12]. The details

of the implementation in SPUCE1.7 are also included in this chapter.

2.2. The Simulation Problem

The general circuit analysis problem in the time domain requires the

solution of a set of first-order nonlinear Ordinary Differential Equations (ODE)

of the form:

C(v(t),u(*W = -f(v(t),u(t)) (2-1)

where
v(0 is the set of unknown node voltages,
u(t) is the set of inputs,
C(v(t),u(tY) is the nodal capacitance matrix,
f(v(t),u(t)) is the sum ofthe currents charging the

capacitances at each node.

This formulation can be derived by writing Kxrchoff's Current Law (KCL) at

every node, except the ground node, in a given circuit [12]. The simulation

task is to determine the unknown voltages, v(t), for every node at every

timepoint due to some input excitation, u(t).

The technique used in SP1CE2 to solve Eqn. (2-1) is to first convert the

set of differential equations into a set of algebraic difference equations using

a stiffly-stable integration formula [6]. The nonlinear difference equations

are then converted to a set of linear equations of the form:

G7=7 (2-2)

using a damped Newton-Raphson linearization process. G is the Jacobian

matrix (or the small-signal conductance matrix), V is the unknown voltage

vector and I is the known excitation vector. Next, Eqn. (2-2) is solved using a

direct matrix approach to produce the solution vector, V. Since, in general,

f(v(t)%u(t)) is a nonlinear function, this process must be repeated until V

converges to a consistent solution.

2.3. Motivation for a New Simulation Approach

General-purpose simulation programs, such as SPICE2 [6] and ASTAP

[13], have been used extensively to perform accurate circuit analysis for

over 10 years. These simulators use direct methods (using sparse matrix

techniques) to solve the set of circuit equations. Unfortunately, this

approach becomes increasingly expensive as the circuit size increases. The

fundamental problem is illustrated in Fig. 2.1. The time required to formu

late the set of linear equations grows linearly with circuit size whereas the

time required to solve the linear equations is proportional to Nk, where N is

the number of circuit nodes and k ranges from 1.1 to 1.5. These two solution

phases are referred to in Fig. 2.1 as FORM and SOLVE respectively. The

SOLVE phase quickly dominates the total time as the circuit size increases

6

and this is one reason why the direct approach is not appropriate for large

circuits.

Timing simulation was introduced in the mid-seventies to reduce CPU-

time at the expense of some accuracy. A new breed of simulators emerged

at that time, all tailored to perform transient analysis of large digital circuits

[5,4,1,14,15]. These classical timing analysis programs used iterative tech

niques [16] to solve the set of circuit equations rather than the direct matrix

solution approach of the previous generation. A grounded capacitor was

required at every node to guarantee convergence of the method. However,

to reduce execution time, none of these programs carried the iteration to

convergence and in fact each node equation was solved once at each

timepoint

Large digital circuits typically display a 10-20 % latency characteristic.

That is, only 10-20 % of the nodes in the circuit are active at any given time.

Conceptually, there is temporal sparsity (latency in a waveform over a time

period) and spatial sparsity (latency in the network at a given point in time)

[17]. Since these iteration methods involve the solution of each equation

separately, this latency aspect can be exploited to further improve perfor

mance.

Using these techniques, two orders of magnitude of speed improvement

was obtained. Accuracy was maintained in these simulators by choosing a

small fixed timestep for the entire analysis. This timestep was either con

stant for all circuits [5] or chosen based on the smallest time constant in the

circuit [4]. Later timing simulators adjusted the timestep during the

analysis dynamically to limit the voltage change over a timestep to a value

specified by the user [l]. Simple timing analysis also relied heavily on the

CPU
TIME

(S)

104 1 i i

10$

ft
/»

/ /

/ $
t #

£ t
/ i

/ i
J i

TOTAL TIME v />SOLVE

7/ /10*
7/ •

/ / /
/ / /

/ / ,AV
/ / / \

10

• //
^*FORM

1 • /
// \
/ \

-

_.i. • i 1

1 10 10* 10'

NUMBER OF CIRCUIT EQUATIONS

fig. 2.1: the amount of CPU time required to perform a transient analysis
of a set of typical circuits of increasing size

104

6

fact that the accumulated voltage error becomes zero once a node reaches

either of the two supply voltages.

While offering a substantial savings in CPU-time and memory usage,

these programs suffer from a number of problems which have limited their

use. Circuits containing global feedback loops, such as the ring oscillator of

Fig 2.2(a), produce timing and voltage errors in the simulation. Fig 2.2(b)

illustrates these errors as generated by SPLICE1.3 compared to the solution

produced by SPICE2. The SPLICE1.3 program not only produces a timing

error (phase error) but incorrectly predicts the number of cycles in a given

time period (frequency error) and the height of the peaks (amplitude error).

These errors are all due to the single iteration performed at each

timepoint To understand the origin of the errors, consider the processing

sequence of a simple NMOS inverter of Fig. 2.3(a) using NTA.

(1) The first step is to represent each nonlinear device by its corresponding

linear companion model This is done in Fig. 2.3(b). These equivalent

models are based on the terminal voltages of each device. The conduc

tance is obtained from the slope of the nonlinear I-V characteristic at

the operating point and the current is obtained from the y-axis inter

cept as shown in Fig. 2.3(c). The value of the voltage at Node C is calcu

lated using *hi« equivalent circuit of Fig. 2.3(b). Assume that initially

VBn~l=Qv and Kcn"1=5.0u, where Jfcn_I refers to the voltage at node B

at time tn„x and Vcn~l has a similar definition.

(2) Let Jfcn=1.0w. Then the change in the voltage at node C is calculated

using Vgn and 7^n_l. Therefore, the linear equivalent model of the load

is the same as it was at *„_i but the equivalent model of the driver

changes. Since the load offers less charging current than it really

VDD

CLK

Jig. 2.2(a):NMOS Ring Oscillator Orcuit

130

TIME (ns)

Kg. 2.2(b) : Comparison of NTA and SPICE2. The errors are due to
the single iteration performed at each timepoint.

10

should (i.e., Vq is incorrect) and the driver is able to sink more current

due to a larger V&, the node voltage change LVcn is too optimistic.

(3) When Jfcn+1=2.0u , again Vcn+l=f(Vcn.VBn+l) and LVcn*1 is also optimis

tic by the same argument given above.

Hence, in a SPLICE1.3 simulation, the output of the inverter will rise and

fall earlier in time with faster rise and fall times than the SPICE2 simulation

of the same circuit. This error is propagated and intensified in the ring oscil

lator circuit, resulting in the three errors cited above. It should be noted

that if the timestep of the simulation is reduced and the accuracy tolerances

are tight, the NTA output will be indistinguishable from SPICE2 output for

this example.

Another shortcoming of NTA is that it has some difficulty dealing with

circuits containing floating elements, such as capacitors and transfer gates.

These elements introduce strong bilateral coupling between two nodes in the

circuit. Since only one iteration is used, the solution obtained using NTA

depends on the order that the nodes are processed. Consider, for example,

the 2-input NMOS NAND circuit of Fig. 2.4(a). It contains a "floating" transis

tor, namely M2. The sequence of processing in the NTA method would be as

follows:

(1) Assume that initially tyn_l=0i/, Vfl=5.0u and V>n"l=0u

(2) At *n, Vfn=l.Qu and Node X is processed using the initial conditions

Vxn~l and Vy*~l given above to produce Vxn.

(3) Next, Node yis processed using Vy7*""1 and V%n to generate V^.

(4) Then, time is advanced by one unit and steps (2) to (4) are repeated.

This process continues until Node Y makes its transition to the opposite

rail voltage.

VDD

B

W (b)

I ♦

fig. 2.3: The linear equivalent model for each transistor
of (a) is shown in (b) using the device characteristics in (c)

11

12

There are two problems with this method:

• the change in node Y should immediately affect node X but it is not

reflected at node X until the next time point.

• if the processing started with node Y instead of node X, slightly different

results would be obtained.

The same effect is observed when processing capacitors where one node

is not connected to ground (i.e., a floating capacitor). An example of a cir

cuit with such a capacitor is the boot-strapped inverter of Fig 2.4(b). The

accuracy of NTA depends on the timestep and the ratio of the floating capaci

tor to the grounded capacitor. In the boot-strapped inverter, the value of

C03 is usually large compared to the grounded capacitors, COl and C02, and

this tends to reduce the accuracy of the solution produced by NTA.

Therefore, NTA will produce somewhat inaccurate results when there are

floating elements in the circuit Reducing the timestep to an appropriate

value will improve the accuracy, but if the timestep is not small enough,

these elements may cause the simulator to exhibit instability. As will be

seen later in this section, the ITA approach overcomes all of these problems.

By far the most compromising aspect of the NTA approach is that it may

occasionally produce the wrong answer! Circuit designers are willing to use a

program which gives them the correct answer or no answer (usually due to

non-convergence), but are unable to deal with a program that occasionally

produces the wrong answer. In fact, the NTA method always produces some

answer and this is really the downfall of the method.

For the reasons given above, timing analysis has not been widely

accepted as viable form of electrical simulation, although it has been used

successfully in constrained IC design methodologies such as standard cell or

13

VDD

Rg. 2.4(a) : 2-inputNMOS NAND circuit. Thefloating transistor
connected between nodes X Y. and Wcauses problems for NTA.

VDD

fig. 2.4(b): Boot-strapped Inverter. The capacitor COS
causes problems for NTA.

14

gate array. What is really required is a simulation technique which provides

both accuracy and speed.

2.4. Relaxation-based Electrical Emulation

A number of new techniques have been developed in an effort to reduce

the simulation time while maintaining waveform accuracy comparable to

SPICE2. These include table-driven model evaluation [11], microcode tailor

ing on a minicomputer [18] and the use of vector-oriented computers such

as the CRAY-1 [19]. Although these techniques have been successful, they

provide, at most, an order of magnitude speed improvement over SPICE2.

Two methods are currently being investigated which use a converged

relaxation iteration to solve the set of circuit equations. Both approaches

have been implemented and preliminary results indicate that up to two ord

ers of magnitude of speed improvement may be obtained for large digital cir

cuits. One method, called Waveform Relxuzatwn\20\ decomposes the system

of equations into several dynamic subsystems each of which is analyzed for

the entire simulation period. The process is then repeated until all the

waveforms converge to an exact solution. The relaxation is performed at the

differential equation leveL This method has been implemented in program

RELAX [20,21].

The second method is called Iterated Timing Analysis (ITA) [22,23]. In

this method, the relaxation is performed at the nonlinear equation level.

That is, the set of nonlinear circuit equations are iterated to convergence

using a Gauss-Seidel or Gauss-Jacobi method. This is also an exact method.

Some aspects of this method which make it attractive are as follows:

15

• it has guaranteed convergence and stability properties

• it allows circuit latency to be exploited easily

• it can be implemented using the concepts developed for logic simulation

• since the logic and electrical analyses operate the same way, a con

sistent mixed-mode simulation is possible

The algorithm has been implemented in SPLICE1.7 and the implementa

tion details and results obtained are presented in this chapter following a

simple mathematical treatment of the method.

2.5. The ITA Algorithm

2.5.1. The Gauss-Seidel Iteration Method

A system of simultaneous linear equations can be solved using a variety

of techniques, namely:

1. Direct Methods
a. Matrix Inversion
b. Gaussian Elimination
c. LIT decomposition

2. Iterative Methods
a. Gauss-Jacobi
b. Gauss-Seidel

In circuit simulation, the solution to Eqn. (2-2) is required. The circuit con

ductance matrix, G, is usually large but sparse, typically having 3 elements

per row. Matrix inversion is not. a suitable method because it usually con

verts a sparse matrix into a dense one. Sparse matrix techniques can be

used to solve the equations using method 1(b) or 1(c) but this is not suitable

for large circuits due to the rapid increase in CPU-time, as shown in Fig. 2.1.

16

The iterative methods [16] are well-suited to cases where the matrix is

sparse. In fact, the solution of a set of sparse linear equations may be

obtained faster using an iterative approach. Two classical iteration methods

exist: the Gauss-Jacobi (G-J) method and the Gauss-Seidel (G-S) method. The

Gauss-Jacobi method (also referred to in the literature as simultaneous dis

placement) proposes the following approach:

w(°) =initial guess voltage vector
ro«-0
repeat\

for (i = 1 to N) (

m+lVi = JL
" da -£*v

i«i
(2-3)

\
fn*-m+l

Juntil |i/t?n*1-!/fl|^£ for all i, i.e., convergence

Notice that every equation uses the previous iteration values for all unk

nown voltages to obtain a new solution vector. The Gauss-Seidel method (also

referred to as successive displacement) suggests the following modiflcation

to Gauss-Jacobi:

v(°) s initial guess voltage vector
m«-0

repeat\
for (i = 1 to N) {

m+lVi

i

" 9a -Eswm+1- t *V
jsl J=t+1

(2-4)

m,«-m.+l

I until |vjn+l—ufl^c for alii, Le., convergence

Notice that each equation uses the latest values of voltage wherever pos

sible.

17

The only difference in the two methods is whether the previous voltages

are always used or the latest values are applied immediately. The conver

gence rate is linear in both cases but the speed of convergence is quite

different. Usually the Gauss-Seidel iteration converges faster than Gauss-

Jacobi [16], although there are cases where this is not true.

Both methods also require the strict diagonal dominance condition for

guaranteed convergence:

£k|<L» (2-5)

This inequality states that each diagonal term of the matrix be greater than

the sum of all the off-diagonal terms in the same row.

An acceleration scheme is available to speed up convergence using an

acceleration parameter, w, as follows.

i/i^'swi^+fl-tt)^"1 (2-6)

where v< is an intermediate value generated using Eqn. (2-4). The effect of o

is usually dramatic but it can only be obtained empirically and usually varies

from technology to technology. For standard Gauss-Seidel, o> =1.

2.5.2. A Nonlinear Gauss-Seidel Iterative Approach

Relaxation methods, as described in the previous section, can also be

applied successfully at the nonlinear equation leveL The same approach is

used as for linear equations except that each nonlinear equation must first

be linearized and solved before proceeding to the next equation. Using this

approach, the time-consuming effort required to calculate the Jacobian

matrix entries can be avoided.

18

The steps at the nonlinear equation level are as follows. Starting with

equation (2-1), the first step is to convert the differential equations into

difference equations using a stiffly-stable integration formula. SPLICE1.7

uses a Backward-Euler formulation [24]. Then the first equation is linearized

using the Newton-Raphson (N-R) method and iterated to convergence to solve

for one unknown voltage. This constitutes the inner N-Rloop. The same pro

cess is applied to the next equation and all subsequent equations, in turn,

until the last equation Is processed. This outer G-S loop is now iterated to

convergence to produce the solution.

To further illustrate the method, consider the solution method applied

to one node in a typical circuit. Fig 2.5(a) shows three nonlinear devices con

nected to Node 4, which has a capacitor connected to ground. We begin by

writing KCL for Node 4

£/i=/4+/i+/2+/3 =0 (2-7)

This can be rewritten in the form of Eqn. (2-1):

C*V4 = -{h{Vx,VA) + h(V2,V4) + I3(Va.Vt)) (2-8)

Using the Backward-Euler formula for I4 , we obtain

where h is the integration step size, V^j refers to the voltage value for Node

4 at time tn and K(n-i) refers to the solution obtained for Node 4 at time

fn_i. Therefore, Eqn. (2-8) can now be written as a difference equation,

xCV.rVo)+ h(Vi.v4) +i*(v»vj +/3(v3.74) =o (2-10)

Since Eqn. (2-10) has the form:

18

«

^>

V,-^

<w

Fig. 2.5: The Aquation used in the Nonlinear Gauss-Seidel
iteration is derived using circuit (a). The companion model for
each nfg>Ti"gat> device is obtained using the process shown in (b).

20

/(^i.Ve,78.74) =0 (2-11)

it is suitable for the Newton-Raphson (N-R) iterative method with V4 as the

unknown variable. The general equation for one N-Riteration is

/•(*(*>) v2 1Z>

In circuit terms, the N-R calculation usually requires thata linear equivalent

be determined for each nonlinear device connected to the node, as shown in

Fig. 2.5(b) for Dl. This involves the calculation of a conductance, Gb and a

current intercept, I0. In order to avoid the intercept calculation, we can

applyEqn. (2-11) directly to Eqn. (2-12) to get

Now set AK|(n)<+1= V4(n)i+1-V$(a) and substitute Eqn. (2-10) into Eqn. (2-13) to

get

f^+X^W-^n-i,)

/=i n

where V^)* refers to the ith iteration value of voltage at Node 4 at time *„

and ij refers to the ith iteration value ofcurrent at Node j.. This method of

evaluating AV is convenient because:

• no intercepts need to be calculated since total currents are used in Eqn.

(2-14)

• current levels are within operating ranges (unlike Iq in Fig. 2.5(b))

• the value of AV is very accurate when calculated this way. Note that A7

is the difference between two Newton iterations and it will tend toward

21

zero with each iteration. Therefore it should be calculated as accurately

as possible.

For an arbitrary node Eqn. (2-14) becomes

AT*+1 =J—S—c <2'15>
i n

2.5.3. The SOR-Newton Iteration

A combination of the Newton-Raphson iteration in a converged Gauss-

Seidel loop with acceleration applied is called the SOR-Newton method. In

equation form, it is simply

"'-*?$- (2-16)
In a standard N-R iteration, the equation is iterated until jAK|̂ £. This

means that each node equation should be iterated to convergence before

moving on to the next one. The Gauss-Seidel loop (i.e., the outer loop) must

also be iterated to convergence.

2.5.4. Convergence of the SOR-Newton Iteration

Avery important property of the SOR-Newton iteration can be applied

now to greatly reduce the number of iterations of the inner N-R loop. It hap

pens that one Newton iteration per equation for each G-S iteration is

sufficient to retain the convergence properties of the nonlinear Gauss-Seidel

iteration [16] as long as the convergence requirements of the N-R iteration

are strictly satisfied.

A Newton-Raphson iteration will converge if the initial guess is "close

enough" to the exact solution, given that the function is Lipschitz

22

continuous. Under these conditions, the rate of convergence is quadratic.

Since the element model equations are smooth, the solution from one

timepoint to the next will not be drastically different Therefore, the solution

at the previous timepoint is a good first guess for the N-R iteration. Further-

more, a prediction step may be used to generate a better first guess. A sim

ple linear predictor is used in SPUCEl using the previous two solution points.

The diagonal dominance requirement for the G-S iteration must also be

satisfied to guarantee the convergence of the SOR-Newton iteration. In cir

cuit terms, this requirement can always be met by placing a grounded capa

citor at every node and choosing an appropriate timestep. Grounded capaci-

tors appear as r- terms in the diagonal position of the conductance matrix

G. Therefore, h, which is the simulation timestep, can be reduced until the

Q
T-term is greater than the sum of all off-diagonal terms.

Off-diagonal terms appear in the conductance matrix when there is cou-

Q
pling between two nodes. For example, when floating capacitors are used, r—

terms appear in diagonal and off-diagonal positions. Therefore, reducing the

value of h is not as effective and this may lead to convergence problems. The

ratio of the floating capacitor to the grounded capacitor is an important fac

tor in determining the speed at which convergence is achieved. If the float

ing capacitor is very large compared to the grounded capacitor, convergence

speed will be slow, if the iteration converges at all. The current version of

SPLICE uses the IIE method (Implicit-Implicit-Explicit) [25] to evaluate float

ing capacitors.

23

2.6. Exploiting Latency

SPLICE1 does not solve every node at every timepoint. In fact, only

those nodes which are active at any given point in time are processed. Since

large circuits are relatively inactive, less than 20% of the nodes are actually

solved at each timepoint. The active nodes are determined on an event-

driven basis. That is, a node is placed in the set of active nodes if any node

which can affect it changes by a significant amount

Once the set of active nodes are identified, SPUCEl can exploit two

forms of latency. The first one is called simply latency in time. This is based

on the fact that digital circuit waveforms feature long constant periods. An

active node is processed at consecutive points in time until it reaches a con

stant value. It is then removed from the set of active nodes and becomes

latent. The second form of latency is the so-called latency at a timepoint.

Ihis refers of the fact that some nodes may actually converge with fewer

iterations than others, at a given timepoint These nodes can be marked to

be processed at the next timepoint while the remaining nodes continue to

iterate to convergence at the current timepoint Tightly-coupled nodes usu

ally require more iterations than other nodes.

The decoupled nature of ITA allows both forms of latency to be exploited

efficiently. "These techniques reduce the overall computation significantly.

Of course standard circuit simulators solve every node at every timepoint

and all nodes converge simultaneously.

2.7. Implementation in SPUCE

The analysis techniques described in the previous sections have been

implemented in SPUCE1.7. The details are described in this section with

24

special attention given to areas where further optimization would improve

the simulator performance.

SPUCEl has a fixed minimum timestep called the mrt (minimum resolv

able time). Events can only be scheduled at integer multiples of mrt. There

is a scheduling threshold parameter called mindvsch which is the minimum

change in a node voltage over a timestep which causes the fanout elements

of the node to be scheduled. The convergence criterion is defined by two

parameters called abstol (absolute tolerance) and reltol (relative tolerance).

2.7.1. Program How

The program flow has not changed since the SPUCE1.3 release. The

details of the processing may be found in [l, 3] and are not repeated here.

The data structures of the ITA as implemented in SPUCEl.7 are given in

APPENDIX IL The general program flow for electrical analysis is as follows:

set all nodes to their initial values ;
schedule all FOL's at time 0; #FOL = FanOut List of a node
*n«-0;
while (tn <TSTOP)|

foreach (FOL in the queue at the current timepoint) [
foreach (element in the FOL) {

foreach (output node of an element) |
process node ; #see next section for details
schedule FOL if necessary;

i
plot all requested active nodes ;
*n«-*n+l:

2.7.2. Details of Node Processing

A subroutine in SPUCE1.7 processes all electrical nodes, calculates the new

node voltage, decides whether the node has converged and determines

25

whether subsequent scheduling is necessary. A high-level pseudo-code

description of the routine is as follows:

begin
Iterated timing analysis algorithm in SPUCEl.7
§ Node processing sequence

, obtain next node m;
if (first time processed at new timepoint) \

use last two points to perform linear prediction;
convflg=fal9e;

\
Gnet = Inet = 0;
for (each fanin element at node m) \

compute equivalent conductance Geq;
compute total current flowing into node Ieq;
Gnet = Gnet + Geq;
Inet = Inet + Ieq:

i
calculate A7; ^change in voltage over an iteration
KJi+i)=v(i)+o7; #new nodevoltage
DV = | JSr^-Ki-il : # change in node voltage over one timestep
if (A7 < tolerance) { # node has converged

if (convflg = false) \ #have not converged at this timepoint before
if (DV > mindvsched) \ § node change is significant

schedule current fol at Tn+1 (future);
schedule fol of node at Tn (now);
convflg = true ;

else {§ node change is not significant over one timestep
do nothing;

. •
else #have converged previously at this timepoint

do nothing ; #break any feedback loops

else { # node has not converged so keep processing
convflg = false;
schedule current fol at 7^ (now);
schedule fol of node at Tn (now) ;

§ Finished this node for this iteration
return
end

2.7.3. Element Models

SPUCE1.7 has built-in models for resistors, linear capacitors (floating

and grounded), diodes and MOS transistors. The HE method is used for

26

floating capacitors [25] and the first-order Schichman-Hodges model [26]

equations are used to model MOS transistors. The model equations for each

device are given in APPENDKIH.

Each electrical element has a corresponding program subroutine. The

subroutine evaluates the linear equivalent model for each nonlinear device

and returns it to the calling routine. As mentioned previously, the intercept

current calculation can be avoided by a simple reformulation of the equa

tions. Using this approach, the conductance and the total current at a given

operating point is returned by each subroutine. The calculation of the

equivalent model assumes that all other nodes have ideal constant voltage

sources attached to them, except in the case of floating capacitors, since HE

is used.

2.8. ITA Simulation Results

This chapter has been concerned mainly with simulation accuracy and

would not be conmlete without a comparison of ITA with SPICE2. Fig. 2.6

shows the simulation results obtained for the ring oscillator, 2-input NAND

and boot-strapped inverter circuits described earlier. As indicated by the

results, SPUCE1.7 produces results which are indistinguishable from those

obtained by SPICE2 except at timepoints near time zero due to different ini

tial value assumptions. Therefore, circuits which handled inadequately using

NTA do not pose a problem to ITAin terms of accuracy.

The run-times of the 3 examples do not demonstrate the speed advan

tage of ITA because the circuits are all very small with dense G matrices and

small circuits tend to be very active. The selective trace feature in SPUCE is

a significant advantage in very large circuits.

100 130

TIME (ns)

(a) Ring Oscillator Output
Ibe circuit is shown in Fig. 22(a)

fig. 2.6: Acomparison ofthe accuracy ofITA vs. SPICE2.
NTA had problems with each circuiL

27

50 100

TIME (ns)

(b) Boot-strappedInverter O^a^
The circuit is shown in Fig. 2.4(b)

10 20 25

TIME (ns)

(c) NAND circuit Output
The circuit is shown in Fig. 2.4(a)

28

29

2.9. Optimizations in the Present Implementation

While the data structures used in SPUCEl are well-suited to handle cir

cuit, timing and logic simulation concurrently, they are not ideal for ITA. If a

separate program were written to perform ITA, several optimizations could

be made to improve the program performance.

For example, some nodes may be reprocessed after they have con

verged because there may be several paths to the same node through

different elements. A node may also be processed many times in succession

before another node is processed (i.e., two or more Newton iterations).

Furthermore, there are many levels of indirection which must be traversed

in order to reach a node, as shown in a previous section.

These problems can be eliminated by scheduling and processing nodes

as opposed to fanout lists. One such scheme which uses two buffers, E& and

Eg, avoids reprocessing a node before all other active nodes are processed:

put all nodes in event list EA(0);
*n<-0;
wWe(tn<TSTOP)\

while (event list EA{tn) is not empty) \
foreach (i in Exit*) \

obtain A7;
v(+l=vf+LV;
if (\v}+1-t/*|^£) \ i.e„ if convergence is achieved

add node i to list EA(tn+1);

else \
add node i to event list EA(tn);
add fanout nodes of node i to event list EA(tn)

if they are not already there ;

EB(tn)<-empty ;

fn*-*n+i! *n+i = next timepoint

30

Another shortcoming of the current implementation is that if a node

does not converge at a timepoint, the program simply stops execution. The

user must decrease the timestep manually and re-run the entire simulation.

An automatic internal timestep control mechanism would be useful not only

for the convergence problem but also for error controL If the error is small

at a particular timepoint, then the timestep could be increased. If the error

is too large, the timestep could be decreased. The nodes would then be re

evaluated at the new timepoint Hence, the timestep could be computed

based on an estimate of the Local Truncation Error. In fact, each node could

have its own mrt, independent of other nodes, as long as some consistency is

maintained in the simulation between different nodes. Unfortunately,

dynamic timestep control requires the ability to "backup" in time (Le.. a

buffering of previous results for each node) and requires a modification of

the data structures to allow successive refinement of the mrt (minimum

resolvable time) in the time queue [27]. For this reason, it would require a

considerable amount of effort to test this scheme in the current SPUCEl

environment

31

CHAPTERS

3. Enhancements to the Logic Analysis

3.1. Introduction

The improvements in the logic analysis of SPUCEl are described in this

chapter. The starting point for this work was SPUCE1.3. It had the following

features:

• a 4-state logic model (0.1.X.Z)

• fixed assignable rise and fall delays on all gates

• unidirectional and some bidirectional elements handled.

There have been a number of changes in the logic analysis since the

SPUCE 1.3 release. These changes were made to alleviate some of the prob

lems in the previous version and to facilitate conversions in the mixed-mode

environment

The new version is SPUCE1.7 which features:

• a new MOS-oriented state model

• a fanout dependent delay model

• unidirectional and generalized bidirectional element processing.

The logic analysis is performed using a relaxation-based method, similar

in nature to the electrical analysis. In fact, the logic analysis can be thought

of as an implementation of non-iterated timing analysis (see Chap. 2) with

simplified element models. Each logic node carries information about the

node voltage and the equivalent conductance-to-ground, as does the electri

cal node. Therefore, the mixed-mode interface is defined in a consistent

manner in SPUCEl.7.

32

This chapter begins with a description and definition of the new state

modeL Following this, the delay model is described. Next, the "spike" detec

tion and handling procedure is presented. A spike is a pulse at a node of

shorter duration than the minimum width necessary to trigger subsequent

gates. This is usually an error condition which must be identified and

reported to the user. In the next section, the important issues pertaining to

the MOS transfer gate are reviewed. The transfer gate (or transmission gate,

or pass transistor) is the source of many MOS modeling problems at the logic

level and the reason for this will become clear in this chapter. The logic

analysis algorithm will then be presented in the section which follows.

SPUCE1.7 can also be used to perform switch-level simulation [9,10] and this

is described in the last section. Background material on MOS logic simula

tion may be found in reference [3].

a2. The State Model

a2.1. A MOS-oriented Logic Model

Most modern logic simulators handle the problems specific to MOS

integrated circuits by including the notion of signal strength^?, 8,9,10] in the

logic model The rationale for this has been presented in a previous publica

tion [3]. Strength is an abstraction of the large-signal conductance from a

node to ground or from a node to a supply voltage. It can be associated with

the output of a gate or it can be an attribute of a node. For example, in the

inverter of Fig. 3.1 (Ml and M2), the driver transistor with its gate input at

5.07 represents a very low resistance path from Node B to ground. In MOS

logic model terms, this is referred to as a "forcing 0" or "driving 0". Simi

larly, the load transistor represents a sizeable resistance from Node B to VDD

33

VDD

X
M3

M4

W

strength

OX 1 signal

0>)

Ylg. 3.1: The drcuit in (a) fflustrates the use of the
strength-oriented MOS model. The graph in (b) shows the
relationship between the strengths and levels in a 9-state
logic model

34

(approx. 20kQ to 40k0) and this is referred to alternatively as a "soft 1", a

"resistive 1" or a "weak 1". If transistor M3 is turned "OFF" (that is, if the

gate voltage is zero for an NMOS transistor). Node C goes into a "high-

impedance" condition which represents a third distinct strength. The rela

tionship between strengths and levels are shown in Fig. 3.1(b). Although

most simulators are based on these three strengths, SPLICE1.7 allows up to

2lfl -1 strengths for two reasons:

• there is a requirement for more than three strengths when modeling the

interaction of several transfer gates with differing YT/L ratios, typically

found in bus contention situations.

• it provides a mechanism for consistent signal representation in the logic

domain for schematic or mixed-mode simulation [22]. If information

about the effective conductance to ground is stored with each electrical

node, this information could be converted to a strength value and

passed on to the logic node, along with the voltage information, when

ever there is a requirement to do so. Conversions in the opposite direc

tion can be performed in a similar manner. In this way, simulation

accuracy can be maintained in the mixed-mode environment.

&2.2. State Model Definition

The state model used in SPLICE1.7 is now formally defined:

• A state is composed of a logic level, logic strength pair (US).

Le..state=(L,S)=(Level,Strength)

• The logic level can be one of three values: logic zero(O), logic one(l) or

logic unknown(X). The "0" level represents the low threshold value or

ground. The "1" level represents the high threshold value or VDD. The

35

"X" level represents an undetermined value which could be "0", "1" or

some value in between. The logic level field is extracted from the state

using the "lev" function. That is,

L = lev(state)

• The logic strength is an integer value between 1 and some user-specified

upper limit. The upper limit has a maximum allowed value of 65,536. In

this report, the subscripts F, Wand H will be used to denote the largest,

middle and smallest strengths respectively in a given range. The

strength field is extracted from the state using the "str" function. That

is,

S = str(state)

• An initial unknown, A<, must be distinguished from an unknown gen

erated during the analysis, Xg. This is done in SPUCEl.7 by defining the

initial unknown as follows :

X = lev(initiaLunknown)

0 = stx(initiaLynknown)

and the generated unknown as follows:

X = lev(generatedtaunknown)

0 ^ str(generated_unknown)

The initial unknown is useful to identify nodes which are not exercised

by the input pattern used in a simulation. As a post-processing step,

these nodes could be reported to the user.

3,2.3. Using the State Model

In a logic analysis, nodes are scheduled to be processed in the time

queue in accordance with the activity in the circuit. When a node is

36

processed, the fanin list (FIL) is obtained from the node data structure (see

Appendix II, parts 1,2). Each gate in the fanin list is a potential "driver" of

the node (definition of a fanin) but usually only one gate will gain control of

the node and determine its final state. The gate with the largest output

strength is declared the "winner" and the node adopts the output state of the

winning gate. Node contention occurs when two or more gates attempt to

drive the same node to different logic levels with the same driving strength.

In this case, the node is assigned an X level and the strength of any one of the

contending gates. The processing details are presented in Section 3.6.

&3. The Delay Hodel

3.3.1. Factors Affecting Switching Delay

Once a new state is determined, the next task is to calculate the time

required to reach the new state. In MOS circuits, the switching time is based

on many factors which include:

• the basic gate switching time (unloaded)

• the static output loading due to capacitance of elements connected to

the node

• the dynamic output loading through transfer gates which are turned

"ON" (that is, transistors with their gates at the logic level "1")

• the number of gate inputs

• the shape (rise and fall times) of input waveforms

No logic simulator attempts to incorporate all of the above factors into

the delay calculation. On the other hand, it is essential that a logic simulator

37

include all the first-order effects in the delay calculation. SPLICE1.7 is capa

ble of modeling the effects due to the first four factors. The fifth factor

(input waveform shape) is more difficult to handle at the logic level although

it may be a significant factor in many cases.

3.3.2. Delay Model for Simple Gates

The usual modeling procedure for logic simulation is to generate a set of

curves similar to Fig. 3.2 for every primitive element (NANDs, NORs, invert

ers, etc.) using accurate electrical simulation. In this figure, the delay from

the input switching point to the output switching point is plotted as a func

tion of output loading and the number of inputs. A step voltage is assumed

as the input of the gate. Although not strictly true, the relationships are

usually taken to be linear. The y-intercept of each curve represents the

intrinsic unloaded gate delay while the slope of each curve represents the

gate drive-capability.

Assuming that the above information is available, the following method

can be used to calculate delays for simple gates. The first requirement is

that a capacitance value be specified on every input and output pin of every

gate as part of the model definition. Then the total gate delay can be

represented by four parameters : the intrinsic gate delays (tr, tf) and the

gate drive-capabilities (trc, tfc),

where

rr =rise time for unloaded gate (intercept)

tf =fall time for unloaded gate (intercept)

trc =gate drive-capability for rising signals (slope)

*/c =gate drive-capability for falling signals (slope)

delay

38

j 2 inputs

1 1 Input

capacitance

Fig. 3.2: Topical delay curves generated for a logic gate
using electrical analysis

39

Using these values, the total delay is calculated using the equation:

risetime=tr+trcm(node capacitance) (3-la)

falltime =tf +tfc9(node capacitance) (3-lb)

The node capacitance value is extracted in a pre-processing step by

summing the capacitances of all elements connected to a node, and stored

with the node data structure (see APPENDIX II, part 1). This process is illus

trated in Fig 3.3.

S.&3. Delay Model for Multi-output Elements

If a multi-output element, such as the flip-flop shown in Fig. 3.4(a), is

available as a primitive logic element, each output would have its own set of

curves similar to Fig 3.2. The curves for the Q and QB outputs of the flip-flop

are shown in Fig. 3.4(b). Then 4W parameters would be required to specify

the delay, where N is the number of outputs. For the flip-flop there would be

8 such parameters : Qtr, Qtf, QBtr, QBtf, Qtrc, Qtfc, QBtrc, and QBtfc. These

parameters would be applied to Eqn. (3-1) to calculate the delay. Using this

technique, the delay associated with each output could be handled indepen

dently. The overriding assumption is that the rise and fall drive-capabilities

(trc.tfc) of the outputs are constant and independent of the inputs.

In certain elements, the delay from a particular input (say, the RESET

pin of the flip-flop) to a given output (either Q or QB) is different from

another input to output delay (J- or K-input to Qdelay). This suggests that,

in fact, the intrinsic delay should be a matrix which is indexed by input pin

which initiates activity and the output pin being processed. Then the total

delay due to loading could be calculated using Eqn. (3-1) and the specific trc

and tfc values for each output. This is shown in Table 3.1 below for the flip-

40

Ct* - c, + c2 + c3 + c4

tot

Rg. a3. SPUCEl preprocesses the input and output capacitances specified
for each gate and uses the total capacitance attheT«te "pecme*
to calculate fanout dependent delays.

flop example.

Table 3.1 Intrinsic Delay Matrix

1/0 pin J K CLK RESET SET

Q tr=10

tf=10

tr=10

tf=10

tr=10

tf=10

tr=5

tf=6
tr=5

tf=6

QB tr=10

tf=ll

tr=10

tf=ll

tr=10
tf=ll

tr=5

tf=6

tr=5

tf=6

41

3.3.4. Delay Models for Transfer Gates

The delay calculation for logic circuits containing transfer gates is more

complex than either of the two cases given above. Consider the circuit of

Rg. 3.5. The delay from Node Ato Node Bwhen the input CLK of the transfer

gate makes a transition from "0" to "1" is based on:

• the W/Lratio of the transfer gate

• the drive-capability of gate INV

• charge-sharing between CI and C2

It is a highly nonlinear situation and therefore difficult to model at the

logic level. Charge-sharing cannot be represented properly because of the

voltage resolution in the SPUCEl state model. One method to model this

effect is to allow multiple voltage levels in the same way that the impedance

levels have been extended. This would facilitate the characterization of

charge-sharing but would make the simulator more complicated. The simu

lator would have to perform transitions from one voltage level to another in a

consistent manner. SPUCE1.7 lumps all the nonlinear effects into two values

called the turn-on (ton) and turn-off (toff) times. These values do not take

capacitive effects into account.

42

RESET

— Q

— QB

SET

Q QB

delay

capacitance capacitance

Rg. 3.4: For the JK Hip-flop of (a), a set of delay parameters
are required for each output, Qand QB. as shown in (b).

43

Another delay modeling issue concerns transfer gates connected in

series as shown in Fig. 3.6. The delay in question is that from Node A to Node

E. If all gates are "ON", the circuit can be represented by an RC transmission

line. Unfortunately, this is also difficult to model at the logic level. A few

alternatives exist to deal with this situation:

• Use a zero delay model through transfer gates when they are "ON" [8].

This is the method used in SPUCE 1.7. Unfortunately, the value of delay

calculated this way is overly optimistic a Node E.

• Lump capacitances CI. C2, C3, C4 and C5 together and use this value in

Eq. (3-1). This is the transition delay for all nodes from the old state to

the new one. The value of delay calculated this way is overly pessimistic

at Node A.

• Extend the notion of drive-capability of a gate to nodes other than its

output node. Since txl is "ON", both Node A and Node B are driven by

gate INV. Therefore, the delay to A could be calculated as given in eq.

(3-1) and the delay to B could be calculated using the equation:

risetime =trcjNy* (capacitance at B) (3-2a)

faUHme=tfCfflym (capacitance at B) (3-2b)

To compute the delay to nodes C, D and E, simply apply Eq. (3-2) again

using the capacitance at node C, D and E respectively. This approach is

better than either of the above methods but is still lacking in accuracy

because it does not account for the "ON" resistance of the transistors.

One modification which may provide more accuracy is to adjust the

values of trc and tfc using the "ON" resistance of the transfer gates and

the depth of the node away from the output of the controlling node. This

method is promising because VLSI circuits typically contain

INV

Rg. 3.5: The delay from Node Ato Node B. when the transfer
gate turns on, is due to highly nonlinear effects which are
difficult to model at the logic level.

Rf. as: Delay associated with series-connected HOS transfer
gates is difficult to model due to the RC transmission line
characteristics.

44

45

interconnections which are electrically equivalent to distributed RC

transmission lines. This interconnect delay dominates the total delay

for very large circuits. It could be modeled the same way as the set of

series transfer gates. Therefore, a netlist extractor could provide the

simulator with "DELAY" elements.as shown in Fig 3.7. in place of inter

connect with delay calculations performed using the modified eq. (3-2):

risetime =TRC*(capacitance at node) (3-3a)

falltime=TFC*(capacitance at node) (3-3b)

where

TRC-trc*f (resistance ,depth)

TFC-tfc*f (resistance ,depth)

C,T

Ri

AAA/V
tC

Rg. 3.7: A proposedequivalent modal for a delay element

46

3.3.5. Delay to an Unknown Value

The delay calculations in the previous section assume signal transitions

from "0" to "1" or "1" to "0". Nodes may, of course, acquire the X level due to

contention at the node as described earlier. The question then arises as to

when the X level takes effect. The unknown level could be "0", "1" or some

intermediate value. Clearly, if the unknown is the previous value, there is no

delay. If it is a new logic level there is a rise or fall transition delay. The

usual approach is to assume that the unknown value takes affect immedi

ately (as is done in SPUCEl.7) or one time unit in the future.

3.4. Spike Handling

SPUCE 1.7 uses an inertia! delay algorithm. This means that if a node is

scheduled to change at some time in the future Tn, it is held at its old value

until that time. Then at Tn, the new value is assigned to the node and the

fanouts of the node are processed using this value. A spike (commonly

referred to as a glitch) occurs if the node is scheduled to change to a

different value before it reaches the new value. Spike detection is simple in

true-value logic simulation but becomes very complicated when performing

fault simulation. When a spike is detected, the event at Tn is dropped, the

new event is scheduled at the appropriate time and the user is notified of the

glitch. The glitch is not propagated because it usually signifies an error in

the circuit design. Therefore, the simulation will continue as if an error did

not occur and more meaningful information may be obtained about the

correct operation of the circuit. This technique also reduces the amount of

work the simulator is required to do since spikes represent activity in the

circuit. Therefore, the overall CPU-time will be kept to a minimum by

removing glitches from the simulation.

47

In SPUCE1.7, a fanout list (FOL) can only appear once on the time queue

at any given time during the processing. This is a limitation for proper glitch

handling, as will be seen in the pseudo-code description of glitch handling

which follows. Two different problems are identified which are direct results

of the scheduling limitation.
#GUTCH HANDLER IN SPUCE1.7
PT = present time
Tnaxt - next time FOL is scheduled
Ttast = last time FOL was scheduled to be processed

(or was actually processed)
If (Tiast < PT) \ #node was processed in the past

store new_state ;
schedule FOL at 7^ ;

else if (Tig,* = PT) \ #node is scheduled now
if (?n«rf&7|ast) \

if (FOL processed) \ § PROBLEM : glitch has been propagated
update new_state ;
schedule FOL at Tnaxt >

else \ #FOL has not been processed
^PROBLEM : cannot schedule FOL more than once

drop schedule at Tt„^ ;
replace new_state ;
schedule FOL at 7^ ;

i l
else if (TujMt > PT) { #node is scheduled in the future

if(75wrf <Tbut)\
^reschedule time is earlier than originally scheduled time

report glitch;
drop schedule at 7^ ;
replace new_state ;
schedule FOL at 7^ ;

else if (7^ = rto<)i
report glitch;
replace newjtate ;

else if (7^ > Tuut) \ #want to sched in future
report glitch;
drop schedule at 7^ ;
store new_state ;
schedule FOL at 7^ ;

48

The problems identified above can be summarized as follows: depending

on the order in which nodes are processed at a timepoint, the program may

or may not propagate one particular type of glitch, which will be referred to

as the Edge glitch or "E" glitch. Therefore, the output of the simulation

depends on the order in which the circuit was specified by the user. The "E"

glitch is always identified but its propagation is based on node processing

order. One way to get around this problem is to use a two-pass approach by

first performing a leveling operation [28] as a preprocessing step. This sim

ply means that each node should be assigned a value based on its depth from

the inputs. Then every node scheduled at a given timepoint should be pro

cessed in ascending order. This would incur some overhead but would pro

duce the desired results, i.e.. the same solution regardless of the order of

the input description. At the present time, SPUCE 1.7 will identify the glitch

and may or may not propagate the glitch depending on the order the nodes

are processed.

Another way to eliminate the problem is by modifying the scheduler

data structure so that multiple schedules are allowed. Instead of scheduling

FOLs, it would be better to schedule structures which point to the FOL This

structure would have to include other information such as the schedule time,

end forward and backward pointers to the next and previous schedules of the

same FOL in the time queue. This would allow easy access to all the

schedules of a single FOL for adding and dropping subsequent events. This

proposed data structure is shown in Fig. 3.8. One advantage of multiple

scheduling is that the program can be modified to perform parallel fault

simulation using this data structure.

49

time queue

'"-A FOL

Rg. aB: Aproposed data structure to allow multiple FOL scheduling.

50

A simple circuit which is useful for debugging glitch handling code is the

clock generator shown in Fig. 3.9. By adjusting tr and tf for each gate, all

possible glitch conditions can be produced. For example, if tr-tf =10ns, the

"E" glitch can be generated.

3.5. Transfer Gate Modeling Issues

The incorporation of strengths into the state model does not in itself

solve all the problems of MOS logic simulation. As described in the previous

section, delay modeling is still difficult and the notion of strengths does not

provide any leverage in solving the problem. Transfer gates complicate the

situation even more because they introduce dynamic loading effects, bidirec

tional signal flow, node decay, and charge-sharing. In the sections to follow,

these and other problems concerning the transfer gate are described and

the solutions used in SPUCE1.7 are presented.

3.5.1. Bidirectional Transfer Gates

In general, the transfer gate is a bidirectional element but it is usually

found in a unidirectional application. That is, the designer intended signals

to flow in one direction through the device. SPUCEl.7 provides unidirec

tional transfer gates (UTXG) for this purpose, as it simplifies the processing

thereby reducing CPU-time.

On the other hand, there are occasions when transfer gates are used in

bidirectional applications and therefore the logic simulator must be able to

analyze them accurately. There have been a variety of modeling approaches

for bidirectional transfer gates (BTXG), including the conventional approach

of two unidirectional elements back-to-back as shown in Fig. 3.10. This

51

tA tA

-r t>

Rg. 3.0: A simple circuit which can be used to generate the various
glitch conditions by adjusting the values of tr and tf.

1

1

1

T
1

o

^ w!!!£3?1?,"1^aater «•»• mo**"Wch employs
•^edwith this approach i, that contentions may noToe^olved

52

approach can lead to inconsistencies when different logic values are on oppo

site sides of the element, as is the case in Fig. 3.10. Each value can flow

through the BTXG and reach the opposite side and these errors can percolate

further through the circuit producing incorrect results. One simple way to

process BTXG's in a consistent way is to introduce the concept of composite

node relaxation (CNR). In this method, every node connected through

transfer gates which are "ON" are considered to be the same node for pro

cessing purposes. All fanin lists for the composite node are combined into

one list and a new state is determined based on the composite fanin list.

Since all nodes connected by "ON" BTXG's are considered the same node,

there is no delay between them.

3.5.2. Unknowns at Gate Inputs

Another problem in modeling transfer gates is due to unknowns at gate

inputs. The problem is identified in Fig. 3.11. Normally, if the transfer gate

is "ON" and then shuts "OFF", the output Node Aretains its previous value

but is reduced in strength (goes to the H strength). This is shown in Fig.

3.11(a). There are three cases to consider in conjunction with unknowns at

transfer gates.

CASE 1 : Fig. 3.11(b) indicates the situation at the beginning of the simula

tion. Virtually all gate inputs, except for the ones that have been initialized

explicitly, are in the initial unknown condition. In this situation, the gate

may or may not pass signals.

CASE 2 : The second situation occurs when there is a logic "1" at the input

and it changes to a logic 'T'.^In this case, the level at the output remains the
same but the strength isnotknown. This is illustrated inFig. 3.11(c).

1f
X

1->0

T T

Normal operation with known

states at gate input

1f

1->X

T T

2: l-> Xproduces an unknown
strength at the output, although
the level is known

53

X,

X X,

T T

1: initial unknown produces
unknown levels and strengths

1f

T

o*x

T

Case 3: 0 -> Xproduces an unknown
level and strength

Fig. ail -.Various cases when processing transfer gates with Xat the gate input

54

CASE 3 : The third situation is the reverse of the second. Here, the input

goes from logic "0" to logic "X". Both the value and strength may change.

This is shown in Fig. 3.11(d).

There are a fewalternative methods to handle unknowns at gate inputs.

(1) a pessimistic approach is to generate X/ at the output so that it will be

propagated further. This may produce incorrect circuit operation if

CASE 21s considered, but is the easiest to implement.

(2) another approach is to have the notionofunknown strengths. Using this

model, CASE 2 could be handled by setting the output node to its previ

ous value with an unknown strength. This introduces some complications

in the way the simulator processes nodes. Some bit pattern would have

to be selected for unknown strengths. It is not clear how this special

strength value would interact with other strengths.

Currently, method (1) is used in SPUCEl.7 and other methods are under

investigation [29].

a5.3. Node Decay

When a node acquires the H strength, it retains the previous state on

the capacitance at the node. In physical terms, charge is trapped at the

node but there are parasitic resistive paths from the node to ground or VDD.

Therefore, the node will eventually lose its value and it will become unknown.

This is referred to as node decay. The time constant for the decay is large

but finite.

It is useful to include node decay as part of the simulation, especially for

dynamic circuits. One way to do this is to detect the H strength at a node

and schedule the node to decay after a specified amount of time by setting a

55

special flag at the node. If the node is not redriven before this time, the

node is placed in the unknown state. If the node is redriven, the scheduled

event would be dropped and processing would continue in the normal way.

Unfortunately, the program would incur an excessive amount of scheduling

and de-scheduling overhead, especially in the case of dynamic MOS circuits.

Moreover, in SPUCE1.7, most of the scheduled nodes would he put into the

pool (see Appendix II, part 5). The pool is an overflow area designed to store

all schedules which are greater than 200 timepoints in the future. If node

decay is processed as suggested above, the scheduled decay events would all

be placed in the pool and eventually overflow the limit of the pool area.

Clearly this is not a suitable approach.

An alternative approach, proposed by Boyle [30], is to simply store the

decay time along with the node data structure and avoid scheduling alto

gether. Anytime the node is redriven, this value could be compared to the

current time. If the current time is greater than the decay time, a warning

message could be placed in a file, if the user has requested decay errors.

Then processing would continue as if node decay had not occurred. It is not

useful to simulate the circuit under decay conditions because it is usually a

design error. Therefore, it is simplyflagged as an error and then ignored for

the remainder of the simulation.

a8. Ixtgic gmnlfttinn Twiplenigntatirsn 1*»tAilg

3.8.1. General Program now

The following is a high-level pseudo-code description of the general pro

gram flow during a logic analysis. Note the parallel between the ITA program

56

flow described in the previous chapter and the code below:.

set all nodes to their initial values ;
schedule all FOL's at time 0 ; # FOL = fanout list
*n=0;
while (tn^TSTOP) \

for (each FOL in the queueat the current timepoint) \
for (each element in the FOL) \

for (each output node of an element) [
process node ; #see next section for details
schedule FOL if necessary;

plot all active nodes ;

i

a 6.2. Node Processing Details

LOGIC NODE PROCESSING DETAILS
#
begin

current_state «- (X.0);
place node in CNL; # CNL = composite node list
for (each node in the CNL) \

for (each element in the FIL) j # FIL = fanin list
if (element = BTXG) &(gate = "ON") \

place node in CNL;
i
else I

determine output_state (L.S) of element;
intend_state *- output state ;

i
if (str(intendedLstate) > str(currentjstate))

current_state «- intended_state;
else if (str(intended_state) = str(current_state))

if (iev(intended_state) ^ iev(current_state))
lev(currentjstate) «- X;

J
new_gtate <- current_state
if (new_state ^ old_state) (

for (each node in CNL) \
calculate delay(oid_state,new_state);
call GUTCH HANDLER to schedule FOL ;# FOL = fanout list

end

57

a 7. Switch-level Simulation

The definition of UTXG and BTXG elements (given in 3.5.1) allows switch-

level simulation [9,10] to be performed using SPUCE1.7. Loads can be

modeled using a UTXG with a "weak" output strength. Drivers can be

modeled using a UTXG with a "forcing" output strength. Either a BTXG or a

UTXG can be used for pass transistors depending on the application. Other

floating transistors must be BTXG's. If "ton" and "toff" are specified as 1 unit

of time, then a unit-delay switch-level simulation will be performed by

SPUCE 1.7. For obvious reasons, delays at the switch-level cannot be

modeled in the same way as it is currently done is SPUCE1.7 for standard

Boolean gates. Two approaches have been proposed to introduce detailed

timing information at the switch-level using a resistive simulation model

[31,32]. These methods are under investigation at the present time.

58

CHAPTER4

4. Examples and Results

In this chapter, a number of simulation results and program performance

statistics of SPUCE1.7 are presented. Five aspects of the program are exam

ined in the sections to follow. These are :

• the program performance statistics such as processing speed for the

electrical and logic analyses, typical storage requirements per element,

iteration counts, etc.

• the identification of bottlenecks using profilers

• the factors which affect the run-times such as mindvsch, sor, mrt and

floating capacitors

• SPUCE1/SPICE2 comparisons for execution speed, memory require

ments and simulation accuracy

• mixed switch, logic and electrical-level simulations

The simulations were carried out on the following circuits:

(1) Digital Filter Circuit: This circuit was obtained from [1]. It is the con

trol logic for a digital filter circuit There are 705 MOS transistors and

393 nodes in the circuit. The simulation period is 4/is.

(2) Counter-Decoder-Encoder Circuit: This circuit is a combination of a 4-

bit counter driving a 4:16 decoder and a 16:4 encoder. It is referred to

as the CDE circuit in the rest of the chapter. The switching characteris

tics were based on the specifications provided in a TTL Handbook [33].

The circuit has 1,326 MOS transistors and 553 nodes and is the largest

59

circuit simulated so far. The simulation period is also 4/4S [34].

(3) NMOS Operational Amplifier : This circuit was obtained from [35]. It

was designed as part of a phase-locked loop circuit. This circuit is used

to illustrate the capability of ITA when simulating analog circuits.

(4) Boot-strapped Inverter Circuit : This circuit was described earlier in

Chap. 2. It is illustrated in Fig. 2.4(b). The circuit is used to examine

the effects of a floating capacitor element in an ITA simulation.

(5) Industrial Microprocessor Control Circuit : This is the critical path

through the control circuitry of a pP designed using NMOS technology.

(6) Industrial 64K Ram Circuit: This is a portion of a high-speed 64X static

RAM circuit designed using CMOS technology.

(7) 4x5 Multiplier Circuit: This circuit uses standard multiplier structure.

It features novel exclusive-OR and ADDER functions designed by Kuni-

nobo [36]. This example is used to illustrate mixed-mode simulation

and to compare the run-times associated with transistor-based simula

tion at the electrical and switch levels.

4.1. Program Performance Statistics

In order to predict the run-times and memory requirements of the pro

gram SPUCEl.7, the program execution speed and memory usage statistics

are required. These statistics have been tabulated below for both the electri

cal and logic simulators.

Electrical Simulation Statistics

Node Evaluations
SOR-Newton Iterations {no floating caps)
SOR-Newton Iterations (with floating caps)

Electrical Element Storage Requirements

400 nodes/sec.
3-5 iterations/node
6-20 iterations/node

Elements Type Words Required
Transistors Load 3 x no. of loads

Driver 4 x no. of drivers

Transistor 5 x no. of transistors
Capacitors Grounded 0

Floating 3 x no. of capacitors
Resistors 3 x no. of resistors

Element Model Type Words Required
Transistors Load 13 x no. of loads

Driver 13 x no. of drivers

Transistor 14 x no. of transistors

Capacitors Grounded 1 x no. of grounded capacitors
Floating 3 x no. of floating capacitors

Resistors 3 x no. of resistors

Logic Emulation Statistics

Node Evaluations 650 nodes/sec.

Logic Element Storage Requirements

Elements Words Required

inverter 3 x no. of inverters
buffer 3 x no. of buffers
AND ~5xno. of ANDs

OR ~ 5 x no. of ORs
NAND ~ 5 x no. of NANDs
NOR ~ 5 x no. of NORs
XOR ~ 5 x no. of XORs
XNOR ~ 5 x no. of XNORs
transfer gates •** 4 x no. of devices

Model Type Words Required

60

inverter 11 x no. of different inverter models
buffer 11 x no. of different inverter models
AND ~ 11 x no. of different AND models
OR ~ 11 x no. of different OR models
NAND ~ 11 x no. of different NAND models
NOR ~ 11 x no. of different NOR models
XOR ~ 11 x no. of different XOR models
XNOR ~ 11 x no. of different XNOR models
transfer gates ~ 8 x no. of device models

Node Storage Requirements

N = number of circuit nodes

Data Logic Node Electrical Node

Node list 1 1
Node pointers N N
Node data 8N 9N
Node FIL N 3N
Node FOL 3N 3N
Capacitor N N

61

4.2. Profile Statistics

The SPUCE1.7 program execution times can be reduced somewhat by

applying the techniques suggested in Chap. 2. These were based on intuitive

arguments. It is important to identify bottlenecks in the program and iden

tify where it is spending most of its time in a quantitative way. A profiler is a

modern programming tool which is very useful for this task. It monitors the

program during execution and provides information relating to the percen

tage of time spent in each subroutine. Using this information, the program

can be modified in sections where it will provide the most benefit.

The following profile statistics were obtained from a simulation of the

digital filter circuit using electrical analysis.

62

total time: 3196 seconds

time(%) time(sec.) no. of calls name subroutine task
28.7 916.33 1222883 prtim processing a timing node
17.3 554.47 2449814 tntxg evaluate transistor model
14.2 455.32 5799795 getexv get a value from another node
8.2 231.63 951895 sqrt perform a square root operation
6.3 203.63 900167 tndri evaluate driver model
5.1 164.07 658140 tnloa evaluate load model
4.7 152.62 792936 prelm process an element in the FOL
1.6 51.92 4001 prfot process a FOL in the time queue
1.3 40.23 276985 adsfo add a FOL to the time queue
1.2 37.53 24046 dropf drop a FOL from the time queue
0.3 9.70 20547 prout print out a node

It is clear that most of the time is spent processing nodes and evaluating

transistor models for the SOR-Newton iteration. Therefore, any speed-up

techniques should be applied to these areas of the program. It is expected

that, as the program is developed further, information provided by the

profiler can be used to significantly reduce execution time, particularly for

electrical simulation. Other methods, currently available to the user to

reduce the total run-time, are described in the next section.

4.3. Factors Affecting Execution Time in Electrical Simulation

4.&1. CPlKime vs. MRT

SPUCE1.7 has a user-specified fixed minimum timestep called the mrt

(Minimum Resolvable Time). The symbol A will be used to refer to the

timestep associated with a particular node. In SPUCEl, h is some integer

multiple of mrt. Although the minimum timestep is fixed, the value of h for

a specific node is dependent on the activity at that node. For example, when

the node is active, h is equal to mrt. Otherwise, h is defined by the time

difference between two events at the node. In a sense, the timestep at a

node is determined implicitly by the activity in the circuit

63

Since there is no explicit timestep control mechanism in SPUCE1, the

CPU-time required to perform electrical simulation is a strong function of

mrt. Fig. 4.1 illustrates this relationship for the CDE circuit. There is an

optimum value of mrt for this particular circuit at Ins. At values of mrt

greater than the optimum, the program iterates longer to produce solution

at a particular timepoint. This is due to the fact that a linear prediction gen

erates a poor guess as the timestep is increased and the diagonal terms of

the conductance matrix, -r-, are reduced thereby weakening the diagonal

dominance property of the matrix. In fact, at a very large value of mrt the

program may not converge at all.

At mrt values less than the optimum, the program is forced to do more

work during the active periods than is really necessary, based on the time

constants in the circuit. Therefore, there is a rapid rise in the curve in Fig.

4.1 below the optimum. It has been observed that at very small timesteps,

the curve begins to level off. This is probably due to the fact that the predic

tion step is very accurate and only one or two iterations are required for con

vergence.

The relation between CPU-time and mrt suggests that, for a given tech

nology, the optimum value should be obtained through experiment and used

in all further simulations. Of course, if an explicit dynamic timestep control

mechanism is implemented, this would not be necessary.

4.3.2. CPlHime vs. IflNDVSCH

In SPLICE1, events at a node are propagated to its fanouts if the change

in the node voltage is considered to be significant. If the change is not

significant, the fanouts are not scheduled and the node is returned to its

Fig-4.1: CPLKimeTB. HKT

0 0.2 0.4 0.6 0.B 1.0

MINDVSCH (volts)

fig. 4.2: CPlHime vs. MINDVSCH

64

65

original value. This constitutes the event-driven selective-trace feature in

SPLJCE1. The scheduling threshold parameter, used to determine whether or

not the change is significant, is called mindvsch. It is specified in units of

volts, by the user, for an entire simulation and is the same for every node in

the circuit.

The value chosen for mindvsch has a profound effect of the simulation

results. Careful consideration must be given to select an appropriate value

for this parameter. It can be thought of as the minimum voltage change

which can affect the fanout elements of a node. Based on experience with

the program, an appropriate value for most digital circuits is lmV. It is

much smaller for analog circuits, particularly if there are high-gain stages.

The effect of mindvsch on CPU-time is quite dramatic as shown in Fig.

4.2. As mindvsch is increased, the CPU-time goes down. This suggests that

the value should be made as large as possible. Unfortunately, some

significant events may be accidently dropped if the mindvsch is too large

resulting in a loss of accuracy. Also, node voltages can only reach a value

which is within mindvsch of their final value because the remaining voltage

change is not considered significant Hence, if mindvsch is too large, there

will be errors at the end of each transition.

4.3.3. Effect of floating Capacitors

As indicated in Chap. 2, floating capacitors no longer pose a problem to

the electrical analysis in terms of accuracy but tend to degrade the simula

tor performance. The factor which determines the amount of degradation is

the ratio of the floating capacitor to the grounded capacitor. In order to

illustrate the relationship between CPU-time and capacitance ratio, the

boot-strapped inverter of figure 2.4(b) was simulated with different values of

66

50 100 150 200

Fig. 4.3: CPU-time vs. CapacitanceRatio

Fig. 4.4: CPU-time vs. SOR

87

^toa* . The results have been plotted in Fig. 4.3. It is clear from this graph

that the relationship obeys a square-root law.

Although the graph indicates that solutions may be obtained regardless

of the ratio, this is not true in general. Therefore, if the ratio is too large,

the iteration may not converge. Special techniques must be used to reduce

the number of iterations required to solve nodes with floating capacitors

since this is usually the case. Research is underway to find ways to accom

plish this.

4.3.4. CPU-time vs. SOR

The sor parameter was introduced in Chap.2 as an acceleration parame

ter for the nonlinear Gauss-Seidel iteration. This parameter has a significant

effect on the CPU-time but does not affect simulation accuracy. Fig. 4.4

shows the relationship between CPU-time and sor obtained from simulations

performed on the digital filter circuit There is an optimum value of sor

which minimizes the run-time of the simulation. In this case, the optimum

value is 0.8.

Although the optimum value changes from technology to technology, it

is worthwhile to obtain the value experimentally as it may provide a substan

tial improvement over the standard Gauss-Seidel iteration.

4.4. SPICE2 vs. SPLICE1.7

Five circuits were simulated at the electrical level using SPICE2 and

SPLICE1.7 to compare run-times, memory requirements and accuracy.

These simulations were performed on a VAX-11/780 under the UNIX operating

system. In both simulators, default parameter values were used for the

68

convergence criteria, integration method, and accuracy tolerance. The

values are available in the user guide for each program.

4.4.1. CDE Circuit

A block diagram of the CDE circuit is shown in Fig. 4.5. The details of

the blocks are given in [33]. This circuit is large and highly unidirectional in

nature. A 4-bit counter provides a sequence of inputs to the 4:18 decoder,

the output of which is encoded to 4-bits. The simulation period was 4/xs with

an mrt of Ins. As shown in Fig. 4.6, the output waveforms have long latent

periods. For this circuit, SPUCE1.7 was 66 times faster than SPICE2 and its

memory usage was 35 times smaller, for comparable accuracy. More impor

tantly, the SP1CE2 simulation required 32 hours whereas the SPLICE1 simula

tion required only 40 minutes! This represents a substantial improvement in

speed and allows a simulation of this magnitude to be quite feasible. A small

fraction of this speed advantage can be attributed to the fact that SPLICE1

has been tailored for transient analysis, but the the key reason for the

improvement is the efficient exploitation of latency.

The simulation results are summarized in Table 4.1. Also included in

this table are the simulation results obtained using SPLICE1.3, an earlier ver

sion of SPLICE1 which used NTA. It is interesting to note that SPLICE1.7

required only twice as much time as SPLICE1.3 to produce a solution even

though it iterates to convergence. SPLICE1.3 uses only one SOR-Newton

iteration at each timepoint, but it can reject the new solution if the change

in voltage over an mrt is considered to be too large, as determined by a

parameter called "maxdvstep". This is done to maintain simulation accu

racy. For example, if the voltage change between times tn.t and in is con-

CLE

4:16

DECODER

Kg. 4.5: Hock Diagram of the CDE circuit

Kg. 4.6: Output waroforms of CDE drcuits Ifaevnafo*,..

69

70

sidered to be too large, the program would cut the timestep by a factor of 4

and perform another series of single iterations at timepoints fn-i+T";
4

h 3h
*n-i+TH *n-i+"7~and tn- Further timestep cutting would be done if the vol

tage change was deemed to be too large over any subinterval. Therefore,

many evaluations may be performed to produce the solution a timepoint,

although a single iteration is always used at any given point in time. The

attempt to maintain accuracy in this manner increases the overall simula

tion time. Furthermore, on the first iteration at a timepoint, SPLICEl.7 uses

previous history to predict a new voltage at a node, thereby reducing the

total number of iterations required to converge to a solution.

Circuit

Mosfets
Nodes

CDE
1.326
553

Time

(s)
Memory
(Kbyte)

SPICE2G
SPUCE1.7

115,840
1,740

2,420
68.9

Ratios 66 35

SPUCE1.3 843 68.9

Table 4.1

Comparison of conventional circuit simulation

and ITA for the CDE circuit.

One of the pulses in Fig. 4.6 has been magnified in Fig. 4.7 to compare

the accuracy of the three approaches used to simulate the CDE circuit, as

indicated in Table 4.1. The pulses from SPLICEl.7 and SPICE2 are centered

at 1627ns and 1628ns respectively. This difference would be indistinguish

able at the level shown in Fig. 4.6 and it is not clear which is the more accu

rate solution. In this case, the true solution lies between the SPLICEl.7 and

4.0

V 2.0

/
^•J

0.0

1.60

SPLICE1.6

A

71

/ySPUCE1.3 SPICE26

/
i

/

1.61 1.62

TIME (jiS)
1.63

Yig. 4.7: The pulse shown in 4.6 has been magnified here
to compare ITA with NTA and SPICE2.

1.64

72

SPICE2 results. The output of SPLICEl.3 features some numerical noise in

the vicinity of 0.5 volts which can be attributed to the single SOR-Newton

iteration used in NTA. The pulse generated by SPLICEl.3 is approximately

correct in its size and shape but is centered incorrectly at 1608ns, an error

of 20ns.

4.4.2. Digital Filter Circuit

The block diagram of the digital filter is given in Fig. 4.8. Further details

may be found in [l]. The circuit was simulated using SPLICEl.7 and required

1783 seconds. The original SPLICE1 program, as described in [l], required

453 seconds which is 4 times faster. Clearly, the cost of ITA vs. NTAdepends

on the size and nature of the circuit, but the key point is guaranteed accu

racy in the solution produced by ITA For this circuit, SPLICEl.7 was 17

times faster and its memory usage was 21 times smaller than SPICE2. This is

due to the fact that this circuit is somewhat smaller than the CDE circuit and

has much more activity.

Circuit
Mosfets
Nodes

SPICE2G
SPLICEl.7

Ratios

Digital Filter
705
393

Time

(s)

30,582
1,783

17.1

Memory
(Kbyte)

1,038
48.4

21.4

Table 4.2

Comparison of conventional circuit simulation,

and ITAfor the Digital Filter Circuit

73

riffXr-i

.1?

Fig. 4.8: Hock Diagramof DigitalFilter Circuit

74

4.4.3. Industrial uP Control Circuit

This schematic for this circuit is shown in Pig. 4.9. It contained over 100

transistors and 100 diodes and is representative of a typical simulation per

formed using the SPICE2 program. Although no extra elements were added

to this circuit, there was a capacitance to ground at each node of at least

10FF in value. The SPLICEl.7 simulation required 4 min. while the SPICE2

simulation required 24 min. The memory requirements were 8 times less for

the SPLICE1 job. The output waveforms are shown in Fig. 4.10.

Circuit
Mosfets
Diodes
Nodes

uP Control Circuit
116

116

66

lime

(s)
Memory
(Kbyte)

SPICE2G
SPUCE1.7

1426.6
177.2

205.9
26.2

Ratios 8 8

Table 4.3

Comparison of conventional circuit simulation,

and ITAfor an Industrial jliP Control Circuit

4.4.4. Industrial 64K CMOS Static RAM Circuit

The block diagram for this example is given in Fig. 4.11 and each subcir-

cuit schematic is shown in Fig 4.12. This circuit contained over 300 transis

tors and is an example of a industrial circuit which would be very expensive

to simulate using SPICE2. The circuit contained only 36 explicit grounded

capacitors out of 151 nodes. Diodes were used on the remainder of the nodes

to model the parasitic junction capacitance effects. This was a sufficient

condition to obtain convergence at every timepoint.

Fig. 4.0: Worst-case path through an industrial
Microprocessor Control Circuit

01

76

1 /— •---^

\

_ — v

/ \

v_

0 TIME (ns)
150

Fig. 4.10: Output waveforms ofuP Control Circuit

77

In this case, SPICE2 required approximately 3 hours to produce a solu

tion whereas SPLICEl.7 required only 10 minutes. A comparison of the out

put waveforms is given in Fig. 4.13. The results are very close in all cases

except in a few instances where SPICE2 exhibits point-to-point ringing. This

is a product of the trapezoidal integration method used by default in SPICE2,

which allows it to take larger timesteps but may cause ringing if the timestep

is too large. SPLICEl.7 uses a Backward-Euler integration scheme, and for

this method no numerical ringing is present in the waveforms.

Circuit
Mosfets
Diodes
Nodes

64KCW

t

[OS SRAM
J44

277

LSI

Time

(s)
Memory
(Kbyte)

SP1CE2G
SPUCE1.7

10446

623

506.3

49.9

Ratios 16.75 10

Table 4.4

Comparison of conventional circuit simulation,

and ITA for an Industrial CMOS 64K SRAM

4.4.5. NMOSOpAmp Example

Although ITA was developed for the simulation of large digital circuits,

the algorithm is robust enough to accurately simulate complex analog cir

cuits. Therefore, an integrated circuit consisting mainly of digital circuitry

along with a few analog blocks, typically found in telecommunication circuits

and memory chips, can be simulated without any special precautions, other

than the usual requirement of some grounded capacitance at every node.

Y,

Y,

C6
BE"
WE

Row
Address
BttffQT-

toliimn

3s&

Column

Decoder

Column

L\ddr. Buf

V.

u

v.

U

Decoder

Pre-
Decoder

T

MEMORY

CELL

ARRAY

Selector

Column

Decoder

CONTROL

CIRCUIT

R

0

w

D

B

C

0

D

I

R

78

Fig. 4.11j Block Diagram
of the section of the 64KRAH
CSrcuit which was simulated.

MEMORY

CELL

ARRAY

Selector

Sense

Amp.

Data in
Buffer

79

*W-

Tig. 4.12(a) : Memory CeU Array Details

Fig. 4.12(b): Memory CeU Box

Fig. 4.12(c) : Sense AmplifierCircuit

100 200

TIME (NS)

Fig. 4.13: Output waveforms of 64K RAH circuit from SPLICE1
and£PlCE2. Note the ringing produced in the SPICE2 output.

80

300

81

To illustrate the capability of the ITA method, the OpAmp in Fig. 4.14 was

simulated using SPLICEl.7 and SPICE2. All the parasitic capacitances associ

ated with each transistor were fully represented. As shown in the schematic

diagram, there is a large lOpF compensation capacitor providing a capacitive

feedback path in the circuit. The transistor at the output is ^ to provide

high gain at the output node. The circuit was connected in a unity-gain

configuration and a step voltage was applied at the input. Fig. 4.15 is a com

parison of the outputs of SPLICEl.7 and SPICE2. The results are identical

except in the neighborhood of time t=0 due to slightly different initial condi

tions assumed by each program. However, the execution time of SPICE2 was

two times faster than SPLJCE1.7 because of the size and nature of the circuit.

It is expected that this difference will be reduced as the program is

developed further.

In general. ITA may be slower than SPICE2 when simulating small analog

circuits because:

• they usually contain large feedback paths and high gain

• there is little or no latency in a typical analog circuit.

Therefore, the accuracy tolerances for the simulation (abstol, reltol)

must be tight and the scheduling threshold, mindvsch. must be very small.

There may also be a requirement for a small simulation timestep to guaran

tee convergence. Therefore, a dynamic timestep control mechanism is

essential for the simulation of mixed analog/digital circuits to ensure that

the global timestep will not be overconstrained by the analog circuits. Each

node could have a local timestep which is based on its own Local Truncation

Error estimation. Another useful feature would be to allow parameters such

as abstol, reltol and mindvsch to be specified on a per-node basis. In this

stt

Kg. 4.14: NHOS Operational Amplifier Circuit. Thiscircuit
features tight coupling between nodes and high forward gain
[due to large output devices) andlarge capacitive feedback
(due to the lOpF compensation capacitor).

0.0 1.0 £.0

TIME (pS)
8.0

Fig. 4. IS: Output Waveforms of OpAmp circuit from SPUCEl
and SP1CE2. The results are indistinguishable illustrating
the accuracy of the ITA method.

82

83

way, certain nodes would be forced to iterate longer than others to ensure

accuracy at these nodes. These and other techniques may be used to

improve the performance of the simulator for handling analog circuits,

although ITA is not ideally suited to the task.

4.4.6. CPU-time vs. Circuit Size

The run-times for the circuits described in this section are plotted

against the circuit size in Fig. 4.16. It is clear from this plot that SPLICEl.7

is much faster than the SPICE2 program for large circuits. In fact, as the

circuit size increases, the improvement factor increases. This is due to the

fact that the linear equation solution time in SPICE2 increases rapidly with

the circuit size, as described in Chap. 2. The run-time in SPLICEl.7 is pro

portional in the activity in the circuit and the mrt rather than circuit size. If

the circuit is small, the standard approach is usually more efficient.

4.5. Mixed-Mode Examples

To complete this section, a pair of examples are presented using a

logic/switch combination and a logic/electrical combination. The circuit to

be simulated is a CMOS 4x5 multiplier with a 4-bit counter to generate a test

sequence, as shown in block form in Figs. 4.17(a) and 4.17(b). The entire cir

cuit is shown in Fig. 4.18. The multiplier uses the novel adder circuit illus

trated in Fig. 4.19(a) and the exclusive-OR circuit of Fig 4.19(b). It is clear

from this figure that the adder would be difficult to represent using Boolean

gates. Therefore, a switch-level description is appropriate. For the simula

tion, the multiplier was connected in a multiply-by-2 configuration by setting

the B-bits to 2. The counter, shown earlier in conjunction with the CDE cir-

84

150

100- •

-

• CDE (4uS)

A Digital Filter (4uS)

O CMOS Static RAM (300nS)

— • NMOS uP Control (150nS)

X NMOS OpAmp (4uS)

SPICE2N

I**«—%> ©—I •—

SPLICE 1

-hJ •

CPU

time

(10s sec)

50

0
0 200 400

number of circuit nodes

Kg. 4.16 : Aplot of the results obtained using SPUCEl and SPICES.

600

85

cuit, was represented at the logic level using boolean gates. It provided a

test sequence which was applied to the A-bits.

Initially, the operation of the multiplier was verified at the switch-level.

This required only 7.9 CPU-seconds, inchiding the srumdation of the counter

circuit. The output of this simulation is given in Fig. 4.20(a). Note that the

outputs, p0, pi, p2 and p3, are evaluated at the input edges, since the simu

lator is operating in zero-delay mode at the switch-level.

After debugging the circuit at the switch-level, the description of the

multiplier was changed from a switch-level description to an electrical-level

description by simply changing the underlying models associated with the

transistors. The majority of the description was left unchanged. The counter

circuit description at the logic level was left in the circuit to generate the

test inputs for the A-bits, as before. Logic-to-Voltage converters were

inserted where necessary. This simulation required 682.7 seconds. The out

put of the simulation is shown in Fig. 4.20(b).

Some useful ways to use the mixed-mode capability in SPLICEl have

been illustrated in this example:

(1) One can debug the circuit very efficiently using zero-delay switch-level

simulation. Then, a more detailed simulation can be performed to

determine exact delays at the electrical level with very few changes in

the circuit description, if the design is described hierarchically.

(2) A complicated logic circuit can be used to generate test inputs for an

electrical simulation as opposed to using logic sources as input. In fact,

a master clock signal was the only input waveform for the mixed-mode

simulations described here.

86

A-bits

4x5

MULTIPLIER

'

4-BIT

COUNTER
CLK

B-bita
V
/

0

1

0

0

0

Jig. 4.17: Block diagram of 4x5 Multiplier Circuit with Counter Circuit

87

Fig. 4.18 : Details of 4x5 Multiplier circuit

88

X}
OUT

B

MI

fig. 4.10 : Details of Adder and Exclusive-OR circuits

p3/logic —l

-

pz/ioglc ^

p l/logic '"^

pO/logic

q3/1ogic 1

q2/1ogic •

ql/loyic 1

qO/loylc 1

clk/logic

p3/elect

p2/elect

p1/elect /-\ r\r\r
pO/elect ___

q3/1ogic I

q2/1og!c I

q1/loglc 1

qO/loglc 1
r

clk/logic

Fig. 4.20 : Output of Switch4evel and HectricaHevel Simulations

99

90

(3) A complicated circuit can be decomposed into small blocks and.each

block can be simulated with ITA electrical simulation. Once each block

has been checked, a switch-level model can be generated which matches

the logic characteristics of the cells. These blocks can then be combined

for a switch-level analysis of the entire circuit which is relatively inex

pensive compared to electrical simulation.

The results of the simulations are summarized in the table below.

Circuit
Mosfets

Multiplier Nodes
Counter Gates

Counter Nodes

4x5 Multiplier
545

248
124

130

Time

<•)
Memory
(Kbyte)

Switch-level
Electrical-level

rrao

7.9
682.7

64.5

68.3

Table 4.5

Mixed-Mode simulation results

91

CHAPTER 5

5. CONCLUSIONS

SPUCEl has been greatly improved by incorporating the new techniques

described in this report. As evidenced by the statistics in Chap. 4, the new

electrical simulation approach, ITA, is substantially faster than SPICE2 and

requires far less storage. This method has shown so much promise that

efforts are underway to generalize it as a standard circuit simulation

approach. As pointed out earlier, the major problem with the method is the

number of iterations required to obtain a solution when floating capacitors

are present in the circuit As the prototype program is developed further, it

is expected that the performance characteristics will be significantly better

than SPICE2. The ITA method provides a way to efficiently simulate large

digital circuits and it may replace the standard approach in this application.

It is also suitable for implementation on special-purpose hardware and work

is underway in this area. Other areas of future work include the extension of

the method to use Modified Nodal Analysis, dynamic timestep control and

error control mechanisms.

The logic analysis in SPLICEl.7 has been enhanced to perform true-value

logic simulation using a strength-oriented MOS model. This not only allows

accurate modeling at the logic level but also provides a mechanism to per

form accurate mixed-mode simulation. There is still work to be done in the

area of strength modeling for logic elements to define the electrical/logic

interfaces more accurately. SPLICEl.7 handles logic transfer gates in a con

sistent manner but the CNR method is not appropriate for a multiprocessor

architecture. There is also the issue of delay modeling at the switch-level

92

which has not been addressed here. Research is currently being directed at

applying multiple iterations at the logic level to determine state and delay

information in transistor-level logic circuits.

In conclusion, the concepts presented in this report suggest that con

sistent electrical and logic simulation can be performed at the transistor-

level using relaxation-based algorithms and event-driven selective trace

techniques.

93

References

1. A.R. Newton, "The Simulation of Large-Scale Integrated Circuits," Memo

UCB/ERL M7B/52, University of California, (July 1978). Ph.D. Disserta

tion.

2. A.R. Newton, "The Simulation of Large-Scale Integrated Circuits," IEEE

Trans, on Circuits and Systems Vol. CAS-26pp. 741-749 (September

1979).

3. A.R. Newton, "Timing, Logic and Mixed-mode Simulation for Large MOS

Integrated Circuits," pp. 175-240 in Computer Design Aids for VLSI dr-

cuits, ed. P. Antognetti, D.O. Pederson, and H. De Man,Sijithoff and

Noordhoff (1981).

4. B.R. Chawla, H.K. Gummel, and P. Kozak, "MOTIS - An MOS timing simu

lator," IEEE Trans, on Ore. and Sys. CAS22pp. 901-909 (Dec. 1975).

5. S.P. Fan. M.Y. Hsueh. A.R. Newton . and D.0. Pederson, "MOTIS-C : A New

Circuit Simulator for MOS LSI Circuits," Proc. IEEE Int. Symp. on Ore.

and Sys. , (April 1977).

6. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Cir

cuits," UCB/ERL M75/520, University of California, Berkeley. (May

1975). Ph.D. Dissertation

7. LOCUS: User's Manual Version 4, ISD Corporation (1980).

8. F. Jenkins, ILOCS: User's Manual, Simutec (1982).

9. R.E. Bryant, "An Algorithm for MOS Logic Simulation," LAMBDA, pp. 46-

53 (4th Quarter 1980).

10. CM. Baker and C Terman, "Tools for Verifying Integrated Circuit

Designs ," LAMBDA (4th Quarter 1980).

94

11. J.L Burns, A.R. Newton, and D.O. Pederson. "Active Device Table Look-up

Models For Circuit Simulation," Proc. 1983 Int. Symp. on Circ and Sys.,

(May 1983).

12. A.R. Newton and A.L. Sangiovanni-Vincentelli, "Relaxation-Based Electri

cal Simulation," IEEE Trans, on Electron Devices, pp. 1184-1207 (Sept.

1983).

13. "Advanced statistical analysis program (ASTAP)," Pub. No. SH20-M8-0,

IBM Corp. Data Proc. Div.. White Plains. NY ().

14. N. Tanabe, H. Nakamura, and K Kawakita, "An MOS Circuit Simulator for

LSI," Proc. IEEEInt. Symp. on Ore. and Sys., pp. 1035-1039 (April 1980).

15. G.R. Boyle, "Simulation of Integrated Injection Logic," ERL Memo.

UCB/ERL M7BA3, University of California, (March 1978). Ph.D. Disserta

tion.

16. J.M. Ortega and W.C. Rheinboidt, Iterative Solution of Nonlinear Equa

tions in Several Variables, Academic Press, New York (1970).

17. K Sakallah and S.W. Director, "An Activity-Directed Circuit Simulation

Algorithm," Proc. IEEE Int. Conf. on Circ. and Computers, (October

1980).

18. E. Cohen, "Performance Limits of Integrated Circuit Simulation on a

Dedicated Minicomputer System," ERL Memo. UCB/ERL MBL/29, (May

1981). Ph.D. Disseration.

19. A. Vladimirescu and D.O. Pederson, "Performance limits of the CLASSIE

Circuit Simulation Program," Proceedings of the Int. Symp. on Circ. and

Syst, (May 1982).

95

20. E. Lelarasmee, A. Ruheli , and A.L. Sangiovanni Vincentelli, ."The

Waveform Relaxation Method for the Time-Domain Analysis of Large

Scale Integrated Circuits," IEEE Tran. on CAD of Int. Circ. and Sys. Vol

CAD 1, No. 3 pp. 131-145 (Aug 82).

21. J.' White and A. Sangiovanni-Vincentelli, "RELAX2: A New Waveform

Relaxation Approach for the Analysis of LSI MOS Circuits," Proc. 1983

Int. Symp on Circ. and Sys., (May 1983).

22. J. E. Kleckner, R. A. Saleh , and A. R. Newton, "Electrical Consistency in

Schematic Simulation," Proc. IEEE Int. Conf. on Circ. and Camp., pp.

30-34 (October 1982).

23. R. A. Saleh, J. E. Kleckner, and A. R. Newton, "Iterated Timing Analysis

and SPLICE1.6," Proa. IEEE Int. Conf. on Computer-Mded Design, (Sep

tember 1983).

24. L.O. Chua and P.M. Lin, Computer-Aided Analysis of Electronic Circuits:

Algorithms & Computational Techniques, Prentice-Hall, Inc.. Englewood

Cliffs. N.J. (1970).

25. A.R. Newton, "The Analysis of Floating Capacitors for Timing Simula

tion," Proc. 13th AsUomar Conference on Circuits Systems and Comput

ers, (November 1979).

26. H. Schichman and D.A. Hodges, "Modeling and Simulation of Insulated

Gate Field-Effect Transistor Switching Circuits," IEEE Journ. on Solid

State arcuitsVcl. SC-8pp. 285-289 (Sept. 1968).

27. J.E. Kleckner, Iterated Timing Analysis and SPUCE2, To be published

28. G.R. Case. "The SALOGS - A CDC 6600 Program to Simulate Digital Logic

Networks," Sandia Laboratory Report No. SAND 74-044 (1975).

96

29. D. Dumlugol, H. De Man, P. Stevens, and G. Schrooten , "Local Relaxation

Algorithms for Event Driven Simulation of MOS Networks Including

Assignable Delay Modelling," IEEE Trans, on CAD of Integrated Circuits,

(July 1983).

30. Graeme Boyle, Private communication.

31. Gregory D. Jordan and Ravi M. Apte, "Modeling of MOS Transistors in a

Logic Simulator," Proc. IEEE Int. Conf on Circ. and Comp., pp. 431-434

(October 1982).

32. C.J. Terman. "Simulation Tools for Digital LSI Design," Proposal for

Ph.D. Research, Massachusetts Institute of Technology, (December 1981).

33. The TTL Data Book for Design Engineers - 2nd Edition, Texas Instru

ment Incorporated (1976). See fiipflop(7474B p.76), counter(74163

p.326), decoder(74154 p.309). encoder(74148 p.291).

34. Jim Kleckner constructed the CDE circuit.

35. D. Senderowicz, "An NMOS Integrated Vector-Locked Loop," Memo. No.

UCB/ERL M82/32, University of California, (Nov. 1982).

36. S. Kuninobo designed the ADDER circuit.

APPENDIX I

Input Files for Example Qrcuits

The example circuits may be obtained from the University of California at
Berkeley

APPENDIX II

SPLICE1.6 Data Structures

APPENDrxn

SPUCEl. 6 Data Structures

(1) Nodes: The node data structure is set up in GENFS for the logic, electrical
and vrail nodes.

LOGIC NODE:

offset abbrev.

fop

fip_

type
ts<

lval

Istr

modptr

dectim

definition

fanout pointer

fanin pointer

=1 (for logic node) =-1 (for logic output node)
fanout schedule time

logic value (3-bits for current value b2blb0
3-bits for previous value b5b4b3
1=0. 2=1. 3=X)
logic strength (16-bits for current value
16-bits for previous value
minimum strength = 1; maximum strength = 65.536
1: capacitance at node
2: node decay delay value
node decay time

ELECTRICAL NODE :

offset abbrev. definition

0 fop fanout pointer
1 fip fanin pointer
2 type = 2 (for electrical node)

=-2 {for electrical output node)
3 ts* fanout schedule time(last time or next time)
4 Vn-1 current node voltage
5 Vn-2 previous node voltage
6 capptrs points to node capacitance values in rvals
7 tsn-1* last time processed (associated with Vn-1)
8 tsn-2* previous time processed (associated with Vn-2)

VRAIL NODE:

offset abbrev. definition

0 fop -1 (not used)
1 fip -1 (not used)
2 type =5 for a vrail node

3 vn current node voltage = constant
4 vn-1 previous node voltage = constant = vn

(2)

INTEGER information is typically accessed using the nodptr array

Le. info = imem(nodptr+locnod+ipos)

imem : integer memory maintained by memory manager
nodptr : node information data structure origin
locnod : position of 1st piece of info for node

ipos : position of desired info

REAL information is accessed through one more level of indirection:

i.e. capacitance = rmem(rvals+imem(nodptr+locnod+5))

rmem : real memory maintained by memory manager
rvals : origin of real value array

Fanin and Fanout lists: Fanin and fanout lists are stored with the node data
structure. Fanins to a node are all elements which can affect the value of
the node. Fanouts of a node are all elements which can be affected by a
new value at the node. They are set up in the LOGFA, TIMFA and ENDFA sub
routines.

locfol: 0 unused location

l element 1 ptr

2 element 2 ptr

3 element 3 ptr

•

n - element n ptr

If there is only one element in the fanin list (which is often the case), then
this list does not exist The fil pointer in the node data structure has a -ve
sign to denote that it is the element pointer itself.

locfil: schedular link

element 1 ptr
element 2 ptr

element 3 ptr

- element n ptr

(3) Models: SPUCEl stores model information using two levels of indirection so
that one model may be referenced by many elements.

model info pointers are stored in an array called mdmptr:

mdmptr: o locmod 0

l locmod 1

2 locmod 2

3 locmod 3

•

n locmod n

locmod points into a table called modptr which is organized as follows:

modptr: modtyp 1
locpar 1

modtyp 2
locpar 2

modtyp 3

locpar 3

(model type)
(location of parameters)

locpar points into rvals which is an array of floating-point quantities and so
parameters are accessed as follows:

parameter = rmem (rvals + locpar)

The rvals array is just a set of real values in the rmem space.

rvals : 0 rvalue 0

1 rvalue 1

2 rvalue 2

3 rvalue 3

•

n rvalue n

(4) Elements: Elements are initiallywritten out to scratch files (timel, logel) by
the routine SAVEL. Once they are read back in, they are stored in the array
elmptr with the following format:

elmptr: 0 -modnum

1 noutputs

2 nodel

3 node2

4 node3

•

i -modnum

i+1 noutputs

i+2 nodel

i+3 node2

•

nlogwds+0
nlogwds+1 -modnum

nlogwds+2 noutputs
nlogwds+3 nodel

nlogwds+4 node2

•

ntimwds+0

(first logic element)
(number of outputs)

(second logic element)
(number of outputs)

(last logic element node)
(first electrical element)
(number of outputs)

(last electrical node)

(5) Schedulan The time queue is made up of 2 - 100 word arrays and a pool for
any events which do not fall within 200 timepoints of the beginning of the
queue.

QUEUE 1 . time
iscbl

Iscbl:

iscb2

lscb2

iscb3

lscb3

QUEUE 2

99

time

0

1

2

99

POOL

TIME1

L0CF0L1
TIME 2

L0CF0L 2

TIME 3

L0CF0L 3

•

-1

appendixnr

SPUCE1.6 Electrical Element Model Equations

Electrical Element Model Equations

1. Resistors

3. Transistors

a. Triode Region

Drain node

G - i.

2. Floating Capacitors

•»«g "~ Afloat t

I*q =A*ft. j<7ffS-77.-^-)7eb(1.0+X7eb)

G9q =̂ 0,^(7^-77.--^7dsX+(l.0+X7ds)(7S5--7r-7ds))

Source Node

b. Saturation Region

I9q =fff£^<1.0+X7ds)(7ffS-7r)2

Drain Node

<?., =^^{V^-VrfX

Source Node

W=ilf^j<(ySs-VT)s\Hvgs-vT)(i.o+ ^yJ+2(pF)(i.o+A*k))

APPENDIX IV

Source Code for SPUCEl

The SPUCEl program is available in the public domain from the University of
California at Berkeley

	Copyright notice 1984
	ERL-84-2 (1 of 2)
	ERL-84-2 (2 of 2)

