

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PERFORMANCE ESTIMATES FOR

DISTRIBUTED QUERY PROCESSING

by

M. Murphy

Memorandum No. UCB/ERL M84/30

10 April 1984

PERFORMANCE ESTIMATES FOR

DISTRIBUTED QUERY PROCESSING

by

Marguerite Murphy

Memorandum No. UCB/ERL M84/30

10 April 1984

ELECTRONICS RESEARCH LABORATORY

NSF MCS-8211528

PERFORMANCE ESTIMATES FOR DISTRIBUTED QUERY PROCESSING

Marguerite Murphy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

The introduction of low cost hardware and the realization that physically
distributing data can result in higher performance systems has led to the
implementation of a number of distributed relational database manage
ment systems (D-RDMS). In this paper we present a model of distributed
query processing and propose two performance metrics based on this
modeL These metrics may be used to compare various data distribution
strategies and system architectures in an implementation independent
manner.

1. Introduction

A Distributed Relational Database Management System (D-RDMS) is imple

mented on a hardware base consisting of multiple processing units able to work

in parallel on a single query. For example, Distributed Ingres [ST0N76.ST0N83]
is a relational database management system built on a collection of VAX 11/780

and VAX 11/750 processors connected via an Ethernet. Queries originate on one

processor, then split into subqueries which execute in parallel on participating

machines. In addition, many of the database machine proposals are similar to a

D-RDMS in that the processing of an individual query is split into subqueries

which execute in parallel on similar processing units. In the Direct [DEWI78]
architecture, a collection of PDP-ll/23 processors with associated CCD

memories are attached to a PDP 11/46 front end via a cross-point switch.

Queries are processed by paging data blocks into the CCD memories and exa

mining them in parallel with the 11/23 processors. Lastly, in the CASSM

[SU_75] architecture microprocessors are associated with individual tracks of a
fixed head disk attached to a host processor. Data is distributed across the

tracks and examined in parallel as it is being read off of the disk. In all of these

architectures the data elements are distributed across some number of pro

cessing sites thereby permiting parallelism within a single query-

The purpose of this paper is to formulate amodel of distributed query pro

cessing. The input for the model is adescription of the way in which data is dis
tributed across the sites and the amount of data requested by a query. From
this information, the expected amount of requested data located on each site is
estimated. These estimates are statistical in nature and depend neither on
semantic knowledge about the queries nor on adetailed simulation of query pro

cessing. The output of the model is the expected number of data elements
accessed on each site under avariety of assumptions about the way in which
data is stored on individual sites and distributed across sites. Our results pro
vide a measure of the way in which the resource requirements of a query are

distributed under various data organizations. Moreover, these results could be
used in amore general architectural analysis of data base machines or distri-

buted databases.

This problem has many points in common with the so-called block estima
tion problem. i.e. given the distribution of tuples to disk blocks and number of
tuples requested by aquery, estimate the number of blocks touched. [CHRI83]
presents asummary of the earlier work of [CARD75]. [RIES79], [SILE76] and
[YA0_77]. Those studies present equations for the mean number of blocks
touched under random or sequential access, assuming the distribution of tuples
to blocks is constant and selection is either with or without replacement.
[CHRI83] then extends the earlier models to non-constant tuple distributions,
assuming that individual tuples are equally likely to be selected and successive

•Z-

selections are uncorrelated.

In the next section our models of a D-RDMS and distributed query process

ing are presented along with the parameters used to estimate system workload.

The following section presents derivations of equations for the probability that

each site is accessed and the mean and variance of the distribution of the

number of data units examined on each site.

2. Distributed. Query Processing

A D-RDMS can be broken into four main units: the data items themselves,

the underlying hardware, the supplementary fast access paths, and the query

processing mechanism. Eachof these units is described in the following subsec

tions and descriptive parameters defined.

2.1. Data Description

We assume a relational database in which all data appears to the user as

fixed format tables, or relations. The cardinality of a relation is the number of

tuples (records) stored in the relation. Each tuple has some number of data

fields, or attributes. For example, suppose we have a database containing

records for 500 professors in a college. Each record has four fields: PNAME, an

alphanumeric field containing the name of the professor; PNO, an integer field

containing a unique professor identifier RANK, an integer field containing a

code for the professor's current rank; and SALARY, a real valued field containing

the professor's salary.

The unit of transfer between secondary storage and memory is one block.

Each block contains some number of tuples. The exact number depends on the

width of the individual tuples, the block size and whether or not the blocks are

filled to capacity. Assume that the number of tuples on each block is some small

constant, B. In our example, if each record is 200 bytes long, blocks are 1000

bytes long and filled to capacity, then B is equal to 5.

2.2. Distributed Hardware

The hardware is modeled as a collection of N sites interconnected in some

manner. The exact nature of this interconnection is not important. Each site

has a collection of associated data and a single processing unit. For example,

sites in Distributed Ingres would correspond to VAX, sites in DIRECT to 11/23

processors with associated CCD memories and sites in CASSM to microproces

sors with associated disk tracks.

2.3. Distribution Criteria and Fast Access Paths

The most rudimentary query processing strategy is to simply scan all

records and select those with attributes satisfying the qualification clauses. This

is the technique used in the CASSM architecture. More complex systems utilize

a variety of indexing strategies to reduce the amount of data which must be

examined during query processing. In addition to providing fast access paths,

these strategies will group and order the data. This section describes some of

the ways in which a relation can be distributed across the Nsites and the sub-

relations organized on each individual site. No data are replicated and all sites

are assumed to have identical data organizations.

2.3.1. Distribution Criteria

The partitioning of data across the N sites in the distributed system is

defined by distribution criteria. Distribution criteria are assumed to be of the

form:

f(attribute) = value. 1, location = site.i
f(attribute) = value.2, location = site.]

f(attribute) = value.G, location = site.k

where f is some function on the values of an attribute which partitions the data

into a collection of sub-relations. For example, one possible distribution cri

terion for the PROFESSORS relation described above is:

f(PNO) = PNO div 100, location = PNO div 100

where div is integer division. If the 500 professors have PNO values in the range

[1,1000], this criterion will partition the professor records into 10 disjoint sub

sets and allocate those subsets to sites 1 through 10.

The distribution criteria serve two purposes. First, they allocate tuples to

sites and second, they group together tuples with equal f(attribute) values. The

tuples with a single f(attribute) value will be called a group. Define Q to equal

the number of groups on site L Assume that the number of tuples in each group

is discribed by a random variable T with distribution (T). The distribution cri

teria, along with a count of the number of tuples actually associated with each

value, can be used by the distributed query processing mechanism to restrict

the number of sites which are searched for qualifying tuples, as described below.

&&2. Global Index

A global index associates f(attribute) values with sites and maintains a

count of the number of tuples with a given value stored on each site. Aglobal

index, unlike distribution criteria, does not group the data in any particular way.

For example, if the PROFESSORS relation is distributed by PNO as described

above, a global index on (SALARY div 10) would associate sites with salary

values. The tuples are assumed to be randomly distributed across the various

sites. G| and T are defined as above, where the sum of the Q's may be greater

than G.

2.3.3. Local Indexes

Once the data have been distributed to individual sites, the data is placed in

blocks on a secondary storage device. This section describes several indexing

techniques which provide fast access paths to tuples containing particular attri

bute values. Aprimary index assigns tuples to blocks by clustering and perhaps

ordering them by indexing attribute. A secondary index associates attribute

values with tuple locations. If no index is present, the tuples are assumed to be

randomly located on blocks.

2.3.3.1. Clustering Hash Index

A clustering hash index provides a fast access path to a collection of tuples

with equal f(attribute) value where f is any function over all the possible attri

bute values. The extent of the index is the number of distinct f(attribute) values

(i.e. the number of clusters). Each block contains tuples from a single cluster

and all blocks for a particular cluster are stored together in physical proximity.

For example, assume that the professor records on each site are clustered by

the first letter of PNAME into 26 clusters. Aclustering hash index will provide

the address of the first block of each cluster. If there is a distribuUon criteria or

global index with identical f(attribute) function, there will be Q clusters on site i

and Ttuples per cluster. If not, define G* to be the number of clusters on site i

and T the number of tuples per cluster.

2.3.3.2. Secondary Index

A secondary index provides a fast access path to individual f(attribute)

values. It has no effect on the arrangement of data. For example, suppose the

PROFESSORS relation were stored in a Clustering Hash Index structure on the

first letter of PNAME. A secondary index on RANK would associate a set of tuple

locations (block addresses) with each RANK value. The extent of this index

would be the number of distinct RANK values. The set of locations is assumed to

be randomly distributed over secondary storage (i.e. PNAME is uncorrelated

with RANK). Q is the number of distinct f(attribute) values on site i and T is the

number of tuples per value, as above.

2.4. Queries and Query Processing

In the relational data model, a query requests a collection of tuples by

specifying a qualification which tuples must meet. This section describes a

model of simple queries spanning a single relation and the way in which fast

access paths are used during query processing.

The queries which will be considered in this paper are of the form:

retrieve (tuples)
where f(attribute) = (value.1 valucnj

where f is any function over the set of attribute values. The simplest kind of

query is one where f is simply the identity function and there is a single qualify

ing value. For example, to retrieve all professors with PNO equal to 457. the fol

lowing query could be executed:

retrieve (professor tuples)
where PNO = 457

A somewhat more complex query might retrieve all professor tuples whose

names beginwith a letter in the range Athrough F:

-7-

retrieve (professor tuples)
where f(PNAME) = {A,B,C.D,E,Fj

and the value of f(PNAME) is the first letter of PNAME. Note that the particular

function and values chosen to express a given query are not unique since every

query can be expressed as the identity function and a(possibly large) collection
of values. The scope of a query is the number of distinct values in its

qualification clause. Note that the scope of aquery is dependent on the way in
which the query is expressed and is not equivalent to the selecHvity, or number

of qualifying tuples present in the database.

Aquery is said to match an index if the indexing function and the query
function are identical and refer to the same attribute. In this case, the scope of
the query is the number of distinct groups of data which must be examined
using the index If aglobal index or distribution criteria are available, they will
restrict the number of participating sites to just those actually containing quali
fying tuples. If no global index is available, all sites must execute the query.
There are several modes in which data can be examined on individual sites. If no
matching index is available, the data blocks must be sequentially scanned until
all of the qualifying tuples (values) have been located. If a global index is
present, the number of such tuples will be known and scanning can be stopped
once that number have been encountered. If a matching secondary index is
available, the qualifying tuples (values) may be located by only examining at
most a number of blocks equal to the scope of the local query. If a matching
clustering hash index index is available, the qualifymg tuples will be grouped
into clusters and the number of cluster accesses will be equal to the scope of
the query. Table 1summarizes the processing required for each of the 5situa
tions. Scope(i) is the number of f(attribute) values accessed on site i.

Matching Index Query Processing Access Unit

No Matching Index Scan all
Scan for scope(i)
units on site i

block

Global Index only

Distribution
Criteria only

Clustering Hash
Index

Secondary
Index

Scan for scope(i)
units on site i

tuple

tuple

Randomly access scope(i) cluster
units on site i
Randomisecess scope(i) tuple
units on srle i

Table 1. Query Processing

3. Models and Analysis

In this section formulas are derived for the probability that a given site is

accessed and the distribution of the number of block accesses per site as a

function of the way in which data (tuples) are distributed among sites, groups,

clusters and blocks.

3.1. Definitions and Assumptions

Table 2 summarizes the parameters denned above.

Aquery executes by selecting some number of data units (tuples, clusters,

groups) from the total number stored in the database. The first statistical

assumption is that these selections are made independently. E.g. data units are

replaced after each selection and the probability of selecting any given unit at

each draw remains constant This implies that a data unit may be selected twice

by a query, however if the database is large with respect to the total number of

data units chosen the probability of this is small and the assumption is reason-

Parameter Definition

N
G
B

m
Gi

Sites
Groups/Clusters
§ Tuples per Block
Tuples per group or cluster
4 groups/clusters on site i, i=l,N

Table 2. Parameters

able.

The second statistical assumption is that all values of a fixed scope are

equally likely to be selected by a given query independent of the actual number

of tuples with that value. In the absence of any prior knowledge of the expected

data access patterns, this is a reasonable assumption.

3.2. Probability that site i is accessed

If neither the distribution criteria nor any global index match the query, all

sites are accessed. Otherwise, the number of f(attribute) values on site i is

equal to G*. Let k be the scope of the query. Then the probability that none of

the k units independently chosen by the query are on site i is

- «-%r
and hence the probability that site i is chosen is

3.3. Distribution of Random Accesses on Site i

Let the number of blocks randomly accessed on site i be equal to the ran

dom variable Yi and the number of f(attribute) values chosen on each site (Le.

scope(i)) be equal to the random variable X^. A* has the binomial distribution

with parameter Gi/G and mean k(Q/G). Let Z be the number of blocks per

f(attribute) value. If the data is accessed via a secondary index, Zis distributed

as T (Le. there is one tuple per block). If the data is accessed via a clustering

hash index, Z is distributed as T/B (i.e. the tuples are grouped onto blocks).

Then Yi is equal to the sum of Xi units of size Z

1

By Wald's equations. Yi has mean equal toE(Ai)E(Z) and variance Var(Z)E(Ai).

-10-

3.4. Distribution of Sequential Accesses on Site i

If no local indices are available, the tuple count in the global index or distri

bution criteria may be used to limit the amount of data to be scanned. Let the

number of qualifying tuples on site i be equal to Qi. Note that Qi is distributed

as 3^ for Z equal to T.

Let Vb equal the number of tuples scanned between the (k-l)st and kth tuple

selected by the query. Vt has a geometric distribution with parameter Qi/Q,

where Q is the cardinality of the subrelation on site i. Let Wi be the number of

tuples examined on site i, where

wt =f; vk.

By Wald's equation, E(FKi) = E(Qi)E(Vk). and hence, the expected number of

blocks examined on site i is E(fli)/B, where B is the number of tuples per block,

as defined above. Thevariance is equal to E(£4)V(^)/£2.

4. Conclusion

In this paper we have presented a general model for distributed processing

and derived several performance metrics based on this model. These metrics

allow various comparisons to be made among different data distribution stra

tegies by varying the values of Gj and B. In addition, they provide a means of

estimating the distributed workload for input into queueing or other architec

tural models. In evaluating an existing system, these values will be known and

well defined. In design work, however, they are not known. Derivations of analo

gous results assuming that these parameters are random variables from a given

probability distribution is a desirable extension.

-11-

5. Acknowledgements

I would like to thank my advisor, Mike Stonebraker, for his unending pati

ence in reading earlier drafts and suggesting alternate assumptions and

approaches. I would also like to thank Toni Guttman for reading earlier drafts

and offering helpful suggestions.

-12-

6. References

[CARD75]
A.F. Cardenas, "Analysis and Performance of Inverted Data Base Struc
tures", CACM. Vol. 18, No. 5 (May 1975), pp. 253-263.

[CHRI83]
S. Chris todoulakis, "Estimating Block Transfers and Join Sizes", Sigmod
Record Vol. 13, No. 4 (Proceedings of SIGMOD 83, San Jose, CA). May 1983.

[DEWI78]
D.J. Dewitt, "DIRECT- A Multiprocessor Organization for Supporting Rela
tional Data Base Management Systems," Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Austin. TX May 1978.

[LANG82]
A.M. Langer and A.W. Shum. "The Distribution of Granule Accesses Made by
Database Transactions". CACM. Vol. 25, No. 11 (November 1982), pp.831-832.

[POTI80]
D. Potier and Ph. Leblanc, "Analysis of Locking Policies in Database Manage
ment Systems". CACM, Vol. 23, No. 10(October 1980),pp.584-593.

[RIES79]
D. R. Ries, "The Effects of Concurrency Control on Database Management
System Performance", PhD. Dissertation, Computer Science Department,
U.C. Berkeley, April 1979.

[SILE78]
K. F. Siler, "A Stochastic Evaluation Model for Database Organizations in
Data Retrieval Systems". CACM. Vol. 19. No. 2 (February 1976).pp. 84- 95.

[ST0N76]
Stonebraker, M. et al., "The Design and Implementation of Ingres", TODS
2.3, September 1976.

[ST0N83]
M. Stonebraker, J. Woodfill, J. Randstrom, M. Murphy, J. Kalash, M. Carey
and K Arnold, "Performance Analysis of Distributed Data Base Systems".
Database Engineering, 1983.

[SU_J5]
S.Y.W. Su, and Lipovsky, G.J. "CASSM: A cellular system for very large data
bases." Proc. Int. Conf. Very Large Data Bases. Sept. 1975. pp. 456-472.

[YA0_77]
S. B. Yao, "Approximating Block Accesses in Database Organizations", CACM,
VoL 20, No. 4 (April 1977). pp. 260-261.

-13-

	Copyright notice 1984
	ERL-84-30

