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Abstract

This paper considers exclusively lumped k-ports and circuits which

contain linear time-invariant elements, independent sources and controlled

sources. The k-ports are represented by their hybrid matrices. Tableau

equations of circuits are used as a special case of polynomial matrix

description. The hidden modes of a circuit are determined by inspection

from its tableau equations in the Hermite row form. The same form is used

also to determine the exponential stability of the circuit and that of

the k-port. Finally, necessary and sufficient conditions for exponential

stability of interconnected k-ports are given; the hidden modes of the

interconnection are studied. The paper is self-contained.

Research sponsored by National Science Foundation Grant ECS-8119763.



0. INTRODUCTION

This paper investigates the dynamics of k-ports obtained from lumped,

linear, time-invariant circuits, of circuits resulting from k-ports

driven by independent sources and of interconnections of two k-ports. In

all these cases, the circuits may include R, L, C's, ideal transformers,

independent and controlled sources. As in [Bel. 1] we describe our cir

cuits by polynomial equations; more specifically we use tableau equations.

Belevitch was the first to systematically use polynomial equations

to derive properties of circuits. Later Rosenbrock [Ros. 1] applied

similar methods to control problems. More recently, Callier and Civalleri

[Cal. 2] used the Polynomial Matrix Description (PMD) to state conditions

for complete controllability and observability of n-ports and circuits

based on the Hermite Normal Form and the Smith Canonical Form.

In this paper we use tableau equations to study the relationship

between a k-port and a circuit obtained by driving the k-port by indepen

dent sources. The k-ports are represented by appropriate hybrid matrices

[see e.g., Chu. 1, Chu. 2, Chu. 3]. In Section 6 we determine the hidden

modes of the circuit by inspection from its tableau equations and relate

the hidden modes of each individual circuit to those of the interconnected

circuit. The tableau equations bookkeep the behavior of all branch vol

tages and all branch currents; therefore the stability results account

for the exponential stability of the circuit as a whole instead of that

of a chosen set of output variables.

Roughly speaking, the stability results are as follows: the exponen

tial stability of the k-port is necessary for, but does not guarantee, the

stability of the circuit driven by independent sources at the ports of

the k-port. The interconnected circuit is not exponentially stable if

the individual circuits in the interconnection have unstable hidden modes.
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The first three sections give the construction of the k-port and the

circuit, the formulation of tableau equations and the stability results

based on them. Section 4 relates the tableau equations to the PMD and

is followed by an example. The concepts of hidden modes and exponential

stability of the interconnection of two k-ports are treated in sections 7

and 8.

Notation:

K (C) field of real (complex) numbers; C+ := {s € C: Re(s) >0},
o

equivalently, the closed right-half of the complex plane; C_ := {s e C :Re(s)

< 0}, equivalently, the open left-half of the complex plane; IR [p]

euclidean ring of polynomials in p with real coefficients; IR (p) field of

rational functions in p with real coefficients; Amxn set of mxn arrays

of elements belonging to the set A (e.g., IRmxn, BUp]™", IR (p)mxn,---);

rk(A) the rank of matrix A; £[f] the list of zeros of the function f;

(?[H] the list of poles of the matrix function H; w as in (A u B) the

concatenation of the lists A and B; 1. the kxk identity matrix.

1. GENERATING THE k-PORT K FROM THE GIVEN CIRCUIT 7L

The given circui171 is an arbitrary interconnection of lumped,

linear, time-invariant circuit elements including independent sources.

It has a connected graph of b branches and n+ nodes.

Assumption 1.1. The circuit7Lis uniquely solvable.

The uncommitted circuit # is obtained from 7t as follows: k 1-ports

are generated by soldering-iron entries to some nodes of 71 and by pliers

entries to some branches of 71. A branch, whose nature is not yet

specified, is connected to each port. These branches are called the

uncommitted port-branches [Chu. 1, p. 260] and they are assigned the vol

tage and current reference directions of the port where they are connected
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(see Fig. 1.1). The resulting circuit is called/^: it has k port-

branches, b internal branches (the same as the branches of 7t)9 and

n := n.-1 nodes excluding datum, where n. > nt-

In the circuit X> let i and y denote the b-vectors of internal

branch currents and of voltages. The superscript p distinguishes the

port-branch variables from the internal branch variables: i and y have

associated reference directions whereas ip and yp have non-associated

reference directions as far as the port-branches are concerned (see

Fig. 1.1).

Let us now 1) remove all the uncommitted port-branches from the

circuit K and 2) put all its internal branches and internal nodes inside

a black-box; the result is a k-port called K (see Fig. 1.2). Note that

the port-variables ip and yp are the only measurable variables of the

k-port K.

Def. 1.2 [Bel. 1, p. 66] An n-port is said to be well-defined iff there

is at least one way of choosing n independent sources to terminate its

n ports such that the port-variables of the circuit thus formed are

uniquely solvable for all values of the independent sources. Equivalently,

an n-port is well-defined iff it has at least one hybrid representation.

Fact 1.3 Assumption 1.1 implies that the k-port K is well-defined.

Proof: One way of choosing the k independent sources is to connect

independent current (voltage) sources to the ports of Kthat were created

by soldering-iron entries (pliers-entries, resp.) on the circuit 71. The

circuit thus obtained is zero-input equivalent to 71, which is uniquely

solvable by assumption 1.1. n
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2. THE HYBRID REPRESENTATION FOR THE k-PORT K

The Circuit ^Tu

Let k-, (k2 := k-k-j) ports of the k-port Kbe driven by independent

voltage (current) sources and call these ports the "voltage-ports"

("current-ports", resp.).

Assumption 2.1: The hybrid representation corresponding to this

partitioning of the k-ports of K exists. At least one such hybrid

representation is guaranteed to exist by Fact 1.3.

The circuit obtained by driving the k-port Kby k-j independent

voltage sources and k« independent current-sources is called %. (see

Fig. 2.1). /^! has the same digraph as the uncommitted circuit ~?(\ the

uncommitted port-branches of the circuit ^are now specified as k-.

voltage-port branches and k« current-port branches in the circuit /fl.

Partition the port-branch variables ip and yp of the circuit 7(, as

fol1ows:

,P .-

p .=

~xf
where v? := [v„ v '•••-1 L~Sl ~s2

kl

"if
where i, := [ic i. •••~l -s1 ~s2 is ]T-=i

kK2

Therefore y^ and ip (i£ and y£) are the port-branch variables of the
voltage-ports (current-ports, resp.). The tableau equations for the

circuit #h can be written using the node voltages (e), the internal
branch voltages and currents (y and i), and the port-branch variables

(vp and ip).
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Tableau Equations for the Circuit /^h

For tableau equations we use the form

I(p) w(t) - u(t)

where -jr is denoted by p. For the hybrid circuit /^h

b.

k

b

n b b k k

"2 ! 5 ! 4) ! 2 ! ^P r"e(tf

-aI ' \ ' ° ' 0 ' 0 v(t)

-AI I 0 ! 0 ff 1. J 0 i(t)

0 JM(p) J N(p) [ Q [ g
-v?(t)
-yP(t)

1 ! ! 1. 0 '. 0 0
0 -, 0 0 « '

i 1 ', 0 0,Q1.
. ; . ~ ~ 1 ~K2

i?(t)

ys

*s

Is

(2.1)

T(p) e R[p](2b+n+2k)x(2b+n+2k) is the tableau matriXj ft . ^ :Ap] GRnx(b+k)
is the reduced incidence matrix of K^ where Afa (Ap) corresponds to the
internal branches (port-branches, resp.). (For an example, see (5.1) below.)

In the tableau equations (2.1), the first n are KCL equations, the

next b+k are KVL equations, and the equations M(p) y(t) + N(p) i(t) = u$,

M, Ne R[p]bxb, correspond to the b internal branch equations with us

representing the internal independent sources. The last k are the

branch equations of the independent sources connected at the ports. Note

the minus sign in front of the port voltages due to nonassociated

reference directions.
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The Tableau Matrix T(p)

The circuit "H^% and in fact any uniquely solvable circuit obtained

by connecting independent sources to the ports of the k-port K, has the

same digraph and internal branches as the uncommitted circuit A-

Therefore the first 2b+n+k tableau equations of the circuit/^ are
identical to those of any other well-defined circuit obtained from the

k-port K. Their respective tableau matrices differ only in the last

k rows.

Fact 2.2. Let assumptions 1.1 and 2.1 hold. Then

a) the tableau matrix T(p) is nonsingular;

b) the first 2b+n+k rows of T(p) are linearly independent in the

module (F [p]2b+n+2k, R[p]). [Sig. 1, Chap. 6].

Proof: a) The circuit ?fh is uniquely solvable (assumption 2.1) and thus
its tableau equations have a unique solution; equivalently, the polynomial

det T(p) f 0.

b) Let f\. be the particular circuit obtained by connecting independent
P

current (voltage) sources to the ports of the k-port K that were created

by soldering-iron entries (pliers-entries, resp.). Then the circuit

Tfu is uniquely solvable by assumption 1.1 since it is zero-input
P A

equivalent to the given circuit 71. Let T (p) be the tableau matrix for

the circuit t\^ which differs only in the last k rows from the tableau
matrix T(p) of the circuit 7C. Since 7fh is uniquely solvable, ID(p)np P
is nonsingular with its 2b+n+2k rows (or any subset of its rows) linearly

independent in the module (IR [p]2b+n+2k, F[p]). Then the first 2b+n+k

rows of T(p), which are identical to those of I-(p), are linearly

independent in the same module. n
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Let R(p) e K[p](2b+n+k)x(2b+n+2k) denote the octangular matrix that

corresponds to the first 2b+n+k rows of T(p). Then R(p) is full row-rank

by fact 2.2.

The Hermite Row Form of R(p)

By elementary column operations (in the ring F[p]) performed on

the rectangular matrix R(p), let us now

1) make a change of variables from -yp to yp, and

"if"
-.£- in the first 2b+n+k tableau equations

ri?i
2) reorder

yp
-

"if
as

w w

in.(2.1).

With all internal independent sources of the circuit r\^ turned-off, these

equations read:
r- X -i

if

B(P)

?2

= 0 where x := (2.2)

Fact 2.3: Let assumptions 1.1 and 2.1 hold. Then the polynomial matrix

R(p) defined in eqn. (2.2) can be put in the following Hermite row-form

by elementary row operations in the ring R[p]:
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2b+n U ! W i W
-:_4:4-~-

0

2b+n

!* I -s i?

i?

= 0 (2.3)

where U(p) e F [p] (2b+n)x(2b+n) ,is an upper-triangular nonsingular matrix

with nonzero monic polynomials in p of degree at most 1 on the main diagonal,

A(p)> B(p) € F[p]kxk. (The matrix on the left of equation (2.3) is

called R(p) e F[p]vx^v+k) where v := 2b+n+k.)

Comment: From the Hermite row form, all entries of U(p) above the main

diagonal are (possibly zero) constants.

Proof: The square tableau matrix T(p) for the circuit /f. in equation (2.1)

has polynomial entries of degree at most 1 since -rr := p. The last k

equations in (2.1) specify the nature of the port-branches and hence, the

last k rows of T(p) are all zeros except in the last 2k columns. T(p)

can be reduced to an upper-triangular Hermite row form by elementary row

operations in the ring F [p] without using the last k rows to bring zeros

below the main diagonal in the first 2b+n rows. Since T(p) is nonsingular,

its Hermite row form has nonzero diagonal entries. By elementary row

operations performed on the first 2b+n+k rows of T(p) we obtain R(p),

the hermite row form of the submatrix R(p) which corresponds to the

first 2b+n+k rows of T(p). n

The Hybrid Matrix H for the k-port K

The last k equations in (2.3), namely,
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A(p)
i?

*2P
- B(p)

A
= 0

are the constraints imposed on the port-variables by the k-port K.

In the circuit 7^h,
tf 3fs

are the "independent" port-

±2 Is

(2.4)

variables. Since the choice of independent sources corresponds to a

uniquely solvable circuit ?fn, the hybrid representation is well-defined
kxk ,and the polynomial matrix A e F [p] is non-singular. Then from

equation (2.3), the dependent port-variables
i?

A

terms of the independent port-variables:

i?

A
=A_1(p) B(p)

~A ~A
A

•H(p)

A.

are represented in

(2.5)

where H:= A"1!* € p (p)kxk is the hybrid-matrix for the k-port K.

3. STABILITY OF THE CIRCUIT 7^ AND OF THE k-PORT K
If the hybrid matrix H of some k-port is not proper (i.e., has a pole

at «), then some bounded inputs produce unbounded outputs even if H is

analytic in C+. To wit, in the one-port case, with a first order pole

at ~, the bounded output due to sin(u>0tz) includes the term 2coQ t cos(o)Qt )
which is not bounded on F+. Consequently, our definition for the

exponential stability of a k-port will be a variant on the "bounded-input

bounded-output" stability definition.
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The stability of the k-port K, which is a black-box with access

only to its ports, does not guarantee that the circuit /^n is also
exponentially stable. The internal behavior of the circuit 7fn is not

available for measurement at the k ports of K unless all modes of the

circuit 7L are both controllable by the given inputs at the ports and

observable at the output port-variables.

Let

A is
be the input to the circuit a u and let

J?
A

kxkbe the output. Then the hybrid matrix H e F (p) of the k-port K is

the network function of the circuit X from the given inputs to the

outputs.

Def. 3.1. The k-port K with the hybrid matrix H is said to be

exponentially stable iff bounded inputs with bounded support (say on [0,T])

create zero-state responses which go to zero exponentially as t

approaches ».

kxk
Def. 3.2. The network function H e F (p) is said to be exponentially

stable iff ^P[H] CJ_.

Comment: In most control applications the following definition is adopted:

the transfer function (network function) H is exponentially stable iff H

is proper and P[H] c £_. (For input/output properties of exponentially

stable transfer functions so. defined, see [Cal. 1, p. 127].)

Def. 3.3. X€ c is called a natural frequency of the circuit 7fn iff,

for some initial condition, the zero-input response of the circuit #L

is of the form
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=aeXt where a € e(2b+iH2k) .

Any zero-input response t ^oe is called a mode of the circuit

^n associated with the natural frequency X.

It can be shown that Xis a natural frequency of the circuit 7(^ iff

det T(x) =0 where T(p) is the tableau matrix of ^.

Remark: Associated with a given natural frequency, say X, there may be

several modes:

a-je , q.2e » *••» 3|<e

where the vectors ^, a2, •••, ak e a;(2b+n+2k) are linearly independent
members of the null space of T(x).

Def. 3.4. The circuit ?(, is said to be exponentially stable iff, for

all initial conditions, the zero-input response (i.e., all branch voltages

and all branch currents) goes to zero exponentially as t •»• ». Equivalently,

all natural frequencies of the circuit X^ have negative real parts,

(a(>^.) c C_, where ^(-Vn) is the list of natural frequencies of the

circuit 7(* .)

Analysis and Stability Theorems

With
A
A

as the input to the circuit nh, rewrite eqn. (2.3) in

the form: — -1

2b+n

1

y { w

i

0 I A
"* i ~

i

x W

Tf
A

=

B

2b+n
-12-
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The matrix on the left of eqn. (3.1) is called f(p) e F [p]vxv.

Comment: We refer to f(p) as the tableau matrix of the circuit /^n
although it is obtained by elementary operations from the original tableau

matrix of equations (2.1). Since the zeros of det T(p) are the natural

frequencies of the circuit /\n> it is important to note that det f(p)
is equal to det T(p) modulo a nonzero constant and Z. [det T] = Z[det T].

^ kxk
Let L(«) € IR[p] be any g.c.l.d. (greatest common left divisor)

of the polynomial matrices A and B of eqn. (3.1) [Cal. 1, p. 24, Kal. 1,

p. 376, Ros. 1, p. 70]. Equivalently, there exists polynomial matrices

A, B such that

A = Lj , B = LB (3.2)

and the pair (A,f)is left-coprime. Then the hybrid matrix H= A" B of

the k-port K can also be expressed as

H=A"1! (3.3)

where #[H] = Z[det A] .

With these notations in mind, we have the

Theorem 3.5. The k-port K specified by the hybrid matrix H is exponentially

stable iff the hybrid matrix (network function) H is exponentially stable.

Proof: The k-port K is a black-box which allows access only to the port-

variables yp, ip of the circuit 7<(. ; thus, the modes of the k-port Kare

those modes of the circuit ^fn which are available for measurement at the

k ports. Therefore the k-port K is characterized by the network function

H from the given inputs at the ports to the output port-variables. Using
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Laplace transforms it is easily shown that for bounded inputs with bounded

support (say on [0,T]), the resulting outputs go to zero exponentially as

t -** » iff this network function H is exponentially stable; equivalently,

iff (P[H] = £[det A] C C_. n

Theorem 3.6. Let assumptions 1.1 and 2.1 hold. Then the circuit #h with

tableau equations (3.1) is exponentially stable iff the characteristic

polynomial X(p) := det T(p) has no zeros in I+; equivalently a) det U(p)

has no zeros in C+ (i.e., all diagonal entries of U(p) are strictly

Hurwitz), and b) given any g.c.l.d. L of (A, B), det L(p) has no zeros in
o

C+ and c) the k-port Kis exponentially stable (equivalently, f [H] c C_).

Proof: c(^J, the list of all natural frequencies of the circuit z^,
is given by a(#h) = ZW =Jt[det T]. With A=LA , and from eqn. (3.1)
we obtain

X(p) = det T(p) =det U(p) det A(p) =det U(p) det L(p) det A(p). (3.4)

Hence,

ZCX] = K[det U] w £[det L] w Z[det A] (3.5)

Furthermore,

(P[H] = PCS"1!] s ZCdet A] (3.6)

since A, B are left coprime. The conclusion follows from (3.5) and (3.6). n

Def. 3.7. A mode of the circuit /% is said to be a hidden mode iff it

is not a mode of the k-port K; equivalently, it is not controllable by

A
the irlputs

[a]
•

and/or not observable at the output port-variables
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Comment: We shall see later that 1) the list of "hidden modes" of the

circuit 7(h is £[det U] w £[det L]. If ze ft is in this list and

det A(z) f 0, then no input with bounded support, (say on [0,T]), can

create a response at the output port-variables which contains the term

ezt for all t > T.

2) If there are no hidden modes, or if all the hidden modes are

exponentially stable, then the exponential stability of the k-port K

is equivalent to the exponential stability of the circuit #n.

4. THE POLYNOMIAL MATRIX DESCRIPTION (PMD) OF THE CIRCUIT 7(h

Let us rewrite equation (2.3) for the circuit ^n in the following form:

— -s. "

i

«

•

X w

A
p

,-D

i A ll
B L'2j

1 *w

1 LA]

[ o : ik] A

N„(P) u(t)

A
A

y(t)

Equations (4.1)-(4.2) define the Polynomial Matrix Description (PMD)

&=[D, N^, Sr, 0] of the circuit ^ [Cal. 1, sec. 3.2, Kai. 1, sec.
sec. 6.2.3, Ros. 1 sec. 2.2]. In equations (4.1)-(4.2),

a) D(P) € F[P]^, N£(p) e K[P]vxk, Nr(P) ej.[p]kxv;
b) D(») is nonsingular;

-15-
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c) u(-) :K+ -». Kk, |(.) :K+ * Rv, y(.) :R.+ * Rk are called
the input, pseudo-state, and output of the PMD;

d) if we want to avoid 5-functions, u(«) must be piecewise

sufficiently differentiate [Cal. 1, p. 93].

Call H(s) € K(s)kxk the transfer function of the PMD. Then

H(s) =Nr(s) D"'(s) No(s) and tne Laplace transform of the zero-state

response is y(s) = H(s) u(s).

Decoupling zeros of the PMD: [Cal. 1, sec. 3.2, Ros. 1, p. 64]

Let L(-) e K[p]vxv be any g.c.l.d. of (D,^). Equivalently, there
are polynomial matrices D and N0 such that

D=LD and N^ =L N^ (4.3)

and (D,NJ is left-coprime.

Def. 4.1. A point z- e C is called an input-decoupling zero (i-d zero)

of the PMD £ described by (4.1)-(4.2) iff given any g.c.l.d. L(«) of

(D,^), det L(z.) =0 [Cal. 1, p. 101].

Rank Test 4.2 [Cal. 1, p. 101, ex. 37, Ros. 1, chapter 2]. zi € 1 is an

i-d zero of the PMD £) described by (4.1)-(4.2) iff rk[D(z.j) \ N^U^)] <v.
It can be shown that every i-d zero of the PMD Q is associated with

an uncontrollable mode of the circuit nn.

Let R(-) e TR [p]vXv be any greatest common right divisor (g.c.r.d)
— /s

°f (5!r»P)» Equivalently, there are polynomial matrices ft , Dsuch that

D = D R N. = IT R (4.4)
- - -r -r -

and the pair (ljL,p) is right-coprime.
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Def. 4.3. A point z € H is called an output-decoupling zero (o-d zero)

of the PMD «fl described by (4.1)-(4.2) iff given any g.c.r.d. R(*) of

(Nr,D), det R(zQ) =0 [Cal. 1, p. 104; Ros. 1, p. 65].

Rank Test 4.4 [Cal. 1, p. 104, ex 26, Ros. 1, chapter 2]. z e I is an

fi(*q> mo-d zero of the PMD <B described by (4.1)-(4.2) iff rk < v

Fact 4.5. zQ €C is an o-d zero of the PMD JD described by (4.1)-(4.2) iff

det U(z0) = 0.

Proof: Using the rank test 4.4, z is an o-d zero iff

rk

Ik

(z ) < v o rk U(z^) < v and the conclusion follows.
N o •*• o

Comment: Fact 4.5 implies that R(«) in eqn. (4.4) and U(«) differ by a

unimodular factor.

It can be shown that every o-d zero of the PMD J0 is associated with

an unobservable mode of the circuit r\u*

Let L(») be any g.c.l.d. of (D.N^). Equivalently there are polynomial

matrices "D and "N. such that

D= L D, N^ = L N4 (4.5)

and the pair (D,NJ is left-coprime. Then we obtain the network function

as

H- Hr»'\ " Nr9\

where (N .D) is right-coprime and (D,N0) is left-coprime; consequently
*"r ~ "» —**

6°[H] = Z[det D].

-17-

(4.6)



Comment: Consider [(•), L(#) and £(•) defined in (4.3), (4.5) and (3.2)

respectively. By def. 4.1, the complete list of the i-d zeros of the PMD

JO is given by £[det L(-)] whereas the list £[det L] gives all of the

i-d zeros that are not o-d zeros since ^»D) is right-coprime. (See

proposition 6.1 for determining those i-d zeros that are also o-d zeros.)

From the rank test 4.2 and eqn. (4.1) it follows that if det L(z..) = 0

then z. is an i-d zero of the PMD £) and that if z^ is an i-d zero then

(det U(z|) • det L(z.j)) =0. Therefore L(-) and L(-) differ only by a

unimodular factor and the i-d zeros that are not o-d zeros are given by

£[det L] as well.

Stability of the PMD JD

Let the PMD <£) described by (4.1)-(4.2) have the network function

H=O"1 N0 and let (4.3)-(4.6) hold. U.t.c. we have the

Theorem 4.6. The circuit 7^ which has the PMD JD described by (4.1)-(4.2)
is exponentially stable iff the characteristic polynomial x(p) := det D(p)

o

has all its zeros in <E_; equivalently,

a) the PMD £ has no i-d or o-d zeros in <C+

and

b) the network function H is exponentially stable (equivalently,

<PCH] ci).

Comment: For exponential stability of the PMD, most control applications

would require in addition that the PMD £> is well-formed (equivalently,

D"1, NjJ}"1, $\v 8are proper) [Cal. 1, p. 128].

Proof: Use the same reasoning as in the proof of theorem 3.6 with

X(p) = det D(p) = det L(p) • det D(p) • det R(p) and Z[x] = £[det L]
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w 2"[det R] w £[det D]. The list of decoupling zeros is Z[det L]

w 2Tdet B], and <P[H] = £[det D]. n

Comment: A mode of the circuit ^(. is a hidden mode iff it is associated

with an i-d zero or an o-d zero of the PMD o©. Therefore the list of

the natural frequenices of the circuit /^ associated with the hidden
modes of \ is £[det R] w Z[det L] =£[det U] w Z[det L].

5. EXAMPLE

Consider the linear time-invariant active circuit 7L shown in

Fig. 5.1.

Generate two 1-ports by soldering port-branches as shown in Fig. 5.2

to obtain the uncommitted circuit n.

The circuit 7\ has k=2 port-branches, b=ll internal branches and

n=6 nodes, and the k-port K of section 1 reduces here to a 2-port (see

Fig. 5.3).

Designate port I (port II) as a voltage-port (current-port, resp.).

Then the circuit ^1 corresponds to the uncommitted circuit /^ where

port-branch 1 (port-branch 2) is an independent voltage (current, resp.)

source. We write the tableau equations as in eqn. (1.1) (see eqn. (5.1))
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6

7

8

9

10

-'II.

-*2P

L-V2Pj

0

-v$

•s.

(5.1)

Here v := 2b +n+k =30 and the tableau matrix T(p) GR[p]32x32.

Next we put the first v rows of T(p) in the Hermite row form described in

section 2 and obtain the tableau equations for the circuit 7fi in the

form of eqn. (4.1) (see eqn. 5.2).
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6

7

e
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!ii-

•p
L v2^

0

-p*l

v,p

(5.2)

The last 2 equations in (5.2) give the 2-port equations of the 2-port

-p+1 0

0 1

B

= 0

2x2From (5.3) we obtain the hybrid matrix H € R (p) :
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H= A-1B = (5.4)

p+1

The characteristic polynomial x(p) of the circuit ?(h is obtained

from the matrix R(p) e F [p]vXv in the left of equation (5.2) as:

X(p) =det R(p) =det U(p) det A(p) =(p -l)(p -1)(p-1)(p-1)(p+1). (5.5)

Thus the list of natural frequencies for the circuit ?\h is crO^f. )
=(-g- , g- , 1, 1, -1). Since o(%u) is not a subset of $_, the circuit
A ft is not exponentially stable but the k-port K is exponentially stable

since P[H] =(-1) CC_. Here, X1 =1/2, X2 =1/5, X3 =1, X4 =1 are the
natural frequencies of the circuit ^ that correspond to hidden modes.
In fact the polynomial matrices A and B are not left-coprime, i.e.,

A =

B =

p-1 0

0 1

p-1 0

0 1

1 0

0 p+1
:= L A

:= L B

as in eqn. (3.2), and since det L = p-1, the g.c.l.d L is not unimodular.

Thus X- = 1 is an i-d zero of the PMD for the circuit /Tp. Since

det U= (p-yMp-yMp-1)» U is not unimodular and X^ = 1/2, X2 =1/5,

X3 a1are the o-d zeros of the PMD for the circuit ^h. Note that using
the rank test 4.2 we see that X, = 1/2 is an i-d zero in addition to

being an o-d zero. The only controllable and observable mode of the

circuit is Xg = -1 since det & = p+1.
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6. PHYSICAL INTERPRETATION OF THE MODES OF THE CIRCUIT ^ AND OF THE
k-PORT K

Consider the PMD equations (4.1)-(4.2) for the circuit"/^. We
now determine the hidden modes of the circuit from eqn. (4.1) by

inspection and give a physical interpretation for each natural frequency.

The uncontrollable and unobservable hidden modes of the circuit 7Th

Proposition 6.1: Consider eqn. (4.1). If the ith diagonal entry of the

upper triangular matrix U is the monic first degree polynomial (p-X,) and

if the ith rows of the matrices y(X-i) and y(X-.) are both zero, then

associated with the natural frequency X-., there is an uncontrollable and

unobservable mode.

Proof: By assumption, det U(X-|) =0 =* T(X-|) =0 and X-j is a natural

frequency of the circuit ^. By the rank test 4.4, X-, is an o-d zero
since U drops rank at X-,. By the rank test 4.2, X-, is an i-d zero since

the ith rows of U(X,), W(X-j) and W(X-j) are zero. Therefore X, is both

an o-d zero and an i-d zero and the conclusion follows. °

In the example of section 5, X-. = 1/2 corresponds to an uncontrollable

and unobservable mode since row 19 of equation (5.2) is:

(p-1/2) i2 =0 .

The controllable but unobservable hidden modes of the circuit /T.

Proposition 6.2: Consider eqn. (4.1). If the jth diagonal entry of the

upper triangular matrix U is (p-Xp) and if rk[D(X2) 1 N^(X2) = v,

then associated with the natural frequency X2 there is an unobservable

mode that is controllable.
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Proof: By assumption, det U(X2) =0; hence X2 is a natural frequency

of the circuit Hu. By the rank test 4.4, X2 is an o-d zero, but since

rk[D(X2) • N«(X2)] =v, X2 is not an i-d zero and the conclusion follows.
n

In the example of section 5, X2 = 1/5 and X~ = 1 correspond to

unobservable but controllable modes. From rows 21 and 30 of equation (5.2)

(P-^V Vv2 =0 and <P+1)V2 =*2 =1s

U ' p-1/5 Tp+TT s

From row 28, (p-l)^ +(l-p)i^ =-v^ =-vg. Note that X4 =1=X3 is
a~multiple natural frequency: X4 is an i-d zero but X, is an o-d zero.

The observable but uncontrollable hidden modes of the circuit ^

Proposition 6.3: Consider eqn. (4.1). Let detA(X^) =0. Then

associated with the natural frequency X- there is an uncontrollable mode

that is observable iff rk[A(X4) • B(X4)] <k.

Proof: The assumption implies that det J(X^) =0 and that X^ is a

natural frequency of the circuit 7{^ Since Z[det L] is the complete
list of the i-d zeros that are not o-d zeros, X^ is associated with an

uncontrollable but observable mode iff det[C(X4)] =0, where Lis as
in eqn. (3.2). But det[L(X4)] =0 « rk[A(X4) • B(X4)] <k and the

conclusion follows. n

Comment: If, in addition, det U(X4) =0, X4 is a repeated natural

frequency and associated with X4 there is another mode that is unobservable

In the example of section 5, X4 =1 corresponds to an uncontrollable
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but observable mode. From row 29 of equation (5.2)

(P-Di? --(p-DvP .

(The first rows of both A and B only have (p-1)).

The observable and controllable modes of the circuit./^
Proposition 6.4: Consider eqns. (4.1) and (3.4)-(3.5). If det E(Xg) = 0

then associated with the natural frequency Xc there is a mode that is
o

both observable and controllable. Hence, this mode is a mode of the

k-port K.

Proof: By assumption XR ^ o{7(.) =Z[xL By the rank tests,
5 ^uv'Jh

B(*5>"rk[D(Xg) •N^)] =v and rk

decoupling zero. W
- v. Therefore Xg is not a

Comment: If Xg is a repeated natural frequency, then associated with

Xg, there may also be another mode that is hidden if det U(Xg) =0 and/or

if det L(Xg) =0.

Irr the example of section 5, Xg =-1 corresponds to a controllable

and observable mode: from row 30 of equation (5.2)

(p+l)VP= iP= is .

Comment: The impulse response of the k-port K contains a term of the
xt

form p(t)e z for some X (with p(t) 6 F [t]) « X € #)[H]. The zero-input

response of the circuit ^ may contain terms of the form p'(t) eX,t
such terms are created by initial conditions inside the k-port Kthat

cannot be set up by appropriate port excitations.
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7. INTERCONNECTION OF TWO k-PORTS

Construction

For a =1,2, let the linear, time-invariant circuits 3?a be uniquely

solvable and have no independent sources. Let assumption 1.1 hold for

the circuits "7? , and let 7L„ have bn branches and nt nodes.

The uncommitted circuits Xa with ba internal branches, na nodes,
and k port-branches are obtained from the given circuits 7?a as A was

obtained from 7i in section 1. Continue the procedure of section 1 to

obtain the k-ports K from the circuits n. From Fact 1.3, the k-ports

K-. and Kg are well-defined.

Next partition the k ports such that k-j ports of the k-port K-j (K2)
are voltage-ports (current-ports) and the rest are current-ports (voltage-

ports, resp.) and assume that the corresponding hybrid representations

exist. Therefore the circuits ^h and"?/, obtained similarly as then1 n2

circuit7fn are uniquely solvable. Observe that if we use a hybrid
representation for the k-port K-j with the k1 voltage-ports and the

k2 := k-k1 current-ports chosen above, then for the k-port K2 we use the

(dual) hybrid representation with the k-j current-ports and the k2 voltage-

ports chosen above.

Connect the k1 voltage-ports (k2 current-ports) of the k-port Kj to

the k1 current-ports (k2 voltage-ports, resp.) of the k-port Kg. Call the

resulting circuit the interconnected circuit ^jj (see Fig. 7.1).
Let x, (x2) denote the 2b1+n1 (2b2+n2) internal-branch variables and
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"d) (id) ) denote tne 2k port-branch variables of the circuit"^

nternal-branch variables and(^Lh » resp.). Then (~ Jrepresents the i
n2 T \Zz/

/. -T _ TV/ T T\
((- j .J~D) J are the driving-port variables of the circuit /(.. The

v~s
independent-source drive of the interconnection is u, := I . land

/'lsl\ /«l\u2 :=l 1. We call I ) the driving-point input of the interconnected

circuit *7{j.

8. TABLEAU EQUATIONS, PMD, AND STABILITY OF THE CIRCUIT 7^
For each of the circuits ^K and 7^1 ,we write tableau equations

nl n2
as in eqn. (2.1) and put each of the tableau equations into the Hermite

row-form (2.3). These tableau equations lead us to the PMD's for the

circuits 7f. and 7^h similar to the PMDjQ of eqn. (4.1)-(4.2).
nl n2

The PMD for the circuit ^.

From the tableau equations for the circuit /^h ,we obtain its PMD
nl

<&l = CD,, N. , Nr ,0]

2b1+n1

2b1+n1 ~ui «i *i •«i
(8.1)

A
~Ai

£,(t) M^P) Si^)
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*1
A'

k [ Q U A

8r (P) h{t) *iW

v,xkv.xv. V,XK *a»1

where Q,(p) eJM1 \ H. (p) e F[p] , Nr (p) e *[p] .
I 1 1

vj := 2b1 +n-, +k. Since the circuit^ is uniquely solvable,
det D-,(p) =det U^p) det A^p) f 0,

8.2)

From AA, j"] ]=bJ""1 )we obtain the hybrid matrix H-j := A^ g1
V2/, ~V2^

6F(p)kxk where A-, is nonsingular since the hybrid representation exists
by assumption. The transfer function (network function) from

*-8'-r2
1 1

»1 -8,^% =A '
The PMD for the circuitXh

Similarly for 7(h , we have the PMD <&2 =[D2, {L , N , 0]
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2b2+n2

2b2+n2 k

h h

h

h

A
«8.

P7(p) s,(p)

0 I
- I Ik

*z

A
A

K (p) So(t)
-r

w2

*2

5. (p)

r,

A
>-A

-v—'

y2(t)

r , - ""

-A
A

voXk kxv.
where D2(p) e F[p] * S N£ (p) e F[p] , Nr (p) e F[p] %

v2 := 2b2+n2+k* Since the circuit^/h is unicluely solvable,
det D2(p) =det y2(p) det §2(p) i 0. As for the k-port K-, we have

H2 := B2 A2, and

h"*rfi\ =h'h •

(8.4)

(8.5)

(8.6)

The PMD of the circuit /Y-

First we concatenate the PMD equations (8.1)-(8.2) and (8.4)-(8.5),

and reorder variables to obtain:
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'«ii2|*il 0~

Qiy2|Qj w2

! i >
i i

0 0 1Ai 1
l_ _ L •

0

'III
9h9i

Bi(p)

o ! o . i. | o
i ' K • "_^—h

! ° ' ]ko jo

Br (P)

C(t) -

:1' A.
9 I W,

--+-H
i

b/i Q
i

-+-

0 i k0
~ i -2

h (p) fi(t)

where det D..(p) =det U^p) det A^p) det y2(p) det B2(p) =det D^p)

•det g2(p) t 0. Using KVL and KCL, we obtain the connection equations

from Fig. 7.1.
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/A\ /-AEliminating! ' I and I

\iz/} \4
from (8.7)-(8.8) by using (8.9), we get

the PMD £). =[Dn, N0 ,N„ ,0] of the circuit 7(-:

k k

l i

2b1+n1 y1; o j -V -~wi
2b2+n2 q ;y2 -w2' w2

k *1 -~B1

--0--
k :-a2

\
i

! h

if

C(t)

[ 9 i i2k Jl(t) =y(t)

Sl

"-z

h

62

J
h (p)

U

'-is!
%.

u(t)

(8.10)

(8.11)

i

(v,+v9)xk kx^+vj
where N0 (p) € F[p] { L ,L(p)6R[p] . v,+v2 =(2b1+n]+k)

-^ i

+ (2b2+n2+k).

Equations (8.10) are the tableau equations of the circuit f(.\
modulo elementary operations. The characteristic polynomial of the

circuit ^ is x^p) =det D(p).

Fact 8.1: (well-posedness condition) Let the circuits nh and A^

be uniquely solvable (equivalently, det D-jH i 0, det D2(0 t 0.)

-31-



U.t.c., the circuit ^ is uniquely solvable (equivalently, det Dg(«) t 0)
~ det (I-^Hg) =det (I-H^) t 0.

Proof: From (8.10) we obtain

det D (p) = det U^p) det y2(p) det

By elementary column operations,

^(p) -^(p)

-^(p) B2(p)_

-In n-ldet D(p) =det U^p) det y2(p) det A^p) det §2(p) detU-B"'/^'B^

=det D^p) det 02(p) det(I-H2H.,)

and the conclusion follows.

Let £,(•) e F[p]kxk be any g.c.l.d. of (ApB-,) and L2(«) e R[p]
be any g.c.l.d. of (B2,A2). Equivalently 3 polynomial matrices A^, B^

and jL, A2 such that

A-j =LX g1 =Cf| (5j»?j) is left-coprime

g2 = j_2B2 A2 = L2A2 (^s^) is left-coprime

(8.12)

(8.13)

n

kxk

(8.14)

Then the hybrid matrices H^ and H2 for the k-ports K-j and K2 defined by

(8.2) and (8.6) resp. become

The network function \fyu from the driving-point input u to the output

y is given by

-32-

(8.15)



Hyu := Hr B^Bt "1(1-8281 J"1 Bi^U-tJi^)"1

From (8.14)-(8.15) we have:

<PCH-|3 = 2[det 5,], tf>[H2] =£[det B-]

and an easy calculation shows that

<?[Hyu] =2[det 5, det f2 detfl-H^]

From (8.12)-(8.14) we obtain the characteristic polynomial x^p)

of the circuit ?{.:

X.(p) =det D(p) =det U^p) det y2(p) det L^p) det C2(p) .

[det S,(p) det f2(p) det (I-H^)]

(8.16)

(8.17)

(8.18)

Let a[7(j) denote the list of all natural frequencies of the circuit Tf"',..
Then from (8.17)-(8.18),

a(^) =Zfy] =ZCdet y,] wZ[det y2] wjftdet C^ w£[<tet £2]

w(PWyu] •

Stability of the circuit ^ and physical interpretation of the modes

(8.19)

Equation (8.19) will be used to give a physical interpretation of

the natural frequencies of the circuit r\y First we show that

the circuit y^f. inherits of all hidden modes of the circuits /). and /).
i nl n2

and no other hidden modes result from the interconnection. From equations
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(8.1)-(8.2) ((8.4)-(8.5), resp.):

a) z1 (z2) is an o-d zero of the PMD for the circuit On CTh ) Iff
det U^z^ =0 (det y2(z2) =0, resp.),
b) s1 (s2) is an i-d zero of the PMD for the circuit 7fh (/fn)iff
rkE^ts^ •N^ (s1)] <v1 (rk[D2(s2) j N£ (s2)] <v2» resp.). Then we
the

have

Theorem 8.2. Consider the PMD's for the circuits 7fh , nh , and 7^
defined by equations (8.1)-(8.2), (8.4)-(8.5), and (8.10)-(8.11), resp.

i) The list of all o-d zeros of the PMD for the circuit ^ is the
concatenated list of the o-d zeros of the PMD's for the circuits fj^
and K^

ii) The list of all i-d zeros of the PMD for the circuit ^ is the
concatenated list of the i-d zeros of the PMD's for the circuits 7ih and

n2
iii) The complete list of the decoupling zeros of the PMD for the

circuit nA is the list

Z[det U^ w?[det U2] wZ[det j^] wZ[det L2] .

iv) The circuit ?\. is exponentially stable iff the circuits 7^h
and^f. have no unstable hidden modes and <P[Hyu] Ci_.

Proof: i) z e I is an o-d zero of the PMD for K. , (see (8.10)-(8.11)),
'o •

o rk *&£
Nr.(z0)

1

<Vl+v2 ~ det U1(z0) det y2(z0) =0

~ z is an o-d zero of 7(. and/or of nh and the conclusi

follows.
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ii) z. SI is an i-d zero of the PMD for 7)^

^rkCQgU^N^)] < v,+v2

"U, 0 W, -W, iW-, 0

o rk
9 h \ w2 •o w2

A, -B,

o _1 }
B1 0

9 62

and by elementary column operations,

<> rk

y1 p w1 o W-j 0

5 Sfe ° ~2 9 W2

o *• 5
9 §2

§1 9

•9 62

by column and row exchanges,

o rk

o rk

Hi Hi: Si;
9 A1 |B1 o

o

8i ^

ife -2 !-2

9 l2:62_

! 0

o i 92 i 8.
i L i 2

(Zj) <v^2

(z^ <v1+v2

(z..) < V-|+V2

(z^ <v.,+v2

z^ is an i-d zero of H^ and/or of 7in and tne conclusl"
follows.

on

iii) From i), the list of all o-d zeros of the PMD for 7f^ is given by

Z[det U,] wZ[det y2] (8.21)
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Let L^tO and L2(-) be as in eqn. (8.14). Then Zl (z2) is an i-d zero
that is not an o-d zero of the PMD for the circuit 7\h (#n )iff
det L^) -0(det L2(z2) -0, resp.). From ii), the list of all i-d
zeros that are not o-d zeros of the PMD for *#. is given by

rCdet L,] wHdet L23 . (8'22)

The concatenation of the lists from (8.21)-(8.22) gives the complete

list of the decoupling zeros of the PMD for 7fi and the conclusion follows,
iv) The circuit 7f. has ahidden mode associated with each decoupling

zero of the circuit "#. and of the circuit ~fth . The list of all
nl 2

natural frequencies o^.), given by (8.19), is the concatenation of

(P[H .] and the decoupling zeroslisted in (8.20). Associated with each

decoupling zero zd e (t+ there is an unstable hidden node of the circuit
7{.. Since the circuit 7^ is exponentially stable iff a(7f..) c<L_,
the conclusion (iv). follows.

The physical interpretation of the natural frequencies of the

circuit ft. listed in (8.20) is as follows: Associated with each

natural frequency from the list in (8.21), the circuit ^ has an

unobservable hidden mode. Some of these-modes may also be uncontrollable

as well as being unobservable. (To determine the o-d zeros that are

also i-d zeros for each of the circuits TjV and #h ,see section 6).
nl 2

Associated with each natural frequency from the list in (8.22), the

circuit 7) . has an uncontrollable (but observable) hidden mode. Associated

with each natural frequency, say XCQ, from the list in (8.17), the

circuit 7f. has a controllable and observable mode and the impulse response

at the driving point of 7\\ includes an exponential term of the form

p(t)e co (where p(t) is a polynomial).
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Remark:

In this paper we choose to write tableau equations as a general

method of circuit analysis although all of the discussion above is also

valid for Modified Node Analysis (MNA), using as circuit variables the

node voltages, the additional branch currents, and the port variables

yP and ip.

9. CONCLUSION

This paper investigates the dynamics of lumped, linear time-invariant

k-ports, and of circuits obtained from them, by using tableau equations.

In a polynomial matrix description framework, the concepts of

modes, hidden modes, uncontrollable and unobservable modes are explained

and conditions are obtained for the exponential stability of k-ports

(theorem 3.5), of circuits (theorem 3.6), and of interconnected k-ports

(theorem 8.2). It is shown that the interconnection of two k-ports

inherits all hidden modes of each of the individual circuits in the .

interconnection and that the presence of any unstable hidden modes causes

the circuits to be exponentially unstable even though the network functions

from their inputs to their outputs are exponentially stable.
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Figure Captions

Fig. 1.1. The uncommitted circuit 7C with b internal branches and k

port-branches.

Fig. 1.2. The k-port K.

Fig. 2.1. The circuit ft. with binternal branches, k-j voltage-port

branches and k2 current-port branches.

Fig. 5.1. The given circuit 71 for the example.

Fig. 5.2. The uncommitted circuit 7i for the example.

Fig. 5.3. The k-port K for the example.

Fig. 7.1. The interconnected circuit "Ky
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