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Our purpose here is to report that a chaotic attractor has been

observed with an extremely simple autonomous circuit. It is third order and

has only one nonlinear element ; a 3-segment piecewise-linear resistor.

It is a simplified version of a circuit suggested by Leon Chua of Berkeley,

who was visiting Waseda, October 1983 — January 1984.

Consider the circuit of Figure 1(a) where the constitutive relation

of the nonlinear resistor is given by Figure 1 (b). The dynamics is

described by

dvc,
ci ir1 - G(vc2 - V -8 (V

dv

diL
o —V

' dt c2

where v0 v„ and iT denote voltage across Ci, voltage across C2 and
C\, C2 L

current through L, respectively. Figure 2 shows the chaotic attractor

observed by solving (1) with

1/Ci = 10, 1/C2 = 0.5, 1/L = 7, G = 0.7. U)

Figures 2 (a), 2 (b) and 2 (c) are the projections of the attractor onto

the (i_, v )-plane, (d^, vQ )-plane and (v V(, )-plane, respectively.

(The fourth order Runge- Kutta was used with step size 0.02). It is

interesting to observe that a hyperbolic periodic orbit (not a stable

limit cycle) is present outside the attractor. (Newton iteration was used)

If the reader feels uncomfortable with the function g of Figure Kb)

in that it is not eventually passive and there are initial conditions

with which (1) diverges, he can simply replace Figure Kb) with Figure 3.

If B =14, it has no effect on the attractor and on the hyperbolic periodic
P

orbit, because |v (t)|< 14 for all t> 0 on the attractor and on the
cl
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hyperbolic periodic orbit. The only difference is the appearance of a

large stable limit cycle as shown in Figure 4, where (1) does not diverge

with any initial condition (B = 14, m =5). Note that the existence of
p o

the hyperbolic periodic orbit is quite natural, since the chaotic attractor's

domain of attraction is bounded, there must be an object which separates

the domain of attraction from other initial conditions.

The attractor persists in a strong manner ; the shape does not seem

to change qualitatively with fairly large variations of parameters. It

appears to have interesting structures that are different from Lorenz's [1J

and Rossler's [2]. We note that (1) is, in a sense, simpler than the Lorenz

and Rossler equations, in that the latter have product of two variables

while g of Figure 1(b) is of a single variable and 3-segment piecewise-linear.

Because of this simplicity, one can do several interesting analyses that

are impossible for Lorenz and Rossler equations.

Many more interesting structures have been observed with parameter

values different from (2). Details including Lyapunov exponents,

1-dimensional maps, bifurcations and circuit realizations will be reported

in later papers.
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FIGURE CAPTIONS

Figure 1. A third order autonomous circuit with chaotic attractor ;

(a) circuitry, (b) constitutive relation of the nonlinear

resistor.

Figure 2. The chaotic attractor and hyperbolic periodic orbit; (a) projection

onto the (i , v )-plane, (b) projection onto the (i , v )-plane,
L Cj L C2

(c) projection onto the (v_ ,' v_ )-plane.
C2 Ci

Figure 3. A modified constitutive relation of the nonlinear resistor.

Figure 4. The trajectories with modified resistor constitutive relation;

(a) projection onto the (d_ , v )-plane, (b) projection onto the

(i. , v )-plane, (c) projection onto the (v_ , v_ )-plane.
L L2 C2 Cj
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