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ABSTRACT

Using Generalized Harmonic Analysis, we give a complete

description of parameter convergence in Model Reference Adap

tive Control (MRAC) in terms of the spectrum of the exogenous

reference input signal. Roughly speaking, if the reference signal

"contains enough frequencies" then the parameter vector con

verges to its correct value. If not, it converges to an easily

characterizable subspace in parameter space.

1. Problem Statement

In recent work [1,2,6) on continuous time model reference adaptive control, it has been

shown that under a suitable adaptive control law the output yp of the plant asymptotically tracks

the output yM of a stable reference model, despite the fact that the parameter error vector may

not converge to zero (indeed, it may not converge at all). Results that have appeared in the

literature on parameter error convergence [3,4,5,8] have established the exponential stabUity of

adaptive schemes under a certain persistent excitation (PE) condition. As is widely recognized

(e.g. in [9|) the drawback to this condition is that it applies to a certain vector of signals w(t)

appearing inside the nonlinear feedback loop around the unknown plant.

In earlier work [11] we remedied this shortfall by showing that the persistent excitation con

dition can be moved from w to wu, a vector of signals analogous to w but appearing in the

linear, time invariant (LTI) model loop. Unlike w, wM is simply the output of a LTI system

driven by the reference signal r, and it is thus much easier to determine whether or not it is per

sistently exciting.

In [11] we gave one simple condition which ensures that u/w is PE:
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If the reference input r(t) contains as many spectral lines as there are unknown

parameters, then wu is PE and consequently the model-plant output error and the

parameter error converge exponentially to 0.

Note that a real reference signal with a spectral line at frequency v also has a spectral line at -v.

Thus, for example, a reference signal with a (nonzero) average (DC) value and at least one other

spectral line will guarantee exponential convergence of the parameter error vector to zero in a

three parameter MRAC. Related results for the scheme of [6] have appeared in [13].

These results made precise the following intuitive argument: assuming the parameter vector

does converge (but perhaps to the wrong value) the plant loop is "asymptotically time-invariant".

If the reference input r has spectral lines at frequencies uv ... ,i/*, we expect yp will also; since

Vp-+Vtii we "conclude" that the asymptotic closed loop plant transfer function matches the

model transfer function at s=*jt/v .. . ,jvt. If k is large enough, this implies that the asymp

totic closed loop transfer function is precisely the model transfer function so that the parameter

error converges to zero.

In this paper we pursue further this idea that the reference signal must be "rich enough",

that is, "contain enough frequencies" for the parameter error to converge to zero. We derive sim

ple necessary and sufficient conditions on the reference input r for the parameter error to con

verge to zero. Roughly speaking, the condition is:

A reference input r(t) results in parameter error convergence to zero unless its spec

trum is concentrated on h < N lines, where N is the number of unknown parameters

in the adaptive scheme.

We will say precisely what we mean by spectrum in the sequel. The results have been announced

without proof in [12].

In §2 we briefly describe the MRAC system when the plant has relative degree one. In §3

we review the basic notions of Generalized Harmonic Analysis: autocovariance and spectral meas

ure. In §4 we state and prove our main result on necessary and sufficient conditions for parame

ter convergence.

In §5 we discuss partial convergence, i.e. behavior of the parameter error vector when w is

not PE. This will be the case when the reference signal has its spectrum concentrated on k < N

lines, where N is the number of unknown parameters: then the parameter vector can be shown to

converge to an affine subspace of dimension N-k. The Partial Convergence Theorem of §5 also

implies the results of [3,4], but gives a greatly simplified proof.

In §6 we consider higher relative degree cases and show that the results of the previous sec

tions hold, despite the more complicated control strategies. The appendix contains proofs of the

theorems of Generalized Harmonic Analysis used in the paper. Although some of these theorems
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are analogous to results from the theory of wide-sense stationary stochastic processes, these proofs

are not, to our knowledge, in the literature.

2. The Model Reference Adaptive System

To fix notation, we review the model reference adaptive system of Narendra, Valavani, et

al. [1,2]. The single input single output plant is assumed to be represented by a transfer function

*,(.) =*•$£!• (2-1)dp(s)

where ftp, dp are relatively prime monic polynomials of degree n-1, n respectively and kp is a

scalar. The following are assumed known about the plant transfer function:

(Al) The degree of the polynomial dp, i.e. n, is known.

(A2) The sign of kP is known (say, + without loss of generality).

(A3) The transfer function WP is assumed to be minimum phase, i.e. n> is Hurwitz.

The objective is to build a compensator so that the plant output asymptotically matches

that ofa stable reference model WM(s) with input r{t) and output Jta(t) and transfer function

A A

where kM>0 and nj/, da are monic polynomials of degree n-1 and n, respectively (n*/ and du

need not be relatively prime). If we denote the input and output of the plant u(t) and yp(t),

respectively, the objective may be stated: find u(t) so that yp(t)-yu(t)-*0 as / -*oo. By suit

able prefiltering, if necessary, we may assume that the model Wm(s) is strictly positive real.

The scheme proposed by Narendra et al is shown in Figure 1. The dynamic compensator

blocks Fx and F2 are identical one input, (n-1) output systems, each with transfer function

{sI-XyH; A€ Rn'lxn'\ beRa"1

where A is chosen so that its eigenvalues are the zerosof nM. We assume that the pair (A,b) is in

controllable canonical form so that

{sI-AYlb =
nu(s)

8*-2

(2.3)

The parameters c£R*~l in the precompensator block serve to tune the closed loop plant zeros,

d€Rn~l, d0£R in the feedback compensator assign the closed loop plant poles. The parameter

c0 adjusts the overall gain of the closed loop plant. Thus, the vector of 2n adjustable parameters
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denoted 9 is

6T = lc0,cT,do,dT]

If the signal vector w£R2n is defined by

wT = lr,v®T,yp,v®T] (2.4)

we see that the input to the plant is given by

« = 6Tw (2.5)

It may be verified that there is a unique constant 0*€/?8" such that when 9=6', the

transfer function of the plant plus controller equals Wu(s)J If r(t) is bounded (an assumption we

henceforth make) it can be shown that under the parameter update law

0 a -exui as ~(yp-yu)w (2.6)

all signals in the loop, i.e. u, v^\ v®\ yP, yM are bounded, and in addition lim(_H3oc1(i) = 0, that
is, the plant output matches the model output and thus our overall objective has been achieved.

However the convergence need not be exponential.

Despite the fact that c1(<)-»-0, the parameter vector 9 does not necessarily converge to 6'

(it may not converge at all). Various authors [3-5] have established that e1(f)-+0 and 9{t)-*9$

(i.e. the parameter error converges to 0) exponentially iff the signal vector w(t) is persistently

exciting, (PE) that is, there are 6,a >0 such that for all s >0

$+s

/ wwTdt > al (2.7)
s

Since w(t) contains the signals v®(t), v®(t), yP(t) generated inside the nonlinear plant loop,
translating the PE condition (2.7) on w into an equivalent condition on the exogenous reference

input r(t) would seem difficult if even possible. This is precisely what we will now do. Amaz

ingly enough, the condition is very simple when expressed in the frequency domain.

3. Review of Generalized Harmonic Analysis

The integral (2.7) appearing in the definition of PE reminds one of an autocovariance.

Definition 3.1 (Autocovarianee)s A function u:R+-*R* is said to have autocovariance

Rv(r)€Rnxn iff

i *+rUrn ± J U(t)u(t+ r)Tdt = Ru(t) (3.1)
r-»oo i .

f Indeed 9 consists of ky/kp and the coefficients ofthe polynomials ftp-ny and dp—da.
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with the limit uniform in s.

This concept is well known in the theory of time series analysis. There is a strong analogy

between (3.1) and R^oc\t) = Eu(t)u(t-\-r) for u a wide sense stationary stochastic process.

Indeed, for a wide sense stationary ergodic process u(t,u), Rv(r,u) exists and is R^oc\t) for

almost all u. But we emphasize that an autocovariance is a completely deterministic notion. Its

relation to the notion of PE is simple:

Lemma 3.2 (PE lemma): Suppose w has autocovariance Rv(t). Then w is PE iff Rv(0)> 0.

Prooft The "if part is clear. Suppose now that w has an autocovariance Rv and is PE. Let

ceR", c^Q. From (3.1) we have for all n

Hence

Urn ±r'j (u'cfdt >ifl.||« (3.2)

Because w has an autocovariance,

1 5+rlim -L / (wTcfdt = cTRv(0)c (3.3)

From (3.2) and (3.3) we conclude cTRv(0)c > a/b]\c\\2, thus Rv(0) > a/6>0.

We will need a few more simple lemmas concerning autocovariances. The proofs and a

more detailed discussion of Generalized Harmonic Analysis appear in the Appendix.

Lemma 3.3: Ru (r) is a positive semidefinite function.

Thus, Ru has a Bochner representation:

where Su is a positive semi-definite matrix of bounded measures, which is called the spectral

measure of u. If u is scalar valued, then Su is just a positive bounded measure; 2 5U (|u/0, Wj]) can

then be interpreted as the average energy contained in u in the frequency band [u/o,u/i]. Thus, for

example, if a scalar valued u has a spectral line of amplitude a„ at v, then Su has a point mass at

v of size \a„\2.

Lemma 3.4 (Linear Filter lemma): Suppose u:R+-*Rn has autocovariance A„(r), its spectral

measure 5U, and h is an mXn matrix of bounded measures. Then y — h*u has an autocovari

ance R9. Its spectral measure is given by:

Sy(dv) = H(jv)Su(dv)H{ji>)' (3.8)
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In particular,

RAO)^jH(ju)Su(d^)H(juY (3.9)

where H(jv) is the Fourier transform of h.

The reader should note that these formulas are identical to those from the theory of stochas

tic processes.

Lemma 3.5: If u-v €L2 and u has an autocovariance Ru, then v has autocovariance Ru.

Thus transients of finite energy do not affect the autocovariance of a signal.

We are now ready to prove our main result.

4. Necessary and Sufficient Conditions for Parameter Convergence

As in Boyd and Sastry [11], redraw Figure 1 as Figure 2 with the model represented in non-

minimal form as the plant with compensator and 6=*$''. The signal wm£R2* in the model loop

is given by

It is shown in [1,2] that w-wu^L2

Note that wM is the output of a stable LTI system driven by r(t), its transfer function

<?(*) =

1

WMWil{sI-A)-lb

WM(sI-AYlb

The only property of Q which we will need is that there is a constant invertible matrix M such

that

Vl'W = - / h i \ &<*>' ' *-M*\***M*\. •••,M*)*"1 (4.1)np{s)du(s)

(This is shown in [11])

We now make the following assumption: r has an autocovariance. f Let the spectral meas

ure of r be denoted Sr. We will now derive an explicit formula for Rv(0).

By lemmas 3.4 and 3.5 and the discussion above, wjj has an autocovariance, with spectral

measure

SVM(dv) = Q(jv)Sr(dV)Q(jvY

f Not all r's have antocovariances (e.g. r(/) = COslog(l+ t)) bat reasonable ones, whose general characteris
tics do not change drastically over time, do.
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Since w-wuGL2, another application of lemma 3.5 shows that w has an autocovariance, its

spectral measure also given by

Sv(du)« Q(jv)Sr(dv)Q(juY

and autocovariance at 0 given by

R*(o) = jQU^sAWQUv)9 (4.2)

By the PE lemma, then, we have:

w isPE iff Rv{0) = $Q(jv)ST(dv)Q(jvY > 0 (4.3)

Main Theorem: w is PE iff the spectral measure of r is not concentrated on k < 2n points.

Proof: Suppose first that Sf is concentrated at vx, .. ., v±, where k < 2n. Then

*„(o) =SQVv)s,Cv)QW - t QU»n)s,({v*})QiJvmY
ot-4

Being the sum of ife < 2n dyads, Rv(0) is singular so by (4.3) w is not PE.

Suppose now that w is not PE. Then by the PE lemma there is a nonzero c €i?2n such that

0 = cTRv(Q)c = /1 QUu)'c \2Sr(dv) (4.4)

Since \Q(jv)'c\2 is continuous in v, (4.4) implies that Q(jv)$c vanishes for all-in Supt(Sr),

the support of ST. Thus for all »>€ Supt(Sr),

0 = Q(jv)$c =* 4(ii')*JI»f(ir1c) (4.5)

where M is the constant nonsingular matrix referred to in (4.1). If we let c = M~lc and note that

dP(jv)nM{jv)y£0, (4.5) says for all v€Supt(Sr),

0 = Q(j>)#AI* a a(;>)rfF(j>)+ Mi^Mi") (4.6)

where we define the polynomials a(*) and b(s) by

*(*) = S 5»*'B"1 *(•) = E **>*-* (4-7)
w«i mam

Now if Supt{Sr) contains 2n or more points, (4.6) vanishes identically since its right hand side is

a polynomial of degree <2n, that is

adP + M? = 0 (4.8)

But this contradicts coprimeness of dp and ftp, since (4.8) implies ftpfdps=*-a/b and

da < n-2 < dftp. So Supt(Sr) must contain k < 2n points, and the Main theorem is proved.
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4.1. Discussion

We have proved the following:

Suppose the reference input r(t) to the MRAC system of §2 has an autocovariance.

Then the model-plant mismatch error yp-y^ and the parameter error 9-9* tend to 0

exponentially if and only if the spectral measure of r is not supported on k < 2n

points.

Thus in general, one has parameter convergence: only for very special reference signals (which

unfortunately sometimes include analytical favorites such as 1(f), cos(u/f)) do we not have 6-+9*.

It is instructive to see how our previous [11] sufficient conditions on r(t) fit into the theory

above. If r has an autocovariance and has 2n spectral lines, then its spectral measure S, has

point masses at the 2n frequencies. Thus

/—i

since the vectors Q(jvi) are linearly independent by the argument above.

The terms sufficiently rich (SR) and persistently exciting (PE) have been used somewhat

interchangeably in the literature. We propose that PE refer to property (2.7) for a vector of sig

nals, and that sufficient richness be a property of the reference signal (scalar valued). A vector

of signals is thus PE or not, but whether or not a reference signal is SR depends on the MRAC

being studied. More specifically it depends only on the number of unknown parameters in the

system, so we propose that a reference signal which results in a PE w in an JV-parameter MRAC

be referred to as sufficiently rich of order N. We then have the following characterization:

If r has an autocovariance, then it is SR of order N iff the support of its spectral

measure Sf contains at least N points.

Thus, for example, if r has any continuous spectrum (see Wiener [14] for examples of such r's)

then r is SR of all orders.

5. Partial Convergence

If w is not PE, then the parameter error need not converge to zero (it may not converge at

all). In this case Sr is concentrated on k < 2n frequencies vv . . ., uk. Intuition suggests that

although 9 need not converge to 9*, it should converge to the set of 0's for which the closed-loop

plant matches the model at the frequencies s = julr .. ., ji/t. This is indeed the case.

Before stating the theorem, we discuss this idea more formally. Suppose that the parameter

vector 9 is constant. Then the plant loop of the MRAC system is LTI: w is in this case Qr.

Since the input to the plant is u*=9Tw, the overall closed loop plant transfer function is
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WP(s)9TQ(s). This transfer function matches WM at s = jvlt . . . ,ji>k iff

W0»(M)Q(M)r

#p(M)<?(M)r WtiUvk)

Let us call the set of 0's for which (5.1) holds 6. Since 9* € 6, we have

'ty.(M)<5(y"i)r
6 = 0' + Nullspaee

(5.1)

(5.2)

9 thus has dimension 2n-k. In terms of the parameter error vector <p=*9-9$, 9 has the simple

description

0€9 iff Rv(0)<p = Q

We leave the verification of this to the reader; recall that here

*.(0) = E Sr({Vni})Q(juM)Q(jVtn)$
m«l

With this discussion in mind, we give

Partial Convergence Theorem:

Suppose that f is bounded. Then

limAv(O)0(O»O
t-*co

(5.3)

(5.4)

Remark: If Rv{0) > 0, then this theorem tells us nothing more than theorem 1: ^-+0. But if w is

not PE, the conclusion (5.4) can be interpreted as:

9(t)-*Q as f-+oo

by which we mean dist(6(t),B)-*Q, not 9(t)-+9(oo) for some 0(°°)€9. In particular, 9 need not

converge to any point as t -* oo.

Proof* Since <f> and w are bounded, find K such that ||0(011* IMOII ^ K-

Let £> 0 be given. We will find T0 such that for t> Tq, ||A«(O)0(f )ll ^«•

First choose 7} large enough that for all s,

s+Tr

iF (55)
I i4+Tl II

Thus for all t
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<+3\

0r(O/?W(OWO-0(Or4- / w(T)w(T)TdTJ>(t)
1 t *T (5.6)

From our update law <j> = 9=*-wci, since Ci-^0, we conclude <f>(t)-+Q as t-+oo. The

hypothesis r bounded implies that <t>(t)Tw(t)-*0 (see [1]). Now find T0 so that for t > T0,

and

Then for t > T&

W0M0)2< j

IWOII < 3^*7!

t+Tx t+Tx

mT^T J wiT)w{T)TdT<Ht)-Tr J t(T)Tw(T)w(T)r<HT)dT
1 t I t

'+J\

JL / «;(r)rW0-*)Wr)rW)+ m«
i t

using (5.7b). From (5.7a) we conclude that for t > T0,

t+Tx

4- / <HT)Tw(f)w(T)T<l>(T)dT
i t *T

*T

(5.7a)

(5.7b)

(5.8a)

(5.8b)

(5.9)

From (5.6), (5.8), and (5.9) we have for t > T0

\4>(t)TRv(o)Ht)\ < *

which completes the proof of the Partial Convergence Theorem.

Remark 1: The proof relies only on the assumptions (5.7), which state, roughly speaking, that the

parameter error eventually becomes orthogonal to w and that the updating slows down. These are

nearly universal properties of adaptive systems, so this theorem actually applies quite generally,

not just to Narendra's scheme. For example, it applies to all of the schemes described in

Goodwin et al [10].

Remark 2: While the 2n-k dimensional set 9 to which 9(t) converges depends only on the fre

quencies vx, . . . ,v± and not on the average powers 5r({i/1}), . .. fSr({ui}) contained in the refer

ence signal at those frequencies, the rate of convergence of 9 to 9 depends on both.

Remark S: As mentioned above, if w is PE then Rv{0) > 0 and consequently this theorem yields

the original parameter convergence results of [3,4]: uniform, asymptotic convergence of <f> to zero

(and consequently exponential convergence). This proof, however, is considerably simpler than
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the original proofs.

0. Plant Relative Degree >2

The scheme of §2 needs to be modified [1] when the relative degree of the plant to be con

trolled is >2, i.e. the plant has the transfer function (2.1) with ftp, dp relatively prime monic

polynomials of degree m, n respectively. In addition to the assumptions (A1)-(A3) we add the

new assumption (A4):

(A4) The relative degree of the plant, i.e. (n-m), is known.

The model has the form (2.2)with the difference that ftm has degree m. The objective of the

adaptive control is as before: to get ex= yP-yfj to converge to zero as f -»co.

Although the control scheme in this case is considerably more complicated, we will show

that the necessary and sufficient conditions for exponential parameter error convergence to zero

are identical to those given in §4 for the relative degree one case: namely, that Supt(Sr) contain

at least 2n points.

0.1. The Relative Degree 2 Case

Consider first the scheme of Figure 1 with the difference that A is chosen exponentially

stable so that its eigenvalues (there are n-1 of them) include the zeros of nu (there are m of

them). It may again be verified that there is a unique constant 9'GR2n such that when 9= 9'

the transfer function of the plant plus controller equals Wj/(*). The relationship between 9' and

the coefficients of ftp and <2j> is more complex in this case than in §2. In this case since WM has

relative degree 2 it cannot be chosen positive real; however, we may assume (using suitable

prefiltering, if necessary) that there is L(s)=(s+ 8) with 6> 0 such that WML is strictly posi

tive real.

Now, modify the scheme of Figure 1 by replacing each of the gains 9t, i.e. ct, d9, c, d, with

the gains L9iL~l which in turn are given by

L9iL"1 =* 9i + 9iL~l i = l,...,2n (6.1)

We now define the signal vector

^(0 & [L-lr, /TV1), L-lyP, W) (6.2)

Then

9 = -«rf

yields that ei(<)-»0 as t -»oo provided r(t) is bounded. The persistent excitation condition for

exponential parameter and error convergence is on the signal vector <(f) of (6.2): there are
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a, 8> 0 such that for all 8 > 0,

s+$

J it)it)Tdt > al (6.3)
*

Now, define the analogous signal vector for the model

a,' - |£-'r, Z-V,,r. £•*». £*«&*[

i.e. fv is obtained by filtering each component of u/tf through the stable system with transfer

function L'1.

Suppose now that r has an autocovariance. fo is the output of a LTI filter driven by r, so

it has an autocovariance; since f-fc#€£2 (see [l]), f As* an autocovariance identical to that of

ft/. In fact

RAO) = S\^\jy)?Q(^)Sr(d^QW$

Thus i?{(0) > 0 if and only if Rv(0) > 0 and hence the necessary and sufficient conditions on r for

exponential parameter convergence are exactly the same as in the relative degree one case.

6.2. Relative Degree >3

As in §6.1, pick a Hurwitz polynominal L so that LWU is strictly positive real. The trick

used in §6.1, namely, to replace each 9X by £,9i£~1, is no longer possible since £,9iL~1 depends on

second (and possibly higher) derivatives of 0,. To obtain a positive real error equation we retain

the configuration of Figure 1 and attempt to augment the model output by

^- WM£l$T£-*-£-*$T\w (6.4)

The difficulty in implementing (6.4) arises from the fact that kP is unknown. Consequently the

model output is augmented, not by (6.4) but by

WuL9^^l(t)\9T£t'l-L'l9T\w (6.5)

with 92n+l being a new adaptive parameter expected to converge to -r—. To obtain <p€L2 and

prove stability of the augmented scheme we also add an additional quadratic term as shown in

Figure 3 to (6.5) to get

WUL 92n+l(t) fo'L-i-L-W)* +erfrfei} (6.6)
where a > 0 and (is as defined in (6.2). If £ isdefined to be (9TL~l-L~19T)w then the update law

9 = -erf
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02n+l ss el£

yields that as t —• oo, e^t)-*0, that is yu -• «p.

For the scheme of Figure 3, there are 2n + 1 parameters to be considered and the sufficient

richness condition for parameter convergence reads: there are a, 8 > 0 such that for all 0 > 0,

s+5

/ Ulf1-*]* >"t (6-7)
where ^A(9TL~1-L~l9T)w. However, condition (6.7) can never be satisfied since £-»0 as t -*oo

as pointed out by Anderson et al [13]. From the preceding discussion, it follows that the addition

of the new parameter 02»+i in the augmented output signal is what causes this difficulty. If k9 is

known, of course, ^m-i» i are unnecessary and the parameter convergence condition (6.7) reduces

to (6.3) which is satisfied if r(t) is sufficiently rich of order >2n.

When kP is unknown, and when r(t) is SR of order > 2n it follows that the autocovariance

at zero of thesignal vector [f7, £]r is given by

r<M 010 0 € **•+»**+» (6.8)

with R£0)>0. By the Partial Convergence Theorem of §5, it follows that the parameter error

converges to the null space of the matrix in (6.8). Thus all but the (2n+ l)th parameter errors

converge to zero. But the (2n+ l)th parameter is inconsequential since it is the gain parameter

associated with the augmented model output ya.

7. Concluding Remarks

We have shown that a complete description of parameter convergence can be given in terms

of the spectrum of the reference input signal.

Specifically, regardless of the relative degree,

[1] The parameter error <f> converges exponentially to zero if and only if Supt(Sr) contains at

least 2n points.

[2] If Supt(Sr) contains only k < 2n points, then (ft need not converge to zero. Instead it con

verges to a subspace of dimension 2n-k. This subspace corresponds precisely to the set of

parameter values for which the closed loop plant matches the model at the frequencies con

tained in Supt(Sr).
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Appendhc: Generalized Harmonic Analysis

The first careful treatment of the notion cf autocovariance was Wiener's Generalized Har

monic Analysis [14]. The idea is well known in the theory of time-series analysis (see e.g. Koop-

mans [15]), and is usually presented in the context of stochastic processes. We have been unable

to find a clear modern discussion of autocovariances which does not make use of the connection

with wide sense stationary stochastic processes. Since the proofs of the various lemmas we used

are neither difficult nor long, we give them here.

We should mention that the analogy between autocovariance and stochastic autocovariance

mentioned in §3 is not complete- for example the limit in the definition of Ru makes the proof of

the linear filter lemma trickier than the proof of its stochastic analog (which is little more than

interchanging integrals and expectation via the Fubini theorem), and there is no stochastic analog

of lemma 3.5.

For the remainder of this section we assume that u:R+ -+R* has autocovariance Ru. Note

that the integral (3.1) in the definition of autocovariance makes sense if and only if u is locally

square integrable, i.e. u€L2c.

Lemma 3.3i R9 is a positive semi-definite function.

Prooft Suppose rv . .. ,rK£R, clf . . ., cK€ C*. We must show

Ee/JMfrr.-ta > 0
•J

Define the scalar valued function v by:

Then for all T > 0

f(0i E*(«+rJ

0<4r/|'(<)r«

, r
IX

f,+r

1/ u(t)u(t+rrTt)'dt

Since u has an autocovariance, as T -* oo (A3) converges to

UJ

(Al)

(A2)

(A3)

From (A2) we see that (A3) is nonnegathre, so (Al) follows.

Proposition Al implies that Ru is the transform of a positive semi-definite matrix Sr of

bounded measures, that is
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RM = SeivrSr(di,) (A4)

(This is the matrix analog of Bochner's theorem). ST is symmetric, both in v and as a matrix,

since Ru{t) is a real symmetric matrix.

Lemma 3.4 (Linear Filter Lemma): Suppose that y = h*u, where h is an mXn matrix of

bounded measures. Then y has an autocovariance Ry given by

*yW - //MrfnR(r+r!-r2)A(ir2)r

and spectral measure Ss given by

S,(dv) = H(jv)S,(iv)H(jv)'

(A5)

(A«)

Proof: We first establish that y has an autocovariance:

(A7)

«+r

i/ [*(rfrl)«(«-fi)] [u(l+r-r2)rA(dr2)r]<« (A8)

For each 7, the integrals in (A8) exist absolutely so we may change the order of integration:

=//*(<*'•) Y f u(t)tt(t+1+Jl^Titk(dT^T (A9)

The bracketed expression in (A9) converges to /?«(?+7i-r2) as T-*oo, uniformly in s. Further

more the bracketed expression in (A9) is bounded as a function of T, s, rlt and r^ for T > 1,

since by Cauchy-Schwarz*

•-f,+r •+r

i / u{t)u(t-r ;+r1-r2)r* s^t/iwoii2* < 00

So by dominated convergence (A9) converges, uniformly in s, as T -*• oo, to

J/*(<rI)B,(T+rI-r8)AUra)'

(A10)

(All)

y thus has an autocovariance, given by (All). This establishes (A5); to finish the proof, we sub

stitute the Bochner integral for Ru in (All):

*,W - //*U«i)/«*f*v'*Ui')»WfiJi (A12)

•The restriction T > 1 is required if U is not bounded bat only in L^e.
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=S°i"[j'~'Vh{dTl)]su{dv) [fe-'̂ Mrfrj)]' (A13)
(since all the measures are finite)

= JeivrH{ju)Sv(du)H(ju)' (A14)

(A14) is the Bochner representation of R9, so

Sy(du) - H(ju)S*(dv)H(ji>)' (A15)

establishing the linear filter lemma.

Lemma 3.5 (Transient Lemma): Suppose e(t)=u(t)-v(t)£L2 (and u has autocovariance

Rv). Then v also has autocovariance Rv.

Prooft

-L / «(<)«(*+ r)Tdt - i / v(t)v(t+ rfdt

s+r «+r «+r

i J *(<)«(<+r)rrfi +±rfu(t)e{t+r)Tdt +-I / e(t)e(t+t)7dt

«+r 11/2 <+r ni/2

(A16)

<-^rll'lb ~ /||«(<+r)||s ?sHMb+ 7F y / iwoir + i||e||| (A17)

using the Cauchy-Schwarz inequality. The two bracketed expressions in (A17) converge uni

formly in 8 as T -+ co to TraceJ?tt(0), so we conclude that the entire expression (A17), and thus

(A16), converges to zero, uniformly in a, as T-*co. Thus

•+r

-LJ v{t)v(t+T)Tdt-+Ru(r) as T-oo
t

uniformly in s, and lemma 3.5 is proved. Remark: Actually the hypothesis can be weakened to

Rt = o, that is, e has zero average energy.
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Flgure Captions

Figure 1: The adaptive system for the relative degree one case.

Figure S: The adaptive system of Figure 1 with a new representation for the model.

Figure S: Modification of the adaptive scheme when the relative degree >3.
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