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Abstract

High-precision analog-to-digital converters (ADCs) are sought for digital

audio and instrumentation and high-speed converters for video applications.

Improved methods of converter testing at full speed are needed. This paper

describes improved computer-aided ADC characterization methods based on the

code density test and spectral analysis using the fast Fourier transform (FfT).

The code density test produces a histogram of the digital output codes of an ADC

sampling a known input. The code density can be interpreted to compute the

differential and integral nonlinearities, gain error, offset error, and internal

noise. Conversion-rate and frequency-dependent behavior can also be meas

ured.

This work was supported by the Semiconductor Research Corporation under grant SRC-B2-11-008
and the National Science Foundation under grant ECS-8310442.
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1. Introduction

This paper describes improved computer-based methods of testing high-

precision and high-speed analog-to-digital converters (ADCs) at full speed with

full-range dynamic inputs.

A known period input is converted by an ADC under test at sampling times

that are asynchronous relative to the input signal. The relative number of

occurrences of the distinct digital output codes is termed the code density. This

data is viewed in the form of a normalized histogram showing the frequency of

occurrence of each code from zero to full scale. The code density data are used

to compute all bit transition levels. Linearity, gain and offset errors are readily

calculated from a knowledge of the transition levels. This provides a complete

characterization of the ADC in the amplitude domain. The precision of this

measurement may be extended without limit by taking additional data.

Output samples from an ADC also may be processed with a fast Fourier

transform (F5T) algorithm to define the linearity and noise properties of the ADC

in the frequency domain. This is analogous to the use of analog spectrum

analysis to test digital-to-analog (D/A) converters.

For an ideal ADC, the code density is independent of conversion rate and

input frequency. The characteristics of practical ADCs (with their associated

sample/hold circuits) can be exhaustively tested by varying both the sampling

frequency and input frequency. Overall frequency response can be evaluated

using the code density test for several input frequencies.

In high-precision converters (fe 12 bits) noise is a major concern. The sta

tistical nature of the code density test gives a more accurate characterization of

converter noise compared to conventional tests, in which each output code is

attained only once. Noise amplitude can be computed in RMS, peak, or spectral

(from FFT) form.
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Traditional tests use a digital voltmeter (DVM) to attain high measurement

accuracy, but the tests are done with a static or slowly-varying input signal. A

dynamic input can be created using a digital-to-analog converter (DAC). but it is

difficult to separate the errors of the DAC and ADC. Furthermore, resolution is

limited; testing a 16 bit ADC with an 18 bit DAC (if it exists) only yields 1/4 bit

precision in the ADC test.

2. Code Density Test Theory

The histogram or output code density is the number of times every indivi

dual code has occurred. The first observation is that an output code density or

histogram bin equal to 0 is a missing code. A shift in the density is an offset

error. A change in slope of the ADC transfer curve causes a gain error that may

be found by comparison with external amplitude measurements.

For an ideal ADC with a full scale ramp input and random sampling, an equal

number of codes is expected in each bin. Differential nonlinearity is the devia

tion from 1 least significant bit (LSB) of the range of input voltages that give the

same output code. The number of counts in the ith bin, H(i), divided by the

total number of samples, fy, is the width of the bin as a fraction of full scale.

The ratio of the bin width to the ideal bin width. P(i), is the differential linearity

and should be unity. Subtracting one LSB gives the differential nonlinearity in

LSBs.[l]

*w.^-i <21>
Integral nonlinearity is the deviation of the transfer curve from ideality. By

compiling a cumulative histogram the cumulative bin widths are the transition

levels. Once the transitions are known the ADC is characterized.

Overall noise is measured by grounding the ADC input and accumulating a

histogram. Only the bin for zero input should have counts in it. Any other counts
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are caused by noise in the ADC.

By increasing the ADC conversion rate aid comparing the desired proper

ties such as linearity the maximum conversion rate for a desired accuracy can

be determined. Similarly, varying the input test frequency is a frequency

response measurement, a true dynamic test of the ADC. If an external sample

and hold is used with the ADC it is also being tested as a part of the whole sys

tem.

2.1. Choice of Input Waveform

At first glance the choice for an input would be a ramp or triangle wave. An

equal number of samples per bin is expected except for the first and last bin

which would accumulate all counts for inputs outside the converter's range.

The fundamental drawback to this is the distortion or nonlinearity in the

ramp. For a differential nonlinearity test a IS change in the slope of the ramp

would change the expected number of codei by 1%. But these errors would

quickly accumulate and make the integral nonlinearity test unfeasible. Brief

consideration makes it clear that the input source must be known with better

precision than the converter being tested. A rtndom voltage with an equal likeli

hood of all voltages over a range is desired. Notice that this is not "white noise"

which is equal amplitudes at all frequencies. A. possible way to generate such a

signal is to generate a pseudo-random digital sequence and then use an analog

low-pass filter to generate the "random" wltage.[2] The drawback to this

method is that the digital sequence must nol change amplitude and the filter

must be ideal so as not to introduce distortion.

We have used a sine wave signal source. It is precisely known mathemati

cally and commercial ultra-low distortion oscillators have total harmonic distor

tion < -95 dB. This can be confirmed by a spectral analysis. It is much harder to

measure the linearity of a ramp to a comparable level of accuracy.
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2.1.1. SneWave Probability Density

The probabiUty density, p(7), for afunction of the form Asinut is

Integrating this density with respect to voltage gives the distribution function
P(Va.Vb).

w

f \

Va
—sin"1

v^

(2.3)•*>=*Ht
This is the probabUity of asample being in the range 7. to Vb.

For an ADC let Vb-Va =1bit and convert the continuous probability distri
bution to a discrete distribution.

_1P(i.A)= -l
sin

2i-2n-l

2"
7^-sin- (2i-2n-3 w]

2* , A 1) (2.4)

This is the probabUity that a code will be in bin [i] for an input sine wave of
amplitude A.

If the input has aDC offset it is of the form V. +/bmut with density

1 (2.5)
pW=—;mSA'-iV-V,)'

The new distribution is just shifted by Y. as e*peded from the shuted histo-

gram.

w.wiH5?]---'Ml
The discrete distribution becomes

P(i.A.V0)=_1
TT

-lsin
2t-2n-l-270

2"

i=2u- sin'1
fei -2"-3-27,

2*

7roJ

(2.6)

(2.7)
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2.2. Frequency of Input Waveform

The foundation of the test is that a sine wave is sampled randomly. Sam

pling at random by its strict definition would be impossible. Wrat must be done

is to assure that the sine wave input is not sampled repetitively at the same

level. By choosing the sample frequency to be non-harmonical|y related to the

sine wave frequency we are assured of this. Any jitter in the sample timing or

drift in the oscillator frequency will just tend to randomize the sampling.

The effect of sampling at a frequency harmonically related to the input

would be n bins with huge positive differential nonlinearity where n is the ratio

of sample to input frequency. This can easily be distinguished from differential

nonlinearity by varying either the sample or input frequency since differential

nonlinearity is independent of frequency.

For a high-speed converter, the conversion rate may exceed the rate at

which a computer can assemble the histogram. It is permissible to use every

second or n -th sample and throw the extras away. Since the sanples are taken

at random it doesn't matter if the first M samples are used or li out of N sam

ples are chosen.

2.3. Number of Samples Needed

To find the minimum number of samples needed for estimating the

differential nonlinearity a 100(l-a)% confidence interval of the form

(p—Za/ip, fi+Za/zp) is set up. This says that the measured differential non-

linearity lies in the range (/x-«Za/z<7. M+^o/2*) with 100(l-a)% probability, a is

chosen for the desired confidence level. Za/2J is the precisbn to which the

measured value differs from the true value /*. The derivation ofa and the subse

quent minimum number of samples needed is carried out in the appendix.
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The minimum number of samples, Nt, needed for p bit precisbn and

100(l-a)% confidence is given by (2.8) where Za/z can be found in a table of the

standard normal distribution function.

Nt ***f- (2.8)
To know the differential nonlinearity for an 8 bit converter to within .10bit with

99% confidence. 268,000 samples are needed. In the 12 bit case tor 99%

confidence and .10 bit precision 4.2 million samples are needed.

a Hardware for A/D Converter Testing

The experimental setup shown in Fig. 1 consists of the input source, ADC

system under test, a parallel interface to a 1SI-11 minicomputer and aVAX 11-

750. The ADC system consists of the ADC, a sample and hold if needed, voltage

references and control circuitry.

Parallel data from the ADC is latched and buffered on the interface board

beforebeing read by the LSI-11 through a parallel I/Oport. The LSI-11 was used

to accumulate the data since it had a parallel input port and 64K ol 16 bit

memory, enough to test a 16 bit ADC, and was available with the SpeecUab [3]

program for digital 1/0 as well as communication with a VAX 11-750 running

UNIX.

Any computer canbe used to compile the histogram provided it hasenough

n-bit memory for & bins and the 1/0 histogram program. Depending on the

Ume needed to compute the ADC transitions and the availability of a high level

language the differential nonlinearity could be computed on the same machine.

In our work, once a histogram is completed it is written to a UNIX file en a VAX

11-750where the nonlinearity computations are carried out.
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4. Software for A/D Converter Testing

The software is used in two stages. Speechlab is used to take the histogram

and JADE to compute the ADC errors. Speechlab is a general purpose program

written in C for an LSI-11 to do analog 1/0 via an ADC and DAC as well as digital

I/O through a DRV-11 parallel I/O board.

A modified version of Speechlab is used to gather data to test ADCs. Origi

nally input data was stored sequentially in memory so only 64K samples could be

taken. This is barely enough for testing an 8 bit ADC. The main modification was

to use the digital code as a pointer to a memory location used as a counter.

Incrementing that counter each time it is accessed forms the histogram.

A future improvement will be to write the data input and histogram routine

in assembly language rather than C to improve upon the 9 kHz data input rate

by approximately a factor of 2.

Program JADE does the ADC analysis from the histogram data and is shown

functionally in Fig. 3. It is written in C and runs on a UNIX system.

The program first gets command line arguments to set options such as data

type and output listings. The user then enters the name of the binary file con

taining the histogram. Next the offset voltage is computed and a cumulative his

togram is compiled. From this the transition levels are computed leading to the

nonlinearity calculations.

Once an ADC is characterized the differential nonlinearities and integral

nonlinearities can be written to ASCII or binary files and plotted on a graphics

terminal. A statistics file contains informations such as the input offset, LSB

size and the maximum and minimum nonlinearities. etc.
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4.1. Algorithms for A/D Converter Error Computation

The offset voltage is found from the shift of the histogram about the mid

point 0 volts. If 1^=0 the number of codes above zero, Np, equals the number of

codes below zero, Nn .

Nn^EH[i] Np= g H[i] (4.1)
The probability. pp, that any randomly sampled voltage is positive is the proba

bility that it is in the range (0, A+V9) and found from (2.6) to be

i(l)-sin-l-J|Hpp =ijsin- (4.2)

7fl=i.+ JL5in-i^- (4.3)
2 rr A

And the probability, Pn, that negative voltage is sampled is

Pn-l'Pp <4-4)
Solving (4.3) and (4.4) for 7P

V0 =Al*in(pp-pn) (4.5)

An estimate of V0, V0, can be obtained by replacing the unknown population

. Np J Nn
frequencies Pp andpn bythe observed sample frequencies -r^-and rj—.

V0 =A^t^jZ- (4-6)0 2 Np +Nn

where Np and Nn are the number of positive andnegative samples respectively.

When the offset voltage is small relative to the sine amplitude, this can be

approximated

y -A1LNP~N» (4.7)
0 AZ Np+Nn
In computing the differential nonlinearity, substituting (2.7) into (2.1) for

P(i) is unfeasible and incorrect.
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It is unfeasible since the amplitude of the sine wave, A, must be known with

great precision because the differential nonlinearity calculation is a very strong

function of A. To see the accuracy and precision to which A must be known

assume a perfect ADC. Now if A is thought to be equal to full scale a certain

number of codes are expected in bin [l] and bin [2n] . But if A is just .4-1/2 LSB

approximately 1/2 as many codes will be obtained and the differential nonlinear

ity will be -1/2 bit in these two bins. When too few codes go into these two bins

other bins get the extra codes resulting in excess positive differential nonlinear

ity.

Vnf, the full-scale voltage reference, is needed but being a DC quantity it

can be measured with a DVM to sufficient precision. The term A, however, is the

peak voltage with a DC offset, not a RMS voltage and measured less accurately

with a DVM than a DC voltage. Most DVMs measure AC quantities at 60 Hz and

don't have the bandwidth to measure A at a few kHz.

The second consideration is due to the nonlinearity of the sine wave. Twice

as many codes are not expected from a bin that is twice as wide as an ideal bin

(i.e. 1 LSB differential nonlinearity). As the bins get narrower with a higher pre

cision converter the density can be linearized but this is an approximation.

The statistically correct method to measure the nonlinearities is to esti

mate the transitions from the data. Then the differential nonlinearity is the

difference between adjacent transition levels minus 1 LSB. The integral non-

linearity is the difference between the estimated transition level and the ideal

transition leveL

In (2.6) and (2.3) P(VatVb) is replaced by the measured frequency of

occurrence, 77—, using the "frequency substitution principle" and then solved

for XI, which is an estimate of Vb.
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In solving (2.6) the offset, V0, can be eliminated since it only shifts 76 and

Va. It doesn't affect the integral or differential nonlinearity. Thus the simpler

(2.3) can be solved for Vb. Taking the cosine of both sides of (2.3) and using the

following identities yields (4.10).

cos(a-0) = cos(a)cos(0) + sin(a)sin(0)

cos -iZ] =*^Fzvs
sin

*- 27. cos
nH

\\

Nt
Vb -A2 1 -cos2

nH

Nt
+ l£ = 0

(4,3)

(4.9)

(4.10)

The quadratic equation (4.10) can be solved for Vb. In the solution the positive

square root term is used so that Vb is greater than Va.

V> = Vn cos
itH

Nt
+ sin

nH

Nt
VX2-^ (4.11)

This gives Vb in terms of Va. In general

Vi = Vi-icos nH(i)
Nt

T£ = —i4cos nCHH)
Nt

+ sin
irHd)

Nt
V^-tf-x (4.12)

Rather than a recursive formulation that is subject to cumulative errors V% can

be computed directly by using the boundary condition 70 = -A and using a

cumulative histogram, CH{i)t of i bins, instead of the i01 histogram bin, H(i).

(4.13)

A is not known but being a linear factor all transitions, Vit can be normalized to

A so that the full range of transitions is ±1.

To estimate the integral nonlinearity with the same precision as the

differential nonlinearity many more samples and a much longer testing time is

required. Thus drifts in the ADC voltage reference and the sine wave oscillator's

amplitude and offset voltage can give erroneous results. The FFT test is not sen

sitive to these problems since very few samples are needed.
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5. CTT Integral Nonlinearity Test

The discrete Fourier transform computed with a fast Fourier transform

algorithm can be used to measure the nonlinearity of the ADC transfer function.

The set up is as before, but this time the data taken is not put in a histogram. It

is just stored in the sequence taken, sent to a UNIX file and then Fourier

transformed.

The spectrum of the output will contain the input sine wave, quantization

error and any harmonic distortion caused by integral nonlinearity. The theoret

ical signal to noise ratio is (6n + 1.8) dB.[4] If the harmonic distortion is more

than 6n dB below the fundamental amplitude the error caused by integral non-

linearity can be concluded to be less than 1 bit and therefore negligible.

The 12 bit, R-2R. ADC was used for the FFT test The input frequency must

be chosen so that harmonics aliased into the baseband do not add to the funda

mental The raw data from the ADC was modified by a "Harming window"[5] to

reduce the effects of truncating a sine wave before a FFT. If the sampled data

contains an integral number of periods of the input sine wave, the FFT will be

accurate. If the samples contain a fraction of a sine wave period the FFT will

have gross distortions.

6. Testing For Specific Applications

The specific application and nonlinearity errors of the ADC should dictate

the type of test to be performed. If the application is for instrumentation the

quantity to be tested is differential and integral nonlinearity so the code density

test is appropriate. If the use is in a digital audio system the appropriate tests

would be in the frequency domain. The FFT would be interpreted for harmonic

distortion, frequency response, S/N, etc.
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The code density test is most sensitive to differential nonlinearity errors

while an FFT test is most sensitive to integral nonlinearity errors. Thus the type

of error to be measured, rather than the application of the ADC. would be a fac

tor in determining which test to use.

7. Code Density Test Results

Three different designs of A/D converters were tested. All were of the suc

cessive approximation variety. The first was an 8 bit, resistor-string, CMOS con

verter, the second a 12 bit, bipolar, laser trimmed, R-2R ladder converter and

the third a 15 bit, CMOS, self-calibrating ADC with a capacitor array and

resistor-string.

For the 8 bit, resistor-string ADC, 266,000 samples corresponding to a .1 bit

precision with 99% confidence were taken. The differential nonlinearities and

integral nonlinearities are shown in Fig. 4a and Fig. 4b. There are no differential

nonlinearities greater than 1/4 bit thus the integral nonlinearity is smooth and

is never greater than 2 bits. Manufacturers will often pass a best-fit-line through

this integral nonlinearity plot and claim £1 LSB integral nonlinearity with a gain

and offset error. There is no pattern to the errors that are from random

mismatches in the resistor string.

With only 5000 samples the integral nonlinearity is no longer smooth but

has the same shape and approximately the same worst case error. However the

differential nonlinearity has a large degree of uncertainty but the major non-

linearities would be visible.

For the 12 bit. R-2R ADC the major carries are clearly visible where the

integral nonlinearity jumps 1 bit. The differential nonlinearity in Fig. 5a shows

large spikes that correspond to resistor mismatches. The other errors appear

periodic since the resistors with untrimmed, random errors are used repeatedly
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over the range of the ADC. This is in contrast to the resistor string where each

resistor is used once, hence the errors are not periodic.

The 15 bit self-calibrating ADC with capacitor array main DAC and resistor-

string sub-DAC differential nonlinearity plot is shown in figure 6.

7.1. FFT Test Results

Figure 7a is a 4096 point FFT of a 495 Hz sine wave sampled at 8012 Hz. The

harmonics are clearly visible 72 dB below the fundamental corresponding to 12

bit integral linearity. This is within the 1 bit integral nonlinearity specified for

the converter. In Fig. 7b 1024 samples are used. Since each sample in the time

domain corresponds to one point in the frequency domain the features are less

clear. The decreasing number of samples again increases the noise level as

would a less precise A/D converter.

B. Comparison to Classical Testing

A classical ADC test is shown conceptually in Fig. 8.[6] The integrator is

driven to each transition and held at that voltage while a computer controlled

DVM measures the transition point. This is an extremely slow process since the

integrator loop must settle and then the DVM takes a reading.

The first drawback to this test is that the accuracy of the test depends on

the DVM. More important is that this is a static test of the ADC. The ADC is

measuring a DC voltage, not a high frequency input. Most converters are tested

this way but claim the same characteristics and accuracy for a maximum

conversion rate dynamic input. There is no measurement of dynamic errors.

With the histogram and FFT tests the input can be as high a frequency as desired

to test for frequency-dependent errors.

Testing a high precision converter by the classical method can be in error

due to noise at the the ADC input. But the histogram test being statistical and
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sampling each bin many times rather than once will average out any random

noise.

The precision of the classical test is limited by the DVM. But in the histo

gram test taking more samples increases the precision. Extending the classical

test to higher precision converters is again limited by DVM precision and accu

racy. With a histogram test the input source must be known to more precision

than the ADC and can be easily verified with a spectrum analyzer. Lastly the

minicomputer must have enough memory to store 2n histogram bins.

The integrator loop takes approximately 5 seconds to measure each transi

tion or 5 2/3 hours to completely test a 12 bit ADC. If a precision DAC is used

instead of an integrator the speed should increase by a factor of 10 to about 30

minutes, which is still very slow.

With a histogram of 1000 counts per bin, for 99% confidence with .1 bit pre

cision, it will take 9 minutes to take the data at a 6 kHz input rate. For produc

tion testing the confidence level and precision can be reduced to 95% and .25 bit

precision decreasing the number of samples needed and the testing time by a

factor of 10. Fig. 9 shows the trade-offs among confidence level, precision and

the number of samples required. The testing time can also be reduced by tak

ing the data faster since the rate is currently limited by the minicomputer, not

the ADC under test.

9. D/A Converter Testing

To test D/A converters a dual of the histogram test is sought. This would be

a number generator input to the DAC and a device quantizing the analog output

and counting the number of occurrences of each output to get a histogram. But

the quantization is done by an ADC and has the same disadvantages as using a

DAC to test ADCs, that is speed, precision and noise.



Doernberg, Lee ft Hodges -15-

However a dual of the FFT test is an analog spectrum analysis. Input a digi

tal sine wave to the DAC and look at the spectrum. Ideally there will be the fun

damental, quantization noise and harmonic distortion. The level of harmonic

distortion is Belated to the nonlinearity of the DAC transfer curve just as integral

nonlinearity in the ADC was deduced from a FFT.

10. Summary

The code density test produces a histogram of the digital output codes of an

ADC sampling a known input. The code density is used to compute the voltage

transition levels that characterize the ADC. This test is completely general in

that it tests high-precision and high-speed converters. It is superior to a tradi

tional "transition test" since it is done at full speed with a dynamic input and the

results do not depend on the accuracy of a DAC or DVM. FFT tests are per

formed to measure the integral nonlinearity, distortion and signal-to-noise ratio.

Unlike classical test methods, the methods proposed here also test the "sample

and hold" and can measure the internal noise of the ADC. D/A converters can be

tested by a dual of the FFT test, using a digital sine wave input and an analog

spectrum analyzer.
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11. Appendix

The uncertainty in the differential nonlinearity is the uncertainty in the

width of the bin, VUI - T$. From (4.13)

r,„ -r, =-^[2Sm±22j-cos(^' (Al)

H= — AiCOS
n(CH(i)+H(i))

Nt
— cos

irCHtt)
Nt

(A2)

CH(i) is the total number of codes in bins 1 through n and LCH(i) = H(i +1),

the number of codes in bin [i+ ll. Now define F(X) = cos tt—.
Nt

T<+1 - 7, = -A[F(CH(i)+ACH(i))-F(CH(i)))

= -A\F{CH{L)+&CH(i))-FiCH{i))] ^Cff{i)
&CH(i)

_ An&CMi). yrCH(i)

*<

(A3)

(A4)

(A5)

(A6)

AC/f(i) and CH(i) are random variables but we can assume that CH(i) is known

since it only affects the integral nonlinearity and this confidence interval is for

the differential nonlinearity. Thus the random variable is LCH{i) and T£+l —T£ is

of the form

Y = i4~-sin
Nt

nCH(i)
Nt

(A7)

Let the random variable LCH{i) = X and be distributed with mean, fig, and stan

dard deviation, ax, with the following notation X ~ {fix, ax). If Y = aX+b then

Y~(ajt,+6, aax).

Mv = a/^+o (A8)
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0y = Off, = A IT

Nt
sin

nCHji)
Nt

-17-

(A9)

Now the mean, fig, and standard deviation, ffx, of the random variable bCH(i)

ere needed to find fjy and av.

Any given sample will either go in bin [i] or it won't go in bin [i]. This is a

two outcome, or Bernoulli trial, with binomial distribution characterized by

mean, np(l-3>)*7tp, since p « 1. and standard deviation, y/np . The total

number of samples taken is n=Nt, andp is the probability that a sample goes in

a bin. Thus LCH(i) ~B(np, Vnp).

From (AS) and (A9)

fly = pAn sin nCHji)
Nt

/-, it . \nCH(i)

(A10)

(AH)

If the number of samples is large the binomial distribution can be approximated

by a Normal or Gaussian distribution and

pLy-Za/2ffy ^ ji^ /^+Za/2ff„J=l-a (A12)
can be found for any choice of a. Zgjz is the number of standard deviations

which can be found from a tabulated listing of the standard normal distribution

for any chosen alpha. Thus the measured bit width, fiy, which is nominally 1 bit,

lies within its true value with tolerance Zajz^y ***& 100(1-a)% confidence.

Thus Za/tfJy&pfiy. fitly is the tolerance to which the bit width is known. Substi

tuting (A10) and (All) for av and /Jy

Ntf
-asp (A13)

p is the probability of a sample going in a bin and is a function of the bin [i] so

the minimump, P(2n~1), corresponding to a zero input or bin [2n_1] is used.
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P(2-)=i|sin-(^j
For Vnf^A this reduces to —sin"1 —H

argument is small and sin'^x) * x sop = P(2n~1 ) =

The condition is that

Zza/zt^~x
Nt*

f

•sin
_ei„-iU^J[= i^m-i

2ni4ll 7T
yI*L

i42n

7T2*

-18-

(A14)

For any reasonable value of n the sin"1

1
-l *

(A15)
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Kg. 2. Flowchart for histogram accumulating program
running on the LSI-11.
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Fie 3 Flowchart for code density analysis prc^ram
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Fig. 7. FFT spectrum for a 12 bit ADC sampling a 495 Hz
sine wave.

(a) 4096 point FFT.
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(b) 1024 point FFT.



INTEGRATOR

DVM

ADC i>
1

DIGITAL

CONTROL

TRANSITION

VOLTAGE
OUTPUT
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