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ABSTRACT

Empirical models for MOS transistors have been investigated
in this project. The work has resulted in two models, one
based upon a 2-dimensional table and several 1-dimensional
functions, and one based upon 1-dimensional functions only.
The dimensionality refers to the number of independent
variables present.

The 1-dimensional functions are cubic spline fitting func
tions, which are continuous and differentiable. Interpolation
techniques which are computationally efficient and which
have physical significance are used for the 2-dimensional
table. The interpolating functions and/or the spline func
tions are used to compute well-behaved partial derivatives
of the MOSFET drain current with respect to its node-pair
voltages. Proper behavior of the partial derivatives is neces
sary to insure simulator convergence.

The empirical models have been installed in the SPICE2 cir
cuit simulation program. The models are 2-4 times faster to
evaluate than analytical models of comparable accuracy,
with very low requisite storage compared to other empirical
modeling schemes.



ACKNOWLEDGEMENTS

The author would like to thank his advisors, Professor D.O. Pederson and

Professor A.R. Newton, for their support and guidance throughout the course

of this project. The author especially values being granted the freedom to

pursue this research in the directions of his choosing.

Numerous discussions with A. Vladimirescu are greatly appreciated, as

are the help and encouragement of the author's fellow students in the Berke

ley CAD group.

The author is grateful to Professor J. Choma and Professor N.C. Luh-

mann for interesting him in continuing his education at Berkeley.

The author thanks his friends and family for their support and

encouragement, and Kris and Nicky for providing avery pleasantdistraction.

The financial support of the MICRO project of the University of California,

linkabit Corp., SeeQ Technology Inc., and the Semiconductor Research Cor

poration are acknowledged.



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: MODELING NONLINEAR DEVICES FOR CIRCUIT SIMULATION... 5

2.1 Introduction 5

2.2 Nonlinear Devices and Simulation 5

2.2.1 Methodology of Simulation 5

2.2.2 Performance of Simulators 7

2.2.3 Linearization of Circuit Equations B

2.2.4 Convergence of Newton-Raphson 10

2.3 MOSFET Physics of Operation 10

2.3.1 Structure and Operation. 11

2.3.2 Output Characteristics 13

2.4 MOSFET Representation for Simulation 16

CHAPTERS: MOSFET MODELING METHODS 19

3.1 Introduction 19

3.2 Analytical Models 20

3.3 Empirical Models and their Advantages 21

3.4 Empirical Model Basics 24

3.4.1 Table Look-Up Models 25

3.4.2 Function-Fit Models 27

3.5 Basics of This Approach to Empirical Modeling 27

CHAPTER 4: TWO-DIMENSIONAL EMPIRICAL MODEL 30

4.1 Introduction 30

4.2 Model Description 30

4.3 Current Calculation 34

i



ii

4.3.1 Case 1: Simple Linear 34

4.3.2 Case 2: Out-of-Bounds Linear 36

4.3.3 Case 3: Saturation 39

4.4 Continuity Considerations 40

4.4.1 linear Region 40

4.4.2 Out-of-Bounds linear and Linear-Saturation Transition 43

4.4.3 Case 3: Saturation Region 44

CHAPTER 5: ONE-DDflENSIONAL EMPIRICAL MODEL 45

5.1 Introduction 45

5.2 Model Description 46

5.2.1 Origin-Shifting Transformation r. 46

5.2.2 Extensions 50

5.2.3 Revised Model 60

5.3 Current and Conductance Calculations 51

5.3.1 Normalization 52

5.3.2 Drain Current 52

5.3.3 Partial Derviatives 54

5.4 Continuity Considerations 55

CHAPTER 6: RESULTS 57

6.1 Introduction 57

6.2Accuracy ^7

6.2.1 Two-Dimensional Model 57

6.2.2 One-Dimensional Model 6i

6.3 Speed ofEvaluation 61

6.3.1 Present Versions of the EmpiricalModels 61

6.3.2 Simplified Empirical Models 63

6.3.3 SPICE2 Simulation Times 64



Ill

6.4 Conclusions 85

6.5 Future Work 66

APPENDIX 1: DATA SET GENERATION 68

REFERENCES. 72



CHAPTER 1

INTRODUCTION

The majority of integrated circuits (ICs) are composed entirely, or

nearly so, of transistors. The utility of computer simulation as a tool for aid

ing in the design of ICs therefore depends on the models used to represent

the transistors. In particular, the accuracy and computational efficiency of

the models directly affect the corresponding accuracy and speed of the

simulation.

This report presents two empirical metal-oxide-semiconductor field-

effect transistor (MOSFET) models for use in circuit simulation programs.

The models are semi-physical models, meaning that they are constructed in

a manner that exploits the physics of the MOS device.

Like all circuit simulator models, empirical models are passed a set of

voltages from the simulation program which specifies the operating point of

the device. From these voltage inputs, the model subroutine returns the ele

ment values for an appropriate incremental MOSFET circuit model. Some

empirical models store the necessary information in tables, and are called

table look-up models. Other empirical models consist of numerical functions

that are used to curve-fit the data, and are called function-fit models. Two

empirical models are described in this report. One develops the element

values from a data set which is stored partially in a table and partially in

fitting functions, whereas the other is a function-fit model.

Most semiconductor device models comprise one or more nonlinear

equations derived from physical principles, and are called analytical models.



A second class of device models consists of models which analytically

represent the first-order behavior, but account for higher-order effects

through the introduction of empirical parameters. These models are usually

referred to as semi-empirical models, an example of which is the SPICE2

LEVEL-3 MOSFET model [l]. Modern MOSFETs display the effects of many

complicated physical phenomena. Thus, accurate analytical and semi-

empirical models typically consist of several complicated nonlinear equa

tions characterized by many physical parameters or empirical parameters

or both. Finding values for the parameters is often a difficult problem. The

physical parameters frequently must be used in a curve-fitting fashion

because of the approximations used in the derivation of the model equations.

Also, each parameter value must contain a large amount of compressed

information.

There are other problems associated with analytical and semi-empirical

models, although the problems are potentially less severe for semi-empirical

models.1 For example, these models must be regularly revised to account for

process changes and changes in the technology. Because the evolution of a

technology precedes its understanding in device-physics terms, the resulting

analytical models are seldom optimal in their fitting ability. Also, good-

quality analyticalmodels are often expensive to evaluate.

Empirical models have several potential advantages. The data set can

be made very general and need not contain any process or technology-

dependent parameters. As a result, empirical models donot need revision as

the process and/or technology evolves. The data set is large relative to an

analytical model's parameter set. This implies that the data set is easier to

*For the remainder ofthischapter the termanalytical refers to semi-empirical aswell.



determine than a parameter set. due to the lesser degree of information

compression. The large data set also makes the overall fit of an empirical

model insensitive to local errors in the data set. An error in a single parame

ter value of an analytical model can strongly degrade the overall fit. Empiri

cal models can be made arbitrarily accurate via increasing the size of the

data set. Empirical models are often faster to evaluate than equivalent

analytical models.

The two empirical models which appear in Chapters 4 and 5 of this

report differ from one another in terms ofstorage dimensionality. The data

set of the two-dimensional (2-d) empirical model is partially contained in a

table whose entries are referenced by two independent node-pair voltages,

with the remainder contained in functions referenced by one independent

node-pair voltage. The one-dimensional (l-d) empirical model's data set is

stored in a collection of functions that depend only on a single node-pair vol

tage. The significance of the storage dimensionality can be appreciated by

noting that each element in a MOSFET circuit model is generally a function of

three independent node-pair voltages. Aquantity specified by three indepen

dent variables needs a storage allocation proportional to n3 for n points per

dimension. Quantities which depend on one or two independent variables

require storage allocationsproportionalto n or n2, respectively.

The empirical models of this research possess an advantage in computa

tional efficiency over accurate analytical models, by a factor of about two for

the 2-d model, and by a factor of about four for the l-d model. The ease of

fitting these two empirical models to /-V data is demonstrated also.



This report is organized as follows: in Chapter 2, the problem of non

linear device modeling for circuit simulation is addressed, and a description

of the MOS transistor is given. The basics of MOSFET modeling, via analytical

models and via empirical models, is covered in Chapter 3. The two empirical

models which are the subject of this research are presented in Chapters 4

and 5. The report concludes with Chapter 6, containing results.



CHAPTER 2

MODELING NONLINEAR DEVICES FOR CIRCUIT SIMULATION

2.1. INTRODUCTION

Circuits containing nonlinear elements, such as MOSFETs, are described

by systems of nonlinear algebraic equations for DC analysis, and by systems

of nonlinear differential equations for transient analysis. Circuit simulation

programs approximate the solution of the nonlinear equations by a succes

sion of solutions of a linearized system of equations generated from the ori

ginal nonlinear system. The nonlinear devices are modeled in the associated

linear equation representation of the circuit by incremental linear models

called companion models [2]. The values of the elements which comprise the

MOSFET companion model are generated by the empirical models described

in this report.

In this chapter, the usual technique used in the linearization of the cir

cuit equations is presented. The physical behavior of MOSFETs is described,

illustrating the nonlinear behavior these elements display. The MOSFET com

panion model is then derived.

2.2. NONLINEAR DEVICES AND SIMULATION

2.2.1. Methodology of Simulation Circuit simulation programs perform

the time-domain transient analysis of electronic circuits by the sequence of

steps illustrated in Figure 2.1 [3]. For this research, the segment of Fig. 2.1

which is important is the box labeled "Linearize Semiconductor Devices
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About Trial". The linearization corresponds to developing a linear incremen

tal circuit model for each nonlinear element at its respective operating

point.

A significant consideration in model development is insuring that the

overall properties of the circuit simulation program are not adversely

affected by the new model. In particular, a model is not acceptable if it does

not preserve the convergence properties of the simulation program. The

specific requirements for convergence of the linearization algorithm used in

most circuit simulation programs are described later in this chapter. Test

ing to date shows that the two empirical models presented in this report

meet the requirement that the convergence properties of the simulator are

not degraded,

2.2.2. Performance of Simulators The time required for a circuit simula

tion is significant, especially for large circuits. Practical cases include cir

cuits of up to several thousand nonlinear devices, which require cpu times on

the order of hours or even days. The role of modeling nonlinear elements

with respect to the time needed to perform a simulation is thus important.

The cpu time spent on a circuit simulation can be broken into two com

ponents: the per-iteration time required for one device model evaluation

(td), and the time required for one linear equation solution (t9). One way of

writing the total time in terms of these two characteristic times is [4]

T - ^ifarffd + n^t9) + overhead,

where n^, n^, and n9 are the number of iterations, devices, and equations,

respectively. In this context, t^ is the term of concern.

The fraction of T taken by model evaluation varies with the simulator,

the computer, and the size of the circuit. In small to medium-sized circuits
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where accurate analytical or semi-empirical MOSFET models are used, well

over half of T is consumed by evaluation of the model equations. For exam

ple, a low-pass filter circuit with 70 MOSFETs has been analyzed on the Cray 1

computer with the circuit simulation program SPICE2 [4]. The model used

for the transistors is the LEVEL-3 [5] semi-empirical model built into the pro

gram. The LEVEL-3 model is the more efficient of the two accurate models in

SPICE2 [l]. The time needed for model evaluation accounts for over 73% of T

in this example [4].

A goal of this project has been to develop MOSFET models which have

improved td over equivalent analytical or semi-empirical models. This goal

has been achieved; the 2-d model is about two times faster to evaluate than a

good analytical model, whereas the l-d model is about four times faster.

2.2.3. linearization of Circuit Equations The Newton-Raphson (NR) algo

rithm is the method used in virtually all circuit simulation programs to per

form the linearization of the nonlinear circuit equations. The NR method is

used because of its advantage in rate of convergence over other linearization

methods, and because the factors which tend to lead to nonconvergence of

the NR algorithm can be eliminated without any disadvantages as compared

to other methods [3].

The NR algorithm is actually the result of approximating a nonlinear

function by a truncated Taylor series [6]. In one variable the problem to be

solved is

/(*) = 0, (2-1)
where f(x) is a nonlinear function and x is a variable. At the solution the

value for a: is a root of Eq.(2.1). For an x close to the solution, say x0, the

Taylor series expansion about x0 is



/(*) =fM +<* -*o)/'00 +(* 8f) />o) + (2.2)

Equation (2.2) can be truncated above the linear term and substituted into

Eq.(2.1) to yield

0 = /(x0) + (x#-x0)/'(x0),
which can be rewritten as

x =X°-7M- m
Here, x* is an approximation to the solution of Eq.(2.1). If x0 is identified as

the j01 estimate of the solution, Eq.(2.3) becomes

tH • <2-4)/ (*i)

Equation (2.4) is Newton's method for a function of only one variable.

Convergence of Eq.(2.4) is obtained when xj+l agrees with xi within a

specified tolerance. For n equations in n unknowns, Eq.(2.4) is readily gen

eralized to form the Newton-Raphson method [7]:

*i+i = */ "

(2-5)

where x$ is a vector of n variables, and / is a vector of n equations. In

Eq.(2.5), J is the Jacobian matrix, defined as

/(%) =

a/i
dxx

dfn

a/»
dxj

a/,

Jj
axj ax*

The NR algorithm, viz., a truncated Taylor series approximation, can be

viewed as a rule for constructing a linearized incremental circuit model for a

nonlinear element. Such a model is called a companion model, as noted pre

viously. Later in this chapter the results of this section are used to

(2.6)
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formulate the companion model of a MOS transistor.

2.2.4. Convergence of Newton-Raphson The conditions under which the

NR algorithm is guaranteed to converge to a solution are proven in many

references, one being [7]. Sufficient conditions for convergence are as fol

lows. If

fix) fix)

[/'(*)]*
in an interval about a solution, then the NR algorithm will converge for any

initial value of x in the interval. Also required for sufficiency are /(x) and

f'(x) continuous in the interval, and /' nonzero there. These are not neces

sary conditions; the NR method may converge if the conditions are not met.

The key point for simulation is guaranteeing that the nonlinear circuit

equations are continuous with continuous first derivatives. If this condition

is not met by a device model, the model is usually not acceptable. The equa

tions and derivatives need not be continuous in the strict mathematical

sense, however. Due to the error tolerances allowed for in determining when

x"J+i is sufficiently close to (i.e., converged to) Bj, some discontinuity canbe

tolerated. The degree of discontinuity must be small enough that the result

ing error can be absorbed by the simulation program's error tolerances.

2.3. MOSFET PHYSICS OF OPERATION

In this section, a brief description of MOS transistors is given. The basic

structure of the device is outlined, and the results of a simple first-order

derivation of its electrical behavior are presented.

< 1
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2.3.1. Structure and Operation Figure 2.2 depicts the symbol for and

cross-sectional view of a MOSFET. The device consists of a metal-oxide-

semiconductor (MOS) capacitor that defines a channelregion oflength L and

width W, and two p-n junctions, one at each end of the channel. The transis

tor in Figure 2.2 is an n-channel MOSFET of the normally off. or

H

D
o

6

S

Figure 2.2 Symbol and Cross-Section of a MOSFET.
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enhancement-mode type. The n-channel designation refers to the polarity of

the carriers present when the transistor is conducting. In an n-channei dev

ice, electrons are the carriers; in a p-channel device, holes are the carriers.

In an enhancement-mode device, no channel is present in the absence of

applied bias at the gate electrode, and the source and drain junctions are

thus disconnected. If a sufficiently large positive voltage is applied to the

gate, a number of electrons large enough to invert the polarity of the sub

strate material from p-type to n-type is attracted to the silicon-silicon diox

ide interface and the source and drain are electrically connected. Adding

bias to the gate thus enhances the concentration of carriers in the channel

and increases its conductivity. Changing the potential at any of the other

non-reference terminals, i.e., the drain or bulk, also changes the concentra

tion of electrons in the channel and modulates the current which flows

between the source and the drain. When a conducting channel is present,

the MOSFET is said to be operating in inversion. In inversion, electron

current flows from the drain to the source if the drain voltage is more posi

tive than the source voltage. The current increases sharply with drain-

source voltage Vjjs when Vqs is small. A sufficiently large Vps causes the

drain current to level off, or saturate, at some value. Further increases in

Vj)s do not increase the drain current markedly.1

Many other MOSFET types are used, varying mainly in the channel con

ductivity at zero gate bias. Another common one is the depletMn-made

transistor, which has a strongly conducting channel for zero gate bias. It is

beyond the scope of this report to describe more than a single type of MOS

device. However, all MOSFETs behave similarly to the enhancement-mode

H^mtimring increase of Vj^ giyes riset0 a breakdown effect, wherein the current again shar
ply increases with V^. Operation ofthe device in breakdown is undesirable and avoided inprac
tice. Breakdown is not considered in these models or this report.
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transistor presented here, from a modeling point of view.

2.3.2. Output Characteristics A first-order analytical MOS transistor

model that follows from a simple charge-control analysis is presented in this

subsection. The model is used to illustrate several points later in this report.

An n-channel enhancement-mode device is assumed.

When all terminals are connected to ground no conducting channel is

present. If the gate voltage is increased positively from zero with respect to

the source, negative charge is attracted to the surface of the silicon at the

Si—SiOz interface. Inversion occurs, and a conducting channel is formed,

when Vqs reaches the threshold voltage Vp. Above threshold, the number of

additional electrons attracted to the surface is proportional to the gate-

source voltage Vqs. The added electrons are readily supplied by the nearby

n-type source and drain regions.

When the substrate terminal is negatively biased with respect to the

source, Le., VBS < 0, a larger Vqs value is required to reach threshold than

for Yss = 0. This phenomenon is called the body effect. A first-order analysis,

such as that in [8] or [9], shows that

VT = VT0 +r[v2|̂ | -VBS - V2T^F[]. (2.7)
The parameter Vpo in Eq.(2.7) is the threshold voltage for Vqs = 0, <p? is the

equilibrium potential at the Si surface, and y depends on material parame

ters and the gate oxide thickness.

If Vqs is above threshold, and if a small positive voltage is applied

between the drain and source (Vqs), an electron current flows from drain to

source due to drift. The drain-to-source current Iqs (or more simply, the

drain current) is related to the channel charge and the transit time rc along

the channel. As long as a continuous channel exists from the source to the



drain, the current is given by [10]

_ *nC0SW
Ids - Vqs-Vt-

Vds

p-Si

i
B

Figure 2.3 Saturated MOSFET.

14

Yds . (2.8)

Equation (2.8) predicts the drain current for the so-called linear (also

known as triode or resistance) region. The linear region corresponds to

Vqs > VT and Vjjs < Vqs —VT for this model. If the drain-to-source voltage is

increased above Vqs —Vp, pinch-off occurs and the MOSFET enters the so-

called saturation region.

The onset of saturation occurs when Vjjs becomes so large that the

channel no longer extends from the source to the drain, but instead stops at

the point L' in Figure 2.3. In saturation, the voltage difference between the

gate and the channel is less than Vf in the region near the drain p-n junction.

The channel is thus depleted of carriers there and the electrical channel

length is reduced to L\ When the electrons reach L\ they are quickly swept

across the depleted area by the large electric field between L and L, and Ids

is relatively insensitive to further increases in Jfe.

G

S o d

? L. ' •' ?
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For this simple model, the current in saturation is found by replacing

Vj)S by Vqs - VT in Eq.(2.B) yielding

<..*£!{*,-*• (2-9)

Equation (2.9) is valid for Vqs > VT and VDS s= Vqs-Vt. Most MOS transistors

have output characteristics that vary slightly with Vps in saturation, as in

Figure 2.4. A representation of this nonzero saturation-region output con

ductance can be included by changing Eq.(2.9) to [10]

r _ M»£
Ids -

2L

r PnCcxW
Ids - —t

V~ - Vr (1 + Mfc). (2.10)

To maintain current and partial derivative continuity, Eq.(2.8) must have this

term added also and thus becomes

Vqs — Vp —
Vds

Vds(1 + Ufa). (2.11)

figure 2.4 MOSFET Output Characteristics.
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An examination of this simple model illuminates some important aspects

of MOSFET behavior. These are:

A. The output characteristics vary strongly with Vds in the linear region,

but weakly in the saturation region.

B. The body bias VB$ appears only in the threshold voltage equation.

C. Given the current at the point of saturation, little additional information

is needed to model the output characteristics in the saturation region.

Items A through Cwill prove to be useful later in the development of the

empirical models.

2.4. MOSFET REPRESENTATION FOR SIMULATION

The NR method is used as a rule in this section to derive the MOSFET dc

companion model. The simple analytical model from Section 2.3 is utilized

as an example.

The equation to be linearized has the form

hs = f(VDs,VQs.VBS) (2-12)

= /(?).
Equation (2.2) through the linear term produces

f(V) = /(?.) + (V-V0)f XV0),
and since Va is the value of Vat the j01 iterate,

/<Vi) = /OS) + ftyW+i - /'OS)?,. <2-13>



Equations (2.12) and (2.13) are combined and rearranged to give

4>si+1 - dJL_ _£L_ JL
QVds dVcs dVBS

13

f{VB8.y<S.VBs)i ~

Vds
Vqs
VBs J;+i

df df df

1}
dVBS oVqs dVBS

The term of Eq.(2.14) in braces is composed entirely of quantities from the

jth iteration. It has the dimensions of current, and is denoted IBq. Equation

(2.14) can thus be rewritten as

VDS
Vqs
Vbs

17

(2.14)

//»,+! - /jgfy + M.
dVDS

VDSj+1 + SL
QVqs

u
vosj+l + SL

QVBS
i

^5i+1.(2.15)

Equation (2.15) defines the MOSFET companion model, which is pictured

in Figure 2.5. The partial derivative terms have the dimensions of conduc-

Figure 2.5 MOSFET Companion Model.
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tance, and are commonly symbolized and named as presented in Table 2.1.

Term Svmbol Name

df _ Mds
d Vds 3 Vds

9da output conductance

df _ OIds
dVcs dVGS 9m transconductance

df oIDs
9mbs backgaie conductance

dVBS " dVBS

Table 2.1 Partial Derivatives.

The various conductances are determined from the drain current equa

tion. As an example, suppose that Eq.(2.9) applies. In that case. gm is found

to be

dips __
9m ~ dVos dVos 1 2L

a tlnGm* Vqs-Vt\

The other two conductances are found similarly.

In the following chapter, empirical and analytical methods of determin

ing the element values for the companionmodel are described.



CHAPTER 3

MOSFET MODELING METHODS

3.1. INTRODUCTION

In Chapter 2, some of the general techniques used in modeling nonlinear

devices for circuit simulation are described. It is shown that the problem

amounts to providing a proper incremental circuit model for the device,

which corresponds to a linearization of its /-V characteristics about a given

operating point. Any MOSFET model should return element values efficiently

and accurately for the incremental circuit model. The element values

returned by the model must satisfy the convergence constraints imposed by

the Newton-Raphson algorithm.

Various analytical and semi-empirical models offer increasing accuracy

at the expense of decreasing computational efficiency. Empirical models for

circuit simulators exhibit somewhat different compromises when higher

accuracy is desired. The amount of memory needed for storing data, the

complexity of the interpolation procedures, and the accuracy of the model

can all be exchanged with one another as desired.

In this chapter, several analytical MOSFET models are briefly described.

The difficulties with analytical modeling are presented, followed by the

means by which a good empirical model could solve most of the problems of

analytical models. Some early work in the area of empirical MOSFET model

ing is outlined, as well as some of the recent research in the field. The

chapter concludes with a section on the basics of the approach to empirical

modeling taken in this project.

19
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3.2. ANALYTICAL MODELS

This section on analytical models is included as background for a later

comparison with empirical models.

The MOSFET models built into the circuit simulation program SPICE2

[11] illustrate the level of complexity accurate models possess. Two models

in SPICE2 are appropriate for modern small-geometry MOS transistors, the

analytical LEVEL-2 model and the semi-empirical LEVEL-3 model.

Comprehensive explanations ofthese models appear in [1] and [12].

The LEVEL-2 and LEVEL-3 models account for various nonideal effects,

such as scattering-limited carrier drift velocity, field-dependent mobility,

etc. On the order of 10 parameter values must be supplied to specify the dc

behavior of the models [12]. As noted in [l], a means of generating model

parameter values is as critical as the fundamental accuracy of a model.

Unfortunately, the parameter values for good-quality models such as these

are difficult to determine, because relatively few values are forced to contain

a large amount of compressed information. Often, a procedure for calculat

ing the parameter values does not exist, and the task must be performed

manually using initial guesswork and trial and error.

The completeness of analytical and semi-empirical models like LEVEL-2

and LEVEL-3 leads to the conclusion that the time required to evaluate the

model equations is relatively large.1 As stated in Chapter 2, model evaluation

can dominate the simulation time for some circuits. Compared to the

SPICE2 LEVEL-1 model, which is basically the first-order model described in

Chapter2, the LEVEL-2 model is about16times less efficient [13] to evaluate.

TheLEVEL-3 model is up to 40% more efficient than LEVEL-2 [l], but is still a

lfrhe term,analytical includessemi-empirical forthe remainder ofthis chapter.



21

factor of nearly 10 less efficient than LEVEL-1.

As a particular process or technology evolves, the corresponding analyt

ical model must usually be changed For example, suppose a channel

implant is added to an existing process. To model the modified process,

terms typically must be added to the model equations, or perhaps the model

must be completely reformulated.

The inherent time lag between a technological innovation and its under

standing on the device physics level can causes two problems. First, the

necessarily outdated analytical model may not be capable of fitting the new

device. Second, the process and/or technology-dependent model parame

ters must be used to curve-fit the new device, since the physics of the new

device are not fully incorporated in the model. The model parameters then

lose some of the physical significance they originally had, leading to possible

confusion and error on the part of the model user.

Analytical models are typically scaled with channel length and channel

width. The range over which a given model can be scaled is usually limited,

though. Several models are often needed, each valid for a part of the com

plete range of sizes.

3.3. EMPIRICAL MODELS AND THEIR ADVANTAGES

Some of the general characteristics of empirical device models are

presented in this section. A description of the advantages empirical models

have over analytical models is included also.

Empirical models do not contain any process or technology-dependent

parameters. The absence of parameters dependent on the process or the

technology eliminates the (difficult) step of determining their values.
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The data set (tables of /-K data or coefficients offitting functions) of an

empirical model can be made very general and dependent only on the most

basic aspects of the device's behavior. If this aim is achieved, the empirical

model will not require revision for changes in the process, geometry scaling,

etc. Rather, all that is necessary to account for an additional process step or

other change is a regeneration of the table entries or fitting-function

coefficients. Maintaining generality in this fashion places a lower limit on the

size of an empirical model data set.

The data set required for an empirical model cannot be prohibitively

large. An excessively large data set may preclude the use of many different

empirical models in a single circuit simulation, due to computer memory

limitations. It is desirable to store a distinct model for each device type and

each channel length.2 If only a small number of models can be accommo

dated, then they must be scaledby channel lengthas well as width. The scal

ing of MOSFETs by channel length is often highly nonlinear and should be

avoided.

The generation of the data set for an empirical model is performed

much more easily than parameter value determination for an analytical

model.3 Empirical models have this advantage because the data set for an

empirical model is significantly larger than the parameter set for an analyti

cal model. Less information compression is then required to characterize

the empirical model. Asecondary benefit to a large data set compared to a

small parameter set lies in the area of sensitivity. Asmall error in a critical

parameter value for an analytical model results in a much greater

*bi the design of many HOS ICs, channel length is restricted to a few discreet sizes, but
channel width is allowed to vary continuously.

3The appendix of this report contains a"brief description of the automatic characterization
procedure which has been implemented for themodels of Chapter 4and Chapter 5.
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perturbation in the model's accuracy, compared to the same magnitude of

error in a value in an empirical model's data set.

Since they are simple to characterize, empirical models have the benefit

of fitting flexibility. Figure 3.1 shows this pictorially. Device simulation can

provide raw data for the empirical models. Direct measurement of devices,

perhaps using automated test equipment, is another possibility. A third is

the use of an existing analytical model and its parameter values. This alter

native is useful when the empirical model possesses a speed advantage over

measurement

analytical model

0(500) values

electrical

simulator

0(40) values

Figure 3.1 Sources of Empirical Model Data
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the analytical model.

Empirical models are capable of producing an arbitrarily accurate

reproduction of the I—V characteristics which were used to generate the

model data set, by increasing the size of the data set. Analytical models do

not have this property.

Finally, an empirical model can be computationally efficient. Practical

empirical models, such as the two described in this report, are significantly

faster to evaluate than comparably accurate analytical models, because only

simple arithmetic operations and memory references are used to generate

the drain current and conductance values for the companion model.

3.4. EMPIRICAL MODEL BASICS

In this section, some general observations regarding empirical MOSFET

models are outlined. Then, two basic types of empirical models are

described, table look-up models and function-fit models. The empirical

models developed in this research employ both look-up tables and function

fits. The principles underlying their development are presented in the follow

ing section.

The structure of an empirical model involves consideration of three

competing goals. These are the desire for high accuracy in reproducing the

/—Kbehavior, the desire for low data storage requirements, and the desire

for computational efficiency. In this work, high accuracy has been a primary

concern. The first problem to be faced, then, is to obtain the accuracy of a

good-quality analytical model within a reasonable storage allocation for the

model data set. The second is to achieve an advantage in evaluation speed

over a good-quality analytical model.
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The MOSFET companion model, as noted in Chapter 2, comprises four

elements. The MOSFET itself has four terminals; hence three independent

node-pair voltages determine the drain current and the partial derivatives.

A consequence of these two facts is that knowledge of four three-dimensional

quantities is required, namely

Ids = Ids(Vds.Vqs,Vbs), (3.1a)

0* = 9*,(Vds.Vqs,VBs), (3.1b)

9m = 9m(VDS,VQS,VBS), (3.1c)

9mbs = 9mbs(VDS,VQS,VBs). (3.1d)
The problem to be solved is that of storing information from which the Ids.

gds, etc. values can be reproduced accurately and efficiently at a specific

operating point. A general comment can be made regarding Eqs.(3.1);

because of their three-dimensional nature, either function-fit or table look

up models need large amounts of storage if the physics of the device are not

accounted for in the model structure.

3.4.1. Table Look-Up Models A straightforward approach to storing

Eqs.(3.1) is to place each one in a table. Each table entry, e.g., each Ids

value, is indexed by a (Vds*Vqs,Vbs) triplet, so the tables are three-

dimensional. At a particular operating point, the values for Ids and tire con

ductances are "looked-up" in the tables.

A major point in favor of table look-up models is their conceptual simpli

city. However, close examination shows that several difficult problems exist

for table look-up models. Table look-up methods typically require a

minimum of 50-100 points per dimension to insure an adequate fit [14]. If 50

points per dimension is assumed sufficient, Eqs.(3.l) require storage for

4(50)s = 500,000 values. This number of required memory locations is
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impractically large.

Another problem exists for this method. The drain current and the par

tial derivatives are explicitly stored for discreet operating points only. Dur

ing a circuit simulation, operating points arise that do not coincide with the

explicitly-stored data. The element values for the companion model must

then be computed from the stored data via an interpolation method. The

interpolations are in general three-dimensional and nonlinear, and hence are

computationally cumbersome. If instead a sequence of single-dimensional

interpolations is used, and/or if the interpolations are done linearly, accu

racy suffers and continuity cannot be guaranteed.

Recent research by Shima et al. [15] has resulted in a three-dimensional

table look-up model which has more favorable storage requirements than the

three-dimensional method outlined here. The authors were able to reduce

the storage to 2000-3000 points per model, primarily by computing the con

ductances from the IBs table and eliminating the g^, gm, and £mbs tables,

and partially by storing less data in the VBs dimension than in the VBs or Vqs

dimensions in the Ids table. However, the interpolation routines do not

guarantee current continuity, and the partial derivatives which result are

also discontinuous functions. It is therefore impossible to insure conver

gence using this model.

Other table look-up models have been used in the past, but typically not

for circuit simulation. The models [16], [17] have been used in a type of tim

ing simulator where model requirements are much less stringent. These

models do not generate gm and g^*- Also, the Ids and g^ functions pro

duced are discontinuous, because interpolation is not used. Models such as

these are not applicable to circuit simulation.
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3.4.2. fYinction-Slt Models A second method exists for storing Eqs.(3.1).

Numerical functions with no specific relation to the device electronics can be

fit to the I-V characteristics. At an operating point, the functions are

evaluated and return Ids» 9ds> e*.c.

Certain fitting functions have convenient properties from the standpoint

of the NR method. For example, a quadratic or cubic spline fit of Eq.(3.1a)

works well, because then the remaining parts of Eqs.(3.1) can be generated

by explicit partial differentiation of Eq.(3.1a). Continuous first partial deriva

tives for quadratic or higher-order splines are guaranteed by the definition of

the spline function [18].

A negative aspect of spline models is that the requisite storage can be

very high. Approximately four times the number of points to be fit is

required for storing the coefficients for a one-dimensional cubic spline, and

nearly three times the number of points to be fit is required for storing the

coefficients for a one-dimensional quadratic spline. The number of

coefficients required per point fit is larger still for splines of more than one

dimension.

Recent work in spline models for MOSFETs [19] has produced encourag

ing results in model evaluation speed. However, the storage versus accuracy

issue could be a problem; the presentation in [19] does not explore this ques

tion.

3.5. BASICS OF THIS APPROACH TO EMPIRICAL MODELING

The two empirical models of this project have been developed using

several ideas in common. These concepts illustrate why the models evolved

to their present states. Each of the two models is described in detail in the

next two chapters of this report.
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The general, the global behavior of MOSFETs is well known, although the

local behavior can be quite variable. The MOSFET behavior is exploited with

the aim of developing more optimal models. The first concept is thus to use

the known physical behavior to reduce the storage requirement. Physical

knowledge is used to decouple the independent variables so that the data set

can be stored in two-dimensional and one-dimensional functions instead of

three-dimensional functions. Vfttich information is stored is also chosen after

consideration of the device physics. Specifically,

A The VBs dependence is assumed to affect only the effective gate-source

voltage.

B. The output characteristic data is explicitly stored for the linear region

only.

C. The output characteristic data is implicitly stored for the saturation

region, using single-dimensional functions.

D. As in [15] and [19], the conductance terms are computed from the I—V

information and not explicitly stored.

The second idea followed in developing the models is to use a combina

tion offitting functions and tables for the data set storage. Tables are used

to store the I—V data where the curvature of the characteristics is high and

much information is present. Splines would be too storage-intensive in such

areas, as noted in the preceding section. A problem resulting from tabulating

the data is maintaining continuity of the partial derivatives. But, the amount

of data stored can usually be increased to the point where the discontinuity

of the partial derivatives does not affect the convergence of the simulation

program without reaching the amount of storage required for spline

coefficients. Spline functions are used in regions where the data is known to
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be smooth and slowly-varying. In these regions of the characteristics, there

is often less storage required for the spline coefficients than for tabulation of

the same data under the condition that the partials be well-behaved. In par

ticular, single-dimensional functions are used at the linear-to-saturation

transition to insure current continuity and well-defined partial derivatives

there.

The third principle followed in this work is to use knowledge of the dev

ice physics to simplify the look-up table interpolations. Once the indepen

dent variables are decoupled, the dimensionality of the interpolations is

correspondingly reduced. The functions used for the interpolations are

chosed after consideration of the device physics, in that region of operation.

If this were not done, more complex interpolation functions would be

required and/or more data would have to be stored.

Detailed descriptions of the two-dimensional and one-dimensional

models are presented in the following two chapters.



CHAPTER 4

TWO-DIMENSIONAL EMPIRICAL MODEL

4.1. INTRODUCTION

The previous chapter describes the major problem inherent in a three-

dimensional empirical model, namely that the 3-d approach is quite

memory-intensive. The one-dimensional model of Chapter 5 requires only a

small storage allocation. However, too much information may be lost in the

reduction of the I-V characteristics to strictly l-d functions. The two-

dimensional empirical model described in this chapter falls between the l-d

and 3-d methods in terms of potential accuracy and required memory.

The reduction of the data set from dimensionality of three to dimen

sionality of two is achieved by decoupling the VBs dependence from the I-V

characteristics. A further memory reduction follows from storing data as a

function of two independent variables for the linear region only. The

remainder of the I-V information is stored in one-dimensional functions.

The following sections describe the two-dimensional model in detail.

4.2. MODEL DESCRIPTION

The bulk-source potential of a MOSFET has a large influence on the I-V

characteristics through the threshold voltage VT, but only a small influence

otherwise [15]. Furthermore, Yes never appears alone, but always has VT

associated with it as an offset term. These properties lead one to store the

characteristics using Vqse = Vcs ~ vto as tne independent variable in place of

30
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Vqs- Then, the effect of VBS on VT can be stored in a one-dimensional func

tion denned as

/

VT = ^i(^)-1
The drain current is thereby reduced to a two-dimensional quantity plus a

one-dimensional function:

Ids(Vds.Vqs,Vbs) - Ids(VDs,Vqse) with VT = S^Vbs).

The main feature of the 2-d model is the drain current table. A two-

dimensional table is used, with axes corresponding to Vds and Vqse- As noted

in Chapter 2, MOSFET output characteristics vary strongly with Vds in the

linear region but weakly in saturation. The data is therefore stored for the

linear region only. The output characteristics are stored as discreet points

as shown in Figure 4.1.

The linear region is demarcated by the VBs values (for each Vqse) where

the MOSFET enters the saturation region. The drain current and drain-

Ids

Figure 4.1 Data for Drain Current Table.

1The S{notation means the function is a cubic spline.
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source voltage where this occurs are denoted Idsat and Vdsat* respectively.

For the 2-d model, the saturation point is defined as that point where the

output conductance can be approximated as a constant.2 The Idsat"~^dsat

curve is stored as a cubic spline function.

Acubic spline relating Vdsat to Vqse is used to complete the description

of the characteristics at the linear-to-saturation transition. Splines are used

for the Idsat~v0Sat and Vdsat~vcse variations because these variations are

smooth but variable. For example, a long-channel transistor has

Vdsat = Vgse. and IDsat a VDSatz (= Vgse2) [10]. Ashort-channel device, how

ever, typically has an Idsat~vgse relation at the saturation point which is

close to linear [21]. Complicating the issue is the fact that some MOSFETs

show long-channel behavior (in this respect) for small Vqse values but then

show short-channel behavior for larger Vqse values. The spline functions give

smooth characteristics and smooth partial derivatives, while allowing the

behavior to be general.

To complete the model the output characteristics in saturation must be

stored. The output conductance of a MOSFET is well-approximated by linear

equations in VBs with slopes which increase as Vqse increases (Figure 4.2).

The slope of the Ids~Vds characteristics. Le., g^, is stored indirectly

through the incorporation of a fourth cubic spline, Iduax ~ S4(Vqse)' The S4

spline is fit at a large Vds value called Vdmax- Along with the Idsat~vdsat and

Vdsat~ Vqse curves, S4 provides a means forgenerating Ids* 9ds> 9m >and gmba

for operating points in the saturation region.

8The procedure used for determining thesaturation point isoutlined intheappendix
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In summary, the 2-d model's data set is:

*DSto = Tds(Vds,Vqse)

Vt = SAVbs)

Vdsat - Sz(Vgse)

Idsat - Ss(vdsat)

Iduax - S^Vqse)'
where

Vqse = Vcs — Vt

and Tds denotes the two-dimensional table for the linear-region characteris

tics.

The 2-d model has dramatically reduced requisite storage over the sim

ple 3-d model. Each cubic spline requires 4(A: -1) coefficients if k data

points are fit [7]. The Tds table contains less than n2 values if n

Vqse - const, curves are stored with n points in Vds on the curve where Vqse

figure 4.2 MOSFET Output Characteristics.
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is largest. Figure 4.1 shows this fact pictorially. The total memory require

ment for the 2-d model is thus less than n2 + 16(A: -1) locations.

The threshold voltage is assumed to vary only with VBs in the above.

Many short-channel MOSFETs exhibit a VT variation with VDs also. The varia

tion of VT with VDs can be modeled as an additive effect [22], and if needed a

fifth spline can be incorporated for the Vds dependence. The threshold vol

tage equation would then read

VT = S^Vbs) + Ss(Vds).

4.3. CURRENT CALCUIATION

Due to the manner in which the data set is stored, the drain current and

partial derivative calculations are operating-region dependent for the 2-d

empirical model. Three different cases exist; each is addressed below. The

precursory step of determining the region in which the operating point lies is

performed using the Si and Sz splines:

Vqse - vgs " SxiVss)',

Vdsat - Sz{Vqse)'^

if ( VDs ^ Vdsat ) then

transistor is in saturation;

else

transistor is in linear.

4.3.1. Case 1: Simple Linear This case occurs for operating points that lie

in the linear region where the two VqsE = consf. characteristics bounding the

operating-point Vqse extend beyond the operating-point VBs- The situationis

depicted in Figure 4.3.
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figure 4.3 Simple linear Operating Point.

Two steps are required to find Ids- Figure 4.4 displays the Ids calcula

tion. Initially, quadratic interpolation is used along the VqSe1 and Vqsez

curves in the Vds dimension to calculate Ids and Ids? Then, these inter

mediate drain current values are interpolated linearly in Vqse to determine

Ids- Thus, the drain current calculation for this case uses only the data in

Ids
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figure 4.4 Simple linear Current Calculation.
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the Tds table, once Vqse ls known.

The output conductance, g^, is determined concurrently with Ids (Fig

ure 4.5). The derivative of the quadratic interpolation function used along

the Vqse. and Vqssz curves provides intermediate conductances g^l andg^^

respectively. The final value for g& follows from a linear interpolation ofp^

and gds2 in the Vqse dimension.

The transconductance, gm, is simply the derivative of the linear interpo

lation function used to find Ids from Idsx and Idsz- The backgate conduc

tance, gmbs, follows from the derivative of the Si spline, gm, and the chain

rule. Symbolically,

9mbs =
- d//» - d/P5 OVGSE _

dVBS dVoss dVBS = 9*
-dSx

dVBS j

4.3.2. Case 2: Out-of-Bounds Linear In this case the operating point lies in

the linear region. However, data is not available on the Vqse^ contour at the

operating-point Vds- Figure 4.6 shows the problem. This case is the most

Figure 4w5 SimpleLinear Output Conductance Calculation.
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Figure 4.6 Out-of-Bounds Operating Point.

difficult of the three, from the standpoint of maintaining accuracy and par

tial derivative continuity.

The first step in calculating Ids is to find Idsat at Vqse- This is done via

the spline function which relates Idsat and Vdsat> Le.,

Idsat = Sa(ynair) = ^a(Sz( Fcsb)) .
Second, the current at Vqse and Vds - Vdsatx is found by a linear interpola

tion in Vqse using two values from Tds. as depicted in Figure 4.7a. The final

Ids value is found by a quadratic interpolation in Vds using Idsat and

1ds(VdsatvVgse)» Figure 4.7b.

The value for g^ is the derivative of the quadratic interpolation function

used between Idsat and Ids{VdsaToVgse)* evaluated at the operating-point

Vds- Figure 4.7b also shows g^.

The transconductance is more difficult to calculate than the output con

ductance. At Vdsat *



*dsa:

ids

Vdsat,

Figure 4.7a Out-of-Bounds Calculation.
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figure 4.7b Out-of-Bounds Calculation.

9m = 9mMt dV])sAT dVcsB

0ES3 dSz

dloSAT &VdSAT

36

dVoSAT dVosE

At Ids(vdsat1*vgsb)* the derivative of the linear interpolation function in the

Vqse direction gives gm=gmiiIl' The transoonductance at the operating point
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is calculated via linear interpolation of gmu and gme&i in VDs.B The backgate

conductance gmbs is given by

-dSx
9mbs *" 9m dVBS '

4.3.3. Case 3: Saturation The drain current and the partial derivatives

are easily found for operating points in the saturation region. Since VBsat is

known, Idsat follows from Idsat = ^s(vdsat)- At VBs = Vduax. Iduax - S^Vqse)

is calculated. The drain current results from

hiwc ~~ hsAT
Ids - Idsat + Vds-

,VDUAX ~ VDSAT t

The term in parenthesis in the above equation is the output conduc

tance, i.e.,

Iduax~Idsat
[ Vduax - Vdsat J

Figure 4.8 contains a pictorial representation of the Ids and g^ determina

tions. The transoonductance is found as follows from splines S%, S3, and S4.

At Vduax.

_ dJpUAX
*»W ' dVQSE

dSA

dVcsE

At the saturation point, as in Case 2 above,

ft
dlDSAT dVDSAT

•* d VDsat dVoss

3 Actually, gm at the saturation point is slightly in error because it is taken as the partial
derivative of Idsat rather than 1^.
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Figure 4.8 Saturation Current and Output Conductance.
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Idmax

A linear interpolation in Vds generates the gm value at the operating point,

Le.,

9i -9r 'sat

9m —9m.ttt "*" Vds-
8at I Vduax ~ Vdsat ,

The backgate conductance is calculated from gm as in Case 1 and Case 2.

4,4w conhnutiy consederations

The structure of the two-dimensional model guarantees drain current

continuity. However, the same statement cannot be made for the partial

derivatives in the linear region. These points are covered in this section, as

are means for reducing the risk of nonconvergence of the NR method.

4.4.1. linear Region In the Vds dimension, all the interpolations are along

Vqse = const, contours. The drain current is therefore continuous in Vds- In

Vqse. the current again is forced to be continuous by the interpolation func

tion used.
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The partial derivative terms, for example g^, are in general discontinu

ous. A quadratic interpolation is used in Vds, so g^ has a step discontinuity

about each data point unless the Tds data are locally quadratic. An illustra

tion appears in Figure 4.9. One way to solve the problem shown in the figure

is by using a spline function along each Vqse contour. But, if a Vqse = cons*,

curve has for example 25 points along it, then a spline fit of the 25 points

requires [18]:

4(25 - l) = 96 coefficients for a cubic spline fit

3(25 - 1) = 72 coefficients for a quadratic spline fit.

Instead, if more points are stored, then the discontinuity in g^ can usually

be reduced to an insignificant level (within the error tolerances of the pro

gram) with fewer points than the number of coefficients required to spline-fit

the original 25 points.

The reduction of the step discontinuity through adding points to Tds is

easily illustrated. Assume the points along a Vqse - const, curve are

separated by 0.2V in Yds- This corresponds to only 20 points total on the

Ids
1 1 I 1

gd, right

^ (fat left

Interpolating —^^^v
Function ^^^

^True
Curve

I I I l

figure 4.9 Output Conductance Discontinuity. Vds
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curve if Vdsat = 47. Assume also that the drain current varies as the cube of

Vds, viz.,

Ids =2010-8[4.07i?5 +0.3VDS2 -0.1 VDS*}- (4.1)
Equation (4.1) corresponds to Eq.(2.11) with Vqse = ±V and with X= 0.2,

which is an anomalously large value. It is thus fair to say that Eq.(4.1)

represents a difficult test for reducing the g^ discontinuity. The exact

expression for g^ results from differentiation of Eq.(4.1), i.e.,

0* = 20-10~8 4.0 +0.67as - 0.372,s2]. (4.2)
The magnitude of the step discontinuity in g& is examined at Vds = 37.

The quadratic interpolation requires some neighboring points about

Vds = 37. Using Eq.(4.l) gives

(Vds^ds) = (2.80, 2.27136E-04)

(7j»2.W = (3-00, 2.40000E-04)

(Vds5Jdss) = (3.20, 2.51904E-04).

Computing g^ via the derivative of the quadratic interpolation function gen

erates the results in Table 4.1.

Exact

9ds

Left

9 da

Right
9ds

Step in
9ds

Step Over
Exact

6.200E-5 6.320E-5 6.080E-5

Table 4.1

.240E-5 3.87%

In Table 4.1. "Left" and "Right" refer to values from the segments to the left

and right of Vds = 37, respectively, evaluated at VDs = 37. This is depicted

in Figure 4.9.
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ONE-DIMENSIONAL EMPIRICAL MODEL

5.1. INTRODUCTION

The two-dimensional empirical model has a marked storage advantage

over a simple three-dimensional approach. The most memory-intensive part

of the 2-d model requires less than ns storage locations.

A further storage reduction is possible, however, if the information in

Tds(Vds,Vqse) can be decoupled so that only one-dimensional tables and/or

functions are required. In addition, a 60% gain in computational efficiency

can be achieved in practice by the decoupling.1 This decoupling is imple

mented in the one-dimensional empirical model and constitutes its basic

feature. The decoupling is accomplished by an origin-shifting transformation

described below. The origin-shifting technique was originally derived and

implemented by Newton [20] as part of a simple timing-analysis table look-up

model which was subsequently extended to nonquadratic devices [14].

Further extensions of the model, primarily to make it applicable to circuit

simulation, were contributed by this research. These extensions are the addi

tion of interpolation, the addition of gm and ^^^ calculations, a reformula

tion of the £ds calculation, data set storage using spline functions, and a

slight reformulation of the saturation-region portion of the model

Historically, Newton's form of this model precedes the two-dimensional

model by several years. The l-d model is nevertheless presented after the

1Thisresult is presented in detail in Chapter 6.
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2-d model because it represents a further decoupling of the independent

variables over the 2-d case.

5.2. MODEL DESCRIPTION

The major difference between the two-dimensional and one-dimensional

empirical models lies in the storage of the linear-region I-V characteristics.

Both models remove the VBS dependence, reducing the storage dimensional

ity from three to two, in the same manner. That is, VBs is removed by

defining

Vqse = Vqs-S^Ves)
and thus resulting in Ids = Ids(Vds, Vqse)- Both models store the data set for

the saturation region in one-dimensional functions. However, the one-

dimensional model effectively decouples Vds and Vqse so that functions of

only a single independent variable can be usedto store the linear-region I-V

characteristics. The transformation and original extensions of the model are

included here for completeness.

5.2.1. Origin-Shifting Transformation The origin-shifting transformation

is illustrated in this subsection through the use of the simple analytical MOS

FET model described in Chapter 2. The extension of the model to non-

quadratic devices is presented in the next subsection.

Equation 2.8 states that

Ids = K VGSEVDS g K=^CJ*W (5.1)
in the linear region (Le.. VBs < Vqse)- The familyof curves which follows from

Eq.(5.1) is shown in Figure 5.1.
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Now if the number of points on the Vqse contour is doubled to 40, the

interval in VDs becomes 0.17 rather than 0.27. Repeating the calculations of

the preceding paragraph results in the numbers in Table 4.2.

Exact

9ds

Left

9ds

Right
9ds

Step in
9da

Step Over
Exact

6.200E-5 6.260E-5 6.140E-5

Table 4.2

.120E-5 1.94%

Comparison of Tables 4.1 and 4.2 demonstrates that in this example the

discontinuity is reduced in a linear manner by doubling the number of points

stored to 40 points from the original 20.

Similar comments apply for gm. The discontinuities arise at each

Vqse = const, curve; they can be reduced by increasing the number of

curves. The amount of discontinuity in gm^s is fixed by gm because the

derivative of the Srl spline is continuous, and

9mbs - 9m dyBs -

4.4.2. Out-of-Bounds linear and linear-Saturation Transition As already

stated, current continuity is guaranteed by the two-dimensional modeL The

linear-to-saturation transition area does not have a continuity problem in g&

if Vqse is equal to one of the values on a stored contour, because of the

saturation voltage definition.4

There are two places where g^ can be discontinuous, both for inter

mediate Vqse values. Figure 4.10 depicts the problem areas. A sufficient

♦See appendix.
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Figure 4.10 Transition and Out-of-Bounds Discontinuities.

number of Vqse = const, curves (on the order of 10 for a circuit with a max

imum Vqs of 5 volts) must be stored in Tds to make the discontinuity accept

ably small. Note that gm and gmbs are continuous in the out-of-bounds area

and across the transition region.

4.4.3. Saturation Region The spline functions which border the saturation

region have continuous, smooth derivatives. Thus, all the partial derivatives

are continuous in saturation.

Chapter 6 contains results on the fitting ability of the two-dimensional

empirical model. Results on convergence and model evaluation time are also

presented in Chapter 6.
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Figure 5.1 Output Characteristics From Eq.(5.1)

Examination of Figure 5.1 shows that each output characteristic curve

seems to contain the one beneath it as its right-most segment, as shown in

Rgure 5.2. If this is the case, the single characteristic for the largest Vqse

value contains all of the linear-region I—V information, provided it is origin-

shifted appropriately. It is easy to show that an origin-shift does give an

exact representation of the characteristics predicted by Eq.(5.1). To this

end, assume that one curve is given, at Vqse = Vqse^- The problem is to shift

this maximum characteristic for Vqse < Vqse^,- If Ids Is written as

Ids =ftyirGSEmJVDS + AV) -
(7^+AV)2'

2

<AV)2'
2

i

= K

i- msE^y

Vns2Vqse^Vds - -f VDSW
then the correct result is achieved for

(5.2a)

(5.2b)
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figure 5.2 Similarity of Output Characteristics

A7 = Vdsat^ ~ vdsat = vQSEmax- Vqse-
That is,

Ids - K

= K

Vqse^Vds - 2Vds"

VqseVds ~
7^

- VDs{VosEm„ - Vqse)
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(5.3)

as desired. Pictorially, the process of shifting the origin of the output

characteristic for Vqse = Vqse is shown in Figure 5.3 . The portion of the

characteristic at the second set of axes has been transformed to model the

dashed characteristic at Vqse < Vcse^-

The transformation predicts the correct Idsat values (for this simple

analytical model) if Eq.(5.2a) is rewritten as

e

Ids = K lfew11J>wMVds. Vqse) + A7] -
[min(VDs.VQSE) + A7]2

- K YGSE« A7
(AT)1 (5.4)

In the saturation region, VDS ^ Vdsat (= Vqse). Qnd Eq.(5.4) becomes



Ids
1 1 1 1

VCSE^
- ^- " ""

-

! 1 1 1

figure 5.3 Origin-Shifting Transformation

Ids = K vost^ +m-^'l^
- K '*mJp-U&
(VcspY=K VasBmVosB - i-f£i- - VcseW

and since A7 = YesE^ ~ Vqse.

T - rAVoSE)2Idsat - K—g •

The first term of Eq.(5.5) is

IdSAT,^ = lDs(VDSATtDta.VQSEaax).
the current at the saturation point for the Vqse = Vsss characteristic.

The origin-shifting transformation relies on the quadratic form of the

Idsat~~Vdsat function,

Idsat - gK^ks^r)8 •
The variation of Idsat with Vdsat is not generally quadratic, though. The

Vds

49

(5.5)
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extensions of the model which account for this and other departures from

the simple theory are outlined in the next subsection.2

5.2.2. Extensions The original generalization of the l-d model can be

summarized as [14]

Ids = TDs{min(VDs.VQSE) + AT) - TDS(bV) + Tq(Vqse)Vds (5.6a)

A7 = rff(7csO - Ts(Vqse) = VDSATmas - Ts(Vqse) (5.6b)

Vqse = Vqs - TB(VBS). (5.6c)
The saturation voltage is allowed to vary with Vqse through Ts. and the out

put conductance in saturation can change with Vqse through Tq. This form

of the model requires only four one-dimensional tables,

Tds(Vds) (5-7a)

TB(VBS) (5.7b)

Ts(Vqse) (5-*0

Tq(Vqse) - (5-7d)
The l-d model, with the generalizations of Eqs.(5.6), has been shown to fit

small-geometry MOSFETs well [14].

5.2.3. Revised Model The model specified by Eqs.(5.6) was primarily

intended for use in a type of timing simulator that does not require gm, 0mte,

continuous current, or continuous £<&, all of which are needed in circuit

simulation. Equations (5.6) comprise the starting point for the one-

dimensional model of this project. Some of the changes performed make the

model useable for circuit simulation. Other alterations lower the requisite

memory allocation by replacing look-up tables with cubic spline fitting func-

8An interesting fact to noteis that the Idsat-vdsat characteristic is a rotated version ofthe
linear-region Ids(vds-vgse ) characteristic for this simple model. This can be proven by a
change-of-variableoperation performed on Eq.(5.1) .
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tions.

Four functions are used to store the data set as before. However, all of

the functions are cubic splines, rather than tables. The functions which con

tain the data set for the revised model are:

fc. = Sds(Vds) (5.8a)

VT = SMs) (5.8b)

Vdsat = Sz&qse) (5.8c)

**.* = Sh(Vgse)- (5.8d)
Equations (5.8a), (5.8b), (5.8c), and (5.8d) are cubic splines that represent

the same portions of the characteristics as Tds. Tb, Ts. and Tq, respectively.

The replacement of the tables with splines has resulted in a model with gen

eral fitting ability, as well as continuous drain current and partial deriva

tives. Also, the original model does not move all of the linear-region charac

teristics' Vqse dependence to A7, because of the "min(Vds,Vqse)" term in

Eq.(5.6a). That minor restriction has been removed.

5.3. CURRENT AND CONDUCTANCE CALCUIATIONS

The Ids and g^g calculations were done the same way for both the linear

and the saturations regions in the original formulation of the l-d model

(Eqs.(5.6)). The revised model performs the current and the partial deriva

tive calculations differently for each region, which results in a gain in compu

tational efficiency. The initial step of determining whether the operating

point lies in the linear region or the saturation region is the same as that of

the 2-d model:

Vqse - Vqs - Si(VBS);

Vdsat - Sz{Ygsb)\
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tf ( Vds ^ Vdsat ) then

transistor is in saturation;

else

transistor is in linear.

5.3.1. Normalization The first step in the generation of the data set for

this model is to remove the effect of the saturation-region output conduc

tance Qda from the drain current characteristics. A set of output charac-
9 sat

teristics is the input to the data set generation programs. For each curve,

corresponding to a particular Vqse. the value for g^a^ is found. Then, the

current at each data point is normalized by subtracting off the term

(Vbs)(9da )• The effect of g^^ is added back into the drain current when

the model is evaluated, such that continuity is maintained across the linear-

to-saturation transition. The normalization simplifies the characterization

procedure and results in faster model evaluation, as will be shown in the fol

lowing subsection.3

5.3.2. Drain Current In the saturation region, the drain current is given

by

Ids = Sj»(15aiO - Sds(&V) + Ss(Vqse)Vds (5.9a)

= /mm " Sds(*V) +g+^VDS , (5.9b)
where Idsat denotes the current at the saturation point for the

Vqse^Vqse^ characteristic and A7= Vdsat^ " S2(Vqse)- If the normaliza

tion described in the previous subsection was not carried out, the current

equation would instead be

*rhedata set generation procedure is outlined more fully in the appendix.
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Ids - SDs(VDSATmJ) - Sds(^V) - S^Vcse^Ydsat,^ +Ss(Vqse)vds .
which is less efficient to compute.

A simple means is used to account for the non-zero saturation-region

gdsBtLt in this model. Spline 53 contains gds^ as a function of V&e and is used

to model the effect. The spline provides a term which is added to the basic

model, as shown in Eqs.(5.9), such that the current in saturation has the

form

Ids ~ Idsat + 0cfc,at^s

where Idsat ~ Idsat ~^ds(^V). Thus, the output characteristics in satura

tion are approximated as linear in VDS with their slopes dependent upon

Vqse- This formulation has the advantage that the partial derivative of Ids

with respect to VBs is continuous across the linear-to-saturation transition,

because the Ss(Vqse)Vds term is added to the current in the linear region

also as shown next.

In the linear region, the drain current is given by

Ids = Sds(Vds+ AT) - 5d5(A7) + S^(Vqsb)VDs (5.10a)

= Sds(VDs + AT) - SdsW +flteMt VDS (5.10b)
with A7 defined as before. The drain current equation would be

Ids = Sds(Yds + AV) - SK(LV) - SJiV<sBwjVS8 + S^VcsbWds
without normalization of the data set.

The current calculation for the saturation region is simpler than that for

the linear region. The partial derivative calculations can also be simplified

when the operating region is known, as described in the next subsection.
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5.3.3. Partial Derivatives The Sds spline depends on a single independent

variable, VBs- Under the origin-shifting transformation, the difference

between two values from Sds is used in the calculation of the drain current.

The two values are for two different effective VDs values, (VpS + AT) and (AT).

From this point on, the following symbols are used:

Vdse, = VDS + A7

Vdse8 = A7.
By its definition A7 = Vdsatmax- Sz(Vqse) is a function of Vqse alone. Thus,

dSDs_= dSps g ^ (5Ua)
dVps dVDSE

dSps_ = dSps dVpss = sj)s z*S*_t (5.llb)
dVQSE dV^SE QVqse dVosE

where Vpss refers to the appropriate effective Yds- The derivative of SDs can

be calculated explicitly.

In the linear region, the partial derivatives follow from differentiation of

Eq.(5.10). Calculation of output conductance g^ is straightforward. Equa

tion (5.10b) has only two terms which vary with VDs, the first term and the

last term; g<js is thus given by

dips dSps(VDs+bV) ,
9ds ~ dVps " dVDS ffdSrat

= Sds(Vdsex) + **.*. (5-12>
The AT variable depends on Vqse, and Ss is a function of Vqse- Therefore, all

of the terms in Eq.(5.10a) contribute to gm, and the expression for gm is

Sips
9m ~ QVqse

_ dSpS(VDs +AT) _ 35jg(AT) +BS^Vqse) y
" dVoss dVosE ^GSE
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The backgate conductance ^mte is calculated from gm and the derivative of

Sl via the chain rule.4

The partial derivatives are analogously computed in the saturation

region. The current equation in saturation is

Ids = Sps^psATnJ -Sds(AT) + S3(Vqse) Vds - (5.14)
The output conductance is explicitly stored in Sa, Le.,

flte^ = Ss(Vqse)- (5.15)
The transconductance is slightly more complicated than the output conduc

tance. The partial derivative of Eq.(5.14) with respect to Vqs is

85p5(A7) , dS^Voss) „
9m " " dVosE + OVasE Vds

=-^(7^8)^g- +̂ -7,5. (5.16)
The backgate conductance is calculated in the same manner as in the linear

region.

Comparison of Eqs.(5.15) and (5.16) to Eqs.(5.12) and (5.13) and com

parison of Eqs.(5.10) to Eqs.(5.9) demonstrates the savings in computational

effort for the saturation region over the linear region which occurs from per

forming the calculations in an operating-region-dependent manner.

5.4. CONTINUITY CONSIDERATIONS

Like the 2-d model, the structure of the l-d model guarantees drain

current continuity. Unlike the 2-d model, the l-d model also has all first par

tial derivatives continuous as a consequence of the use of splines to store the

4 Ifnot stated all derivatives are evaluated at the appropriate operating point.
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entire data set.

In the next chapter results on the fitting ability, the time needed for

model evaluation, and the convergence properties of the one-dimensional

empirical model are presented.



CHAPTER 6

RESULTS

6.1. INTRODUCTION

This chapter contains results on the performance of the empirical

models. The fitting ability of each model is demonstrated. The time required

to evaluate the present models as well as a simplified version of each is given

and compared to the model-equation-evaluation times for the SPICE2 analyti

cal models. The effect on the convergence properties of SPICE2 due to the

use of the models is described. Some conclusions are drawn regarding the

models, and suggestions for future work are outlined.

6.2. ACCURACY

The accuracy of the empirical models in fitting MOSFET I-V data is

demonstrated in this section. In Chapter 3, it is stated that the data set for

an empirical model can be developed from several sources. Accordingly, the

data set for the 2-d model example below has been generated from the

SPICE2 LEVEL-2 analytical model, with parameter values for a short-channel

device. The data set for the l-d model example has been developed from

measured data from a short-channel MOSFET.

6.2.1. Two-Dimensional Model The data set for this test of the 2-d model

has been generated from the SPICE2 LEVEL-2 model with parameter values

appropriate for a contemporary 1.35/um channel-length NMOS device [23], in

the manner outlined in Appendix 1.

57



58

Figure 6.1 shows the data which has been loaded into the Tds table. Fig

ure 6.2 shows the actual data as points, and the fit from the 2-d model as

solid lines. The characteristic for the intermediate Vqse value noted in Fig

ure 6.2 demonstrates the adequacy of the interpolations in Vqse. while each

of the characteristics demonstrate the adequacy of the interpolations in Vds-

Rgure 6.1 Tds Data.
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Figure 6.2 Output Characteristics from 2-d Model.

linear-region output conductance curves from the two-dimensional

model for this data set are shown in Figure 6.3. The curve corresponding to

Vqse4 is discontinuous at the boundaryof the out-of-bounds linear region. The

amount of discontinuity can be reduced by storing more data points in Tds-
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For this example, Tds contains 91 points and each spline has been fit to

5 points. The total storage requirement is thus 91 +16(5-1) = 155 loca

tions.

figure 6.3 linear-RegionOutputConductance from the 2-dModel.
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6.2.2. One-Dimensional Model The data set used for the accuracy test of

the l-d model presented in this subsection has been automatically developed

using the programs described in the appendix and in [25]. The device used

for the test is an n-channel depletion-mode transistor with drawn channel

length and width of 2.5 urn and 50 am, respectively.

Output characteristic curves from the l-d model are depicted in Figure

6.4. The points represent measured data, while the solid curves are from the

model. The curve for Vqse^ is the only one which is stored explicitly; the

others are the result of the origin-shift operation. The fitting ability of the

model for a difficult (i.e., short-channel, depletion-mode device) example is

thus demonstrated.

The Sds spline has been fit to eight data points in this example, which

means that 28 spline coefficients are stored. Each of the other three splines

is fit to five points, so the combined storage for their coefficients is 48 loca

tions, resulting in a total storage requirement for the data set of only 76

locations.

6.3. SPEED OF EVALUATION

This section consists of results on the time required for computing the

drain current and the partial derivatives via the two empirical models. Data

is presented also for precursory versions of the models. Model equation

evaluation times for SPICE2 analytical models are included for comparison.

6.3.1. Present Versions of the Empirical Models In Table 6.1 below, typi

cal model evaluation times are given for each empirical modeL The figures

apply to a single evaluation of each model. The data in Table 6.1 does not

include any charge calculations.
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Ids

Figure 6.4 Output Characteristics from the l-d Model.



Model

2-d

l-d
LEVEL-2

Typ. Eval. Time (ms)
5.2
2.1

8.75

Rel. Eval. Time

0.59
0.24

1.00

Table 6.1 Model Evaluation Times.
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The column in Table 6.1 labeled "Relative Evaluation Time" demonstrates

the speed advantage the empirical models have over an equivalent analytical

model, i.e., the SPICE2 LEVEL-2 model. The 2-d model is nearly twice as fast

as the LEVEL-2 model, and the l-d model is over four times as fast as LEVEL-

2. The SPICE2 LEVEL-3 model is up to 40% faster than LEVEL-2 [l]. Assuming

that the LEVEL-3 model requires 5.25 ms for equation evaluation, the 2-d

model is about equal to LEVEL-3 in efficiency, and the l-d model is about 2.5

times more efficient than LEVEL-3.

6.3.2. Amplified Empirical Models A class of MOSFET circuits exists which

can be simulated successfully without computing gm and gmbs- Included in

this class of circuits are simple combinational switching circuits that do not

have tightly-coupled feedback loops. Versions of the l-d and 2-d empirical

models appropriate for this type of circuit have been investigated in this

research, and are reported in [13]. The data set is stored exclusively in

tables in these simple models.

The results on model evaluation time from [13] for the simplified empiri

cal models are given in Table 6.2.



Model Typ. Eval. Time (ms) Rel. Eval. Time

2-d 1.30 .15

l-d 1.07 .12

LEVEL-2 8.75 1.0

LEVEL-1 .53 .06

Table 6.2 Evaluation Times for Simplified Models.
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Table 6.2 shows that the simple models both perform significantly faster in

this test than the LEVEL-2 model.

The fact that the simple models do not calculate gm and g^s does not

affect the accuracy of the simulation, because circuit simulation programs

converge to a solution. The absence of gm and gmbs can lead to nonconver

gence for some circuits, though. When there is no convergence problem, the

iteration count is typically increased by 10-20% over a similar simulation

which incorporates gm and g^s.

The evaluation speed of the l-d model can be increased still further, if

the accuracy constraint can be relaxed such that interpolation can be elim

inated [20]. As reported in [20], the l-d model at this degree of approxima

tion is faster to evaluate than the LEVEL-1 model. However, the general util

ity of a model which is this approximate and which does not generate the

transoonductance and backgate conductance terms is limited.

6.3.3. SPICE2 Simulation Tinies The two empirical models have been

tested in SPICE2 for dc and transient analyses. The models at their present

state of development determine all of the dc quantities required at an

operating point, but do not compute charge. Thus, in transient analysis the

Meyer model [24] is used for the gate charge and the source and drain

diffusions are represented by the familiar abrupt-junction capacitance
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expression.

Total run times for SPICE2 are not greatly affected by the use of the

empirical models. This is because the dc portion is a small part of the total

model evaluation time for MOSFETs. Simulators that have MOSFET evaluation

times which are dominated by the current and conductance calculations

should have faster overall run times if empirical models are used.

For the circuits tested to date, the present versions of the empirical

models do not significantly affect the convergence of SPICE2. However, more

tests are needed to fully characterize the effects of the empirical models on

the convergence properties of the program.

6.4. CONCLUSIONS

The empirical models which have resulted from this research fit the I-V

characteristics of modern MOSFETs well. The models are faster at generat

ing the element values for the companion model than accurate analytical

models. The empirical models have been successfully used in SPICE2. The

data sets for the models are more readily generated than a parameter value

set for an equivalent analytical model.

The l-d model requires less storage than the 2-d model. But, which

model provides the most fitting generality is not established. A wide variety

of devices are currently being fit with each model to answer this question.

The 2-d model decouples the I-V information to a lesser degree than the l-d

model, and thus may be less approximate than the l-d model.

For SPICE2, a speedup in the overall simulation time due to the speedup

in the dc part of the model evaluation through the use of the empirical

models is not apparent. Other types of simulators may see a change in the
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overall simulation time. In particular, relaxation-based simulators which

perform equation solution efficiently and are thus more affected by model

evaluation time will see a bigger benefit when empirical models are used.

6.5. FUTURE WORK

There are several areas where more research could be carried out in

empirical MOSFETmodeling.

The effect on convergence resulting from the discontinuity of the partial

derivatives of the 2-d model needs further investigation. The use of splines

for the linear-region current table may provide a convenient means of elim

inating this problem. Also, quadratic splines should be tested for the func

tions currently fit with cubic splines. Quadratic splines are faster to evaluate

than cubic splines, and require fewer coefficients per number of points fit.

However, if quadratic splines are used, more data points may be required to

maintain accuracy.

Subthreshold conduction is not modeled. Subthreshold conduction is

important in some present-day circuits, and will become more significant as

device miniaturization continues [21]. An extension to the subthreshold

region should be investigated in future work.

There is considerable disagreement on the proper analytical form for

the MOSFET gate charge model. Astudy on the feasibility ofrepresenting the

gate charge using empirical techniques should be performed.

Like the subthreshold-conduction effect. MOSFET punch-through

becomes a greater problem as devices are scaled down [21]. Extension of

the empirical models to the punch-through region is a potential research

topic.
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Perhaps the most interesting area for future work is in developing a

hardware implementation of an empirical model. Since the data set storage

requirements are modest, and since the arithmetic operations used in the

model evaluation are simple, hardware implementation should be straight

forward. This should yield very efficient model evaluation, and would be use

ful for example in a desktop computer which is limited in circuit simulation

applications by floating-point performance.



APPENDIX 1

DATA SET GENERATION

Automatic data set generation programs for the l-d and 2-d empirical

models have been implemented by Hershbarger[25]. The methods used are

outlined in this appendix for completeness.

Two-Dimensional Model

To begin the data set generation for the 2-d model, it is assumed that

output characteristics have been measured or calculated as shown in Figure

A.1. Each Vqse - const, curve provides values for Tds. and each provides

figure A.1 Output Characteristics.
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data points for the later determination of Vdsat = &z(Vbsb)*

Idsat = S3(VDsat). and Iduax ~ S^Vqse)-

A smooth, differentiable fitting function, in this case a cubic spline, is fit

to the first few points of a Vqse = const, curve, starting at Vds = 0. The slope

of the fitting function at the last point is used to extrapolate the characteris

tic to Vds = Vduax- If too few points are fit, the resulting Ids value at Vduax

will be too large (Figure A.2). Another point is then added to those fit with

the spline, and the extrapolation is repeated. When the extrapolated charac

teristic intersects the measured current at Vduax as shown in Figure A.3, the

process is completed. If a data point does not exist at the saturation point,

the suitable values for IpsAT and Vpsat can be generated from the spline

fitting function in an iterative manner.

The points fit with the spline then are identified as the Tps data for the

Vqse value of the characteristic. The value for VpSAT is the Vps value of the

Ids 1 1

••'.•*'

: • • " " i 1

Yds* Vpsat
Figure A.2 Incorrect Extrapolation.

Vds



Ids
I 1

•• •••«••••

i

VDS = Vpsat Vds
figure A3 Correct Extrapolation.
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last point fit, and IpSAT is the drain current at Vdsat- The current IpuAX at

Vduax is already known. When the process is completed for all values of Vqse.

the data relating IpsAT to Vdsat and Vdsat to Vqse can be fit with cubic

splines.

One-Dimensional Model

The data set generation program for the l-d model takes as input the

Tds data found by the program for the 2-d model. The values for g^^ are

also taken as input, and used to normalize the characteristics such that they

have zero slope in saturation. This is accomplished by subtracting an

amount (VDs)(9&tJ) from each TDs drain current value.

The saturation voltage is adjusted for each curve so that Idsat is accu

rately predicted by the l-d model. This step amounts to tuning the

Vdsat = Sz(Vqse) function.
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The final step in the data set generation is to tune the characteristic for

Vqse such that the fractional error in Ids predicted by the model is evenly

distributed over the linear region. A weighted average of each characteristic

determines the modifications made to the Vqse . curve.

ThresholdVoltage

The threshold voltage spline is calculated from the usual Vt(VBs) data,

obtained as described in [8] or [9]. In addition, an additive dependence on

Vps is accounted for, allowing Vp to be modeled as

VT = SMs) + S5(VDS)
if desired. The S6 spline is determined similarly to Sx.
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