Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

| “S.P.U.D.S."
A STANDARDIZED PROGRAMMABLE USER DEVELOPMENT SYSTEM

by

William B. Baringer

Memorandum No. UCB/ERL M84/4
13 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

“3.P.U.D.S.”
A STANDARDIZED PROGRAMMABLE USER DEVELOPMENT SYSTEM

by

William B. Baringer
University of California
Berkeley, California

December, 1983

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, to partial satisfaction
of the requirements for the degree of Master of Science, Plan I

ABSTRACT

As the complexity of integrated circuits continues to increase, the sophisti-
cation of the equipment used to evaluate these circuits must keep pace. This
report describes a programmable evaluation and development system that

allows high-level language control and testing of circuits and systems.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to all of the Speech Group for
their ideas and support. I would especially like to thank Professor Robert

Brodersen for bringing me "on-board".

TABLE OF CONTENTS

CHAPTER ONE: HIGH-LEVEL DESCRIPTIONcccccocetiiirnnreeeerninneesecennnnes

1.1 Introduction
1.2 Architecture

1.3 Firmware

...

CHAPTER TWO: LOW-LEVEL HARDWARE DESCRIPTIONccccvcurumnennennane.

2.1 Eprom HATAWATE cveeereeeeereeeneeeeeeeeseeeseseseesessssessesesessesesseessesseessenses

2.2 Dynamic Ram Hardwarecc.ccocciiirimiiiiiiiiniiiiniininenecnnicennsnaneenen.

2.3 Dual Serial I/0 Channel Hardwarecccccceeveveeiieirenenvsensenenenns

2.4 Multibus Interface HardWarecccceeeveeeeirecireircencrsiseesssessanssessnnes

2.5 Installation of Integrated Circuits and Systemsccccceerrvuneennnee.

2.6 Support HArdwareccceveeueiiceiiiiieeninemeinceinienieeecnenssssessssnnsensses

CHAPTER THREE: FUNCTIONAL CONSIDERATIONSccccccieiriciiinininnnnnnee

3.1 Alternative Configurationscceceiiiiniririninnieiciinnnieenisnnnnennene.

3.2 Alternative Designscccuiereeuiceiiiiiiimiiieiicenn e

CHAPTER FIVE: DOCUMENTATION / APPENDICESccccceieieeeccrecreennne

5.1 Memory and /O Mapscccicviicrmmmmeeniiiieeeeisnnencnnteesesesssonannenssssssaees

5.2 Boot Listing / Initialization Code.ccccccrecvreeeriiiiriiccirnenenreneseseenes

5.3 Signal Descriptions ...ccccccecviniitiiiiimieicniii e csseaaees

5.4 Block Diagrams

10

13

16

20

22

22

25

26

29

30

30

32

38

5.5 Schemabics ..ccvieciecciinnieriormeienieiimetneniscseceiossrsssssnsssssrersnsresssesssosss
5.6 Timing Diagramscccccceeeeens everenns et eeenesemesss e st sa s s sasetesaas

B.7 Parts LISt eeuveeceeiirsrerereereneseessionssssasssesnmarersssssessssssassssssssssnensessannsres

CHAPTER 1

HIGH-LEVEL DESCRIPTION

1.1. Introduction

Current research interests include the implementation of signal pro-
cessing algorithms into integrated circuits. This enables real-time process-
ing of large quantities of information. As CAD tools and production costs
make chip development more favorable to the engineer, high-speed dedi-
cated processors have become more feasible to implement, and the
compromises required in using general-purpose processors no longer exist.
Because of the ease with which digital signal processors can be completely
designed and laid out automatically with new CAD tools, most of the signal

processing implementation is done with digital circuitry.

In the design and evaluation of complex systems and integrated circuits,
simulation using MSI and SSI chips is no longer feasible. As an alternative,
the designer may choose to have prototypes fabricated and then build test
fixtures to exercise the chips. The testing and characterization of these
chips is often done by converting analog control signals to digital signals to
be used as inputs to the chip. The resulting digital outputs of the chip are
then converted back to analog. Any data buffering, storage, conversion, or
processing outside of the chip can be done by digital or analog means, but
often require dedicated test fixtures that are rarely used more than once.
The problems of noise, accuracy, and dynamic range can arise from the
chain of data conversions. Many of these problems can be alleviated by the

use of a standardized, microprocessor-based test fixture that uses digital 1/0

and is programmable in a high level language.

This report describes “SPUDS”, a Standardized Programmable User
Development System. SPUDS is a compact, multi-purpose micro-computer,
based on the Intel 80186 microprocessor and built on an Intel multibus
board. It contains ROM, RAM, multibus interfacing, and a dual serial 1/0 port.
The remaining two-thirds of the board is available for the development and
testing of prototype systems and chips. The designer may then program the
SPUDS board in a high-level language to control and monitor the prototype
system. This can be done through the dual serial 1/0 port, communicating
with a terminal and a host computer such as a VAX. Alternately, program
development can be done on a host machine that supports a multibus card-
cage. This enables a much closer link between signal processing chips and
mainframe computers. Significant data processing can be done in the '186,
or additional processing and data output can be done with the host computer

and its printers and plotters.

Current trends in high-power computers have been towards the "mini-
mainframes”. These are stand-alone computer '"workstations" that are
configurable to the user's particular needs. We are using the Sun Microsys-
tems 68000-based workstations. Each user has a complete computer running
under the UNIX operating system, with optional disks, tape drives, graphics,
etc. Several slots are then available in the multibus card cage in each Sun
for SPUDS boards. In this way, the development of new I.C. signal processors

leads immediately to custom boards available to any workstation user.

1.2. Architecture

The block diagram given in section 5.4 of this report shows the architec-

ture of "SPUDS". Based on the Intel 80188 microprocessor, this development

board uses the Intel multibus board and protocol. The 32 kbyte area of
EPROM is large enough to accommodate all necessary initialization routines
and several non-trivial user programs. The 128 kbyte area of dynamic RAM
has a reserved area in the lower address space for interrupt vectors, but oth-
erwise is totally available to the user. The board is easily expandable to one-
half megabytes of RAM at no additional cost of area. With the Intel 80186
operating at 10 MHz, the bandwidth of the RAM is 5 Mbytes/sec. The mul-
tibus interface contains a 18-bit data port, a 4-bit control/status port, and
maskable interrupt facilities for high bandwidth. When SPUDS is used in a
multibus card cage of a host computer, as in a Sun workstation, it appears as
four memory addresses to the multibus, as decoded by the control unit. The

dual channel serial 1/0 controller operates at a range of baud rates.

There are six major busses shown on SPUDS's block diagram. The AD
bus is the '186’s multiplexed address and data bus. The BAD bus is a buffered
version of the AD bus. The A bus contains the most significant address nibble
from the '186, and the BA bus is simply the buffered version. The LA bus car-
ries the latched address for accessing memories. The MA bus is a multiplexed
address bus that has first the least significant half of the address bus and
then the most significant half.

The EPROM receives its address from both the LA and MA busses, and
sends its data output onto the AD bus. The DRAM is addressed by the MA bus
alune, and data is transferred over the AD bus. The AD bus has little current
driving capability, so it is fairly limited in the amount and type of devices
that can be attached to it. Therefore, most peripherals will connect to the
BAD bus. The muiltibus control/ status and data ports are one example. The

dual RS-232 port has a data transceiver that is also attached to the BAD bus.

1.3. Firmware

User programs are currently developed in the language "C" on a VAX
11/750 running under UNIX, although with the appropriate compiler, any
language could be used. The user’s program should be compiled and assem-
bled into 80188 code so it can be shipped over the serial lines into SPUDS's
dynamic RAM. The firmware in the EPROM is written so that a terminal may
be connected to serial channel B and the VAX or other host processor to
channel A. SPUDS then acts in a "terminal emulator” mode where charac-
ters sent from the terminal’s keyboard are shipped to the VAX, and charac-
ters received from the VAX are sent back to the terminal's screen. However,
if a certain string of control characters is received from the VAX, the follow-
ing code is not sent to the terminal, but is stored in RAM. At the end of the
transfer of the user’'s program, another set of control characters is sent as
an end-of-text indicator, and program execution of the '188 commences at
the beginning of the new program in RAM. A typical program loaded into RAM
could then allow control of SPUDS via the terminal, and send data back to
the terminal for examination. Data may also be sent to the VAX for further

processing.

Use of the serial 1/0 lines has the inherent drawback of low bandwidth.
Operating at 9600 baud yields less than one kilobyte per second of informa-
tion transfer. Use of SPUDS in a muiltibus-based host computer allows data
transfers of 2.5 megabytes per second (assuming the data is read from RAM
and then written to the muitibus in a DMA mode.) The current firmware does
not support the necessary multibus drivers, and the Sun workstations do not
yet have the complementary software drivers inserted in the Unix operating

system, but these enhancements are under development.

CHAPTER 2

LOW-LEVEL HARDWARE DESCRIPTION

2.1. Eprom Hardware

SPUDS has been designed to accommodate any 24- or 28-pin EPROM
chips, allowing from 2K words to 32K words of ROM. Two 8-bit EPROMs are
addressed in parallel to achieve a 16-bit word. Two wire jumpers can be
chosen such that address lines and power are appropriately wired for each
EPROM type. (See Section 3.1, Alternative Configurations.) For example, with
the currently used 2Kx8 EPROMs (2716), pins 23 and 26 are tied to Vec. Pin
numbers given are for the 28-pin socket, even when 24-pin chips are used.
The 24-pin chips are inserted in the 28-pin sockets such that pins 1, 2, 27,

and 28 are left open.

The '188 selects the EPROM through the '186's upper memory chip
select line UCS*. The UCS* is wired to the EPROMs’ chip enable CE* The
BRD* line (a buffered version of the pin OE* The UCS* line is currently
memory-mapped at FFOOO-FFFFFH with 3 wait states, by initializing the
appropriate programmable chip select registers of the '188. Faster EPROMs
will allow operation at 2 or even 1 wait state in every read cycle. Larger
EPROMs will require the memory mapping to be changed; the 2732s will be
mapped at FEOOO-FFFFFH, the 2764s at FCO00-FFFFFH, etc. The EPROM must
be mapped in the upper area of memory so that upon resetting the '186, the
first instruction fetch, made at FFFFOH, is in ROM and is a valid instruction.

Fewer wait states may be used with faster EPROMs.

6

The two EPROMs’ data lines are connected directly to thé low and high
bytes of the '186's multiplexed address/data bus AD<15,0>. They are not
connected to the buffered AD bus (BAD<15,0>) because the EPROMs do not
have the current drive capability needed for that bus. The transceivers
between the AD and BAD busses must not drive the AD bus during a read of
EPROM.

The address lines to the two EPROMs must be latched and held during
the entire read cycle, since the '188 puts first the address and then the data
on the same bus during a single cycle. The operation for the dynamic RAM
(DRAM) has a similar requirement for a latched address, so the two memories
share a common address latching scheme. (See Section 2.2, Dynamic Ram
Hardware) Address bits A8 through A0 of the EPROMs are connected to the
latched address bus LA<9,1> and are valid for the entire read cycle. The
remaining high order address bits of the EPROMs are wired to the multi-
plexed address bus MA<8,2> and are valid as high order address bits from
the '186 after CAS* has gone low.

EPROMs are currently programmed by compiling and assembling a pro-
gram, and then splitting it into even and odd bytes to be put into the two
EPROMs separately. These even and odd hex files are the arguments of a
unix routine called "blast" that ships the appropriately massaged code to the
EPROM programmer in 140 Cory and then burns it into the new EPROM.

2.2. Dynamic Ram Hardware

SPUDS has been designed to accommodate the current generation of
B4Kx1 (Hitachi HM4864P-2) dynamic RAM chips and the next generation of
256Kx1 DRAM. Two banks of eight chips each are addressed in parallel. Selec-
tion between the banks is controlled by the '186's byte high enable signal
(BHE*) and the latched address bit LA<O>, resulting in a high or low byte
access (an odd or even byte access). This yields a 64K word (or 128K byte)

memory space with currently chips.

Selection of the DRAM by the '188 is achieved through the middle chip
select lines MCS0-3*. These are currently memory-mapped at 00000-1FFFFH
for MCS0* 20000-3FFFFH for MCS1* 40000-5FFFFH for MCS2* and 60000-
7FFFFH for MCS3*. Thus, the current 128K byte memory needs only MCSO*
as an address decode signal. The 256Kx1 chips will require additional gating
so that the memory banks are selected if any of MCS0-3* is active, given that

the current memory access scheme is adhered to.

The DRAM is accessed in an "early-write" fashion; that is, the write
enable control is valid before the row address strobe is active. This allows the
data input and output lines of each chip to be tied together. The resulting
data I/0 lines are connected to the '186's multiplexed address/data bus
AD<15,0> directly, since the DRAMs do not have the current drive capability
necessary for the buffered AD bus (BAD<15,0>). Thus the transceivers
between the AD and BAD busses must not drive the AD bus during a DRAM

read.

Address lines from the '186 must be latched because of the time multi-
plexing of the address and data on the '186's AD bus. A similar requirement

exists for the EPROM, so a common latching scheme is used. Latching of the

address is achieved with the '186's address latch enable signal ALE. The
address is latched in two AMD29841 10-bit latches with tri-state outputs. The
latch connected to the least significant address bits has its outputs enabled
at all times. These outputs are the LA<9,1> bus that provides constant
address information during the entire CPU cycle. The LA bus is fed to an
AMD29827 10-bit tri-state buffer. A multiplexed address bus MA<9,1> is then
derived from the output of this tri-state buffer and the tri-state output of the
most significant address latch. The multiplexing control signal MUX* is con-
nected to the tri-state output controls so that first the low order address bits
are presented to the DRAM and latched internally, followed by the high order
bits. The low order bits, or "row" bits of the address are strobed in by the
row address strobe signal RAS*, active if either of the BRD* or BWR* lines are
active. The high order address bits, or "column” bits, are latched in by a
conditioned version of the column address strobe CAS* signal. CAS* is simply
a delayed version of RAS*. The delay is set by a multi-tap digital delay line
(DDL) (Belfuse 0447-0050-02) and is 40 nS. The MCAS* signal is derived by
conditionmg CAS* with MCS0*. Conditioning MCAS* with BHE* yields HICAS*,
to access the high byte of the currently addressed word, and MCAS* condi-
tioned with LA<0> gives the LOCAS* signal for the low byte.

A second tap off of the DDL generates the MUX* signal, to swap the
address on the MA bus from low address to high address. This is again a
delayed version of RAS*, delayed by 20 nS.

To summarize, the dynamic RAM operation will be described in a time-
ordered sequence. For a DRAM read or write, the MCS0* line is active, the AD
bus presents the address, and the ALE latches the address. MUX* is inactive,
so the low address bits are presented to the DRAM. RD* or WR* become

active, causing RAS* to strobe the low address into the DRAM. Then MUX*
becomes active, and the high order address is presented to the DRAM.
Depending on whether the access is to an even address byte, an odd address
byte, or an even address word, the LOCAS*, or HICAS*, or both LOCAS* and
HICAS* lines will strobe the high address into the DRAM. (If the '186 accesses
an odd address word, it automatically does an access to an odd address byte,

followed by an access to an even address byte of the next word address.)

Notice that the MCS0* line need not be active to generate the RAS* sig-
nal. Sequential fetches from EPROM, for example, will strobe in the low order
address to the DRAM on each fetch. This allows ""refresh” of the DRAM by sim-
ply reading 128 NOPs from EPROM. This is important when initializing SPUDS
from EPROM and needing to keep the DRAM’s contents valid until actually
jumping into operation in DRAM. |

Refreshing the DRAM must occur at least every 2 mS to guarantee valid
memory contents at all times over all operating temperatures. (It's actually
possible to refresh as infrequently as once per second at room temperature.)
The 2 mS timing is accomplished with the '186's internal timer #2 that is
currently initialized to interrupt every 2 mS. It's interrupt service routine
resets the internal 2 mS timer, executes 128 NOPs, resets the internal inter-

rupt controller, and returns from interrupt.

10

2.3. Dual Serial 170 Channel Hardware

The Intel 8274 multi-protocol serial controller is a dual channel serial
communications chip. It is also called a "dual SI/0", meaning serial 1/0, or a
"DART", for dual asynchronous receiver/transmitter. It can be operated in a
polled, wait, interrupt driven, or DMA driven environment, in an asynchro-
nous, bit-synchronous, or byte-synchronous mode. It is currently operated
asynchronously, for standard RS-232 1/0, in a polled mode, although this can
be changed through the programmable control registers of the 8274 and the

'186’s internal interrupt controller.

The chip has two internal byte-wide registers for each serial channel.
One register transfers data bytes, and the other contains control capability
and status information. Access to these registers is through the RD*, WR*,
CS*, AO, and Al lines. As noted in the schematics, these connect directly to
the BRD*, BWR*, PCS4* LA<1>, and LA<2> lines. PCS4* is initialized upon
system reset to decode at 0200-027FH in 1/0 space, with two wait states. Two
wait states are required to meet the timing specifications of the 8274 and
'188. Therefore, a read or write to 0200H, 0202H, 0204H, and 0206H will
access the channel A data, channel B data, channel A control/status, and

channel B control/status bytes.

The byte-wide data bus of the 8274 is connected to the buffered
address/data bus (BAD<7,0>) through an 8-bit transceiver ('LS245). Depend-
ing on the exact system configuration, this transceiver may be necessary for
current drive considerations, but a larger constraint is placed by the timing
specifications of the 8274. The delay between a read or write signal going
inactive and the tri-state drivers of the 8274 going into a high-Z state is too

long for direct connection to the BAD bus: the next address of the '186 is

11

present on the bus before the 8274 data is off of it. The direction of the data
transfer is controlled by the '186's data transmit/receive signal DT/R*. The
PCS4* signal conditioned by the '186’s data enable signal DEN* enables the

transceiver onto the bus.

The 8274 has an interrupt request line (INT*) that can be programmed
to be active on a choice of conditions. For example, receiving a new charac-
ter from the serial input can be programmed to send an interrupt to the
'1868. The chip also has the capability to issue a vector address in an inter-
rupt acknowledge cycle, with the vector depending on the interrupting condi-
tion. However, the current SPUDS does not use this mode of interrupt. (See
Section 3.3, Bugs.) Therefore, the interrupt acknowledge line INTA* of the
8274 is tied to Vcc. The INT* line must be pulled high with an external resis-
tor and then inverted to match the interrupt input line specifications of the

'186. The resulting interrupt signal is connected to the '186's INT2.

The serial transmit lines from each channel are fed to a 75150 RS-232
compatible line driver. The incoming serial data goes through a MC1489A
RS-232 line receiver before connecting to the 8274. The line driver is

powered by the +/- 12 volts available on the multibus.

The serial transmit and receive section of each channel of the 8274
require a baud rate clock of 16, 32, or 64 times the actual bit rate sent or
received. {Operation in a x1 mode is not recommended.) These clock inputs
are TxCa, TxCb, RxCa, RxCb. In the current configuration, all four clock
inputs are fed from a common source, in a x18 mode. Timer O of the '186’s
internal counter/timer channels is used as the common baud rate clock.
This timer is configured to divide the '186's 10 MHz clock by 64, giving a
156,250 Hz clock. When this clock is divided by 18 by the 8274, 9600 baud

12

rate communications is established. This ciock allows the user to change the
baud rate of either or both channels to 4800 or 2400 baud by charging the
proper internal control registers of the 8274, Changing the '186's
counter/timer clock rate changes the baud rate of both communications

channels at once.

In addition to the baud rate clocks, the 8274 needs an independent clock
(CLK) to run its internal system. This is chosen to be a 2.5 MHz clock,
derived by dividing the ‘186's 10 MHz clock by 4 with an external 4-bit
counter (LS163). This counter also provides clocks at 5 MHz, 1.25 MHz, and
625 kHz.

The 8274 has a number of lines used for communication "hand-shaking";
that is, connections to a modem or other communications device that deter-
mine and send status of the devices on each end of the link. All of these lines
have been wired in a default mode, so that the 8274 believes that the link is
good. The 8274's DMA request lines are also not used.

The B274 can be reset or initialized by its RESET* line. This is connected
to SPUDS's SYSRESET*, criginating at the '186. Upon reset of the '186, the
8274 is reset, and the '186 then initializes the internal control registers of
the 8274. The current mode of operation is: divide the external baud rate
clock by 16; use 1.5 stop bits; do not use parity; disable interrupts; and use 7

bits/char in both transmit and receive modes.

13

2.4. Multibus Interface Hardware

Two bidirectional ports are available for communication between the
multibus and the CPU. One is a 16-bit port intended for data transfer. The

other port is designed as a control and status register (CSR).

From the CPU’s perspective, the data port is I/0-mapped at address
0004H, and the CSR is at address 0006H. From the muiltibus's perspective,
the data word is at 080,002H and the CSR is at 080,000H. (These latter
addresses are mapped in the Sun's virtual memory at 180,002H and
180,000H.)

The data port consists of two AMD2953(A) inverting bidirectional latches
with tri-state outputs. This "bi-port” is equivalent to two LS374s back-to-
back, in a single 24-pin package. Data can be clocked in and read out

independently from either direction.

The CSR has four bits for arbitrary control and status information; their
use is left to the designer of the multibus software drivers, from both the
multibus’s and CPU’s perspective. Two other bits in the CSR control and

monitor the interrupt machinery of the multibus interface.

When a write to the data port is made from the multibus, a flip-flop is
set. If the CPU has enabled this interrupt mode, by setting bit <1> of its CSR
high, then the '186 will be automatically interrupted by this write to the data
port (on the *186's INTO line). When the '186 reads this data from the port,
the flip-flop is reset and the interrupt is disabled. If the multibus has
enabled its interrupt for this mode, by setting bit <8> of its CSR high, then
the multibus will be automatically interrupted by the *'186's read of the data
port(on the multibus’s INT4* line). Similarly, when the on the multibus’s
CSR<9>, and when the multibus reads from the data port, the multibus

14

interrupt is cleared and the '186 may be interrupted, if its CSR<0> is set.
Therefore, writing to CSR bits <1,0> from the '1868, or CSR<9,8> from the

multibus, sets or resets mask bits for different interrupt modes.

Reading from the CSR<0> by the '186 will monitor the status of data flow
in the direction of CPU to multibus. If the multibus has read the data word,
this bit will be set. If the '186 has written data in, this bit will be reset. The
multibus may monitor the same information, with opposite polarity logic,

when reading from its CSR<9>.

Reading from the CSR<1> by the '186 will monitor the status of data flow
in the direction of multibus to CPU. If the multibus has written to the data
word, this bit will be set. If the '186 has read the data word, this bit will be
reset. Again, the multibus may monitor the same information, with opposite

logical polarity, when reading from its CSR<8>.

The CSR consists of two LS174 hex flip-flops, and two LS367 hex tri-state
buffers. Four of the bits from each chip are wired in a bi-port configuration,

and the other bits are ccnnected to achieve the above described operation.

An LS109 dual J/K* flip-flop is used to monitor the state of the last read
or write to the data port. An LS51 AND-OR-INV provides the necessary ran-
dom logic, along with an inverter, and a tri-state buffer that simulates an 0.C.

driver for the INT4* line.

Decoding of the multibus address bus is accomplished with an 8-bit com-
parator (AMD 251LS2521). This decodes ADR13H* - ADRBH* so that the signal
BA* (base address) is active for any multibus address 80,000H to 80,7FFH. (As
mentioned in the section on "alternate designs”, another 8-bit comparator
could be used to further decode the address of the board.) BA* then enables
a 3-to-8 decoder (L.S183), which has the multibus signals MRDC*, MWTC*, and

15

ADR1* as its inputs. The outputs of this decoder are the four signals DATRD*,
DATWR*, CSRRD*, and CSRWR*, for data and control/status word reads and

writes.

The multibus requires a transfer acknowledge signal for its communica-
tions protocol. This tri-state signal, XACK*, must be pulled low any time after
data is presented on the bus during a multibus read, and must be off the bus
no later than 85 nS after the MWTC* or MRDC* signals are inactive. If either
MRDC* or MWTC* are active, a "memory access" signal MA* becomes active.
If BA* is also active, indicating a memory access to this address space, then
a "enable XACK*' signal ENX* becomes active. This enables the tri-state
driver of the XACK* signal. ENX* is also fed to a DDL (digital delay line, Bel-
fuse 0447-0050-02) to delay XACK* until the data is actually on the bus on a
multibus read. However, since the ENX* line is not delayed, XACK* will be off

the bus in time.

16

2.5. Installation of Integrated Circuits and Systems

There exist many options available to the user in the connection of I.C.s
or systems to SPUDS. This section will discuss some of the possible interfac-

ing schemes.

The most important decision in connecting to SPUDS is the choice of
data and address busses. For most uses, the BAD bus will provide the neces-
sary data path, and addressing is rarely needed. For example, if a single 1.C.
is to be controlled and tested, tri-state data buffers can be connected to the
BAD bus from the 1.C., or transceivers can be connected if data flow is in both
directions. The BAD bus requires a significant amount of current drive,
depending on system configuration, so that most NMOS LC.s will not be able
to drive it directly. Once buffers or transceivers are added, a new bus has
been created with less critical current drive demands, and several peri-
pherals can share it. Use of the data transmit/receive line DT/R¥* data
enable line DEN*, and the BRD* and BWR* lines may be necessary to control

the data flow.

If an address bus is required, use of BA<19,16> and BAD<15,0> is recom-
mended. This provides 20 bits of addressing, valid during t.1 of the CPU’s
cycle. If additional RAM is needed for the '186, short of replacing the 84k x 1
DRAM chips with 256k x 1 versions, the MA bus may be used in conjunction
with MCS1,2, or 3*. The LA bus provides latched addresses available through
the entire CPU cycle, making it very useful for conditioning the peripheral
chip select lines. The ALE line allows latching of the address information
from the BAD bus during t.1. Using the BHE* may also be necessary, if dis-
tinction between high and low bytes is necessary {or whenever access to

words at odd addresses is needed).

17

Using 8, 8, or 10 bit latches, driven from the BAD bus, can provide neces-
sary control of the devices. Different modes of testing or operation could

then be established until the next write to the control register.

In the current SPUDS, the PCS0*, BRD*, BWR*, and LA<3,1> are used to
create 8 read and 8 write strobes. Two of the read lines and two of the write
lines are used for accessing the multibus data and control/status ports. The
other 12 lines are available for use by periphera}s. They can be used to
enable tri-state buffers, read FIFOs, clear flip-flops, write data words, set con-
trol bits, ete. As an example, it is helpful to understand their use with the

multibus interface.

Currently, only PCS0* and PCS4* are in use. Peripheral chip selects 4, 5,
. and B8 are programnmed for two wait states to be inserted in every read or
write cycle. PCS<3,0> use zero wait states. This should be considered when
connecting peripherals with different access times to the other perinheral

chip select lines.

If more than two wait states are needed, use of the ARDY and SRCY
ready signals may be in order. Under certain applications, the TEST* and

HOLD lines may be used. The user is referred to the 80188 manuals.

The counter/timer channel 1, both of the DMA request lines, and the
interrupt input lines 2 and 3 are all available for use by the peripherals.
(Interrupt line 1 is also available if operation of the DART chip in an interrupt
mode is not needed.) Initialization and control of these lines is done by

internal accesses to the 80186.

The '186's CLKOUT is fed to a 4-bit counter that provides 5 MHz, 2.5 MHz,
1.25 MHz, and 625 kHz clocks, also available to the user.

18

Resetting the '186 will cause the SYSRESET* line to become active. This

can be used by the peripherals to reset the entire system to an initial state.

Since many I.C.s now developed will eventually go into microcomputer-
operated systems, it is to the user's advantage to include a simple micro-
computer interface on the chip. This may include large current pad drivers,
tri-state outputs, ready signals or interrupt requests, clock input, reset
input, on-chip FIFOs, and/or on-chip control ports for programmability with
address, chip select, read, and write line inputs. However, the required
interfacing components can be easily implemented with just a few external
chips if it is not desired to include them in the 1.C., especially during testing

of initial versions.

As an example, the block diagram of the connection of a speech recogni-
tion system to SPUDS is shown in Section 5.4 of the Appendices. Two of
Berkeley's custom integrated circuits are utilized in this system. One is a
18-ckannel filter-tank chip, and the other is a parallel processing "time-
warp" chip to do dynamic programming.

The filter bank takes its input from digitized speech signals. The result-
ing Fourier coefficients are loaded into FIFOs, to be read by the CPU in
response to an interrupt signal. These FIFOs are connected to the BAD bus.
The A/D and FIFOs will be included on the next generation of this filter-bank
chip.

The dynamic programming chip shown requires two banks of RAM for
efficient operation. The T.P. or template dynamic RAM contains 256 kbytes of
memory, connected in a dual-ported fashion with the CPU. Address lines
from the CPU are taken from the BA and BAD busses. The LA bus provides

additional address information needed by the T.P. address control circuitry.

19

The D.P. or dynamic programming memory has 96 kbytes of RAM for use by
the D.P. chip only. Its data bus is shared with another set of FIFOs that are
connected to the BAD bus.

Control signals to this speech recognition system are taken from the 12
available decoded strobes, the CPU's DEN*, BWR*, RAS*, DT/R*, and a 10-bit
latch attached to the BAD bus.

20

2.6. Support Hardware

The '186 can be reset by several different means. If the multibus’s INIT*
line becomes active, or if an on-board pushbutton is depressed, the RES* line
to the '186 becomes active. If the board is addressed through the multibus
at any memory address between 80,000H and 80,7FFH and multibus address
| bit 8 is active, (as in 80,040H, 80,080H, 80,0B0H, etc.) then the RES* will also
become active. This allows the master computer controlling the multibus (in
this case, the Sun workstation) to selectively reset this board without reset-

ting any other multibus boards.

When the *186 is reset by pulling RES* low, it then strobes its RESET out-
put line high. This is inverted to become SYSRESET*, and is used to reset the
rest of the peripherals on SPUDS. Both the multibus control/status port and
the dual serial 1/0 chip need this SYSRESET* signai. Cther peripherals may

also use it.

Although the '188's AD bus hes twice the current drive cepacity of the
previous family of 8086 caips, because cf the nuniter aad type of devices
transferring data or needing addresses, it is necessary to buffer the bus.
Additional peripherals can then be added to the buffered AD bus (BAD). Two
B-bit transceivers ('LS245) buffer the AD<15,0> to the BAD<15,0> bus, and
one 'LS367 buffers the A<19,16> to become the BA<19,16>.

The *186 has an internal programmable chip select unit that strobes an
output line if a selected area of 1/0 or memory is addressed. However, many
peripherals do not have chip enable or chip select inputs, so that condition-
ing of the '186's read and write signals with these peripheral chip select lines
is necessary. Two 3-to-8 decoders (LS138) are used to accomplish this, with
one enabled on BRD* and PCS0* active, and the other with BWR* and PCS0*.

21

The latched address lines LA<3,1> are fed to the A, B, C inputs of the
decoders, so that eight sequential addresses are decoded to become strobes
to the peripheral components. Four of these strobes are used for the mul-
tibus interface ports. The other 12 are available for use by other peri-

pherals.

CHAPTER 3

FUNCTIONAL CONSIDERATIONS

3.1. Alternative Configurations

Several options of operation of SPUDS are available to the user. Some of
these options can be realized by physically changing the wiring on SPUDS,
and others will require alteration of programs in the RAM or EPROM.

SPUDS was designed to be compatible with the Sun multibus worksta-
tion. Therefore, the most significant data byte to the multibus is on
DAT<7,0>, and the least significant byte is on DAT<15,8>, in agreement with
the Motorola 68000 used in the Sun. (This is not in accordance with the mul-
tibus specification.) Using SPUDS in a different multibus system means
swapping all wires connecting to multibus pins 67 through 74 with those of
pins 59 through 66.

Interrupting the multibus (in this case, the Sun) is done on the multibus
interrupt request line INT4*. This choice of interrupt is easily changed by
moving the output of the tri-state driver (wired to simulate an O.C. driver) to
another interrupt request pin. However, the multibus specifications list the
INTO* line as having the highest priority and the INT7* line the lowest, while

the Sun’s multibus explicitly uses the opposite priority scheme.

The available address space in the Sun workstation’'s multibus is
between 040,000H and OCO0,000H, depending on system configuration.
Currently, the board is decoded at 080,YXXH, where Y is any address from 0

to 7, and X is any 0 through F. Thus, the "base address” of the board is con-

22

23

sidered as 080,000H, and this can be changed by rewiring the pins on the 8-
bit comparator. The ‘multibus address lines are active-low, so decoding a "0"
in the address space means comparing to a "1" or +5 volts on the compara-
tor. The ADR13H* address line is currently wired to the comparator’s
active-low enable input line Ein* so it is being decoded to a "1" in the
address space. Changing the state of any of the "B" inputs of the 8-bit
decoder will change the base address of the board.

The CPU can be reset by addressing any of 080,YWXH, where W is equal
to 4,5, 86, 7 C, D, E, or F. In other words, setting ADR6* true while being in
the decoded address space will send a reset signal to the '188, which will
reset the entire SPUDS. Rewiring any ADR<AH>* through ADR<2>* in place
of ADR<6>* would work just as well to reset the board at the corresponding
address space. This is not true if another 8-bit address decoder is used, in
which case only ADR<2>* could be used. (ADR<1>* is used to choose

between data and control words.)

SPUDS is designed to be flexible in its capacity for size of EPROMs used.
The twenty-eight pin sockets used can accommodate any EPROMs from the 2
kbyte 2716 to the 32 kbyte 27128. All pin numbers used are for the 28-pin
socket, even for the 24-pin chips. Listed below are the wiring changes neces-

sary for each size of EPROM:

EPROM type size Pin 23 Pin 26
2718 2k +5 +5

2732 4k LA<K12> +5
2764 Bk LAK1IZ> +5

27128 16k LA<1I2> LA<13>

24

SPUDS can utilize 256Kx1 DRAM chips instead of 64Kx1 DRAMs with a
slight change in the multiplexed address generation. This provides 512
kbytes of scratchpad RAM to the '186. The BAD<9,0> lines remain on the 10-
bit latch as wired. BAD<9> is then removed from pin 8 of the other 10-bit
latch, and BAD<17> replaces it. It is then necessary to connect MA<8> from
the 10-bit buffer to pin 1 of the DRAM chips. The MCS* signal is no longer
equal to the '186's MCSO*, but must be active if any of MCS0*, MCS1*, MCS2*,
or MCS3* are active. This requires the addition of the equivalent of 3 AND
gates. Any differences in timing requirements of the 256Kx1 chips must be
considered carefully, and are most likely resolved by changing the RAS*,
MUX*, and CAS* timing on the digital delay line. The RAM refresh interrupt
service routine would also need modification; adding another 128 NOPs is
probably sufficient, depending on the RAM. (Some RAM manufacturers may
require 512 NOPs to refresh every 4 mS.) It is the programmer’s option to
have something useful done in place of a string of NOPs, as long as that rou-

tine is done without interruption or waiting.

As mentioned in the section on the 8274 dual serial 1/0 chip, DMA opera-
tion is an option. One or both of the transmit or receive DMA request lines

for either communication channel.

Operation of the 8274 with interrupt acknowledge cycles to jump to
different service routines depending on the interrupting condition requires

connection of the 8274’s INTA* input to the '186’s INTA1* line.

25

3.2. Alternative Designs

Different applications may require slight modifications to the given
design. For example, if a scratch-pad RAM area of no greater than 128
kbytes is needed, one could replace two of the 24-pin chips with 20-pin chips.
These would be the 10-bit BAD to MA register and the 10-bit LA to MA buffer,
that could be replaced by 8-bit versions. The three AND gates used to create
MCS* could then be removed. Another option is to include additional address
decoding of the multibus. This may be accomplished with another 8-bit com-
parator in cascade with the original. PALs may be used to save board area
by replacing random logic gates and the 3-to-8 decoder used on the multibus

read, write, and address lines.

Differences in original SPUDS:

The original SPUDS constructed used a more complicated RS-232 line
receiver than the final version. With a constant effort to conserve board
area, an 8-pin 75141 dual line receiver was used. Two resistors and four
diodes preceded the receivers, functioning as signal limiters for the incom-
ing +/- 15 volts. Although the 4-channel MC1489A line receiver is a larger
chip, it is designed to receive RS-232 level signals and thus does not require

discrete components.

26

3.3. Bugs

As Intel developed the 80186 microprocessor, early versions of the chip
were released for development purposes. These chips were not completely
functional, and errata sheets accompanied the chips as documentation. The
"step A-1" version of the '186 had a non-functional timer unit and an internal
interrupt controller unit that only worked in non-cascade mode. This means
that the interrupt controller could not be used in the iRMX 86 compatibility
mode. The chip’'s recommended Vce limits were 4.0 to 4.8 volts for CPU and

DMA operation.

The step "B-1" version of the ‘186 resolves some of the problems that the
A-1 had, but it has its own errata sheets. The known bugs that may affect the

operation of SPUDS now or in the near future are:

1) DMA registers: Any read of the upper 4 bits of the 20-bit pointer registers
in the integrated DMA controller will yield all zeros. The DMA controller will
continue to operate correctly if these registers are read. This does not
prevent the DMA controller from responding properly with all 20 bits of the
DMA memory location when a DMA cycle is run. The upper 4 bits must still be
programmed with their correct value. The given errata sheet proposes the
following solution: If the content of these upper 4 bits is required, it can be
determined by reading the DMA count register to determine the number of
DMA transfers which have occurred and adding this to the value with which

the register was programmed.

2) Queue status: This problem will only affect users of the 8087 in conjunc-
tion with the 80186.

3) Improper interrupt vectoring: This problem will also affect only those

27
users of the 8087.

4)Non-contiguous INTA cycles: When using DMA and the internal interrupt
controller (cascaded, nested, fully nested or RMX88 modes) it is possible to
get a DMA cycle in between the two INTA cycles. Intel proposes a solution: If
it is recognized that an interrupt is coming in, external logic should be used
to block the DMA request lines until after the first INTA cycle has been com-
pleted. This will allow the second INTA cycle to run before the DMA request is
recognized. The user should be positive that interrupts are enabled (STI

instruction), otherwise DMA may never be serviced.

Currently, no INTA cycles are used for operation of any of SPUDS's peri-
pherals. However, in the future it may be desirable to use the dual serial 1/0
chip in a conditional vectored ihterrupt mode. At this point, either the above
mentioned additional hardware will have to be added, or purchase of the
"step C" 80186 must be pursued, assuming that this bug will be fixed in that

version.

5) String move instruction: Essentially, if a string move instruction (MOVS,
INS, and OUTS) is fetched but its execution not begun, and a HOLD request is
received, (from the internal DMA controller in our case, since no external
HOLD is currently done) the '186 will not properly begin the string move
instruction after regaining control of the bus. Apparently, this failure will
only occur if the last bus operation performed before the HOLD is ack-
nowledged was either a memory or 1/0 read cycle. The recommended solu-
tions to the problem that apply to SPUDS are either to compare the destina-
tion string with the source string after a move to insure that proper execu-
tion has occurred, or to insert a write cycle or an instruction fetch cycle

immediately before the string instruction. For example the code sequence

28

"pop AX ; rep movs" is replaced by "pop AX ; jmp A ; A: rep movs". Of course,
a simpler solution to the problem would be to just not use the DMA controller

or the string move instructions, if that is possible to do.

CHAPTER 4

CONCLUSIONS

This report has described a powerful and compact evaluation and
development system that affords a wide variety of potential uses. Using
high-level language development tools and providing aiﬁexible digital inter-
face to integrated circuits allows sophisticated single-board systems to be
developed. A complete speech recognition system was presented as one
example of the uses of this board. Another board is currently being designed
to perform character (hand-writing) recognition, while a third is planned for
speech synthesizer and/or vocoder integrated circuits. Other boards will be
distributed to various I.C. designers for use as programmable test fixtures.
Used in conjunction with the new generation of "mini-mainframe"” user-
configurable host computer workstations, a éompletely new definition of

"user interface' can be established.

29

CHAPTER 5

DCCUMENTATION /7 APPENDICES

5.1. Memory and 1/0 Maps

The upper memory chip select line UCS* is currently mapped at:
UCS* FFOO0O - FFFFFH

Using the 2732 EPROMs will require mapping of UCS* at FE0QO - FFFFFH.
Using the 2764's will require mapping of UCS* at FCOOO - FFFFFH.
Using the 27128's will require mapping of UCS* at F8000 - FFFFFH.

The middle memory chip select lines MCS<3,0>* are mapped at:

MCS0*: 00000 - 1FFFFH
MCS1* 20000 - 3FFFFH
MCS2* 40000 - 5FFFFH
MCS3* 60000 - 7FFFFH

The lower memory chip select is not used.

The bottom 400H words of memory are reserved for use by
the 80186.

The peripheral chip select lines are mapped as follows:

PCS0* 000 - 07FH
PCS1* 000 -07FH
PCS2* 100- 17FH
PCS3* 100-17FH
PCS4* 200 - 27FH
PCS5* 200 - 27FH
PCS6* 300 - 37FH

The upper area of 1/0 space, from FF20 - FFFFH are
reserved for use by the '186.

30

31

Programmable 1/0 lines of the 80186 are currently used as
follows:

Interrupt lines:

INTO Multibus data transfer interrupt.

INT1 Optional: dual serial 1/0 channel
INT2/INTAO* Available for use by peripherals.
INT3/INTA1* (Future INTA for dual serial 1/0 channel.)

Counter/timer lines:

TMRO Dual serial I/0 baud rate clock generator.
TMR1 Available for use by peripherals.
TMR2 Refresh dynamic RAM through interrupts.

Peripheral chip selects:

PCS0*-PCS3* are initialized to operate with zero wait states.
PCSO0* Further decoded with LA<3,1> to provide 8 read and
8 write chip selects.
PCS1* Not used.
PCS2* Not used.
PCS3* Not used.

PCS4*-PCS6* are initialized to operate with two wait states.
PCS4* Dual serial 1/0 chip. LA<2,1> decoded internal to chip.
PCS5* Not used.
PCS6* Not used.

32

5.2. Boot Listing / Initialization Code

This section contains the 80186 assembly code representation of the
current contents of the EPROMs. A thin vertical line ‘| has comments to the
right of it. The user is free to make additions to this code by programming
new EPROM chips.

Eproms can be programmed in the electronics support shop, room 140
Cory Hall, or on any other prom programmer connected to the unix system.
In 140 Cory, one must secure the personality module appropriate for the par-
ticular eprom chip being programmed, and then attach the unix connection
and switch. With the switch in the "unix" position, login and execute a "blast"
[arg], where arg is the previously compiled and assembled hex code that has
been split into even and odd addresses. "Blast" can be found in /lc/cad/bin.

"Blast" gives all necessary instructions.

| 186 ROM code for 2718 PROMS (2K x 18 bits)

.globl _main
.globl _etext
.globl _edata
.globl _end
.globl _downloa

VAXCSR = 0x0204

VAXDATA = 0x0200

CONCSR = 0x0206

DARTIN =01

REFCNT = 5000

text

Upon reset, the 801886 sets its UCS* line to 3 wait states and then
does a read at FFFFOH. The first 4 OUTs initialize the '186’s
programmable chip select lines.

start: These next 3 instructions are done
in upper memory.
mov dx,#OxFFAO | Set chip select registers:
mov ax,#0xFF3F | Upper Memory CS is 4k bytes for 2716,
outw with 3 wait states. {Two waits @ 8 MHz.)

mov dx,#0xFFA8 | Middle Memory CS is 256K words for RAM,

33

mov ax,#0xCOBE |and1/0is 1/0 Mapped; 7 PCS lines &
Al A2 not latched. .

outw Two wait states for PCS4-6. (One wait
state @ 8MHz CPU operation.)

mov dx,#0xFFA4 | Peripheral CS is I/0 Mapped at 0.
mov ax,#0x003C | O wait for PCS0-3.
outw

mov dx,#0xFFAB | Offset for Middle Memory CS is 0.
mov ax,#0x01F8 | No wait states for Middle Memory CS.
outw

The next three OUTs initialize the *186's internal counter/timer
channel 0, used as a baud rate clock generator.

mov dx,#0xFF52 | Set up timer O for 156.25 kHz, 50% duty
mov ax,*8 cycle. Used for 18 * baud rate.

outw

mov dx,#0xFF54

outw

mov dx,#0xFF56

mov ax,#0xC003

outw

nop; nop; hop; nop; | wait a while
The following code initializes the Intel 8274 dual
serial 1/0 chip, or "DART".

mov dx,#VAXCSR | Initialize DART CHIP channel A.

mov al,#0x04

out

mov al,#0x48 | Use x16 clock, 1.5 stop bits, no parity.
out

mov al,#0x01

out

mov al,#0x00 | Disable waits, interrupts disabled.

out

mov al,#0x05

out

mov al,#0x28 | Transmit 7 bits/char, enable transmit.
out

mov al,#0x03
out

mov al,#0x41 | Receive 7 bits/char, enable receiver.
out

mov al,#0x02

out

mov al,#0x00 |

out

°

mov dx,#CONCSR | Initialize DART CHIP channel B.
mov al,#0x04

out

mov al,#0x48 . | Use x16 clock, 1.5 stop bits, no parity.
out

mov al,#0x01

out

mov al,#0x00 | Disable waits, interrupts disabled.

out

mov al#0x05

out

mov al,#0x28 | Transmit 7 bits/char, enable transmit.
out

mov al,#0x03

out

mov al,#0x41 | Receive 7 bits/char, enable receiver.
out

End of DART initialization.

Set up top of stack at top of memory.

mov ax,#0x040 | Stack and datasegments start of 0x00400
mov ss,ax

mov ds,ax

mov sp,#OxFFFE | Stackis at top

mov ax,#0 Extra segment is at 0

mov es,ax

This initializes the '186's internal counter/timer channel 2
and internal interrupt controller to serve as a dynamic
RAM refresh machine.

mov bx,#0x004C | Set up refresh interrupt vector from timer 2
mov ax,fref_int | to jump to PROM refresh routine

mov es:0(bx),ax

mov ax,Ccs

mov es:*2(bx),ax

mov dx,#0xFF32 | Initialize timer 2 interrupt control register
mov ax,#0x0000 | to priority 0, un-masked.

outw
mov dx,#0xFF62 | Set up timer 2 to interrupt after counting
mov ax,#REFCNT | 5000 internal events (2.5 MHz clock pulses)
outw thus interrupting every 2 mS to refresh

the DRAM.

mov dx,#0xFF66 | Set timer 2 mode word to stop and interrupt
mov ax,#0xEQ00 | after max count

outw

End of refresh timer/interrupt initialization.

mov ax,ds | copy C data from PROM to RAM
mov es,ax

mov cx,# data-_test+1

repz | string move

35

seg es | use code segment

movb

sti | start refresh

call _main | call the C Main program.

jmp start

Refresh Interrupt Routine

ref _int:
push dx
push ax

mov dx,#0xFF66 | Restart counter/timer 2 by writing E00O to
mov ax,#0xEOCQO | FF66H.
outw

NOP;NOP;NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
nop;Nop; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOP;NOP;NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOP;NOP; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
nop;Nop; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
Nop;NOpP; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOp;NOP;NOP; NOP; NOP;NOP; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOp;NOp; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP
NOp;NOP; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
Nop;NOpP; NOP; NOP;NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOP;NOP; NOP;NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOop;NOP; NOP; NOP;NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOP;NOP; NOP; NOP;NOP;NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP;NOP;NOP; NOP
Nop;nop;Nop;NopP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOp;NOP; NOP; NOP; NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP; NOP
NOP;NOP; NOP; NOP;NOP;NOP; NOP; NOP; NOP; NOP; NOP; NOP; NOP;NOP;NOP; NOP

mov dx,#0xFF22 | Write end-of-interrupt to interrupt
mov ax,#0x8000 | controller.

outw

pop ax | pop and return
pop dx

iret

Download routine, does not use any RAM except to put downloaded data.

_downloa:
cli
mov dx,#VAXCSR | reprogram channel A for 8 bit data
mov al,#0x05
out
mov al,#0x68 | Transmit 8 bits/char.
out
mov al,#0x03

out

mov

out

sti
srchS:

mov
t2: inw

jz
mov
inw
and
cmp
bne

ti: inw
and
jz
mov
inw
and
mov
mov

t3: inw
and
jz
mov

mov
sal
add
mov
mov
mov
mov
dldloop:
mov
dec
or
beq
mov
t4: inw
and
jz
mov
inw
mov
inc
movb
add
br
dlddone:
mov

36

al,#0xC1 | Receive 8 bits/char.

: | search for S
dx,#VAXCSR

ax, #DARTIN
t2
dx, #VAXDATA

ax, #0x7F

ax,*83

srchS

dx,#VAXCSR | get Isb of length

ax, #DARTIN
t1
dx, #VAXDATA

ax,#255
si,ax
dx,#VAXCSR | get msb of length

ax, #DARTIN
t3
dx, #VAXDATA

cx,*8
ax,cl
si,ax
di,*0
cx,*0 clear checksum
ax,#0x0040 | download into memory starting at 0x0400
ds,ax
| move in the data
ax,si
si
ax,ax
diddone | check if done (len = 0)
dx, #VAXCSR

ax, #DARTIN

t4

dx, #VAXDATA

bx,di

di

(bx),ax

CX,ax | for checksum
dldloop

dx, #VAXCSR

to:

37

inw

and ax,#DARTIN

jz t5

mov dx,#VAXDATA

inw

cmpb cx,ax

jnz start . | if checksum doesn’t match then restart

jmpi 0,0x0040 jump to new code at 0x00400

at FFFFO put a long jump to FF000 (code segment is FF00, address 0)
this is put in by 86makeproms

5.3. Signal Descriptions

AD<15,0>

Multiplexed address and data bus from '186.
To DRAM, EPROM, and BAD 8-bit transceivers.
Low current drive bus, not intended for use
by additional peripherals.

BAD<19,0>

A<19,16>

Buffered multiplexed address and data bus, from
two 8-bit transceivers from AD<15,0>. To LA bus
latches, DART's data transceiver, multibus

data port, and multibus control/status register.
Transceivers are disabled during read of EPROM or
DRAM. Transceiver direction controlled by BRD*.
High current drive bus, intended for additional
peripherals.

Address bus from ’186. To 4-bit bus buffer.

BA<19,16>

LA<9,0>

MA<9,1>

BD<7,0>

Buffered address bus from 4-bit bus buffer from
A<18,16>. To MA bus latches. Always enabled.

Latched address bus from one 10-bit lateh. To
EPROM, DART, 3-8 address decoders, MA bus buffer,
and low byte enable for DRAM.

Valid while ALE low, and while ALE high and address
valid on BAD bus.

Multiplexed address bus. From 10-bit latch from BAD
bus and 10-bit buffer from LA bus. To DRAM and EPROM.
MA<9,1>=LA<9,1> circa RAS fall; MA<7,2>=BAD<15,10>,
MA<8>=BA<16>, and MA<9>=BA<18> circa CAS fall.
MA<1>=BAD<9> circa CAS fall for 84k x 1 DRAM chips;
MA<1>=BA<17> circa CAS fall for 256k X 1 chips.

Buffered data bus, from 8-bit transceiver from
BAD<7,0>, to DART only. Direction of transceiver
controlled by DT/R* signal, and transceiver
enabled by PCS4* conditioned with DEN*,

ADR<13H,0>*

Multibus address bus, 20 bits wide. (<13H,0> is in
hex.) ADR<13H,BH>* and ADR<1>* to address decoder
consisting of 8-bit comparator and 3-8 decoder.
ADR<6>* to reset decoder.

38

39

DAT<F,0>

BRD*

BWR*

RAS*

MUX*

CAS*

YE*

BHE*

PCSO*

Multibus data bus. To 16-bit data port,
and 6-bit control/status port.

Buffered RD*. Tri-state buffer, always enabled.

To: 3-8 chip decoder; DART's RD*; EPROM's OE*;

in conjunction with BWR* forms RAS*; direction
control of BAD bus transceiver; and in conjunction
with MEM* forms enable control RDMEM to BAD bus
transceiver.

Buffered WR*. Tri-state buffer, always enabled.
To 3-8 chip decoder, DART's WR*, DRAM's WE*, and
in conjunction with BRD* forms RAS*.

Row address strobe for DRAM. Active if either
BWR* or BRD* are active. To 168 DRAMs and DDL.

Multiplexer signal, enables high or low address
onto MA bus. When active, MA has high address,
preparing for CAS* to strobe it in. Delayed
version of RAS*, by 20nS. To output enable

of high address latch/tri-state.

Inverted MUX*. To output enable of low address
tri-state. When active, low address on MA bus,
ready for RAS* to strobe address in.

Column address strobe for DRAM. Delayed version
of RAS*, by 40nS, from DDL.

Write enable of DRAMs.

'188 address latch enable. When low, latches
address from BAD in LA and MA bus latches.

'188 byte high enable. With CAS* forms HICAS*,
enabling high byte of dynamic RAM memory.

'186 peripheral chip select 0. In conjunction

with LA<3,1> and BRD* or BWR* generates decoded
read and write signals for multibus data port

and multibus control/status port.

PCS4+

LCS*

UCS*

MCS*

INTO

INT1

40

'186 peripheral chip select 4. To DART's CS*;
in conjunction with '186 DEN* becomes enable for
DART's data transceiver (DEN4*).

'186 lower memory chip select. Not used.

'186 upper memory chip select. To EPROM's CE*, and
in conjunction with MCS* and BRD* becomes enable
control for BAD bus transceivers.

Currently equals '186 MCS0*. When 256k x 1 DRAM chips
available, MCS*=MCS0* x MCS1* x MCS2* x MCS3*.

In conjunction with CAS* becomes MCAS*; in conjunction
with UCS* and BRD* becomes enable control for BAD bus
transceivers.

'188 interrupt input 0. From multibus interface

hardware, indicating that the multibus data port
has been read out or has new data in, depending
on programmable mask bits.

'1886 interrupt input 1. From inverted DARTINT*
of DART chip. Programmable to be active on
a certain set of conditions.

INT2 /INTAO*

'186 interrupt input 2. Available for use
by peripherals.

INT3/INTA1*

MRDC*

MWTC*

'186 interrupt input 3. Available for use
by peripherals, or can be used as INTA to
DART chip.

Multibus memory read control. To multibus
3 to 8 address/read /write decoder and to
XACK* generation circuit.

Multibus memory write control. To multibus
3 to 8 address/read/write decoder and to
XACK* generation circuit.

41

BA*
‘Base address of multibus address decoding.
Output of eight-bit comparator, to decode
‘multibus address bus and enable the
‘multibus interface. In conjunction with MC*
forms ENX*. Enables 3-to-8 decoder to form
DATRD*, DATWR*, CSRRD*, and CSRWR*.

MC*
Multibus-memory access signal. Active if
-either MWTC* or MRDC* are active.

ENX*
Enable XACK* tri-state signal. Active if
‘both BA* and MC* are active, indicating
a multibus memory access to the decoded
address space.

XIN*
Delayed version of ENX*, to drive input
of XACK* tri-state buffer. Delay timing
is chosen so that XACK* falls after data
from data port is on multibus.

XACK*
Multibus data acknowledge. Tri-state.
Enabled by ENX*, driven by XIN*.

DATWR*
Multibus data port write decoded strobe. Active if
BA* and MWTC* and ADR1* active, by a 3-8 decoder.
Strobes CPR line on multibus data port to
write data in from multibus.

DATRD*
Multibus data port read decoded strobe. Active
if BA* and DR1* and ADR1* active, by a 3-8 decoder.
Pulls OEAS* line low on multibus data port
to read word to multibus.

CSRWR*
Multibus control port write decoded strobe.
Active if BA* and MWTC* and ADR1 active, by a
3-8 decoder. Strobes clock line on multibus
control/status port to write data from multibus.

CSRRD*
Muitibus control port read decoded strobe.
Active if BA* and DR1* and ADR1 active, by
a 3-8 decoder. Pulls OE* low on multibus
control/status port to read to multibus.

INT4*
Multibus interrupt line 4.
Tri-state buffer, enabled by INT4REQ*,
with input tied low, as an 0.C. equivalent.

MBDRD*
Decoded read strobe of I/0 port 0004H.
Active if PCS0* and BRD* and LA<1>* and LA<2>
and LA<3>* active. Pulls OEBR* line low on multibus
data port for read of word to '186.

MBDWR*
Decoded write strobe of 1/0 port 0004H.
Active if PCS0* and BWR* and LA<1>* and LA<Z>
and LA<3>* active. Strobes CPR line of multibus
data port for write of word from *186.

MBCRD*
Decoded read strobe of 1/0 port 0006H.
Active if PCS0* and BRD* and LA<1> and LA<Z>
and LA<3>* active. Pulls OE* line low on multibus
control/status port for read of data to '188.

MBCWR*
Decoded write strobe of 1/0 port 0006H.
Active if PCS0* and BWR* and LA<1> and LA<2>
and LA<3>* active. Strobes clock line of multibus
control/status port for write of data from '1886.

RES*
Reset signal to '188. If on-board push-button
is pressed, or if multibus INIT* line becomes
active, or if BA* and ADR6* are active, then
RES* is active.

RESET
Active high reset signal from '186. To
inverter to create SYSRESET*.

SYSRESET*
Active low reset from inverter from RESET.
To DART, and multibus control/status port.

R‘D*
1886 read signal. To tri-state buffer.

WR*
'186 write signal. To tri-state buffer.

CLKOUT
From '186. Input clock's or crystal’s
frequency divided by 2. Currently equals
10 MHz. To 4-bit counter.

DARTCK
From 4-bit counter, that divides CLKOUT
by 2, 4, 8, or 18 continuously on 4 output
pins. The resulting 2.5 MHz clock is fed
to the DART. Other taps available for
peripherals.

TMR O IN
'186 internal counter/timer unit’s timer O input.
Tied high, this timer used as a baud rate generator.

TMR 0 OUT
Output of '186's timer 0. Used as a baud rate
clock for DART.

TMR 1IN
'186 internal counter/timer unit's timer 1 input.
Available for use by peripherals.

T™MR 1 OUT
Output of '188's timer 1. Available for use by
peripherals.
NMI
*186 non-maskable interrupt input. Tied low, not used.
HOLD
*'186 hold input. Tied low, not used.
HLDA
'186 hold acknowledge output. Not used.
TEST*
'186 test input. Tied low, not used.
SRDY
'186 synchronous ready input. Tied low, not used.
ARDY
'186 asynchronous ready input. Tied high, not used.
LOCK
*'186 lock input. Tied low, not used.
S0*-S2*

'186 status outputs. Not used.

swreadey] ool ¥'Q

Re
BO\BL]é—-—— _(g{f =
AD
a A N\
AL
1 BA - | T
LA A
| MA
Y Y v vV v
M‘ M\)l*'\\ws BU&\
Write, EPROM DY rMowNC Qote part Clossne \
Bt Addreas RAM Mol bus Seeiel
Occode cOR T|O
|| /P 2y 2
. DR'\M M\)\\"\\los
Contcal Limes \ decode
~ Conrro umw(‘o}l
g
r R
9 P
&
N Moliibus RZ-2:2 TfO
2 Er‘\c]t

Ceatle ¢ X b

BA

waleiss

NoL\NDe2e HTRRS
2O wWeevid 208

B
T T T
Y& " -
A x
Jdo 4 4 F.p FILTER
TP PRAM g @P. DRAM conpor]] BaK
CONTROL CONTROL CHIF
TRORAY Ll SN Ao
5| | O e
PRE-EMPH,
T T ANTI-ALUS
L L \

DYNAMIC PRoURAMMING CHIP

HOZ34G L3 UWOD
d0 Lnox

WALSAS NOWWR®Do2 TR

EPROM
4 - 32

kbytes

Scratchpad
Dynamic RAM

128 - 512 kbytes

Dual
RS=-232

1/0

Intel

80186

Template Dynamic Pre-amp.
Dynamic RAM Programming Analog
256 kbytes DRAM Filters
A/D
Dynamic
Programming
Chip
FIFOs, Transceivers, Address Latches
Filter Bank
Chip and |

Multibus interface.

FIFOs

Iic
”—uﬂ:-' -r

oo ua.ob ;

GE....

. L AR,
c.a0 -.S.P-.lu.n..n

e

u SRR

i1

&
i

Ii al 5

4

il

%‘[i

i dai s AR i A ik W i S

i

'i

il At b i el i

il A

ikl ab oEx.

e)
T PRIy {8

. iﬂ" A § “ ;_ !;.
. e

o == = : \ .. !
,ﬁ -e ' : _ M)
\/ Ey=S ".I 2 P P -\
......., @ a

[L{osnbans L s
=
e S o A T i
=
I3 2

[‘ SE 3,‘{

A
i Sk

; | 3y N‘§ Liyg i Jal l
D s

& *
, "‘-&
oo
] X

.
. £, 5
-. I -
&

4|;

sk
LG
. T

INTHNTR
NT2NYAD
CLXOUT Vo GNO -n TMAOUTY TMAOUTO
T™AN 4 TMRN
[‘fﬂ!‘ Lo L1 1 ° '
) |
[ExEcamon wer! PROGRAMMABLE
e] TiNERS
-8 : u:ccom‘ S’ §§
o ! INTERRUPT AGTIAG.]
cLocK TROLLER MAX COUNT
ToR] : coN REGISTER A
aenemaL | 1 CONTROL REGISTERS
RRFOSE I CONTROL v
REUSTERS 16017
| REGIITERS COUNT REGISTER
]
U b~ OAG?
PROGRAMMASLE
88] guav,
cr
m 1 g SOURCE POINTERS)
rest o) BUS INTERFACE o 2087
i uNT oot OESTINATION
REGISTERS POINTERS
MDA <=t bl AR r—
RS —t S8YTE CONTROL 'rlw&u COUNT
RESET o—{— -
l —'| CONTAGL
AapRr :
SR
WA (- [="
o -] ADO- ATW/3)~ B3] | R
o [/] ADIS A1MSS V' \/
“Hn-3 ["

INTEL 20180

ucse

Mcse

gupe

5.5. Schematics

a8 S
X1 3_
13
;280 Y2» HBDRD®
PCSO® =T it O
D D= BCRD®
ua> i 2 U
b~
- Tue
LA@> ¢ 3 : 10
i |a 4:11 @,
LACI> [a
Lot tee /)
5 I~ 7
17 bt
3 L] @ S
) Gl b{])
;A L] @Y
2 e e D2 KBOWR®
o 12
3 |c ™ Y38 - MBCWR®
- 11
5 ~Jczae fﬂ raefO—
]
xsl O 2
q
4~ 168 O
guae @ 7
7o
ADCI1)> 21 B1{i¥ BADC11>
AD<3> 2 a2 s2|13 BADC3>
ADC10> Hl1a3 83l BADC10>
wn
AD> Sl 5 o 1S BADR>
40¢9> ths AQ esp BADC9>
? .
AD<1> 46 a6 -2 BADC1>
4 12
ADCE> N L 87 » BAD
ADO> Jas oI8 co B8 BADCO>
] ()
\ mé)
ADC15) 2 [a1 o1 u® BI!S BADC15>
AOCT> 2la2 s2| ' 2 BADCTY>
ADCI4> a3 Bafll BADCI4>
AD =1 PP I § BADCS>
L N 1+
ADC13> 45 a8 BADKI3>
7 1)
ADCS)> A6 B6 BAD<S>
g 12
ADC12> 3 A7 87 » BADC12>
ADCH> A8 88 BADCE>
ACIYD 21 - 3 BACI9>
AC18> a ll P Q2 =1 BA<18>
b
A17> an B x z BAIT>
10 A
.A<16> aa NN gy ! BAC16>
Gie

40

AD 20 BAD TRANSCEINERS
DELCPED STROTES

A3
A==
23
AN
21
o anwl=
ADCI5)> Yl % X 24
3]
ADCINY 2 1os 8 . 25
wapy V3. % 3
ana> LL"X P e a6l
ADC11> ! 03 T X
s
ADC10> LET PN o M L
AD<g> Sfo. % PPy
{ s
ADB> ! 00 A2
22 oE® A1 9
—llwbnn. 20 10
. 18 veiag 23ILS ERPEdM, €lug pim 206 * - SV)
BRD® (Jo~per 15 vean °
. A2l oce Al ° .mllll
wee _ | a0l elz
A 19407 anlz2 {jumgee, 15 usiag 2332, | 12704, oc 23128 EEROM,
AD<6> (}] 06 & a2l Pie 2y = x5y Lo 231e
]
we — 17 < w22
ADGA> el & e 25
ADC3> 1S 03 m A7 3
1210,
D@y ———————t 202 & a6 L4
— 2
ADCI> o - AS M
IIF -t
AD<0> v g M
& a3l
o
a2
3
M 10 LAY
A0 — ALY
BADC> L Jou 1 < los |9 HA>
BADC3) 4 lo2 2|2\ 4 lo2 raf2! HAGE>
-
BADCS)> I oy z 19 4 rprzvv 1og Wo ol MACH>
8ADGS> Tlhor & wfde LA 1lo7 & N A HAGS>
Il. A /5 YAy 721 ¥
BAD6>] 15 D5 A x5 MA<6)
5 z 20 L AL 5 z -9
BADCT> D3 13 03 13 HACTY
Bacs 22 L pL3? 3 22
<8> - D1
—A LAY 2 Nz HAGB>
BAD<9> bo Y0 HACO>
o .
BADO> LALO> " (MAQY Mot repjectean
To DRAM vn il
e ASek xl ehips vizd
le
LE)il
BADC10> _Alo2 r2{ 2\
BADC11, 2100 - Yo 23
BADC12> 2he T wlE
=)
BAD<13> 7 ps &N ysHE
S o 2.0
- BADC14D> 03 13
3l 3 2
BAD15> D1 n
| 1o
BACI6> D7 17
BACISY 10 D8 uvE® Y8 = EPROM \
’ BAD toLA LAER
_% PAD o MA LATCH
nuxe

LA +oMA BUFFER

WDL15>

DC14>
D3>
012>
d ¥
6k x 1 = 5
DRAM 2 2
HM43864P =2
e . ®
= -1 =< nean
r - MO~ hi
I I R R -
S =Sy rod\y
HICAS®
- e | -
f.ﬁ_. wES
\DCID =1 Rase
\D<10> =1 MA<Y>
w<9> —f— HAH>
W<s> —t- MACT>
\DST> o—t— MALO)
\D<6> —t— MA<S>
D> —t— Haca>
\D<H> T HAG
I | St MAC2)
o—— Hac1>
../

LOCAS®

L0<3):
\D<2>
A<
1D<0>

DYNAMIC RAM

DEN® ———‘C
Y532 3
PCSas _—__&c
DENG®
\q
BADCT> 2R7T 6 BRI RKH 12 {5B7 ~
-
" BAD<6> 3 a2 pal13 B0 13 lpge coas
‘f < coge S
BADCS> A3 83 Ll Z0LS? 14 D5
5 - CTSse® r(o' ——————
BADA> I B0 13 loas ‘o <
8AD<3> :As g a5 B3> e 083 RTSB® y
3 RDYB/TxDR
8AD<2> A6 po i 0L IF 1, el P
¥ 12 RoGY 1% DTRB®
Ban<1> AT BT 081 IPL/HXORGS | 2.2
il n BOCSY 19 N4
BAD<O> A8 DIR 83 DBO IPO/Tx0RQ3 | 2O
|
- OTHAs | 2!
DT/R® Tt HDYA/RXDRQA po2d
—— 351 Rcca 4a
SYNUE =
3 1xcB NLETA® 2% v
“ RISA®
BAUWDCK RxC8 q
DARTCK i P CTsa® | %
Intel 8274
SYSRESET® 20 RESET®
DARTINT® 'AYQ INT®
5 L(.omhc,k:o:u o TNTAL% GQR.\ 2?0 INTA®
La<> 24 _da
LA 23 1o
pesae Z5) cso
2.
BRD® 10 RD®
21\
Bule @ v
TxDd "xDA RxDB RxDA
3#| 4} A
3
Qur A ©
e <
MC1489A
AR <
In
3
28 A
W >
75150
I e >

DUAL =£riAL T/0
Re-222 eufFe’s
BAD to PD TRANZSCEIVER

ADR13H [34] : {Lorodod Soc SO 9474 i —
ADR12H [32] i [AZ Ein® B2 =
L &
ADR11H ([30] Al - Bl =
ADR10H [28] 2 A0 ur“w s0l = -
o £z
i 20ns
ADRFH (48] 17 a7 R oerpls "
= n , DDL A
ADREH [43) =a6 N B6}—=C
12 {
ADRDH [46] AS B5 = ™
1 2 12, 1
ADRCH [45] Al E 84
ADRBH [48] z A3 83 -
14
‘.'our.'o BAN ENK =
b : i
45 e TG uZA'O \ |
= 5
ADR1® 3 c Gz2Be fﬁ
g li B bl
h 1y
< :H___.
L] O M CoRRE
HWTC*
i YS'q 10 CSR A
9, M
MEDC ®
BAD<15> ' 1s7 CPRl Vo CRTu2
BAD<14> 2 |se CEAS® \s DATROY
BADC1 3>, 2 las < A2z [68] DAT7
St -
BADC12> A fuy AR aes [67] DAT6
BADC11> S dp; N asp! (701 DATS
BADC10> _:’ a2 g Ay =22 (691 DAT4Y
15
BAD<I> 81 A3 {721 DAT3
b 13
BAD 80 A2 {711 DAT2
MBDWE® 4 Jces i
" Al I [74] DAT1
MBDRD® . le
CER®CES® AQ [75] DATO
i\ 17 (}JQ‘.‘&_ ot Y- f“&,f’_.,v.g__
- N GRPEE I TN |
5= 1)
Y [Crs cPal Vo
9 |oeare oeasef 1=
BADCT> Ll o a7]23 [60] DATF
; 2 < =
BAD<6> B6 ~ A6l = (591 DATE
3 e 29
BADCS> B85 Doas [62] DATD
H N 20
BADCY> B4 M [61] DATC
5 k!
BAD<3> B3 = A3 (641 DATB
['3
BAD<Z> B2 A2 = (63] DATA
BAD<1> 3 K
B1 Al 661 DAT
2 . (661 9
BAD<0> BO_CER®CES® AQ [65] DAT8

" 13

A

MuiLTieus AroRess Duoce
CaTA PooT
KALK X GgnNerAaTIoN

R Eooo=e
~C L e)(‘ Aa G,. _e-d
[GRS R . l ‘/z,LSSI '/'[,LSEl . l Cmbe D
YT LT~ Ve TN \/c.x.o‘ £ T
= a7 s o[i E-
14 c a 1S l Y 3 N 12
- +
BiLY > AT S lus]
13 /A| “ 1 A, 13
R S
™eLel - = 47—‘5\2& Q T—\l 1S Csreox
M@ORL % ‘1> PROU CAT WR
PRDWR* =Fg [} OAT RE ¥
24
M CRD % = | = CERRON
3
14 1%
&
BADLS) DAT 2 Twe]
b}
20 g
SYsRELeTe — 1 SYLWEZET
| A VRN, YREYS CLR LI Wy
INT®
INT4Ax [37]
(Cnoite 38 INT, cF‘;.\
t
BARLSD> —— OATO 1627
RATLHD CAT L 1)
BARLLZY CAT & ¢4]

Leatl2y — AR 20y 9 eaT n (e2]
B,
TABLRD « —‘CC—L(\ ° 1t
fAeCm - CSRRO ¥
sNiv BT COHRWE <

MULTIBLS conTROL [STATUS PORT

Id
~

th

PSS

-
5 -~e

Rt ey

MLS %

RWR

(= &
= ™M

CaR 2 A4 =af mDaswis)

REL &

v -
/et L§3 s

BHE *

LAY

3

RESET

RO ¥

LSO

MUR >

: p}, MuX

wlLAS ¥
RAS ¥
LOCAS
WE *

SYSRESETH

BRO*

WRX

y +5

BULIRH*

TMR J WN

ARDY

SROY

O\

TEST %

oLmn

NMT

v

DA%

(et casicez opr,)

FTRC%

INIT ¥

DARTINT &

CLROVT:

MLSPx

ML s

ML SR

M (S %

CLR

L0

LS 163

RE S

(CXOUT =)

INTY

DART LI

(CLKOUT =2

MLSH

(vsed wak
ek x | DRAM
(-k-f&.)

ZANDOM voEil ‘

5.6. Timing Diagrams
EPROM READ CYCLE

Meets '186 data set up and hold times.

t01 toz °03 t.w t." t.u
A(n)
X X -
BA(n)) ¢) 4 ><
AD(n)) 4) <
: y t. OF
BAD(n) X)—
ALE s /f -
~{7r-—
LA(n) X b
DT/ RN /"
DEN® N\
iy t.CE > e
UCSECE®] t_ct/
RD® ; -%{-.a.&l.\‘&
IN o . OE >
BRD#=0c? | N t
—>
RAS# Q £ AND
MUX® {.pouzol -
\
Cas® N\
el B t A
t.CLCSV: Chip select active delay 66 max.
t.CLRL: RD® active delay 10=70
t.BDHL: Tri-state, hi-lo 7-13
t.AND: AND gate |0-20
t.DUL20: DDL 20 nS tap 20-24
t.SWP: 10-bit latch tri-state en. 6-1%
t.ce Access time from CE® 350 mAR
t.oe Access time from OE® 1 2.0 wAX
“t.ACC. Access time from address 250 wAX
t.CHCSX Chip select inactive delay 10-35
t .CLRH RD® jnactive delay 10=55
t.BDLH Tri-state, lo-hi Q-5
t.oF Data off delay O- 100

DRAM READ CYCLE

t.1 t.2 l t.3 t.4
A(n) :x: :x:
BA(n) ! X)<
AD(n) - >
™\ £ e
BAD(n) / ~—
ALE , +.LTCH /] —_——
—d v oo
LA(n) Y S
-\
DT/Re, /
DEN® _ A
s t.ored
RD® | —it.c&'\‘% /i{@
BRD® | i /
i !tb:L).l\QZ—t“‘A° =
2 ; - tZAdd >
Muxs | comm| ISt /
R A
cass | o /
! .?DF t.0480)
MA(n) LOW = Zoul . i| w1ad =Cauwmn (ATozees
1
NK*=NE*=VaH ’
t .LTCH: Data out delay, LE=hi L=13
t.BUF: Data out delay, OE®*=lo 5-1
t.CLRL: RD#®* active delay 10=70
t .BDHL: Tri-state, hi-lo *-1%
t.AND: AND gate 10-20
t .DDL20: DDL 20 nS tap 20-24
t .DDL4O: DDL 40 nS tap Ho-44
t.SWP: 10-bit lateh tri-state en.
t .RASW: RAS® pulse width =
CAS®* pulse width = t.RLRH = 150 min.
t.RAC: Access time from RAS#® 150 max.
t .CLRH: RD®* inactive delay 10=55
t.OFF: Output buffer turn off 0-40

Meets all DRAM specs.,

DRA4 WRITE CYCLE,
t.1

See DRAM READ CYCLE TIMING also.

t.2

t.3

t.4

CLKOUT __/'W;_/“_/'“‘K_/_“
s TXC X
BA(n))4 X X
ad(n) | X ooz¥ = —X
o) T X T X >
A/ gl
Nt
LA(n) X e _
DR Vo,
BRO¥:\pu|
DEN® 7 L /
c— p—
cs \\ /
WRE- Je* — k———tﬂl\ﬂd&—j
£.4veTvY Jr———
BWR® pOHL
RAS® S/
MUX® \\ S
R
CAS® —_;-Ttwm\k— /
MA(n) - . .
3 Low= Row FHir = COLUMN APDITESS
t LRASW2: RAS® width = CAS® width =
WE® width = t.WLWH = 160 min.
t.CVCTV: Control active delay 1 10-70
t.BDHL: Tri=-state, hi=lo 3-15
t.WRC: t.AND + t.DDLUO 50-64
t.CLDV Data valid delay 10-44

Meets DRAM data

set up time.

Meets write command set up time.

CLW

t.1

MUWTIBUS DATA PORT READ CYCLE.

t.2

t.3

")

t.4

—")

o T X
Bam) T X) &
+ paox] LA s
AD(n))C)—&DX -
2. GaCY
BAD(n) X — >
— —_— — _ _
ALE / t.1%koe ¢ RX & //
I ":g:::::’
LACn) X | D
ﬁ :
DT/R%®_ /7
DEN® /
Pesgx |
: — t ey -
RD# H.CLEL] =
——>Net tepu | Lat
BRD® €.BOHL
RAS ®
MUX#
CAS# \\ /
HA(H) X
+.DECOL
= | KT
t.CLiL: RD® aetive delay 10=70
t .BDHL: Tri-state, hi-=lo F-13
t .DECOL: 3-8 decoder, hi=lo 2\-22,
t JBADX: BAD bus xcvr delay 12— \8
t .CLRH: RD® inactive delay 10=55
t .BDLH: Tri-state, lo=hi q -\S
t .DECUH: 3-8 decoder, lo-=hi \2- 1%
t .HXEO: Data float, AMD2953 22 min
t .BADY: BAD bus xecvr float 10 -2.5

Meets '136 data set up and hold times.
Meets '186 data float before next address.

MULTIBUS DATA PORT WRITE CYCLE.

t.1 t.2 t.3 t.4
CLXOUT
am T X
BA(n) X X X
AD(n) X X - . CLOOX
84P(n) X X —+—H €.8A0Y
ALE / L
7=
LA(n))(Ao —
KDJu:Voh
Peopx | . _
DEN® \\ /|
R —
s TN /
€. CVCTX
WR® — ‘*«— e
t.every | —T
— —
BWR® .spm.[‘k_ t poLh
RAS®
MUXS® AN e
\ '
cas® A\ /
A .
(n) 4;*: t
—> ¢{DgcoL U< peton
c.CVCTV: Control active delay 1 10=-70
t.BDHL: Tri-state, hi=lo 315
t.DECOL: 3-8 decoder, hi-lo AN-32
t.CVCTX: Control inactive delay 1055
t .BDLH: Tri-state, lo=hi q-15
t .DECUH: 3-8 decoder, lo=-hi 12 -1%
t.CLDOX: Data hold time 10 min.
t .BADY: BAD bus buffer float 10-2.5

Meets data set up and hold times for AMD 2953.

MULTIBUS CONTROL / STATUS REGISTER READ CYCLE.

CLKOUT ‘W

t.1 t.2

t.3

"

t.4

A(n) :X(“‘jx:
BA(n)) 4 D d X
—2 = J—
*.H 25 -
AD(n) X D onns Y MOY
= 4 t . BA
BAD(n) X) _Z_J,
¢t HXEP ---
ALE / t.eAgx -/_r___
q;/- -
LA(n) X D SO
-\
DT/R®__ /-
DEN® \ /
PCS¢ T.ClYrH
—] — &
RD®
t.creo Py
BRD® L BOHL 1 1 = =
N
RAS®
MUX® o S/
N
CAS® N\ /
MA(n) X
—t -
Mecie* = EBwH
t.CLRL: RD®* active delay 10-70
t .BDdL: Tri-state, hi=lo ?-1f
t.DECOL: 3-8 decoder, hi-lo 21-32
t.HXOE: OE®* to data, LS367 35-40
t.8ADX: BAD bus xcvr delay 1 2-1%
t .CLRH: RD®* jinactive delay 10=55
t .BDLH: Tri-state, lo-hi o. 15
t .DECOH: 3-8 decoder, lo-hi 12,18
t .HXEO: Data float, LS367 30-35
t .BADY: BAD bus xcvr float 10- 15

Meets '186 data set up and hold times.
Meets '186 data float before next address.

MULTIBUS CONTROL / STATUS REGISTER WRITE CYCLE.

t.1 t.2 t.3 t.4
CLKOUT _ﬁw\ﬁw
amy T°X X
BA(n)) 4 e X
AD(n) X X — ENCLOOX
BAD(n) X X €. BADY
aLe / el
17~ -
LACn) X e _
RD *=Vpy
DEN® | \. /]
hm— pr——
Pesox |\ /
€ .CVgTX
R vt Y= —
LNV
tepr| | ——T1
BWR® =
-+ % DRU | SR
RAS®
MUX® AN /
CAS® AN /|
MA(n) :
X
—n] —>
Mexcur* t.peEqom
t. -
t.CVCTV: Control active delay 1 10=-70
t .BDHL: Tri-state, hi=lo F-1%
t.DECOL: 3-8 decoder, hi-=lo 20 -3
t.CVCTX: Control inactive delay 10=55
t .BDLiH: Tri-state, lo-hi 9-15
t .DECOH: 3-8 decoder, lo-hi 12- 1%
t .CLDOX: Data hold time 10 min.
t .BADY: BAD bus buffer float lo-.5

Meets data set-up and hold times for LS174.

DART READ CYCLE,

t.l t.2 c03 tew t.w t. U .
wdTN__"~ At " M "~
T X
BA(n) e D

1:29-\0}:2 ="
AD(n) b D> <
—
BAD(n) X D <
. —y -~ —
ALE . B0 +£.50Y]
LA(n) X |
DT/RN
t.evddrx |
o ——t 4. -
DEN® — %
"—\ +.CVETV
PCS4 « -%E,H »
- (74P
RD® _>-t.a.z\1k C R
Z.840LH)
— e —
BRD# t.B0H |
—
RAS#®
MUX® \\ /
N
CAS® N /
MA(n) X
. | —
DE—?‘XQ* —> /) e .02H
1.
B0(n)
& 1. RD =t e t,mr_
t.CVCTV: Control active delay 1 10-70
t .RLRH: BRD® width 250 min.
t.CLRL: RD®* active delay 10=-70
t .BDHL: Tri=state, hi-lo +-13
t.RD: RD#® lo to data out delay 200 max.
t .BDX: BD bus xcvr data delay 12.- 18
t .BADX: BAD bus xcvr data delay 12-1%
t .CLRH: RD®* inactive delay 10=55
t .BDLH: Tri-gstate, lo=hi A-i5
t.DF: Output float delay 120 maAX.,
t .CVCTX: Control inactive delay 10=55
t .ORH: OR gate, lo=hi 1H4-22
t.BbY: BD bus xevr data float 10-25
t .BADY: BAD bus xcvr float 10 -25

Meets data set up and hold times for '186.
Meets '186 data float before next address.

DART WRITE CYCLE.

to‘ t.2 t.3 t.w t W t,“]
/N V \ :
CLKOUT N/ _/__/__f“_/___//—\l_/
Atn) X X D
¥
BA(n) X ! X
AD(n) X B X
BAD(n) -%.-‘:EEEE!K)
ALE /T g I
. - -
LA(n) D @ P\
OT/R*Non
N R (L T —
DEN® ENerv i
pPCs4% N\
€. T
WRe —>
o [RITS
) \-INLW"
. eoLH
RASS
MUX®
N
CcAS® N
MA(n) '
X
t.oRn
DEN&X foee] —
o [GL2OEIN
Bp(n)
—— r&—
+.80% 4180y
t.CVCTV: Control active delay 10=70
t.ORL: OR gate, hi=lo 14~
t .BDEN: BD bus xcvr enable 15 -20
t.CLDV: Data valid delay 1044
t .BADX: BAD bus xcvr data delay 12.-13
t .BDX: BD bus xcvr data delay 12-13
t .WLWH: WR® pulse width 260 min.
£.CVCTX: Control inactive 10-55
t .BDLH: Tri-state, lo=hi q-15
t .ORH: OR gate, lo-hi 144 -2
t.BDY: BD bus xcvr data float 10-.5

Meets data set up and hold times for 8274 DART chip.

READ OF DATA OR CSR FROM MULTIBUS

X
—— t_
AR _Pﬂ'(_CﬁMP /
23] lt.A5 \Ir e +t.%xD ?/
[t Ng—t.ANp —_— k_.t,AND
:Na¥ > \l(-_'t-% > /lé T o%
IN¥ — —t.D0L20O /
—t.. X| O — | e—t . XDlD
"
il > N
X —
aTED® N§— t-DecoL —> fe—1t.DeceH
or
SERDY¥
= S— le—nut ., CATEN —_— &—-'C-DATD! =)
t .COMP: 8-bit address comp. q4-18
t.AS: Address set up time 50 min.
t .AND: AND gate 10-20
t.OR: NOR - INV gates 23-20
t .DDL20: DDL, 20nS tap 20 -24
t.XEN: Enable XACK tri-state |s-.2g5
t .XI0: XACK tri-state hi-lo V2~ 1F%
t .DECOL: 3-to-~8 decoder, hi-=lo =%-34
t .DATEN: Data tri=-state enable ZF max
t.XCb: XACK to command delay 20 min,
t .AH: Address hold time 50 min.
t.XDIS: XACK tri-state disable 20 mex,
t .DECOH: 3-to=-8 decoder, lo-hi 13-27
t .DATDIS: Data tri-state float 22 v,

WRITE OF DATA OR CSR FROM MULTIBUS

— t. AH b
DAT(Y*
—> +t.0nW e
A\DE(py
BAR .._ﬂkt-_wm’ s
+.AND
¥ N —
Me z.ang| [
t .08 Iﬁ
;(-%' - —
EN OB k— 3
N¥ — L
X 4.90LZ0 TXDIS
L .t'xjo it p—
XAL K. g A\
o -+ DEdH
oo -0
or
¢eRNRX
t .COMP: 8~bit address comp. q-15
t .AS: Address set up time 50 min.
t.DS: Write data set up time 50 min.
t .AND: AND gate 10-2.0
t.OR: NOR -~ INV gates 20 =30
t.DDL20: DDL, 20nS tap 20 -~24
t . XEN: Enable XACK tri-state \c-25
t.XI0: XACK tri-state hi-lo 1L-1%
t.DECOL: 3~to-8 decoder, hi-lo =x73-39
t.XCD: XACK to command delay 20 min.
t .AH: Address hold time 50 min.
t .DHW: Write data hold time 50 min.
t.XDIS: XACK tri-state disable 2.0 max
t .DECOH: 3-to=-8 decoder, lo=hi i3-LF

5.7. Parts List

1) Intel 80186

1) Intel 8274 DART

2) generic 2716 - 27128 EPROM, -200 pref.
18) Hitachi HM4864P-2 DRAM
2) AMD 2953(A) inverting bi-port
2) AMD 29841 10-bit latch

1) AMD 29827 10-bit buffer

1) AMD 25LS2521 8-bit comp.
2) Belfuse 0447-0050-02

1) TI 75150 dual line driver

1) 20 MHz crystal, HC-18U.

1) MC1489A, quad RS-232 revr.
3) 'LS245, B-bit xcvr

1) 'LS125, quad tri-st.

1) 'LS02, quad nor

1) 'LS04, hex inv

2) 'LS08, quad and

1) 'LS32, quad or

1) 'LS51, and-nor

3) 'LS138, 3-8 decoder

1) 'LS109, dual J/K*

1) 'LS1863, 4-bit counter

2) 'LS174, 8-bit latch

3) 'LS367, 8-bit buffer

	Copyright notice 1984
	ERL-84-4

