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Vlasov-Poisson and modified Korteweg-de Vries theory and

simulation of weak and strong double layers

K. Y. Kim

ABSTRACT

A genera] graphical method of solving the Vlasov-Poisson system associ

ated with a set of nonlinear eigenvalue conditions is presented.

Analytic evidence for the existence of small amplitude electron and ion

acoustic monotonic double layers is presented. These are the nonlinear exten

sions of the slow electron acoustic wave and the slow ion acoustic wave, respec

tively: one related to the electron solitary hole, the other related to the ion

acoustic solitary hole, both having negative trapping parameters. A modified

K-dV equation for a monotonic double layer, showing a relationship among

double layer amplitude, its propagation speed and its spatial scale length, is also

derived.

We present a general analytic formulation for nonmonotonic double layers

and illustrate with some particular solutions. This class of double layers satisfies

the time stationary Vlasov-Poisson system while requiring a Sagdeev potential

which is a double valued function of the physical potential: it follows that any

distribution function having a density representation as any integer or nonin-

teger power series of the physical potential can never satisfy the nonmonotonic

double layer boundary conditions. A K-dV like equation is found showing a

relationship among the speed of the nonmonotonic double layer, its spatial scale

length, and its degree of asymmetry.



Particle simulations of ion acoustic double layers have been successful in

short systems (L-80XP) and with low drift velocities (vd= 0.45 vlh for the

electrons). We present simulation results for systems driven by constant current

and by constant applied voltage. By using the analytic formulation, we find that

there is a "critical" electron drift velocity (which is considerably smaller than the

value reported by previous papers but very' close to the value of our simula

tions) for the existence of ion acoustic double layers. We find that for a given

electron drift velocity (exceeding the "critical" drift) there is a corresponding

maximum amplitude for the ion acoustic double layer. We show that the nei

potential jump across the ion acoustic double layer is determined by the tem

perature difference between the two plasmas. It is also shown that the usual

Bohm condition is not satisfied for ion acoustic double layers with finite ampli-

•tude: the velocity of an ion acoustic double layer decreases (below C>) as its

amplitude increases.
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1. INTRODUCTION

In recent years, there have been considerable research interest in understanding local elec

trostatic potential formations in plasmas1"33. Besides theoretical and experimental interests.

there are two practically important applications: one is the recently developed concept ofplasma

confinement using electrostatic potential structures; the other is that some of these potential

structures are considered to be responsible for the acceleration of particles in avariety of plas

mas.

There are two frequently used methods for solving aVlasov-Poisson system describing an

electrostatic potential structure. There is first the well known "BGK method", which prescribes

both an exact potential structure form <M*) and all the distribution functions except one (e.g..

one of the trapped particle populations) which it must then solve for self-consistently--. It

turns out that the BGK method applied e.g., to monotonic double layers, can in fact yield nega

tive (nonphysical) distribution functions14-15-33. Therefore, in the second chapter we outline

and generalize an alternative "graphical method" or "reduced potential approach" for solving the

Vlasov-Poisson system.

There are various configurations of interesting potential structures. Here we describe

some of the potential structures ofrecent interest. A monotonic potential double layer is ideall>

an isolated pair ofoppositely charged sheets which results in anarrow region ofabrupt potential

jump of some amplitude A* - *; well outside of this localized jump, the potential is effective!)

uniform1"17. Even though double layer studies often are restricted to such simple (i.e., mono

tonic) potential structures in plasmas, the double layer concept is more accurately a generic

concern about the rules governing allowable transitions between regions of two (or more*

different collisionless plasmas. Some recent numerical calculations1415 suggested that there ma\



be a low amplitude limit for the monotonic double layer, arguing that the existence of a weak

double layer requires a trapped-particle distribution that is nearly a 8 function and therefore is

subject to strong instabilities.

In the third chapter, we present two different kinds of weak monotonic double layer ana

lytic solutions17, i.e. which do have small amplitude. These solutions are the analytic exten

sions of the electron solitary hole and ion acoustic solitary hole15-17,2930, both having negative

trapping parameters; these are the nonlinear extensions of the slow electron acoustic wave and

the slow ion acoustic wave, respectively.

Often in experiments and in simulations the observed double layer exhibits a potential

spatial-profile having a potential depression on the low side (or conversely a potential bump on

the high side), as shown in Figure 1(a). Such a non-monotonic double layer (NDL) is actualh

a localized region of three sheets of alternating charge sign, and thus includes subregions of

oppositely directed non-monotonic electric fields15"1618"28.

It is increasingly clear that even the straightforward NDL structure can evidence complex

nonlinear characteristics, as exhibited many ways in both simulations and experiments. Reports

of several recent simulations1618'23 indicate that an ion acoustic double layer can be formed by

reflection of electrons off the negative potential depression; its simulated potential profile has

an NDL form as in Figure 1(a). Recent satellite measurements24 of field aligned potentials in

the auroral region, show signatures that are especially consistent with the NDL, having a

characteristic potential depression at the low potential side (or a bump on the high potential

side). It has been further suggested24 that a series of such small amplitude non-monotonic dou

ble layers might account for a large portion of the total potential drop along auroral field lines.

and might also explain the fine structure of auroral kilometric radiation. The recent thermal

barrier cell concept for tandem mirror devices is based on the generation of an abrupt potential

depressions by means of forced changes in the particle distribution functions13:?. Recent

experiments with Q-machine plasmas26 also reported the formation of a potential depression

between two plasmas with different electron temperatures; the "non-monotonic" negative poten-
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tial depression is thought to play acrucial role in the formation of double layers, accounting for

both the observed current disruptions (by reflecting the electrons) and also for the high fre

quency noise excitation seen behind the double layer (caused by atwo stream instability involv

ing electrons that pass the negative potential peak15-28). A recent triple plasma experiment

reported that the formation of an ion acoustic type double layer was observed in the laboratory

for the first time27.

Although there have been many theoretical, numerical and experimental investigations of

double layers, recent theoretical work has been devoted to numerical evaluations of the

Vlasov-Poisson system (or of the fluid system) mainly because of the highly nonlinear proper

ties of double layers13"16-21-2228. In order to explain nonmonotonic double layers, theoretical

efforts have attempted to generalize ion hole, ion acoustic soliion or monotonic double layer

descriptions1315-16-21-22. It should be noted that to our knowledge there exists only one theory-

offering a numerical solution for anonmonotonic potential structure obtained from aVlasov-

Poisson system28; However, it should be pointed out that the distribution function used in this

work was not self consistent with the Vlasov equation.

In the fourth chapter, we present ageneral non-monotonic double layer formulation and

self-consistent analytic solutions for nonmonotonic double layers which satisfy atime stationary

Vlasov-Poisson system. We further derive aK-dV like equation which describes amoving NDL

structure related to the ion acoustic wave. Expressions are found relating the NDL two poten

tial amplitudes * and *,, the spatial scaling parameter (the NDL structure width), and the NDL

speed. In the final chapter, we describe our numerical simulation results of ion acoustic double

layers and compare these with our theoretical results for finite amplitude ion acoustic double

layers , which were obtained from our theoretical formulation.



References

1. L. P. Block, Cosmic Electroayn. 3, 349 (1972)

2. G. Knon and C. K. Goertz, Astrophys. Space Sci. 31, 209 (1974)

3. J.R. Kan, L.C. Lee, and S.I. Akasofu, / Geophys. Res. 84, 4305 (1979)

4. B.H. Quon and A.Y. Wong, Phys. Rev. Lett. 37, 1393 (1976)

5. G. Joyce and R.F. Hubbard, J. Plasma Phys. 20, 391 (1978)

6. P.Coakley, N.Hershkowitz, R. Hubbard, and G. Joyce, Phys. Rev. Lett. 40, 230 (1978)

7. J.S. DeGroot, C. Barnes, A. Walstead, and O. Buneman, Phys.Rev.Lett. 38, 1283 (1977;

8. E.I. Lutsenko, N.D. Sereda, and L.M. Kontsevoi, Sov. Phys. Tech. Phys. 20, 498 M9^6)

9. N. Singh, Plasma Phys. 22, 1 (1980)

10. Chung Chan, N. Herschkowitz and K. Lonngren, Phys. Fluids 26, 1587(1983)

11. N. Sato, R. Hatakeyama, S. lizuka, T. Mieno, K. Saeki, J.J. Rasmussen, and P. Michel-

son, Phys. Rev. Lett. 46, 1330 (1981)

12. S.S. Hassan, and D. ter Harr, Astrophys. Space Sci. 56, 89 (1978)

13. F.W. Perkins and Y.C. Sun, Phys. Rev. Lett. 46, 115 (1981)

14. H. Schamel and S. Bujarbarua, Phys. Fluids 26, 190 (1983)

15. H. Schamel, Physica Scripta T2/1, 228(1983)

16. M. Hudson, W. Lotko, I. Roth and E. Witt, J. Geophys. Res. 88, 916(1983)

17 K.Y. Kim, Phys. Utter 97A, 45(1983) (see also ERL Report M83/37 at U.C. Berkeley)

18. T. Sato and H. Okuda, Phys. Rev. Lett. 44, 740 (1980)

19. T. Sato and H. Okuda, J. Geophys. Res. 86, 3357(1981)

20. J. Kindel, C. Barnes and D. Forslund, in "Physics of Auroral Arc Formation"(Edited by S

Akasofu and J. Kan), p. 296. AGU, Washington (1981)

21. G. Chanteur, J. Adam, R. Pellat and A. Volokhitin, Phys. Fluids 26, 1584(1983)



22. K. Nishihara, H. Sakagami, T. Taniuti and A. Hasegawa, submitted for publication(1982)

23. K. Y. Kim, Bull. Am. Phy. Soc. Vol. 28 #8 1160 (1983)

24. M. Temerin, K. Cerny, W. Lotko and F. S. Moser, Phys. Rev. Lett. 48, 1175(1982)

25 R. Cohen, Nuclear Fusion 21 289(1981)

26. R. Hatakeyama, Y. Suzuki, and N. Sato, Phys. Rev. Lett. 50, 1203(1983)

27. Chung Chan, M. H. Cho, Noah Hershkowitz and Tom Intractor, preprint in 1984(Univer-

sity of Wisconsin PTMR 84-1): "Laboratory Evidence for "Ion Acoustic" Type Double

Layers"

28. A. Hasegawa and T. Sato, Phys. Fluids 25, 632 (1982)

29. H. Schamel, Physica Scripta 20, 336 (1979)

30. H. Schamel and S. Bujarbarua, Phys.Fluids 23, 2498 (1980)

31. H. Schamel, Z. Naturforsch. 38a , 1170-1183(1983)

32. LB. Bernstein, J.M. Green and M.D. Kruskal, Phys. Rev. 108, 546 (1957)

33. H. Schamel, Plasma Phys. 14, 905 (1972)



x = x m

FICi. 1. (a) NDL with potential depression at the low potential side, (b) Sagdeev potential
for the above NDL. (c) Ion pha.sc space plot, (d) Fleetron phase space plot.



2. A General Graphical Method for Solving aVlasov-Poisson System

To describe propagation of an electrostatic potential structure in aVlasov-Poisson system.

we shift to a frame that has been Galilean-transformed to the wave frame (where the wave is

time stationary). The electron and ion Vlasov distribution functions each consist of two com

ponents: some particles are energetic enough that they stream freely through the potential

structure, while the rest reflect orT it. In this frame, we can express the time stationary solution

to the Vlasov equation (i.e., the particle distribution functions) as any function of the particle

constants of motion; usually these are recognized to include (i) the particle total energy and Mi)

the sign of the velocity of xYitfree streaming (also called untrapped) particles. However, besides

these usual consunts ofmotion, it is important to note that a third constant of motion exists

for the reflected (also called trapped) particles, namely sgn (x - xm ) where xm represents the

position of potential minimum (or maximum) for the negatively charged particles (or the posi-

lively charged particles). It turns out that this final constant of motion plays an important role

in constructing non-monotonic double layers.

There is first the well known "BGK method" for solving the Vlasov-Poisson system, which

prescribes both an exact potential structure form *(x) and all the distribution functions except

one (e.g., one of the trapped particle populations) which it must solve for self-consistently' It
turns out that the BGK method applied e.g., to monotonic double layers, can in fact yield nega

tive (nonphysical) distribution functions2,3.

Therefore we present here an alternative "graphical method" or "reduced potential

approach" for solving the Vlasov-Poisson system. Using electron ife) and ion distribution

functions if,) which satisfy the Vlasov equation, the Poisson equation for *(x) may be written

by introducing aSagdeev (or reduced) potential VU) as follows:

*"(*) = e2*/dx2 = *„

d<t>
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Clearly, the electric field amplitude is proportional to the square root of the magnitude of the

Sagdeev potential. It should be noted that this approach has already been used successfully to

describe some relatively simple potential structures such as ion holes, electron holes, solitons.

and monotonic double layers3"10.

To outline and generalize this reduced-potential approach, we present below aset of sim

ple rules which, with Fig. 1, allows us to construct the corresponding Sagdeev potential V(6)
for any arbitrary potential form 4>ix). From the six basic graphs of Fig. 1, one can derive aset

of solution constraints ( or "boundary conditions" or "nonlinear eigenvalue equations"4 or "non

linear dispersion relations" 6). Note that the "reference potential" for <t>ix) is always *. Rules

(a) through (d) describe eight possible potential configurations as illustrated in Fig. 1(a) through

Fig.l(d).

(a) This graph represents any physical potential configuration in which the potential changes

curvature from positive value to negative value. The corresponding Sagdeev potential

should have a local minimum with negative value; from the plot, the corresponding

eigenvalue conditions are seen to be given by K<*) <0, Vi+) - 0and V"M > 0.

(b) This graph represents any physical potential configuration in which the potential changes

curvature from negative to positive. The corresponding Sagdeev potential should have a

local maximum with negative value; from the plot, the corresponding eigenvalue cond.-

tons are seen to be given by K(0) < 0, K'(<fr) - 0 and *"'(</,) < 0.

(c) This graph represents any physical potential configuration in which the potential

approaches asymptotically to some value * at infinity with positive curvature. The

corresponding Sagdeev potential should have local maximum with zero value at 6=*.

from the plot, the corresponding eigenvalue conditions are seen to be given by HiM « 0.

V'bl>) - 0, and V"i+) < 0.



(d) This graph represents any physical potential configuration in which the potential

approaches asymptotically to some value * at infinity with negative curvature. The

corresponding Sagdeev potential should have local maximum with zero value at <b = 0/;

from the plot, the corresponding eigenvalue conditions are seen to be given by K(0/> =0,

V'W - 0 and K"(0) < 0.

(e) This graph represents any physical potential configuration in which the potential 6(x) has

a local maximum having negative curvature at some position. The corresponding Sagdee\

potential should cross <t> axis with positive slope; from the plot, the corresponding eigen

value equations are seen to be given by V(«/>)- 0 and V'W > 0.

(f) This graph represents any physical potential configuration in which the potential <Mx) has

a local minimum having positive curvature at some position. The corresponding Sagdeev

potential should cross <* axis with negative slope; from the plot, the corresponding eigen

value equations are seen to be given by K(ifr) - 0 and K'Oji) < 0.

The boundary conditions K(0) - 0 and K'ty) - 0 in these cases enforce zero electric

field and charge neutrality at <t> - tf>. Besides these rules, it is important to note that the Sag

deev potential is in general multiple-valued function of physical potential when the magnitude

of the electric fields for some fixed value of physical potential are multiple-valued; the multipli

city of the Sagdeev potential is equal to the multiplicity ofthe magnitudes of the electric fields

For example in Fig. 2, in an NDL "staircase" there is adouble valued section of Sagdeev poten

tial for 0 < <t> < *lt\\ and there is a triple valued Sagdeev potential for «J>2 < <* < *?. Or, in a

second example in Fig. 3 which resembles a symmetric thermal barrier potential, the

corresponding Sagdeev potential is double valued for 0m ^ <t> < *• Or finally, for an asym

metric solitary wave in Fig. 4, the corresponding Sagdeev potential is double valued over the

entire range 0 < <t> < \jt.
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4>=^

v(<p) 4i

4>

FIG. 2. A nonmonotonic double layer "staircase" <t>(x) and the associated Sagdeev potential
Vi<f>). Moving along <t>(x) from left to right maps into moving along V(<j>) from (0-i/m , P—0)

to the origin, then to (^3, 0) etc ... , as shown by direction arrows o, ft, c, d.
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FIG. 3. Schematic symmetric "thermal barrier" 0(*), and the associated Sagdeev potential
Vit).
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FIG. 4. Asymmetric solitary wave <f>ix) and the associated Sagdeev potential Vi<t>).
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3. Weak Monotonic Double Layers

K. Y. Kim

E.R.L., University of California, Berkeley,CA. 94720

ABSTRACT

Analytic evidence for the existence of small amplitude electron and ion

acoustic monotonic double layers is presented. These are the nonlinear exten

sions of the slow electron acoustic wave and the slow ion acoustic wave, respec

tively: one related to the electron solitary hole, the other related to the ion

acoustic solitary hole, both having negative trapping parameters. A modified

K-dV equation for monotonic double layer, showing a relationship among pro

pagation velocity and spatial scale length, is also derived.

1. Introduction

A monotonic double layer is anarrow, isolated region of abrupt potential jump of ampli

tude * , due to a localized dipoie-sheet of space charge surrounded by large regions of

effectively uniform potential. Although there have been many theoretical and experimental

investigations of holes and double layers1"21, recent theoretical work has been limited to

numerical evaluations of the Vlasov-Poisson system (or the fluid equation) mainly because of

the highly nonlinear properties of double layers. Recent numerical investigations10:: suggested
that there may be a low amplitude limit for the monotonic double layer, arguing that the

existence ofaweak monotonic double layer requires atrapped-particle distribution that is nearh

a 8 function and therefore is subject to strong instabilities.

In this chapter, we present two different kinds of weak monotonic double layer analytic
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solutions, which do have small amplitude. These monotonic double layer solutions are the ana

lytic extensions to the electron solitary hole and ion acoustic solitary hole which are the non

linear extensions of the slow electron acoustic wave and the slow ion acoustic wave, respec

tively20-21.

To describe propagation of monotonic double layers, we use a Vlasov-Poisson system thai

has been Galilean transformed to the wave frame (where the wave is time stationary). In this

frame, we can express the time stationary solution of the Vlasov equation as any function of

the constants of motion: (i) particle total energy and (ii) the sign of the velocity of the

untrapped particles23-24. Here it is not necessary for us to use third constant of motion, because

a monotonic double layer does not require double-valued Sagdeev potential as a function of the

physical potential.

2. Weak electron monotonic double layer

In order to describe the monotonic double layer related to the electron solitary hole, we

look for a stationary solution in the ion reference frame and take the ion distribution function

to be Maxwell-Boltzmann:

We consider the following electron distribution function which is continuous at the

separatrix24:

/, - (2*)-* (exp{-fc(5*n(v) €* - vd )2 }0(c) +expl-ftd;,2 +p*) }0<-e) ) (2)
where t - TJT, and c - v2 - 2<£ for 0 < <t> < 0 . Here the electron velocity, ion velocity

the wave potential and the spatial coordinates are normalized to the electron thermal velocity

iTtlmtY , ion acoustic velocity iTe/m,)* , the electron temperature Te/e and the electron

Debye length A, - iTJAirn^V, respectively; vd represents the electrons drift velocity. The

electron distribution function at <t> - 0 models a drifting Maxwellian. Here 0 represents the

Heaviside step function and 0 called the trapping parameter can be positive and negative

depending on the structure of trapped electron phase space. We will show that 0 should be
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negative for the existence ofsmall amplitude monotonic double layer.

Again, because the above electron distribution function is expressed entirely in terms of

the constants of the motion, it clearly satisfies the time stationary Vlasov equation. Thus Pois

son equation may be written by introducing Sagdeev potential (K (6)) as follows:

dVi<t>)

V I .. 2

where F and 7"_ are defined as follows:

F(Jal^) - -f^JdV , / n e~ cosh(Kv,) ,
rK 2 ' V ffJ0 >/K2 + 20

r_(^) --^ *-"** ^ e'a with 0<0,
Here the Sagdeev potential is given by the following expression:

-„<*) -e"^ |F(^ ,0) +f-(/U) )+|(e^"1) (6)
where we have set K(<£ - 0) - 0.

F and f _ are given as follows:

/<*!,*) -^J^]dV V[ JWTU -V)e~2 cosh(Vvd) , <7'
1 , x 2 /t <8)

r.<M> --[T-^ +̂ ^
Here Fand 7". have the following small amplitude expansion** « »:

T-M-fa™+ -£*"+-
where GiEd) is a monotonically decreasing function of Ea with C(0) - 1

G(£ )- e"£- +— for Ed » 1. Here Z',U) represents the real part of the derivative ot
d %E]

the complex plasma dispersion function(see Fig. 1(a)) and has following properties:

-—Z' (y) - ^ ~>o) +(y - >0)2 +</»'£/,er or</er "?rm5 )'
2~'v v0

(4)

(5)

(9»

and
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forLv-^ol « land^-0.924

—Z' (y) - —K i 1+-^7 )+*hi8ner order terms )>for l> I» 1•
2 2,y2 2y2

Monotonic double layer solutions are found by considering the following nonlinear eigen

value conditions(or nonlinear boundary conditions) associated with our graphic method.

To impose charge neutrality at x - ±» , we require that the rhs ofEq.(3) should vanish

at the boundaries 4> - 0 , $.

Existence of the double layer requires that the Sagdeev potential be identically zero at

<t> - 0 , 0, so that the electric field equals zero outside the double layer.

An additional condition on the Sagdeev potential (see Fig. 1. (b)-l| is V(<t>) < 0 for

0 < <t> < \ff.

^ * *•• • M dVi® dVW _ n.The first condition yields - ' - o.

•*' f .. 2
-no)-e'2 /-(-^ ,0) +r_<M)

2

v,2 I .. 2
-K'<*) - e~ 2| /"(-y ,*) +T-ifij)
The second condition gives rise the following relations

>J [ .. 2-Vi*)-jie-r*-\) +e 2J/<-y,*> +f-(j3,*)
Solving the above set of nonlinear eigenvalue equations(Eqs.(10)-(12)) together with the

third conditions, one can obtain a set of monotonic double layer solutions.

Since we are interested in weak monotonic double layer solution, we will use the follow

ing Poisson equation in considering the small amplitude limit of Eq.(3):

dVU) (13)

2"'^-" "- ' 3?

+ ft (G(£d) - t2) 4>2 + { higher order terms }

*- d*

-1-0, (10)

_e-**-o. (id

(12)

^ - It - izv<>/5>) * +~-r l» +<* " » *3 2 (14)



20

where Ed is the electron drift energy.

Here it should be noted that we have to retain terms in our expansion at least up to order

<f>2 , in order to satisfy the above nonlinear eigenvalue conditions for the double layer; it is

sufficient to retain the terms up to only <t>V2 for the case of the solitary hole.

By solving Eqs.(13) and (14) subject to our nonlinear eigenvalue conditions(Eqs.OO)-

(12)) together with the third condition, we get the following monotonic double layer solution

*-4{l +tanhKx}2 (15)
4

where

K-±«(T-lZ'f(V5))l/2. (16'

a i or 30Vfff*' K2 (17)
0-!-2£« 5;—•
±. 1 (G(£rf)-r2). (18)
0 48k2

Here it should be noted that the first and third coefficients of the rhs ofEq.(14) must be

positive and that the second coefficient negative: for the first coefficient, this requires

0 < t < 0.285 and 0.924 < y/Fdy in the long wave length limit be - 0): these conditions fol

low from the fact that -jZ*, has an absolute maximum with positive value 0.285 and that -T.
is positive for y/Td > 0.924. In the long wave length and the small amplitude limit, we obtain

the following expressions for yjEd and /3:

\5^Z"riy[Ei)

0-1-2£t--^&IG(£t)-t2}/<. (20)

Here £T is determined from the following equation (see Fig. 1. (a)): t - yZ'AyfE.) - 0.

For some choice of our physical parameters^, £„ 0 and *) we can neglect the third term

in our expansion Eq.(14), in that case we would obtain the following electron solitary hoU

solution20:

0 - <// sech'Ux) , <21)
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where

fl-l-2£„- lW^_'"2 <-0.71asr-0. (22)
Thus, the electron solitary hole solution makes atransition to adouble layer solution when we

take into account the third term of Eq.(14); this term comes entirely from electron densit\

associated with the first term of Eq.(12), the free (streaming) electrons in /,, as t-0. It is

important to note that both the electron solitary hole and the electron double layer solutions

require that the trapping parameter be negative (/3<-0.71) and are the nonlinear extensions of

the slow electron acoustic wave25, whose linear dispersion relation is given by

to2. 1.71 k2TJme as t—0 and 0—0: it follows from Eq.(19) and Eq.(20) by noting that

yJT. —0.924 fljT-0. Thus we see that there are no possible small amplitude solutions for

the case of positive trapping parameter. Negative trapping parameter represents electron phase

space hole(or vortex) for the electron hole case and half vortex like phase space structure for

the case of monotonic double layer. It should also be noted that our weak electron double layer

has high(low) density at the low(high) potential side. From Eq.(20), it follows that the velocity

of double layer decreases as its amplitude increases.

3. Weak ion monotonic double layer

Thus far, we have considered only the double layer related to an electron solitary hole.

We now turn to the problem of adouble layer which is related to the ion acoustic solitary hole

In order to describe this class of double layer, we assume two temperature Maxwell-Boltzmann

electron distributions26 {/», - (l-/)e* +/e* with y > 1and 0 < / < 1 }, which are usualh

found in the space plasma, and we consider the following ion distribution24:

f, - <27r)-»[ exp{-ft( sgniv) c* +v0 )2} e(c.) +exp{-ft(o€, +v02)J 6(-c,) ] (23»
where «, - v2 + 2t<* with -* < <t> < 0 , t - TJT, and ion velocity has been normalized

to the ion thermal velocity iT./m,)*. Here v0 , £0 and a represent the ion drift velocity, the ion

drift energy and the inverse temperature, respectively. The ion trapping parameter(q) can be.

positive and negative depending on the structure of phase space. It will turn out that ion trap-
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ping parameter(a) should be negative for the existence of a small amplitude monotonic double

layer. Thus the Poisson equation may be written by introducing the Sagdeev potential as fol

lows:

*« —
dVi6)

d<t>

<fc

11.
£(-y- -rtt>) +r_(a,-T*)

Here the Sagdeev potential can be written.

+ 0-/)** + /^*

-VM —o 2 £(-y- ,-r*) +f-(a,-T*) +<W)(e*-l) +Ae^-l)
y

(24;

(25;

Monotonic double layer solutions are found by considering the following nonlinear eigenvalue

conditions(or nonlinear boundary conditions) associated with our graphic method:

To impose charge neutrality at x - ±» , we require that the rhs of Eq.(24) should van

ish at the boundaries tf>«- 0 , -0.

Existence of the double layer requires that the Sagdeev potential be identically zero at

<t> - 0 , -^, so that the electric field equals zero outside the double layer.

An additional condition on the Sagdeev potential {see Fig. 1. (b)-2) is Vid>) < 0 for

0 > * > -0.

^ . .. . ... dViO) dV{-+) _ 0.
The first condition yields —tt~ • —77^ °-

d<t> d<t>

-K'(-*)--<?" 2
vo'Fi-j- ,t*) +r_(a,-T*) + (l-/)^-* + /f_>*-0. (26)

-no)--/ 2 V£(-y ,0) +T_(a,0) +1- 0. (21)

The second condition gives rise the following relation:

-Vi-+) --e"^ j£<-^,t*) +f-(a,r*) j+(l-/)(e-* -1) +A*"* -1) -0 I28»
Solving the above nonlinear eigenvalue equations(Eqs.(26)-(28)) together with the third

conditon, one can obtain aset ofmonotonic double layer solutions. Since we are interested in j
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weak monotonic double layer solution, we use the following small amplitude limit of Poisson

equation Eq.(24):

fe .! ,_/+/T -1 r,VTo> 1*-%£<-*' a*.+•-i) <"*>3'2 <29'
+T2| }-f+fy2 - lc(£0) )<*>2 + Ihigher order terms ]

2t2 2

Again solving Eq.(29) and the above nonlinear dispersion relations together with the

requirement V(4>) <0 for -* <* <0, we obuin the following ion acoustic double layer

solution:

* - -4 {1+tanh k0x )2 (30)
4

where

1/2

7' L/Tn) 1

30V^e£° k02 (32)

1/2 /,, .

K„-±«(l-/+/y-fz''(^)1 •

o- 1- 2£0 ^372
T"

* 24k02' 2t2 2
Here it should be noted that all three coefficients of the rhs of Eq.(29) should be positive, for

the first coefficient, this requires r >3.51<l-/+/y> and y/E0 > 0.924: these conditions fol

low from the fact that \z\ has an absolute maximum with corresponding value — and that

it is positive for the range of JF0 > 0.924. By using the asymptotic expansion of plasma

dispersion function in Eq.(31) with Ka =0 and the positivity requirement of the rhs of
Eq.(33), one can show that there are no small amplitude monotonic double layer solutions for
the case of /-0 and £0 » 1. In the long wave length limit, we obuin the following expres

sions for V^o and o:

0.1_2£i_i^/.|-4^£-{c(£,)!. '35.
Here E, is determined from the following equation (see Fig. 1 U>>

\-f+fy-±Z%(yfE,)-0.
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For some choice of our physical parameters we can neglect the third term in the small

amplitude expansion. In that case we would instead recover the ion acoustic solitary hole solu

tion, which is the nonlinear version of the slow ion acoustic wave21-25 as t*1 , / —0 and Or—0.

Our ion acoustic solitary hole becomes an ion acoustic double layer solution by adding the third

term of the small amplitude expansion of the free streaming ion density (distribution function)

as T-i -K). Here we would like to note that a recent experiment reported a transition of ion

hole like structure to weak monotonic double layer27. It should be noted that both our ion

acoustic solitary hole and ion acoustic double layer solution require a negative trapping parame

ter (q < -0.71) and are the nonlinear extension of the slow ion acoustic wave21-25: these con

ditions result from Eq.(34) and Eq.(35) by noting that yfF0 - 0.924 as t - ». We would like

to emphasize that our ion acoustic double layer solution can exist with the ion drift velocity

smaller than the electron thermal velocity9. In contrast to our weak electron monotonic double

layer, the weak ion monotonic double layer has high(low) density at the high(low) potential

side. From Eq.(34), it follows that the velocity of the double layer decreases as its amplitude

increases.

4. Modified K-dV equation for weak ion acoustic monotonic double layer

Having obtained the analytic solutions for the time stationary double layers using the

Vlasov-Poisson system , we would like to present aderivation of the evolution equation, which

describes the one dimensional asymptotic behavior of ion acoustic monotonic double layers of

small but finite amplitude. To describe acollisionless plasma of cold ions and warm electrons.

we consider the following set of equations for the cold ions:

u_ / ^ n (36)n, + (nv)x - 0 ,

.la n <37)V, + VVj, + <t>x —0 ,

A -* -n (38'
where the density, velocity, potential and spatial coordinate are normalized to the unperturbed

density n* ion acoustic velocity (T,/m,),/2, the electron temperature TJe and the electron

Debye length, respectively. We introduce the Gardner-Morikawa coordinate transformation
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i - hm Or-/) and t - 83/2/. Assuming electrons to be in a quasi-equilibrium with the low-

frequency ion acoustic wave, we may expand the electron density as before

ne - 1+ erf + c281/2#3/2 + c3<t>2 + By using reductive perturbation theory, we expand

ii,v,^ in powers of small parameter28 8 as follows:

„ - 1 +6n(1) + 62n(2> + ••• (39.

v - v0 + 8v(,) + 82v(2) + • • •

* - «*<» + 8V2' + ....

Using the Gardner-Morikawa transform, we obuin the following set of equations:

-61'2 d( + 83 2eTn + 8,/2 d{(nv) - 0 , (401
-81'2 B(v + 83 2 drv + 812 v dfv + 81'2 df<6 - 0 , (41)

8 di(<t> - ne - n . <42;

From the above set of equation, we obtain the following set of coupled equations by using

reductive perturbation expansion:

(v0-l)oy»(,) + 6tvn)-0, (43)
(v0 - 1) d<n(2) + 6V»(n + d(vl2) + 8{(n(,,v(,)) - 0 , (44)
(v0-l)d{vn) + 6V*a)«0, (45)

(v0 - 1) d{v(2) + 8?v(,) + v"> d(v(u + B(<1>(2> - 0 , (46)
^(,,-c,*(,, , (47)

6V*"> - c, <t>{2) - nl2> + c2U(l))32 + c3(<t><u)2. (48)
From Eqs.(43), (45) and (47), it follows c, - 1 and we set X n'1' - - v'1' and X v'1' = - <2>''!'

with X - (l-v0)3.

After a certain amount of algebra, we obtain the following modified K-dV equation from

the above set of equations:

d?<*'» - jx3 ^ {c2Ui]))m +-7^"<*M,>2 »+J*«(<t>tU -0 (49)
3 X3 3where c2 < 0, A/X3 > 0, — - -rr (c3 =-r-), and M represents the velocity of the ion
0 Af 2XJ

acoustic monotonic double layer in the frame moving with ion acoustic velocity. Here we have

used the monotonic double layer boundary conditions so that we can extract some useful ph> -

sics. The above equation has the following moving ion acoustic double layer solution:
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*(<» - U4&-U 1+tanh ±VA/,/2x3 (t-Mr)) (50)
4 XJc2 2

Here it should be noted that the velocity of double layers canbeAf<0orA/>0 depending

on the drift velocity of cold ions and the electron equation of state: our double layer velocity is

M < 0 for v0 > 1 and thus the double layer velocity in the lab frame decreases as its ampli

tude increases, but for v0 < 1 the double layer velocity is M > 0 and thus the double layer

velocity in the lab frame increases as its amplitude increases.

5. Conclusion

In this chapter, we have obtained the two different monotonic double layer analytic solu

tions: one related to the electron solitary hole (electron phase space vortex), the other related

to the ion acoustic solitary hole (ion phase space vortex), both having negative trapping param

eters. We have given the analytic evidence for the existence of the small amplitude ion acoustic

and electron monotonic double layers, which are the nonlinear extensions of the slo* ion

acoustic wave and the slow electron acoustic wave, respectively. Finally, we have derived

modified K-dV equation, which describes the moving ion acoustic monotonic double layers ha\-

ing velocity M < 0 or M > 0 in the frame moving with ion acoustic velocity depending on the

drift velocity of cold ions and the electron equation of state.

I am grateful to Dr. T. Crystal for his careful proof reading and valuable suggestions. 1

would like to thank to Prof. C. K. Birdsall, Dr. M. Hudson, Dr. S. Kuhn, Dr. W. Lotko. Dr. J-

P. Lynov, Mr. V. Thomas and Mr. N. Otani for useful discussions. This work was supported

by DOE Contract DE-AT03-76ET53064 at ERL, University of California, Berkeley.

Note Added in Proof:

After submmiting this report, we become aware of the numerical investigation by Hudson

et al.29. We would like to note that they also confirmed numerically the existence of small

amplitude slow ion acoustic monotonic double layers and holes for the case of negative

trapping parameters.
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FIG. 1. (a) The real part of derivative of the complex plasma dispersion function: —Z'r(x).

(b) The Sagdeev potential for the monotonic double layer.
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4. Theory of Nonmonotonic Double Layers

K. Y. Kim

E.R.L., University of California, Berkeley,CA. 94720

ABSTRACT

We present a general analytic formulation for non-monotonic double

layers and illustrate with some particular solutions. This class of double layers

satisfies the time stationary Vlasov-Poisson system while requiring a Sagdeev

potential which is a double valued function of the physical potential: it follows

that any distribution function having a density representation as any integer or

noninteger power series of potential can never satisfy the non-monotonic dou

ble layer boundary conditions. A K-dV like equation is found, showing a rela

tionship among the speed of the non-monotonic double layer, its scale length,

and its degree of asymmetry.

1. Introduction

A monotonic potential double layer is ideally an isolated pair of oppositely charged sheets

which results in a narrow region of abrupt potential jump of some amplitude 16 » *li\ well out

side of this localized jump, the potential is effectively uniform1 "p.

In the third chapter, we have presented two different kinds of weak monotonic double

layer analytic solutions17, i.e. those which do have small amplitude. These solutions are the

analytic extensions of the electron solitary hole and ion acoustic solitary hole15 p :y *', both
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having negative trapping parameters; these are the nonlinear extensions of the slow electron

acoustic wave and the slow ion acoustic wave, respectively.

Often in experiments and in simulations the observed double layer exhibits a potential

spatial-profile having a potential depression on the low side (or conversely a potential bump on

the high side), as shown in Figure 1(a). Such a non-monotonic double layer (NDL) is actualh

a localized region of three sheets of alternating charge sign, and thus includes subregions of

oppositely directed non-monotonic electric fields15"16-18"28.

It is increasingly clear that even the straightforward NDL structure can evidence complex

nonlinear characteristics, as exhibited many ways in both simulations and experiments. Reports

of several recent simulations1618"23 indicate that an ion acoustic double layer can be formed b>

reflection of electrons off the negative potential depression; its simulated potential profile has

an NDL form as in Figure 1(a). Recent satellite measurements24 of field aligned potentials in

the auroral region, show signatures that are especially consistent with the NDL, having a

characteristic potential depression at the low potential side (or a bump on the high potential

side). It has been further suggested24 that a series of such small amplitude non-monotonic dou

ble layers might account for a large portion of the total potential drop along auroral field lines.

and might also explain the fine structure of auroral kilometric radiation. The recent thermal

barrier cell concept for tandem mirror devices is based on the generation of an abrupt potential

depressions by means of forced changes in the particle distribution functions1325. Recent

experiments with Q-machine plasmas26 also reported the formation of a potential depression

between two plasmas with different electron temperatures; the "non-monotonic" negative poten

tial depression is thought to play a crucial role in the formation of double layers, accounting for

both the observed current disruptions (by reflecting the electrons) and also for the high fre

quency noise excitation seen behind the double layer (caused by a two stream instability involv

ing electrons that pass the negative potential peak15-28). A recent triple plasma experiment

reported that the formation of an ion acoustic type double layer was observed in the laboraton

for the first time27.
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Although there have been many theoretical, numerical and experimental investigations of

double layers, recent theoretical work has been devoted to numerical evaluations of the

Vlasov-Poisson system (or of the fluid system) mainly because of the highly nonlinear proper

ties of double layers13"16-21-22-28. In order to explain nonmonotonic double layers, theoretical

efforts have attempted to generalize ion hole, ion acoustic soliton or monotonic double layer

descriptions'5-16-21-22. It should be noted that to our knowledge there exists only one theor>

offering a numerical solution for a nonmonotonic potential structure obtained from a Vlasov-

Poisson system28. However, it should be pointed out that the distribution function used in this

work was not selfconsistent with the Vlasov equation.

In this chapter, we present a general formulation and the first self-consistent analytic solu

tion for non-monotonic double layers, which satisfy the time stationary Vlasov-Poisson system.

We present a derivation of a K-dV like equation describing a moving non-monotonic double

layer, showing a relationship among the spatial scaling parameter, two amplitudes of non

monotonic double layers and the speed of double layer.

To describe propagation of an electrostatic double layer, we again use a Vlasov-Poisson

system that has been Galilean-transformed to the wave frame (where the wave is time station

ary). In this frame, we can express the time stationary solution of Vlasov equation as any func

tion of the constants of motion: (i) particle total energy and (ii) the sign of the velocity of the

untrapped particles. Besides these usual consunts of motion, it is important to note that a third

constant of motion exists for the reflected particles: sgn i x - xm ) where x„. represents the

position of potential minimum (or maximum) for the negatively charged particles (or the posi

tively charged particles). It turns out that this final constant of motion plays an important role

in constructing the non-monotonic double layers23.

2. NDL with potential depression at the low potential side

An important class of NDL jumps from 6ix °°)= 0i to <Mx—+oo)-0 and has a

potential minimum <Mxm)-0 on the low side (see Fig. 1(a)). In order to describe this type of

NDL, we next introduce a class of modified Schamel distribution functions for the electrons
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and ions (the regular Schamel14"17-29"31,33 distribution functions used to describe phase space

holes and monotonic double layers cannot give rise to NDL). Using all three of the constants of

motion mentioned earlier, we construct the following general class of electron and ion distribu

tion functions containing both free-streaming and trapped populations:

t. »s/2^

/.- AV^r"

^^•,,pe(0 (i)

+ e~2 {/,(l+^n(x-xm))e~ 2 + f2i\-sgnix-xm)) e 2 }0(-€r)

—-1 ign «^/« - 2-i\l/ - uQr „ ,_
e 2 0(€-2t*) (2i

+ e 2 e 2 e(-€+2T«M

where cf - v2 - 2<2>, e, - u2+2t<*, t - TJT, and 0 < <t>(x) < i/».

Here the electron velocity v, the potential 6 and the spatial coordinate x are respectively

normalized to the electron thermal velocity iTe/me)* , the electron temperature T(le and the

electron Debye length ke - (7"e/47rn0e2)*; v0 represents the electron drift velocity. The ion

velocity u has been normalized by the ion thermal velocity; u0 is their drift. The density nor

malization constants A, f\ and f2 are positive. The thermal distribution scalings a (for the

trapped ions), /3 and 6 (for the trapped electrons) represent effective inverse temperatures

Note that to describe NDL associated, e.g., with an ion phase space hole, the ion trapping

parameter (inverse temperature a) may be chosen to be negative; of course, the distribution

function itself is everywhere positive and in this sense physically realizable. The symbol (-) is

simply the Heaviside step function.

At the NDL's potential minimum (x-xm, <t> - 0) the electron distribution models a

drifting Maxwellian, Fig. 1(d); the ion distribution function models a drifting Maxwellian at the

NDL high side, 6 - </», Fig. 1(c). Since the reflected particles in either region x > x„. or

x < xm, cannot communicate each other, we have introduced two separate temperatures

03 and 6) and two normalization constants if} and f2) for these two separated particle popula-
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tions. Because we are solving the time stationary Vlasov equation, it follows that the current

density (or total particle flux) is uniform in space: electron and ion current density are given b>

je - -v0 and j, - Au0 throughout the system, respectively.

From the model distribution functions given above, the corresponding densities for elec

trons and ions can be found by simple velocity-space integrations; these are expressed as func

tions of physical potential 6ix) as follows:

ne (6) - e
J.
2 J H-y ,<*>) +/,(l+s*n(x-xm)) Tzifi%6)

nM)"A e~ 2

+ f2i\-sgn(x-xfr)) Tz(6,6)

U(\Fi-j- ,t(0-<*)) +r-(a,7(*-<6)

where F, 7". and T_ are defined as follows:

F(?£-t4>) - ^f^jdV , / •e" 2cosh( Vv0)
2 V ir-J y/V2 + 26

r. 03,<6)
<G

e3*erf(%//3"5) with /3 > 0 ,

V 1(1Id

TAa,6) V^TT
,-ioi* c d{ with a < 0.

(3)

(4)

(51

(6)

(7)

Thus the Poisson equation expressed in terms of the Sagdeev potential V(6) then becomes

dVW (8)6"ix) ss <*>>

11
2 \

d6

v04f(-y- ,0) +/,(l+sgn(x-xm)) T503,<t) +/2(l-s*n(x-xm)) 7\(8.<2>>

->4 e f(-y- ,t<*-*)) +r7(a,T(0-tf) (9)

From this the Sagdeev potential is obtoinable by direct integration, using an integration constant

y (<£-0) - 0. This value could have been chosen * 0; what matters is that we choose a simple



constraint, e.g., 6 - 0 where £ - 0.

-VU)-e
1
2 I F(-y- ,*) +/1(l+*rn(x-xm)) T-03,6)

+/2(l-s*n(x-xm)) f5(6,<*>)

-^ e

J.
2 J Fi^Y »T(*-*)) +fr(a,T(lfr-6)

In this expression, the functions F and T= are given as the following integrals:

»2

/(.S-*) « (i-)'A (V K{ V^2 +2<* - K}/" 2 cosh(^v0) ,
2 w •£

F(2L%4>) - - (—r - fdV V{VK:+ 2t(*-<*>)
2 ir t 4

r2

VK2+ 2t«M e 2 cosh(Kv0) ,

f-w-iir=w;«vi

f.(a,T(«/,-*)) - ^tV I7\(a,T(0-<*)) - 7\(a,T*) }

± -ri- {>/|a|T«r-*)->/CR5}.
lab

For small amplitudes i\l> « 1), F and 7", have the following expansions:

£(£„<*) - f 1-ViZ', <>/£)* - -^V'2 +-^-(2£,-l)*3 2+ViG<£,,><6:

'.»*)-^*", +**,,+
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(10)

(11)

(ll-a)

(12»

(12-a)

(13)

where G(£J - e~£rf + —^-r for Ed » 1 is a monotonically decreasing function of £„ with
%Ed

GiO) - 1. The function Z',(x) represents the real part of the derivative of the complex

plasma dispersion function (see Fig.2) and has following expansions:

-*hZ\iy) - - ° + iy -yQ)2 + (higher order terms ) ,



for \y-y0\ « 1 andy0 - 0.924

2>>2 " ' 2y2

for \y\ » 1

-xhZ'riy) - —^y ( 1+-—• )+(higher order terms ) ,
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NDL solutions to Eq.(9) are found by considering the following nonlinear eigenvalue con

ditions associated with our graphic method:

• Outside the NDL region there is charge neutrality and the right hand side of Eq.(9) van

ishes, i.e., the physical potential curvature is zero: 6^ —0.

• At the potential minimum, x « xm, the curvature of the physical potential is positive. Fig

1(a). Hence 6„ > 0 and therefore dVi<t>)/d<b < 0.

• Outside the NDL region U — ±°°) and also at the potential minimum (x =xrr). the

electric field is zero: £(x) - - 6X. Hence VU) - 0 at values 6 - i/m. 0, and «/».

• An additional condition for the existence of NDL requires Vi6) < 0 for 0 < <t> < «i/

except at 6 - $\. Furthermore, the Sagdeev potential (see Fig. Kb)) must be a double

valued function of 6 for 0 < 6 < «/>j.

The required double valuedness of the Sagdeev potential is guaranteed by the use of

sgnix-xm) in the electron distribution function: the reflected particles on either side of the

NDL minimum will in general have different distribution functions, depending on the signature

of (x-xm). In this respect, it should be noted that recent Q-machine experiments have

reported a formation of potential depressions between two plasmas with different electron tem

peratures26. From this requirement for the existence of an NDL (that the Sagdeev potential be

double valued), it follows that any distribution function resulting in an analytic densit>

representation as a function of 6 can never satisfy the necessary nonlinear boundary conditions

for an NDL potential form (for example, all of the distribution functions used in refer

ences13"17-29"30-33 to describe phase space holes and double layers).
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The first and second boundary conditions mentioned above stipulate that

K'ty,) - 0 - V'ty) and that K'(tf-O) < 0 :

-K'(0,)-e~ 2

-A e

vo

£(-y ,*i)+/2^(Mm>

2 J
UnF{~y ,t<0-*,)) +7"x(q,t(0-0,))

v0'V'W - e 2 \ Fi-j- ,0) +/, r-(/8,*)

0,

- ^ f 2 F(-y- ,0) + r:(a,0)

-12- v 2 -
T'(0)-* 2 /"(-j- ,0)-y4 e 2 £(-y-,T0) +Tr(a,70)

The third condition (above) gives rise the following relations:

VtyJ-Ae' 2
- Un"Fi-j- ,t(0-«/»,)) + T- (o,t(0-O»,))

> 0

ll
-e 2 £(-y,0,)+2/2f=(5, *,) » 0 ,

^(0) - /4e 2 £(-y- ,0) +f=(a,0) £(-^-,0) +2/,rr(^) = 0

(14)

(15)

(16)

(17)

(18)

Solving the above set of nonlinear eigenvalue equations (Eqs.(14)-(18)) together with the

fourth condition, one can obtain a set of NDL solutions.

In general, the above nonlinear dispersion relation (or nonlinear boundary conditions) can

only be solved by numerical means. However, there is one case where an analytic solution is

possible. In the ion reference frame, assume a simple Maxwell-Boltzmann ion distribution <

h,yR --^<iJ-2*>
i.e., set a - 1 and u0 - 0 in Eq.(2)), /, - —j==-e " where n, is some normalization

constant. The electron distribution function is given by Eq.(l) (i.e., B& 0 •*• 6). With these
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distribution functions /, and /,, the Poisson equation (Eq.(9)) may be written in the small

amplitude limit (i.e., expansion in 6m up to terms of Oi62)) as follows:

dVi±L 09,
*** d6

*„ - H-*,} +^S-I/i+Zi-I+Vi-Zj) sgnix-xj )<t>12

+ [h,T - uz;iyfFd) )<t>

+^A {2£rf+/,(l+5gn(x-xffl))/3 +/2( l-s*n(x-xm) )5- I )6y 2
3tt

+ xh { GiEd) - h, t2} 62 + {higher order terms } (20)

where Ed is the electron drift energy and we have used our small amplitude

expansion(Eq.(13)).

Eqs.(19) and (20) subject to NDU nonlinear boundary conditions (i.e., Eqs.04)-U8)

together with the fourth condition), can be solved to obtain the following simple NDL form

<t> - 0{ a, + tanh ±|k,| x )2 (21)

where for convenience only 0 > 0i > 0 is considered and we have defined

- iJ+l +J*)2 V0-V0J K2D±i>0. (22)
* 4 ' fli V0l +^' ' 6

Here 0, a,, *, and v are related to our system parameters as follows:

1-n, «y0i0»', (23)

4- Vi - /2) *"£' - ±V^^(V5m - V5> *, (24)
Vir

{n,r - ^Z'r(V5) )- -|(*> +*- 4V5m^) *• (25)2 ,w tf ' 3
-£-

3V7T O

„-{{G(£,)-n, r2) (27)
We may consider a, to be an "asymmetry parameter". For example, if we were to set

0,-0 ii.e. ,fl, - 1) in Eq.(22), then we would obtain our previous 1? monotonic double layer

(MDL) solution; the MDL is the nonlinear version of the slow electron acoustic wave in the

limits t-0, 0 -0. Similarly, the condition 0,-0 ia> - 0) corresponds to the solitary ion
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hole solution. It should be noted that for the above monotonic double layer and hole solutions.

the Sagdeev potential is no longer double-valued. The more general condition \ai\<\ gives

rise to the double -valued Sagdeev potential, and the above solution Eq.(21) describes a

non-monotonic double layer, with a potential depression at the low potential side From

Eq.(23), we see that the existence of the non-monotonic double layer, with a potential depres

sion at the low potential side, requires h, < 1 in order to have a positive curvature at <b » 0

For flj2 > 1/3 and in the long wave length limit, the coefficient of 6 (Eq.(25)) should be posi

tive: this requires 0 < t < 0.285 and 0.924 < y[Td and these conditions follow from the fact

that xhZ\ has an absolute maximum with positive value 0.285 and that it is positive for

VS > 0-924. Note especially that even though this NDL has a potential structure that is simi

lar to recently reported ion acoustic double layer simulations, its origin is not related to any ion

acoustic wave (we give an ion acoustic double layer description in a later chapter). It should be

noted that this NDL has high (low) density at low (high) potential side.

3. NDL with potential hump at the high potential side

In order to describe this type of NDL (see FIG. 3. (a) and (b)), we introduce the follow

ing modified Schamel distribution functions for the electrons and ions: the roles of electrons

and ions are interchanged compared with those of the earlier NDL:

/, '>/2^
e>^-B0,e(t,) (28'

+e" 2 l/,(l+«n(x-xm)) e~ 2 + f2i\-sgnix-xm)) e~ 2 IB<-€ )

fe y/2^
> 2 ' ° e(ef) + e 2 e 2 ' 0(-«,) (29'

T
where €, - u2 + 2r6% e, - v2-2(«f>+0), t - -rr and 02* 6 > -0.

The electron velocity, the wave potential and the spatial coordinates are normalized a^atn

to the electron thermal velocity {T,lmr)v , the electron temperature TJe and the electron
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Debye length A, - (7*f/4irnoP2)% respectively; v0 represents the electron drift velocity The

ion velocity has been normalized by the ion thermal velocity, a , B and y represent effective

inverse temperatures. The electron distribution represents the drifting Maxwellian at 4 «* -0

and the ion distribution function represents the drifting Maxwellian at 4 - 0. Since reflected

particles in either x > xm or x < xm can not communicate each other, we have also intro

duced two different temperatures for the ions. Electron and ion current densities are given b>

jt - -Av0 and / - uQ throughout the system, respectively.

The corresponding densities for electrons and ions are given as follows:

n (4) /"(-y- ,-t4) (30

+ /,(l+i*n(x-xj) Tziay-T6) + f2i\-sgn(x-xm)) Tz(y-r6)

n,(4) 'A e 2 i £(-y ,4+0) +rr(/3,*+0) (31)

where F, 7". and T. are defined as before(Eqs. (6)-(8)). Thus the Poisson equation ma> be

written by using the Sagdeev potential as follows:

dV(6)
4

(321
d<t>

ll
2

<t>x> —e
«o'F(~y -t*) +/,(l+s*n(x-xm)) Tz(a,-T<t>) +f2(\-sgn(x-xn)) TT(>-t6'

-¥•+ A e

The Sagdeev potential can be written as follows

-F(4) — e 2 I

voF(-y ,4+0) +Tx 03,4+0) (33«

f(0±. -t4) +/,(l+«gnU-xm)) f,(a,-T4> + f:(\-sgn(x-x„.)) 7\C>.-t6»

+ /lf ~2~ Fi~- ,4+0) + T-0,4+0) (34«

NDL solutions with a potential hump at the high potential side are found by considering

the following nonlinear eigenvalue(nonlinear boundary conditions) associated with our graph u

method:
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Charge neutrality at 4 - -0i and -0 with 0 > 0, > 0 requires the right hand side of the

Eq.(33) should vanish at those values of 6. Negative curvature at 4 - 0 requires

^>o..*-o.
do

Existence of the NDL requires that the Sagdeev potential be identically zero at

4 . 0, -0, and-0 , so that electric field is equal to zero at those values of 4

An additional condition for the existence of NDL requires V{6) < 0 for 0 > 6 > -0

except at 4 - -0,. Furthermore, the Sagdeev potentiaKsee Fig 3. (c)) should be a dou

ble valued function of 4 for 0 > 4 > -0i

It should also be noted that the double valuedness of the Sagdeev potential is guaranteed

by the use of sgnix-xm) for the reflected ions: reflected ions should have different distribution

functions depending on sgn(x-xm).

The first condition yields : — - 0.

-r(-0,)--e
Isl

2 1

do do

£(y- ,T0,)+/, Ma.r*,)

+ A e

±
2 J £(-y -0i+0) +r=(^,-0!+0)

-r(-0)«-e~ 2 u*Fi-y ,T0)+/27-r(y,r0)

+ A e 2 J £(-y ,0) +Tz03,O) 0,

-11. u 2 .1£
-r(0)--e 2 £(y- ,0)+^ e 2 voFi-j- ,0) +TrO3,0)

The second condition gives rise the following relations:

M-0,) - -Ae~ 2 £(y- ,4-0,)) +7-"5 0,0-0,)

> 0.

0.

+ e /•(-~,T0,) + 2/,fz(Q, T0,)

V J 2
F(-0) - -Ae~ 2 I£(-y ,0) +f*(0,O)

(35)

(36»

(3")

(38'

(39)
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Solving the above nonlinear eigenvalue equations(Eqs.(35)-(39)) together with the third

conditon, one can obtain a set of NDL solutions with a potential hump at the high potential

side.

Again, the above nonlinear dispersion relation(or boundary conditions) can onlv be solved

by nummerical means in general. As before there is one special case, where analytic solution is

possible. In the electron reference frame, we assume a Maxwell-Boltzmann electron

distribution (we set B- 1and v0 - 0in Eq.(29)), fr'^^e 2* * where "• is some
normalization constant, and we consider the ion distribution function given by Eq.(28) >*s:r.

the distribution functions /, and /,, the Poisson equation may be written in the small ampli

tude limit by using a Sagdeev potential ^(0)(Eq.(32)-(33)):

dV(6) (40)

IT

+ [ht-¥rrZ'riJTo) U

- illfl_-!{2£0 +/,(l+^n(x-xlJ )a+f2(\-sgn(x-xj )y- 1|<-4>?:

^ - {_!+„,} 4 2>/7f °l/i+/2-l +(/1-/2) sgn(x-xm)) (-4)1 2

+J-.{ Hl _ g(£0) }42 + {higher order terms ) <41'
2 r2

where £0 is the ion drift energy and Z',(x) again represents the real part of the derivative of

the complex plasma dispersion function(see Fig. 2.). In this case, the double valued Sagdeev

potential is guaranted by the use of the constant of motion for reflected ions B> solving

Eqs.(40) and (41) subject to the NDL boundary conditions(Eqs.(35)-(39) together with the

third condition), we get the following double layer solution:

4 - -0{ a, +tanh ±Uf Ix }2 (42'
where for convenience we consider only 0 > 0, > 0 and we have defined

(>/0[ +'s/0)2 >/i> ->/0i 2. i£0 ^ 0 (41)
*" 4 ' *'" V0>^' *' "6
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0, ai, k, and ft are related to our system parameters as follows:

1 . . (44,-l+nf - y0,0 m»

-£« . rr~ rr, n~ m (4f,
vir

{/i, - ±Z§,(JF0) I- -y(0, +0- 4VJ;V0) M, (46»

-4T^ ° ifia-f2y)-* U-Jil-Ji)*. M-»
3V7T O

M-l/2|nr-T2G(£0)}. (48)

Clearly a, may again be thought of as an NDL asymmetry parameter. But now if we consider

0! « 0 (a* - 1) in Eq.(42), then our previous ion acoustic monotonic double layer solution is

recovered, and is the nonlinear version of the slow ion acoustic wave. Similarly the condition

0, - 0 (a, - 0) would return the electron solitary hole solution. It should also be noted tha;

the above two solutions have single valued Sagdeev potentials. The more general condition

la, I<1 gives rise to a double-valued Sagdeev potential, and the above solution describes an

non-monotonic double layer, with a potential hump at the high potential side. From Eq (44).

we note that the existence of the non-monotonic double layer with a potential hump at the high

potential side, requires n, < 1 in order to have a negative curvature at 4 - 0. For a,2 > 1. 3.

the long wave length limit, the coefficient of 4 should be positive: this requires t > 3.51 and

y/Tb > 0.924 and these conditions follow from the fact that V$Z', has an absolute maximum

with corresponding value 1/3.51 and that it is positive for the range of y/Ei, > 0 924 Unlike

the NDL in Section 2, this NDL has high (low) density at high (low) potential side

4. MK-dV like solution, moving NDL

In this section we derive a K-dV like equation, which applies to the one dimensional

non-monotonic double layers of small but finite amplitude (a weak ion acoustic double layer*

having a potential depression at the low potential side.

To describe a collisionless plasma of cold ions and warm electrons, we consider the fol

lowing set of equations for the cold ions:
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n, + (nv)x - 0 , (49)

v, + vv, + 4, -0 , (50)

4„-n,-". <51>
where the density, velocity, potential and spatial coordinate are normalized to the unperturbed

density n0* ion acoustic velocity iTelm,)V2y the electron temperature 7",/e and the electron

Debye length, respectively. We introduce the Gardner-Morikawa coordinate transformation

( - 61'2 (x-r) and t - 83'2/. Assuming the electrons to be in a quasi-equilibrium with the

low-frequency ion acoustic wave, we may expand the electron density as

n, - l+82n,+83 2c0 sgni{- im) 41 2+c,4+ 812c2 sgn({- £m)43: + c34: -
By using reductive perturbation theory', we expand n,v,4 in powers of small parameter* ft as

follows:

n«l+8nM) + 62n(2,+ ••• (52»

v - v0 + 5v,,> + 82v(2'+ • • •

4-84,l, + 624,2,+ ....

From the above prescription, we obuin the following set of coupled equations:

(vo-De^' +d^'-O, <«'
(v0 - 1) efnr2» +8Vn +8<v<2> +8<(n(1)vm) - 0 , <54)
(v0-i)a,v,,, +e(4',,-o, <55»
(v0 - 1) e<v'2' +8Tv"» + v'1' 8<v(1> +8{4'2' - 0 , <56»

d„4'n -fir+C! 4'2' - n(21 +c0(4n')12 +c2(4M')3: +rjU'")2 . <58>
From Eqs (53), (55) and (57), it follows c, - ,. ! .2 and we set 4*1' - (l-v(1): nM and

(l-v0)

v"» . —L-^'" +v0,n where v0m is some constant. We obtain the following K-dV like equa-
l-v0

tion from the above set of equations, after a certain amount of algebra

n 1 a, , 1 a A (59»
0K^ 20k'

- bASa^-aS) sgnit - tJilr)*

+(4(3a12-l)-^)4-10a>s^(£-|J(4) *+3(4>*
K2 0 0 0
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Here we have defined

._Q*, +W fli_^^>04 K:_4>0. (60,
4 ^0, -f V0 *>

Here 0, a, and k are related to our system parameters as follows:

n, - y(~-) - 20K2(l-ai2)2, co- 12^0^(1-a,2) ,

J!£_. - A/ - 4K2(3a,2 - 1) , c2 - ~2jL*2a> , t, - c, - ~r (61J
X V0 *A

where X - l-v0 and M represents the velocity of the ion acoustic double layer in the frame

moving with ion acoustic velocity. It should be noted that we have used our nonlinear boundar>

conditions for a moving non-monotonic double layer so that we can extract some useful physus

The corresponding moving ion acoustic double layer solution of Eq.(59). with a potential

depression at the low potential side, is given by

4(f ,t) - 0{ a, + tanh k( f - M r ) }2 (62)

where £m is given by the equation 4 ( £m - M t , 0 ) « 0. Here ai - 1 and a, - 0 represent

monotonic double layer and solitary structure, respectively.

5. Conclusion

Using our graphic method, we have given a general formulation of NDL and obtained two

new non-monotonic double layer analytic solutions: one has a potential depression at the lovs

potential side; the other has a potential hump at the high potential side. From the double-

valued properties of the Sagdeev potential (required for the existence of a non-monotonic dou

ble layer), it follows that any distribution function having a density representation as am

integer or non-integer power series of potential can never satisfy the non-monotonic double

layer boundary conditions. This shows the importance of using the third constant of motion for

reflected particles, in order to provide a double •valued Sagdeev potential for the non -monotonu

double layers. We have also given a derivation of the K-dV like equation, which describes the

non-monotonic moving double layer with a potential depression at the low potential side Thus

we have found that there is relation among physical parameters.



46

I am grateful to Dr. T. Crystal for his careful proof reading and valuable suggestions. 1

would like to thank to Prof. C. K. Birdsall, Dr. M. Hudson, Dr. S. Kuhn, Dr. W. Lotko, Dr J-

P. Lynov, Mr. V. Thomas and Mr. N. Otani for useful discussions. This work was supported

by DOE Contract DE-AT03-76ET53064 at ERL, University of California, Berkeley.



47

References

1. L. P. Block, Cosmic Electrodyn. 3, 349 (1972)

2. G. Knorr and C. K. Goertz, Astrophys. Space Sci. 31, 209 (1974)

3. J.R. Kan, L.C. Lee, and S.I. Akasofu, I Geophys. Res. 84, 4305 (1979)

4. B.H. Quon and A.Y. Wong, Phys. Rev. Utt. 37, 1393 (1976)

5. G. Joyce and R.F. Hubbard, J. Plasma Phys. 20, 391 (1978)

6. P.Coakley, N.Hershkowitz, R. Hubbard, and G. Joyce, Phys. Rev. Lett. 40, 230 (1978)

7. J.S. DeGroot, C. Barnes, A. Walstead, and O. Buneman, Phys.Rev.Lett. 38, 1283 U9"7)

8. E.I. Lutsenko, N.D. Sereda, and L.M. Kontsevoi, Sov. Phys. Tech. Phys. 20, 498 (1976)

9. N. Singh, Plasma Phys. 22, 1 (1980)

10. Chung Chan, N. Herschkowitz and K. Lonngren, Phys. Fluids 26, 1587(1983)

11. N. Sato, R. Hatakeyama, S. lizuka, T. Mieno, K. Saeki, J.J. Rasmussen, and P. Michel-

son, Phys. Rev. Utt. 46, 1330 (1981)

12. S.S. Hassan, and D. ter Harr, Astrophys. Space Sci. 56, 89 (1978)

13. F.W. Perkins and Y.C. Sun, Phys. Rev. Utt. 46, 115 (1981)

14. H. Schamel and S. Bujarbarua, Phys. Fluids 26, 190 (1983)

15. H. Schamel, Physica Scripta 7*2/1, 228(1983)

16. M. Hudson, W. Lotko, I. Roth and E. Witt, /. Geophys. Res. 88, 916(1983)

17 K.Y. Kim, Phys. Utter 97A, 45(1983) (see also ERL Report M83/37 at U.C Berkeley)

18. T. Sato and H. Okuda, Phys. Rev. Utt. 44, 740 (1980)

19. T. Sato and H. Okuda, J. Geophys. Res. 86, 3357(1981)

20. J. Kindel, C. Barnes and D. Forslund, in "Physics of Auroral Arc Formation"(Edited by S

Akasofu and J. Kan), p. 296. AGU, Washington (1981)

21. G. Chanteur, J. Adam, R. Pellat and A. Volokhitin, Phys. Fluids 26, 1584(1983)



48

22. K. Nishihara, H. Sakagami, T. Taniuti and A. Hasegawa, submitted for publication(1982)

23. K. Y. Kim, Bull. Am. Phy. Soc. Vol. 28 #8 1160 (1983)

24. M. Temerin, K. Cemy, W. Lotko and F. S. Moser, Phys. Rev. Lett. 48, 1175(1982)

25 R. Cohen, Nuclear Fusion 21 289(1981)

26. R. Hatakeyama, Y. Suzuki, and N. Sato, Phys. Rev. Lett. 50. 1203(1983)

27. Chung Chan, M. H. Cho, Noah Hershkowitz and Tom Intractor. preprint in 1984(Uni\er-

sity of Wisconsin PTMR 84-1): "Laboratory Evidence for "Ion Acoustic" Type Double

Layers"

28. A. Hasegawa and T. Sato, Phys. Fluids 25, 632 (1982)

29. H. Schamel, Physica Scripta 20, 336 (1979)

30. H. Schamel and S. Bujarbarua, Phys.Flwds 23, 2498 (1980)

31. H. Schamel, Z. Naturforsch. 38a , 1170-1183(1983)

32. LB. Bernstein, J.M. Green and M.D. Kruskal, Phys. Rev. 108, 546 (1957)

33. H. Schamel, Plasma Phys. 14, 905 (1972)

34. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).



IX
=

X
m

X
-

X
,

*
(C

)

(d
)

e
le

c
tr

o
n

I
l(

»
I

(a
)

N
D

I
w

ith
po

te
nt

ia
l

de
pr

es
si

on
;il

th
e

lo
w

po
te

nt
ia

l
si

tlc
Ch

i
Sa

pi
le

cx
po

te
nt

ia
l

In
r

th
e

ab
ov

e
N

D
I

d
I

In
n

ph
as

e
sp

ac
e

pl
ol

.
(i

ll
I

le
cl

ro
n

ph
as

e
sp

ac
e

pl
ot



50

I -?/ttzju)

♦ X

FIG. 2. The real part of derivative of the complex plasma dispersion function: ]/:Z'f(x).
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FIG. 3. (a) NDL with potential hump at the high potential side, (b) Sagdeev potential for the
above NDL.
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5. Theory and Simulation of ion acoustic double layers

K Y. Kim

E.R.L., University of California, BerkeleyXA. 94720

ABSTRACT

Particle simulations of ion acoustic double layers are successful in short

systems (1-80*;,) and with low drift velocities (vd-0.45v„) for the elec

trons. We present simulation results for systems driven by constant current and

by constant applied voltage. By using an analytic formulation, we find that there

is a "critical" electron drift velocity (which is considerably smaller than the

value reported in previous papers but very close to the value of our simula

tions) for the existence of ion acoustic double layers. We find that for agiven

electron drift velocity (exceeding the "critical" drift) there is a corresponding

maximum amplitude for the ion acoustic double layer. We show that the net

potential jump across the ion acoustic double layers is determined by the tem

perature difference between the two plasmas. It is also shown that usual Bohm

condition is not satisfied for ion acoustic double layers with finite amplitude- the

velocity of the ion acoustic double layer decreases (below C.) as its amplitude

increases.

1. Introduction

In several recent simulation papers'-*, it has been reported that aweak ion acoust.c dou

ble layer of 6* « Te can be formed via electron reflection off the potential depression taking
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T, » 7",, it was found that for these weak ion-acoustic double layer to form, there was a

threshold drift velocity vd > 0.6 v,„, and a necessary, relatively long simulation system

(I > 512xf). Here vfA represents the thermal velocity of electrons and X, is the electron

Debye length.

Recent satellite measurements7 of field aligned potential in the auroral region, sho* signa

tures that are especially consistent with the non-monotonic double layer, having the characteris

tic potential depression at the low potential side (or bump on the high potential side). It has

been suggested1 that a series of such small amplitude double layers might account for a large

portion of the total potential drop along auroral field lines, and might also explain the fin-;

structure of auroral kilometric radiation. Recent experiments with Q-machine plasmas' also

reported the formation of a potential depression between two plasmas with different electron

temperatures; the "non-monotonic" negative potential depression is thought to play a crucial

role in the formation of double layers, accounting for both the observed current disruptions (by

reflecting the electrons) and also for the high frequency noise excitation seen behind the double

layer (caused by a two stream instability involving electrons that pass the negative potential

peak9"10). In arecent experiment1 \ it has been reported that ion acoustic type double layer has

been observed for the first time in a triple plasma machine and this ion acoustic double layer

has a subsonic propagation velocity.

Although there have been many attempts at understanding double layers, recent theoreti

cal work has been devoted to numerical evaluations of the Vlasov-Poisson system (or of the

fluid system) mainly because of the highly nonlinear properties of double layers4 tM':- " To

our knowledge, there exists only one theory offering even a numerical solution for a non

monotonic potential structure obtained from aVlasov-Poisson system*. Theoretical efforts have

attempted to generalize ion hole, ion acoustic soliton, or monotonic double layer descriptions m

order to explain non-monotonic double layers4-5,6,10.

In a previous chapter, we gave a simple graphic method of solving the Vlasov-Poisson s>^-

tern associated with nonlinear eigenvalue conditions for arbitrary potential structures, presented
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ageneral analytic formulation for non-monotonic double layers, and illustrated with some par

ticular solutions16. In this chapter, we present a theory of ion acoustic holes and ion acoustic

double layers and compare this with our simulation results.

2. Simulation of Ion Acoustic Double Layer

First we shall describe some of the results of simulations with no applied dc potential

("current driven"), and then describe briefly the results of simulations that have an applied dc

potential ("voltage driven"). All simulations are done with a Id axially-bounded electrostatic

PIC code. In all of our simulations, we have used the same mass ratio (m !m, - 100). the

time step is o>f 6/ - 0.2. Initially, the simulation plasma density is uniform in space The ion

and electron distribution functions are both Maxwellian; the ions are cold, 7*. « T,. and the

electrons are drifting relative to them with drift velocity vd. This relative drift between the

electrons and ions constitutes acurrent and can result in instability depending on v

(a) Simulations of current driven systems

In our simulations of constant current driven system, we have found that, weak ion

acoustic double layers can be formed even in a very short system (80x,), and even when the

electron drift velocity is small compared to previous simulations iva «0.45 v,„ =4.5 O. the

double layer formation mechanism is still based essentially on amplification of asmall negate

potential dip, due to reflection of electrons.

Using a temperature ratio t - TJT, - 20 and plasma parameter nk, - 100. the s>stem

plasma is loaded uniformly in space; there is thus no electric field initially From Figures 1and

2, note that by time «, t - 480 asmall negative potential dip has developed that is associated

with an ion phase space distortion as well as with an ion density dip From subsequent

"snapshots" of this potential dip, it is seen to be moving with nearly ion acoustic veloc.t> U.»

Therefore it can start to trap those ions which are resonant with the structure (i.e.. ions in the

positive velocity tail of the distribution), and an ion hole starts to form there At the left side of
the growing potential dip, electrons with velocity slightly greater than the »on acoustic velocm
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contribute to the structure's growth; their velocity distribution (in the moving frame or poten

tial dip) has positive slope, so that they give up their energy to this potential.

As the negative potential structure grows and decelerates due to this electron reflection.

the dip is able both to trap more ions and, at the same time, to reflect more electrons "Pos:-
tive" momentum transfer due to electron reflection leads to "deceleration" of the ion hole, and

the potential thus appears to have anegative effective mass as well as negative effective charge

This deceleration and growth of the potential dip can lead to increased ion trapping, because the

structure sees more densely populated ion distribution as it decelerates. This electron reflection

causes the asymmetry of potential due to more electron density buildup at the left hand side of

potential dip than that of right hand side. At time tof t - 880, an ion acoustic double la>e: ,s

well developed, with anegative net potential jump |6*l - 0.3 Tr over adistance of about 10a

One reason for initiation with the low drift velocity of our simulation is the condition of

constant current injection as opposed to the previous simulations using decaying current injec

tion. Of cource, there is asimilarity between our system (with constant current condition* and

previous long periodic simulations with decaying current conditions; because the system length
is long in the periodic simulation and because of periodicity (a particle leaving at one boundar\

is replaced at the opposite boundary by an incoming particle with the same initial velocity).

early in time there is nearly constant current coming in and going out This nearl> constant

current in along periodic simulation acts as asource of energy which leads to the formation of

weak ion acoustic double layers by the reflection of electron current. However, our bounded

simulation system, with constant current injection has more energy available than that of along

periodic simulation system, resulting in alower threshold drift velocity than that of aper.odu

system.

In all of our simulations, the negative potential dip always moves in the same direction

(i.e., that of the electron drift velocity). This is because right going ion acoustic waves are pre

ferentially amplified by the inverse electron Landau damping but left going ion acoustic waxes

are severely attenuated by the Landau damping. The early growth and deceleration of the
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potential dip can be understood qualitatively as asimple momentum exchange between the
structure and the particles. The rate of change of ion acoustic double layer momentum should

be approximately equal to the negative of the rate of change of particle momentum; this can be

expressed by considering the reflection of electrons and ions by the ion acoustic double layer as

follows(see Fig. 3(b)):

_tfW«-2m, f dvv2ff(M +v) +2m, / dv v2 fv(M - v)
dt Jo o

-2m, (du u2f(M + u) . (1)
•4

where p - —*, pt\ - —*i- P. - — * m6 M rePresenls the ve,ocity of ion acouslumt fn( m,

double layer. In the small amplitude limit**, ,* « 1), the above equation can be written as

follows:

dt me *

-2mJ'e(M)\ I—<*, - *)12 +l-f-^il2 I
m, mt

-2mJ,(M)[^)y2
m,

-2m,r,(M)\-Z-*V2
m,

The first term in Eq.(l) represents the positive momentum transferee, electron momen

tum loss) due to electron reflection from the left hand side of ion acoustic double la>er The
second term in Eq.(l) represents the negative momentum transfer due to electron refecuon
from the right hand side of ion acoustic double layer. The third term in Eq.(l) represents .he
positive momentum transfer due to ion reflection from the left hand side of ion acoustic double

layer.

Initially there is no appreciable asymmetry in the potential structure U.e.. *=0. anJ

dP^lii >0since electron drift is in the right direction and thus -^— >0. Due to ih,-

po«,<* momentum transferee, electron momentum loss) by electron reflection, the ion acou.
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ic double layer having negative effective mass decelerates; the negative effective mass results
from the ion density dip associated with the ion acoustic double layer. As potential uymmeiry
develops by electron reflectiond.e. *>0). ion reflection starts come into play and the second
term starts to compete with the first term. For the cold ion case, the third term can be con-
«dered negligible, and ion acoustic double layer can receive ne. positive or negative momentum
transfer and thus decelerate or accelerate, depending on the relative magnitude of *; and *. .he
velocity of the ion acoustic double layer and the electron distribution function a. both Sides of

the ion acoustic double layer.

(b) Simulation of voltage driven systems

For the constant voltage driven system with current injec.ion (M - 0.5). we have found
results that are similar to the above current driven simulation. An important new fea.ure how
ever, is that the ion acoustic double layer now always appears first near the left side of »tl! and
develops more quickly than in the earlier current driven simulation (Fig. 4and 51. In add-on.
our constant voltage driven simulation requires alower electron drift velocity (0.2 v> for the
formation of ion acoustic double layers than was necessary in the constant current driven simu-

lations.

In our constant voltage driven system with current injection at the boundary, an ipplied
potential across the system acts to increase the effect drift velocity of electrons S.nce ions
injected at left boundary see apotential barrier due to the applied potential. the> will be
reflected, thereby forming an ion phase space density dip. which contributes to the forma.,™ of
anegative potential dip near the left side of the walKFig 4(a)). Therefore, we expect ,o find
formation of ion acoustic double layers at alower electron drift velocity and near the lef. side

of the wall.

3. Theory of Ion Acoustic Double Layers

Having described our simulation results, we are in aposition to explain theoretical!) sonu-
of their features. Using our graphic method, we shall show that there is a"critical" velocm for

tic
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the existence of ion acoustic double layers, which is smaller than the value reported in prev,ous

papers, and that there are maximum amplitudes of the potential dip correspond.ng to the drift
velocities exceeding critical velocity. We also find that the net potential jump across the ion

acoustic double layers is determined by the temperature difference between two plasma region*

From the simulations we see that the electron kinet.cs are important and our theor>

accordingly must start with areasonable yet tractable kinetic electron model which uses all three

constants of motion. To this end, we introduce the following "modified Schamel" type of elec

tron distribution function, having three electron components:

ft
Off

+ e

-iljes i vr« - »rf I1 . p
e y d e(c-2i>i)

2

.MlfA\-sgn(x-xm)]e~ 2+fh\\+sgn(x-xm)\e

where c- v2 - 2<t>. The first component is the "free" (or untrapped) group of electrons The)

make up the bulk of the electrons, and are modeled here as adrifting Maxwellian function at
6=0; as given, their temperature has been normalized (i.e., to T,ie). Reflected 'or

"trapped") particles populate the regions either x >xm or x < xm on each s.de of the double
layer, and cannot communicate with each other; therefore, we have introduced two separate
temparatures (B and 6) and two normal.zation constants (f„ and fh) for them Here, electron
velocity (v), the potential (*), and the distance (x) are normalized to the electron therm,!
velocity (7-,/m,)" , the "free" electron temperature TJe, and the electron Debye length
X, - (7,/4iNiflfV, respectively. 0 represents simply the Heaviside step function

Since we are interested in describing ion acoustic double layers, we shall use afluid for-

malism to describe the essentially cold ions:

<«,), + (n,u)x -0, u, + u uv + 6, -0
Considering a time stationary situation, the above fluid ion model yields n. u- n^u anJ
u2/ 2 + o - £o where n0, «o and E0 are constants.

From these two species models, the corresponding densities for electrons and .ons mthe

0( ~€ * 20»; )
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ion acoustic double layer frame are given as follows:

(4j

n0Wo

where fy and /? are defined as follows:

(5)

N(-S-,©) - (—)* <?* J<r> (1+t»n2>' )* 2 cosh (vrfVtan2> - 2o) , (6*

>, - tan-1 V2(0i^<*) and £ > °

Thus Poisson's equation may be written by introducing aSagdeev potential VU) as follows

dV(6)

r,

**»— d<f>

e 2 |A>C-|- » (8)

n0«o

+V2(£o " *>
The Sagdeev potential is given by the obvious first integral of Poisson's equation with

appropriately chosen boundary' conditions:

2 {-K(0)-f fif(lL- %6)+ffi(\-sgn(x-xm))R(B%o)

+ fh(\+sgn(x-xm)) Rib.6)

+n0v,[ y/2(E0-<t>) ' >/2(£\,+ *>>]
where we have set K<* --*,)- 0. Here N, and J? are given as follows

IQi
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£(*!,*)- /X j" <f> tanv (1+ tan2> ){ VtanV +20 - Vtan2 - 20, }

e 2 cosh(vrf tan>0 , HOj

r<fi,+) - •£* 03*) - ;^3>/*T*>e~^ (* *)
A prototypical ion acoustic double layer potential structure is shown coming from the

right at some reference potential 0-0, dipping to some negative value 0«-0,, then rising to

a final negative value 0— 0 on the left(Fig. 3(b)). An ion acoustic double layer solutions to

these equations can be found by applying the following nonlinear eigenvalue conditions'4 (also

called "nonlinear boundary conditions"), associated with the graphic method:

(1) Charge neutrality outside the double layer region requires that the right side of the Pois
son equation vanish at the right and left extremes of the potential structure i.e., at o - 0
and o - —0.

(2) The electric field is, of course, zero where 0(x) is flat i.e., outside the locality of the
potential structure. Thus the existence ofion acoustic double layer solutions requires that
the corresponding Sagdeev potential be identically zero at the three places this happens.
/.e.,at0 -0,-0! and -0.

(3) Positive curvature at 0 - -0i requires that dV(<f>)/d<t> < 0 at 0 - -0].

(4) An additional condition for the existence of ion acoustic double layers requires that V(6)
be negative for 0 >0 >-0, except at 0 - -0. Additionally the Sagdeev potential
should be adouble valued function of0 for -0 > 0 > -0i (see Fig. 3(a)). It is impor
tant to note that double valuedness of the Sagdeev potential is guaranteed by the use of
sgnix-xm) in our kinetic model for electrons (2): reflected electrons will have different
distribution functions depending on the sign of (x-xm). In this respect it should be
noted that a recent Q-machine experiment reported formation of potential depressions
between two plasmas with different electron temperatures .

By way of illustration, we set 5- 1and A - 1/2: these choices simply match one of the

-trapped" populations, the "8" group, to the -free"electrons, both in temperature and distribution

amplitude resulting simple Maxwell-Boltzmann distribution function for vd - 0.

,. , dV(0) dV(-*) _ o and
The first and third conditions above require that ^ d<f> •

dV(-*x)

do
< 0:



K'(0) — e~ 2
Vrf/v}(-^-,0) +*(l,0)

npUp

V2To

-^- v 2*"(-0) — e 2 ty (-f ,-0) +/* * 03,-0)

0,

nowo

V2(£o + 0)

K'(-0,) - -
n0Wo7,/r , , - e~ 2 JV,(-f , -0, X 0

>/2(£o+ 0i) 2

The second condition above gives rise the following relations:

V(0) - nou0 («v/2£^ - V2(£o +0i) )- <?

K(-0) - w0«o [V2(£"o+0) - V2(£o +*>)]
A;(-y-0)-^2/^(/3.-0)-I.'

- e

V
N,(-y-,0) +^(l,0)

-0,

0
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(12)

(13)

(14

(15)

(16;

Solving the above set of nonlinear eigenvalue equations(Eqs.(12)-(16)) together with the third

conditions, one can obtain a set of ion acoustic double layer solutions. In order to solve the

above set of equations, it is convenient to rewrite them as follows (here we have set nc, = 1):

Uq - — neO y/2E(,

woJtt^D-^
nbO (. nbO ,_r
v2 neO

*"(-0,) - -u0 20, +(^r)2
neO

—nem < 0

K(-0) - - ^- - u0
nel

wo20, +(^)2
neO

-nb\ -0

(D

(18>

(19>

(20)

<21>

Here we used Eq.(17) to obuin Eqs.(19)-(20), and Eq.(21) follows from Eq (15) b> using

Eqs.(15), (17) and (18). The definitions of neO, ne\% nbO and nb\ are as follows

-ll
neO - e 2 ' N,(-y ,0)+ /?(!,0)

«el-e 2 Ny (~- ,-0) + /„ /? (B,-0)

-•^ v„2
nem - e 2 A/, (— , -0, )

-^ 1 - v2nbO-e 2 {jv>(-^-,0)+/?(l,0)

(22)

(23)

(24>

(25)



61

nb\ -e~2 *'' INj <-y ,-*> +3/a*<*-*> } ,261
First ofall, we show analytically that there are no possible ion acoustic double layer solu

tions without electron drift (vd - 0).

Setting vd - 0 in Eq.(17), we get u0 - - j2Eo- Here n0 - 1coresponds to the ion den-

sity at 0 - 0and u - u0 . In this case, Eq.(19) and Eq.(20) yield following relations

i/o--
1- *"*' «2-.

V2 ( 0, - 1+*'*' )
-2*,

20, e
Mo < - rj-

1 - e

Let us define um so that it satisfies Eq.(28) with equality sign instead of inequality sign Loo> •

ing first at the large amplitude limit (0, » 1), we find that

.. _ M ss L_ + J2d,, e~'*1 < 0; thus there are no large amplitude ion acoustic double
0 >/20i

layer solutions. In the small amplitude limit (0, « 1), we again find thai
Uo - Um a-0^6 < 0; this again means that there are no small amplitude solutions possible

This calculation also implies that there exist positive polarity soliton solutions with no

electron drift. We have examined Eqs.(27) and (28) numerically and found no possible ion

acoustic double layer solutions for all amplitudes, so long as we hold v,-0. This alread> sug

gests that there may be acritical drift velocity for the existence of ion acoustic double la>ers as

was found experimentally in our simulations.

Numerically solving our nonlinear eigenvalue equation, we have been able to find that, in

fact, there is a -critical- velocity for ion acoustic double layer solutions to exist Arguing that

the smallest visible potential dip in asimulation would be of order 60 ^ 0.1, the corresponding

-critical" velocity for this amplitude solution to exist is found to be vd = 0.4vl<s: calculation

shows that electron drift velocity should be greater than 0.3 vrt to have 80 > 0.02. This value

is considerably smaller than has been reported in other papers, and much closer to our simula

tion result (i.e., that vd > 0.45v* was necessary before the current driven double layer would

form).
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Examining solutions to our nonlinear eigenvalue system, we have found that there are

maximum amplitude limits for the negative potential dip (-0,); these depend on the electron

drift velocity exceeding the critical value (Fig. 6.).

We have also calculated ion drift velocities in the frame of ion acoustic double layers and

found that the usual Bohm condition is not met in the case of ion acoustic double layers In

fact, the ion drift velocity decreases (below C>) as both amplitudes of negative dip f-d.iand

net potential drop (+0) increase (see Fig. 7.). With regard to the common identification made

between the ion acoustic soliton and our double layer solutions, we point out that the veloti:;.

of the usual (rarefactive, having negative polarity) ion acoustic soliton increases with increasing

amplitude, this character is in direct conflict with our earlier observation that the ion acoustu

double layer slows down as it grows. It is important to note that net amplitude of an ion acous

tic double layer correlates directly with the temperature difference between the two plasmas the

net potential drop (0)increases with increased temperature of reflected electrons on the high

potential side(see Fig. 3(b)). In fact, arecent Q-machine experiment reported that formation

of a negative potential depression has been observed in a system with two different plasma

sourses and that potential at the high potential side increases as the electron temperature at

high potential side is increased by heating.

4. Conclusion

Using our general formulation, we have shown analytically that there are no possible ion

acoustic solutions without electron drift. Numerically solving our nonlinear eigenvalue equation

we found that, in fact, there is acritical (minimum) velocity for the existence of an ion acous

tic double layers. Theoretically calculated "critical" electron drift velocity for the existence of ion

acoustic double layer is found to be 0.4v,„; our simulated ion acoustic double layer was found a:

0.45 v,„.

We have also found that there are limits on the maximum amplitude of the negame"

potential dip, and these depend on the electron drift velocity (which must exceed the critical

value). We have also calculated ion drift velocities in the frame of ion acoustic double layers
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md found that the usual Bohm criterion is no, vdid in the case of ion acoustic double layers.
to fact, the ion drift velocity decrees as both the amplitude of the negative dip and the ne.
potential drop of the ion acoustic double Uyers increase. It should be noted that the velocit> of
tte usual rarefactive ion acoustic soliton with negative polarity increases with increasing ampl,-
,ude. as opposed to the ion acoustic double layer which slows down. It is imporunt to note
tha, the ne, amplitude of the ion acoustic double layer is determined by temperature difference
between two pUsmas: the ne. potential drop increases with the temperature of rented e.ec-

trons at high potential side.

Finally, we have found the following new results from our simulation in avery short sys
tem (I - 80X,). we have found the formation of weak non-monotonic double layers (SDL.
with drift velocity <0.45vrt); Otis is significantly shorter (=512*,) and slower (., =06,. •
than that of previous simulations. We have also given some physica. explanations for the lo»
threshold drift velocity for the formation of NDL, and for the formation of the NDL near the
left wall in the constant voltage driven system with current injection.

Iam grateful to Dr. T. L. Crystal for his careful proof reading and valuable suggestions I
would like to thank to Prof. C. K. Birdsall, Dr. M. Hudson. Dr. S. Kuhn. Dr W. Lotko. Dr J-
P. Lynov, Mr. V. Thomas and Mr. N. Otani for useful discussions. This work was supported
by DOE Contract DE-AT03-76ET53064 at ERL, University of California. Berkele>

References

1. T. Sato and H. Okuda, Phys. Rev. Lett. 44, 740 (1980)

2. T. Sato and H. Okuda, * Geophys. Res. 86, 3357(1981)

3. J. Kindel, C. Barnes and D. Forslund. in 'Physics of Auroral Arc Formation"* AkasofL
and J. Kan. eds). p. 296. AGU, Washington (1981)

4. G. Chanteur, J. Adam, R. Pell., and A. Volokhitin. Phys. mis 26. "84(1983.
5. K. Nishih^a, H. Sdcagami. T. Taniu.i and A. Hasegawa. submit.ed for publ.cat.on. 1%:•



64

6. M. Hudson, W. Lotko, I. Roth and E. Witt, / Geophys. Res. 88, 916(1983)

7. M. Temerin, K. Cemy, W. Lotko and F. S. Moser, Phys. Rev. Utt. 48, 1175(1982)

8. R. Hatakeyama, Y. Suzuki, and N. Sato, Phys. Rev. Utt. 50, 1203(1983)

9. A. Hasegawa and T. Sato, Phys. Fluids 25, 632 (1982)

10. H. Schamel, Physica Scripta T2/1, 228(1983)

11. Chung Chan, M. H. Cho, Noah Hershkowitz and Tom Intractor, preprint in 1984(Univer

sity of Wisconsin PTMR 84-1): "Laboratory Evidence for "Ion Acoustic" Type Double

Layers"

12. H. Schamel, Physica Scripta 20, 336 (1979)

13. H. Schamel and S. Bujarbarua, PhysJluids 23, 2498 (1980)

14. F.W. Perkins and Y.C. Sun, Phys. Rev. Lett. 46, 115 (1981)

15. H. Schamel and S. Bujarbarua, Phys. Fluids 26, 190 (1983)

16 K. Y. Kim, Bull. Am. Phy. Soc. Vol. 28 #8 1160 (1983)



a)

b)

electrons ions

tM!>Mt|;t»;»l?ti[' *9«ltllM!l!S>!

*«t t tit Minn* unit

Fig 1. (a) Simulation phase space for electrons, and ions and the potential profile at time
ti, f-480 for current driven system Here, (b) and (c) is given at time m, i- 880 and
4», r— 1080 respectively
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Fig. 2. Observed position of potential minimum v.s. time for the current driven simulation
Here, x0 is the position of potential minimum at time r0 and w, - O.lw,..
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Fig 3 (s> Calculated Sagdeev potential for ion acoustic double laver (b> Corresponding ton
acoustic double layer, using left side poieniul as * zero reference, then * - 0 ."> and
* • 0 28<see test) with », - 0 9
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Fig 4 (•) Similar phase space for electrons and ion*, and potential profile at lime «v r - ?(•••
for voluge driven system Here. (b> and (c> is given at time <v, c 600 and w. / - M<
respectively
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Fig 6 Calculated electron drift velocity (v,,) and corresponding maximum ion acoustic double
layer amplitude <«/m'
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Fig. 7. Calculated ion acoustic double layer vclocity(M) v.s. maximum amplitude!*|).
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