
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ELECTROSTATIC ION-ION TWO-STREAMING INSTABILITY

IN A THERMAL-BARRIER CELL

by

V. A, Thomas and W. M. Nevins

Memorandum No. UCB/ERL M84/22

22 February 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Electrostatic Ion-Ion Two-Streaming Instability In a Thermal-
Barrier Cell

V. A. Thomas

Electronics Research Laboratory, University of California,
Berkeley, California 94720

W. M. Nevins

Lawrence Livermore National Laboratory, University of California,
Livermore, California 94550

ABSTRACT

Some designs for tandem mirror devices rely on a thermal-barrier cell, a
region of depressed potential located between the central cell and the end plugs.
This region of depressed potential relies on, to some extent, an ion distribution
function that has two peaks in vz (ion velocity parallel to the magnetic axis).
Therefore there is a possibility that some ion-ion two-stream modes can be
unstable. Using 1-d models, the stability of model equilibria to electrostatic ion
two-stream modes is considered. Our results suggest that for parameters of
greatest interest (i.e., for planned experiments), these modes should be stable.
Particle simulation techniques are used to examine the nonlinear consequences
for those conditions where instability is present.
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1. Introduction

Many previous papers have been devoted to the study of electrostatic ion-ion streaming

instabilities: Foote and Kulsrud1 , Perkins2 , Weibel3 , Forslund and Shonk4, and Stringer5

among others. In particular, Lontano, Pekker and Pozzolli6 examined the possibility of electros

tatic ion-ion two-steam modes occurring in the a thermal-barrier cell of a tandem mirror. They

concluded that instability is likely under conditions of interest in proposed and actual experi

ments. However their pessimistic conclusion may result primarily from their choice of a

thermal-barrier ion distribution function that has no trapped ions in the combined electrostatic

and magnetic potential well of the thermal-barrier cell.

In this paper use is made of ion distribution functions which realistically include thermal-

barrier trapped-ions. These distribution functions were first constructed by Cohen7 and were

designed to model results from recent Fokker-Planck computer simulations of the time

independent equilibria of thermal-barrier cells; these analytic models were used by Cohen to

calculate the self-consistent axial electrostatic fields in a thermal-barrier cell equilibrium. In this

paper we will first make use of Cohen's model distribution function and his equilibrium fields



to examine their stability using infinite medium theory. Complementary 1-d particle simula

tions will then be done using these ion distribution functions, first in a periodic homogeneous

model and then in a novel inhomogeneous model. Results from both our stability analysis and

from our simulations imply an optimistic view of the stability properties of realistic thermal-

barrier cells ( e.g., TMX-U and MFTF-B ) to the electrostatic ion-ion two-stream modes.

2. The Time Independent Equilibrium

The thermal-barrier concept as part of a tandem mirror is basically a potential depression

located in a magnetic mirror between the central cell and the end plugs; it serves to isolate the

electron populations in the two regions. A schematic diagram of one possible design is shown

in Fig. 1; a detailed description of the original thermal-barrier concept is given in Baldwin and

Logan8. The thermal-barrier makes it possible to achieve a large confining potential for the

tandem-mirror central cell ions, using only a relatively low plasma density in the plug region.

This potential depression is created in part by the removal of any ions which might be trapped

in the thermal-barrier. With no trapped-ions inside the thermal-barrier cell, the ion distribution

function at the magnetic field minimum is double-peaked in parallel velocity, and the ion den

sity there is correspondingly depressed. The thermal-barrier equilibrium is sometimes described

as an ion-hole type of solitary potential structure; however it is unlike most ion-holes in that it

is many Debye lengths long.

Equilibrium studies of the thermal-barrier cell are useful in order to gain an understand

ing of the microstability properties of the cell. Self-consistent equilibrium solutions allow one

to estimate the particle density and the velocity distributions as functions of position. One may

then analyze the stability as a function of the resulting equilibrium parameters. It should be

realized, however, that our self-consistent equilibria are generated using Cohen's model distri

bution functions and as such may be in error if the equilibria are heavily model dependent. To

determine how model dependent our results are, equilibria have also been studied using a

different kinetic ion model from Cummins10, as detailed in Appendix A.

The equilibrium axial electrostatic fields are solved for by assuming model distributions



to the central ceil to the end plug

FIG. 1. Schematic axial potential profile for a thermal-barrier. Here 4>c is the central cell
potential and 0O is the potential of the minimum in the thermal-barrier cell . The quan
tity nECRH represents the energetic mirror trapped electrons due to the applied electron
cyclotron resonance heating.



for the ion and the electron populations. These model distribution functions are expressible in

terms of the constants of motion since they are used for equilibrium calculations. In general

the constants of the motion are not limited to the energy and the magnetic moment of the par

ticles. The distribution function may have multiple sheets representing the different trapped

populations which are not in contact with each other. This is analogous to the famous case of

BGK modes9where the trapped particle distribution may depend upon which region the trapped

particlesare in. These possibilities will not be included in this paper.

The ion population is modeled as consisting of two groups, the thermal ions and the

sloshing ions. The thermal ion distribution consists of those ions passing freely between the

central cell and the thermal-barrier region, and those central-cell ions which have been trapped

by collisions in the thermal-barrier ceil. The sloshing ions have been included in some

thermal-barrier designs and consist of energetic ions confined entirely by the magnetic well.

These ions are to be generated by injection of neutral beams. In this paper we will not go into

the details of the sloshing ion distribution function, even though these details can be important

for determining the potential profile in the thermal-barrier cell. The primary aim of this paper

is to examine the stability of likely thermal-barrier distribution functions; thus for our pur

poses, also considering sloshing ions amounts simply to considering an ion distribution that is

more double peaked (in parallel velocity space) at the magnetic field minumun.

The model distribution function for the thermal ions as developed by Cohen7 can be

expressed in terms of the invariants p and € , where fx is the magnetic moment for the ion and

6 is the ion kinetic energy. In this model the passing ion component is assumed to have a

Maxwellian distribution, while the ions trapped in the thermal-barrier cell are given the distri

bution

/. , m, ,3/2 (c - a Bmix n) m
/*- - «o (3ST> exP fa-i)j; (1)

where BmM is the magnetic field strength at the mirror throat and Tt is the ion central cell tem

perature. The quantity a is an artificial parameter which is always kept greater than one; vary

ing a controls the relative density of trapped and passing ions. The limit value a «1 defines a



thermal ion distribution with no trapped ions; raising the value of a from unity increases the

relative density of trapped ions to passing ions.

The electron population is also modeled as composed of two different groups, the ener

getic (ECRH) electrons and the thermal electrons. The ECRH population is assumed to

respond only to the magnetic field and as such is independent of the electrostatic potential,

<f)(z); the less energetic thermal electron population is modeled as a massless fluid with a spa

tially uniform temperature, Te> whose density n,h responds only to electrostatic potential. The

reader is referred to Pearlstein and Nevins11 for a more complete electron model.

Using a given electron response, the self consistent solution for the axial electrostatic

fields is found by imposing the quasineutrality condition:

*(*,£)-ff£aur (*) + »*(*)-"/<*.£) • <2)
In performing these calculations it is necessary to choose a form for the magnetic field as a

function of the axial coordinate, Biz). Different equilibria are obtained by varying the parame

ters TelTi , a , nECRH and Biz). The quasineutral solutions <£(z) are smooth functions over

much of the range of the parameter space for these variables providing that I » \D where L

is the length of the thermal-barrier cell; this is quite valid for several systems of interest. How

ever under some conditions, the equilibrium solutions may develop sheaths (when the trapped

ion density is very small, or for those cases where the energetic electron population has too

large a density). An example of a smooth self-consistent axial potential profile is presented in

Fig. 2.

The parameters a, Te/T,, and nEcRH are important parameters in determining the appear

ance of the equilibrium solution. Physically, it is required that the potential dip in the

thermal-barrier cell be sufficient to inhibit thermal contact between the central cell and end cell

electron populations. Adequate thermal-barrier model equilibria can be constructed either hav

ing mostly passing ions and very few trapped ions (small a), or having relatively more trapped

ions; but these two extremes (i.e., model equilibria having large and small a) must be con

sidered quite differently. A thermal-barrier equilibrium having few trapped ions has a larger ion



T,

FIG. 2. ™ia, jiuiciuiiu prome lor a«»4.0 Here
"ecrh - const (1 - \/R)/i\ - \/RM)j wnere * is the ioca, mirror ratio and R^ js
the maximum ocal mirror ratio in the system which for this problem is 3 . The axial

Axial potential

magnetic field is given the form Biz)

profile for

2irz£max - ^sin(-y-) with L being the length of
the system. The central cell ion and electron temperatures are equal. The minimum ion
density is 0.43 of the maximum density. The filling parameter g may be obtained from
rig. /.



density depression at the magnetic field minimum than does an equilibrium with many trapped

ions; it turns out that for smaller values of a, pumping out the barrier-trapped ions alone is

sufficient to generate the required potential dip. For large values of a, the ion density at the

magnetic field minimum increases and it becomes necessary to include a significant number of

energetic (ECRH) electrons to establish the desired potential depression.

It turns out that the functional form of this energetic electron component as a function of

Biz) is important in determining the stability of the electrostatic ion-ion two-stream mode.

Since this energetic electron component is formed by applying ECRH away from the magnetic

field minimum, their density «£c/w(z) must be double peaked initially with the peaks occurring

at the turning points of the energetic electrons. However, as indicated in Poulsen12 the dom

inant collisional processes are pitch angle scattering and drag, implying that the asymptotic ener

getic electron spatial distribution has only one local maximum located at the magnetic field

minimum. On the other hand, during start-up the energetic electrons will have two spatial

maxima. This start-up period is quite long compared to the time scale for instabilities since the

energetic electrons are at least weakly relativistic and therfore have quite long collision times.

Therefore we need to examine equilibria that have ECRH electrons having one and two spatial

maxima.

As a check of the numerical solutions " test ion " particle simulations were performed,

using a simulation model described in section 5. Initially the ions were loaded with their equili

brium parameters. Then keeping the axial electric field fixed at its equilibrium value, the ions

were advanced for a time equivalent to many bounce periods of a typical trapped ion. The

effect of the nonuniform magnetic field was modeled by using a /iV5 force. The ion density

and the ion velocity distribution function were monitored as a function of space and time. In

addition, the self consistent axial potential was computed from the particle positions and com

pared to the equilibrium axial potential. The self-consistent potential fluctuated about the

equilibrium potential profile due to the finite number of simulation particles. These diagnotics

verified that a physically realistic equilibrium had been obtained. We mention that the particle



density weighting had to be made proportional to the local magnetic field strength, to account

for the flux tube expansion (pointed out to us by Byers13).

3. Linear Theory

In this section we review the kinetic, Vlasov-Poisson linear theory for the ion-ion elec

trostatic two-stream instability in an infinite uniform medium for the restricted case where the

wavevector is parallel to the magnetic field. The theory is then applied to the thermal-barrier

cell.

As mentioned in the introduction, similar studies have been performed previously includ

ing propagation at an angle to the magnetic field. Our results are different in that we use a

different model distribution function for the ions, ours being more appropriate for the thermal-

barrier cells than the earlier models. As it turns out, for parameters likely to occur in thermal-

barrier cells our model distribution function is more stable than both the ion distribution func

tion in Lontano, Pekker and Pozzolli6 (who have no trapped ions) and the counter-streaming

Maxwellian ion distribution function of Foote and Kulsrud1. We also present a detailed pic

torial account of the relevant quantities of interest for this instability.

3.A: Solutions to the Dispersion Relation

The appropriate dispersion relation for our analysis is given by Di<o,k) -» 0 with

dfivz)

£>(«>,*)--1-
1

k2\r2^De

1

*2\-2LZ);
;

dv,
dv. (3)

where vz is the parallel velocity and the reduced distribution function is normalized to unity.

The quantity \De represents the linear electron response and may be used to define an effective

electron temperature. This effective electron temperature, Te ef/,, is calculated in the general

case by using

4rr

k2

•

8pe _ 4w

"" k2

f 2 \
neQe

Te eff. me
_ 1

k Xfle
(4)

For an electron distribution which is a sum of Maxwellians of different temperatures one may



write

TV/.-1-!*?, 7T1 (5)
5

where ij5 is the fraction of the s'h component. Hence, shielding is likely to be dominated by the

cooler component. Note that the imaginary portion of the electron susceptibility is being

ignored. This eliminates the possibility of resonant electron instabilities.

Nyquist analysis is useful to illuminate some of the characteristics of the instability. The

Nyquist technique requires that the dispersion function be be mapped from a contour just

above the real axis in the complex o> plane. The number of times the origin in the complex D

plane is encircled by this contour is equal to the number of unstable roots in the system. The

function D(<a,k) is defined by Eq. (3).

First, we note that our ion distribution function is bimodal and is symmetric about the

origin. Therefore ImiZ) (*>,&)] is equal to zero only at five points along our contour just above
the real axis in the complex a> plane. These points satisfy dfivz)/dvz - 0 and therefore the

residue is equal to zero. These points are given bya>~±«>,<o-0, and o> — ± k v^ where

vmax is the ion velocity at the maximum in the distribution function for parallel velocities. The

values of ReliXcu)] at the frequencies where ImlZ)(a>)j —0are

dfivs)

- dv, ,rtD,--

and

*Z),--

1 +
1

Ar2X 2iDe

1 +
1

*2X- 2Dt

/U>2-- 1 +
1

A:2X-2

1

*2A- 2

dv*;a\

v.

1

k knt

dfivz)
dv,

<De 'Di

respectively. All of these values are less than zero iRDw < 0) with the possible exception of

the value at o> — 0 . This behavior is shown in the schematic Nyquist diagram for this problem

in Fig. 3. Therefore there is at most one unstable root to the dispersion relation. We also see

that at marginal stability the frequency is given by a* —0. This just implies that the path in the

complex D plane goes through the origin. In addition we may conclude that the instability has



Im(D(w))

Re(DM)

FIG. 3. Schematic Nyquist diagram for our problem. This diagram indicates one unstable
mode since the origin in enclosed one time.
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o»r — 0. This follows from the fact that <o — <ar + iy and cu — —a>f + iy are both solutions to

the dispersion relation. The existence of only one unstable root forces a>r to be equal to zero.

In addition to solving for marginal stability, it is of general interest to solve the dispersion

relation to find the maximum growth rates and the wavelengths of the unstable mode as func

tions of the characteristic parameters of the system. In particular, it is interesting to show ymax

and the corresponding wavelength for fixed a in a plane, with the x axis representing the nor

malized drift velocity and the y axis representing the temperature ratio TjTe eff. . The nor

malized drift velocity, «, is defined as (-2e80/7))1/2 where 8<f> represents the negative poten

tial difference between the location in the thermal-barrier cell and the central cell of the tandem

mirror. These detailed calculations are summerized in Fig. 4 only for the model ion distribu

tion function from Cohen1.

In Fig. 4 contour plots for y^ and the corresponding wavelength for a particular value

of the parameter a are shown. The growth rate is a relatively insensitive function of k near its

maximum and so the contours for k are not too smooth. A representative plot of y vs k for a

point in the iu,Tj/Te eff.) plane is given in Fig. 8. An important feature is the fact that near

marginal stability the quantity ymax is a relatively slowly varying function of the effective elec

tron temperature. This implies that a system becoming unstable because of some kind of

fluctuation is likely to be unstable with a small growth rate. As will be discussed in the simula

tion section, a small growth rate leads to low saturation levels for the perturbed field quantities.

It is also to important to note that the wavelength corresponding to the most unstable mode is

considerably longer than the ion Debye length over much of the unstable parameter space.

This suggests that finite length effects could become important in that the most unstable

wavelength may not be negligible compared to the characteristic length of the system. Had the

most unstable wavelength been equal to the ion Debye length finite length effects could be

expected to be very small.

It should be pointed out here that the fact that the contours reach a maximum value of

Tj/Te eff, and then turn back down toward the x axis as the drift velocity is increased is an
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FIG. 4. Contour plots showing (a) maximum growth rates and (b) the value of k\Dl
corresponding to that maximum growth rate. The local mirror ratio is rb = 3 and the
parameter a is equal to 1.9 . The contours of growth rate are spaced 0.034a),,, apart and
the contours of kkDi are 0.025 apart. The wavelength is infinite at marginal stability , the
outer most curve. The quantity u is the normalized drift velocity as described in the text.
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artifact of including only wavevectors parallel to the magnetic field. If off- axis propagation is

allowed then the growth rate contours will not come down from their value at the maximum

T//Te eff, as the drift velocity is increased. Rather, the the wavevector will move off axis so

that the drift velocity parallel to the wavevector is reduced. Then, assuming that the addition

of the perpendicular wavevector component does not alter the physics of this zero frequency

mode ( i.e. the growth rate is larger than the ion cyclotron frequency ) , the growth rate con

tours will reach a maximum value of TJTe eff. and then remain at that value as the drift velo

city is increased.

Foote and Kulsrud1 have shown that this type of unmagnetized zero frequency mode is

the most unstable mode for counter streaming Maxwellian ion beams until the drift velocity

reaches twice the value at which the growth rate of the parallel propagating mode begins to

decrease. For larger drift velocites an ion cyclotron instability is the most unstable mode.

The preceeding plots are all for a particular value of the parameter a. For larger values of

the parameter a, the trapped ion component increases for a fixed value of 8<£ . The major

effect of this change is to shift the contour plots along the x axis and to compress them in the

y direction. The general shape of the maximum growth rate contours remains the same. The

maximum growth rate also does not vary much. On the other hand the wavelength correspond

ing to the most unstable mode increases. These general characteristics are evident in Fig. 5.

This is qualitatively easy to understand since the effective ion temperature is given by the width

of the distribution function in v. and not by the quantity 7* ( which represents the central cell

ion temperature) .

The marginal stability diagram in Fig. 6 (a) is also indicative of this Nsimilarity " in the

nature of the distribution function as the parameter a is varied. This figure gives contours of

marginal stability for fixed TjTe eff. in the ia,ed<f>/Tj) plane. For a given contour line the sys

tem is unstable between that line and the ordinate. For this instability the relevant boundary is

that at smaller values of the drift velocity since for larger drift velocities the parallel propagating

mode may not be the most unstable mode. For drifts larger than the lower boundary of a
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FIG. 5. Contour plots of (a) maximum growth rate and (b) value of kkDl corresponding
to the maximum growth rate. The parameter a - 4.0 and the other parameters are the
same as in Fig. 4 except that now the contours of kkDi represent 0.0145 and the contours
of ymax represent 0.03270,,.
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FIG. 6. Contours of (a) marginal stability for fixed effective electron temperature and (b)
the quantity g —ntotalln^^ in the (a,eS<t>/T,) plane. The contour that extends furthest
to the right in (a) represents an infinite effective electron temperature. The other contours
are equally spaced with increments TjTeeff of 0.03. Contours with TjTeeff greater
than 0.30 are not shown to facilitate viewing. The contours actually extend to Te = T, for
very small values of the parameter g. Contours in (b) are in intervals of 2 starting with
g — 2 and ending with g — 22. The mirror ratio is rb — 3.
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given curve, the zero frequency instability will exist at some angle to the magnetic field as dis

cussed above.

Figure 6 (b) shows the quantity g - ««,«//«/»«//« in the same plane. Here ntotat is the total

ion density and n^ing is the passing ion density. Thus g gives an indication of the pumping

required to be located at a point in our marginal stability plane. The local mirror ratio

B iz)/Bmax plays only a small part in the positions of these lines as long as it is not too close to

unity. For very small values of g the system is unstable at relatively low Te effjT, and at low

drift velocities. This corresponds to the results of Ref. 6 where g-1. These parameters are

not of interest to an actual experiment because trapped particles will exist in any experiment.

In Fig. 7 the corresponding marginal stability plots for the ion distribution function from

CumminsI0are shown. It is seen that for a given value of g this distribution function is more

unstable than the previous one. As the parameter g approaches unity the stability boundaries

for the two models also approach each other, as must happen.

3.B: Applications to Thermal-Barriers Cells

An indication of the stability of the thermal-barrier cell can be obtained by considering

the cell minimum. At that point the ion distribution function has its most extreme ( counter

streaming )form, and the electron shielding is the weakest and therefore maximum instability is

expected. The stabilizing electron shielding response may be due mostly to the small density of

electrons at the central cell temperature. Residual shielding due to the energetic electrons may

become important if the density of central cell electrons is very low.

Thermal-barriers for positive operation of a tandem mirror operate in the range of eh<f>/T,

on the order of three to four. Here 80 represents the potential drop between the central cell

and the minimum of the thermal-barrier cell. At the present time the best estimates for the

parameter g in planned experiments range from g — 5.0 to g =• 6.0 . The marginal stability

plots show that instability is possible for parameters in these ranges depending upon the

effective electron temperature.
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FIG. 7. Contours of (a) marginal stability for fixed effective electron temperature and (b)
the quantity g in the iv,e8(f>/Tt) plane. The quantity v is defined in Appendix A. The
contour intervals are the same as in Fig. 7. The first contour on the left in (b) represents
*-2.



c
o

c
o

^
r
c
v
i
o

o
o

c
o

^
r
c
v
j

o

$F

X
)

r
-

6



11

For the negative operation of a tandem mirror the quantity b<f> needs to be significantly

larger than for the positive mode of operation. This increase is to make the end loss of the cen

tral cell ions initially larger than the end loss for the central cell electrons which means that the

potential of the device would be driven negative with respect to ground in order to enforce

ambipolar end losses. Another factor that needs to be considered is that at the edge of the

thermal-barrier cell ( i.e. closest to the wall ) there are essentially no thermal electrons . The

entire electron distribution there consists only of ECRH magnetically confined electrons. The

effective temperature of these electrons could be on the order of one hundred times the ion

temperature. The range of eb<t>lTi is from about six to twenty. For this situation the values of

g must be much larger than for the positive mode in order to achieve stability. The reader is

referred to Poulsen et. al.12 for a detailed description of the negative operation of the thermal

barrier concept.

From a systematic examination of the self consistent equilibria we have obtained the gen

eral characteristics of the unstable equilibria. First, for a fixed potential drop, equilibria with

cooler electrons are more unstable than equilibria with warmer electrons. This is due to the fact

that the electron shielding term is weaker at the cell minimum for the cooler electrons due to

the exponentially decreasing density. The equilibria for these cases have a double peaked elec

tron density in space. This is necessary because the thermal electron density is much smaller

than the ion density near the well center. Therefore the ECRH component must be almost

equal to the ion density near the potential minimum. The ion density falls near the potential

minimum and so the ECRH electron component must also have a local minimum at that point.

Unstable equilibria also exist with TJT, greater than one. Again the most unstable equilibria

have ECRH electrons with two maxima along the axial direction. Second, both models yielded

similar results for equal values of trapped ions. Hence these general features appear not to be

too model dependent

Given the fact that unstable equilibria exist, it is important to understand the nonlinear

consequences of the instability and its implications for operation of thermal-barrier cells. This
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question will be explored in the simulation sections that follow.

Finally , we would like to discuss briefly four other relevant points. First, our treatment

only includes the thermal ions. The sloshing ion component can make the ion distribution func

tion more double peaked. Also our approach is based upon a model for the thermal ions and

this model may not be sufficiently accurate. However, our stability analysis has shown that the

desired potential profiles can be achieved with distribution functions that are stable to the elec

trostatic ion-ion two-stream mode.

Secondly, our treatment only considers parallel propagation of the electrostatic ion-ion

two-stream mode. However, in analogy to previous papers (Foote and Kulsrud1 and others),

the parallel propagating mode is the first mode which may become unstable as the drift velocity

of two beams becomes greater and greater. The parallel propagating mode is also the first mode

which may become unstable as the distribution function becomes more and more depleted in

the trapped region of phase space. Thus the parallel propagating mode should be the most

unstable mode for thermal-barrier cells that have a high proportion of trapped ions.

Thirdly, unstable electromagnetic modes might be possible, as discussed in

Foote and Kulsrud1. Their work was for Maxwellian beams and so application of their results

directly to this problem is not justified.

Lastly, there is a possibility for the radial nonuniformities in the plasma to cause instabil

ity. For example, there may be coupling between ion beam modes and drift waves. This prob

lem is currently being considered.

4. Particle Simulations in the Spatially Uniform Limit

In this section results are presented from 1-d electrostatic particle simulations in a uni

form plasma. The aim of these simulations is to obtain a scaling law for the perturbed potential

at saturation and the final shape of the ion distribution function f iv2) for instabilities that can

be considered localized. In particular it is of interest to examine under what conditions the par

ticle distribution function relaxes back to marginal stability. These 1-d simulations are also to

be used for comparison with the axially nonuniform simulation which are in the following
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section.

Previous particle simulations of electrostatic ion-ion two-stream modes were performed by

, among others , Forslund and Shonk4 for the case of interpenetrating Maxwellian plasmas

where the drift velocity was large compared to the ion thermal speed. Their simulations were

two dimensional in order to include the most unstable modes ( which had wave vector almost

perpendicular to the directed ion motion ). Their simulation model included both particle ions

and particle electrons ( where the electrons had an artificially large mass ). Our simulations are

of a different limit, namely the regime where the ion thermal speed is comparable to the drift

velocity. For our case the most unstable modes have their wavevector along the magnetic field

or at a small angle to the magnetic field and so may be examined with a 1-d unmagnitized

model. For example see Foote and Kulsrud1.

4.A: Simulation Model

The simulation model is periodic and is spatially uniform initially. The ions are treated as

fully nonlinear particles and the electrons are treated as a massless fluid with a Boltzmann

response together with a fixed negative charge density representing the energetic electrons.

The field solve consists of solving the equation

V20 e<f>
— nf + weexp

The field solve is based upon an iterative approach as in Mason14 and is described in Appendix

B. The ion density nt is collected on the grid using standard linear weighting; the ECRH elec

tron density component is fixed throughout the simulation. The simulation model gives good

agreement with theory as shown in Fig. 8. In performing these simulations only one Fourier

mode was retained while advancing the particles; this eliminates possible nonlinear effects

between the modes and allows easier evaluation of the performance of the code.

We present one collection of simulations that are indicative of the behavior of the insta

bility. Our parameters are: a — 4 , rb — 3 , and e8<f>/Tj — 5 . Here rb represents the local mir

ror ratio which is defined as the ratio of the magnitude of the axial magnetic field at the mirror

Te
+ nECRH (6)
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FIG. 8. Growth rate vs. kkDi for TJTe efL - 0.0635, a - 1.9, and u - 2.0. The circles
represent simulation data from single mode simulations.
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throat to the magnitude of the local axial magnetic field. The parameter 7) represents the cen

tral cell temperature and does not control the width of the ion distribution function.

In order to examine the instability for different growth rates the effective electron tem

perature was changed. Changing the effective electron temperature changes the maximum

growth rate for the instability and it also changes the wavelength corresponding to the most

unstable mode. The particle simulations make it possible to determine the nonlinear saturation

level for the perturbed field. These simulation results are then used to generate a scaling law in

terms of the growth rate.

The simulations were performed with the parameters NG - 512 , <op,bt = 0.2 ,

nlh/nECRH - 0.5 , L/kDi - 400 and NP - 70,000. Here NG is the number of grids and NP is

the number of particle ions. Only about a dozen modes were kept in the system. The large

number of particles was essential to verify linear growth rates for very slowly growing modes.

Also the saturation levels for the weakly unstable modes were very low which demands the

least noise possible. The ions were initially loaded with a ordering scheme designed to fill phase

space uniformly while at the same time avoiding unphysical beaming instabilities as explained in

Ref. 15. This type of" quiet start" was necessary to examine cases with yl<api less than about

0.02. Cases with larger growth rate could be examined with a completely random start. We

note that these simulations would have been virtually impossible using particle electrons

because of the extra noise that would be created by them and because of the time step con

straint imposed by the high frequency electron oscillations.

4.B: Simulation Results

A typical simulation had ymaxAu,, on the order of 0.05 with kkDi —0.10 . Contour plots

of ymax and the corresponding wavelength for the simulation parameters are shown in Fig. 8.

The ratio of the effective electron temperature to the ion temperature was varied from its value

at marginal stability to one hundred to one. At least two orders of magnitude of growth were

observed in the field energy of the most unstable mode. The growth rates agreed well with

theory. The purely growing characteristic of the instability was sometimes obscured by the
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existence of other stable modes in the system for those cases where the maximum growth rate

was small, that is ymax/(opi smaller than 0.03.

After a linear stage of growth the growth rate decreases as the particles began to become

trapped by the wave. At a later time the field energy reaches a peak and starts to decay. The

phase space for this saturated stage of the wave is shown in Fig. 9 where the particle trapping is

evident.

The final shape of the function /,(vr) is an important quantity. In Fig. 10 this function is

shown for four of the simulations. The gradual change in the appearance of the distribution

function at saturation can be seen. Associated with this change is an increase in the value of the

perturbed potential at saturation. In particular we see that at the higher saturation level the

number of ions in the trapped region of phase space has increased substantially.

By examining many sets of simulations we find that the ion parallel distribution function

in the saturated state remains double peaked to some extent until the linear growth rate is

about 0.15cop, . So for linear growth rates lower than that value the saturation is in some sense

a " soft" relaxation in that all of the free energy is not removed. However in general, /,(v.)

fills in more than required to satisfy marginal stability even when it remains bimodal. For

example, the distribution function in Fig. 10 (a) is close to marginal stability while the distribu

tion function in Fig. 10 (d) is clearly beyond marginal stability (i.e. more stable ).

One diagnostic of particular relevance to the thermal-barrier problem is the quantity

|ed0/7}] , the value of the perturbed potential at saturation. In Fig. 11 this quantity is

shown for the different ratios of the effective electron to ion temperature. The magnitude of

the perturbed potential at saturation is important since if the instability leads to only a small

value for the perturbed potential then one should expect that the thermal-barrier would be only

slightly affected. On the other hand a large perturbed potential could cause a drastic change in

the particle distribution function and hinder the operation of the thermal-barrier cell. This is

consistent with Fig. 10. We note that for a significant amount of parameter space near marginal

stability the saturated potential is small.
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FIG. 9. Ion phase space for TJT, fff. - 0.023 at (a) t - 0 and (b) saturation of the field
energy. The ordered initial conditions are evident in (a).
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FIG. 10. Initial and final ion distribution function /,-(v.) (a) TjTeeff.
TJTe eff. - 0.049 , (c) T,lTe eff - 0.043, and (d) TJTe eff - 0.023 .

0.054 , (b)
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FIG. 11. Perturbed potential at the saturation of the field energy. The length of this sys
tem is 400XO, where kDi is the Debye length of the passing (thermal) ions. The crosses
represent simulations retaining only the most unstable mode present in the system. The
amplitude of the perturbed potential is easily determined from the simulation for this
case. The dots on the other hand represent the simulations which retained many modes.
The amplitude of the resulting perturbation is not exactly defined in this case. The value
given in the figure represents an attempt to define an N average " amplitude from the
simulation output. The line is from the estimate presented in the text.
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The solid line in Fig. 11 represents an estimate for the maximum potential at saturation,

obtained from an heuristic approach. We attempt to generate a scaling law for the perturbed

field amplitude at saturation by assuming that saturation will occur in about an e -folding time

of when the system becomes nonlinear. Linear theory breaks down when (otr is comparable to y

where o>„ is the trapping frequency and y is the linear growth rate of the unstable mode . Esti

mation of the perturbed field level at saturation by this technique yields a scaling law consistent

with the simulations as shown in Fig. 11.

This estimate may be more precisely defined. If the instability is strong enough, the par

ticle potential energy in the wave would be comparable to its initial drift energy. This gives

#"» vmax ™Us^jsar where Vmax is the position of the peak in /,(vr). This can be rewritten to

read [e60/7}| - 0.5|v£ax/v,;?l . This approximation as it stands is not yet sufficient to gen

erate the desired scaling law because it predicts the same saturation level regardless of Te eff.lT,

, i.e. , even when the distribution is stable. However , as argued in the proceeding paragraph

the perturbed potential amplitude is proportional to the quantity H —y2/ikkDi)2. So multiply

ing our simple estimate by the ratio of the H quantities for finite electron temperature and

infinite electron temperature gives the desired expression. This is the quantity that is given in

Fig. 11. Note that a better fit to the simulation data could have been obtained by treating the

scale function as a free parameter.

The field energy in the unstable modes increases monotonically from approximately

2x 10~5 to 2x 10~2 of the initial ion kinetic energy as the ratio of the effective electron tempera

ture of the ion temperature is changed from 0.065 to 0.01. The quiet start field energy was

approximately 5x 10~7 of the ion kinetic energy.

The period after saturation, when the total field energy decreases is important also. The

particle phase space vortices due to the trapped particles begin to coalesce, and the bulk of the

field energy is deposited into longer wavelengths. The maximum peak-to-peak potentials do

remain roughly constant at least during the initial phase of the post saturation process. Later

on, as the ion phase space vortices coalesce the peak potentials may in fact become larger than



17

the corresponding magnitudes at saturation of the field energy. Large amplitude residual

fluctuations on the order of eS0/7) - 1 persist for times on the order hundreds ion plasma

periods.

We must mention, however, that the details of the post saturation period are open to

question since during this time the particles have managed to cross the entire periodic system.

Also finite length effects should come into play in a real system as the dominant wavelength

becomes larger and larger. In addition, the existence of plasma flux from the boundaries has

not been included. The most serious omission is that the potential of the simulation region

relative to the central cell has not be updated (In fact it is not possible to update this potential

of the simulation region relative to the central cell in a self consistent manner using this simple

uniform model). This is why we have chosen our simulation parameters so that e8<f>/Te always

remains much smaller than unity. Some of these objections concerning the boundary condi

tions and finite length effects are eliminated by the nonuniform simulations presented in the

next section.

5. The Ion-Ion Two-Stream Instability in the Inhomogeneous Limit

This section consists of two parts. The first part deals with some modifications to the

theory for the ion-ion two-stream mode caused by axial inhomogeneities. The second part

deals with our particle simulations in this axially nonuniform limit.

5. A: Theory

As shown in Section 3. the electrostatic ion-ion two-stream mode has characteristic

wavelengths of on the order of 50kDi for parameters of interest in thermal-barrier cells. These

wavelengths are much shorter than the length of the thermal-barrier cell, but may or may not

be shorter than the relevant region of instability. Therefore we now consider a WKB approach

to determining the linear behavior un this nonuniform medium; i.e. the solution is chosen to

have the form 8tf>iz) => \f/iz)e'k(f where \ftiz) contains the slow variation in the mode structure.

We start by expanding the dispersion relation Diatykiparameters)about the potential

minimum in the thermal-barrier cell. We also take advantage of the fact that the dielectric
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function is a real function for real k and imaginary o>. This simplifies the analysis considerably.

Limiting our attention to real k and imaginary a> is valid if tunneling of the mode to other

regions can be ignored. For our problem this is justified since the mode is confined to a small

region near the cell minimum. Our expansion yields

ir*y +-tt <8*>2 +4?r (6*)2 - °- (7)dy Bz2 dk2

Here all of the partial derivatives are evaluated at z •» z0ik = &o and y — yo with z0 being the

position of the barrier minimum, and k0 and y<j corresponding to the most unstable mode (

according to local analysis ) at the cell minimum. We have also made use of the relations

Dz —0 , Dk - 0 , and Diz0yk0,yo) ~ 0 . There are no cross terms of the form (8/r)(8z) since

Dz *• 0 at the cell minimum for all k and y.

Transforming back from Fourier space gives the Weber-Hermite equation for the function

t//(z) with eigenvalues

8r.Bai2!i(JV +l) (8)
Vy 2

with N a nonnegative integer. The eigenfunctions are the usual harmonic oscillator solutions

ijtNiz) - HNiy) exp

where y *» (z — zo)/(Az) with

1/4

Azss
'**

Du

_Z (9)

(11)

and HN is the usual Hermite polynomial of order N . The complete mode structure 8<f>iz) is

then obtained by multiplying the function ^(z) by the function e °r. For this specific problem

it is possible to show in general that Da , Dy, and Dkk are all positive. This means finite length

effects are stabilizing and the mode remains purely growing.

The solution ^(z) corresponding to N - 0 is the most unstable mode. For the equilibria

that have been constructed it appears that the quantity (5y)/y remains less than 0.1 as long as

there are more than about two wavelengths in a region of width 2Az. For smaller numbers of

wavelengths in a interval of that width our original expansion breaks down complelety and a
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correct analysis would have to include higher order terms in both z and k. In any event, the

simulation results give qualitatively similar behavior.

5. B: Particle Simulations

Here we present some results for axially nonuniform simulations. Important quantities

to examine include the magnitude and spatial distribution of e8<t>/T, at saturation, the final

appearance of the distribution function fiv2) , the ion density, «,(z), and any effects due to

inhomogeneity such as the mode structure of the unstable modes.

The equilibrium for these simulations was constructed by specifying 0(z), 5(z), and the

ratio of the central cell ion temperature to the central cell electron temperature TjTe\ the

quasineutrality condition then determines nECRHiB). The functions 0(z) and Biz) were

required to be symmetric about the middle of the thermal-barrier cell. In addition, it was

required that 0 —0 and d<f>iz)/dz - 0 at the boundaries. The parameter a —4.0 and the

potential of the center of the thermal-barrier relative to the central cell was taken to be

e<t>ra&JTj - -5.0. The equilibrium axial potential and the ion density are given in Fig. 12.

Typical simulation parameters were NG - 1024 , NP - 100,000 , o>pibt - 0.3 ( where

<Dpi is calculated at the maximum ion density ), and the system length was a parameter to be

varied. As before, NG represents the number of grids and NP represents the number of parti

cles. The ions are treated as fully nonlinear particles; standard linear weighting is used. The

ion density was fourier smoothed before the field solve; only linearly unstable modes were

retained. Retaining shorter wavelengths only increased the noise level of the simulations. The

effect of the axially varying magnetic field was modeled by adding a (iVB force to the equa

tions of motion and by weighting the particles proportionally to the local value of B (to

account for the expansion of magnetic flux tubes ). The incoming ion flux was held fixed at

both boundaries as was the Maxwellian distribution function of these incoming ions. The elec

trons consisted of an energetic component nECRHiB) and a Boltzmann response representing

the central cell electrons. The several field solves are discussed in Appendix B.
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In order to more properly examine the mode structure we performed a series of simula

tions in which the effective electron temperature was held fixed at the initial ( equilibrium )

profile. This eliminates nonlinear electron effects from the mode structure. The equilibrium

used is as described above with TJT, — 1.0 . At the center of the thermal-barrier

Te eff./Tj —0.017 which corresponds to a very unstable equilibrium. Figure 13 shows examples

of the mode structure and the effects of varying the system length. We note that it is difficult

to make a direct comparison of these mode structures and the theoretical structure of the previ

ous section since either ( 1) the unstable region is large compared to the most unstable

wavelength in which cases many normal modes are present with similar growth rates or ( 2) the

unstable region is not long compared to the most unstable wavelength in which case the finite

length stabilization is very strong and the WKB analysis breaks down. In any event analysis of

the mode structure does reveal the most unstable wavelength from uniform homogeneous

theory in those cases where condition (1) is satisfied and shows that finite length effects are

strongly stabilizing under condition (2).

It is instructive to compare the maximum deviation from the equilibrium potential

,A0max, in the nonuniform system ( Fig. 13 ) with the mode amplitudes at saturation in the

uniform system ( Fig. 11). Note that, to the accuracy of the simulations, the values for A<f>max

are similar except under the most severve shortening of the unstable region ( k < I ).

Inclusion of the fully nonlinear electron response is important to model the problem

correctly. The nonlinear electron response allows a self-consistent filling in of the thermal bar

rier with central cell electrons. This will then determine the potential everywhere in a self-

consistent manner. Results are presented below from a typical simulation.

For this simulation Te/T, -1.3 which corresponds to Te eff./Tj - 0.042 at the center of

the thermal-barrier cell. The length of this system is 1600XD/, which may correspond to the

appropriate physical dimension of some devices. Alternatively, the simulation region may be

thought of as the unstable portion of a much longer system.

After a short period of time a mode structure appeared which had the wavelength
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corresponding to uniform homogeneous theory. As the amplitude grows the electrons become

nonlinear as eh<f>lTe becomes of the order of and larger than unity. This manifests itself in the

potential structure, with a waveform that has larger negative pertubations than positive pertur

bations. This is due to the assumed Boltzmann electron response. The Boltzmann approxima

tion is valid as long as v/y ^ (e&<f>/Te) where v is the electron collision frequency and8<£

represents any ( positive ) potential change from the equilibrium value which may trap passing

electrons. The passing electrons are kept at a fixed temperature by the central cell.

As the ions become trapped the barrier is filled in to a certain extent. The central cell

electrons also have an increase in density in the cell as they attempt to preserve quasineutrality.

Figure 14. shows the ion density , Fig. 15 shows <f>iz)y and Fig. 16 gives f (v.) at the center of

the cell long after the instability has saturated. Note that because the potential well has been

filled in to a certain extent, the peaks in the ion distribution function occur at a smaller value of

v2. Also there are no longer fast ion tails as for the periodic cases presented earlier. This is due

to the proper particle boundary conditions.

One feature charateristic of the post saturation period is the existence of large negative

potential structures as in Fig. 15. These structures depend somewhat on the details of the simu

lation equilibrium. However, these structures are formed for all simulations except those very

close to stability, and these structures persist for more than lOOOw^1. Including residual shield

ing from the energetic electrons ( as discussed in Appendix B. ) reduces the amplitudes of the

structures but does not cause them to disappear.

From other simulations we conclude that the resulting filling in of the ion parallel velocity

distribution /, (vz) and the potential <f>iz) are independent of the system length as long as there

are more than about two or three wavelengths of the most unstable mode in the unstable

region. This is consistent with the mode structure simulations.

It would be incorrect to claim that this instability has saturated only to marginal stability,

however. There are two independent reasons for this. First, finite values for the growth rate

cause some amount of overshoot in the filling in of ion phase space as in the periodic
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simulations. Secondly, the density of central cell electrons in the thermal-barrier cell also

increases in order to maintain quasineutrality. This in turn causes the stabilizing electron

shielding to increase which causes a decrease in the well depth. This then causes the ion

streaming velocity to be lower in the center of the thermal barrier cell.

The last consideration may be especially important for negative tandem mirrors. For a

negative mirror the thermal electron density at the center of the thermal-barrier is virtually

zero. An instability causing an increase in the ion density may cause a equal increase in the

thermal electron density, since the energetic electrons will not respond to the electric fields. To

obtain that increase in the thermal electron density the potential may have to be increased sub

stantially.

In this regard the collisionless trapping of the thermal electrons becomes very important

since the electrons would not be able to come to thermal equilibrium on the time scale of the

instability. As shown in Ref 16. the trapped electron density increases no faster than

Ie80/7V| under very general conditions where 80 is the depth of the trapping potential i.e.,

much slower than the Boltzmann response would predict. Using this type of electron response

implies that the potential peaks could be much larger that one obtains from using the

Boltzmann response.

The simulation presented in this section is indicative of the behavior of the instability

close to marginal stability and collisional enough so that the Boltzmann approximation is valid.

The other limit of compleletly collisionless electrons will be presented in a future publication.

6. Conclusions and Concluding Remarks

In this paper we have presented thermal-barrier equilibrium studies using two different

models for the ion population. In our analysis, we have examined how the various equilibrium

parameters impact on the stability of the field aligned electrostatic ion-ion two-stream modes.

We have found that stability is certainly model dependent and that unstable parameter regimes

do exist, but it appears that for parameters of greatest interest (i.e., applicable to TMX-U and

MFTF-B), the thermal-barrier equilibria are stable.
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Simulations in 1-d have been done, both in a spatially uniform periodic system and in an

axially nonuniform system, and have given some insights into the nonlinear consequences of

this instability. For fairly large regions of parameter space, the instability saturates with only a

slight increase of the number of ions in the trapped region of the ion phase space. The instabil

ity thus causes only small changes in the depth of the thermal-barrier potential well and should

prove innocuous to the barrier.

Finite-length effects are such as to decrease growth rates, however this stabilization is

insignificant when L » X. Here L is the length of the unstable region and X is the

wavelength of an unstable mode. Ructuations are strongly stabilized by finite length effects

when X is comparable to the length of the unstable region.
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Appendix A.

Here we discuss the model ion distribution function of Cummins10. His model was

developed to model the same Folkker-Planck simulation results as that of Ref. 7. However, the

agreement between the model and the simulation results are better for the model of Ref. 10.

Our interest in the distribution function is to try and gain understanding of to what degree our

equilibrium problem is model dependent.

The distribution function is most easily expressed in prolate spherical coordinates;

vx —0sinh(w) sinty) cos(x)

vy —©sinh(w) sinty) sinfo) (Al)

v2 —Gcosh(u) cosd//)

where 0- OR/iR - 1 ))2e(-0)/m)**, R is the local mirror ratio, and 0 is a potential
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difference between the point in the thermal-barrier cell and the central cell. This model is good

only for <f> negative. The variables have the limits 0<^<tt,0<x^2it, and 0 < u< oo

. Using these variables the separatrix may be expressed as

catty)-Ut-1)/R. (A2)

Finally, the ion distribution can be represented as

ftj, - n0im/2irT)3/2expial)exp(-a2(sinh2(w) + cos2ty) + gicosty))) (A3)
where a\ - -e<f>/T , a 2 - -aliR/iR - D), and gicosty)) is any function of </» that goes to

zero on the separatrix. This will ensure that the distribution function is continuous at the

separatrix, a condition which must be realized in any physical equilibrium.

For our calculation we have used

s(cos(if»)) -T) 2Ll! _ rnC2
R

with t) a constant. The quantity v in Fig. 7 represents I/175 in order to appear qualitatively the

same as Rg. 6 for the parameters of most interest.

Appendix B.

In this appendix we discuss the field solve and the boundary conditions used in our parti

cle simulation code. We follow the procedure in Mason14 . Poisson's equation for our system

reads

V20-<?(*,-«,) (Bl)

where /i, is a grid quantity collected from the particle ions and the electron density is given by

ne i<f>,B) - nvee*IT< + nECRHiB) (B2)
and q is the charge of an ion. On the right hand side of (B2), the first term represents the

warm thermal electrons and the second term represents the fixed charge density due to the

energetic mirror trapped electrons. Rewriting Poisson's equation we obtain

V20 - ei n«e e*,T< -(/»,- nECRHiB))). (B3)
Taking the derivative of this equation with respect to z gives

V2£ - -ei En0i-e/Te)e e*/T< - V»,#) <B4)

cos2(#)) (A4)
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or rewritten

V2£ - eV«(* - (V£ - en, ')Ei-e/Te) (B5)

where n**= (n, —nECRH) . This equation may be solved for in an iterative manner as in Ref.

14. Their boundary conditions were £(0) —0 and EiL) =» 0. For our simulations we use

periodic boundary conditions to close the set of equations. We also require that the average

L

s.
tion of

electric field be zero. This condition may be written as jEdz —0 . A correction at each itera-

V - V - Eave (B6)

is used before proceding with the j + Ith iteration. Here EJ is to be considered a vector of

dimension NG and Eaw is the average electric field across the system.

The effective electron temperature profile may be kept constant in the following manner.

Rewritting Eq. (B5) gives

V2£ - eVn{' - ( V£ - en, )Ei-efTe(z)) (B7)

where e/Teiz) - nei<f>)/idnei4>)/d<f>) . This Teiz) represents the effective electron response as

a function of position. Keeping its value fixed at the equilibrium values allows one to concen

trate on the ion behavior.

When the number of grids becomes very large ( on the order of 1 x 103 ) and ed<f>/Te

increases to and above unity there is another method which requires significantly fewer itera

tions17-18 to solve Eq. (Bl) with Eq. (B2). The procedure is to solve Eq. (Bl) with Eq. (B2)

given an initial, close guess for <f>. This results in iteration of

V20/= e n*«rx'T. 1 +
Te

where 0/ is the p'* iteration for the potential at the jth grid point. This technique was used for

nonuniform simulations with the potential fixed at both boundaries. At each iteration a tridiago-

nal matrix equation must be solved. The results from this field solve are consistent with the

results of the other nonlinear field solve. As explained in Ref. 18, this type of field solve is

expected to show rapid convergence. The extention to multi-dimensional field solves is also

— tit (B8)
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possibile. We note that it is also possible to linearize the electron response about the equili

brium with this field solve and we have done so. In addition it is straight foward to include

shielding from the energetic electron component.
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