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Vlasov-Poisson and modified Korteweg-de Vries theory and
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K. Y Kim

ABSTRACT

A general graphical method of solving the Viasov-Poisson system associ-

ated with a set of nonlinear eigenvalue conditions is presented.

Analytic evidence for the existence of small amplitude electron and ion
acoustic monotonic double layers is presented. These are the nonlinear exten-
sions of the slow electron acoustic wave and the slow ion acoustic wave, respec-
tively: one related to the electron solitary hole, the other related to the ion
acoustic solitary hole, both having negative trapping parameters. A modified
K-dV equation for a monotonic double layer, showing a relationship among
double layer amplitude, its propagation speed and its spatial scale length. is also

derived.

We present a general analytic formulation for nonmonotonic double layers
and illustrate with some particular solutions. This class of double layers satisfies
the time stationary Vlasov-Poisson system while requiring a Sagdeev potential
which is a double valued function of the physical potential: it follows that any
distribution function having a density representation as any integer or nonin-
teger power series of the physical potential can never satisfy the nonmonotonic
double layer boundary conditions. A K-dV like equation is found showing a
relationship among the speed of the nonmonotonic double layer, its spatial scale

length, and its degree of asymmetry.



Particle simulations of ion acoustic double layers have been successful in
short systems (L =80A,) and with Jow drift velocities (v;=0.45v, for the
electrons). We present simulation results for systems driven by constant current
and by constant applied voltage. By using the analytic formulation, we find that
there is a "critical” electron drift velocity (which is considerably smaller than the
value reported by previous papers but very close to the value of our simula-
tions) for the exisience of ion acoustic double layers. We find that for a given
electron drift velocity (exceeding the “critical” drift) there is a corresponding
maximum amplitude for the ion acoustic double layer. We show that the nei
potential jump across the ion acoustic double layer is determined by the tem-
perature difference between the two plasmas. It is also shown that the usual

Bohm condition is nor satisfied for ion acoustic double layers with finite ampli-

-tude: the velocity of an ion acoustic double layer decreases (below C,) as its

amplitude increases.
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1. INTRODUCTION

In recent years, there have been considerable research interest in understanding local elec-

3 Besides theoretical and experimental interests.

trostatic potential formations in plasmas'~
there are two practically important applications: one is the recently developed concept of plasma
confinement using electrostatic potential structures; the other is that some of these potential

structures are considered to be responsible for the acceleration of particles in a variety of plas-

mas.

There are two frequently used methods for solving a Vlasov-Poisson system describing an
electrqstatic potential structure. There is first the well known *BGK method”, which prescribes
both an exact potential structure form ¢(x) and all the distribution functions except one (e.g..
one of the trapped particle populations) which it must then solve for self—consistently™”. I
turns out that the BGK method applied e.g., to monotonic double layers, can in fact yield nega-
tive (nonphysical) distribution functions'*!>3. Therefore, in the second chapter we outline
and generalize an alternative "graphical method” or "reduced potential approach” for solving the

Vlasov-Poisson system.

There are various configurations of interesting potential structures. Here we describe
some of the potential structures of recent interest. A monotonic potential double layer is ideally
an isolated pair of oppositely charged sheets which results in a narrow region of abrupt potential
jump of some amplitude Ad = ¢; well outside of this localized jump, the potential is effectively
uniform'~!?. Even though double layer studies often are restricted to such simpie (i.e.. monc-
tonic) potential structures in plasmas, the double layer concept is more accurately a generiv
concern about the rules governing allowable transitions between regions of two (or more’

different collisionless plasmas. Some recent numerical calculations'*!* suggested that there may



be a low amplitude limit for the monotonic double layer, arguing that the existence of a weak
double layer requires a trapped-particle distribution that is nearly a & function and therefore is

subject to strong instabilities.

In the third chapter, we present two different kinds of weak monoftonic doubie layer ana-
lytic solutions'’, i.e. which do have smail amplitude. These solutions are the analytic exten-
sions of the electron solitary hole and ion acoustic solitary hole!*~1":#-3% both having negatire
trapping parameters; these are the nonlinear extensions of the slow electron acoustic wave and

the slow ion acoustic wave, respectively.

Often in experiments and in simulations the observed double layer exhibits a potential
spatial-profile having a potential depression on the low side (or conversely a potential bump on
the high side), as shown in Figure 1(a). Such a non—monotonic double layer (NDL) is actually
a localized region of three sheets of alternating charge sign, and thus includes subregions of

oppositely directed non-monotonic electric fields'~16:18-2,

It is increasingly clear that even the straightforward NDL structure can evidence complex
nonlinear characteristics, as exhibited many ways in both simulations and experiments. Reports
of several recent simulations'®!®-2? indicate that an ion acoustic double layer can be formed by
reflection of electrons off the negative potential depression; its simulated potential profile has
an NDL form as in Figure 1(a). Recent satellite measurements?* of field aligned potentials in
the auroral region, show signatures that are especially consistent with the NDL. having a
characteristic potential depression at the low potential side (or a bump on the high potential
side). It has been further suggested?* that a series of such small amplitude non-monotonic dou-
ble layers might account for a large portion of the total potential drop along auroral field lines.
and might also explain the fine structure of auroral kilometric radiation. The recent thermal
barrier cell concept for tandem mirror devices is based on the generation of an abrupt potential
depressions by means of forced changes in the particle distribution functions'***. Recent
experiments with Q-machine plasmas?® also reported the formation of a potential depression

between two plasmas with different electron temperatures; the "non-monotonic” negative poten-



tial depression is thought to play a crucial role in the formation of double layers, accounting for
both the observed current disruptions (by reflecting the electrons) and also for the high fre-
quency noise excitation seen behind the double layer (caused by a two stream instability invols-
ing electrons that pass the negative potential peak'52%). A recent triple plasma experiment
reported that the formation of an ion acoustic type double layer was observed in the laboratory

for the first time?’.

Although there have been many theoretical, numerical and experimental investigations of
double layers, recent theoretical work has been devoted to numerical evaluations of the
Vlasov-Poisson system (or of the fluid system) mainly because of the highly nonlinear proper-
ties of double layers'3-'621:2228  In order to explain nonmonotonic double layers, theoretical
efforts have attempted to generalize ion hole, ion acoustic soliton or monotonic double layer
descriptions'>-151621-22, It should be noted that to our knowledge there exists only one theory
offering a numerical solution for a nonmonotonic potential structure obtained from a Vlasov-
Poisson system?®;, However, it should be pointed out that the distribution function used in this

work was not self consistent with the Viasov equation.

In the fourth chapter, we present a general non-monotonic double layer formulation and
self-consistent analytic solutions for nonmonotonic double layers which satisfy a time stationar)
Vlasov-Poisson system. We further derive a K-dV like equation which describes a moving NDL
structure related to the ion acoustic wave. Expressions are found relating the NDL two poten-
tial amplitudes ¢ and ¢, the spatial scaling parameter (the NDL structure width). and the NDL
speed. In the final chapter, we describe our numerical simulation results of ion acoustic double
layers and compare these with our theoretical results for finite amplitude ion acoustic double

layers , which were obtained from our theoretical formulation.
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2. A General Graphical Method for Solving a Vlasov-Poisson System

To describe propagation of an electrostatic potential structure in a Vlasov-Poisson system.
we shift to a frame that has been Galilean-transformed to the wave frame (where the wave is
time stationary). The electron and ion Viasov distribution functions each consist of two com-
ponents: some particles are energetic enough that they stream freely through the potential
structure, while the rest reflect off it. In this frame, we can express the time stationary solution
to the Vlasov equation (i.e., the particle distribution functions) as any function of the particie
constants of motion; usually these are recognized to include (i) the particle total energy and (ii)
the sign of the velocity of the free streaming (also called untrapped) particles. However, besides
these usual constants of motion, it is important to note that a third constant of motion exists
for the reflected (also called trapped) particles, namely sgn (x - x, ) where x,, represents the
position of potential minimum (or maximum) for the negatively charged particles (or the posi-
tively charged particles). It turns out that this final constant of motion plays an important role

in constructing non-monotonic double layers.

There is first the well known "BGK method” for solving the Vlasov-Poisson system. which
prescribes both an exact potential structure form ¢(x) and all the distribution functions excepi
one (e.g., one of the trapped particle populations) which it must solve for self—consistently'. It
turns out that the BGK method applied e.8., t0 monotonic double layers, can in fact yield negae-

tive (nonphysical) distribution functions®>.

Therefore we present here an alternative ~graphical method" or "reduced potentia!
approach™ for solving the Vlasov-Poisson system. Using electron (f,) and ion distribution
functions (f,) which satisfy the Vlasov equation, the Poisson equation for ¢ (x) may be written

by introducing a Sagdeev (or reduced) potential V() as follows:
¢"(x) = 8%/0x’ = ¢,
-"p"n,Eff,dV"ff,dV (n

V(@) _ _
-l =-ve



Clearly, the electric field amplitude is proportional to the square root of the magnitude of the
Sagdeev potential. It should be noted that this approach has already been used successfully to
describe some relatively simple potential structures such as ion holes, electron holes, solitons.

and monotonic double layers®~'°.

To outline and generalize this reduced-potential approach, we present below a set of sim-
ple rules which, with Fig. 1, allows us to construct the corresponding Sagdeev potential V(d)
for any arbitrary potential form &(x). From the six basic graphs of Fig. 1, one can derive a set
of solution constraints ( or "boundary conditions" or "nonlinear eigenvalue equations” 4 or "non-
linear dispersion relations” 6). Note that the "reference potential” for &{(x) is always ¥. Rules
(a) through (d) describe eight possible potential configurations as illustrated in Fig.1(a) through
Fig.1(d).

(a) This graph represents any physical potential configuration in which the potential changes
curvature from positive value to negative value. The corresponding Sagdeev potential
should have a local minimum with negative value: from the plot, the corresponding

eigenvalue conditions are seen to be given by V(y) <0, V'(y) =0and V") > 0.

(b) This graph represents any physical potential configuration in which the potential changes
curvature from negative to positive. The corresponding Sagdeev potential should have a
local maximum with negative value; from the plot, the corresponding eigenvalue condi-

tons are seen to be given by V(¢) < 0, V'(y) =0 and V') < 0.

(c) This graph represents any physical potential configuration in which the potential
approaches asymptotically to some value ¢ at infinity with positive curvature. The
corresponding Sagdeev potential should have local maximum with zero value at ¢ = v.
from the plot, the corresponding eigenvalue conditions are seen to be given by }'(w) = 0.

V'(y) = 0, and V"(y) < 0.



(d) This graph represents any physical potential configuration in which the potential
approaches asymptotically to some value ¢ at infinity with negative curvature. The
corresponding Sagdeev potential should have local maximum with zero value at ¢ = .
from the plot, the corresponding eigenvalue conditions are seen to be given by V(4) =0,

V'(y) = 0and V"(y) <O0.

(¢) This graph represents any physical potential configuration in which the potential &(x) has
a local maximum having negative curvature at some position. The corresponding Sagdeer
potential should cross ¢ axis with positive slope; from the plot, the corresponding eigen-

value equations are seen to be given by V(y) = 0 and V') > 0.

(f) This graph represents any physical potential configuration in which the potential &(x) has
a local minimum having positive curvature at some position. The corresponding Sagdeev
potential should cross ¢ axis with negative slope; from the plot, the corresponding eigen-

value equations are seen to be given by ¥ (¢) = 0 and V') <O.

The boundary conditions V(y) =0 and V'(y) = 0 in these cases enforce zero electric
field and charge neutrality at ¢ = ¢. Besides these rules, it is important to note that the Sag-
deev potential is in general muitiple—valued function of physical potential when the magnitude
of the electric fields for some fixed value of physical potential are multiple-valued. the multiphi-
city of the Sagdeev potential is equal to the multiplicity of the magnitudes of the electric fields
For example in Fig. 2, in an NDL "staircase” there is a double valued section of Sagdeev poten-
tial for 0 < ¢ < ¢,; and there is a triple valued Sagdeev potential foryr, <& < ;. Or.ina
second example in Fig. 3 which resembles a symmetric thermal barrier potential. the
corresponding Sagdeev potential is double valued for ¥, € ¢ < ¢. Or finally, for an asym-
metric solitary wave in Fig. 4, the corresponding Sagdeev potential is double valued over the

entire range 0 < ¢ < ¢.
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FIG. 2. A nonmonotonic double layer "staircase” ¢(x) and the associated Sagdeev potential
V(¢). Moving along & (x) from left to right maps into moving along V(¢) from (¢=y¢,, V'=0)
1o the origin, then to (3, 0) etc ... , as shown by direction arrows a, b, c, d.



FIG. 3. Schematic symmetric "thermal barrier" ¢(x), and the associated Sagdeev potential
Vig).
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FIG. 4. Asymmetric solitary wave ¢ (x) and the associated Sagdeev potential V(e).
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3. Weak Monotonic Double Layers

K. Y Kim

E.R.L., University of California, Berkeley,CA. 94720

ABSTRACT

Analytic evidence for the existence of small amplitude electron and ion
acoustic monotonic double layers is presented. These are the nonlinear exien-
sions of the slow electron acoustic wave and the slow ion acoustic wave, respec-
tively: one related to the electron solitary hole, the other related to the ion
acoustic solitary hole, both having negative trapping parameters. A modified
K-dV equation for monotonic double layer, showing a relationship among pro-

pagation velocity and spatial scale length, is also derived.

1. Introduction

A monotonic double layer is a narrow, isolated region of abrupt potential jump of ampli-

tude ¢ , due to a localized dipole-sheet of space charge surrounded by large regions of
'

effectively uniform potential. Although there have been many theoretical and experimental
investigations of holes and double layers'~?!, recent theoretical work has been limited to
numerical evaluations of the Vlasov-Poisson system (or the fluid equation) mainly because of
the highly nonlinear properties of double layers. Recent numerical investigations'®** suggested
that there may be a low amplitude limit for the monotonic double layer, arguing that the
existence of a weak monotonic double layer requires a trapped-particle distribution that is nearh

a & function and therefore is subject to strong instabilities.

In this chapter, we present two different kinds of weak monoronic double layer analvuc
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solutions, which do have small amplitude. These monotonic double layer solutions are the ana-
lytic extensions to the electron solitary hole and ion acoustic solitary hole which are the non-
linear extensions of the slow electron acoustic wave and the slow ion acoustic wave, respec-

ﬁvelyzo.n .

To describe propagation of monotonic double layers, we use a Vlasov-Poisson system that
has been Galilean transformed to the wave frame (where the wave is time stationary). In this
frame, we can express the time stationary solution of the Vlasov equation as any function of
the constants of motion: (i) particle total energy and (ii) the sign of the velocity of the
untrapped particles?>-2. Here it is not necessary for us to use third constant of motion, because
a monotonic double layer does not require double-valued Sagdeev potential as a function of the

physical potential.

2. Weak electron monotonic double layer

In order to describe the monotonic double layer related to the electron solitary hole. we
look for a stationary solution in the ion reference frame and take the ion distribution function

to be Maxwell-Boltzmann:

Jr - 12( vl-2¢)
- (1
f=a=e
We consider the following electron distribution function which is continuous at the
separatrix?*:
f. = (2m)~* | expl=#(sgn (v) €* — v, )? ) ©(e) + expl—4#(s; +Be) | ©(—¢) )

where + = T,/T, and € = v’ —2¢ for 0 < ¢ < ¢ . Here the electron velocity. ion velocity.
the wave potential and the spatial coordinates are normalized to the electron thermal velocity
(T./m,)* , ion acoustic velocity (T,/m,)* , the electron temperature 7./e and the electron
Debye length A, = (T,/4mnge®)*, respectively. v, represents the electrons drift velocity. The
eleciron distribution function at ¢ = 0 models a drifting Maxwellian. Here © represents the
Heaviside step function and B called the trapping parameter can be positive and negative:

depending on the structure of trapped electron phase space. We will show that 8 should be
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negative for the existence of small amplitude monotonic double layer.

Again, because the above electron distribution function is expressed entirely in terms of
the constants of the motion, it clearly satisfies the time stationary Vlasov equation. Thus Pois-

son equation may be written by introducing Sagdeev potential(V (¢)) as follows:

dv ()
v,
e "
-e ? F(T B +T_(Bo) | —e™ (3)
where F and 7_ are defined as follows:
Vs 2 [ 4 _%z
F(—2-,¢) - _\/-;-_{dl’ NZESY! e cosh(Vv,) , (4)
2 I8l
T_-(B,0) = -igle dr e’ withg <0, (5)
6.0 = o e [ e’ wims
Here the Sagdeev potential is given by the following expression:
2
=l P = 1
V() =e 2 F(T @) +T_Bd) |+ :(e"" -1 (6)

where we have set V(¢ = 0) = 0.

F and T_ are given as follows:

f(‘izz,da) - .\/:,2;]:4;/ Vivit 26— V) e"yz_z cosh(Vs,) , (7
(8.6 = “Tfls"l T_(84) + 7_3@\/5 (8)
Here F and 7. have the following small amplitude expansion(y << 1):
gl 1 25 ., 46 1 :
F(E;0) = e “ 1—72',(\/757)4: - ¢+ 3T QE,-Ne*? + 3G(£J)¢- + -
T_(8,¢) = 72_;.»”? + 3%&’2 + e (9

where G(E,) is a monotonically decreasing function of E, with G0 =1 and

G(E;)) = et 4 ??:‘7 for E, >> 1. Here Z',(x) represents the real part of the derivative of
d

the complex plasma dispersion function (see Fig. 1(a)) and has following properties:

—lZZ',(y) - __(_y__;_y_o_)_ + (y — yo)? + (higher order terms ).
0
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for ly—yol << 1 and yo = 0.924

—lZ',(y) - -—17 (1+ —3—2 ) + ( higher order terms ) , for |yl >> 1.
2 2y 2y

Monotonic double layer solutions are found by considering the following nonlinear eigen-

value conditions(or nonlinear boundary conditions) associated with our graphic method:

- To impose charge neutrality at x = xco , we require that the rhs of Eq.(3) should vanish

at the boundaries ¢ = 0, .

- Existence of the double layer requires that the Sagdeev potential be identically zero at

& =0, ¢, so that the electric field equals zero outside the double layer.

- An additional condition on the Sagdeev potential {see Fig. 1. (b)-1} is V(e) < 0 for

0< o <.
s dvo) dvy) )
The first condition yields do 76 0:
7 B
V') =e *? F(—z- 0 +T.Bd) | -1 =0, (10)
vyl .
] -_%— de - )
-V'() =e F(_Z— W+ T-BY) [—e™=0. (1

The second condition gives rise the following relations:

.2
Yd

_.d_ 2
—V(w)-%(e""’-l)+e 2 {f(-”;—,wni-(,e.w)]uo (12

Solving the above set of nonlinear eigenvalue equations(Eqgs.(10)-(12)) together with the

third conditions, one can obtain a set of monotonic double layer solutions.

Since we are interested in weak monotonic double layer solution, we will use the follow-

ing Poisson equation in considering the small amplitude limit of Eq.(3):

_dV(e)
1 4o ke
b = {7 — 32',(,/5,,) o + ;"* E, + B - 1) ¢*? (14

+ % (G(E,) — 1)) &? + | higher order terms |
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where E, is the electron drift energy.

Here it should be noted that we have to retain terms in our expansion at least up to order
¢? , in order to satisfy the above nonlinear eigenvalue conditions for the double layer, it is

sufficient to retain the terms up to only ¢*2 for the case of the solitary hole.

By solving Eqgs.(13) and (14) subject to our nonlinear eigenvalue conditions(Egs.(10)-

(12)) together with the third condition, we get the following monotonic double layer solution

¢-—'ﬁ-[1+mhu}2 (15)
where

K= ;%(r—%Z',(ﬁ:))"'z. (16)

3-1—25‘,—-39—‘/%%5’—"1. (a7

-:7-7;—"; (G(E) - ) . (18)

Here it should be noted that the first and third coefficients of the rhs of Eq.(14) must be
positive and that the second coefficient negative: for the first coefficient, this requires

0 <t < 0.285 and 0.924 < /E,, in the long wave length limit (x — 0): these conditions fol-

low from the fact that —;-Z *. has an absolute maximum with positive value 0.285 and that %Z ",

is positive for JE; > 0.924. In the long wave length and the small amplitude limit, we obtain

the following expressions for JE; and B:

_E'
JE-JE*-%UE,*'B-H‘ (19)
p=1-2£,- ST (G - " (20

Here E, is determined from the following equation (see Fig. 1. (a)): 7 — %Z', (VE.) =0.

For some choice of our physical parameters(z, £;, B and ¢) we can neglect the third term
in our expansion Eq.(14), in that case we would obtain the following electron solitary hol

solution®®:

¢ = ¢ sech*(xx) , (21



2]

where

E 2
3-1—25,—15‘/—7":‘2‘— < =0Tast—0. (22,

Thus, the electron solitary hole solution makes a transition to a double layer solution when we
take into account the third term of Eq.(14); this term comes entirely from electron density
associated with the first term of Eq.(12), the free (streaming) electrons in Sf..as 7—0. Itis
important to note that both the electron solitary hole and the electron double layer solutions
require that the trapping parameter be negative ( 8<-0.71) and are the nonlinear exten:sions of
the slow electron acoustic wave?, whose linear dispersion relation is given by
! = 1.71 k’T./m, as 7—0 and y—0: it follows from Eq.(19) and Eq.(20) by noting that
JE. — 0924 as + — 0. Thus we see that there are no possible small amplitude solutions for
the case of positive trapping parameter. Negative trapping parameter represents electron phase
space hole(or vortex) for the electron hole case and half vortex like phase space structure for
the case of monotonic doubie layer. It should also be noted that our weak electron double layer
has high(low) density at the low(high) potential side. From Eq.(20), it follows that the velocity

of double layer decreases as its amplitude increases.

3. Weak ion monotonic double layer

Thus far, we have considered only the double layer related to an electron solitary hole.
We now turn to the probiem of a doubie layer which is related to the ion acoustic solitary hole.
In order to describe this class of double layer, we assume two temperature Maxwell-Boltzmann
electron distributions? {n, = (1—f)e® + fe® with y > 1and 0 < f < 1}, which are usuall;

found in the space plasma, and we consider the following ion distribution’*:

S = (Zn)’”l expl—4#( sgn (v) €* + vo )2} O(e,) + expl—#(ae, + ved)} O(=¢,) ] (23
where ¢, = v2 + 27¢ with - < ¢ <0 , r=7T7,/T, and ion velocity has been normalized
to the ion thermal velocity (7,/m,)%. Here v, , E, and a represent the ion drift velocity. the ion
drift energy and the inverse temperature, respectively. The ion trapping parameter(a) can be

positive and negative depending on the structure of phase space. It will turn out that ion trap-
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ping parameter(a) should be negative for the existence of a small amplitude monotonic double
layer. Thus the Poisson equation may be written by introducing the Sagdeev potential as fol-

lows:

dv (¢)
do

voz

G =— (24)

2
b =—e ? [F(vTo —1¢) + T_(a,~7¢) ]+ (1=f)e® + fer®

Here the Sagdeev potential can be written.

_x 2
-V(p) =—e ? lf‘(i;— ~1¢) + T_(a,—7¢) }+ -f)e®-1) + f(e"‘ -1. (25)
Monotonic double layer solutions are found by considering the following nonlinear eigenvalue

conditions(or nonlinear boundary conditions) associated with our graphic method:

- To impose charge neutrality at x = teco , we require that the rhs of Eq.(24) should van-

ish at the boundaries ¢ = 0, —¢.

- Existence of the double layer requires that the Sagdeev potential be identically zero at

@ = 0, —y, so that the electric field equals zero outside the double layer.

. An additional condition on the Sagdeev potential {see Fig. 1. (b)-2} is V(¢) <0 for

0> > -y
e av) _ dvi=¢) _,.
The first condition yields 7% 2% 0:
v 2 2
-V'(=¢)=~— e ? [ F(—v%- gV + T_(a,—1¢) l +(1=fNe ™+ fe =0, (26
val
L
V') ==—¢ 2 [F(T ,0) +T.(a.0)|+l-0. 2M

The second condition gives rise the following relation:

_x 2
—V(~y) == ? 'f(’%gw) + T-(a,19) ] + (=) e = 1) + ‘g(e-v* =0 Q8
Solving the above nonlinear eigenvalue equations(Egs.(26)-(28)) together with the third

conditon, one can obtain a set of monotonic double layer solutions. Since we are interested in 4
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weak monotonic double layer solution, we use the following small amplitude limit of Poisson

equation Eq.(24):

w2 _
b = L1=f 47y = 3 2, (Es) 16 - ‘;:/; ¢ 759 QE, + a —1) (~¢)¥? (29)

_ )
+ 73 l—-'%‘,u- - %G(Eo) }¢? + | higher order terms }

Again solving Eq.(29) and the above nonlinear dispersion relations together with the

requirement V{(¢) <0 for —¢ < ¢ < 0, we obtain the following ion acoustic double layer

solution:
¢--aj’-|1+mnhxax )2 (30)
where
r 172
K, = Ul 1=f+fy - 72',(\/'5'0) ), (31)
30Vme0 2
a'l‘ZEO-W” (32)

1 _ 1 =f+fy
¢ 24 27

Here it should be noted that all three coefficients of the rhs of Eq.(29) should be positive: for

- —;-G(Eo) }. (33)

the first coefficient, this requires * > 3.51(1=f+f y) and /Ep > 0.924: these conditions fol-

low from the fact that %Z ' has an absolute maximum witb corresponding value —3—15—1 and that

it is positive for the range of Eo > 0.924. By using the asymptotic expansion of plasma
dispersion function in Eq.(31) with «, = 0 and the positivity requirement of the rhs of
Eq.(33), one can show that there are no small amplitude monotonic double layer solutions for

the case of f=0and E; >> 1. In the long wave length limit, we obtain the following expres-

sionsfor\ﬁ:'-oanda:
16vgre "
Eom JE + —2¥T ___[2E +a-1], (34)
VEo=E 15&2",(,/27)[2 a-1) 3
_ )
am1-2F - A (LY S6E)). (39

Here E, is determined from the following equation (see Fig. 1. (a0

1—f+fy - %z', (VE) = 0.
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For some choice of our physical parameters we can neglect the third term in the small
amplitude expansion. In that case we would instead recover the ion acoustic solitary hole solu-
tion, which is the nonlinear version of the slow ion acoustic wave?!'* as ', f — 0and y—0.
Our ion acoustic solitary hole becomes an ion acoustic double layer solution by adding the third
term of the small amplitude expansion of the free streaming ion density (distribution function)
as +-! —0. Here we would like to note that a recent experiment reported a transition of ion
hole like structure to weak monotonic double layer?’. It should be noted that both our ion
acoustic solitary hole and ion acoustic double layer solution require a negative trapping parame-
ter (o < —0.71) and are the nonlinear extension of the slow ion acoustic wave?'**: these con-
ditions result from Eq.(34) and Eq.(35) by noting that VEo— 0.924 as 1 — 0. We would like
to emphasize that our ion acoustic double layer solution can exist with the ion drift velocity
smaller than the electron thermal velocity’. In contrast to our week electron monotonic double
layer, the weak ion monotonic double layer has high(low) density at the high(low) potential
side. From Eq.(34), it follows that the velocity of the double layer decreases as its amplitude

increases.

4. Modified K-dV equation for weak ion acoustic monotonic double layer

Having obtained the analytic solutions for the time stationary double layers using the
Vlasov-Poisson system , we would like to present a derivation of the evolution equation. which
describes the one dimensional asymptotic behavior of ion acoustic monotonic double layers of
small but finite amplitude. To describe a collisionless plasma of cold ions and warm electrons.

we consider the following set of equations for the cold ions:

n+(nv), =0, (36)
v, + w, + ¢, =0, 37
¢y =n.—n, (38

where the density, velocity, potential and spatial coordinate are normalized to the unperturbed

density no, ion acoustic velocity (T,/m,)"?, the electron temperature T./e and the electron .

Debye length, respectively. We introduce the Gardner-Morikawa coordinate transformation



25

€ =52 (x—1) and 7 = 5%%r. Assuming electrons to be in a quasi-equilibrium with the low-
frequency ion acoustic wave, we may expand the electron density as before
n, =1+c,¢+c8"2¢¥? + c;¢? +.... . By using reductive perturbation theory, we expand
n,v,¢ in powers of small parameter?® § as follows:
n=1+8n" 4802+ ... (39
vevo+ v+ 80P+ ...

& =258¢" +5%0%+ ...

Using the Gardner-Morikawa transform, we obtain the following set of equations:

..51,'2 a‘ + 83-"2 afn + 5]”2 ac(nv) - 0 . (40)
5" gv +8%2 3.v +8'2v oy +8"79,6=0, (41
8 a€f¢ - ne -n. (42)

From the above set of equation, we obtain the following set of coupled equations by using

reductive perturbation expansion:

(vo—1) 3en + 9y =0, (43
(vo—1) 9;n'? + 8.2V + 90" + 9:(nMy1) =0, (44)
(vo=1) 8y + 9,0 =0, (45
(o= 1) 8v? +3.vV + vV 3" + 8,67 = 0, (46)
" -6, 47)
35505”’ - ¢(2) -n2 4 c2(¢(lr)3'2 + C3(¢“’)2 . (481

From Egs.(43), (45) and (47), it follows ¢, = 1 and we set X n'"' = — v'P and A v'V' = = &'"

with A = (1—vp)>.

After a certain amount of algebra, we obtain the following modified K-dV equation from

the above set of equations:

m_ 1z a2 368 A tn
3.6 — A 3¢ { c2(8") + m—(d’ )+ ?a“gd’ -0 (49
- =3
where ¢; < 0, MA* > 0, -%- Aﬁ (c; — -2—5—3—). and M represents the velocity of the ion

acoustic monotonic double layer in the frame moving with ion acoustic velocity. Here we have
used the monotonic double layer boundary conditions so that we can extract some useful phy-

sics. The above equation has the following moving ion acoustic double layer solution:
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. 2 = 2
¢(e.f)-%(—x%’—){1+mnh:—-——“”2/2*3(g-uf)l (50)
2

Here it should be noted that the velocity of double layers can be M < 0 or M > 0 depending
on the drift velocity of cold ions and the electron equation of state: our double layer velocity is
M < 0 for vo > 1 and thus the double layer velocity in the lab frame decreases as its ampl:-
tude increases, but for vo < 1 the double layer velocity is M > 0 and thus the double layer

velocity in the lab frame increases as its amplitude increases.

5. Conclusion

In this chapter, we have obtained the two different monotonic double layer analytic solu-
tions: one related 1o the electron solitary hole (electron phase space vortex), the other related
1o the ion acoustic solitary hole (ion phase space vortex), both having negative trapping param-
eters. We have given the analytic evidence for the existence of the small amplitude ion acoustic
and electron monotonic double layers, which are the nonlinear extensions of the slow ion
acoustic wave and the slow electron acoustic wave, respectively. Finally, we have derived
modified K-dV equation, which describes the moving ion acoustic monotonic double layers ha:-

.ing velocity M < 0 or M > 0 in the frame moving with ion acoustic velocity depending on the

drift velocity of cold ions and the electron equation of state.

1 am grateful to Dr. T. Crystal for his careful proof reading and valuable suggestions. 1
would like to thank to Prof. C. K. Birdsall, Dr. M. Hudson, Dr. S. Kuhn, Dr. W. Lotko. Dr. J-
P. Lynov, Mr. V. Thomas and Mr. N. Otani for useful discussions. This work was supported

by DOE Contract DE-AT03-76ET53064 at ERL, University of California, Berkeley.
Note Added in Proof:
After submmiting this report, we become aware of the numerical investigation by Hudson
et al.22 . We would like to note that they also confirmed numerically the existence of small

amplitude slow ion acoustic monotonic double layers and holes for the case of negative

trapping parameters.
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FIG. 1. (a) The real part of derivative of the complex plasma dispersion function: ;—Z " (x),

(b) The Sagdeev potential for the monotonic double layer.
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4. Theory of Nonmonotonic Double Layers

K.Y Kim

E.R.L., University of California, Berkeley,CA. 94720

ABSTRACT

We present a general analytic formulation for non-monotonic double
layers and illustrate with some particular solutions. This class of double layers
satisfies the time stationary Vlasov-Poisson system while requiring a Sagdeev
potential which is a double valued function of the physical potential: it follows
that any distribution function having a dexisity representation as any integer or
noninteger power series of potential can never sa{isfy the non-monotonic dou-
bie layer boundary conditions. A K-dV like equation is found, showing a rela-
tionship among the speed of the non-monotonic double layer, its scale length.

and its degree of asymmetry.

1. Introduction

A monotonic potential double layer is ideally an isolated pair of oppositely charged sheets
which results in a narrow region of abrupt potential jump of some amplitude Ad = ¢ well out-

side of this localized jump, the potential is effectively uniform'~'".

In the third chapter, we have presented two different kinds of weak monoronic double
layer analytic solutions'’, i.e. those which do have small amplitude. These solutions are the .

analytic extensions of the electron solitary hole and ion acoustic solitary hole'* ™23 both
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having negative trapping parameters; these are the nonlinear extensions of the slow electron

acoustic wave and the slow ion acoustic wave, respectively.

Often in experiments and in simulations the observed double layer exhibits a potential
spatial-profile having a potential depression on the low side {or conversely a potential bump on
the high side), as shown in Figure 1(a). Such a non—monotonic double layer (NDL) is actually
a localized region of rhree sheets of alternating charge sign, and thus includes subregions of

oppositely directed non-monotonic electric fields'~16-8-2,

It is increasingly clear that even the straightforward NDL structure can evidence complex
nonlinear characteristics, as exhibited many ways in both simulations and experiments. Reports
of several recent simulations'®!®-2 indicate that an ion acoustic double layer can be formed by
reflection of electrons off the negative potential depression; its simulated potential profile has
an NDL form as in Figure 1(a). Recent satellite measurements®® of field aligned potentials in
the auroral region, show signatures that are especially consistent with the NDL, having a
characteristic potential depression at the low potential side (or a bump on the high potential
side). It has been further suggested?* that a series of such small amplitude non-monotonic dou-
ble layers might account for a large portion of the total potential drop along auroral field lines.
and might also explain the fine structure of auroral kilometric radiation. The recent thermal
barrier cell concept for tandem mirror devices is based on the generation of an abrupt potential
depressions by means of forced changes in the particle distribution functions'**. Recent
experiments with Q-machine plasmas?® also reported the formation of a potential depression
between two plasmas with different electron temperatures;, the "non-monotonic” negative poten-
tial depression is thought to play a crucial role in the formation of double layers. accounting for
both the observed current disruptions (by reflecting the electrons) and also for the high fre-
quency noise excitation seen behind the double layer (caused by a two stream instability invol\-
ing electrons that pass the negative potential peak'>?%). A recent triple plasma experiment
reported that the formation of an ion acoustic type double layer was observed in the laboratory

for the first time?’.
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Although there have been many theoretical, numerical and experimental investigations of
double layers, recent theoretical work has been devoted 1o numerical evaluations of the
Viasov-Poisson system (or of the fluid system) mainly because of the highly nonlinear proper-
ties of double layers!3-1¢-21.22.28  In order to explain nonmonotonic double layers, theoretical
efforts have attempted to generalize ion hole, ion acoustic soliton or monotonic double layer
descriptions'®'¢-21-22_ It should be noted that to our knowledge there exists only one theor
offering a numerical solution for a nonmonotonic potential structure obtained from a Vlaso:-
Poisson system?’. However, it should be pointed out that the distribution function used in this

work was not selfconsistent with the Vlasov equation.

In this chapter, we present a general formulation and the first self-consistent analytic solu-
tion for non—monotonic double layers, which satisfy the time stationary Vlasov-Poisson system.
We present a derivation of a K-dV like equation describing a moving non-monotonic double
layer, showing a relationship among the spatial scaling parameter, two amplitudes of non-

monotonic double layers and the speed of double layer.

To describe propagation of an electrostatic double layer, we again use a Vlasov-Poisson
system that has been Galilean-transformed to the wave frame (where the wave is time station-
ary). In this frame, we can express the time stationary solution of Viasov equation as any func-
tion of the constants of motion: (i) particle total energy and (ii) the sign of the velocity of the
untrapped particles. Besides these usual constants of motion, it is important to note that a third
constant of motion exists for the reflected particles: sgn ( x - x,, ) where x, represents the
position of potential minimum (or maximum) for the negatively charged particles (or the posi-
tively charged particles). It turns out that this final constant of motion plays an important role

in constructing the non-monotonic double layers®.

2. NDL with potential depression at the low potential side

An important class of NDL jumps from ¢(x—=—c0) =y, to ¢(x—+o0) =y and has a
potential minimum &(x,,) =0 on the low side (see Fig. 1(a)). In order to describe this type of

NDL, we next introduce a class of modified Schamel distribution functions for the electrons



33

and ions (the regular Schamel'*~1"2%-3133 distribution functions used to describe phase space
holes and monotonic double layers cannot give rise to NDL). Using all three of the constants of
motion mentioned earlier, we construct the following general class of electron and ion distribu-

tion functions containing both free-streaming and trapped populations:

~Lign s (Pl 2
f.= T;__;{e 7 Ve 8(e,) (m
,02 Be, _&
+e 2 |fil+sgn(x=x,)) e 2 + fr(l-sgn(x—x,)) e * }O(=¢) l

f,=.__

1 2

—<|sgn ufe, =276 - ug}

/2! {e 2 ¥ THeT O(e,—21¢) (2
mw

—:-(i L (e =2:u)
+e 2 e 2 O(—¢ +274)

wheree, = v2—26, € =u’+2r¢, t=T,/T, and 0< ¢(x) <vu.

Here the electron velocity v, the potential ¢ and the spatial coordinate x are respectively
normalized to the electron thermal velocity (T,/m,)* , the electron temperature 7T./e and the

" electron Debye length A, = (T,/4mnoe?)”, v, represents the electron drift velocity. The ion
velocity u has been normalized by the ion thermal velocity; u, is their drift. The density nor-
malization constants 4, f, and f, are positive. The thermal distribution scalings a (for the
trapped ions), B and & (for the trapped electrons) represent effective inverse temperatures.
Note that to describe NDL associated, e.g., with an ion phase space hole, the ion trapping
parameter (inverse temperature a) may be chosen to be negative; of course, the distribution
function itself is everywhere positive and in this sense physically realizable. The symbol € is

simply the Heaviside step function.

At the NDL's potential minimum (x =x,, ¢ = 0) the electron distribution models a
drifting Maxwellian, Fig. 1(d); the ion distribution function models a drifting Maxwellian at the
NDL high side, ¢ = ¢, Fig. 1(c). Since the reflected particles in either region x > x,. or
x < x,, cannol communicate each other, we have introduced two separate temperatures

(B and 5) and two normalization constants (f, and f,) for these two separated particle popula-
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tions. Because we are solving the time stationary Vlasov equation, it follows that the current
density (or tota! particie flux) is uniform in space: electron and ion current density are given by

Je = —vp and j, = Auy throughout the system, respectively.

From the model distribution functions given above, the corresponding densities for elec-
trons and ions can be found by simple velocity-space integrations; these are expressed as func-

tions of physical potential ¢ (x) as follows:

e 2
n (o) =e ? 'F(—vg— @) + f1(V+sgn (x—x,,)) T-(8,0) (3)

+ fy(1-sgn(x=x,)) T-(5.0) ]

kol 2
nd)=Ae ? IF(-uzl g W—-0)) + T-(a.7(p—d) } (4)

where F, 7. and T_ are defined as follows:

2 = 12
Y e [ Ay T Py, (5)
F( 3 @) \/-:_{dl m.e cosh(¥vy) . 5
T.(8.0) = 71-—5 e8¢ erf(VBd) with 8> 0, (6)
2 Visle
T (a,¢) = m e~lale f dr " with a < 0, ()]
0

Thus the Poisson equation expressed in terms of the Sagdeev potential ¥ (&) then becomes:

do

-0 2

-e ? }-'(VT0 @) + [1(1+sgn (x=x,)) T:(B.8) + f(1-sgn (x—x,)) T.(3.6)

¢"(x) = ¢, =—

Voz

v 2
—Ade ? F(—"-;— 2(y=0)) + T=la.r(y—@) } (9)

From this the Sagdeev potential is obtainable by direct integration, using an integration constant

V(¢=0) = 0. This value could have been chosen = 0; what matters is that we choose a simple



constraint, e.g., ¢ =0 where E =0.

"02 2

V(@) =e T {F( 8 + f1(1+sn (x=x,)) T2 (8,0)
+ f(1=sgn (x=x,)) T5(5,0) ]

_ud 2
—Ade ? [F(ﬁzo— gW=0)) + T-(a,r(Y~ad)
In this expression, the functions F and T. are given as the following integrals:
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2 = B
f(l:‘z’_@) = (%)‘f‘-fdv V{vV +26-V])e ? cosh(Vv),
0

2 L -]
FE o) = -2 L fav vV 2o
2 L T

12

~ V24 27y) e I cosh( Vvo) o

T-(8,0) = IBI T.(Be) F »/'im‘/-

T la,r(y—0)) = :l—a‘l—_ ( T.(a,r(4=0)) = T (a,re) )

+ 2 { Velr(y = @) = Vialre ).
|a|7

For small amplitudes (¢ << 1), F and T have the following expansions:

F(E,0) = e"| 1-1Z" (\/E).»— T ¢’2+ 3J’ (254-1)¢“+v~c(£ o' -

T.(8,¢) = \/-¢"’+—-@—¢”
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(10

(1h

(11-a)

(12-a)

a3

where G(E;) = P = for E; >> 1 is a monotonically decreasing function of E; with

8E;

G(0) = 1. The function Z’',(x) represents the real part of the derivative of the complex

plasma dispersion function (see Fig.2) and has following expansions:

=%Z'\(y) = --(y—;-& + (y = yg)? + (higher order terms ) ,
0
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for ly—yol << 1 and yo = 0.924

-%Z' (y) = -3;—2 (1+ —i—z- ) + (higher order terms ) ,

for Iyl >>1.
NDL solutions to Eq.(9) are found by considering the following nonlinear eigenvalue con-

ditions associated with our graphic method:

®  Outside the NDL region there is charge neutrality and the right hand side of Eq.(9) van-

ishes, i.e., the physical potential curvature is zero: ¢,, = 0.

® At the potential minimum, x = x,,, the curvature of the physical potential is posiive. Fig

1(a). Hence ¢,, > 0 and therefore dV(¢)/dé < 0.

® Outside the NDL region (x — £) and also at the potential minimum (x = x..). the

electric field is zero: E(x)=—¢,. Hence V(¢) = 0 at values ¢ = ¢, 0, and .

®  An additional condition for the existence of NDL requires V(¢) < 0 for 0 < & < ¥
except at ¢ = ¢,. Furthermore, the Sagdeev potential (see Fig. 1(b)) must be a double

valued function of ¢ for 0 < ¢ < ¢.

The required double valuedness of the Sagdeev poteﬁtial is guaranteed by the use of
sgn (x—x,,) in the electron distribution function: the reflected particles on either side of the
NDL minimum will in general have different distribution functions, depending on the signature
of (x—x,). In this respect, it should be noted that recent Q-machine experiments have
reported a formation of potential depressions between two plasmas with different electron tem-
peratures?®. From this requirement for the existence of an NDL (that the Sagdeev potential be
double valued), it follows that any distribution function resulting in an analync density
representation as a function of ¢ can never satisfy the necessary nonlinear boundary conditions
for an NDL potential form (for example, all of the distribution functions used in refer- -

ences'3-17:29-30.33 14 describe phase space holes and double layers).
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The first and second boundary conditions mentioned above stipulate that

V'(y;) =0 = V() and that V'(¢=0) < 0:

v 2
—V'(!ﬂl) Ll -4 2 {F(""zo_ "1‘1) +f2 T:(a,‘l‘l) }

! 2
-Ade ? F(izo— JW—y¢)) + Tla,r(W—i)) ]== 0, (14)

W 2
-V')=e ? {F(-vzl W)+ £, T8 ]

2
2

Lo
-Ade ? F(uT0 ,0)+T:(a.0)l==0. (13

T BT (R
V') =e 2 F(T 0 —-4de ? F(T oY) + T=(a,7y) | > 0. (16)

The third condition (above) gives rise the following relations:

Ju 2
V(dll) = Ade ? l i—(ﬁzg' ,T(tll-!ll])) + T; (a,‘r(dl—dq))_} an
-i = Voz -
-e 2 F(T‘w]) +2f2T:(6. lll]) =0,
-u_oz - u 2 - —i -V 2 -
V(y) = de ? IF(TO ,0)+T=(a.0)]-—e 2 lF(To,w)+2f|T-_-(ﬁ.dl)]=0 (18

Solving the above set of nonlinear eigenvalue equations (Eqs.(14)-(18)) together with the

fourth condition, one can obtain a set of NDL solutions.

In general, the above nonlinear dispersion relation(or nonlinear boundary conditions) can
only be solved by numerical means. However, there is one case where an analytic solution is

possible. In the ion reference frame, assume a simple Maxwell-Boltzmann ion distribution {

. ) AT -307-20 . o
i.e.,,seta=1]1and up=0in Eq.(2)), f, = e e where 7, is some normalization
v

constant. The electron distribution function is given by Eq.(1) (i.e., 8= 0 = §). With these
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distribution functions f, and f,, the Poisson equation (Eq.(9)) may be written in the small

amplitude limit (i.e., expansion in ¢'/? up to terms of 0 (¢?)) as follows:

b = V(@)

do (19)
2¢7%¢
b = {1-7} + o Ui+f =14+ =f ) sen(x— x,,) Jo'?
+ a7 - %2, (JE) lo
4™
+ 5o 2B, + f1( 1+ sgn(x=x,) ) B+ fo( 1—sgn(x—x,,) ) & — ] jo' 2
+ % { G(E,) — 7, 1) & + { higher order terms (20)

where E, is the electron drift energy and we have used our small amplitude

expansion(Eq.(13)).

Eqs.(19) and (20) subject to NDL nonlinear boundary conditions (i.e., Eqs.(14)-(18)

together with the fourth condition), can be solved to obtain the following simple NDL form:

¢ = ¢f a, + tanh x|, | x ]2 21
where for convenience only ¥ > ¢, > 0 is considered and we have defined
- + 2 - .
'!l"M. a,=M. x,2-=-ﬂ'->0. (22)
4 N 6
Here ¢, a,, x, and v are related to our system parameters as follows:
l-ﬁl - —;'wld’ vV, (23)
L (-1 € = IV - ) v (24
{ﬁ.r-%Z',(\/E_,)l-—§-<w,+w-4JEJE)v. (25)
4e” 5o 1
w;—(fnﬁ-fﬁ)-¢g(\/¢_|-\/5)h (26)
v-%(G(E,,)-ﬁ, 72} (53]

We may consider a, to be an "asymmetry parameter”. For example, if we were to set
¥, =0 (ie.,a, = 1) in Eq.(22), then we would obtain our previous '’ monotonic double layer
(MDL) solution; the MDL is the nonlinear version of the slow electron acoustic wave in the

limits +—0, ¢ —0. Similarly, the condition ¢, = ¢ (a, = 0) corresponds to the solitary ion
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hole solution. It should be noted that for the above monotonic double layer and hole solutions.
the Sagdeev potential is no longer double-valued. The more general condition la,| <1 gives
rise to the double-valued Sagdeev potential, and the above solution Eq.(21) describes a
non—monotonic double layer, with a potential depression at the low potential side. From
Eq.(23), we see that the existence of the non-monotonic double layer, with a potential depres-
sion at the low potential side, requires 4, < 1 in order to have a positive curvature al ¢ = 0
For a,2 > 1/3 and in the long wave length limit, the coefficient of & (Eq.(25)) should be posi-
tive: this requires 0 < r < 0.285 and 0.924 < /E, and these conditions follow from the fac:
that 4Z’, has an absolute maximum with positive value 0.285 and that it is positive for
VE; > 0.924. Note especially that even though this NDL has a potential structure that is simi-
lar to recently reported ion acoustc double layer simulations, its origin is nor related to any ion
acoustic wave (we give an ion acoustic double layer description in a later chapter). It shoulc be

noted that this NDL has high (low) density at low (high) potential side.

3. NDL with potential hump at the high potential side

In order to describe this type of NDL (see FIG. 3. (a) and (b)), we introduce the follow-
ing modified Schamel distribution functions for the electrons and ions: the roles of electrons

and ions are interchanged compared with those of the earlier NDL:

] 2
. { —;lsxnv\/«-,—uol R
fl J’E e 9(64 ) (2»‘

w?

+e 7 U1 Q+sgn(x=x,)) e 2 + f1(l-sgn(x=x,,)) e I )O(=¢) ]

1 voz B
A l -3| qn v e, nwa. v‘,l2 - 5
- + - (29
Je v, rl Be,)+e ? e O(~¢,) 29

where ¢, = u? + 21d, ¢, = v'-2(o+¢), 7= 17:'- and 02 ¢ 2 —v.

The electron velocity, the wave potential and the spatial coordinates are normalized again

to the electron thermal velocity (7,/m,)" , the electron temperature 7T,/e and the electron
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Debye length A, = (T,/4mwnoe?)”, respectively; v, represents the electron drift velocity. The
jon velocity has been normalized by the ion thermal velocity. o , B and y represent effective
inverse temperatures. The electron distribution represents the drifting Maxwellian at ¢ = —¢
and the ion distribution function represents the drifting Maxwellian at ¢ = 0. Since reflected
particles in either x > x,, or x < x,, can not communicate each other, we have also intro-
duced two different temperatures for the ions. Electron and ion current densities are given by

J. = —Avg and j = wg throughout the system, respectively.
The corresponding densities for electrons and ions are given as follows:

-
Ilo’

_uo’ 2
n(e)=e ? F(-uzL‘-rda) (30

+ f1(1+sgn (x=x,,)) T=(a,—7¢) + f(1=sgn (x—=x,)) Tz(y,~7¢)

e 2 .
n(e)=Ae ? [r(-”z"— @+Y) + T=(B,0+) (31
where F, 7. and T_ are defined as before(Egs. (6)-(8)). Thus the Poisson equation may be

written by using the Sagdeev potential as follows:

_dVi(e)
do

2

o = (32)

L)

2
b, =—e ? {F(“To —1¢) + f,(1+sgn (x=x,,)) T=(a,—7d) + fr(1=sgn(x=x,)) T-(y.—7¢)

‘o

(—-—2) Voz
+Ae ? F(T O+y) + T-(B,0+¢) (

The Sagdeev potential can be written as follows:

LPY]
LFY]

_w 2 i
-V(e¢) =—e 2 lf(u—;' .-T¢) +f|(l+sgn (X-X,,,)) T:(a.-7¢) +/:(l-—sgn (a=x, ) Ty =7 ]
vo? 3
o vo
+A4e ? {F(T B+v) + T (B.e+y) ] (34

NDL solutions with a potential hump at the high potential side are found by considering
the following nonlinear eigenvalue(nonlinear boundary conditions) associated with our graphi.

method:
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- Charge neutrality at ¢ = —¢, and —¢ with ¢ > ¢, > 0 requires the right hand side of the

Eq.(33) should vanish at those values of ¢. Negative curvature st ¢ =0 requires

dv(¢) -
70 >0at¢=0

- Existence of the NDL requires that the Sagdeev potential be identically zerc at

¢ = 0, —¢, and—y , so that electric field is equal to zero at those values of ¢

- An additional condition for the existence of NDL requires V(¢) < 0 for 0 > ¢ > -vu
except at ¢ = —y,. Furthermore, the Sagdeev potential(see Fig 3. (c)) should be 2 dou-

ble valued function of @ for 0 > ¢ > —¢;.

It should also be noted that the double valuedness of the Sagdeev potential is guaranized
by the use of sgn (x—x,,) for the reflected ions: reflected ions should have different distribution

functions depending on sgn (x—x,,).

dv (=y,) - dv(—y¢) _

do do o

The first condition yields

s’ 2
-V( - )=—¢ 2 [F('uzi .ﬂfll) +/, T:(a,?dll) ]
L
+Ae ? 'F(-zl —U+Y) + T,(ﬁ_,-w,-;-w) l-= 0. 35

! 2
-V'(—w)-—e 2 'F(—u_zo_ ﬂ’d’)"’f: T:(Y»TW)]

i 2
+Ae ’[F(-v-;’— .0)+T=(ﬁ,0)]-0. (361
TN I [
-V =—e¢ ? F(T 0 +A4e ? F(T W+T-Buw)}>0. (37)

The second condition gives rise the following relations:

! 2
V(-y)) = —de ? {f(!;— A=) + Tz (Bu—y) ] (38
u 2
I A
+e ? F(—z-,w,) +2f1T:(a, 7¢)) {=0.

vo?

- 2
V(-¢) = —de ? {f(%" 0) + 73(8.0) l (39
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v 2

+e T B ) + 23T urw)

Solving the above nonlinear eigenvalue equations(Egs.(35)-(39)) together with the third
conditon, one can obtain a set of NDL solutions with a potential hump at the high potential
side.

Again, the above nonlinear dispersion relation{or boundary conditions) can only be solved
by nummerical means in general. As before there is one special case, where analytic solution is
possibie. In the electron reference frame, we assume a Maxwell-Boltzmann electron

——‘—1712-20‘,0

distribution(we set 8 =1 and vo = 0 in Eq.(29)), f,-—\/n2'=ﬂe ¥ where A, is some

normalization constant, and we consider the ion distribution function given by Eq.(28) Wuh
the distribution functions f, and f,, the Poisson equation may be written in the small ampl:-

tude limit by using a Sagdeev potential ¥ (¢)(Eq.(32)-(33)):

L =_dre (40)
dé

2\/_e

&, = (—1+4,} + ——— {f +f=1 + (f1=f) sgn{x—x,)} (—a)'?

+ (f, — #12',(JEy 1o

-32
‘3 {2£o+f,(l+sgn(x-x,,,))a+j’2(l sgn(x=x,) ) y—11(=¢)"
‘"
) s
+ Lz-l 252- — G(Ey ¢! + | higher order terms | 41
T

where E, is the ion drift energy and Z',(x) again represents the real part of the derivauve of
the complex plasma dispersion function(see Fig. 2.). In this case, the double valued Sagdee:
potential is guaranted by the use of the constant of motion for reflected ions. By solving
Eqgs.(40) and (41) subject to the NDL boundary conditions(Eqgs.(35)-(39) together with the
third condition), we get the following double layer solution:

¢ =—¢la, +tanh xl«, | x )2 (42)
where for convenience we consider only ¢ > ¢, > 0 and we have defined

- (\Nn +J;)2 JJ’ Ve 2 E!L
i —————— ___._—— - e > o . (43,
L] 3 y a, = \/_'(’\/t; K, 6
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¥, a,, x, and u are related to our system parameters as follows:

=147, = %dmb K, (44
2 (- g9 € 2 VERNE - VB K s
{ﬁe—-;-Z',(\/'fo)l-'Tz(w,+w—WJE)u. (46)

47320 k0 1 i
-TT‘/—%-U:O—IH)--’*Z(\/I:—JEM. (4=
w=1/2 7 - 12G(Ep) ). (48)

Clearly a, may again be thought of as an NDL asymmetry parameter. But now if we consider
¢, = 0 (a, = 1) in Eq.(42), then our previous ion acoustc monotonic double layer solution 15
recovered, and is the nonlinear version of the slow ion acoustic wave. Similarly the condiuon
¥, = ¢ (a, = 0) would return the electron solitary hole solution. It should also be noted tha:
the above two solutions have single valued Sagdeev potentials. The more general condition
la,1<1 gives rise 10 a double-valued Sagdeev potential, and the above solution describes an
non—monotonic double layer, with a potential hump at the high potential side. From Eq.(44).
we note that the existence of the non-monotonic double layer with a potential hump at the high
potential side, requires /i, < 1 in order to have a negative curvature at ¢ = 0. For a’ > 1.3,
the long wave length limit, the coeﬁicieni of ¢ should be positive: this requires + > 3.5] and
\/7;'_0 > 0.924 and these conditions follow from the fact that ' Z', has an absolute maximum
with corresponding value 1/3.51 and that it is positive for the range of VE; > 0924, Unlike

the NDL in Section 2, this NDL has high (low) density at high (low) potential side.

4. MK -dV like solution, moving NDL

In this section we derive a K-dV like equation, which applies to the one dimensional
non-monotonic double layers of small but finite amplitude (2 weak ion acoustic double layer!

having a potential depression at the low potential side.

To describe a collisionless plasma of cold ions and warm electrons, we consider the fol-

lowing set of equations for the cold ions:
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n + (nv), =0, (49)
v, +w, +¢, =0, (50)
b =0, —n, (51)

where the density, velocity, potential and spatial coordinate are normalized to the unperturbed
density n,. ion acoustic velocity (T,/m,)"’?, the electron temperature T,/e and the electron
Debye length, respectively. We introduce the Gardner-Morikawa coordinate transformation
€=25'2(x—r) and 7 = &Y. Assuming the electrons to be in a quasi-equilibrium with the
low-frequency ion acoustic wave, we may expand the electron density as
_1+52- +53’2 (6- ) 172 812 (6— ) 12 4 .
n, A, cosgn(E—¢,) &' 2 +c 10+ 8 ‘cysgn (6= €,)0 C1d” = ...

By using reductive perturbation theory, we expand n,v,é in powers of small parameter™ & as
follows:

"-l+8n”)+82nul+ v (52)

v+ v+ 8P 4+

& =250 + 8%+ ...
From the above prescription, we obtain the following set of coupled equations:

(Vo— 1) Ben'” -i-&p"”-o. A (53)
(‘"0 - 1) afnm + a?nm -+ a‘vm + at(nmv(l)) -0 \ (54)
(V(, -1) a;vm + 6‘6‘“ =0 ’ (5%
(Vo -1 agvu’ + a,\v"“ + 'l a;l’”’ + a§¢'2) =0, (561
n' - cMm ) (57)
90" =i, + ¢ e = 07 + cgled) T+ (0" + c3(e'")* . (58
From Eqgs.(53), (55) and (57), it follows ¢, = o lv 3 and we set ¢'"" = (1-=v,)* n'!" and
=V
v - -l—l—v-é"' + vo'! where v," is some constant. We obtain the following K-dV' like equa-
=y

tion from the above set of equations, after a certain amount of algebra.
0= -:-1—6'¢ + ‘—.l"—augé (59
Ux? 29?2
®."
-8 | 6a,(1-0a,) sgn (£ ~ f,,.)(-.‘;)

32 s
+14Ga,2-1) = 12 100, sente - £.0(2) T+ 3B
P 3 H



Here we have defined

PV Tl (LY TR
e A

Here ¢, a, and x are related to our system parameters as follows:

Kl - 116* > 0. (60)

() 2

i, - %( By = 20e-aD, o= 12V, (1m0,
v 1) 20 3
:3 -M—4K2(3a,2-1) . C;‘-TJJK%, , n=C— '5;\—_ (61)

where A = 1—v; and M represents the velocity of the ion acoustic double layer in the framz
moving with jon acoustic velocity. It should be noted that we have used our nonlinear boundary
conditions for a moving non-monotonic double layer so that we can extract some usefu} physiis
The corresponding moving ion acoustic double layer solution of Eq.(59). with a potenual
depression at the low potential side, is given by

¢(€,7) =¢la, +tanh k(g - M 7)) (62)
where £, is given by the equation ¢ (£, — M 7,0) = 0. Here g, = 1 and a, = 0 represent

monotonic double layer and solitary structure, respectively.

5. Conclusion

Using our graphic method, we have given a general formulation of NDL and obtained two
new non-monotonic double layer analyuc solutions: one has a potential depression at the low
potential side; the other has a potential hump at the high potential side. From the double-
valued properties of the Sagdeev potential (required for the existence of a non-monotonic dou-
ble layer), it follows that any distribution function having a density representation as any
integer or non-integer power series of potential can never satisfy the non-monotonic doubic
layer boundary conditions. This shows the importance of using the third constant of mouon for
reflected particles, in order to provide a double -valued Sagdeev potential for the non-monotonic
double layers. We have aiso given a derivation of the K-dV like equation, which describes the .
non-monotonic moving double layer with a potential depression at the low potential side Thus

we have found that there is relation among physical parameters.
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FIG. 2. The real part of derivative of the complex plasma dispersion function: A Z’,(x).
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FIG. 3. (a) NDL with potential hump at the high potential side. (b) Sagdeev potential for the
above NDL.
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5. Theory and Simulation of ion acoustic double layers

K Y Km

E.R.L., University of California, Berkeley.CA. 94720

ABSTRACT

Particle simulations of ion acoustic double layers are successfu) in shor!
systems (L =80Ap) and with low drift velocities (v, =0.45v,) for the elec-
trons. We present simulation results for systems driven by constant current anc
by constant applied voltage. By using an analytic formulation, we find that there
is a "critical” electron drift velocitvy (which is considerably smaller than the
value reported in previous papers but very close to the value of our simula-
tions) for the existence of ion acoustic double layers. We find that for a given
electron drift velocity (exceeding the critical” drift) there is a corresponding
maximum amplitude for the ion acoustic double layer. We show that the net
potential jump across the ion acoustic double layers is determined by the tem-
perature difference between the two plasmas. It is also shown that usual Bohm
condition is nor saiisﬁed for ion acoustic double layers with finite amplitude’ the
velocity of the ion acoustic double layer decreases (below C,) as its amplitude

increases.

1. Introduction

In several recent simulation papers'~*, it has been reported that a weak ion acoustic dou-

ble layer of 8¢ = 7, can be formed via electron reflection off the potential depression taking
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T, >> T,, it was found that for these weak ion-acoustic double layer to form, there was a
threshold drift velocity v, = 0.6v,, and a necessary, relatively long simulation system
(L 2 512a,). Here v, represents the thermal velocity of electrons and A, is the eiectron

Debye length.

Recent satellite measurements’ of field aligned potential in the auroral region, show sigre-
tures that are especially consistent with the non-monotonic double layer, having the characteris-
tic potential depression at the low potential side (or bump on the high potential side). It has
been suggested’ that a series of such small amplitude double layers might account for a largs
portion of the total potential drop along auroral field lines, and might also explain the finz
structure of auroral kilometric radiation. Recent experiments with Q-machine plasmas’ alsc
reported the formation of a potential depression between two plasmas with different electron
temperatures; the "non-monotonic™ negative potential depression is thought to play a crucia!
role in the formation of double layers, accounting for both the observed current disruptions (by
reflecting the electrons) and also for the high frequency noise excitation seen behind the double
layer (caused by a two stream instability involving electrons that pass the negative potential
peak®-1). In a recent experiment’’, it has been reported that ion acoustic type double layer has
been observed for the first time in a triple plasma machine and this ion acoustic doubie layer

has a subsonic propagation velocity.

Although there have been many attempts at understanding double layers, recent theoreti-
cal work has been devoted to numerical evaluations of the Vlasov-Poisson sysiem (or of the

1

fluid system) mainly because of the highly nonlinear properties of double layers* ¢'¢° 0 To
our knowledge, there exists only one theory offering even a numerical solution for a non-
monotonic potential structure obtained from a Vlasov-Poisson system . Theoretical efforts have

attempted to generalize ion hole, ion acoustic soliton, or monotonic double layer descripnons i

order to explain non-monotonic double layers**41°,

In a previous chapter, we gave a simple graphic method of solving the Vlasov-Poisson sy«

tem associated with nonlinear eigenvalue conditions for arbitrary potential structures. presented
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a general analytic formulation for non-monotonic double layers, and illustrated with some per-
ticular solutions'®. In this chapter, we present a theory of ion acoustic holes and ion acoustic

double layers and compare this with our simulation results.

2. Simulation of lon Acoustic Double Layer

First we shall describe some of the results of simulations with no applied dc potentia!
("current driven”), and then describe briefly the results of simulations that have an apphed dc
potential ("voltage driven”). All simulations are done with a 1d axially-bounded electrosiatic
PIC code. In all of our simulations, we have used the same mass ratio (m/m, = 100). the
time step is w, &/ = 0.2. Initially, the simulation plasma density is uniform 1n space  The ion
and electron distribution functions are both Maxwellian; the ions are cold. T << T, . and the
electrons are drifting relative to them with drift velocity vg. This relative drift between the

electrons and ions constitutes a current and can result in instability depending on 1.

() Simulations of current driven systems

In our simulations of constant current driven sysiem, we have found that. weahk ion
acoustic double layers can be formed even in a very short system (80A,). and even when the
electron drift velocity is small compared to previous simulations (1, =0.45y, =45C.). th2
double layer formation mechanism is still based essentially on amplification of a small negat:ve

potential dip, due to reflection of electrons.

Using a temperature ratio t = T,/T, = 20 and plasma parameter nA, = 100, the systzam
plasma is loaded uniformly in space. there is thus no electric field initially From Figures ] and
2, note that by time w, ¢ = 480 a small negative potential dip has developed that is associated
with an ion phase space distortion as well as with an ion density dip. From subsequen!
*snapshots” of this potential dip, it is seen 10 be moving with nearly ion acoustic velocity (¢!
Therefore it can start to trap those ions which are resonant with the structure (re., ions in xhg
positive velocity tail of the distribution). and an ion hole starts to form there At the left side of

the growing potential dip, electrons with velocity slightly greater than the ion acoustic velocity
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contribute to the structure’s growth; their velocity distribution (in the moving frame of poten-

tial dip) has positive slope, so that they give up their energy to this potential.

As the negative potential structure grows and decelerates due to this electron reflectior..
the dip is able both to trap more jons and. at the same time, to reflect more electrons. "Pos:-
tive" momentum transfer due to electron reflection leads to *deceleration” of the ion hole, anc
the potential thus appears {0 have a negative effective mass as well as negative effective charg:
This deceleration and growth of the potential dip can lead to increased ion trapping. because thz
structure sees more densely populated ion distribution as it decelerates. This electron reflection
causes the asymmetry of potential due to more electron density buildup at the left hand side of
potential dip than that of right hand side. Al time w, 1 = 880, an ion acoustic double layer 1t

well developed, with a negative net potential jump |86| = 0.3 T, over a distance of about 10

One reason for initiation with the low drift velocity of our simulation is the conditior, of
consian! current injection as opposed to the previous simulations using decaying current injec-
tion. Of cource, there is a similarity between our system (with constant current condition! and
previous long periodic simulations with decaying current conditions; because the system length
is long in the periodic simulation and because of periodicity (a particle leaving at one boundary
is replaced at the opposite boundary by an incoming particle with the same initial velocity).
early in time there is nearly constant current coming in and going out This nearly constani
current in a Jong periodic simulation acts as a source of energy which leads to the formation of
weak jon acoustic double layers by the reflection of electron current. However. our bounded
simulation system, with constant current injection has more energy available than that of a long
periodic simulation system, resulting in a lower threshold drift velocity than that of a periodi

system.

In all of our simulations, the negative potential dip always moves in the same direction
(r.e., that of the electron drift velocity). This is because right going ion acoustic waves are pre-
ferentially amplified by the inverse electron Landau damping but left going ion acoustic wares

are severely attenuated by the Landau damping. The early growth and deceleration of the
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potential dip can be understood qualitatively as a simple momentum exchange between the
structure and the particles. The rate of change of ion acoustic double layer momentum should
be approximately equal to the negative of the rate of change of particle momentum, this can bc
expressed by considering the reflection of electrons and ions by the ion acoustic double layer as

follows(see Fig. 3(b)):

dP U’OI_PO)% (ﬁfl,.ﬁ
_ od o _ ] L yd -
I 2m, { v vif, (M +v) +2m, .{ dv v M=)

[

Pt
—2m,fdu uf (M +u). th
0

e e e . :
where p, = ;—w. P = 7n—w,. D= -;,-d: and M represents the velocity of ion acousti
(3

¢ 1
double layer. In the small amplitude limit(y, , ¢ << 1), the above equation can be writien as

follows:

Lo _ _ Y = [Eeg ] ?
. - 2m,f,(M)Hm'(w, ) —lm'w,] }

“2m e D [ oy = 001+ [l
-2m.f, (M)l’—:'-wl”
—2m.f", (M)[mi'dcl’ ?

The first term in Eq.(1) represents the positive momentium transfer(i.e. electron momen-
tum loss) due to electron reflection from the left hand side of ion acoustic double layer The
second term in Eq.(1) represents the negative momentum transfer due to electron reflection
from the right hand side of ion acoustic doubie layer. The third term in Eq.(1) represents the
positive momentum transfer due to ion reflection from the left hand side of ion acoustic doubl¢
layer.

Initially there is no appreciable asymmetry in the potential structure (.e., =0 and

df. (M)

> 0. Due to this

dP4/ dt > 0 since electron drift is in the right direction and thus

positive momentum transfer(i.e. electron momentum loss) by electron reflection. the ion acous:
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tic double layer having negative effective mass decelerates; the negative effective mass results
from the ion density dip associated with the ion acoustic double layer. As potential asymmetry
develops by electron reflection(i.e. & > 0), ion reflection starts come into play and the second
term starts to compete with the first term. For the cold ion case, the third term can be con-
sidered negligible, and ion acoustic double layer can receive nel positive or negative momentum
transfer and thus decelerate or accelerate, depending on the relative magnitude of ¢, and ¢. tht
velocity of the ion acoustic double layer and the electron distribution function at both sides of

the ion acoustic double layer.

(b) Simulation of voltage driven systems

For the constant voliage driven system with current injection (8¢ = 0.5), we have found
results that are similar to the above current driven simulation. An important new feature how-
ever, is that the ion acoustic double layer now always appears first near the left side of wali anc
develpps more quickly than in the earlier current driven simulation (Fig. 4 and 5). In addition.
our constant voliage driven simulation requires a lower electron drift velocity (0.2v,.) for the
formation of ion acoustic double layers than was necessary in the constant current driven simu-

lations.

In our constant voltage driven system with current ihjection at the boundary. an apphed
potential across the system acts 10 increase the effectve drift velocity of electrons Since ions
injected at left boundary see a potential barrier due to the applied potential. they will be
reflected, thereby forming an ion phase space density dip. which contributes to the formauon of
a negative potential dip near the left side of the wall(Fig. 4(a)). Therefore. we expect to find
formation of ion acoustic double layers at a lower electron drift velocity and near the left sidc

of the wall.

3. Theory of lon Acoustic Double Layers

Having described our simulation results, we are in a position to explain theoretically somv

of their features. Using our graphic method, we shall show that there is a “critical” velocity for
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the existence of ion acoustic double layers, which is smaller than the value reporied in previous
papers, and that there are maximum amplitudes of the potential dip corresponding to the dnfi
velocities exceeding critical velocity. We also find that the net potential jump across the ion

acoustic double layers is determined by the temperature difference between two plasma regions

From the simulations we see that the electron kinetics are important and our theor:
accordingly must start with a reasonable yet tractable kinetic electron model which uses all threc
constants of motion. To this end, we introduce the following "modified Schamel” type of ela¢-

tron distribution function, having three electron components:

Pl L vio, 2
f‘,u T e - e(€_2\b]) (2

V2m

- b

2
G Xax _B -
+e ? lfﬂ{l—-sgn (x-x,,,)} e 2 +f6l1+sgn(x—xm)] e 1 |O(—e=+20,)

where € = v — 2¢. The first component is the "free” (or untrapped) group of elecirons They
make up the bulk of the elcclrons; and are modeled here as a drifting Maxwellian function at
¢ = 0; as given, their temperature has been normalized (i.e., to T,/ e) Reflected lor
"trapped”) particles populate the regions either x > x, or x < X, On each side of the doubiz
layer, and cannot communicate with each other; therefore, we have introduced two separais
temparatures (8 and 5) and two normalization constants (f,; and f4) for them. Here. eleciron
velocity (v), the potential (&), and the distance (x) are normalized to the electron therma!
velocity (T,/m,)” . the "free” electron temperature T./e. and the electron Debye length
A, = (7./4mnoe?) ", respectively. @ represents simply the Heaviside step function

Since we are interested in describing ion acoustic double layers, we shall use a flud for-

malism to describe the essentially cold ions:

(n), + (nu), =0, u+uu +ao, =0 R

Considering a time stationary situation, the above fluid ion model yields n u = n, u anc

ul/2 + ¢ = Eo where ny, ug and E, are constants.

From these two species models, the corresponding densities for electrons and ions 1n the
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ion acoustic double layer frame are given as follows:
e v,
n(¢)=e ? ‘N, (—;—- @) +f,,[l—sgn (x—x,,,)] R(B.9) (4)
+ f,,(1+sgn (x—x,,,)l R (8,¢) ]

n (¢) _ oo
' V2E - o) T

where N, and R are defined as follows:

”
unzu

2 7 Zandy
N, (-%—,d,) - (-,2-r-)"~ e® fdy (1+wn’y)e ? cosh (yViany - 20) . (6
M

R@B,0) = T}-Ees‘" erf (\/Bld+v))) )
y, =tan”} /20y, +¢) and B>0

Thus Poisson’s equation may be written by introducing a Sagdeev potential }' (@) as follows

_dvie)
T
-2
- v/ ,
- N/(-2_ ) (8

+ f,,[l-sgn (x-x,,,)] R(B.®) + fa{lﬂgn_(x-—x,,)] R (5.0) ‘

b —e
2Ey— @)

The Sagdeev potential is given by the obvious first integral of Poisson’s equation with
appropriately chosen boundary conditions:

'¢’

T 2
V() =e ? le(V—;' @) + f(1—sgn(x=x,)) R(B.®) 9
+ f,(1+sgn (x=x,)) R (5,8) }

+ novdl SIE =) - E, + o) ]

where we have set V(¢ = — ¢,) = 0. Here N, and R are given as follows:
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3 I
ﬁf(v—;-.cb)-\/; J‘ dy tany (1+ tan?y ) Vian’y + 2¢ — Jan? = 29, |
un! /2%,

_and
e 2 cosh(v, tany), (10)
3 -l - 2 -ﬂ‘l
R(B.¢) BR(ﬁ¢) W\/¢+wle (11

A prototypical ion acoustic double layer potential structure is shown coming frprn the
right at some reference potential ¢ =0, dipping to some negative value ¢ ==1¢,, then rising to
a final negative value ¢=—¢ on the left(Fig. 3(b)). An ion acoustic double layer solutions to
these equations can be found by applying the following nonlinear eigenvalue conditions'* (also

called "nonlinear boundary conditions”), associated with the graphic method:

(1) Charge neutrality outside the double layer region requires that the right side of the Pois-
son equation vanish at the right and left extremes of the potential structure re.,at ¢ =0
and ¢ = —y¢.

(2) The electric field is, of course, zero where ¢(x) is flat ie., outside the locality of the
potential structure. Thus the existence of ion acoustic double layer solutions requires that
the corresponding Sagdeev potential be identically zero at the three places this happens.
ie.,at ¢ =0, —¢, and —¢.

(3) Positive curvature at ¢ = —, requires that dV(¢)/d¢ < Oat & = —u;.

(4) An additional condition for the existence of jon acoustic double layers requires that V(&)
be negative for 0 > ¢ > —¢; except at ¢ = —y. Additionally, the Sagdeev potenual
should be a double valued function of ¢ for —¢ > & > =¥ (see Fig. 3(a)). It is impor-
tant to note that double valuedness of the Sagdeev potential is guaranteed by the use of
sgn (x—x,,) in our kinetic model for electrons (2): reflected electrons will have different
distribution functions depending on the sign of (x-x,). In this respect, it should be
noted that a recent Q-machine experiment reported formation of potential depressions
between two plasmas with different electron temperatures®.

By way of illustration, we set & = 1 and f; = 1/2: these choices simply maich one of the
*trapped” populations, the "8~ group, to the *“freeelectrons, both in temperature and distribution

amplitude resulting simple Maxwell-Boltzmann distribution function for vy = 0.

dav) _ avi=y) _
de ae 0 e

The first and third conditions above require that

dV("'d‘\) X
de < 0: B
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v,
V'(0) -e";"lzv(—”ﬁ 0) +R(1,0) | - —%L = 0 (12)
J 2 ] ’ \/-ZTO ’
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(—ty) m— o 2 Yoo _ - L ol TN (
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The second condition above gives rise the following relations:

w2

s 2 X
V(0) = nouo [VIE, — VIE, + 9 |- ¢ 2 ‘ﬂ’, (22,0 + R0 l -0, (15)
V(=y¢) = noup [\/5(1;'0 +v) —2(E, + q,,)] (16

=0.

SR N B R
-e ¥ [N, (%.—w) +2f, R(B.—v)
Solving the above set of nonlinear eigenvalue equations(Eqs.(12)-(16)) together with the third

conditions, one can obtain a set of ion acoustic double layer solutions. In order to solve the

above set of equations, it is convenient to rewrite them as follows (here we have set n, = 1):

uo--neO 2k, (1%)
VIEF ) =- —% (18)
nb0 nb0 ._.,
-
Up ..
Vi-g,) = — = - (
(—-¢y) up |24 + (neO) ] nem < 0 200

2
Ug
V(=¢) T he1 M0

2w.+(—u°—)’]-nbl-0. ©n
ne(
Here we used Eq.(17) to obtain Eqs.(19)-(20), and Eq.(21) follows from Eq.(15) by using

Eqgs.(15), (17) and (18). The definitions of ne0, nel, nb0 and nb1 are as follows

B B
ne0=¢ % {N, (—2— 0+ R0 Q2
_ b2
nel=e 2 {N, (—;— —¥) + fy RB.—0) Q2
nem = e ? N,(—;—.—w,) Q4

v,’

M B )
nb0 = ¢ ? IN,(lg-.onRu.O)]. (25)



61

R N 2 -
nble=e 2° {N,(-";—.-w) +2fg R(B,—¥) (26)

First of all, we show analytically that there are no possible jon acoustic double laver solu-

tions without electron drift (v, = 0).

Setting v, = 0 in Eq.(17), we get up = — +/2E,. Here ny = 1 coresponds to the ion den-

sity at ¢ = 0 and v = uo . In this case, Eq.(19) and Eq.(20) yield following relations

- Y
uo-— l € = ‘z-l
\/2(“”’1""? H)
-
2 )
u02<_ll_'|_¢’-T (2%
1-e 7!

Let us define u,, so that it satisfies Eq.(28) with equality sign instead of inequality sign  Loos-

ing first at  the large amplitude  limit (g, >> 1), we find tha

= 1 +J2¢ e Y1 < 0; thus there are no large amplitude ion acoustic double

to T i =T N,

layer solutions. In the small amplitude limit (¢, << 1), we again find that

ug — U, ==,/ 6 < 0; this again means that there are no small amplitude solutions possible

This calculation also implies that there exist positive polarity soliton solutions with no
electron drift. We have examined Eqs.(27) and (28) numerically and found no possible ion
acoustic double layer solutions for all amplitudes, so long as we hold v, =0. This already sug-
gests that there may be a critical drift velocity for the existence of ion acoustic double lavers as

was found experimentally in our simulations.

Numerically solving our nonlinear eigenvalue equation, we have been able to find that. in
fact, there is a “critical” velocity for ion acoustic double layer solutions 1o exist Arguing tha:
the smallest visible potential dip in a simulation would be of order 8¢ = 0.1, the corresponding
=critical” velocity for this amplitude solution to exist is found to be v, = 0.4, calculauer
shows that electron drift velocity should be greater than 0.3v,, 1o have 8¢ > 0.02. This value
is considerablly smaller than has been reported in other papers, and much closer to our simuls
tion result (ie., that v, 2> 0.45y,, was necessary before the current driven double layer would

form).
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Examining solutions to our nonlinear eigenvalue system, we have found that there are
maximum amplitude limits for the negative potential dip (—,); these depend on the electron

drift velocity exceeding the critical value (Fig. 6.).

We have also calculated ion drift velocities in the frame of ion acoustic double layers and
found that the usual Bohm condition is nor met in the case of ion acoustic double layers In
fact, the ion drift velocity decreases (below C,) as both amplitudes of negative dip (- )and
net potential drop (+ ) increase (see Fig. 7.). With regard to the common identification made
between the ion acoustic soliton and our double layer solutions, we point out that the velou:
of the usual (rarefactive, having negative polarity) ion acoustic soliton increases with increasing
amplitude; this charact;:r is in direct conflict with our earlier observation that the ion acoust.
double layer slows down as it grows. It is important to note that net amplitude of an ion acous-
tic double layer correlates directly with the temperature difference between the two plasmas the
net potential drop (¥)increases with increased temperature of reflected electrons on the high
potential side(see Fig. 3(b)). In fact, a recent Q-machine experiment reported that formation
of a negative poiential depression has been observed in a system with two different plasmz
sourses and that potential at the high potential side increases as the electron temperature at

high potential side is increased by heating.

4. Conclusion

Using our general formulation, we have shown analyucally that there are no possible ion
acoustic solutions without electron drift. Numerically solving our nonlinear eigenvalue equation
we found that, in fact, there is a critical (minimum) velocity for the existence of an ion acous-
tic double layers. Theoretically calculated “critical” electron drift velocity for the existence of ion
acoustic double layer is found to be 0.4v,,: our simulated ion acoustic double layer was found 4

0.45v,,.

We have also found that there are limits on the maximum amplitude of the negaine’
potential dip, and these depend on the electron drift velocity (which must exceed the critical

value). We have also calculated ion drift velocities in the frame of ion acoustic double lavers
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and found that the usual Bohm criterion is not valid in the case of ion acoustic double layers.
In fact, the ion drift velocity decreases as both the amplitude of the negative dip and the net
potential drop of the jon acoustic double layers increase. It should be noted that the velocity of
the usual rarefactive ion acoustic soliton with negative polarity increases with increasing ampli-
tude, as opposed to the ion acoustic double layer which slows down. It is important to note
that the net amplitude of the ion acoustic double layer is determined by temperature difference
between two plasmas: the net potential drop increases with the temperature of reflected elec-

trons at high potential side.

Finally, we have found the following new results from our simulation in a very short sys-
tem (L = 80A,), we have found the formation of weak non-monotonic double layers (NDL)
with drift velocity (0.45v,); this is significantly shorter (=512x,) and slower (1, =0.61.)
than that of previous simulations. We have also given some physical explanations for the low
threshold drift velocity for thg formation of NDL, and for the formation of the NDL near the

left wall in the constant voltage driven system with current injection.
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and ions and the potenual profile at time
w, 1= 480 for current driven system Here, (b) and (c) 15 given at tme w, 1= 880 and

Fig 1. (a) Simulation phase space for electrons.
w,. = 1080 respectively
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Fig. 2. Observed position of potential minimum v.s. time for the current driven simulation
Here, xqis the position of potential minimum at time rgand @, = 0.lw,.
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(a) =05
4

-16x1073

(b)

| x=xq

Fig 3 (a) Calkulsted Sagdeev poienual for ion acousuc double laver (b} Corresponding wn
scoustic double layer. using left side potental as a zero reference, then ¢ =05 and
¥ = 0 28(see text) with +, =09
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