

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

"S.P.U.D.S."

A STANDARDIZED PROGRAMMABLE USER DEVELOPMENT SYSTEM

by

William B. Baringer

Memorandum No. UCB/ERL M84/4

13 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

"S.P.U.D.S."

A STANDARDIZED PROGRAMMABLE USER DEVELOPMENT SYSTEM

by

William B. Baringer

University of California

Berkeley, California

December, 1983

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, to partial satisfaction
of the requirements for the degree of Master of Science, Plan II.

ABSTRACT

As the complexity of integrated circuits continues to increase, the sophisti

cation of the equipment used to evaluate these circuits must keep pace. This

report describes a programmable evaluation and development system that

allows high-level language control and testing of circuits and systems.

ACKNOHTLEDGEMENTS

I would like to express my sincere appreciation to all of the Speech Group for

their ideas and support. I would especially like to thank Professor Robert

Brodersen for bringing me "on-board".

TABLE OF CONTENTS

CHAPTER ONE: HIGH-LEVEL DESCRIPTION 1

1.1 Introduction 1

1.2 Architecture 2

1.3 Firmware 4

CHAPTER TWO: LOW-LEVEL HARDWARE DESCRIPTION 5

2.1 Eprom Hardware 5

2.2 Dynamic Ram Hardware 7

2.3 Dual Serial I/O Channel Hardware 10

2.4 Multibus Interface Hardware 13

2.5 Installation of Integrated Circuits and Systems 16

2.6 Support Hardware 20

CHAPTER THREE: FUNCTIONAL CONSIDERATIONS 22

3.1 Alternative Configurations 22

3.2 Alternative Designs 25

3.3 Bugs 26

CHAPTER FOUR: CONCLUSIONS 29

CHAPTERFIVE: DOCUMENTATION / APPENDICES 30

5.1 Memory and I/O Maps 30

5.2 Boot Listing / Initialization Code 32

5.3 Signal Descriptions 38

5.4 Block Diagrams

5.5 Schematics

5.6 Timing Diagrams

5.7 Parts List

CHAPTER 1

fflGH-LEVEL DESCRIPTION

1.1. Introduction

Current research interests include the implementation of signal pro

cessing algorithms into integrated circuits. This enables real-time process

ing of large quantities of information. As CAD tools and production costs

make chip development more favorable to the engineer, high-speed dedi

cated processors have become more feasible to implement, and the

compromises required in using general-purpose processors no longer exist.

Because of the ease with which digital signal processors can be completely

designed and laid out automatically with new CAD tools, most of the signal

processing implementation is done with digital circuitry.

In the design and evaluation of complex systems and integrated circuits,

simulation using MSI and SSI chips is no longer feasible. As an alternative,

the designer may choose to have prototypes fabricated and then build test

fixtures to exercise the chips. The testing and characterization of these

chips is often done by converting analog control signals to digital signals to

be used as inputs to the chip. The resulting digital outputs of the chip are

then converted back to analog. Any data buffering, storage, conversion, or

processing outside of the chip can be done by digital or analog means, but

often require dedicated test fixtures that are rarely used more than once.

The problems of noise, accuracy, and dynamic range can arise from the

chain of data conversions. Many of these problems can be alleviated by the

use of a standardized, microprocessor-based test fixture that uses digital I/O

and is programmable in a high level language.

This report describes "SPUDS", a Standardized Programmable User

Development System. SPUDS is a compact, multi-purpose micro-computer,

based on the Intel 80186 microprocessor and built on an Intel multibus

board. It contains ROM, RAM, multibus interfacing, and a dual serial I/O port.

The remaining two-thirds of the board is available for the development and

testing of prototype systems and chips. The designer may then program the

SPUDS board in a high-level language to control and monitor the prototype

system. This can be done through the dual serial I/O port, communicating

with a terminal and a host computer such as a VAX. Alternately, program

development can be done on a host machine that supports a multibus card-

cage. This enables a much closer link between signal processing chips and

mainframe computers. Significant data processing can be done in the '186,

or additional processing and data output can be done with the host computer

and its printers and plotters.

Current trends in high-power computers have been towards the "mini-

mainframes". These are stand-alone computer "workstations" that are

configurable to the user's particular needs. We are using the Sun Microsys

tems 68000-based workstations. Each user has a complete computer running

under the UNIX operating system, with optional disks, tape drives, graphics,

etc. Several slots are then available in the multibus card cage in each Sun

for SPUDS boards. In this way, the development of new I.C. signal processors

leads immediately to custom boards available to any workstation user.

1.2. Architecture

The block diagram given in section 5.4 of this report shows the architec

ture of "SPUDS". Based on the Intel 80186 microprocessor, this development

board uses the Intel multibus board and protocol. The 32 kbyte area of

EPROM is large enough to accommodate all necessary initialization routines

and several non-trivial user programs. The 128 kbyte area of dynamic RAM

has a reserved area in the lower address space for interrupt vectors, but oth

erwise is totally available to the user. The board is easily expandable to one-

half megabytes of RAM at no additional cost of area. With the Intel 80186

operating at 10 MHz, the bandwidth of the RAM is 5 Mbytes/sec. The mul

tibus interface contains a 16-bit data port, a 4-bit control/status port, and

maskable interrupt facilities for high bandwidth. When SPUDS is used in a

multibus card cage of a host computer, as in a Sun workstation, it appears as

four memory addresses to the multibus, as decoded by the control unit. The

dual channel serial I/O controller operates at a range of baud rates.

There are six major busses shown on SPUDS's block diagram. The AD

bus is the '186's multiplexed address and data bus. The BAD bus is a buffered

version of the AD bus. The A bus contains the most significant address nibble

from the '186, and the BA bus is simply the buffered version. The LA bus car

ries the latched address for accessing memories. The MA bus is a multiplexed

address bus that has first the least significant half of the address bus and

then the most significant half.

The EPROM receives its address from both the LA and MA busses, and

sends its data output onto the AD bus. The DRAM is addressed by the MA bus

al'jne, and data is transferred over the AD bus. The AD bus has little current

driving capability, so it is fairly limited in the amount and type of devices

that can be attached to it. Therefore, most peripherals will connect to the

BAD bus. The multibus control/ status and data ports are one example. The

dual RS-232 port has a data transceiver that is also attached to the BAD bus.

1.3. Firmware

User programs are currently developed in the language "C" on a VAX

11/750 running under UNIX, although with the appropriate compiler, any

language could be used. The user's program should be compiled and assem

bled into 80186 code so it can be shipped over the serial lines into SPUDS's

dynamic RAM. The firmware in the EPROM is written so that a terminal may

be connected to serial channel B and the VAX or other host processor to

channel A. SPUDS then acts in a "terminal emulator" mode where charac

ters sent from the terminal's keyboard are shipped to the VAX, and charac

ters received from the VAX are sent back to the terminal's screen. However,

if a certain string of control characters is received from the VAX, the follow

ing code is not sent to the terminal, but is stored in RAM. At the end of the

transfer of the user's program, another set of control characters is sent as

an end-of-text indicator, and program execution of the '186 commences at

the beginning of the new program in RAM. Atypical program loaded into RAM

could then allow control of SPUDS via the terminal, and send data back to

the terminal for examination. Data may also be sent to the VAX for further

processing.

Use of the serial I/O lines has the inherent drawback of low bandwidth.

Operating at 9600 baud yields less than one kilobyte per second of informa

tion transfer. Use of SPUDS in a multibus-based host computer allows data

transfers of 2.5 megabytes per second (assuming the data is read from RAM

and then written to the multibus in a DMA mode.) The current firmware does

not support the necessary multibus drivers, and the Sun workstations do not

yet have the complementary software drivers inserted in the Unix operating

system, but these enhancements are under development.

CHAPTER 2

LOW-LEVEL HARDWARE DESCRIPTION

2.1. Eprom Hardware

SPUDS has been designed to accommodate any 24- or 28-pin EPROM

chips, allowing from 2K words to 32K words of ROM. Two 8-bit EPROMs are

addressed in parallel to achieve a 16-bit word. Two wire jumpers can be

chosen such that address lines and power are appropriately wired for each

EPROM type. (See Section 3.1, Alternative Configurations.) For example, with

the currently used 2Kx8 EPROMs (2716), pins 23 and 26 are tied to Vcc. Pin

numbers given are for the 28-pin socket, even when 24-pin chips are used.

The 24-pin chips are inserted in the 28-pin sockets such that pins 1, 2, 27,

and 28 are left open.

The '186 selects the EPROM through the '186*s upper memory chip

select line UCS*. The UCS* is wired to the EPROMs' chip enable CE*. The

BRD* line (a buffered version of the pin OE*. The UCS* line is currently

memory-mapped at FFOOO-FFFFFH with 3 wait states, by initializing the

appropriate programmable chip select registers of the ' 186. Faster EPROMs

will allow operation at 2 or even 1 wait state in every read cycle. Larger

EPROMs will require the memory mapping to be changed; the 2732s will be

mapped at FEOOO-FFFFFH, the 2764s at FCOOO-FFFFFH, etc. The EPROM must

be mapped in the upper area of memory so that upon resetting the '186, the

first instruction fetch, made at FFFFOH, is in ROM and is a valid instruction.

Fewer wait states may be used with faster EPROMs.

6

The two EPROMs' data lines are connected directly to the low and high

bytes of the '186's multiplexed address/data bus AD<15,0>. They are not

connected to the buffered AD bus (BAD<15,0>) because the EPROMs do not

have the current drive capability needed for that bus. The transceivers

between the AD and BAD busses must not drive the AD bus during a read of

EPROM.

The address lines to the two EPROMs must be latched and held during

the entire read cycle, since the '186 puts first the address and then the data

on the same bus during a single cycle. The operation for the dynamic RAM

(DRAM) has a similar requirement for a latched address, so the two memories

share a common address latching scheme. (See Section 2.2, Dynamic Ram

Hardware) Address bits A8 through AO of the EPROMs are connected to the

latched address bus LA<9,1> and are valid for the entire read cycle. The

remaining high order address bits of the EPROMs are wired to the multi

plexed address bus MA<6,2> and are valid as high order address bits from

the '186 after CAS* has gone low.

EPROMs are currently programmed by compiling and assembling a pro

gram, and then splitting it into even and odd bytes to be put into the two

EPROMs separately. These even and odd hex files are the arguments of a

unix routine called "blast" that ships the appropriately massaged code to the

EPROM programmer in 140 Cory and then burns it into the new EPROM.

2.2. Dynamic Ram Hardware

SPUDS has been designed to accommodate the current generation of

64Kxl (Hitachi HM4864P-2) dynamic RAM chips and the next generation of

256Kxl DRAM. Two banks of eight chips each are addressed in parallel. Selec

tion between the banks is controlled by the '186's byte high enable signal

(BHE*) and the latched address bit LA<0>, resulting in a high or low byte

access (an odd or even byte access). This yields a 64K word (or 128K byte)

memory space with currently chips.

Selection of the DRAM by the '186 is achieved through the middle chip

select lines MCSO-3*. These are currently memory-mapped at 00000-1FFFFH

for MCS0*; 20000-3FFFFH for MCS1*; 40000-5FFFFH for MCS2*; and 60000-

7FFFFH for MCS3*. Thus, the current 128K byte memory needs only MCS0*

as an address decode signal. The 256Kxl chips will require additional gating

so that the memory banks are selected if any of MCSO-3* is active, given that

the current memory access scheme is adhered to.

The DRAM is accessed in an "early-write" fashion; that is, the write

enable control is valid before the row address strobe is active. This allows the

data input and output lines of each chip to be tied together. The resulting

data I/O lines are connected to the '186's multiplexed address/data bus

AD<15,0> directly, since the DRAMs do not have the current drive capability

necessary for the buffered AD bus (BAD<15,0>). Thus the transceivers

between the AD and BAD busses must not drive the AD bus during a DRAM

read.

Address lines from the '186 must be latched because of the time multi

plexing of the address and data on the '186's AD bus. A similar requirement

exists for the EPROM, so a common latching scheme is used. Latching of the

8

address is achieved with the '186's address latch enable signal ALE. The

address is latched in two AMD29B41 10-bit latches with tri-state outputs. The

latch connected to the least significant address bits has its outputs enabled

at all times. These outputs are the LA<9,1> bus that provides constant

address information during the entire CPU cycle. The LA bus is fed to an

AMD29827 10-bit tri-state buffer. A multiplexed address bus MA<9,1> is then

derived from the output of this tri-state buffer and the tri-state output of the

most significant address latch. The multiplexing control signal MUX* is con

nected to the tri-state output controls so that first the low order address bits

are presented to the DRAM and latched internally, followed by the high order

bits. The low order bits, or "row" bits of the address are strobed in by the

row address strobe signal RAS*. active if either of the BRD* or BWR* lines are

active. The high order address bits, or "column" bits, are latched in by a

conditioned version of the column address strobe CAS* signal. CAS* is simply

a delayed version of RAS*. The delay is set by a multi-tap digital delay line

(DDL) (Belfuse 0447-0050-02) and is 40 nS. The MCAS* signal is derived by

conditioning CAS* with MCS0*. Conditioning MCAS* with BHE* yields HICAS*.

to access the high byte of the currently addressed word, and MCAS* condi

tioned with LA<0> gives the L0CAS* signal for the low byte.

A second tap off of the DDL generates the MUX* signal, to swap the

address on the MA bus from low address to high address. This is again a

delayed version of RAS*, delayed by 20 nS.

To summarize, the dynamic RAM operation will be described in a time-

ordered sequence. For a DRAM read or write, the MCS0* line is active, the AD

bus presents the address, and the ALE latches the address. MUX* is inactive,

so the low address bits are presented to the DRAM. RD* or WR* become

9

active, causing RAS* to strobe the low address into the DRAM. Then MUX*

becomes active, and the high order address is presented to the DRAM.

Depending on whether the access is to an even address byte, an odd address

byte, or an even address word, the LOCAS*, or HICAS* or both LOCAS* and

HICAS* lines will strobe the high address into the DRAM. (If the '186 accesses

an odd address word, it automatically does an access to an odd address byte,

followed by an access to an even address byte of the next word address.)

Notice that the MCSO* line need not be active to generate the RAS* sig

nal. Sequential fetches from EPROM, for example, will strobe in the low order

address to the DRAM on each fetch. This allows "refresh" of the DRAM by sim

ply reading 128 NOPs from EPROM. This is important when initializing SPUDS

from EPROM and needing to keep the DRAM's contents valid until actually

jumping into operation in DRAM.

Refreshing the DRAM must occur at least every 2 mS to guarantee valid

memory contents at all times over all operating temperatures. (It's actually

possible to refresh as infrequently as once per second at room temperature.)

The 2 mS timing is accomplished with the '186's internal timer #2 that is

currently initialized to interrupt every 2 mS. It's interrupt service routine

resets the internal 2 mS timer, executes 128 NOPs, resets the internal inter

rupt controller, and returns from interrupt.

10

2.3. Dual Serial I/O Channel Hardware

The Intel 8274 multi-protocol serial controller is a dual channel serial

communications chip. It is also called a "dual SI/0", meaning serial I/O, or a

"DART', for dual asynchronous receiver/transmitter. It can be operated in a

polled, wait, interrupt driven, or DMA driven environment, in an asynchro

nous, bit-synchronous, or byte-synchronous mode. It is currently operated

asynchronously, for standard RS-232 I/O, in a polled mode, although this can

be changed through the programmable control registers of the 8274 and the

'186's internal interrupt controller.

The chip has two internal byte-wide registers for each serial channel.

One register transfers data bytes, and the other contains control capability

and status information. Access to these registers is through the RD*, WR*,

CS*. A0, and Al lines. As noted in the schematics, these connect directly to

the BRD* BWR* PCS4* LA<1>, and LA<2> lines. PCS4* is initialized upon

system reset to decode at 0200-027FH in I/O space, with two wait states. Two

wait states are required to meet the timing specifications of the 8274 and

'186. Therefore, a read or write to 0200H, 0202H, 0204H, and 0206H will

access the channel A data, channel B data, channel A control/status, and

channel B control/status bytes.

The byte-wide data bus of the 8274 is connected to the buffered

address/data bus (BAD<7,0>) through an 8-bit transceiver ('LS245). Depend

ing on the exact system configuration, this transceiver may be necessary for

current drive considerations, but a larger constraint is placed by the timing

specifications of the 8274. The delay between a read or write signal going

inactive and the tri-state drivers of the 8274 going into a high-Z state is too

long for direct connection to the BAD bus: the next address of the '186 is

11

present on the bus before the 8274 data is off of it. The direction of the data

transfer is controlled by the '186's data transmit/receive signal DT/R*. The

PCS4* signal conditioned by the '186's data enable signal DEN* enables the

transceiver onto the bus.

The 8274 has an interrupt request line (INT*) that can be programmed

to be active on a choice of conditions. For example, receiving a new charac

ter from the serial input can be programmed to send an interrupt to the

'186. The chip also has the capability to issue a vector address in an inter

rupt acknowledge cycle, with the vector depending on the interrupting condi

tion. However, the current SPUDS does not use this mode of interrupt. (See

Section 3.3, Bugs.) Therefore, the interrupt acknowledge line INTA* of the

8274 is tied to Vcc. The INT* line must be pulled high with an external resis

tor and then inverted to match the interrupt input line specifications of the

'186. The resulting interrupt signal is connected to the *186's INT2.

The serial transmit lines from each channel are fed to a 75150 RS-232

compatible line driver. The incoming serial data goes through a MC1489A

RS-232 line receiver before connecting to the 8274. The line driver is

powered by the +/- 12 volts available on the multibus.

The serial transmit and receive section of each channel of the 8274

require a baud rate clock of 16, 32, or 64 times the actual bit rate sent or

received. (Operation in a xl mode is not recommended.) These clock inputs

are TxCa, TxCb, RxCa, RxCb. In the current configuration, all four clock

inputs are fed from a common source, in a xl6 mode. Timer 0 of the '186's

internal counter/timer channels is used as the common baud rate clock.

This timer is configured to divide the '186's 10 MHz clock by 64, giving a

156,250 Hz clock. When this clock is divided by 16 by the 8274, 9600 baud

12

rate communications is established. This clock allows the user to change the

baud rate of either or both channels to 4800 or 2400 baud by changing the

proper internal control registers of the 8274. Changing the '186's

counter/timer clock rate changes the baud rate of both communications

channels at once.

In addition to the baud rate clocks, the 8274 needs an independent clock

(CLK) to run its internal system. This is chosen to be a 2.5 MHz clock,

derived by dividing the '186's 10 MHz clock by 4 with an external 4-bit

counter (LS163). This counter also provides clocks at 5 MHz, 1.25 MHz, and

625 kHz.

The 8274 has a number of lines used for communication "hand-shaking";

that is, connections to a modem or other communications device that deter

mine and send status of the devices on each end of the link. All of these lines

have been wired in a default mode, so that the 8274 believes that the link is

good. The 8274's DMA request lines are also not used.

The 8274 can be reset or initialized by its RESET* line. This is connected

to SPUDS's SYSRESET*, originating at the '186. Upon reset of the '186, the

8274 is reset, and the '186 then initializes the internal control registers of

the 8274. The current mode of operation is: divide the external baud rate

clock by 16; use 1.5 stop bits; do not use parity; disable interrupts; and use 7

bits/char in both transmit and receive modes.

13

2.4. Multibus Interface Hardware

Two bidirectional ports are available for communication between the

multibus and the CPU. One is a 16-bit port intended for data transfer. The

other port is designed as a control and status register (CSR).

From the CPU's perspective, the data port is I/O-mapped at address

0004H, and the CSR is at address 0006H. From the multibus's perspective,

the data word is at 080.002H and the CSR is at 080.000H. (These latter

addresses are mapped in the Sun's virtual memory at 180.002H and

180.000H.)

The data port consists of two AMD2953(A) inverting bidirectional latches

with tri-state outputs. This "bi-port" is equivalent to two LS374s back-to-

back, in a single 24-pin package. Data can be clocked in and read out

independently from either direction.

The CSR has four bits for arbitrary control and status information; their

use is left to the designer of the multibus software drivers, from both the

multibus's and CPU's perspective. Two other bits in the CSR control and

monitor the interrupt machinery of the multibus interface.

When a write to the data port is made from the multibus, a flip-flop is

set. If the CPU has enabled this interrupt mode, by setting bit <1> of its CSR

high, then the ' 186 will be automatically interrupted by this write to the data

port (on the '186's INTO line). When the '186 reads this data from the port,

the flip-flop is reset and the interrupt is disabled. If the multibus has

enabled its interrupt for this mode, by setting bit <8> of its CSR high, then

the multibus will be automatically interrupted by the ' 186's read of the data

port(on the multibus's INT4* line). Similarly, when the on the multibus's

CSR<9>, and when the multibus reads from the data port, the multibus

14

interrupt is cleared and the '186 may be interrupted, if its CSR<0> is set.

Therefore, writing to CSR bits <1,0> from the '186, or CSR<9,8> from the

multibus, sets or resets mask bits for different interrupt modes.

Reading from the CSR<0> by the ' 186 will monitor the status of data flow

in the direction of CPU to multibus. If the multibus has read the data word,

this bit will be set. If the "186 has written data in, this bit will be reset. The

multibus may monitor the same information, with opposite polarity logic,

when reading from its CSR<9>.

Reading from the CSR<1> by the '186 will monitor the status of data flow

in the direction of multibus to CPU. If the multibus has written to the data

word, this bit will be set. If the '186 has read the data word, this bit will be

reset. Again, the multibus may monitor the same information, with opposite

logical polarity, when reading from its CSR<8>.

The CSR consists of two LS174 hex flip-flops, and two LS367 hex tri-state

buffers. Four of the bits from each chip are wired in a bi-port configuration,

and the other bits are connected to achieve the above described operation.

An LS109 dual J/K* flip-flop is used to monitor the state of the last read

or write to the data port. An LS51 AND-OR-INV provides the necessary ran

dom logic, along with an inverter, and a tri-state buffer that simulates an O.C.

driver for the INT4* line.

Decoding of the multibus address bus is accomplished with an 8-bit com

parator (AMD 25LS2521). This decodes ADR13H* - ADRBH* so that the signal

BA* (base address) is active for any multibus address 80.000H to 80.7FFH. (As

mentioned in the section on "alternate designs", another 8-bit comparator

could be used to further decode the address of the board.) BA* then enables

a 3-to-8 decoder (LS163), which has the multibus signals MRDC*. MWTC* and

15

ADR1* as its inputs. The outputs of this decoder are the four signals DATRD*.

DATWR*. CSRRD*. and CSRWR* for data and control/status word reads and

writes.

The multibus requires a transfer acknowledge signal for its communica

tions protocol. This tri-state signal, XACK*, must be pulled low any time after

data is presented on the bus during a multibus read, and must be off the bus

no later than 65 nS after the MWTC* or MRDC* signals are inactive. If either

MRDC* or MWTC* are active, a "memory access" signal MA* becomes active.

If BA* is also active, indicating a memory access to this address space, then

a "enable XACK*" signal ENX* becomes active. This enables the tri-state

driver of the XACK* signal. ENX* is also fed to a DDL (digital delay line, Bel-

fuse 0447-0050-02) to delay XACK* until the data is actually on the bus on a

multibus read. However, since the ENX* line is not delayed, XACK* will be off

the bus in time.

16

2.5. Installation of Integrated Circuits and Systems

There exist many options available to the user in the connection of I.C.s

or systems to SPUDS. This section will discuss some of the possible interfac

ing schemes.

The most important decision in connecting to SPUDS is the choice of

data and address busses. For most uses, the BAD bus will provide the neces

sary data path, and addressing is rarely needed For example, if a single I.C.

is to be controlled and tested, tri-state data buffers can be connected to the

BAD bus from the I.C., or transceivers can be connected if data flow is in both

directions. The BAD bus requires a significant amount of current drive,

depending on system configuration, so that most NMOS LC.s will not be able

to drive it directly. Once buffers or transceivers are added, a new bus has

been created with less critical current drive demands, and several peri

pherals can share it. Use of the data transmit/receive line DT/R*. data

enable L'ne DEN*, and the BRD* and BWR* lines may be necessary to control

the data flow.

If an address bus is required, use of BA<19,16> and BAD<15,0> is recom

mended. This provides 20 bits of addressing, valid during t.l of the CPU's

cycle. If additional RAM is needed for the '186, short of replacing the 64k x 1

DRAM chips with 256k x 1 versions, the MA bus may be used in conjunction

with MCS1.2, or 3*. The LA bus provides latched addresses available through

the entire CPU cycle, making it very useful for conditioning the peripheral

chip select lines. The ALE line allows latching of the address information

from the BAD bus during t.l. Using the BHE* may also be necessary, if dis

tinction between high and low bytes is necessary (or whenever access to

words at odd addresses is needed).

17

Using 6, 8, or 10 bit latches, driven from the BAD bus, can provide neces

sary control of the devices. Different modes of testing or operation could

then be established until the next write to the control register.

In the current SPUDS, the PCSO*. BRD* BWR*, and LA<3,1> are used to

create 8 read and 8 write strobes. Two of the read lines and two of the write

lines are used for accessing the multibus data and control/status ports. The

other 12 lines are available for use by peripherals. They can be used to
*

enable tri-state buffers, read FIFOs, clear flip-flops, write data words, set con

trol bits, etc. As an example, it is helpful to understand their use with the

multibus interface.

Currently, only PCSO* and PCS4* are in use. Peripheral chip selects 4, 5,

and 6 are programmed for two wait states to be inserted in every read or

write cycle. PCS<3,0> use zero wait states. This should be considered when

connecting peripherals with different access times to the other peripheral

chip select lines.

If more than two wait states are needed, use of the ARDY and SKCY

ready signals may be in order. Under certain applications, the TEST* and

HOLD lines may be used. The user is referred to the 80188 manuals.

The counter/timer channel 1, both of the DMA request lines, and the

interrupt input lines 2 and 3 are all available for use by the peripherals.

(Interrupt line 1 is also available if operation of the DART chip in an interrupt

mode is not needed.) Initialization and control of these lines is done by

internal accesses to the 80186.

The '186's CLKOUT is fed to a 4-bit counter that provides 5 MHz, 2.5 MHz,

1.25 MHz, and 625 kHz clocks, also available to the user.

18

Resetting the ' 186 will cause the SYSRESET* line to become active. This

can be used by the peripherals to reset the entire system to an initial state.

Since many I.C.s now developed will eventually go into microcomputer-

operated systems, it is to the user's advantage to include a simple micro

computer interface on the chip. This may include large current pad drivers,

tri-state outputs, ready signals or interrupt requests, clock input, reset

input, on-chip FIFOs, and/or on-chip control ports for programmability with

address, chip select, read, and write line inputs. However, the required

interfacing components can be easily implemented with just a few external

chips if it is not desired to include them in the I.C., especially during testing

of initial versions.

As an example, the block diagram of the connection of a speech recogni

tion system to SPUDS is shown in Section 5.4 of the Appendices. Two of

Berkeley's custom integrated circuits are utilized in this system. One is a

16-channel filter-bank chip, and the other is a parallel processing "time-

warp" chip to do dynamic programming.

The filter bank takes its input from digitized speech signals. The result

ing Fourier coefficients are loaded into FIFOs, to be read by the CPU in

response to an interrupt signaL These FIFOs are connected to the BAD bus.

The A/D and FIFOs will be included on the next generation of this filter-bank

chip.

The dynamic programming chip shown requires two banks of RAM for

efficient operation. The T.P. or template dynamic RAM contains 256 kbytes of

memory, connected in a dual-ported fashion with the CPU. Address lines

from the CPU are taken from the BA and BAD busses. The LA bus provides

additional address information needed by the T.P. address control circuitry.

19

The D.P. or dynamic programming memory has 96 kbytes of RAM for use by

the D.P. chip only. Its data bus is shared with another set of FIFOs that are

connected to the BAD bus.

Control signals to this speech recognition system are taken from the 12

available decoded strobes, the CPU's DEN* BWR* RAS*, DT/R* and a 10-bit

latch attached to the BAD bus.

20

2.6. Support Hardware

The '186 can be reset by several different means. If the multibus's INIT*

line becomes active, or if an on-board pushbutton is depressed, the RES* line

to the '186 becomes active. If the board is addressed through the multibus

at any memory address between 80.000H and 80.7FFH and multibus address

bit 6 is active, (as in 80.040H, 80.080H, 80.0B0H, etc.) then the RES* will also

become active. This allows the master computer controlling the multibus (in

this case, the Sun workstation) to selectively reset this board without reset

ting any other multibus boards.

When the '186 is reset by pulling RES* low, it then strobes its RESET out

put line high. This is inverted to become SYSRESET* and is used to reset the

rest of the peripherals on SPUDS. Both the multibus control/status port and

the dual serial I/O chip need this SYSRESET* signal. Other peripherals may

also use it.

Although the 'ISO's AD bus has twice the cui-rsnt di-^/e capacity of the

previous family of B086 chips, because of the nurv.ber and type of devices

transferring data or needing addresses, it is necessary to buffer the bus.

Additional peripherals can then be added to the buffered AD bus (BAD). Two

B-bit transceivers ('LS245) buffer the AD<15,0> to the BAD<15,0> bus, and

one 'LS367 buffers the A<19,16> to become the BA<19,16>.

The ' 186 has an internal programmable chip select unit that strobes an

output line if a selected area of I/O or memory is addressed. However, many

peripherals do not have chip enable or chip select inputs, so that condition

ing of the '186's read and write signals with these peripheral chip select lines

is necessary. Two 3-to-8 decoders (LS138) are used to accomplish this, with

one enabled on BRD* and PCSO* active, and the other with BWR* and PCSO*.

21

The latched address lines LA<3,1> are fed to the A, B, C inputs of the

decoders, so that eight sequential addresses are decoded to become strobes

to the peripheral components. Four of these strobes are used for the mul

tibus interface ports. The other 12 are available for use by other peri

pherals.

CHAFFER 3

FUNCTIONAL CONSIDERATIONS

3.1. Alternative Configurations

Several options of operation of SPUDS are available to the user. Some of

these options can be realized by physically changing the wiring on SPUDS,

and others will require alteration of programs in the RAM or EPROM.

SPUDS was designed to be compatible with the Sun multibus worksta

tion. Therefore, the most significant data byte to the multibus is on

DAT<7,0>, and the least significant byte is on DAT<15,8>, in agreement with

the Motorola 68000 used in the Sun. (This is not in accordance with the mul

tibus specification.) Using SPUDS in a different multibus system means

swapping all wires connecting to multibus pins 67 through 74 with those of

pins 59 through 66.

Interrupting the multibus (in this case, the Sun) is done on the multibus

interrupt request line INT4*. This choice of interrupt is easily changed by

moving the output of the tri-state driver (wired to simulate an O.C. driver) to

another interrupt request pin. However, the multibus specifications list the

INTO* line as having the highest priority and the INT7* line the lowest, while

the Sun's multibus explicitly uses the opposite priority scheme.

The available address space in the Sun workstation's multibus is

between 040.000H and 0C0.000H, depending on system configuration.

Currently, the board is decoded at 080.YXXH, where Y is any address from 0

to 7, and X is any 0 through F. Thus, the "base address" of the board is con-

22

23

sidered as 080.000H, and this can be changed by rewiring the pins on the 8-

bit comparator. The multibus address lines are active-low, so decoding a "0"

in the address space means comparing to a "1" or +5 volts on the compara

tor. The ADR13H* address line is currently wired to the comparator's

active-low enable input line Ein*. so it is being decoded to a "1" in the

address space. Changing the state of any of the "B" inputs of the 8-bit

decoder will change the base address of the board.

The CPU can be reset by addressing any of 080.YWXH, where W is equal

to 4, 5, 6, 7, C, D, E, or F. In other words, setting ADR6* true while being in

the decoded address space will send a reset signal to the '186, which will

reset the entire SPUDS. Rewiring any ADR<AH>* through ADR<2>* in place

of ADR<6>* would work just as well to reset the board at the corresponding

address space. This is not true if another 8-bit address decoder is used, in

which case only ADR<2>* could be used. (ADR<1>* is used to choose

between data and control words.)

SPUDS is designed to be flexible in its capacity for size of EPROMs used.

The twenty-eight pin sockets used can accommodate any EPROMs from the 2

kbyte 2716 to the 32 kbyte 27128. All pin numbers used are for the 28-pin

socket, even for the 24-pin chips. Listed below are the wiring changes neces

sary for each size of EPROM:

EPROM type size Pin 23 Pin 26

+5
+5

+5

LA<13>

2716 2k +5

2732 4k LA<12>

2764 8k LA<12>

27128 16 k LA<12>

24

SPUDS can utilize 256Kxl DRAM chips instead of 64Kxl DRAMs with a

slight change in the multiplexed address generation. This provides 512

kbytes of scratchpad RAM to the *186. The BAD<9,0> lines remain on the 10-

bit latch as wired. BAD<9> is then removed from pin 6 of the other 10-bit

latch, and BAD<17> replaces it. It is then necessary to connect MA<9> from

the 10-bit buffer to pin 1 of the DRAM chips. The MCS* signal is no longer

equal to the '186's MCSO* but must be active if any of MCSO*. MCS1*. MCS2*.

or MCS3* are active. This requires the addition of the equivalent of 3 AND

gates. Any differences in timing requirements of the 256Kxl chips must be

considered carefully, and are most likely resolved by changing the RAS*,

MUX*, and CAS* timing on the digital delay line. The RAM refresh interrupt

service routine would also need modification; adding another 128 NOPs is

probably sufficient, depending on the RAM. (Some RAM manufacturers may

require 512 NOPs to refresh every 4 mS.) It is the programmer's option to

have something useful done in place of a string of NOPs, as long as that rou

tine is done without interruption or waiting.

As mentioned in the section on the 8274 dual serial I/O chip, DMA opera

tion is an option. One or both of the transmit or receive DMA request lines

for either communication channel.

Operation of the 8274 with interrupt acknowledge cycles to jump to

different service routines depending on the interrupting condition requires

connection of the 8274's INTA* input to the '186's INTA1* line.

25

3.2. Alternative Designs

Different applications may require slight modifications to the given

design. For example, if a scratch-pad RAM area of no greater than 128

kbytes is needed, one could replace two of the 24-pin chips with 20-pin chips.

These would be the 10-bit BAD to MA register and the 10-bit LA to MA buffer,

that could be replaced by 8-bit versions. The three AND gates used to create

MCS* could then be removed. Another option is to include additional address

decoding of the multibus. This may be accomplished with another 8-bit com

parator in cascade with the original. PALs may be used to save board area

by replacing random logic gates and the 3-to-8 decoder used on the multibus

read, write, and address lines.

Differences in original SPUDS:

The original SPUDS constructed used a more complicated RS-232 line

receiver than the final version. With a constant effort to conserve board

area, an 8-pin 75141 dual line receiver was used. Two resistors and four

diodes preceded the receivers, functioning as signal limiters for the incom

ing +/- 15 volts. Although the 4-channel MC1489A line receiver is a larger

chip, it is designed to receive RS-232 level signals and thus does not require

discrete components.

26

3.3. Bugs

As Intel developed the 80186 microprocessor, early versions of the chip

were released for development purposes. These chips were not completely

functional, and errata sheets accompanied the chips as documentation. The

"step A-l" version of the ' 186 had a non-functional timer unit and an internal

interrupt controller unit that only worked in non-cascade mode. This means

that the interrupt controller could not be used in the iRMX 86 compatibility

mode. The chip's recommended Vcc limits were 4.0 to 4.8 volts for CPU and

DMA operation.

The step "B-l" version of the '186 resolves some of the problems that the

A-l had, but it has its own errata sheets. The known bugs that may affect the

operation of SPUDS now or in the near future are:

1) DMA registers: Any read of the upper 4 bits of the 20-bit pointer registers

in the integrated DMA controller will yield all zeros. The DMA controller will

continue to operate correctly if these registers are read. This does not

prevent the DMA controller from responding properly with all 20 bits of the

DMA memory location when a DMA cycle is run. The upper 4 bits must still be

programmed with their correct value. The given errata sheet proposes the

following solution: If the content of these upper 4 bits is required, it can be

determined by reading the DMA count register to determine the number of

DMA transfers which have occurred and adding this to the value with which

the register was programmed.

2) Queue status: This problem will only affect users of the 8087 in conjunc

tion with the 80186.

3) Improper interrupt vectoring: This problem will also affect only those

27

users of the 8087.

4)Non-contiguous INTA cycles: When using DMA and the internal interrupt

controller (cascaded, nested, fully nested or RMX86 modes) it is possible to

get a DMA cycle in between the two INTA cycles. Intel proposes a solution: If

it is recognized that an interrupt is coming in, external logic should be used

to block the DMA request lines until after the first INTA cycle has been com

pleted. This will allow the second INTA cycle to run before the DMArequest is

recognized. The user should be positive that interrupts are enabled (STI

instruction), otherwise DMA may never be serviced.

Currently, no INTA cycles are used for operation of any of SPUDS's peri

pherals. However, in the future it may be desirable to use the dual serial I/O

chip in a conditional vectored interrupt mode. At this point, either the above

mentioned additional hardware will have to be added, or purchase of the

"step C" 80186 must be pursued, assuming that this bug will be fixed in that

version.

5) String move instruction: Essentially, if a string move instruction (MOVS,

INS, and OUTS) is fetched but its execution not begun, and a HOLD request is

received, (from the internal DMA controller in our case, since no external

HOLD is currently done) the '186 will not properly begin the string move

instruction after regaining control of the bus. Apparently, this failure will

only occur if the last bus operation performed before the HOLD is ack

nowledged was either a memory or I/O read cycle. The recommended solu

tions to the problem that apply to SPUDS are either to compare the destina

tion string with the source string after a move to insure that proper execu

tion has occurred, or to insert a write cycle or an instruction fetch cycle

immediately before the string instruction. For example the code sequence

28

"pop AX ; rep movs" is replaced by "pop AX ; jmp A ; A: rep movs". Of course,

a simpler solution to the problem would be to just not use the DMA controller

or the string move instructions, if that is possible to do.

CHAPTER 4

CONCLUSIONS

This report has described a powerful and compact evaluation and

development system that affords a wide variety of potential uses. Using

high-level language development tools and providing a flexible digital inter

face to integrated circuits allows sophisticated single-board systems to be

developed. A complete speech recognition system was presented as one

example of the uses of this board. Another board is currently being designed

to perform character (hand-writing) recognition, while a third is planned for

speech synthesizer and/or vocoder integrated circuits. Other boards will be

distributed to various I.C. designers for use as programmable test fixtures.

Used in conjunction with the new generation of "mini-mainframe" user-

configurable host computer workstations, a completely new definition of

"user interface" can be established.

29

CHAPTER 5

DOCUMENTATION / APPENDICES

5.1. Memory and I/O Maps

The upper memory chip select line UCS* is currently mapped at:

UCS*: FFOOO-FFFFFH

Using the 2732 EPROMs will require mapping of UCS* at FEOOO - FFFFFH.
Using the 2764*s will require mapping of UCS* at FCOOO - FFFFFH.
Using the 27128's will require mapping of UCS* at F8000 - FFFFFH.

The middle memory chip select lines MCS<3,0>* are mapped at:

MCSO*: 00000 - 1FFFFH
MCS1*: 20000-3FFFFH
MCS2*: 40000-5FFFFH
MCS3*: 60000-7FFFFH

The lower memory chip select is not used.

The bottom 400H words of memory are reserved for use by
the 80186.

The peripheral chip select lines are mapped as follows:

PCSO*: 000-07FH
PCS1*: 000-07FH
PCS2*: 100-17FH
PCS3*: 100 - 17FH
PCS4*: 200-27FH
PCS5*: 200-27FH
PCS6*: 300-37FH

The upper area of 1/0 space, from FF20 - FFFFH are
reserved for use by the ' 186.

30

Programmable I/O lines of the 80186 are currently used as
follows:

Interrupt lines:

INTO Multibus data transfer interrupt.
INT1 Optional: dual serial I/O channeL
INT2/1NTA0* Available for use by peripherals.
INT3/INTA1* (Future INTA for dual serial I/O channel.)

Counter/timer lines:

TMRO Dual serial I/O baud rate clock generator.
TMR1 Available for use by peripherals.
TMR2 Refresh dynamic RAM through interrupts.

Peripheral chip selects:

PCS0*-PCS3* are initialized to operate with zero wait states.
PCSO* Further decoded with LA<3,1> to provide 8 read and

8 write chip selects.
PCS1* Not used.
PCS2* Not used.
PCS3* Not used.

PCS4*-PCS6* are initialized to operate with two wait states.
PCS4* Dual serial I/O chip. LA<2,1> decoded internal to chip.
PCS5* Not used.
PCS6* Not used.

31

32

5.2. Boot Listing / Initialization Code

This section contains the 80186 assembly code representation of the

current contents of the EPROMs. A thin vertical line "|" has comments to the

right of it. The user is free to make additions to this code by programming

new EPROM chips.

Eproms can be programmed in the electronics support shop, room 140

Cory Hall, or on any other prom programmer connected to the unix system.

In 140 Cory, one must secure the personality module appropriate for the par

ticular eprom chip being programmed, and then attach the unix connection

and switch. With the switch in the "unix" position, login and execute a "blast"

[arg], where arg is the previously compiled and assembled hex code that has

been split into even and odd addresses. "Blast" can be found in /lc/cad/bin.

"Blast" gives all necessary instructions.

| 186 ROM code for 2716 PROMS (2K x 16 bits)

.globl _main

.globl _etext

.globl _edata

.globl jend
•globl _d.ownloa

VAXCSR =0x0204
VAXDATA = 0x0200
CONCSR = 0x0206
DARTIN = 01
REFCNT = 5000

.text

Upon reset, the 80186 sets its UCS* line to 3 wait states and then
does a read at FFFF0H. The first 4 OUTs initialize the '186's
programmable chip select lines.

start:

mov dx,#0xFFA0
mov ax,#0xFF3F
outw

These next 3 instructions are done
in upper memory.
Set chip select registers:
Upper Memory CS is 4k bytes for 2716,
with 3 wait states. (Two waits @8 MHz.)

mov dx,#0xFFA8 | Middle Memory CS is 256K words for RAM,

mov ax,#0xC0BE

outw

mov dx,#0xFFA4
mov ax,#0x003C
outw

mov dx,#0xFFA6
mov ax,#0x01F8
outw

and I/O is I/O Mapped; 7 PCS lines &
Al A2 not latched.

Two wait states for PCS4-6. (One wait
state @ 8MHz CPU operation.)

Peripheral CS is I/O Mapped at 0.
0 wait for PCSO-3.

Offset for Middle Memory CS is 0.
No wait states for Middle Memory CS.

The next three OUTs initialize the '186's internal counter/timer
channel 0, used as a baud rate clock generator.

mov dx,#0xFF52
mov ax,*8
outw

mov dx,#0xFF54
outw

mov dx,#0xFF56
mov ax,#0xC003
outw

Set up timer 0 for 156.25 kHz, 50% duty
cycle. Used for 16 * baud rate.

nop; nop; nop; nop; | wait a while
The following code initializes the Intel 8274 dual
serial I/O chip, or "DART".

mov dx,#VAXCSR | Initialize DART CHIP channel A.
mov al,#0x04
out

mov al,#0x48
out

mov al,#0x01
out

mov al,#0x00
out

mov al,#0x05
out

mov al,#0x28
out

mov al,#0x03
out

mov al,#0x41
out

mov al,#0x02
out

mov al,#0x00 |
out

mov dx,#C0NCSR | Initialize DART CHIP channel B.
mov al,#0x04

| Use xl6 clock, 1.5 stop bits, no parity.

| Disable waits, interrupts disabled.

| Transmit 7 bits/char, enable transmit.

| Receive 7 bits/char, enable receiver.

33

out

mov al,#0x48
out

mov al,#0x01
out

mov al,#0x00
out

mov al,#0x05
out

mov al,#0x28
out

mov al,#0x03
out

mov al,#0x41
out

| Use xl6 clock, 1.5 stop bits, no parity.

Disable waits, interrupts disabled

| Transmit 7 bits/char, enable transmit.

Receive 7 bits/char, enable receiver.

End of DART initialization.

Set up top of stack at top of memory.

| Stack and data -segments start of 0x00400mov ax,#0x040
mov ss.ax

mov ds.ax
mov sp,#0xFFFE
mov ax,#0
mov es.ax

Stack is at top
Extra segment is at 0

This initializes the '186's internal counter/timer channel 2
and internal interrupt controller to serve as a dynamic
RAM refresh machine.

34

mov bx,#0x004C
mov ax,#refjnt
mov es:0(bx),ax
mov ax.cs

mov es:*2(bx),ax
mov dx,#0xFF32
mov ax,#0x0000
outw

mov dx,#0xFF62
mov ax,#REFCNT
outw

mov dx,#0xFF66
mov ax,#0xE000
outw

Set up refresh interrupt vector from timer 2
to jump to PROM refresh routine

Initialize timer 2 interrupt control register
to priority 0, un-masked.

Set up timer 2 to interrupt after counting
5000 internal events (2.5 MHz clock pulses)
thus interrupting every 2 mS to refresh
the DRAM.
Set timer 2 mode word to stop and interrupt
after max count

End of refresh timer/interrupt initialization.

mov ax,ds | copy C data from PROM to RAM
mov es.ax

mov ex,#_£ata-Jiest+1
repz | string move

seg es

movb

sti

call .jnain
jmp start

| use code segment

| start refresh

| call the C Main program.

35

Refresh Interrupt Routine

ref_int:
push dx
push ax

mov dx.#0xFF66
mov ax,#0xE000
outw

Restart counter/timer 2 by writing E000 to
FF66H.

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop
nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop;nop

mov dx,#0xFF22
mov ax,#0x8000
outw

pop ax
pop dx
iret

Write end-of-interrupt to interrupt
controller.

pop and return

Download routine, does not use any RAM except to put downloaded data.

Ijlownloa:
cli
mov dx,#VAXCSR | reprogram channel A for 8 bit data
mov al,#0x05
out

mov al,#0x68 | Transmit 8 bits/char,
out

mov al,#0x03

out

mov

out

sti

srchS:

mov

inw

and

jz
mov

inw

and

cmp

bne

mov

inw

and

jz
mov

inw

and
mov

mov

inw

and

jz
mov

inw

mov

sal
add

mov

mov

mov

mov

dldloop:
mov

dec

or

beq
mov

t4: inw
and

jz
mov

inw

mov

inc
movb

add

br
dlddone:

mov

t2

tl:

t3:

al,#OxCl | Receive 8 bits/char.

| search for S
dx,#VAXCSR

ax,#DARTIN
t2

dx,#VAXDATA

ax,#0x7F
ax,*83
srchS

dx,#VAXCSR | get lsb of length

ax,#DARTIN
tl

dx,#VAXDATA

ax.#255
si,ax
dx,#VAXCSR | get msb of length

ax,#DARTIN
t3

dx,#VAXDATA

cx,*8
ax.cl
si,ax
di,*0
cx,*0
ax,#0x0040
ds.ax

ax,si

si

ax,ax

dlddone

dx,#VAXCSR

ax,#DARTIN
t4

dx,#VAXDATA

bx,di
di
(bx),ax
ex,ax

dldloop

dx,#VAXCSR

clear checksum

download into memory starting at 0x0400

| move in the data

| check if done (len = 0)

| for checksum

36

t5: inw

and

jz
mov

ax,#DARTIN
t5

dx,#VAXDATA
inw

cmpb
jnz
jmpi

ex, ax

start

0,0x0040
if checksum doesn't match then restart

jump to new code at 0x00400

37

at FFFFO put a long jump to FFOOO (code segment is FFOO, address 0)
this is put in by 86makeproms

38

5.3. Signal Descriptions

AD<15,0>
Multiplexed address and data bus from '186.
To DRAM, EPROM, and BAD 8-bit transceivers.
Low current drive bus, not intended for use
by additional peripherals.

BAD<19,0>
Buffered multiplexed address and data bus, from
two 8-bit transceivers from AD<15,0>. To LA bus
latches, DART's data transceiver, multibus
data port, and multibus control/status register.
Transceivers are disabled during read of EPROM or
DRAM. Transceiver direction controlled by BRD*.
High current drive bus, intended for additional
peripherals.

A<19,16>
Address bus from' 186. To 4-bit bus buffer.

BA<19,16>
Buffered address bus from 4-bit bus buffer from
A<19,16>. To MAbus latches. Always enabled.

LA<9,0>

MA<9,1>

BD<7,0>

Latched address bus from one 10-bit latch. To
EPROM, DART, 3-8 address decoders, MA bus buffer,
and low byte enable for DRAM.
Valid while ALE low, and while ALE high and address
valid on BAD bus.

Multiplexed address bus. From 10-bit latch from BAD
bus and 10-bit buffer from LA bus. To DRAM and EPROM.
MA<9,1>=LA<9,1> circa RAS fall; MA<7,2>=BAD<15,10>,
MA<8>=BA<16>, and MA<9>=BA<18> circa CAS fall.
MA<1>=BAD<9> circa CAS fall for 64k x 1 DRAM chips;
MA<1>=BA<17> circa CAS fall for 256k X 1 chips.

Buffered data bus, from 8-bit transceiver from
BAD<7,0>, to DART only. Direction of transceiver
controlled by DT/R* signal, and transceiver
enabled by PCS4* conditioned with DEN*.

ADR<13H,0>*
Multibus address bus, 20 bits wide. (<13H,0> is in
hex.) ADR<13H,BH>* and ADR<1>*to address decoder
consisting of 8-bit comparator and 3-8 decoder.
ADR<6>* to reset decoder.

39

DAT<F,0>
Multibus data bus. To 16-bit data port,
and 6-bit control/status port.

BRD*

BWR*

RAS*

MUX*

MUX

CAS*

WE*

ALE

BHE*

PCSO*

Buffered RD*. Tri-state buffer, always enabled.
To: 3-8 chip decoder; DART's RD*; EPROM's OE*;
in conjunction with BWR*forms RAS*; direction
control of BAD bus transceiver; and in conjunction
with MEM* forms enable control RDMEM to BAD bus
transceiver.

Buffered WR*. Tri-state buffer, always enabled.
To 3-8 chip decoder, DART's WR* DRAM's WE*, and
in conjunction with BRD* forms RAS*.

Row address strobe for DRAM. Active if either
BWR* or BRD* are active. To 16 DRAMs and DDL.

Multiplexer signal, enables high or low address
onto MA bus. When active, MAhas high address,
preparing for CAS* to strobe it in. Delayed
version of RAS*, by 20nS. To output enable
of high address latch/tri-state.

Inverted MUX*. To output enable of low address
tri-state. When active, low address on MA bus,
ready for RAS* to strobe address in.

Column address strobe for DRAM. Delayed version
of RAS*, by 40nS, from DDL

Write enable of DRAMs.

'186 address latch enable. When low, latches
address from BAD in LA and MA bus latches.

•186 byte high enable. With CAS* forms HICAS*
enabling high byte of dynamic RAM memory.

'186 peripheral chip select 0. In conjunction
with LA<3,1> and BRD* or BWR* generates decoded
read and write signals for multibus data port
and multibus control/status port.

PCS4*

LCS*

UCS*

MCS*

'186 peripheral chip select 4. To DART's CS*;
in conjunction with '186 DEN* becomes enable for
DART's data transceiver (DEN4*).

' 186 lower memory chip select. Not used.

'186 upper memory chip select. To EPROM's CE* and
in conjunction with MCS* and BRD* becomes enable
control for BAD bus transceivers.

40

Currently equals '186 MCSO*. When 256k x 1 DRAM chips
available, MCS*=MCS0* x MCS1* x MCS2* x MCS3*.
In conjunction with CAS* becomes MCAS*; in conjunction
with UCS* and BRD* becomes enable control for BAD bus
transceivers.

INTO

INT1

' 186 interrupt input 0. From multibus interface
hardware, indicating that the multibus data port
has been read out or has new data in, depending
on programmable mask bits.

'186 interrupt input 1. From inverted DARTINT*
of DART chip. Programmable to be active on
a certain set of conditions.

INT2/1NTA0*
' 186 interrupt input 2. Available for use
by peripherals.

INT3/INTA1*
' 186 interrupt input 3. Available for use
by peripherals, or can be used as INTA to
DART chip.

MRDC*

Multibus memory read control. To multibus
3 to 8 address/read/write decoder and to
XACK* generation circuit.

MWTC*

Multibus memory write control. To multibus
3 to 8 address/read/write decoder and to
XACK* generation circuit.

BA"

MC

ENX"

HN<

XACK*

Base address of multibus address decoding.
Output of eight-bit comparator, to decode
multibus address bus and enable the

multibus interface. In conjunction with MC*
forms ENX*. Enables 3-to-8 decoder to form
DATRD*. DATWR* CSRRD* and CSRWR*.

Multibus-memory access signal. Active if
either MWTC* or MRDC* are active.

Enable XACK* tri-state signal. Active if
both BA* and MC* are active, indicating
a multibus memory access to the decoded
address space.

Delayed version of ENX*, to drive input
of XACK* tri-state buffer. Delay timing
is chosen so that XACK* falls after data
from data port is on multibus.

Multibus data acknowledge. Tri-state.
Enabled by ENX* driven by XIN*.

DATWR*
Multibus data port write decoded strobe. Active if
BA* and MWTC* and ADRl* active, by a 3-8 decoder.
Strobes CPR line on multibus data port to
write data in from multibus.

DATRD*
Multibus data port read decoded strobe. Active
if BA* and DRl* and ADRl* active, by a 3-8 decoder.
Pulls OEAS* line low on multibus data port
to read word to multibus.

CSRWR*
Multibus control port write decoded strobe.
Active if BA* and MWTC* and ADRl active, by a
3-8 decoder. Strobes clock line on multibus
control/status port to write data from multibus.

CSRRD*
Multibus control port read decoded strobe.
Active if BA* and DRl* and ADRl active, by
a 3-8 decoder. Pulls OE* low on multibus
control/status port to read to multibus.

41

INT4*
Multibus interrupt line 4.
Tri-state buffer, enabled by INT4REQ*.
with input tied low, as an O.C. equivalent.

MBDRD*
Decoded read strobe of I/O port 0004H.
Active if PCSO* and BRD* and LA<1>* and LA<2>
and LA<3>* active. Pulls OEBR* line low on multibus
data port for read of word to *186.

MBDWR*
Decoded write strobe of I/O port 0004H.
Active if PCSO* and BWR* and LA<1>* and LA<2>
and LA<3>* active. Strobes CPR line of multibus
data port for write of word from '186.

MBCRD*
Decoded read strobe of I/O port 0006H.
Active if PCSO* and BRD* and LA<1> and LA<2>
and LA<3>* active. Pulls OE* line low on multibus
control/status port for read of data to '186.

MBCWR*
Decoded write strobe of I/O port 0006H.
Active if PCSO* and BWR* and LA<1> and LA<2>
and LA<3>* active. Strobes clock line of multibus
control/status port for write of data from' 186.

RES'

RESET

Reset signal to ' 186. If on-board push-button
is pressed, or if multibus INIT* line becomes
active, or if BA* and ADR6* are active, then
RES* is active.

Active high reset signal from ' 186. To
inverter to create SYSRESET*.

SYSRESET*
Active low reset from inverter from RESET.
To DART, and multibus control/status port.

RD*

WR*

CLKOUT

' 186 read signal. To tri-state buffer.

' 186 write signal To tri-state buffer.

From '186. Input clock's or crystal's
frequency divided by 2. Currently equals
10 MHz. To 4-bit counter.

42

DARTCK
From 4-bit counter, that divides CLKOUT
by 2, 4, 8, or 16 continuously on 4 output
pins. The resulting 2.5 MHz clock is fed
to the DART. Other taps available for
peripherals.

TMROIN
'186 internal counter/timer unit's timer 0 input.
Tied high, this timer used as a baud rate generator.

TMROOUT
Output of '186's timer 0. Used as a baud rate
clock for DART.

TMR1IN
'186 internal counter/timer unit's timer 1 input.
Available for use by peripherals.

TMR10UT
Output of '186's timer 1. Available for use by
peripherals.

NMI
' 186 non-maskable interrupt input. Tied low, not used.

HOLD
' 186 hold input. Tied low, not used.

HLDA
'186 hold acknowledge output. Not used.

TEST*
' 186 test input. Tied low, not used.

SRDY
' 186 synchronous ready input. Tied low, not used.

ARDY
' 186 asynchronous ready input. Tied high, not used.

LOCK
*186 lock input. Tied low, not used.

S0*-S2*
' 186 status outputs. Not used.

43

9
5 ~
>

X

SOIBC

/\

V

' CA

^tt-©de.

Q

D

V
IE

vv

ep^on

Q>#m&\ L»»*L5

A&.

BAu

l*

r^A

I

i_i

DPsMn
Control

en

I

7

P6-Z^ T/O

*?i IN
SO
U? X.

Scratchpad Template Dynamic Pre-arap.

EPROM
Dynamic RAH Dynamic RAM Programming Analog

4-32 128 - 512 kbytes 256 kbytes DRAM Filters

kbytes A/D

Dynamic

Programming

Chip

Intel

80186

Dual

RS-232

FIFOs, Transceivers, Address Latches
Filter Bank

I/O
Chip and

FIFOs

Multibus iiiterface.

'""""'" '•* ""'V 'tMllt.lf.. i ,<ri^H,[i. ,i»ij ^>n.J^-..» a.. .•-•,/.. aJI -t^rfr-fi i4 •*&•, ***>•»—*.i***m,i.mf.+ m*a*£ji UutMwa

«"C
SROV-

AROT-

TBT-

HOLD-

HLOA*

«-

cuout vcc otto

flh 11

MTvsnn

nrraffnXB

execution unit;

ft ft

PROGRAMMABLE
INTERRUPT

CONTROLLER

11
internal sus

H

l*OIT
SEGMENT

REGISTERS

V
AIM*.
AltrSS

II

ca

Ml 1[1I(H
' LOCK f RO ADS- All

OT* 6MEVt7 AOIS A1 V

TIM OUT 1 TMROUTO

TURIN i TURIN i
0

fcb±

NT |s\V

CONTROL REGISTERS

J)

LX> 2MIT
DESTINATION

POINTERS

V
fas-*

RCWA3

#CSkA1

x^m- e>o\e>&

8DHEM

ucs»

KCS*

BSD*

BRD* .

PCSO*

LA<3>-

U<2>-

UO>

♦5

SUB*

AO<11>.

AD<3> .

AO<10>,

A0<2> .

AD<9> .

A0<1>

AD<8> '

AD<0> "

AO<15>

Ati<7> •

AD<1«»>

Ai><6> '

Ai)<13>"

A0<5> '

AD<12>

AO<4>

5.5. Schematics

2.

U2A*

U2B*

C

B

A

G1

A

B

C

G2B* 2

U2A*

A1

A2

A3

A4

A5

A6

A7

00

xo*

in*

Y2*

«*

Y«*

«•

X6*

n*

0

X2*

CO

**•

xs*

X6*

X7*

in

CM

3

tS

il.

12.

lO

D*

JaS.

D^
/s

JZ

Oift-
Oi

ir

UL

LLl.

\s

w

ii

12.

Att DIB G* B8

I'M

»^l

A1 BIB li* B1

A2

A3

At

A5

A6

A7

AB

in

CM

82

B3

B4

B5

B6

B7

B8

IS

I?

IU

i-L
i*<

13

12.

If

HBDBD*

KBCBD*

teowa*

HBCWH*

BABOO

BA0<3>

.BAU<10>

BAD<2>

BA0<9>

BAD<1>

BAD<8>

BAD<0>

BA0<15>

BA0<7>

.BAD<14>

BA1)<6>

8A0O3>

BA0<5>

BA1)<12>

BA0<4>

A<ly>

AOo>

A<17>

A<16>

%

a 1A IX

24 sn *

3A 3 3X
4A ^ 4X

01*

a

1 5

u 7-

10 ^

BA<19>

BA<18>

BA<17>

BA<16>

PEEPED -=sTS.<?££.^>

i i i i i i
2 3 1! _. -• -i <0

v v v
sec

Ia) lA Si »1 JO -t

Co -J -* to U»

AMD 29841

3 »o> m

0 fi T

Sec

-• U) Ul

*» e
M

r?

g B iiiiilii
aoaftaafta
vvvvvvvv

K

r

O

V

K

r
>

A

l^i t^ -+i j? -

AMD 29841

H •V.

o vl

r r

y >

A- /v

-4i «r

V V

r- »a

MkU-u-s^-tr-^

AMD 29827

-. UJ Ul

~ii -U

s * * * ?£ 3 ft 3 &
J? v v v v

£ ft 2

r >

6 6 B B o B
S £ ft £ £ 6
V V V V V V

~ M l«J U\

o p

6 £
4 2

%d

28-pin EPROM socket

> 5

<* rH c ^ U N

7 .

* c

*)J

.1. "
o rrt

o

>

>•>

nfl

Ul

r

u

♦

B B B S 6 S
/\ /^ A >V /S ^
CB VO •* -• "* «•*
V V O -* M U»

V V V V

g £ = i3 w r •«

n r>i

6 B

28-pin EPROM socket

"\ IP

> > > > >
*C _• .. m+ —•
" O - w «•

v»

T"

$_l
64k x 1 . s
ORAM 2 3

HM4864P-2

<W>3r<^Ot<lft-~5.K|Vl

th

MICAS*

KZS

V

f*\

\-/

•W£*

RAS*

HA<9>
•MA<8>

MA<7>
HA<6>

MA<5>
MA<4>

HA<3>
MA<2>

HAO>

LOCAS*

DYNiAvMC RAM

DEN*

PCS4*

BA0<7>

BA0<6>

BA0<5>

BA0<4>

BA0<3>

BA0<2>

BA0<1>

BAO<0>

DT/H*

BAUDCK

OARTCK

SXSBESET*

DABTIHT* _

♦5

U<2> —

UO> —

PCS** —

BRD* —

BKB* "—

•k:

•c

%LS2>1 VA

%

DEM*»*

v^

a
A1 G*

A2

A3

A4

A5

A6

A7

•AS OIB

in

CM

3

(coH.ita''»u -\oiWTM* Qfr"^

apQ>

n ^<^ LL
\C ftO<<> H

l£ frXfl) LL
>H G>0<3> 16

<S ?3ft<2> IT

»Z ftP<\> 15

11 G> &<<=>> 1^

•*&£

a,s

0B7

0B6

DB5

0B4

DB3

0B2

OBI

OBO

TxCA

RxCB

TzCB

RxCB

CLiC

CDA*

COB*

CTSB*

HTSB*

RUXB/TxDHQA

OTRB*
IPI/RxOHQd

IPO/TxORQB

OTKA*

ROXA/KxiMgA

SXNUETA*

HTSA*

CTSA*

Intel 8274

&C
,2L

RESET*

INT*

INTA*

A1

AO

a*L

25-

J^

xz

ai

C CS'

a* 'A

tY

75150

XI

WR*

TxOB -xDA RxOB RxOA

3? 2H

Out A G

G

MC1489A

A

In

2J*

2A.

20. ^
s»

3X

AL

2>% ^7
23.

^7

fe^P to 6D TSAtJSCelVEP.

ADH1*

-•] MWTC*

ADR13H [34]

ADR12H [32]

ADR11H [30]

ADR10H [28]

ADHFH [44]

ADREH [431

ADRDH [46]

ADRCH [45]

ADRBH [48]

MuL.T\eu-b

[60] DATF

[5V] DATE

[62] OATD

[61] OATC

[64] DATB

[63] DATA

[66] DAT9

[65] DAT8

Pata ffepgrf

W

1*

SAt>^>

f*AC<" >

G^L^2>

^<A. 10

x;

VfcLSSI VcLSSI

\113
10 1

•+5

U O

11 >H 13

^0

ia» i^a qt

C^ <

\~L IX U_

• + 5

13

\S

u

O 0 n.

/bLS5l
s^«D

o ^Oh

1 >'\

D "-f D-

*.<
>"

-Lq<-uk t

o

3, <
< q

-IClC'-R C

lo

6. <

1 6 v3* 10 »0

-i-C<^ 0

INT4HEQ*

C>£

OATS' ZuSj

C£Rtu

QfVr *& *-

OAT 0 U2"]

CAT 1 U 0

C^Tli "LtH"]

CAT fv C^.3.1

MjJUfl&O^ ^ot4TT&Ou/^TA"TU-b P<?fT

(•= {^.6t.^ '<, y •. &r.f* -VJ.J.'.
r->

•s r^VC^* " ^»» -•>* -•:«*'"'iW

^L&C*S

LA<P>> «

SvESET.

W>*-<

W&.*

+ S

DMmWTifc

lACbtf*

ttCii*

r\cs>z*

M C5I*

iO,»£.

DDL

IN

'•'^7.TV^

7^2- MCAiJc

c

12

r^vjx

11 U^bO-^ M.JX

1/ , *-..

vuusix Kji

• FAS*

• UOC/\S» M-

A^O^/

t2^hlOOM U2&IC

t.l t.2

5.6. Timing Diagrams

EPROM READ CYCLE

t.3 t.w

t.CLCSV: Chip select active delay 66 max.
t.CLRL: RD* active delay 10-70
t.BDHL: Tri-state, hi-lo 7-I*
t.AND: AND gate IO-10
t.0DL20: DDL 20 nS tap ZO-1H
t.SWP: 10-bit latch tri-state en. ta- I?

t.CE. Access time from CE* ZSO avM1-

t.<?& Access time from OE* 1 ZO *>A*

t.ACC Access time from address B,S"0 *">**

t.CUCSX Chip select inactive delay 10-35
t.CLRH RD* inactive delay 10-55
t.BDLH Tri-state, lo-hi 'A - 15"

t.CfF Data off delay o- too

Meets M86 data set up and hold times.

UFT-UlE'Wcort

t.LTCH:

t.BUF:

t.CLRL:

t.BDHL:

t.AND:

t.DDL20;

t.DDL40:

t.StfP:

t.RASrf:

t.RAC:

t.CLHH:

t.QFF:

t.l

DRAM READ CYCLE

t.2 t.3 t.4

Data out delay, LE=hi (*_'2>
Data out delay, 0E*slo 5-\[
RD* active delay 10-70
Tri-state, hi-lo ?-|*
AND gate LO-2.0
DDL 20 nS tap ^d-H
DDL 40 nS tap H0^lLl
10-bit latch tri-state en.
RAS* pulse width =
CAS* pulse width = t.RLRH = 150 min

Access time from RAS* 150 max
RD* inactive delay 10-55
Output buffer turn off 0-40

Meets all DRAM specs.

t .RASW2:

t.CVCTV:

t.BDHL:

t.WRC:

t.CLDV

DRAH WRITE CYCUu. See DRAM READ CYCLE TIMING also.

t.1 t.2 t.3 t.4

RAS* width s CAS* width

WE* width s t.WLWH =
Control active delay 1
Tri-state, hi-lo
t.AND + t.DDLUO
Data valid delay

160 min

10-70

10-44

Meets DRAM data set up time. Meets write command set up time,

MULTIBUS DATA PORT READ CYCLE.

t.1 t.2 t.3 t.4

t.CLHL:

t.BDHL:

t.DECOL:

t.HXOE:
t.BADX:

t.CLRH:

t.BDLH:

t.DECOH:

t.HXEO:

t.BADY:

RD* active delay
Tri-state, hi-lo
3-8 decoder, hi-lo
OE* to data, AMD2953
BAD bus xcvr delay

RD* inactive delay
Tri-state, lo-hi
3-8 decoder, lo-hi
Data float, AMD2953
BAD bus xcvr float

Meets '186 data set up and hold times.
Meets M86 data float before next address

10-55

10 -ZS

CS

WR*

BWR*

RAS*

MUX*

CAS*

MA(n) J.

t.CVCTV:
t.BDHL:

t.DECOL:

t.CVCTX:

t.BDLH:

t.DECOH:

t.CLDOX:

t.BADY:

MULTIBUS DATA PORT WRITE CYCLE.

t.l t.2 t.3

X
•C..CVCTX

t-dYCTV sc

t>BPHi.f'ti
\

X
X

X
qscol.

Control active delay 1
Tri-state, hi-lo
3-8 decoder, hi-lo

Control inactive delay
Tri-state, lo-hi
3-8 decoder, lo-hi
Data hold time

BAD bus buffer float

Meets data set up and hold times for AMD 2953*

t.4

X

A

-t-e>0i--»

/

/

'|t7p£<

10-70
?•> IT

10-55

12-13"

10 min.

fO-2_S"

:<?H

MULTIBUS CONTROL / STATUS REGISTER READ CYCLE,

t.l t.2 t.3 t.4

CLKOUT^ ' '

t.CLRL:

t.BDHL:

t.DECOL:

t.HXOE:

t.BADX:

t.CLRH:

t.BDLH:

t.DECOH:

t.HXEO:

t.BADY:

RD* active delay
Tri-state, hi-lo
3-8 decoder, hi-lo
OE* to data, L3367
BAD bus xcvr delay

RD* inactive delay
Tri-state, lo-hi
3-8 decoder, lo-hi
Data float, LS367
BAD bus xcvr float

Meets »186 data set up and hold times.
Meets '186 data float before next address.

10-•70

Ir -If
-2.1 --32

3>5 -tO

tX -IT

10-55

°l-- 15

\z -/S
30 -3S*

10- z$

DEN*

Pcs4>*

WR*

BWR*

RAS*

MUX*

CAS*

MA(n)

WtoOAZ*

t.CVCTV:

t.BDHL:

t.DECOL:

t.CVCTX:

t.BDLH:

t.DECOH:

t.CLDOX:

t.BADY:

MULTIBUS CONTROL / STATUS REGISTER WRITE CYCLE.

t.1 t.2 t.3 t.4

X
X

N^
t.CVCTX

tcvc*v

frPHU

V

X
X

X

t.K^JL

Control active delay 1
Tri-state, hi-lo
3-8 decoder, hi-lo

Control inactive delay
Tri-state, lo-hi
3-8 decoder, lo-hi
Data hold time

BAD bus buffer float

-fc.&Pl-H

a
A

A

A
y

pec <?k

10-70

10-55

10 rain,

10-2LS"

Meets data set-up and hold times for LS174.

6At?Y

DART READ CYCLE.

t.2 t.3 t.w

t.CVCTV: Control active delay 1 10-70
t.ORL: OR gate, hi-lo \H-XX
t.RLRH: BRD* width 250 min.
t.CLRL: RD* active delay 10-70
t.BDHL: Tri-state, hi-lo 7-)S
t.RD: RD* lo to data out delay 200 max.
t.BDX: BD bus xcvr data delay \X- \s
t.BADX: BAD bus xcvr data delay IZ-\S

t.CLRH: RD* inactive delay 10-55
t.BDLH: Tri-state, lo-hi °1-I5
t.DF: Output float delay I20 «^ax

t.CVCTX: Control inactive delay 10-55
t.ORH: OR gate, lo-hi IH-7.2.
t.BDY: BD bus xcvr data float 10-25
t.BADY: BAD bus xcvr float 10-25

Meets data set up and hold times for '186.
Meets '186 data float before next address.

t.CVCTV:

t.ORL:

t.BDEN:

t.CLDV:

t.BADX:

t.BDX:

t.WLWH:

t.CVCTX:

t.BDLH:

t.ORH:

t.BDY:

DART WRITE CYCLE.

t.3 t.w

Control active delay 10-70

OR gate, hi-lo IH-20.

BD bus xcvr enable I 5- -2>0

Data valid delay 10-44

BAD bus xcvr data delay 12,-1*

BD bus xcvr data delay 12- VS

WR* pulse width 260 coin.

Control inactive 10-55

Tri-state, lo-hi ^-15
OR gate, lo-hi IM -xx

BD bus xcvr data float \0-2S

Meets data set up and hold times for 8274 DART chip.

*u<;

j.*

5-ODW?N^

t.A3

t.COMP:

t.AS:

t.AND:

t.OR:

t.DDL20:

t.XEN:

t.XIO:

t.DECOL:

t.DATEN:

t.XCD:

t.AH:

t.XDIS:

t.DECOH:

t.DATDIS:

READ OF DATA OR CSR FROM MULTIBUS

-t.X-CD

N^_ t.Abip

"t».i 2&N*=

y %
X

<
TdatsF

8-bit address comp. ^-(S
Address set up time 50 min.
AND gate 10--2O
NOR - INV gates 10-30
DDL, 20nS tap 2 0-2-1
Enable XACK tri-state \.s-~2s-
XACK tri-state hi-lo \x~ 11
3-to-8 decoder, hi-lo -2/?-3ei
Data tri-state enable 2"?***.
XACK to command delay 20 min.
Address hold time 50 min.

XACK tri-state disable 20 j*yx,
3-to-8 decoder, lo-hi 13-27
Data tri-state float 22m,io.

*4 t.AH

z>

X

/^—-t. Cc^^H

3
«:—t.DATDli

WRITE OF DATA OR CSR FROM MULTIBUS

>ATtf£
<

^"f ^

09Mf^&A*~

t.A^t.P*? N^ -t.xco

or

6^WZ-*

t.COMP:

t.AS:

t.DS:

t.AND:

t.OR:

t.DDL20:

t.XEN:

t.XIO:

t.DECOL:

t.XCD:

t.AH:

t.DHW:

t.XDIS:

t.DECOH:

t.A^O V^=L

-i+ot. Nt

L2? ^1•£.! >DL2x?

-t.>eFr^ 'I!N
t,x\o

t-oecoL*

8-bit address comp. 1-fS"
Address set up time 50 min.
Write data set up time 50 min.
AND gate 10 -2 o
NOR - INV gates 20-30
DDL, 20nS tap XO-XH
Enable XACK tri-state >*•-•* s"
XACK tri-state hi-lo \x- IS
3-to-8 decoder, hi-lo ^^--l°[
XACK to command delay 20 min.
Address hold time 50 min.
Write data hold time 50 min.
XACK tri-state disable io^ax
3-to-8 decoder, lo-hi 13-2?-

-d -t.AH

>
-t-QHul

>

X

^
-t.AviO

^

-tx>ga>H

_X~

*=

5.7. Parts List

1) Intel 80186

1) Intel 8274 DART

2) generic 2716 - 27128 EPROM, -200 pref.

16) Hitachi HM4864P-2 DRAM

2) AMD 2953(A) inverting bi-port

2) AMD 29841 10-bit latch

1) AMD 29827 10-bit buffer

1) AMD 25LS2521 8-bit comp.

2) Belfuse 0447-0050-02

1) Tl 75150 dual line driver

1) 20 MHz crystal, HC-18U.

1) MC1489A, quad RS-232 rcvr.

3) 'LS245, 8-bit xcvr

1) 'LS125, quad tri-st.

1) "LS02, quad nor

1) 'LS04, hex inv

2) 'LS08, quad and

1) 'LS32, quad or

1) 'LS51, and-nor

3) 'LS138, 3-8 decoder

1)'LS109, dualJ/K*

1) 'LS163, 4-bit counter

2)'LS174, 6-bit latch

3) 'LS367, 6-bit buffer

	Copyright notice 1984
	ERL-84-4

