

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NEW FEATURES FOR A RELATIONAL DATABASE

SYSTEM TO SUPPORT COMPUTER AIDED DESIGN

by

A. Guttman

Memorandum No. UCB/ERL M84/52

12 June 1984

NEW FEATURES FOR A RELATIONAL DATABASE

SYSTEM TO SUPPORT COMPUTER AIDED DESIGN

by

A. Guttman

Memorandum No. UCB/ERL M84/52

12 June 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

New Features for a Relational Database System

to Support Computer Aided Design

by

Antonin Guttman

New Features for a Relational Database System

to Support Computer Aided Design

Ph.D. Antonin Guttman

Sponsor:

National Science Foundation ^^aTfs^eVraker
Committee Chairman

ABSTRACT

Data management is a significant problem in Computer Aided Design (CAD)

systems which handle large volumes of data in a varietyof forms. However traditional

database systems have not been widely used in CAD because they are hard to use and

do not oflfer some needed functions. The purpose of this research is to develop

features that can be added to relational database systems to make them more useful

for supporting CAD.

We ran an experiment in which a prototype relational database system, INGRES,

was used to store Very Large Scale Integrated circuit (VLSI) design data, and to

perform typical CAD retrieval operations. INGRES was awkward to use in this

context and ran much slower than specially designed CAD programs. The remainder

of this thesis investigates several additions to INGRES suggested by the experiment

that would make it easier to use and more efficient.

We augmented the relational query language QUEL with an append* command

for expressing transitive closure queries, which are needed to retrieve hierarchically

1

structured VLSI designs. Processing issues are discussed and implementation test

results are given.

An indexing structure called an R-tree is presented which can be used to retrieve

data for overlapping non-point spatial objects according to their locations in a multi

dimensional space. R-trees are designed for data residing on paged secondary

memory, and are suitable for use as a database access method.

Specialized applications like CAD often assign meaning to data that cannot be

exploited in a general-purpose database system to optimize data structures and query

processing. We outline a way for user-supplied semantic routines to supply

information to the database system for this purpose.

CAD applications often use composite design entities made up of many parts.

We discuss three ways to represent such composites in a relational database: as

abstract data type arrays, by means of built-in array types, and as nested relations.

All the features we have studied could be added to current relational database

systems, and would be useful not only for CAD but also for other applications

involving spatial and highly structured data.

Contents

Introduction 1

Retrieval of VLSI Design Data Using INGRES 17

Transitive Closure and Design Trees 41

A Dynamic Index Structure for Spatial Searching 102

Abstract Indexes 132

Multi-Valued Attributes 142

Conclusions 203

References 1^7

Appendix A: Test Programs for Chapter2 180

Appendix B: Tree Expansion Tests of Chapter 3 197

CHAPTER 1

Introduction

Recently there has been considerable interest in extending the use of relational

database systems beyond their traditional role in business data processing and into

new application areas such as text processing [79,94], computer program management

[80], computer graphics [54,59,95,96], geophysical databases [58], and Computer Aided

Design (CAD) [46,60]. The field of computer aided design of Very Large Scale

Integrated circuits (VLSI) is in a phase of rapid development at the present time.

This thesis investigates the shortcomings of relational database management systems

when used to support VLSI CAD, and develops extensions to make them more useful

in that role.

1.1. The Need for a Central Data Manager

In small CAD systems containing just a few programs, data management is

relatively easy. Data structures can be designed for the most important programs,

and long-term storage can consist of simply writing the data out to disk. The format

of design files is closely connected with programs that use them, with the result that

changes to programs are likely to cause changes in the format, which require changes

in other programs. Examples ofsystems ofthis sort are ICARUS [23] and IGS [39].

The IGS system, as described during its development in 1978 [39] is built around

an interactive graphics editor for integrated circuit layout. Data structures in

memory are designed for quick retrieval of layout geometry for display on the screen.

For long-term storage, a re-formatted version of the main memory data structure is

copied to a file in the user's workspace. Designs are hierarchically structured and

composed of small circuit "cells" and the definition of each cell is kept in a separate

file. Another file, shared by everyone working on a particular design, acts as a

directory for cell definitions. With this relatively simple scheme, each designer is

responsible for keeping track of the parts of his or her design, and for making sure

that cell names do not conflict with those used by other designers.

In larger CAD systems design data must be managed in a more systematic way,

for the following reasons:

(1) There are many different kinds of data. For example, a large system might deal

with circuit connectivity data, integrated circuit layout artwork, simulation

results, documentation, etc., all pertaining to the same design entity.

(2) There are many different programs, which must be decoupled from each other.

It is impractical to allow changes in one program or data format to force changes

in other programs. A related problem is that ofgraceful evolution: as the system

grows and new programs are added, the resulting changes should not prevent

older programs from working, nor should new programs be constrained by

conventions designed to suit old ones.

(3) The flow of design data must be coordinated. Many data files generated at

different times depend on each other in complicated ways, and care must be

taken to insure that the right information is always used for each CAD

operation. The flow may be too complicated for designers to remember and they

will need help from the computer.

(4) Several designers must be able to work on the same design without interfering

with each other. They must be prevented from destroying each other's work, for

instance by overwriting each other's changes. On the other hand, one designer

should not have to deny others access for long periods of time while he works on

a design.

(5) The system must protect against loss of data due to system crashes, program

bugs, etc. This is especially important for large design projects representing

substantial investment in designer effort.

(6) The volume of data becomes very large. While small systems may be able to

function with main memory and a few disk files, large CAD systems can be

required to handle hundreds of megabytes of data [87]. This data is usually

divided among many files, which must be managed in a systematic way. Very

large individual files become impractical unless special techniques such as

indexing are used, and casual use of virtual memory is an inefficient way to

handle extremely large amounts of workingdata.

(7) Support for versions and revisions must be provided, so that designs can evolve

gracefully over long periods of time.

(8) Naming conflicts arise when many designers produce hundreds of design entities

in connection with a single project. These must be prevented or resolved as part

of design management.

1.2. Data Management in Existing CAD Systems

Methods used for data management in larger CAD systems are quite varied, but

for simplicity we can group such systems into three categories:

(1) Systems that rely on facilities provided by a sophisticated operating system,

especially its file system.

(2) Systems containing a separate data manager built using file system access

methods.

(3) Systems using a general-purpose DBMS adapted to the CAD application.

We consider each category in turn.

1.2.1. CAD Systems Based On Operating System Facilities

Probably the most popular approach is to rely mainly on a operating system and

its file system. Operating system technology is mature, and systems are available that

are powerful, efficient, and reliable. This approach was taken for the SCALD system

[67,68], Designers Workbench [73], and the Berkeley CAD project in its original form

[72].

The problem of dealing with many kinds of data and many programs is solved by

making each small body ofdata a separate file. Typically, a program reads data from

one file, does some processing, and produces another file. Use of a standard form for

each kind of data decouples programs from each other. Individual programs can be

changed without affecting others as long as they conform to the standards for the files

they read and write.

This standardization generally occurs at two levels. First, data is usually

represented as characters, which can be processed by any computer, recorded on tape

in agreed-upon ways, and transmitted easily from one place to another. Second,

information of particular kinds is encoded using special textual languages, for example

the CIF [69] and CAESAR [75] formats for representing mask artwork and circuit

design structure, and ISP [7] for describing the functioning of a computer's central

processing unit. Such representations are not particularly efficient in terms of storage

space or ease of encoding and decoding information. However, they are easy to use

from an application programmer's point of view. An automatically generated parser

[41] can help a program read an input file, and if anything goes wrong the

programmer can examine the file and understand it.

Coordination of the flow of data can be accomplished by the use of protocols,

along with computerized tools. Another approach relies on an authoritative supervisor

program like Designers Workbench [73] to oversee all design activity. Problems with

concurrent access can be solved simply by allowing only one person at a time to

modify a file, or by using a locking scheme whereby a designer can check out a part of

a design, thus preventing others from changing it.

As an example system from the first category we consider the Berkeley CAD

project during the first phase of its development in which the aim has been to develop

a "toolbox" of computerized design aids [65,72]. Each tool does a fairly small and

well-defined job, and a designer uses many of them during different phases of the

design process. Examples of tools are graphics editors [48,75], design rule checkers [3],

programmed logic array generators [36,56], circuit extractors [27,37], electrical

6

simulation programs [52,70], and programs to produce plots of complete designs [26].

This approach results in the production of many files containing data in several

formats pertaining to numerous design entities in different stages of development.

Files are managed with the help of tools that are part of the UNIX [42] programming

environment. For example, the hierarchical directory structure helps to group files

according to the design entities they pertain to, the SCCS (Source Code Control

System) program [85] logs changes to files and archives old versions, and MAKE [24]

ensures that changes in files are propagated to others that depend on them.

The Berkeley system is flexible and easy to expand and change, and has been

quite successful. However, it has grown to the point where the design environment is

rather confusing, because there are dozens of different tool programs and several data

formats which can be converted to each other with varying degrees of success by

another collection of translator programs. Generally the system works well in a

university environment, where students work on fairly small projects. Even here

problems sometimes arise, for example when data structures become too large to be

handled efficiently in virtual memory onaVAX 11/780 computer.

The problem of mounting complexity has been addressed by the development of

the SQUID data manager [50], which provides a uniform interface for access to CAD

data of all kinds. SQUID works in conjunction with HAWK [50], a graphics editor

that can manipulate design information in various forms, such as schematics, layout,

and documentation. SQUID maintains separate files for different kinds of data

relating to design entities, and makes use of virtual memory as a cache in order to

provide fast access. Unification of data management under SQUID will move the

Berkeley system out of the first category, CAD systems whose data management is

based on operating system facilities, and into the second, which is described next.

1.2.2. CAD Data Managers Based on Access Methods

The second category contains CAD systems having special central data

management facilities built on top of sophisticated file system access methods.

Examples are IBM's Engineering Design System [87] and the DB-EXEC program

developed for Raytheon by Ciampi and others [15], and the Berkeley system with the

addition of the SQUID data manager. With this approach it is possible to tailor the

database manager to the application at hand, while taking advantage of low-level

facilities to manage disk space, to maintain efficient access paths, and to read and

write data. However, building the data manager still requires a considerable amount

of work, and if the system is too closely matched to current needs it may later

constrain the ways in which the CAD system can evolve.

IBM's Engineering Design System [87] is an example of this kind of system. Its

purpose was to support computer aided design activities for a new line of computers,

by serving as a central database containing all logical and physical design data. All

application programs would access the data in this database. This system was built

using the Basic Direct Access Method ([ll], cited in [87]) because the required

capabilities were not available in a general-purpose DBMS when the project was begun

in the late 1960's.

8

The database contains several groups of files built into a structure determined by

the CAD application. A set of files called the CID contains a master copy of all the

design data. One CID file holds data for chips, another for PC boards, and so forth

for each packaging level in a design. In addition there are several work files where

data from the CID is duplicated but restructured for faster access by application

programs. Work files are made up from the CID by "extraction" programs, and later

any changes are merged back into the CID by "feedback" programs. A protocol

governs the extraction and merging of work files, to ensure that changes are only

applied to the correct version of a master file, and to produce a history of the

derivation of a master file. Other files contain test data generated automatically by

application programs, and "rules" describing the structure of the data and

relationships between data in different parts of the system.

This system is quite complex and not especially flexible. It has evolved within a

particular application, and its structure reflects that use. Changes to the structure of

the database appear to require major reprogramming. However, this is a production

system, so changes are probably slower and more carefully considered than in

experimental CAD systems like those found in universities. An example illustrates

how the system has changed over time: Originally there was only one CID file for all

levels of a design, but eventually it became so large that it occupied multiple disk

packs. It was then broken up into several files for the different levels in the design

hierarchy, that is, chip designs, board (carrier) designs, etc. This entailed

restructuring the CAD database as a whole.

1.2.3. CAD Systems Using a General Purpose DBMS

In the past, CAD system builders have been reluctant to use general-purpose

DBMS's for several reasons; see [20,32,46,49] and especially [88]. They may be

unavailable, as was the case when IBM's Engineering Design System was begun, or

they may not provide needed facilities, or they may be too slow. Often preexisting

CAD programs are incompatible with the use of a central database system, because

they are designed to handle data storage themselves by means of files in particular

formats. In addition, the design engineers who develop CAD programs may be

unfamiliar with database technology. However, using a general-purpose DBMS in a

CAD system can have important advantages, namely:

Centralization. Use of a central database subsystem offers better control over

the data of an enterprise like a design project. It is easier to keep track of where the

data is, to control access to it, to manage versions, and to maintain integrity and

consistency.

Specialization. Application programmers are relieved of most of the work of

data management, and are able to concentrate on other aspects of their programs.

The DBMS is developed, debugged, documented and maintained by someone else.

Zintl considers this to be the most important advantage of using a general-purpose

DBMS [102]. In addition, the developers of a DBMS specialize in data management

and are able to apply more sophisticated techniques than application programmers can

justify taking the time to learn.

10

A number of projects have been undertaken to build CAD systems around

general-purpose database systems, for example those described by Korenjak [55],

Roberts [83], and Zintl [102]; see also [6]. As an example we consider the system built

by Zintl and others at Siemens. The implementors saw the use of a general-purpose

DBMS as being worthwhile, but knew that a considerable effort would be required to

make it work, since it did not immediately fill the requirements of their CAD

application. Good experience with a previous version using a network DBMS

prompted them to use Siemens's own network system, called UDS. They recognized

several difficulties with using a network system, namely:

(1) Only one copy of the data would be stored, and the structure chosen would not

be ideal for all uses of the data.

(2) Changing the data structures in a network database would be difficult, and

would involve changes in programs using the database.

(3) Data is presented one record at a time, but application programs usually need to

use much larger blocks of data.

(4) They feared that the cost of administrative functions like concurrency control

and data integrity checking would slow the system down severely.

They have attacked these deficiencies by interposing a special "database

management program" (DBMP) between application programs and UDS. Client

programs communicate with the DBMP by sending commands in a "high level

language" designed especially for the CAD system, and the DBMP translates these

commands into statements of the data manipulation language of UDS. Application

11

programs are insulated from changes in the database storage schema, because the

DBMP can be modified to track the changes and application programs need not

change their high level commands. In this way the DBMS can be tuned for good

performance by changing storage structures and access paths without affecting

application programs. The data structures still cannot be made ideal for all uses of

thedata, but the implementors feel that this is not a serious problem.

The DBMP also offers client programs a many-records-at-a-time interface. For

instance if a high level command asks for the retrieval of all records fitting a certain

description, the DBMP issues a separate command to UDS to retrieve each record and

gathers them up, finally returning them to the client program all at once.

In addition, the DBMP serves to regulate concurrent access to a database. All

users of a database send their commands to a single DBMP, which serializes their

requests and processes them one at a time. Use of the single-user version of UDS

avoids the overhead associated with concurrency control in the multi-user version,

which was available. This scheme does not appear to provide for extended

"conversational transactions" [60] of the kind needed for long sessions of interactive

design work, however.

1.3. Using a Relational DBMS as a CAD Data Manager

It is our thesis that a relational database management system can be adapted to

work very well for CAD, and in fact at least two projects are presently underway to

use general-purpose relational systems for CAD databases [46,53,62]. Such use offers

the following advantages, in addition to those that come with using any kind of

12

central DBMS:

Eaae of uee. All CAD programs can access data in a relational database by

means of a high-level non-procedural language that provides a set-at-a-time interface

[2,4,81]. Client programs specify the desired data by giving relevant values and

qualifying predicates, not by navigating through data structures. Therefore the

programs need not know addresses of stored data or even details of the storage

structures. The database system retrieves data values directly into program variables,

and takes values from variables for storage. There is no need to parse a language to

extract data values.

Performance. A relational DBMS can provide much more direct access to

individual data items than is possible with text files. If-a collection of data is

represented by means of a text string in a special language, with individual items

separated by newlines and preceded by keywords, then the only way to search for a

particular item is to scan the string until it is found. A relational DBMS stores data

items as separate entities, and can build indexes on them. Individual items or sets of

items can be retrieved immediately without processing the rest of the file. A similar

principle applies to larger data objects: a data manager based on a file system must

search through directories to find design objects, whereas a relational database system

can register them in relations, and find them quickly by means of indexes or special

storage structures. *

A relational DBMS can provide a variety of access paths into a body of data that

are fast and efficient, and that can support special kinds of access, such as searching

13

over a range of numeric values. Such access methods include hashing, extendible

hashing [22], ISAM indices, and B-trees [5]. More than one access path can be

provided for the same data, favoring different kinds of access. All these structures can

be set up easily, by specifying to the DBMS what structure is desired, and are

maintained automatically as the database changes.

Data Independence. A non-navigational, set-oriented access language like QUEL

[34,99] or SQL [4] presents data to a DBMS user as just tables of values, and hides the

access paths and storage structures of relations. In addition, a view mechanism

[14,90] allows a program to see data in a different form from the way it is stored. It

can even present the same data to different programs with different apparent

structures.

There are two important consequences. First, changes in the database structure

usually do not force changes in working programs, thus making it easier to keep

programs working in the presence of inevitable change. Second, individual programs

can view data in a way that serves them best. They are not constrained to represent

their data values in a form that was once ideal for another purpose, or use a lowest-

common-denominator "standard" like CIF [69].

Consistency and Integrity. Views also make it much easier to keep data

consistent, since a single copy of the data accessed through multiple views takes the

place of several stored files containing different forms of the same data. Even

constraints that span across different parts of the database can be enforced with an

"integrity constraint" facility built into some DBMS's [90]. This feature is used in

14

business applications to enforce rules like "no employee's salary shall be greater than

their manager's," but could equally well insure that "no polysilicon feature shall be

narrower than 2 lambda."

Concurrency Control. Because several people often work on a design at the

same time, concurrent access is important in CAD. Banking-style transactions and

locking as normally provided in a general-purpose DBMS are not ideal for CAD

applications [88], but locking schemes are well developed and may form a basis for

new concurrency control mechanisms. Others are currently working on this problem

[61,62,92].

Recoverability. One way to insure that previous states of a design can be

recovered after data has been lost because of system crashes, program bugs, and user

mistakes is to periodically dump selected files to tape. This amounts to taking

snapshots of parts of the database at scheduled times. Restoring destroyed files

usually involves a manual step, in which saved versions are read from tape. Classical

banking database systems provide automatic logging of old and new data values for

each transaction, which usually involves only a few updates, and automatic recovery

from failed transactions. This approach is potentially more efficient because it makes

saving of database state dependent on actual update activity rather than a fixed

schedule.

Current relational systems are not ideal for CAD use, and have a number of

weak points, for example the following.

15

Slow speed. Because of their general-purpose nature, relational DBMS's perform

specific data manipulation tasks much more slowly than specially written programs.

They are also slower than other kinds of database systems that require the accessing

programs to use information about the storage structure of the data. Thus the

decision to use a relational system sacrifices speed on specific tasks in order to avoid

building and maintaining special programs for all required data management jobs, and

to isolate CAD programs from data storage structures.

Awkward interface. Users of a relational database system must learn yet

another language, the one presented to them by the DBMS. Furthermore, the features

offered by relational DBMS's tend to be better suited to banking and business

applications than to CAD, because database systems were developed mainly in that

environment. For example, they usually provide transaction management, which

allows one or a few small records to be updated safely in one quick operation.

Extended editing sessions, in which a designer makes many changes to a design over a

period of hours or days before updating the official design, are not well supported.

This mismatch between the needs of CAD and the features provided by relational

systems makes such systems frustrating to use. Furthermore it aggravates the

performance problem by forcing awkward representations of design data, and by

causing operations on it to be expressed in unnatural ways.

We believe that a great deal can be done in this area to make relational database

systems easy to use and efficient in supporting CAD, and that is the aim of this work.

16

1.4. An Outline of the Investigation

The remainder of this thesis is the report of an investigation into new features

for relational systems that can make them more effective for CAD use. The work was

done using the INGRES database management system [34,91,99], but should also be

applicable to other relational systems.

In Chapter 2 we describe a series of tests that reveal some of the weak points of

a general-purpose relational •DBMS when used for CAD, and suggest some specific

enhancements. These are investigated further in Chapters 3 through 6. Chapter 3

contains a discussion of transitive closure operations and how to support them in a

database system. Such operations are needed to expand hierarchical designs and for

other CAD tasks. A new index structure called an R-tree b presented in Chapter 4.

It can be used to retrieve spatial data according to its location, which is useful in CAD

and other applications. DBMS users (e.g. CAD application programmers) sometimes

need to set up specialized indexes for fast access to data based on special semantics,

and a way to do this is described in Chapter 5. The database system calls on semantic

routines provided by the user in order to obtain the information needed. In Chapter 6

we discuss several ways to allow single columns of relations to contain multiple data

items, in order to represent aggregate objects consisting of collections of smaller

objects. Chapter 7 is a summary of our conclusions.

CHAPTER 2

Retrieval of VLSI Design Data Using INGRES

In this chapter we describe a series of tests in which INGRES [34] performed

data retrieval operations typical of computer aided design of VLSI circuits. INGRES's

performance was compared against that of KIC, a graphics editor for integrated

circuit designs [48]. Section 1 contains background on VLSI design, and a description

of KIC. A relational database schema suitable for storing the information KIC stores

in non-relational form is presented in Section 2. In Section 3 we describe three data

retrieval operations performed by KIC, and INGRES test programs that do the same

thing using a relational database. The results of the tests are presented in Section 4,

and analyzed in Section 5. Finally in Section 6 we offer a list of proposals for

improving INGRES's performance.

2.1. Background on VLSI Design

An integrated circuit is constructed by a photographic process using a set of

masks describing the layout on each of several processing layers. The part of the

design process we are concerned with is the definition of the layout patterns for a

circuit. Because VLSI circuits are very complex, containing thousands of transistors,

it is impossible to design one as a single homogeneous collection of layout features.

The design problem must be broken down into smaller parts, and standard practice is

to build large designs from relatively simple circuit "cells". Each cell can contain

17

18

layout geometry in addition to subcell references, which specify instances of other cells

used as components. The design of a particular cell is stored only once, although it

can be used as acomponent any number oftimes in other cells [23,39,48,67,69,75].

A completely expanded design takes the form of a tree of cell instances, with a

single cell at the root. The root has subcells, which make up the next level of the tree;

the subcells have subcells, and so on. Each level of the tree consists of instances of

subcells used as components in the level above. At the leaves are cells consisting of

layout geometry only, and containing no subcells. A design tree can contain multiple

instances of the same cell. The design tree for a typical VLSI circuit is between 5 and

15 levels deep and contains hundreds of cell instances. The tree for the RISC BLUE

computer [44], for example, is 10 levels deep.

Figure 2.1 shows a small circuit cell called Cell-A, and below it Cell-B, which is

hierarchically structured. Cell-B contains two instances of Cell-A, in addition to the

vertical bars and connecting stubs along the sides, which are part of Cell-B itself.

Layout geometry on different layers is indicated by different fill patterns.

The KIC graphics editor [48] is an important VLSI design tool at Berkeley. It

displays the layout for a cell on the screen of a color graphics terminal, and allows the

designer to add and remove pieces of layout geometry and place subcells interactively.

Different processing layers are represented on the screen by different colors. Part of

the screen works as a "magnifying glass", which shows a small section of the layout

enlarged for easier editing. The designer chooses editing functions from menus along

the left and bottom edges of the screen. He or she operates the editor by typing on a

19

1000

0 200 400 600 800

0 200 400 600 600100012001400160016002000

Celi-B

Cell-A Cell-A

Figure 2.1: A Hierarchically Structured Circuit Cell

keyboard, moving a cursor on the screen by using a tablet and mouse, and selecting

items by pushing buttons on the mouse. KIC can show subcells of the cell being

edited either as outline boxes or in full detail. Many instances of the same kind of cell

can appear on the screen at the same time. Changes to the definition of such a cell

will be reflected in all its instances.

20

Between editing sessions KIC stores cell descriptions as text files in extended CIF

format [69]. Each file contains specification of layout geometry and subcell calls,

which are references to other cells. Figure 2.2 shows KIC's text versions of Cell-A and

Cell-B. Lines beginning with "L" specify the layer for layout geometry that follows,

for instance "ND" stands for the diffusion layer in the NMOS circuit technology.

Lines beginning with "B" describe "boxes" or rectangles, giving the x- and y-

(Symbol Cell-A);
9 Cell-A;
DS 0 1 1;
LND;
B 600 200 300 900

B 200 400 300 600

B 400 400 300 200

LNP;
B 600 200 300 600;
LNC;
B 200 200 300 200;
DF;
E

(Symbol Cell-B);
9 Cell-B;
DS 0 1 1;
9 Cell-A;
C 0 T 900 100;
9 Cell-A;
C 0 T 300 100;
LND;
B 100 200 250 1000;
B 200 1200 100 600;
LNP;
B 100 200 1550 700;
B 200 1200 1700 600;
DF;
E

Figure 2.2: KIC's Text Representation of Circuit Cells

21

coordinates of their centers and their widths and heights. Coordinates are given in

KIC units, which are 1/100 of the smallest increment ofmeasurement used for layout.

In the file describing Cell-B, subcell calls are indicated by lines starting with "C".

Each "C" line tells where to position a subcell, giving its x and y displacement, and

the preceding "9" line gives the name of the subcell.

At the beginning of an editing session, KIC reads the text files for the selected

cell and all its subcells and builds another representation of their layout in program

memory. The internal representation is a pointer-linked structure using bins which

allows the program to reach the right data quickly during editing operations. For

example, KIC can retrieve pieces of layout geometry selectively according to their

layer, the cell or subcell they belong to, and their approximate location on the screen.

The program manipulates the internal form during editing, updating the text file only

if asked to do so by the user. At the end of the session KIC composes a new text

version from its internal data structures and stores it as a new file, or alternatively

overwrites the old file. See [12] for a detailed description of KIC's data structures and

operation.

2.2. A Relational Design Database

In order to compare INGRES's performance with KIC's, it was necessary to load

a relational database with the same design data as KIC would use. The first step was

to design a database schema capable of representing the same information as in a

collection of KIC files. Our database has the following five relations, which are

explained below:

22

cell-master (name, author, master-id, defined)

box (owner, use, xl, x2, yl, y2)

wire (owner, use, wire-id, width, xl, yl, x2, y2)

polygon (owner, use, polygon-id, vertnum, x, y)

cell-ref (parent, child, cell-ref-id,
til, tl2, t21, t22, t31, t32).

The cell-master relation binds the external names of cells to identifying numbers

that represent them within the database. The external name of a cell is the name

known to the human user, e.g. "Cell-A." The internal identifying number is unique for

each cell, and is used only within the database. Using i.d. numbers thb way has a

number of advantages over referring to a cell by its external name; see [17,60]. For

example, if two cells are accidentally given the same external name, the designs can be

kept separate, and the ambiguity can be resolved later if necessary by renaming one of

them. I.d. numbers are often more compact than textual names, which is

advantageous for references within the database.

Name is the external name of a cell and author is the name of the person who

designed it. Master-id is the unique identification number assigned to the cell. The

defined field is used only during loading of the database, to distinguish between cells

whose data is really in the database, and those that have been referred to, and

assigned i.d. numbers, but whose data has not yet been loaded. Figure 2.3 shows

tuples of the cell-master relation for the example cells Cell-A and Cell-B.

name |author |master_id |defined

Cell-A |ton!
Cell-B Iton!

i|y
2|y

23

Figure 2.3: Cell-master Relation

The box relation describes layout rectangles. Owner is the identifier of the cell of

which each box is a part. Use specifies the mask layer, e.g. ND for NMOS diffusion, as

in a KIC file. XI and x2 are the x-coordinates of the left and right sides of the box

and yl and y2 are the y-coordinates of the top and bottom. Figure 2.4 shows Cell-A's

layout and gives the corresponding box tuples. Other tuples, not shown, would

represent layout rectangles for Cell-B and other cells in the database.

1000

0 200 400 600

|owner |use xl |yl x2 |y2

I 1|ND 0| 800 600| 1000
| 1|ND 200| 400| 400| 800
| 1|ND 100| 0| 500| 400
| 1|NP 0| 500 | 6001 700
i 1|NC 200| 100 | 400| 300

Figure 2.4: Box Tuples for Cell-A

24

A "wire" is a set of lines used to make electrical connections between points in a

circuit. Each tuple in the wire relation describes one line segment, giving the

coordinates of its centerline (xl, yl, xS, y2) and its width. Wire-id is an identifying

number used to group together segments belonging to the same wire. Owner and use

mean the same as for the box relation. Figure 2.5 shows and example of a wire and

the tuples of the wire relation needed to represent it.

100300300400S00600700600BOO1000

ownerjuse|wire_id|width|xl|yl|x2|y2|

1|NP|
1|NP|
1INPI

,

2|200|500|600|800|600j
2|200|500|200|500|600|
2]200|200|200j500|200|

25

Figure2.5:AnExampleWire

A"polygon"isasolidshapewithanynumberofvertices.Onevertexisstored

'.aeachtupleofthepolygonrelation.Xandyarethecoordinatesofthevertex,and

vertnumordersthevertices(tuples)withinonepolygon.Verticesofasinglepolygon

aregroupedtogetherbyhavingthesamevalueinthepolygon-idfield.Figure2.6

showsanexamplepolygon(atriangle)andthecorrespondingtuplesinthepolygon

relation.

300

200

100

100 200 300 400 500

owner |polygon_ld |vertnum |use jx

4

4

4

1|NP | 100| 100
2|NP | 500| 100
3|NP | 3001 300

26

Figure 2.6: An Example Polygon

The cell-ref relation describes subcell references. The parent field contains the

i.d. number of the cell containing a subcell, and the child field contains the i.d.

number of the subcell. Figure 2.7 shows a hierarchical cell design and the

corresponding cell-ref tuples. The first two tuples indicate that Cell-A (i.d. number 1)

is used twice as a subcell in Cell-B (i.d. number 2). Similarly, the third tuple

represents the use of Cell-B in Cell-C (i.d. number 5).

The cell-ref-id field holds a unique identifier for each subcell reference, similar to

the identifier for each cell. This field was included in the relation during an early

phase of the schema design, but eventually was not needed. It is mentioned here only

because it was present during the tests; it increased the size of the tuples and possibly

affected the results of the tests.

-2200

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Cell-A

1

Cell-C

Cell-B
o

Cell-A

1

cell_ref_id |parent |child jtll |tl2 jt21 |t22 |t31 It32

27

3| 2| 11 1.1 0.| 0.| 1.1 900. | 100.
4| 2 j 11 1-1 0.| 0.| 1.1 300. | 100.
6| 5| 2| 0.| 1-1 -1.1 0.| 1500.| 300.

Figure 2.7: Subcell References

28

The placement of a subcell in relation to its parent cell is specified by a 3 X 3

transform matrix, whose first two columns are represented by fields til through tS2 in

the cell-ref relation. The third column is always the same and need not be stored.

This representation of a spatial transform is the one generally used in computer

graphics [71] and is quite powerful. A single 3X3 matrix can duplicate the effect of

any sequence of translations, rotations, reflections through a line, and stretches or

compressions along an axis. The use of transform matrices is outlined briefly below.

See [71] for a full discussion of the topic.

Suppose a subcell is to be rotated counter-clockwise by angle A, and translated B

units in the x-direction and C units in the y-direction. The transform matrix is

coafAV —sin(A) 0
sin(A) cos(A) 0

B CI

Each point in the subcell is transformed to its new location in the frame of reference

of the parent cell by multiplying its coordinate vector by the transform matrix:

{newx}newy,l)=(x,y,l)
cosiA) -sin(A) 0'
sin(A) cos(A) 0

B C 1

The coordinate vector is augmented by a 1 in the third position to make it match the

matrix. The point can be transformed again in order to locate it in the frame of

reference of a still another cell, as is necessary when subcells are nested.

As an example, consider the hierarchical design shown in Figure 2.7. Cell-C

contains an instance of Cell-B, which is rotated 90 degrees and translated to the point

(1500, 300). The transform matrix for this subcell reference is

0 1 0
-10 0

1500 300 1

2d

Likewise, Cell-B contains two instances of Cell-A. The first instance (the lower one in

the figure) is located at the point (300, 100) within Cell-B and is not rotated, so its

transform matrix is

1 0 0
0 1 0

300 100 1

The point located at (100, 0) in Cell-A, marked with an X, is transformed to the frame

of reference of Cell-B by the calculation

(400, 100, 1)=(100,0,1)
1 0 0
0 1 0

300 100 1

It can be transformed again to the frame of reference of Cell-C by multiplying on the

right by the appropriate matrix:

(1400, 700, 1)=(400, 100, 1)
0 1 0
-10 0

1500 300 1

or, combining the two matrices,

(1400, 700, 1M100, o, l)
0 1 0
-10 0

1400 600 1

Arrays. KIC employs a compact representation of arrays of identical subcells in

one or two dimensions. An equivalent feature could have been included in the

relational schema by the addition of extra fields to the cell-ref relation, but this was

30

not done because it would have complicated the tests we wished to perform. Arrays of

subcells are represented inthe relational database by multiple cell-ref tuples.

2.3. Data Retrieval Tests

Three data retrieval operations, corresponding to different ways KIC retrieves

layout data for display on its graphics screen, were selected as being representative of

CAD data handling. A test program was written to use INGRES for each retrieval

operation, and the retrieval speed was compared with KIC. The test programs were

written in EQUEL [2,99], which is INGRES's query language QUEL [34] embedded in

C [51]. They retrieved design data from a relational database that had been loaded

with data from KIC files. Each of the three tests is explained below, and the EQUEL

programs are included as Appendix A.

KIC groups rectangles by processing layer before transmittingdisplay commands

to the graphics terminal, in order to minimize the number of "change color"

commands. (Recall that different layers are represented on the screen by different

colors.) The EQUEL test programs retrieved each layer separately in order to mimic

KIC's behavior; this entailed a considerable amount of extra processing.

During normal operation KIC displays layout geometry by sending commands to

a graphics terminal over a serial communication line, and transmission time is

comparable to data retrieval time. Because the tests were meant to measure retrieval

performance, not transmission speed, the KIC and INGRES tests were set up so that

they did not transmit data to a terminal. KIC's transmission was turned off, and the

EQUEL programs simply loaded data values into program variables, as can be seen in

31

the queries.

The present tests should be taken as only a very approximate comparison

between KIC and INGRES, and are probably biased in favor of INGRES. They

compare a fully-developed editor containing all necessary features with test programs

that performed only basic retrieval operations. For example, in the tests KIC clipped

geometry to fit in the viewing area on the screen, and this involved extracomputation

that was not done by INGRES.

For our test data we used circuit cells from two design projects at Berkeley.

GORDA is a prototype layout for a switched capacitor filter [31], and decO-1 is a part

of the RISC I VLSI computer [78], see also [44], Each design was divided into a

number of cells; there were 205 cell definitions in all. KIC files were available for

these designs and were used in the KIC tests. The INGRES database was loaded from

the same files by a translator program.

Table 2.1 gives the sizes of the relations in the INGRES database and their

storage structures. Each relation is stored hashed on the field most used for retrieval,

in order to give fast access. For example, during a query to display a cell, INGRES

would need to retrieve box tuples with the cell's i.d. number in the owner field.

Therefore, the box relation was stored hashed on that field.

Top-Level Geometry Retrieval. The first test program retrieved layout geometry

data associated with a given circuit cell, not including geometry belonging to subcells.

This corresponds to KIC's "unexpanded" display in which layout geometry belonging

to the cell itself is shown in full detail, but subcells appear only as outline boxes. The

Table 2.1: Experimental Database

Relation Number of

Tuples
Disk

Pages
Storage
Structure

cell-master 205 21 hashed on name

cell-ref 1918 195 hashed on parent
box 3037 211 hashed on owner

wire 652 55 hashed on owner

polygon 1648 98 hashed on owner

32

operation consisted of retrieving all the box, wire and polygon tuples with the selected

cell's i.d. number in the owner field.

Geometry Retrieval with Tree Expansion. The second test program retrieved

all geometry in a fully expanded design tree. This corresponds to a KIC display of a

complete design with all component cells shown in full detail.

To perform the expansion the EQUEL test program traversed the design tree

breadth-first, going downward from the root one level at a time. At each level it

retrieved all layout geometry belonging to subcell instances there and transformed it

to its correct location with respect to the design as a whole. Then, referring to the

cell-ref relation, it collected the i.d. numbers of all subcells of cells at the current

level. These new subcells constituted the next lower level in the tree. Once i.d.

numbers were collected and transforms were calculated for the new subcells, the old

set was discarded and processing continued with the next level.

The test program calculated transform matrices for subcell instances according to

the method outlined above and in [71]. A new transform was calculated for each

subcell instance by multiplying together the transform of the current parent cell and

the transform in the cell-ref tuple calling for the new subcell. Transform calculations

33

were expressed in EQUEL and were performed by INGRES as part of the retrieval

operations, not by the C-Ianguage part of the test program.

Retrieval by Location. The third test program retrieved top-level geometry that

overlapped a small area in the middle of a cell. A similar operation is performed by

KIC in order to display a small "window" in the middle of a circuit. Numerous other

CAD tasks require similar access to data by spatial location, for example layout rule

checking and automatic circuit compaction. (Layout rule checking is described in [3],

circuit compaction in [38].) In the INGRES test program, the windowing was expressed

by an EQUEL qualification clause.

2.3.1. Test Results

In the following tables Geometry Tuples refers to the number of tuples

representing layout boxes, wires, and polygons retrieved from the INGRES database

during each operation. CPU Seconds and Elapsed Seconds were found using the C

language times routine, which obtains timing information from the UNIX operating

system [42]. Relative Time is the ratio ofthe time taken by the test programs relative

to the time taken by KIC.

2.4. Discussion

In Tables 2.2 and 2.3, INGRES used about three times as much CPU time as

KIC. This can be attributed primarily to the fact that INGRES is a general-purpose

database system, while KIC includes only those functions that it requires. Any DBMS

used in place of special purpose code will show some decrease in performance.

Table 2.2

Retrieval of Top Level Geometry

Circuit GORDA

KIC

Geometry Tuples 592

CPU Seconds 7.5

CPU msec/Tuple 13

Relative CPU Time

Elapsed Seconds 7.5

Elapsed msec/Tuple 13

Relative Elapsed Time

Table 2.3

Tree Expansion with Geometry Retrieval

34

INGRES

592

24.0

41

3.2

41

69

5.5

Circuit GORDA

KIC INGRES

Geometry Tuples 12,779 12,779

CPU Seconds 128.3 443.5

CPU msec/Tuple 10 35

Relative CPU Time 1 3.5

Elapsed Seconds 128.3 649

Elapsed msec/Tuple 10 51

Relative Elapsed Time 1 5.1

Table 2.4

Retrieval of Geometry in a Small Area

Circuit dec0-1

KIC

Geometry Tuples 448

Geometries in Window 87

CPU Seconds .75

CPU msec/Tuple
Relative CPU Time

Elapsed Seconds .75

Elapsed msec/Tuple
Relative Elapsed Time

35

INGRES

448

85

14.5

171

20

33

388

45

Additionally, INGRES processes tuples with an interpreter, which is naturally slower

than KIC's compiled code.

The elapsed time measurements show a larger performance difference, about a

factor of five. The reason for this is the following: KIC loaded the geometry data into

virtual memory data structures before the tests began, and because the computer had

ample main memory and was very lightly loaded, the data apparently remained in real

memory during the tests. INGRES, on the other hand, retrieved data from disk

resident relations. It buffers only 15 pages of data in its own address space. Some

relation pages probably remained in system buffers during each test, but were

accessible only by means of calls to the operating system.

On the third test involving retrieval of data in a small window, KIC

outperformed INGRES by a factor of 20 in CPU time and 45 in elapsed time, as

shown in Table 2.4. One reason is that KIC has a spatial bin structure that allows it

to quickly isolate geometry that falls inside the window. INGRES has no such access

method and performed an exhaustive search of all the cell's geometry.

36

A second reason is that our schema represented single polygons by multiple

tuples, one for each vertex. It was not possible to tell from a single vertex tuple

whether or not the polygon intersected the window. To find the extent of each

polygon it was necessary to use INGRES's min and max functions on its vertex

coordinates, before testing for overlap with the window. These aggregate functions

are time consuming because they require processing of extra subqueries.

2.5. Performance Enhancements for INGRES

INGRES can be made to run faster by several means, without changing the

user's view of the system:

(1) By making better use of a large main memory. INGRES was originally designed

to run on a machine with limited address space, and it does not take advantage

of the large virtual and physical memories available on modern machines.

Virtual memory provides a convenient large address space, and exploits efficient

paging hardware. Direct management of a large physical address space offers the

possibility of even greater performance improvement [19,29].

(2) By compiling queries [13,45]. Currently INGRES always parses queries and plans

execution strategy at run time, and processes queries with an interpreter.

Compiled code would run faster, and compilation could be done ahead of time for

queries that were known in advance. This would often be the case when

INGRES was serving as a back-end for another program.

37

(3) By file system enhancements. The version of the UNIX file system used for the

tests has rather small pages (1024 bytes), so INGRES must make many requests

for pages to be fetched from disk, each requiring an operating system call.

Larger pages would help considerably. In addition, pages from a single file reside

in scattered locations on the disk, so that even a sequential scan of a file

generally requires disk head movement at each page boundary. Access would be

faster if pages of a file were clustered near each other on disk. Also INGRES

should be able to request several pages that it will need soon, and continue

processing while they are being fetched. The best solution may be for INGRES

to bypass the operating system's file system entirely and manage its own files.

(4) By improving communication. Efficient interprocess communication is essential if

INGRES is to work well in cooperation with application programs. Our test

programs communicated with INGRES through UNIX pipes, which are not

especially fast. Also, internal communication within INGRES tends to be

unnecessarily slow.

Such performance enhancements are part of the process of turning a prototype

DBMS into a commercial product. It is appropriate to leave such development to

commercial interests. Hence we decided to concentrate on designing new features that

would improve performance by allowing users to request needed functions in a more

compact and straightforward way, and on finding efficient ways to implement these

features. We discuss in turn several such additions.

38

2.5.1. Transitive Closure

Our second test program expanded a design tree of indefinite height in which

tuples of the cell-ref relation served as links between cell instances on one level and

their subcells on the level below. Finding all the cell instances in the tree is related to

taking the transitive closure of the cell-ref relation, and does not correspond to any

single INGRES query. It was necessary to have the test program iterate down the

tree, using a separate query for each transition from one level to the next. A

transitive closure query facility would allow such a structure to be traversed efficiently

by means of a single query. In Chapter 3 we present a proposal for such a facility and

describe tests of a prototype implementation.

2.5.2. Access by Spatial Location

Many CAD programs, like our third test program, need to retrieve design data

according to its spatial location. INGRES could do this much faster if it could use an

index based on the approximate spatial locations of data objects. Then it could

retrieve all objects near the area of interest quickly, and perform a final check on just

a few objects, instead of on all the data. Current INGRES secondary indexes can

provide a fast access path according to the values of data fields, but these values are

in effect point locations in a one-dimensional space. Database systems normally do not

provide mechanisms that are effective for indexing objects of non-zero size in spaces of

more than one dimension, like pieces of integrated circuit layout in a two-dimensional

design area. In Chapter 4 we present a new dynamic index structure called an R-tree

which addresses this need and is suitable for use in database systems.

39

2.5.3. Abstract Indexes

Sophisticated applications like CAD systems often associate special semantics

with data objects stored in the database, and it would be desirable to be able to use

such semantics to speed processing of queries. As an example, the polygons

represented in our test database have areas, and it might be useful to access polygons

according to this attribute. However it is not appropriate for the database system to

calculate areas of polygons or perform other specialized operations on data objects.

In Chapter 5 we propose an abstract index facility which allows users to define

their own kinds of indexes for special purposes, and provide routines to implement the

necessary semantics. The database system can invoke the user-supplied routines at

appropriate times in order to plan and execute query processing strategies. This

facility is an adjunct of the abstract data types already implemented in INGRES by

Fogg [28] and Ong [74].

2.5.4. Nested Relations

Often it would be useful to be able to repeat a field in a relation a variable

number of times, in order to represent some aggregate object. For instance, a polygon

could be represented by a single tuple with repeating vertex coordinate fields, instead

of multiple tuples. One way to support this is to allow a field of a tuple to take an

entire relation as its value. With this addition the polygon relation in our database

could be redefined as follows:

polygon (owner, use, vertex(vertnum, x, y))

40

where vertex is a family of special relations, one attached to each tuple of the polygon

relation. Figure 2.8 illustrates how a polygon would be represented using the new

schema. Similarly, the wire, polygon and cell-refrelations could be nested inside the

eell-master relation.

In Chapter 6 we consider several ways to provide for array-like aggregate objects

in INGRES. Language extensions needed for each proposal are discussed, as well as

the range of queries that can be processed and the difficulty of implementation.

-300

-200

100

100 200 300 400 500

owner Iuse Ivertex

1|NP jvertnum |use |x |y

1|NP
2|NP
3|NP

1 100|
| 500 |
| 300 |

100

100

300

Figure 2.8: Polygon Stored in Nested Relations

CHAPTER 3

Transitive Closure and Design Trees

3.1. Introduction

Consider a binary relation R defined on a set 5:

R C 5 X S

The transitive closure of Rf denoted by R+, is another binary relation derived from

R as follows:

R-r = {(x,y) such that there exist a0, ..., ak 6 S for some Jk>l with
x ~ flo>

V — Oft,

K^i) € i?,
(fli,a2) ^ R*

»

(aft-i^ft) € fl }

The reflexive-transitive closure R* differs from R+ in that it also includes pairs of

the form (x,x) for all x 6 A. For a more rigorous discussion of transitive closures see

[1] or [33].

For example, let 5 be the set of all people, and define R to be the parent-child

relation: for any two people a and ft, (a,6) 6 A if and only if a is a parent of ft.

Then R+ defines the ancestor-descendant relation, i.e. for any two people x and y,

(«,y) € R+ if and only if x is an ancestor (or a parent) of y. R* extends the

definition of "ancestor" to mean that every person is his or her own ancestor.

41

42

In CAD and in other database applications the need often arises to find the

transitive closure of a relation. For example, data describing electrical connections

between pairs of nodes may be available, and we may need to find all the nodes

connected, directly or indirectly, to a certain point. As another example, a

hierarchical design may describe each component in terms of its subcomponents, and

we may want to know all the parts used in a complex design at any level.

In this chapter we discuss additions to a relational database system that would

allow it to process composite queries involving calculation of transitive closure in

conjunction with other operations. In Section 2 we describe a useful form for such

composite queries. Two existing database systems that provide some transitive closure

operations are discussed in Section 3, and in Section 4 we propose additions to QUEL

[34] to support composite transitive closure queries. Section 5 contains a discussion of

several processing issues. In Section 6 we analyze processing costs for expansion of

design trees by means of the mechanisms outlined in Section 4, and this analysis is

applied to two real VLSI designs in Section 7. Implementation of transitive closure

operations in INGRES [34] is described in Section 8, with the results of a series of

tests.

3.2. Composite Queries

We begin with an example of a composite query, and proceed to a more formal

description. Suppose we have an employee database with the schema

EMPLOYEE (name, manager-name, salary)
CHILD (name, parent-name)

43

and we wish to express the query "Print the names of all children of Jones and of

employees under him in the company hierarchy, along with the parent's level below

Jones". The subtree containing Jones and all employees under him seems to be a

well-defined and easily computable set, but in standard QUEL it is necessary to

compose a separate query to refer to employees in each level of the company

hierarchy. This is because each link in the chain of association between an employee

and Jones must be specified:

range of c is CHILD
retrieve (c.name, level = 0)

where c.parent-name = "Jones"

range of el is EMPLOYEE
retrieve (c.name, level = 1)

where c.parent-name = el.name
and el.manager-name = "Jones"

range of e2 is EMPLOYEE
retrieve (c.name, level = 2)

where c.parent-name = e2.name
and e2.manager-name = el.name
and el.manager-name = "Jones"

range of e3 is EMPLOYEE
retrieve (c.name, level = 3)

where c.parent-name = e3.name
and e3.manager-name = e2.name
and e2.manager-name = el.name
and el.manager-name = "Jones"

This is clearly an inefficient way to solve the problem. Besides, the number of such

queries required depends on the height of the company tree and Jones's position in it.

Alternatively a temporary relation can be used to collect employees under Jones first,

and this makes computation somewhat more efficient:

range of e is EMPLOYEE
retrieve into TEMP (e.name, level = 0) (1)

where e.name = "Jones"

range of t is TEMP

append to TEMP (e.name, level = t.level+1) (2)
where e.manager-name = t.name

append to TEMP (e.name, level = t.level+1)
where e.manager-name = t.name

append to TEMP (e.name, level = t.level+1)
where e.manager-name = t.name

44

range of c is CHILD
retrieve (c.name, t.level) (3)

where c.parent-name = t.name

This expression of the composite operation allows us to repeat the same query instead

of making up a new one for each level of the hierarchy. The level field of the

intermediate relation, introduced in query (1), does not correspond to any field of the

EMP or CHILD relations. It serves to pass a parameter down from one level to the

next.

The result calculated above is not precisely a reflexive-transitive closure. The

original relation whose closure is being calculated consists of manager-employee pairs,

and its closure would contain a pair for every employee and each of his or her

superiors at any level. We are only interested in a subset, those pairs with "Jones" in

the manager slot. But storing a set of pairs with the same first element is redundant;

45

we only need the names appearing in the employee slot. On the other hand, we must

calculate and store extra information that is not in the closure relation, namely the

level field.

Generalizing from this example, we believe that composite queries composed of

the following three parts will be useful:

(1) A basis query, a normal QUEL query operating on relations already in the

database that serves to collect a starting set of tuples (a relation) to be used in

later steps. This relation may contain extra fields that are useful in the

composite operation but are not strictly part of the closure relation itself. In the

above example query (1) is the basis query.

(2) A closure query, which updates the relation created by the basis query.

Logically, it is repeated until further iteration produces no new changes. Often

this is an append, as in the example (query (2)), though it can also be a delete or

a replace. This query must have at least one tuple variable ranging over its own

target relation; otherwise repetition is useless.

(3) A result query, which refers to the intermediate relation and other database

relations to produce the final output or perform the desired updates on the

database. Query (3) is the result query in the example.

Figure 3.1 shows how information flows from one part of a composite query to

another.

Our proposed extensions to INGRES and QUEL allow processing of composite

queries consisting of the three parts outlined above. This provides for a more general

BASIS QUERY

Tuples produced
by BASIS query

\ /\
CLOSURE QUERY

/
Tuples produced
by CLOSURE query

jl

RESULT QUERY

Output

Figure 3.1
Flow of Tuples in a Composite Query

46

class of operations than calculating the transitive closure of stored relations, because

the QUEL query at each step can perform a wide variety of operations on the data.

3.3. Existing Transitive Closure Implementations

Transitive closure operations have been implemented on at least two other

database systems, Query-By-Example [104] and ORACLE [81]. Both systems can take

the transitive closure of a stored relation but allow only limited kinds of other

processing as part of the query.

47

3.3.1. Query-By-Example (QBE)

The following tables indicate how a query similar to our example would be

presented to the QBE system [103,104]:

EMPLOYEE name manager-name

P.Smithf5L) Jones

CHILD name parent-name

P.Sally
P.Robert

Smith

P.Jones

The user is shown boxes representing relations, and fills in fields of tuples in the

manner illustrated. A "P" indicates that the value of the attached field is to be

printed as part of the answer. Non-underlined entries are constants entered by the

user, e.g. "Jones". Underlined "example items" function as variables, which can

represent any value but which refer to the same value wherever they appear in the

query. For instance the two uses of "Smith" specify an equi-join between the

EMPLOYEE and CHILD relations. The entry in parentheses has a special meaning:

its presence indicates that transitive closure is desired, and the number represents the

"level number" in the closure calculation. In this case we want employees with Jones

as manager at any level (the number 5 is underlined; it is only an example level).

The example tuple in the EMPLOYEE relation containing the constant "Jones"

takes the place of our basis query, restricting the relation to just those tuples with

manager-name =* "Jones". QBE happens to provide for display of the tree level as a

special case, but there is no general way to introduce new attributes for the purpose of

48

passing parameters from one step in the calculation to the next, as we did with the

level attribute in query (1) above. The function of our result query is filled by the

"P" entries in the QBE query. Employee's names are printed along with those of

their children, although this was not actually desired; it is side effect of placing a "P"

where it will cause printing of the level number. The last line, asking for children

with "Jones" in the parent-name field, is needed to include Jones's own children.

In short, QBE is able to calculate basic transitive closures and to use the result in

another query. Attributes used in the closure calculation must always be a subset of

those appearing in stored relations; it is not possible to introduce new ones to pass

calculated values between steps in the process. The level is handled specially and can

be used in limited ways, such as for finding the longest chains of derivation or

identifying the leaves of a tree.

3.3.2. ORACLE

An ORACLE [81] transitive closure query takes the form

SELECT <field-Iist>

FROM <relation>

START WITH <qualification-1>
CONNECT BY Connection>
WHERE <qualification-2>
INCLUDING <qualification-3>

The following ORACLE statements approximate our example query:

49

SELECT name

FROM CHILD

WHERE parent-name =
SELECT name

FROM EMPLOYEE

START WITH name = "Jones"

CONNECT BY manager-name = PRIOR name

The outer query retrieves childrens' names, and the transitive closure query involving

the EMPLOYEE relation is nested inside it. A START WITH clause selects a subset

of a stored relation on which to apply the closure operation, in this case just Jones's

tuple in the EMPLOYEE relation. This takes the place of our basis query, but is less

general, because it does not allow addition of extra fields or other changes in the form

of the tuples. The level field is missing, because there is no way to include it. The

CONNECT BY clause specifies that the name and manager-name fields will be used

to link one tuple with another to calculate the closure. Equality is the only form of

linkage allowed. The PRIOR keyword indicates that the calculation proceeds

downward from Jones through the company tree.

ORACLE also provides for two more kinds of clauses, which were not needed for

the inner query in this example. A WHERE clause specifies a qualification that is

applied to each tuple before it is used to link to other new tuples during the closure

operation. That is, if a tuple does not satisfy the WHERE clause it is excluded from

the closure along with all tuples it would bring in during later iterations. In our

composite query formulation, the qualification of the closure query serves this

purpose. An INCLUDING clause allows tuples to be used for linkage during the

closure calculation (by satisfying the WHERE clause) but excluded from the final

result (if they fail to satisfy the INCLUDING clause). A qualification can be added to

50

our result query to obtain this effect.

3.4. Additions to QUEL for Composite Queries

3.4.1. Append*

The addition of a single new construct, append*, allows composite queries with

transitive closure to be expressed in QUEL. Append* performs the iterative closure

step; it is logically equivalent to an ordinary append repeated until no new tuples are

produced. The previous example can be expressed as follows using append*:

range of e is EMPLOYEE
retrieve into TEMP (e.name, level = 0)

where e.name = "Jones"

range of t is TEMP
append* to TEMP (e.name, level = t.level + 1)

where e.manager-name = t.name

range of c is CHILD
retrieve (c.name, t.level)

where c.parent-name = t.name.

An append* is useful only if it has at least one variable ranging over its own

result relation, so that each new tuple may make possible further appends. Otherwise

it is the same as an ordinary append.

Simple repetition of an append will re-generate all tuples produced by earlier

iterations, possibly along with some new ones. In theory this does not matter, because

we are concerned only with sets of unique tuples, and duplicates do not appear. In

practice it is easy to implement append* in such a way that earlier processing is not

re-done on each iteration if there is only one variable over the target relation. This is

51

the case in queries that expand hierarchical designs. The problem of duplicate tuples

is considered more deeply in a later section.

3.4.2. Generalized * Operator

The * operator can be applied to other QUEL commands in the same sense as

with append*, namely that the command is (logically) repeated as long as it continues

to change its target relation.

Retrieve* into functions like append* but creates an empty relation first:

range of e is EMPLOYEE
range of j is JONES-DEPT
retrieve* into JONES-DEPT (e.all)

where e.name = "Jones"

or e.manager-name = j.name.

The first step in processing a retrieve* into query, after creating the relation, is to

install a starting set of tuples. This can be done by using disjunctive terms in the

qualification that do not refer to tuples already in the relation, e.g. 'e.name =*

"Jones"' in the example above. Such terms can be processed first as if by a separate

retrieve into query, then further iterations can be performed as if by append*. It is

not possible to introduce new attributes for the purpose of passing parameters from

one generation of tuples to the next, like the level attribute in our earlier example.

The reason is because their values in the starting set of tuples cannot be specified.

This construction requires that a variable be declared to range over the result

relation before it exists (like variable j above), which is illegal in current QUEL.

Extending QUEL to allow this presents no difficulty, because the relation will be

52

defined before the variable is used in a query.

Retrieve* (without a target relation) is equivalent to an ordinary retrieve because

the command does not affect the data it depends on. Repetition always produces the

same result.

Replace* is equivalent to replace run repeatedly until there are no more changes.

Again, there must be at least one variable over the relation being updated or else the

effect is the same as an ordinary replace. Replace* is useful for propagating changes

through an indefinite number of links in a network. In the following example it is

used to update the EMPLOYEE relation, lowering each employee's salary, if

necessary, to that of his or her manager. Each salary that is lowered could qualify

others for lowering; the process must continue until the changes propagate all the way

to the bottom of the company hierarchy.

range of e is EMPLOYEE
range of m is EMPLOYEE
replace* (e.salary = m.salary)

where e.manager-name = m.name
and e.salary > m.salary

In some cases the semantics of replace* are not well defined, because the results

depend on the order in which tuples are updated. Consider a query similar to the

above, in which each manager's salary is set equal to twice that of one of his or her

employees:

range of e is EMPLOYEE
range of m is EMPLOYEE
replace* (m.salary = e.salary * 2)

where m.name = e.manager-name

53

Here it is not clear which of several employee's salaries to use. This ambiguity can

also occur in ordinary replace queries and is not caused by the * operator. An

aggregate over the result relation solves the problem in this case:

range of e is EMPLOYEE
range of m is EMPLOYEE
replace* (m.salary = e.salary * 2)

where m.name = e.manager-name
and csalary = max(e.salary by e.manager-name)

Aggregates over the result relation can be useful in * queries if they are re

evaluated between iterations, and this is probably the best approach. However, the

fact that aggregate values can change between iterations can obscure the meaning ofa

query. Consider the following example, which adds tuples to the HIGH-PAY relation.

At each step it inserts a tuple for the manager of the highest-paid employee currently

in the relation:

range of e is EMPLOYEE
range of m is EMPLOYEE
range of h is HIGH-PAY
append* to HIGH-PAY (m.name, m.salary)

where m.name = e.manager-name
and e.name = h.name

and h.salary = max(h.salary)

Each iteration may add a higher-paid employee, so that older tuples would no longer

qualify for inclusion if the criterion were evaluated again. With the help of the *

operator this query defines a step-by-step procedure for collecting tuples; it is not the

kind of static set description that QUEL was intended to express.

Delete* is the same as delete in all queries without aggregates, because no tuples

can qualify on a second iteration that were not deleted during the first. With

54

aggregates, however, delete* can be useful. For example the following query fires all

managers who have no one working under them:

range of e is EMPLOYEE
range of m is EMPLOYEE
delete* m where m.title = "manager"
and count(e.name by e.manager-name where e.manager-name=m.name) = 0

We give meaning to define* view by stipulating that retrieval queries applied to

the view should produce the same results as if the view were first instantiated by

means of a retrieve* into query. For example, we can define a view consisting of all

employees working under Jones as follows:

range of e is EMPLOYEE
range of j is JONES-DEPT
define* view JONES-DEPT (e.all)

where e.name =» "Jones"

or e.manager-name = j.name

Now to retrieve the data for all employees working under Jones who make more

than 14k, we issue the query

range of x is JONES-DEPT
retrieve (x.name) where x.salary > 14000

The * operator is not appropriate for application to create, destroy, modify, or

range statements, where repetition serves no purpose.

3.4.3. Integrated Composite Queries

As an alternative to the * operator, a special language construct can be used to

express all three parts of a composite query in a single statement, allowing composite

55

queries to be processed as single entities instead of in separate steps. For example:

range of q is closure
retrieve (<output-list >) where <output-qual>

closure (<closure-Iist>) where <closure-qual>
basis (<retrieval query list>)

Here the range statement uses the keyword closure to indicate that the variable takes

on the values of tuples in the intermediate relation that will be calculated during

processing of the composite query. The basis clause corresponds to the basis step in

a three-part composite query as described in Section S.4.8I.2, and contains one or

more retrieval queries to produce the starting set of tuples for the closure operation.

The closure clause, corresponding to the second step, is equivalent to an append*.

The retrieve clause functions as the result step, and can refer to tuples in the closure

relation. Closure and basis clauses can also be attached to retrieve into, append,

replace, and delete statements, depending on what use is to be made of the tuples

gathered in the first two steps. Composite queries can be nested by including a

complete composite query in the basis part of another.

In the unified form our original example becomes

range of e is EMPLOYEE
range of c is CHILD
range of q is closure
retrieve (c.name, q.level)

where c.parent-name = q.name
closure (e.name, level = q.level + 1)

where e.manager-name = q.name
basis (retrieve (e.name, level = 0)

where e.name = "Jones").

Unified composite queries have several advantages over the append* form,

especially with regard to processing efficiency. It may be possible to decrease disk

56

space usage and response time by processing two or more parts of a composite query

in parallel, as outlined in the next section. Providing the system with information on

how the results of the basis and closure queries will be used gives it an opportunity to

optimize data structures, in order to improve overall efficiency. A query in the unified

form is also easier to write and understand, because a composite operation that a

programmer conceives as a single operation can be expressed as a single query instead

of a sequence of steps. Furthermore the intermediate closure relation is deleted

automatically after query processing is complete, whereas with append* the

programmer must remember to remove it.

3.5. General Processing Issues

3.5.1. Data Flow and Shift of Control

The boxes in Figure 3.1 (repeated below) represent the three parts of a composite

query. The three processing functions can be performed by separate modules that are

fairly independent of ench other, and that can take a variety of different forms. If

composite queries are implemented by means of append* then each box represents a

separate query presented to the database system. If the unified form described in the

preceding section is implemented, then the boxes can be subroutines within one

program. They can also be separate processes running on one processor, or on

multiple processors.

Composite queries can always be processed by running each process to

completion and gathering the result in a database relation, then beginning the next

57

BASIS QUERY

Tuples produced
by BASIS query

W\
CLOSURE QUERY

/
Tuples produced

by CLOSURE query

RESULT QUERY

Output

Figure 3.1
Flow of Tuples in a Composite Query

step. It is also possible to alternate between processes or run them in parallel, if the

query or part of a query represented by each box refers to the output of its

predecessor (backward along each arc) by means of at most one tuple variable. For

example, in our tree-expansion example the feedback loop from the closure step to

itself represented one tuple variable in an append* referring to its own target relation.

We defer investigation of the case where arcs correspond to multiple tuple variables.

If all the boxes in the diagram represent processes or sections of program running

on the same processor, then it is necessary to shift control between them. This can be

done according to the flow of tuples in several ways:

58

(1) One process can run to completion, depositing tuples in a database relation.

Then the next process along one of the arcs can begin, taking its input from the

stored relation.

(2) Partial results can be passed. For instance tuples can be collected in a buffer,

which is passed to the next process in line when it becomes full.

(3) Tuples can be passed one by one as they are produced, for immediate use by the

next process.

If the boxes represent processes running in parallel on different processors, they

could run as coroutines, passing tuples to each other by means of mailboxes or queues.

Use of append*, to implement composite queries restricts all paths except the

feedback loop to Option 1, because each step must run to completion before the next

is begun. Using Option 1 on the feedback loop results in breadth-first tree expansion,

while Option 3 gives depth-first expansion.

If the three processes are run alternately or in parallel, then it may be possible to

avoid materializing intermediate relations, which may be very large. Tuples passed on

and consumed by the next process along any path can be discarded immediately and

not stored. In addition, response time will be improved if some data can make its way

through the result box and appear as output before earlier steps have run to

completion. Response time can be improved still further by overlapping CPU-

intensive work in one process with I/O in another.

59

3.5.2. Infinite Closure

The transitive or reflexive-transitive closure of a relation containing a finite

number of tuples is always finite, because it is a subset of the cross product of the sets

of attribute values appearing in the original relation. However, the result of an

append* or the closure step of a composite query may be infinite, because new

attribute values can be calculated at each step. Consider the level-number field in the

example of Section 3.1.1. If Jones were his own manager, then the relation consisting

of employees under him would contain an infinite number of tuples showing that he

works for himself, with ever-increasing level numbers. Although this would not be the

desired result in the example, some queries involving infinite closure may be useful.

For example, such a query might be used to produce an unending stream of strings

generated by a grammar. It may be difficult to predict whether the result of a given

composite query is finite.

An append* query with an infinite result will never terminate and is useless,

because a subsequent query to retrieve the result can never be begun. The same is

true of a three-step composite query expressed in the unified form described in Section

1.4.3 if the processing strategy involves running the closure step to completion before

beginning the result query. However, options 2 and 3 above will produce an endless

stream of output.

3.5.3. Duplicate tuples

Duplicate tuples may arise during processing of any of the three parts of a

composite query: the basis query, computation of the closure and the result query.

60

Duplicates produced by the basis and result queries can be dealt with by standard

methods which require instantiating the output. One such technique is to sort the

relation after all tuples have been collected and remove adjacent identical tuples.

Another is to store the relation in a hashed or isam structure, so that each tuple has a

definite place depending on its attribute values. It is then easy to check whether each

new tuple is a duplicate before it is added to the relation. The choice of a storage

structure for duplicate detection depends onthe number of tuples that must be stored,

and this is a function of the particular query and of the data.

Duplicates produced during the closure step can be separated into several

categories, and different treatments are appropriate:

(1) Duplicates may appear along a chain of tuples derived from a single starting

tuple. This represents a cycle in the expansion of the closure.

(2) Several identical tuples may be siblings, i.e. they may be derived in one iteration

from the same parent tuple in the closure relation.

(3) Duplicates may appear at the same distance from a tuple in the starting set (i.e.

generated during the same iteration, if the expansion is breadth-first), but

without having the same parent tuple.

(4) Duplicates may occur in the closure without being related in any of the above

ways.

We discuss each of the above cases in turn. It is essential that Case 1 duplicates

be detected, otherwise processing will not terminate. Undetected Case 1 duplicates

will cause a breadth-first program to iterate indefinitely, producing again the same

61

tuples it produced in earlier generations. Similarly, a recursive depth-first program

will go into infinite recursion.

If expansion is depth-first, Case 1 duplicates can be eliminated by keeping all

tuples on the derivation path from a starting tuple to the current new tuple in a

duplicate-eliminating structure, such as a linked list. Each new tuple is checked

agains all others in the list before it is added to the result. When the program

recurses, i.e. moves downward to a new node in the tree, a new tuple is added to the

list, and when it returns from a recursive call a tuple is removed. Only one such path

need be instantiated at a time, therefore the space required for this kind of duplicate

elimination is determined by the maximum length of a derivation chain. If the closure

set corresponds to a tree, the maximum length is just the height of the tree plus one.

In cases where the tree is expected to be extremely tall, then some form of search tree

can be used in place of the linked list to speed the search for duplicates.

Other kinds of duplicates (Cases 2 through 4) consume extra storage space and

computation time but do not affect the correctness of query processing.

Characteristics of the data and the query determine whether checking for them is

worthwhile. If there are no duplicates, then checking for them represents an

unnecessary cost. If there are many, eliminating them can save much processing time

and storage space.

Duplicates with the same parent tuple (Case 2) can be detected by collecting new

tuples derived from a single parent tuple. The entire set can be discarded when all

tuples derived from that parent have been generated and processing moves to a new

62

parent tuple. Any duplicate eliminating storage structure can be used; the choice will

be determined by the size of the sets expected. Duplicates within the same generation

(Case 3) can be eliminated during breadth-first expansion by collecting all tuples of the

current generation. In this case the space required is determined by the size of the

largest generation.

Duplicates of all kinds in the closure relation can be detected by instantiating the

entire closure. This approach has the disadvantage that it may require a great deal of

space, and processing to find duplicates will be less efficient in a large structure. In

addition, full instantiation prevents infinite closure queries from being processed at all.

3.6. Analysis of Design Tree Expansion

In this section we investigate the implications of using various algorithms and

buffering schemes that are applicable to design tree expansion by means of append*.

We derive formulas for buffer space and processing time cost estimates, which will be

applied to real VLSI designs in the next section. Cost estimates are based on

INGRES, but should apply to other database systems with slight adjustments. The

results presented in this section are relevant to other applications besides VLSI design,

especially other kinds of CAD, in which trees are expanded.

3.6.1. Database Schema and Expansion Queries

Our analysis is based on expansion of hierarchical designs stored in the simplified

schema, similar to that of Chapter 2, shown in Figure 3.2. Each circuit cell is assigned

a unique number, master-id in the schema. Edges in the design tree correspond to

63

tuples in the INSTANCE relation, which has fields for the identifying numbers of the

instantiated cell and its parent, along with a 3X2 transform matrix [71] which

specifies the position of the child cell in relation to its parent. The INSTANCE

relation is stored hashed on the parent cell number, and we assume there are no

collisions. A further simplifying assumption is that all tuples with the same parent fit

on a single page, so that overflow pages are never needed. Thus if the identifying

number of a cell is known, the numbers of all its children can be found with one disk

access.

Pseudo-QUEL commands to expand the design whose identifying number is 1

are:

retrieve intoTREE (cell=l, location=(0,0))
range of i is INSTANCE
range of t is TREE
append* to TREE (cell = i.child,

location = t.location o i.transform-matrix)
where i.parent = t.cell

The result of the expansion is produced as the TREE relation, with one tuple

representing each node and containing the identifying number of a cell. We assume

CELL-MASTER (name, master-id)

INSTANCE (parent, child, transform-matrix).

BOX (owner, use, xl, x2, yl, y2)

WIRE (owner, use, wire-id, width, xl, yl, x2, y2)

POLYGON (owner, use, polygon-id, vertnum, x, y)

Figure 3.2
Schema for Design Tree Expansion

64

that no cell is ever used as a part within itself. This would represent an incorrect

design, and could prevent the expansion query from terminating.

Only the INSTANCE relation is needed to expand the tree, although other kinds

of information about circuit cells can be tagged with their numbers and stored

elsewhere in the database, e.g. in the BOX, WIRE, and POLYGON relations.

3.6.2. Design Tree Parameters

In this subsection we describe several of abbreviations for numbers that

characterize particular design trees. They will be useful later for compact

representation of cost formulas. The reader is advised to skim this part at first, and

refer back to it for explanation of parameters appearing in the formulas. Table 3.1

lists the parameters with brief definitions, and Figure 3.3 illustrates their meanings by

showing their values for an example design tree.

The height h of the tree is 2 as is clear from the picture. The maximum width

m is 6 because of the six "Cn nodes in the second level; this will be used to calculate

the buffer space needed for breadth-first expansion. The total number of nodes n is

the number of tuples the expansion must generate, and will be used in estimates of

CPU cost. In the example n is 10.

The parameters n\ n", and t will be used to help calculate the number of

INSTANCE pages that must be read from disk during tree expansion under various

conditions. The value of n' is the number of nodes in the tree if we count arrays of

nodes as one, but still count nodes in lower levels of replicated subtrees separately.

Table 3.1

Design Tree Parameter Definitions

h Height of the design tree.

m Width of the tree, i.e. the maximum
number of nodes in any level.

n The number of nodes in the tree,
equal to the number of edges
plus one.

n' The number of nodes in the tree

if each array of leaves is counted
as one node, and in each array of
subtrees the root node is counted

only once.

n" The number of nodes in the modified
tree where all arrays have been
collapsed to single instances.

i The number of distinct circuit cells,
equal to the number of INSTANCE
relation pages used in the expansion.

k The maximum width of the largest
array-replicated subtree, with all
arrays collapsed to single instances.

t

s

The number of TREE relation tuples
that fit on one page (1024 bytes).
The number of subroutine-call stack
frames that fit on one page. |

/(node x)= if there is an array edge above a? or a: is the root then
l+sum(/(y) where y is a child of ar),

arrays counted as single instances
else if node x has children then

l+max(/(y) where y is a child of a:)
else

1

65

66

A=2

m =6

n =10

n' = 5

nw=»4

t =4

Ar = 1

Figure 3.3
Design Tree Parameters

This is useful for calculating the number of INSTANCE pages that must be read if

buffering is used for arrays of cells but not for arrays of subtrees. In the example, n'

is 5, one each for A and D, one for the array of two B's, and two for C because the

;wo groups of three aro counted separately. If INSTANCE pages used in replicated

subtrees are also buffered, the corresponding number is n". This is the number of

nodes in the tree if all arrays are collapsed to single instances. In the example n" is 4,

one each for A and D, one for the array of two B's, and one for the two arrays of C's

because they are in replicated subtrees.

The parameter i is the total number of different kinds of cells used in a design.

Since tuples for all downward links from each cell are stored on one page, i is also the

maximum number of distinct INSTANCE pages that will be needed during an

67

expansion. In the example • is 4, for A, B, C, and D.

The parameter k refers to the maximum width of the largest replicated subtree,

with arrays counted as one. We use this value to calculate the buffer space needed to

save INSTANCE pages fof lower levels of replicated subtrees during breadth-first

expansion. Its value is 1 in the example because there is only one replicated subtree,

whose width is 1 when the array of C nodes is collapsed.

Parameters t and s refer to the numbers of TREE relation tuples and subroutine

call stack frames that will fit in one page of memory. Values will depend on the

implementation and the tree expansion query under consideration. For the purpose of

estimating space requirements we take TREE tuples to be about 30 bytes long (four

for the cell field and four each for entries in a 3X2 location matrix) which gives t=30

for a page size of 1024 bytes. Stack frames are estimated to occupy about 300 bytes,

and therefore s is 3.

The purpose of function / is to calculate the number of buffer pages needed

during depth-first tree expansion to store INSTANCE tuples for nodes that appear

repeatedly because they are in arrays or in replicated subtrees. The easiest way to

describe this quantity is to consider how it would be calculated using a recursive

function defined for any node in a tree. If a node is in a repeated subtree (case 1 in

the definition) then / is the sum of the values of / for all its children, plus one for the

node itself. This is because all nodes in the subtree will appear again. If the node is

not in a repeated subtree (case 2), then the value is one plus the maximum of the child

values, because the buffer space used for expansion of one child subtree can be

68

reclaimed and used again for other children. If the node is a tree leaf (case 3) then the

value is just one. The value of / at the root gives the number of buffer pages required

for expansion of the entire tree.

3.6.3. Buffer Management Policies

A database system usually has a main-memory buffer with a fixed number of

slots which it allocates according to an LRU (Least Recently Used) replacement

algorithm. It has been suggested in [43] that a DBMS often has considerable

information about page use and might be able to manage buffer space better than is

possible with a blind method like LRU. (See also [86] for a discussion of buffer

management in a database context.) The cost calculations below are based on

strategies for managing variable-sized buffers by making use of information about the

query being processed to decide when to release buffer pages.

Three buffer management policies are considered, which trade main-memory

buffer space for I/O time in different ways. The first uses a minimum amount of

space, and is designed to keep in memory just those pages that are currently in use,

i.e. the TREE page containing the tuple for the node whose children are currently

being added, the INSTANCE page with tuples describing those children, and a TREE

page to receive new tuples. Buffer management consists of holding relation pages in

the buffer until all tuples on them needed by the expansion algorithm have been

processed, then releasing them without regard for whether they will be needed again.

The second policy involves predicting which pages will be needed again later in

an expansion, and keeping them in memory. The prediction is based on the

69

observation in [76] that circuit cells serve mainly to break a design into manageable

pieces and are rarely re-used except in arrays. Arrays of identical subcells often

appear in VLSI designs, and result in multiple occurrences of identical subtrees in the

expanded design tree. INSTANCE pages used during the expansion of such subtrees

are kept in the buffer until the array is complete. Pages used in non-array expansion

are released, on the supposition that they will not be needed again. TREE pages

containing new tuples just added to the relation are held until all their tuples have

been examined for the purpose of adding their children.

Finally we look at the case where buffer space is unlimited. TREE relation pages

are handled as before, but INSTANCE relation pages used in an expansion simply

remain in the buffer until the operation is finished. This insures that no page ever

needs to be re-fetched.

Tables 3.2 and 3.3 have columns for each of the three policies. The formulas in

the tables are discussed in the next two sections.

3.6.4. Cost Formulas for Breadth-First Expansion

In breadth-first expansion a design tree is produced one level at a time, working

down from the root. The processing program examines tuples representing nodes in

one level, refers to the INSTANCE relation to find edges going down to the next level,

and composes tuples for nodes there. After one level has been completely processed

work begins on the next. Figure 3.4 shows the order in which tree nodes are

composed during breadth-first expansion, followed by a pseudo-QUEL program that

expands a tree in this manner. Table 3.2 gives cost formulas for breadth-first tree

70

expansion.

During expansion the TREE relation is accessed alternately in two places, as

indicated in Figure 3.4.: first a tuple representing a tree node is read from the relation,

then a set of new tuples is appended for the node's children. If tuples of the TREE

relation are stored one after another in the order in which they are appended, the two

functions can be performed by sequential scans, one to read old parent tuples, the

other to append new child tuples to the end of the relation. The minimum buffer

policy requires a single page for each scan. At any point during processing one page of

Added by

BASIS query

Added in first

iteration

Added in second

iteration

retrieve into TREE (cell=l)
range of i is INSTANCE
range of t is TREE
repeat

{
append to TREE (cell = i.child) where i.parent = t.cell

} until no more tuples added

Figure 3.4
Breadth-First Tree Expansion

Table 3.2

Cost Formulas for Breadth-First Tree Expansion

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages

TREE Relation 2 —m/t ~m/t
INSTANCE Relation 1 k i

Stack 0 0 0

Disk

Reads

TREE Relation r»/«i 1 1

INSTANCE Relation n' n" t

Disk

Writes

TREE Relation \n/t] \n/t] r»/«i

Tuples

Read

TREE Relation n n n

INSTANCE Relation n'-l n'-l n'-l
Tuples

Composed
TREE Relation n-l n-l n-l

71

the INSTANCE relation is needed, the one containing links between the node just

read and its children.

The reading scan reads all n tuples in the TREE relation, and this requires that

pages be read, where t is the number of tuples that will fit on a page. The

appending scan composes all tuples but the first, representing the root, which was

already in the relation at the start. All pages must be written out. Early in the

expansion both scans may use the same page, which can save a few disk reads, but

this effect is neglected because it will be small if the tree becomes wide quickly, as is

typical for VLSI designs [76]. Buffer pages used by the read scan can be released as

soon as all their tuples have been processed. Pages used by the appending scan should

be written out and released as soon as they become full, unless they are also being

used by the read scan.

72

One page of the INSTANCE relation must be read for each node including leaves

in order to look for downward links, and therefore n pages reads would be required if

there were no arrays. However an array construct causes the production of several

consecutive TREE relation tuples corresponding to instances of the same cell. During

expansion of the next level, the same INSTANCE relation page can be used to

generate children of all nodes in the array. Hence the corrected number of reads is n',

the number of nodes in the tree counting arrays as one. Buffer slots used for

INSTANCE relation pages should be recycled immediately and used for the next

INSTANCE page read.

The second buffering scheme uses more buffer space to keep pages in memory if

they will be needed later. Figure 3.5 illustrates how TREE relation pages can be

buffered to eliminate re-reading. The processing program works its way across one

level (from left to right, say) and produces new tuples across the next lower level.

When it reaches the right side of the tree, it starts again at the left side one level

down. New TREE relation pages created by the appending scan are locked in the

buffer and held until the read scan has finished with them, then released. Each new

page may be written out at any time after the appending scan has finished filling it,

possibly before the read scan reaches it. In the worst case the buffer must hold almost

all of the two widest consecutive levels of the tree, but usually space for the widest

single level is sufficient, and this space requirement is shown in the table as ~m/t.

The actual number of pages required for a given design tree varies according to the

order in which children of individual nodes are generated. With this buffering scheme,

TREE relation pages are never read from disk except for the first one, hence the

73

number of disk reads is 1. They must still be written out, however, requiring

disk writes.

Retaining INSTANCE relation pages can also decrease I/O. Pages used for one

level of a replicated subtree are referred to repeatedly during processing ofthat level;

they can be fetched once and kept in the buffer (see Figure 3.6). The number of buffer

slots needed is k, the largest number of nodes in any level of any array-replicated

subtree. The number of page reads for the INSTANCE relation is reduced to n", the

number of nodes the design tree would have if all arrays were converted to single

instances.

The second buffer management strategy can be implemented by means of a

retain flag in each TREE relation tuple to indicate whether the corresponding

INSTANCE page should be held or released. The value of the flag for new TREE

Figure 3.5
Buffering of TREE Relation Pages

for Breadth-First Expansion

Next to
be read

TREE tuple
buffer

Newly
composed

Just appended

Buffered

INSTANCE

tuples

B

\
\

C D

/ I

/ \

/ t

/ \

/ t

/ \

/ \

. '- -, r- -< ,

i E ' i F i
i i l i

To be appended next

74

Figure 3.6
Buffering of INSTANCE Relation Pages

for Breadth-First Expansion

tuples is calculated in the following way: if the parent node has the flag set, expansion

of a replicated subtree is in progress and the new child node should have the flag set

also. If the parent node has the flag clear, then either it is not part of a replicated

subtree, or is in the last copy. New nodes generated without an array construct

should have the flag clear, and arrays of new tuples should have it set except for the

last element.

The third buffering scheme assumes that unlimited space is available. TREE

relation pages can be handled the same way as in the second scheme, that is, they are

held in the buffer after they are filled until they have been read. INSTANCE relation

pages simply remain in the buffer until the tree expansion is complete, in case they are

75

needed again. The number of INSTANCE pages read is equal to i, the total number

ofdifferent cells used in the expansion. This is also the number ofbuffer slots required

for INSTANCE pages.

The numbers of tuples processed is the same for all buffer management policies.

The reading scan must read all n TREE tuples, and the appending scan must compose

all but the root tuple, which existed at the beginning of the expansion. One

INSTANCE tuple must be read in order to generate each single TREE tuple (except

the root) and each array, which can be described by a single INSTANCE tuple; the

total is n'—1.

3.6.5. Cost Formulas for Depth-First Expansion

Although the description of append* as an iterated append suggests breadth-first,

level-by-level processing, it is also possible to implement append* by means of a

recursive routine that expands a tree depth-first. The routine begins with the root

node, refers to the INSTANCE relation to find its children, and calls itself with each

child. The entire subtree dependent from each node is traversed before succeeding

nodes on the same level are processed. Figure 3.7 indicates the order in which nodes

are produced, and presents a pseudo-code program for depth-first tree expansion.

Table 3.3 gives the corresponding cost formulas.

Arguments for the AddChildren subroutine are passed to it by placing them on

the stack, which thus acts as temporary storage for TREE tuples. If the tree has

height h, then h-rl stack frames are needed, and the space needed is approximately

h+l_
8

pages, where s is the number of frames that will fit on a page. The expansion

Recursive

calk

RootNode = (cell=l)
append to TREE (RootNode)
call AddChildren (RootNode)

subroutine AddChildren(Node)
{

range of i is INSTANCE
foreach (ChildNode = (cell=i.child) where i.parent=Node.celI)

append to TREE (ChildNode)
call AddChildren (ChildNode)

}
return

}

Figure 3.7
Depth-First Tree Expansion

76

Table 3.3

Coat Formulas for Depth-First Tree Expansion

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages

TREE Relation 1 1 1

INSTANCE Relation ft+1 f(root) t

Stack RA+1)/«1 K*+i)/«l U+l)/s]
Disk

Reads

TREE Relation 1 1 1

INSTANCE Relation n' 7l" i

Disk

Writes

TREE Relation \n/t] \n/t] \n/t]

Tuples

Read

TREE Relation 0 ' 0 0

INSTANCE Relation n'-l n'-l n'-l

Tuples
Composed

TREE Relation n-l n-l n-l

77

routine never needs to read from the TREE relation, so only one buffer page is

required, to collect new tuples as they are composed. This page can be written out

and re-used as soon as it fills.

The minimum buffer management policy attempts to keep in memory all

INSTANCE relation pages corresponding to TREE tuples stored on the stack, so that

when the recursive routine returns from expanding one subtree, it will not have to re-

fetch the INSTANCE page containing the link to the next. Thus a maximum of A+l

buffer slots is needed for INSTANCE pages. (See Figure 3.8.) Each invocation of the

routine causes the reading of one INSTANCE relation page containing links downward

from the argument node. This page is held in the buffer until the routine returns.

Arrays of child nodes are handled slightly differently: the call for the first array

element causes an INSTANCE page to be read as usual, but the page is not released

on return until the last element of the array has been visited. Calls for the second

and later elements of an array will find the correct INSTANCE page already in

78

memory, and will uot have to fetch it from disk. Thus the total number of

INSTANCE page reads is n', one for each node in the tree but counting arrays as one.

The second buffering policy takes advantage of the fact that the same set of

INSTANCE pages is used to expand arrays of subtrees (Figure 3.9). This set can be

kept in the buffer by passing a retain flag as an argument to the recursive routine. If

replicated subtree expansion is in progress because of an array construct higher in the

tree, this is indicated by the flag being set. The routine makes further recursive calls

with the flag set and does not release INSTANCE pages from the buffer before

returning. If the flag is clear, then the routine can release its INSTANCE page and all

those of deeper recursive calls before it returns. In this case it sets the flag before

making recursive calls for arrays, and makes non-array calls with it clear. The flag is

TREE tuples
stored on stack

INSTANCE tuples
held in buffer

Figure 3.8
Buffering of INSTANCE Relation Pages

for Depth-First Expansion

79

clear for the initial call with the root node.

The function / calculates the number of buffer slots required to hold all

INSTANCE pages needed to expand any replicated subtree, plus pages for the

remaining links between the subtree root and the root of the entire tree. With f(root)

buffers for the INSTANCE relation, the number of page reads is reduced to n", which

is the number of nodes the tree would have if all arrays were converted to single

instances.

As in the case of breadth-first expansion, the third buffer management policy

requires one INSTANCE page to be read for each different kind of cell used in the

INSTANCE tuples
held in buffer

D

Just appended

l 1

i B ,
i , _, _ i

/ \

/ \

/ \

/ \

/ \

I I T

1C11D1 1C11D1
i 1 i J

/ \

/ \

/ \

/ \

, U _ . , X ,

• E ' ' F •
i ii i

i 1 i j
/ \

/ \

/ \

/ \
,— i , , \ ,

i E • ' F '
i ii i

To be appended next

Figure 3.9
Buffering of INSTANCE Pages for Arrays

During Depth-First Expansion

80

expansion, and that page remains in the buffer until the process is complete. Thus a

total of i INSTANCE relation disk reads are performed, and i buffer pages are

required.

AH buffer management policies require one page to receive new TREE tuples,

which can be written out as soon as it becomes full because the recursive routine never

needs to read TREE tuples. The number of INSTANCE tuples read is always n'-l,

that is, one tuple is read for each single TREE tuple composed (all except the root),

and one for each array.

3.7. Application of Analysis to Two VLSI Designs

We have applied the preceding analysis to two VLSI designs developed at

Berkeley, the RISC II Instruction Cache chip and the RISC II CPU chip [44]. The

cache is essentially a memory and is very regular, with a few large arrays, and

contains about 45,000 transistors. The CPU design is more complex; the layout shows

many irregular parts but also has large regular areas. In its finished form the CPU

also contains about 45,000 transistors; it was not finished at the time of our analysis,

but the few details missing should not appreciably affect the characteristics we desired

to measure.

Table 3.4 shows the values of the previously defined parameters for the two

designs, along with other summary information. Both trees are very wide in

proportion to their height, and therefore we would expect depth-first expansion to be

more efficient than breadth-first because the recursion required for depth-first

expansion is shallow. The necessary buffering is for a short vertical piece of the tree,

81

instead ofan wide horizontal section as needed for breadth-first expansion.

About a third of the circuit cells are re-used in each design, contrary to our

earlier assumption that cells are rarely re-used. The average number of independent

uses of a cell is 3.6 for the CPU and 2.8 for the cache. This casts doubt on the

wisdom of the second buffer management policy described above, though it will be

seen that it still works fairly well.

Arrays are heavily used in both designs. This was observed in connection with

other designs in [76] and is not surprising, because regularity is heavily emphasized in

current VLSI design methodology [69]. The cache design tree contains fewer arrays

than the CPU (57) but they are large, with an average size of 63. The CPU chip, a

more complex and less regular design, has 235 arrays in its tree but their average size

is only 12.

Tables 3.5-3.8 show the results of substituting the parameter values from Table

3.4 into the cost formulas of Tables 3.2 and 3.3. Time estimates are based on a disk

access time of 30 msec, and a tuple-processing time of 3 msec, roughly what was

reported for INGRES in [93].

Table 3.4

Parameter Values for RISC II CPU and Instruction Cache

CPU Cache

h Height of the design tree. 10 4

m Width of the tree, i.e. the maximum
number of nodes in any level.

10063 6253

n The number of nodes in the tree,
equal to the number of edges
plus one.

14050 9854

n' The number of nodes in the tree

if each array of leaves is counted
as one node, and in each array of
subtrees the root node is counted
only once.

11465 6326

n" The number of nodes in the modified
tree where all arrays have been
collapsed to single instances.

942 320

i The number of distinct circuit cells,
equal to the number of INSTANCE
relation pages used in the expansion.

259 113

The number of cells never re-used
except in arrays.

167 76

The average number of times each cell
is used independently in the design.

3.6 2.8

The number of arrays in the complete
tree.

235 57

The number of non-leaf arrays. 48 19

Maximum array size. 1088 1408

Average array size. 12 63

k The maximum width of the largest
array-replicated subtree, with all
arrays collapsed to single instances.

9 4

f(root) See Section 3.6.2. 21 7

t The number of TREE relation tuples
that fit on one page (1024 bytes).

30 (est.) 30 (est.)

8 The number of subroutine-call stack
frames that fit on one page.

3 (est.) 3 (est.)

82

Table 3.5

Cost Values for Breadth-First Expansion of RISC II CPU

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages
TREE Relation 2 335 335

INSTANCE Relation 1 9 259

Stack 0 0 0

Total 3 344 594

Disk

Reads

TREE Relation 469 1 1

INSTANCE Relation 11465 942 259

Disk

Writes

• TREE Relation 469 469 469

Disk

Accesses

12403 1412 729

Disk Time

@ 30 msec.

372 sec. 42 sec. 22 sec.

Tuples

Read

TREE Relation 14050 14050 14050

INSTANCE Relation 11464 11464 11464

Tuples
Composed

TREE Relation 14049 14049 14049

Tuples
Processed

39563 39563 39563

CPU Time

@ 3 msec/tuple
119 sec. 119 sec. 119 sec.

Total Time 491 sec. 161 sec. 141 sec.

83

Several observations can be made about these results:

(1) According to the time estimates shown in all four tables, a DBMS performing

design tree expansion would be very CPU bound except with a minimum size

buffer.

(2) The second-level buffering scheme decreases the amount of I/O drastically

compared to minimum buffering, by a factor of ten for both breadth-first and

depth-first tree expansion. This reflects the fact that a large proportion of the

nodes in a design tree are in array-replicated subtrees but are not directly in

Table 3.6

Cost Values for Breadth-First Expansion of RISC II Instruction Cache

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages

TREE Relation 2 208 208

INSTANCE Relation 1 4 113

Stack 0 0 0

Total 3 212 321

Disk

Reads

TREE Relation 329 1 1

INSTANCE Relation 6326 320 113

Disk

Writes

TREE Relation 329 329 329

Disk

Accesses

6984 650 443

Disk Time

@ 30 msec.
210 sec. 20 sec. 13 sec.

Tuples

Read

TREE Relation 9854 9854 9854

INSTANCE Relation 6325 6325 6325

Tuples
Composed

TREE Relation 9853 9853 9853

Tuples
Processed

26032 26032 26032

CPU Time

@3 msec/tuple
78 sec. 78 sec. 78 sec.

Total Time 288 sec. 98 sec. 91 sec.

84

Table 3.7

Cost Values for Depth-First Expansion of RISC II CPU

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages

TREE Relation 1 1 1

INSTANCE Relation 11 21 259

Stack 4 4 j 4

Total 16 26 264

Disk

Reads

TREE Relation 1 1 1

INSTANCE Relation 11465 942 259

Disk

Writes

TREE Relation 469 469 469

Disk

Accesses

11935 1412 729

Disk Time

@ 30 msec.
358 sec. 42 sec. 22 sec.

Tuples

Read

TREE Relation 0 0 0

INSTANCE Relation 11464 11464 11464

Tuples
Composed

TREE Relation 14049 14049 14049

Tuples
Processed

25513 25513 25513

CPU Time

@ 3 msec/tuple
77 sec. 77 sec. 77 sec.

Total Time 435 sec. 119 sec. 99 sec.

85

Table 3.8

Cost Values for Depth-First Expansion of RISC II Instruction Cache

Minimum

Buffer

Bigger
Buffer

Infinite

Buffer

Buffer

Pages

TREE Relation 1 1 1

INSTANCE Relation 5 7 113

Stack 2 2 2

Total 8 10 116

Disk

Reads

TREE Relation 1 1 1

INSTANCE Relation 6326 320 113

Disk

Writes

TREE Relation 329 329 329

Disk

Accesses

6656 650 443

Disk Time

@ 30 msec.
200 sec. 20 sec. 13 sec.

Tuples

Read

TREE Relation 0 0 0

INSTANCE Relation 6325 6325 6325

Tuples
Composed

TREE Relation 9853 9853 9853

Tuples
Processed

16178 16178 16178

CPU Time

@3 msec/tuple
49 sec. 49 sec. 49 sec.

Total Time 249 sec. 69 sec. 62 sec.

86

arrays. An additional factor of two is gained with the unlimited buffering

scheme.

(3) The choice of expansion algorithm affects I/O very little. However the depth-

first algorithm requires much less buffer space for all except the minimum buffer

policies.

(4) The "unlimited" buffer size is quite feasible, if the design trees tested are

representative. The largest calculated buffer size is less than 600 kilobytes for

breadth-first, 300 for depth-first. Large tuples in the TREE and INSTANCE

87

relations would change this, but an increase by more than a factor of two or

three seems unlikely.

(5) Depth-first expansion requires much less buffer space than breadth-first, as would

be expected for such wide, shallow trees. The factor varies between two and

twenty.

(6) The depth-first algorithm has consistently lower CPU time estimates because it

processes fewer tuples than breadth-first.

These calculations indicate that depth-first expansion is faster and uses less

memory space. It should be used in combination with the unlimited buffer policy,

because this gives the best performance and still does not require excessive space.

3.8. Append* Implementation Tests

In order to validate the foregoing analysis, and to investigate how transitive

closure operations should be implemented in a real system, we added append* to

INGRES and used our implementation to expand real VLSI design trees. In this

section we describe a series of tests designed to evaluate the costs and performance

effects of several choices in the processing of transitive closure queries. These include

breadth-first versus depth-first tree expansion, three kinds of duplicate tuple

elimination (see Section 3.5.3), and tree traversal with and without materialization of

the result. Although the tests involve expansion of design trees, the same processing

techniques are applicable to other kinds of transitive closure queries as well.

88

First in Section 3.0(2.1 we describe the database schema, the queries used to

expand a design tree, and modifications to INGRES. The results are tabulated and

discussed in Section 3.8.2, and Section 3.8.3 presents our conclusions.

3.8.1. Description of the Experiment

For the tests we used VLSI data from the two designs described in the preceding

section, the RISC II CPU and Instruction Cache. Hierarchical structuring information

for each design was stored in an INSTANCE relation ofthe following form:

INSTANCE (owner, cell, tOO, tlO, t20, tOl, til, t21).

This relation definition is very similar to the one presented in Section 3.6.1, but the

3X2 transform matrix is represented as six individual numbers tOO - t21 because

current INGRES does not have matrix data types. The owner and cell fields contain

the identifying numbers of the parent and child cells.

The QUEL statements below served to expand a design and produce a TREE

relation containing a tuple for each node in the tree. Again these are similar to the

tree-expansion queries given earlier, except that the matrix multiplication required to

compose spatial transforms is expressed in QUEL.

create TREE (cell, gener, til, tl2, t21, t22, t31, t32)
range of t is TREE
range of i is INSTANCE
append to TREE (cell=l, gener=0, tll=l, t22=l)
append* to TREE (cell = i.cell, gener = t.gener+1,

til = t.tll * i.tOO + t.tl2 *
tl2 = t.tll * i.tOl + t.tl2 *

t21 = t.t21 * i.tOO + t.t22 *

t22 = t.t21 * i.tOl + t.t22 *
t31 = t.t31 * i.tOO + t.t32 *
t32 = t.t31 * i.tOl + t.t32 *

where t.cell = i.owner

.tlO,

.til,

.tlO,

.til,
•tlO + i.t20,
.til + i.t21)

89

The first append statement installs one tuple to represent the root of the tree. Then

the append* repeatedly reads tuples from the TREE relation and composes new tuples

corresponding to their children by referring to the INSTANCE relation. Each TREE

tuple includes the absolute location of its cell, which insures that no duplicate tuples

are produced. The gener (generation) field records the distance of each node from the

root; when a new tuple is generated its gener value is one greater than its parent's.

A second set of queries expanded a design tree in the same way but produced a

TREE relation with many duplicate tuples. This version stored no information in

TREE to distinguish between instances of the same circuit cell:

create TREE (cell)
range of t is TREE
range of i is INSTANCE
append to TREE (cell=l)
append* to TREE (cell = i.cell)

where t.cell = i.owner

Standard INGRES normally processes queries in two steps in order to make

recovery easier after interruptions. During the first phase the source relations are

read and updates are written to a separate deferred-update file, and during the second

90

phase the updates are applied to the target relation. INGRES can also be made to

perform updates directly, without the two-phase protocol. Both methods were used in

our experiments because they interacted with the expansion algorithms; recovery

methods were not under consideration.

One set of tests performed tree expansion by using direct update with an

essentially unmodified version of INGRES. (The only change consisted of installing

counters for the experiment.) The TREE relation was structured as a heap, i.e. tuples

were stored one after another in the order in which they were inserted. INGRES

performed an ordinary append query instead of the append*, reading parent tuples

from the relation and added new child tuples immediately to the end, where they

would be used as parents later during processing of the same query. In this way a

single append was made to process one level after another and expand an entire tree in

a breadth-first manner. Eliminating duplicate tuples during processing is not practical

with this method.

Our second version of INGRES repeated append queries automatically, using a

modified form of deferred update, to make them perform like append*. During the

first phase of each iteration INGRES scanned the source relations (TREE and

INSTANCE in our tests), composed new tuples, and stored them in a deferred-update

file. During the second phase it appended each new tuple to the target relation

(TREE) and also to a special temporary relation. During the next iteration it used the

temporary as a source relation in place of TREE. In our tests, for example, INGRES

first read the single root tuple in TREE and composed tuples corresponding to

children of the root, writing them to a file. Then it read the file, adding the new

91

tuples to TREE and to TEMP. During the second iteration it read tuples from TEMP

and composed tuples for nodes in the third level of the tree, again saving them in a

file. Then it emptied TEMP and added the second batch of new tuples to TREE and

to TEMP. Processing continued in this way until one iteration produced no new

tuples.

We implemented several variations on this version of INGRES. The first used

standard INGRES's handling of hash-structured relations to eliminate duplicate tuples

in TREE. When INGRES prepares to append a new tuple to a hashed relation, it

checks all tuples in the appropriate bucket and suppresses adding the new one if it is a

duplicate. Our implementation first attempted to add new tuples to a hashed TREE

relation, and if they were duplicates it did not add them either to TREE or to TEMP.

Sorting TEMP between iterations provided a second, independent kind of duplicate

elimination which removed duplicates only within one level of the tree. A third

variation processed an append* without actually producing a result relation (TREE in

our tests). This was accomplished by omitting appends to the result relation but

retaining those to TEMP.

Our third modified version of INGRES performed depth-first tree expansion

recursively as described in Section 3.6.5. A mutually recursive set of routines within

INGRES was invoked to find children of the root node, and they called themselves

with each new tuple. Preliminaries such as parsing the query were performed only

once. Global duplicate tuple elimination was done as before by hashing the result

relation. Duplicate elimination within one level was impractical, but it was possible to

eliminate the third kind of duplicates, those along a path from the root to a new

92

tuple. This was accomplished by keeping all tuples for recursive invocations of the

routines on a linked list, a sort of "ancestor list". Each new tuple was checked against

all others in the list as soon as it was composed, and if a duplicate was found the next

recursive call was suppressed and the new tuple was not added to the result.

We did not implement the buffer management methods of the preceding section;

our modified versions of INGRES used the same LRU buffer management as standard

INGRES, and the same small buffer (15 pages). CPU and elapsed time were measured

by means of the UNIX time command [42], and each version of INGRES had counters

to record the number of logical disk reads and writes. The tests were run on a very

lightly loaded VAX 11/780 computer; essentially all the resources of the machine were

available.

3.8.2. Test Results

Sixty-four tests were run in all, and the complete results are given in Appendix

B. Tables 3.9-3.15 display data from selected pairs of tests in order to show the effects

of each processing option. The test numbers shown in each table can be used to look

up more complete information about individual tests by referring to the Appendix.

Table 3.9 compares breadth-first to depth-first tree expansion, and shows that

depth-first expansion was faster in terms of I/O counts, CPU time, and elapsed time.

The main reason was probably that the recursive depth-first expansion program saved

TREE tuples it would need later on the stack, whereas breadth-first INGRES put

them in relations and incurred a much higher cost for storing and retrieving them. In

addition, the design trees we used were much wider than they were tall, so breadth-

93

first INGRES had to store many more tuples for one level of the tree than the depth-

first version did for a vertical slice.

The tests shown in Table 3.9 tended to use much more CPU than I/O time, and

in fact this was true of all 64 tests. INGRES's use of the CPU could probably be

made more efficient, for instance by compiling rather than interpreting queries [93],

but even a large improvement would be overwhelmed in a multi-user system with

many disk drives connected to a single CPU. We expect that applications similar to

our tests (i.e. those in which a general-purpose database system answers queries

involving many tuples sharing pages) will continue to be CPU bound. This may not

be true for data managers like SQUID [49] that are especially designed for CAD and

which use the CPU more efficiently, but still must fetch data from disk.

Table 3.10 shows the cost of using a hash structured result relation to eliminate

duplicate tuples during breadth-first tree expansion. This caused pages of the TREE

Table 3.9

Comparison of Breadth-First and Depth-First Expansion
Test

No.

Algorithm Disk

Reads

Disk

Writes

Disk

Sec. @

30 msec.

CPU

Sec.

Elapsed
Sec.

RISC

CPU

1

5

Breadth-first

Depth-first

1247

805

1831

907

92

51

301

257

333

281

RISC

Cache

17

21

Breadth-first

Depth-first

2839

2517

1279

635

124

95

267

239

301

266

94

relation to be accessed randomly instead of sequentially, and also meant that the

relation was spread over more pages. When there were no duplicates to be found I/O

cost was increased by a factor of 2 to 7 and CPU cost was approximately doubled.

When duplicates were present they were detected during the second phase of each

iteration when updates were being applied to the TREE relation, and were not added

either to TREE or to TEMP. This prevented useless expansion of identical subtrees,

and decreased I/O, CPU and elapsed times by large amounts.

Table 3.10

Global Duplicate Tuple Elimination During Breadth-First Expansion
Test

No.

Global

Dup
Elim

Tuples
in

Result

Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU

No Dups

1

3

No

Yes

14050

14050

1247

5560

1831

4003

301

568

333

733

Cache

No Dups

17

19

No

Yes

9854

9854

2839

5149

1279

2294

267

463

301

575

CPU

Many Dups

33

35

No

Yes

14050

259

878

438

353

70

161

27

179

43

Cache

Many Dups

49

51

No

Yes

9854

113

2581

383

245

35

173

27

188

37

95

Table 3.11 summarizes the more complicated results for depth-first expansion.

Duplicates could be detected during tree traversal only if updates were performed

immediately; if they were deferred until a second phase duplicates were not discovered

until after the entire tree had been traversed, and as a result no time savings were

realized. Even this late detection eliminated many disk writes, because each

suppressed update usually meant that a relation page did not have to be written out

to disk. This saving almost compensated for the extra I/O due to random reads for

the hashed relation structure (e.g. in tests 37-39, 53-55).

With direct update duplicates could be detected during tree traversal and the

improvement was comparable to that of breadth-first expansion. This was in spite of

another curious phenomenon appearing in the same tests, namely that direct update

drastically increased the number of disk writes (tests 39-40, 55-56). During direct-

update processing the INGRES buffer was used for INSTANCE pages, TREE pages

being read, and other TREE pages being written. The small size of the buffer (15

pages) meant that modified TREE pages often had to be written out and fetched again

later. With updates deferred, relation pages were not modified during the first phase

and never had to be written to disk. During the second phase when updates were

applied, all ten TREE relation pages could remain in the buffer.

Table 3.12 shows the results of eliminating duplicates within each level of a tree

during breadth-first expansion by sorting the temporary relation between iterations.

The cost was less than for global duplicate elimination by hashing, and increased I/O,

CPU, and elapsed time by less than a factor of two when there were no duplicates.

When duplicates were present large savings were obtained, nearly as great as with

Globa

Table 3.11

Duplicate Tuple Elimination During Depth-First Expansion
Test

No.

Global

Dup
Elim

Direct

Update
Tuples

in

Result

Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU 5 No No 14050 805 •907 257 281

No 7 Yes No 14050 4667 3380 523 678

Dups 8 Yes Yes 14050 7564 4149 532 747

Cache 21 No No 9854 2517 635 239 266

No 23 Yes No 9854 3874 1658 428 508

Dups 24 Yes Yes 9854 3936 1659 432 531

CPU 37 No No 14050 805 167 123 138

Many 39 Yes No 259 815 10 132 143

Dups 40 Yes Yes 259 493 109 20 33

Cache 53 No No 9854 2517 117 149 168

Many 55 Yes No 113 2527 10 152 165

Dups 56 Yes Yes 113 394 51 23 31

global duplicate elimination. This was because most duplication in our design trees

was due to repeated nodes or subtrees at the same level in the tree.

Table 3.13 indicates that checking for duplicates on the "ancestor list" between a

new node and the root of the tree cost very little. I/O was not affected at all, and the

97

Table 3.12

Duplicate Tuple Elimination Within One Tree Level
During Breadth-First Expansion

Test

No.

Dup
Elim

Within

Level

Tuples
in

Result

Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU 1 No 14050 1247 1831 301 333

No Dups 4 Yes 14050 1239 2745 • 491 551

Cache 17 No 9854 2839 1279 267 301

No Dups 20 Yes 9854 2843 1919 389 435

CPU 33 No 14050 878 353 161 179

Many Dups 36 Yes 2881 410 115 33 57

Cache 49 No 9854 2581 245 173 188

Many Dups 52 Yes 3763 359 107 34 50

extra processing cost was negligible because the list was in memory and never

contained more than 9 tuples. For very long derivation chains this method might not

work so well, because its cost increases linearly with the length of the chains.

Unfortunately this kind of duplicate elimination offered no possibility of improving

processing efficiency with our design data, which contained no duplicates along a

vertical path through the tree. In our schema a duplicate of this kind would represent

the use of a circuit cell as a part within itself, which does not make sense.

Table 3.13

Duplicate Tuple Elimination on Path to Root
During Depth-First Expansion

Test

Number

Dup
Elim

on Path

to Root

Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU 5

9

No

Yes

805

805

907

907

257

259

281

283

Cache 21

25

No

Yes

2517

2517

635

635

239

242

266

269

Table 3.14 compares the cost of traversing a design tree without materializing it

versus building a heap-structured relation. I/O is decreased, especially for depth-first

expansion, but the saving in CPU and elapsed time is small. The main advantage of

not materializing a tree would be to save space, in the case of extremely large trees.

Table 3.15 shows the performance effects of using direct or deferred update in

cases where the two were functionally equivalent. The choice usually made little

difference in the efficiency of tree expansion. Direct update decreased disk writes by

about a factor of two for breadth-first expansion, because there was no update file to

be written and then read, and CPU and elapsed times were slightly smaller. In the

case of depth-first expansion with global duplicate elimination, direct update changed

the way the query was processed, and this had a strong effect on processing time, as

noted above.

99

Table 3.14

Cost of Materializing the Tree Relation
Test

Number

Algorithm Tuples
in

Result

Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU 1 Breadth-first 14050 1247 1831 301 333

13 Breadth-first 0 1238 915 280 308

9 Depth-first 14050 805 907 259 283

16 Depth-first 0 804 0 231 241

Cache 17 Breadth-first 9854 2839 1279 267 301

29 Breadth-first 0 2836 641 258 286

25 Depth-first 9854 2517 635 242 269

32 Depth-first 0 2516 0 221 237

100

Table 3.15

Direct vs. Deferred Update
Test

No.

Algorithm Updates Disk

Reads

Disk

Writes

CPU

Sec.

Elapsed
Sec.

CPU 1 Breadth-first Deferred 1247 1831 301 333

2 Breadth-first Direct 1227 909 314 278

5 Depth-first Deferred 805 907 257 281

6 Depth-first Direct 814 907 250 264

Cache 17 Breadth-first Deferred 2839 1279 267 301

18 Breadth-first Direct 2830 636 265 301

21 Depth-first Deferred 2517 635 239 266

22 Depth-first Direct 2521 635 238 256

3.8.3. Conclusions

Depth-first tree expansion appears to be better than breadth-first, at least for

design trees, because it makes use of main memory to store tuples temporarily, instead

of putting them in database relations or files. It also requires less buffer space when

the trees are wide rather than tall.

Depth-first processing also facilitates elimination of duplicate tuples along a chain

of derivation, which is required for correct processing of some queries. In applications

where very long derivation chains are expected it may be worthwhile to devise a more

sophisticated method than the ancestor list scan used in our tests.

101

Duplicate tuple elimination within each level of a tree must be abandoned if

depth-first expansion is to be used. Global duplicate elimination should be optional, to

be used to speed processing in cases where many duplicates are expected. Our hashing

scheme worked well for the examples we tried, but with this method it is necessary to

guess a reasonable number of hash buckets in advance. For large or unpredictable

applications the result relation could be structured as a B-tree; this would probably

increase the amount of I/O, since two or three disk reads may be required to descend

a B-tree, but the structure adapts itself to any number of tuples. Extendible hashing

[22] is similarly adaptive, again at the cost of extra I/O, since it requires an extra level

of indirection.

Materialization of the result may be avoided if global duplicate elimination is not

required. This can save considerable space, and is especially useful if the result of a

transitive closure operation is passed to another query, as outlined in Section 3.2.

Our conclusion is that append* is best implemented using a depth-first algorithm.

Analysis and tests both confirm that this is faster and uses less space. In addition,

duplicate tuple elimination of the path-to-root type is easy to build into a depth-first

implementation and does not degrade performance appreciably. Other kinds of

duplicate elimination may or may not be beneficial depending on the application and

should be optional. Sophisticated use of large main-memory buffers does not appear

to be very important for design-tree expansion; our analytic estimates and our tests

strongly indicate that a database system will be CPU bound in such applications.

CHAPTER 4

A Dynamic Index Structure for Spatial Searching

VLSI layout rectangles cover overlapping areas in two dimensions and are not

well represented by point locations. In this they are like many kinds of spatial data

occurring in computer aided design (CAD) and other applications such as geographic

databases. For example, map objects like counties, census tracts etc. also occupy

regions of non-zero size in two dimensions. A common operation on spatial data is a

search for all objects in an area, for example the test described in Chapter 2 in which

INGRES retrieved VLSI layout geometry falling within a small "window" in the

middle of a circuit cell. For this kind of search it is important to be able to retrieve

objects efficiently according to their spatial locations.

An index based on objects' spatial locations is desirable, but classical one-

dimensional database indexing structures are not appropriate to multi-dimensional

spatial searching. Structures based on exact matching of values, such as hash tables,

are not useful because a range search is required. Structures using one-dimensional

ordering of key values, such as B-trees and ISAM indexes, do not work because the

search space is multi-dimensional.

A number of structures have been proposed for handling multi-dimensional point

data, and a survey of methods can be found in [10]. Cell methods [9,32,100] are not

good for dynamic structures because the cell boundaries must be decided in advance.

Quad trees [25] and k-d trees [8] do not take paging of secondary memory into

102

103

account. K-D-B trees [84] are designed for paged memory but are useful only for

point data. The use of index intervals has been suggested in [97], but this method

cannot be used in multiple dimensions. Corner stitching [77] is an example of a

structure for two-dimensional spatial searching suitable for data objects of non-zero

size, but it assumes homogeneous primary memory and is not efficient for random

searches in very large collections of data. Grid files [35] handle non-point data by

mapping each object to a point in a higher-dimensional space. In this chapter we

describe an alternative structure called an R-tree which represents data objects by

intervals in several dimensions.

Section 4.2 outlines the structure of an R-tree and Section 4.3 gives algorithms

for searching, inserting, deleting, and updating. The problem of splitting over-full tree

nodes, which is part of the insertion process, is considered in Section 4.4. Results of

R-tree index performance tests are presented in Section 4.5, and Section 4.6 we outline

how to implement R-trees in INGRES [34].

4.1. R-Trce Index Structure

An R-tree is a height-balanced tree similar to a B-tree [5,18] with index records

in its leaf nodes containing pointers to data objects. Nodes correspond to disk pages if

the index is disk-resident, and the structure is designed so that a spatial search

requires visiting only a small number of nodes. The index is completely dynamic;

inserts and deletes can be intermixed with searches and no periodic reorganization is

required.

104

A spatial database consists of a collection of tuples representing spatial objects,

and each tuple has a unique identifier which can be used to retrieve it. Leaf nodes in

an R-tree contain index record entries of the form

(I, tuple—identifier)

where tuple—identifier refers to a tuple in the database and / is an n-dimensional

rectangle which is the bounding box of the spatial object indexed:

Here n is the number of dimensions and It is a closed bounded interval [a,b]

describing the extent of the object along dimension i. Alternatively /,- may have one

or both endpoints equal to infinity, indicating that the object extends outward

indefinitely. Non-leaf nodes contain entries of the form

(/, child—pointer)

where child—pointer is the address of a lower node in the R-tree and / covers all

rectangles in the lower node's entries.

Let M be the maximum number of entries that will fit in one node and let

w>t De a parameter specifying the minimum number of entries in a node. An R-

tree satisfies the following properties:

(1) Every leaf node contains between m and M index records unless it is the root.

(2) For each index record (I, tuple—identifier) in a leaf node, J is the smallest

rectangle that spatially contains the n-dimensional data object represented by the

indicated tuple.

105

(3) Every non-leaf node has between m and M children unless it is the root.

(4) For each entry (/, child-pointer) in a non-leaf node, J is the smallest rectangle

that spatially contains the rectangles in the child node.

(5) The root node has at least two children unless it is a leaf.

(6) All leaves appear on the same level.

Figure 4.1a and 4.1b show the structure of an R-tree and illustrate the

containment and overlapping relationships that can exist between its rectangles.

The height of an R-tree containing N index records is at most [logmiV —1,

because the branching factor of each node is at least m. The maximum number of

nodes is —- + —- + • • • +1. Worst-case space utilization for all nodes except the

m

root is —. Nodes will tend to have more than m entries, and this will decrease tree

height and improve space utilization. If nodes have more than 3 or 4 entries the tree

is very wide, and almost all the space is used for leaf nodes containing index records.

The parameter m can be varied as part of performance tuning, and different values

are tested experimentally in Section 4.5.

4.2. Searching and Updating

4.2.1. Searching

The search algorithm descends the tree from the root in a manner similar to a

B-tree. However when it visits a non-leaf node it may find that any number of

Rl R2

R6 R7

R8 ftQ |R10 ||R11 |R12 | ||R13(R14[| |R15 |R16 | ||R17 |R18 |R19

To Data Tuples

M

Shape of
Data Object

0>)
Figure 4.1

iR5

•|r
•14

L _ .

&

106

107

subtrees need to be searched, hence it is not possible to guarantee good worst-case

performance. Nevertheless with most kinds of data the update algorithms will

maintain the tree in a form that allows the search algorithm to eliminate irrelevant

regions of the indexed space, and examine only data near the search area.

In the following we denote the rectangle part of an index entry E by E.I, and

the tuple—identifier or child—pointer part by E.p.

Algorithm Search. Given an R-tree whose root node is T, find all index records

whose rectangles overlap a search rectangle S.

51. [Search subtrees.) If T is not a leaf, check each entry E to determine whether E.I

overlaps 5. For all overlapping entries, invoke Search on the tree whose root

node is pointed to by E.p.

52. [Search leaf node.] If T is a leaf, check all entries E to determine whether E.I

overlaps 5. If so, E is a qualifying record.

4.2.2. Insertion

Inserting index records for new data tuples is similar to insertion in a B-tree in

that new index records are added to the leaves, nodes that overflow are split, and

splits propagate up the tree.

Algorithm Insert. Insert a new index entry E into an R-tree.

II. [Find position for new record.] Invoke ChooseLeaf to select a leaf node L in

which to place E.

108

12. [Add record to leaf node.] If L has room, for another entry, install E.

Otherwise invoke SplitNode to obtain L and LL containing E and all the old

entries of L.

13. [Propagate changes upward.] Invoke AdjustTree on L, also passing LL if a

split was performed.

14. [Grow tree taller.] If node split propagation caused the root to split, create a

new root whose children are the two resulting nodes.

Algorithm ChooseLeaf. Select a leaf node in which to place a new index entry E.

CL1. [Initialize.] Set TV to be the root node.

CL2. [Leaf check.] If N is a leaf, return N.

CL3. [Choose subtree.] If N is not a leaf, let F be the entry in N whose rectangle

F.I needs least enlargement to include E.I. Resolve ties by choosing the entry

with the rectangle of smallest area.

CL4. (Descend until a leaf is reached.] Set N to be the child node pointed to by F.p

and repeat from CL2.

Algorithm AdjustTree. Ascend from a leaf node L to the root, adjusting covering

rectangles and propagating node splits as necessary.

ATI. [Initialize.] Set N=L. If L was split previously, set NN to be the resulting

second node.

109

AT2. [Check if done.] If N is the root, stop.

AT3. [Adjust covering rectangle in parent entry.] Let P be the parent node of N,

and let EN be iV's entry in P. Adjust EN.I so that it tightly encloses all entry

rectangles in N.

AT4. [Propagate node split upward.] If N has a partner NN resulting from an

earlier split, create a new entry ENN with ENN.p pointing to NN and ENN.I

enclosing all rectangles in NN. Add ENN to P if there is room. Otherwise,

invoke SplitNode to produce P and PP containing ENN and all P's old

entries.

AT5. [Move up to next level.] Set N=P and set NN=PP if a split occurred.

Repeat from AT2.

Algorithm SplitNode is described in Section 4.4.

4.2.3. Deletion

Algorithm Delete. Remove index record E from an R-tree.

Dl. [Find node containing record.] Invoke FindLeaf to locate the leaf node L

containing E. Stop if the record was not found.

D2. [Delete record.] Remove E from L.

D3. [Propagate changes.] Invoke CondenseTree, passing L.

D4. [Shorten tree.] If the root node has only one child after the tree has been

adjusted, make the child the new root.

110

Algorithm FindLeaf. Given an R-tree whose root node is T, find the leaf node

containing the index entry E.

FL1. [Search subtrees.] If T is not a leaf, check each entry F in T to determine if F.I

overlaps E.I. For each such entry invoke FindLeaf on the tree whose root is

pointed to by F.p until E is found or all entries have been checked.

FL2. [Search leaf node for record.] IfT is a leaf, check each entry to see if it matches

E. If ^7 is found return T.

Algorithm CondenseTree. Given a leaf node L from which an entry has been

deleted, eliminate the node if it has too few entries and relocate its entries. Propagate

node elimination upward as necessary. Adjust all covering rectangles on the path to

the root, making them smaller if possible.

CT1. [Initialize.] Set N=L. Set Q, the set of eliminated nodes, to be empty.

CT2. [Find parent entry.] If N is the root, go to CT6. Otherwise let P be the parent

of N, and let EN be iV's entry in P.

CT3. [Eliminate under-full node.] If N has fewer than m entries, delete EN from P

and add N to set Q.

CT4. [Adjust covering rectangle.] If N has not been eliminated, adjust EN.I to

tightly contain all entries in N.

CT5. [Move up one level in tree.] Set N=P and repeat from CT2.

CT6. [Re-insert orphaned entries.] Re-insert all entries of nodes in set Q. Entries

from eliminated leaf nodes are re-inserted in tree leaves as described in

Ill

Algorithm Insert, but entries from higher-level nodes must be placed higher in

the tree, so that leaves of their dependent subtrees will be on the same level as

leaves of the main tree.

The procedure outlined above for disposing of under-full nodes differs from the

corresponding operation on a B-tree, in which two or more adjacent nodes are merged.

A B-tree-like approach is possible for R-trees, although there is^ no adjacency in the

B-tree sense: an under-full node can be merged with whichever sibling will have its

area increased least, or the orphaned entries can be distributed among sibling nodes.

Either method can cause nodes to be split. We chose re-insertion instead for two

reasons: first, it accomplishes the same thing and is easier to implement because the

Insert routine can be used. Efficiency should be comparable because pages needed

during re-insertion usually will be the same ones visited during the preceding search

and will already be in memory. The second reason is that re-insertion incrementally

refines the spatial structure of the tree, and prevents gradual deterioration that might

occur if each entry were located permanently under the same parent node.

4.2.4. Updates and Other Operations

If a data tuple is updated so that its covering rectangle is changed, its index

record must be deleted, updated, and then re-inserted, so that it will find its way to

the right place in the tree.

Other kinds of searches besides the one described above may be useful, for

example to find all data objects completely contained in a search area, or all objects

112

that contain a search area. These operations can be implemented by straightforward

variations on the algorithm given. A search for a specific entry whose identity is

known beforehand is required by the deletion algorithm and is implemented by

Algorithm FindLeaf. Variants of range deletion, in which index entries for all data

objects in a particular area are removed, are also well supported by R-trees.

4.3. Node Splitting

In order to add a new entry to a full node containing M entries, it is necessary to

divide the collection of M+l entries between two nodes. The division should be done

in a way that makes it as unlikely as possible that both new nodes will need to be

examined on subsequent searches. Since the decision whether to visit a node depends

on whether its covering rectangle overlaps the search area, the total area of the two

covering rectangles after a split should be minimized. Figure 4.2 illustrates this point.

The area of the covering rectangles in the "bad split" case is much larger than in the

"good split" case.

The same criterion was used in procedure ChooseLeaf to decide where to insert

a new index entry: at each level in the tree, the subtree was chosen whose covering

rectangle would have to be enlarged least.

We now turn to algorithms for partitioning the set of M+l entries into two

groups, one for each new node.

113

-i — t

Bad split Good split

Figure 4.2

4.3.1. Exhaustive Algorithm

The most straightforward way to find the minimum area node split is to generate

all possible groupings and choose the best. However, the number of possibilities is

approximately 2Af""1 and a reasonable value of M is 50*, so the number of possible

splits is very large. We implemented a modified form of the exhaustive algorithm to

use as a standard for comparison with other algorithms, but it was too slow to use

with large page sizes.

4.3.2. A Quadratic-Cost Algorithm

This algorithm attempts to find a small-area split, but is not guaranteed to find

one with the smallest area possible. The cost is quadratic in M and linear in the

number of dimensions. In other words, if the number of entries in a node is doubled

Atwo dimensional rectangle can be represented by four numbers of four bytes each. If
a pointer also takes four bytes, each entry requires 20 bytes. A page of 1024 bytes will hold
about 50 entries.

114

the split algorithm becomes four times as expensive. With the same number of entries

in a node, four-dimensional data makes the algorithm twice as expensive as two-

dimensional. The algorithm picks two of the M+l entries to be the first elements of

the two new groups by choosing the pair that would waste the most area if both were

put in the same group, i.e. the area of a rectangle covering both entries, minus the

areas of the entries themselves, would be greatest. The remaining entries are then

assigned to groups one at a time. At each step the area expansion required to add

each remaining entry to each group is calculated, and the entry assigned is the one

showing the greatest difference between the two groups.

Algorithm Quadratic Split. Divide a set of M+l index entries into two groups.

QS1. [Pick first entry for each group.] Apply Algorithm PickSeeds to choose two

entries to be the first elements of the groups. Assign each to a group.

QS2. [Check if done.] If all entries have been assigned, stop. If one group has so few

entries that all the rest must be assigned to it in order for it to have the

minimum number m, assign them and stop.

QS3. [Select entry to assign.] Invoke Algorithm PickNext to choose the next entry

to assign. Add it to the group whose covering rectangle will have to be

enlarged least to accommodate it. Resolve ties by adding the entry to the

group with smaller area, then to the one with fewer entries, then to either.

Repeat from QS2.

115

Algorithm PickSeeds. Select two entries to be the first elements of the groups.

PSl. [Calculate inefficiency of grouping entries together.] For each pair of entries Et

and E2, compose a rectangle J including EVI and E2.I. Calculate rf= area(J)

- zrez(EvI) - area(2?2.jT).

PS2. [Choose the most wasteful pair.] Choose the pair with the largest d.

Algorithm PickNext. Select one remaining entry for classification in a group.

PNl. [Determine cost of putting each entry in each group.] For each entry E not yet

in a group, calculate d-f= the area increase required in the covering rectangle

of Group 1 to include E.I. Calculate d2 similarly for Group 2.

PN2. [Find entry with greatest preference for one group.] Choose any entry with the

maximum difference between dx and </2.

4.3.3. A Linear-Cost Algorithm

This algorithm is linear in M and in the number of dimensions. Linear Split is

identical to Quadratic Split but uses a different version of PickSeeds. PickNext

simply chooses any of the remaining entries.

Algorithm LinearPickSeeds. Select two entries to be the first elements of the

groups.

LPS1. [Find extreme rectangles along all dimensions.] Along each dimension, find the

entry whose rectangle has the highest low side, and the one with the lowest

high side. Record the separation.

116

LPS2. [Adjust for shape of the rectangle cluster.] Normalize the separations by

dividing by the width of the entire set along the corresponding dimension.

LPS3. [Select the most extreme pair.] Choose the pair with the greatest normalized

separation along any dimension.

4.4. Performance Tests

We implemented R-trees in C under Unix on a Vax 11/780 computer, and used

our implementation in a series of performance tests whose purpose was to verify the

practicality of the structure, to choose values for M and m, and to evaluate different

node-splitting algorithms. This section presents the results.

Five page sizes were tested, corresponding to different values of M:

Bytes per Page Max Entries per Page (M)
128 6

256 12

512 25

1024 50

2048 102

Values tested for m, the minimum number of entries in a node, were M/2, M/3, and

2. The three node split algorithms described earlier were implemented in different

versions of the program. AH our tests used two-dimensional data, although the

structure and algorithms work for any number of dimensions.

During the first part of each test run the program read geometry data from files

and constructed an index tree, beginning with an empty tree and calling Insert with

each new index record. Insert performance was measured for the last 10% of the

117

records, when the tree was nearly its final size. During the second phase the program

called the function Search with search rectangles made up using random numbers.

100 searches were performed per test run, each retrieving about 5% of the data.

Finally the program read the input files a second time and called the function Delete

to remove the index record for every tenth data item, so that measurements were

taken for scattered deletion of 10% of the index records. The tests were done using

Very Large Scale Integrated circuit (VLSI) layout data from the RISC-II computer

chip [44]. The circuit cell CENTRAL, containing 1057 rectangles, was used in the

tests and is shown in Figure 4.3.

» a —vS^mt^Fj-ms^i^xuJr' _H.~l'? ^^^s—:••—*—=z^:rs^~iv~T r-" —^^^i—- '• '•:•:•'•• ~^s

Figure 4.3
Circuit cell CENTRAL (1057 rectangles).

118

Figure 4.4 shows the cost in CPU time for inserting the last 10% of the records

as a function of page size. The exhaustive algorithm, whose cost increases

exponentially with page size, is seen to be very slow for larger page sizes. The linear

algorithm is fastest, as expected. With this algorithm CPU time hardly increased with

page size at all, which suggests that node splitting was responsible for only a small

part of the cost of inserting records. The decreased cost of the quadratic algorithm

with a stricter node fill requirement reflects the fact that when one group becomes too

full, it simply puts all remaining elements in the other group, at linear cost.

The cost of deleting an item from the index, shown in Figure 4.5, is strongly

affected by the minimum node fill requirement. When nodes become under-full, their

entries must be re-inserted, and re-insertion sometimes causes nodes to split. Stricter

200

100

CPU

msec,

per

insert

128

t r

.. E m=2
t 1 1—i—I i I I I I 1 I

E = Exhaustive algorithm
Q =a Quadratic algorithm
L = Linear algorithm

E m=M/2

256

J L

512

Bytes per page

j—i—• i t t i • •

1024 2048

Figure 4.4
CPU cost of inserting records.

Q m=2

Q m=M/2

Lm=2

L m=M/2

119

fill requirements cause nodes to become under-full more often, and with more entries.

Furthermore, splits are more frequent because nodes tend to be fuller. The curves are

rough because node eliminations occur randomly and infrequently; there were too few

in our tests to smooth out the variations.

Figures 4.6 and 4.7 show that the search performance of the index is very

insensitive to the use of different node split algorithms and fill requirements. The

exhaustive algorithm produces a slightly better index structure, resulting in fewer

pages touched and less CPU cost, but most combinations of algorithm and fill

requirement come within 10% of the best. All algorithms provide reasonable

performance.

CPU

msec,

per

delete

100

50

128

E m=M/2
/

/
/

256

"i I 1—I—i i I i i i i i

E = Exhaustive algorithm
Q a Quadratic algorithm
L = Linear algorithm

512

Bytes per page

j L m=M/2
Q m=M/2

J—i—i—i « « • » • »

1024 2048

Figure 4.5
CPU cost of deleting records.

.6

.5

Pages
touched A

.4
per

qualifying
record .3

.2

.1

*

•"T" I

E

i i i i i r"i i i i i

= Exhaustive algorithm
w\ Q = Quadratic algorithm

L = Linear algorithm

K^̂\x E m==2
<\\\ /
\\\X m

- ^ s

E m=M/2 >

s

i » L 1 1 1 1 L_1 1 1 L 1 1

L m=M/2
Qm=2'
Um=2 ,
Q m=M/2

128 256 512 1024

Bytes per page

Figure 4.6
Search performance: Pages touched.

2048

CPU

usee.

per

qualifying
record

500

400

300

1 1 1 1—I—I—I I I I I i i
E = Exhaustive algorithm
Q = Quadratic algorithm
L = Linear algorithm

200 ^^se^

Em=2 Em=M/2
100 i i • « »

L m=M/2

Q m=M/2
Lm=2

Q m=2

128 256 512

Bytes per page
1024 2048

Figure 4.7
Search performance: CPU cost.

120

121

Figure 4.8 shows the storage space occupied by the index tree as a function of

algorithm, fill criterion and page size. Generally the results bear out our expectation

that stricter node fill criteria produce smaller indexes. The least dense index consumes

about 50% more space than the most dense, but all results for 1/2-full and 1/3-full

(not shown) are within 15% of each other.

A second series of tests measured R-tree performance as a function of the amount

of data in the index. The same sequence of test operations as before was run on

samples containing 1057, 2238, 3295, and 4559 rectangles. The first sample contained

layout data from the circuit cell CENTRAL used earlier, and the second consisted of

layout from a similar but larger cell containing 2238 rectangles. The third sample was

made by using both CENTRAL and the larger cell, with the two cells effectively

Bytes 40k

required

128 256 512

Bytes per page

Figure 4.8
Space efficiency.

1024

Q m=2

Lm=2

L m=M/2
Q m=M/2

2048

122

placed on top of each other. Three cells were combined to make up the last sample.

Because the samples were composed in different ways using varying data, performance

results do not scale perfectly and some unevenness was to be expected.

Two combinations of split algorithm and node fill requirement were chosen for

the tests: the linear algorithm with m=2, and the quadratic algorithm with m=M/3,

both with a page size of 1024 bytes (M=50).

Figure 4.9 shows the results of tests to determine how insert and delete

performance is affected by tree size. Both test configurations produced trees with two

levels for 1057 records and three levels for the other sample sizes. The figure shows

that the cost of inserts with the quadratic algorithm is nearly constant except where

the tree increases in height. There the curve shows a definite jump because of the

increase in the number of levels where a split can occur. The linear algorithm shows

no jump, indicating again that linear node splits account for only a small part of the

cost of inserts.

No node splits occurred during the deletion tests with the linear configuration,

because of the relaxed node fill requirement and the small number of data items. As a

result the curve shows only a small jump where the number of tree levels increases.

Deletion with the quadratic configuration produced only 1 to 6 node splits, and the

resulting curve is very rough. When allowance is made for variations due to the small

sample size, the tests show that insert and delete cost is independent of tree width but

is affected by tree height, which grows slowly with the number of data items.

, ,

Q sa Quadratic algorithm, m=M/3
L = Linear algorithm, m=2

i"

40
-

CPU msec
Q insert

per
30

insert

or

delete
20 Q delete

10

L delete
•

_ ~y^ L insert

1_ i

-

2000 3000

Number of records

1000 4000

Figure 4.9
CPU cost of inserts and deletes vs. amount of data.

5000

123

Pages
touched

per

qualifying
record

.15 t 1 r—

Q =» Quadratic algorithm, m—M/3
L = Linear algorithm, m=2

.05

1000 2000 3000 4000

Number of records

124

5000

Figure 4.10
Search performance vs. amount of data: Pages touched

Figures 4.10 and 4.11 confirm that the two configurations have nearly the same

search performance. Each search retrieved between 3% and 6% of the data. The

downward trend of the curves is to be expected, because the cost of processing higher

tree nodes becomes less significant as the amount of data retrieved in each search

increases. The increase in the number of tree levels kept the cost from dropping

between the first and second data points. The low CPU cost per qualifying record,

less than 150 microseconds for larger amounts of data, shows that the index is quite

effective in narrowing searches to small subtrees.

The straight lines in Figure 4.12 reflect the fact that almost all the space in an

R-tree index is used for leaf nodes, whose number varies linearly with the amount of

data. For the Linear-2 test configuration the total space occupied by the R-tree was

about 40 bytes per data item, compared to 20 bytes per item for the index records

300

250

CPU usee.

per 200
qualifying
record

150

100

50 - Q =» Quadratic algorithm, m=M/3
L = Linear algorithm, m=2

1000 2000 3000

Number of records

125

4000 5000

Figure 4.11
Search performance vs. amount of data: CPU cost

alone. The corresponding figure for the Quadratic-1/3 configuration was 33 bytes per

item.

4.5. Implementation in INGRES

Current INGRES supports four storage structures for relations: heap, compressed

heap, ISAM and hashed. Secondary indexes are implemented as relations, which can

also have any of these storage structures. In this section we describe how to extend

INGRES to include an R-tree storage structure that will be useful both as a primary

structure for relations and for secondary indexes.

Bytes

required

200k

150k

100k

Q =a Quadratic algorithm, m=M/3
L = Linear algorithm, m=2

50k -

1000 2000 3000

Number of records

126

Q -

4000 5000

Figure 4.12
Space required for R-tree vs. amount of data.

4.5.1. Structure of R-tree Relations

Like an ISAM relation in INGRES, an R-tree relation has an index part and a

leaf part, which are treated differently. The index part is visible only to the access

methods, but the leaf part contains tuples, which are available to higher levels of the

system and to the user. Pages for both parts are allocated and freed dynamically.

Each index page contains:

(1) A collection of entries. Each entry contains a) a pointer to another page, a child

node in the index tree, and b) a representation of an n-dimensional rectangle

consisting of high and low values for each dimension.

(2) An entry map, telling which entry slots are occupied.

127

(3) An entry count, indicating how many entry slots are occupied. This is useful to

have, although it is redundant.

Each leaf page contains:

(4) A collection of tuples.

(5) A tuple map, telling which tuple slots are occupied.

(6) A tuple count.

In the case of an R-tree relation used as a secondary index in the manner of the

preceding sections, tuples stored in the leaf part closely resemble entries in nodes of

the index part. Each leaf tuple contains a tuple identifier for a tuple in the primary

relation, and a description of a rectangle enclosing the spatial object represented by

the primary tuple. This description consists of 2n columns, for the high and low

coordinate values of the rectangle along all dimensions. The difference between index

entries higher in the R-tree and leaf tuples is that index entries contain pointers to

other pages in the same relation, whereas leaf tuples contain identifiers of tuples in the

primary relation.

When a primary relation is structured as an R-tree, tuples in the leaf part are

ordinary data tuples. One column of the relation is designated to play the part of

each rectangle boundary, and values from these columns are used to build the index

part of the relation. Other columns can contain data unrelated to the index structure.

Note that the number of tuples that will fit in a leaf page may be different from the

the number of index entries in a higher page, but this does not affect how the tree is

used for searching or interfere with maintenance of its structure.

128

4.5.2. Declaration Syntax

A normal QUEL statement of the form

index on relname is indexname (doml, dom2, ... dom2n)

serves to set up a secondary index. Any relation, including one used as a secondary

index, can be structured as an R-tree by a QUEL statement of the form

modify relname to rtree on (domainl, domain2, ... domain2n).

An even number of domains must be listed, and they are interpreted as representing

rectangle boundary values in the order Iow-x, high-x, low-y, high-y, etc. Note that not

all domains in the relation need to participate in the indexing structure, and the same

domain can be used more than once. For example, the same domain could be used for

both Iow-x and high-x, if the objects in question take exact values on the x-axis

instead of spanning intervals there.

4.5.3. System Catalogs

INGRES has a number ofspecial relations that store catalog information used by

the system. One is the relation relation, which indicates, among other things, which

of the available storage structures is used for each relation. No changes are required

in the relation relation to support an R-tree storage structure except the obvious one

of allowing one more storage structure. The attribute relation contains a tuple for

each column of every relation. One column tells whether the attribute represented by

each tuple is part of a key in its relation, and if it is part of a composite key, its

ordinal place in the key. This mechanism can be used for R-tree relations to designate

129

columns in tuples of the leaf part that are to be rectangle boundary values. The only

addition necessary is a convention that key number 1 represents the low value in the

first dimension, number 2 the high value, number 3 the low value in the second

dimension and so on.

Current INGRES has a special relation called indexes in which is stored a tuple

for each secondary index. It is organized by the name ofthe indexed primary relation,

in order that useful indexes can be found quickly during processing of queries on the

primary relation. A tuple in the indexes relation contains six slots for designating

fields of the primary that make up the index key. The basic structure of this relation

does not need to be changed for R-tree indexes, although the number of key fields

allowed should be increased to perhaps twelve. Six slots allows a maximum of three

dimensions for R-tree rectangles; this is useful but is too tight a maximum. Six

dimensions allows more flexibility. The same convention as used in the attribute

relation regarding order of the keys can be applied to the indexes relation.

4.5.4. Query Processing Code

An R-tree structure is useful for processing any query with a qualification

restricting the range of one or more keys used as a rectangle boundary. Such a query

can be processed in the normal way until the routine strategy is called. This routine

examines the qualification and determines how the relation structure or any secondary

indexes can be used. It also sets values for the keys, so that the function find will be

able to determine the range of tuples to be examined at the start of a scan. Strategy

must be augmented slightly for R-trees, so that it collects together all terms in the

130

query qualification applicable to a particular R-tree structure, in effect building up the

definition of a search rectangle. Sides of the search rectangle not specified by any

qualification term should be considered to lie at plus or minus infinity. A partly

defined search rectangle may still be worth using, because it can narrow the search to

a part of the relation.

In current INGRES any scan of a relation is a two-step process. First, the

routine find determines the range of the scan. Find uses the information assembled

by strategy about relation structure and key values and returns the identifiers of the

first and last tuples that should be examined. The two tuples can be in either a

primary relation or an index. During the second step, the routine get is called each

time a tuple is needed, and it simply iterates through the specified range of tuples. If

the tuples are in an index, get retrieves an index tuple first, then the primary tuple it

refers to.

This method does not work well for R-tree relations, because the tuples required

are not necessarily in one continuous run. One solution would be to change find so

that it returns a list of tuple ranges, or even a list of single tuples. Get can then

process the list piece by piece.

A better approach would be to traverse the R-tree structure incrementally as

new tuples are needed. A scan would still require two steps, but they would involve

different logical functions than the ones performed by find and get in current

INGRES. First, one routine would initializes the scan and allocates a descriptor for its

state. Then, as each tuple was requested, a second routine would traverse the R-tree

131

until another qualifying tuple was found, then save the state of the scan before

returning. Find and get could be modified to perform these functions, as a way of

incorporating R-trees into INGRES easily, but this would introduce an inconsistency

into the logic of the program.

INGRES's insert and delete routines will need additional code to update R-tree

indexes when tuples are added to or deleted from a relation. The necessary algorithms

have been given above; incorporating them into INGRES should be straightforward.

CHAPTER 5

Abstract Indexes

5.1. Abstract Data Types

Computer aided design applications often involve special-purpose data objects,

such as representations of rectangles and polygons, that are not supported as primitive

types in database systems. The idea of abstract data types, originally developed in

the context of programming languages, can be adapted to allow a database system to

provide special-purpose types for specific applications. In this chapter we develop

ways to process abstract data types efficiently in a database system.

An Abstract Data Type (ADT) is an encapsulation ofdata structures to represent

objects oi a particular kind, along with routines to implement all necessary operations

on them. An abstract data type is usually built by an expert, who designs data

structures to represent it and writes routines to manipulate the structures. Users can

refer to objects of the type without concerning themselves with the details of how the

objects are represented or manipulated, just as they use integers in arithmetic

expressions without thinking about how they are stored or how addition and

subtraction are performed. Abstract data types were developed in a programming

language context in order to extend the usefulness of general-purpose programming

languages into new application areas by allowing them to handle objects of new types

that had not been anticipated in the original design of the language. A second goal

132

133

was to allow programmors to think on higher levels of abstraction, concerning

themselves only with objects of higher types and not with the details of their

representation.

Carrying this idea over to database systems, it is possible to augment a DBMS's

built-in type system with a facility for defining new kinds of data objects to suit

particular applications, and new operators to go with them. The database system can

store and retrieve abstract data type objects, calling upon user-supplied routines to

perform any required operations on them and otherwise processing queries with its

usual mechanisms. Clearly this will make a general-purpose database system more

useful in new application areas, especially where commonly-used data objects have

complex internal structure. The second goal of abstract data types is also fulfilled,

because database users can call for the storage and retrieval of high-level objects of

the types they really use, without having to decompose them into parts of more

primitive types. In VLSI CAD, for example, it would be useful to have objects oftype

box and transform-matrix (see Chapter 2).

Fogg and Ong have added an abstract data type facility in INGRES; their work

is described in [28,74]. With their implementation a user can define new data types,

use them in columns of relations, and specify new operators that are implemented by

user-supplied routines. However their implementation does not allow the database

system to construct indexes or other efficient access structures for relations based on

values in abstract data type columns, or to optimize the processing of queries that

For a discussion of abstract data types in programming languages see Liskov f57l, also
Gries and Gehani [30|.

134

involve operations on abstract data types. We build on their work by outlining a way

to construct fast access paths based on the special semantics of abstract data type

objects, and to make use of special semantics to optimize query processing.

5.2. Abstract Indexes

Traditionally, secondary indexes provide a fast access path to required data items

when a query specifies an exact match with a user specified value or a comparison

operator applied with a specified value. For example, the queries

range of e is EMPLOYEE
retrieve (csalary) where e.name = "Jones"
retrieve (e.name) where e.salary > 1000

can be answered efficiently by using indexes on the name and salary fields

respectively, if they exist.

Since new operators can be defined for normal data types and for new ADT data

types, one would want the following capabilities:

1) Indexes on ADT columns with existing operators.

For example, consider the situation where salaries of employees are stored as packed

decimal numbers. Since this is not one of the built-in data types in many systems, an

ADT is required. One would want to index salary so that the above query could be

answered effectively. In this case extending an indexed sequential access method to

support the new data type will be adequate.

2) Indexes on normal columns using new operators.

135

For example, consider the query:

range of e is EMPLOYEE
retrieve (e.name) where e.name !! 7

which requests the names of employees whose names are exactly 7 characters long.

The new operator !! counts the number of non-blank characters in a name and

compares the result to an integer operand. One would want a secondary index for the

!! operator so that this query could be efficiently answered. Clearly, an index which

provided a bin for each possible length would be appropriate.

3) Indexes on ADT columns with new operators.

Suppose a BOXES relation is defined by

BOXES (box-num=int, box-desc=box-adt)

where box-adt is an abstract data type that describes a rectangle in two dimensions.

Consider the query to find all the boxes that intersect the unit square at the origin:

range of b is BOXES
retrieve (b.box-desc)

where b.box-desc I I "0,0,1,1"

We need an index that will allow retrieval of only the boxes that qualify, or will at

least restrict the search to a small subset of the BOXES relation.

The objective of this section is to propose a scheme which supports all three

capabilities above. Any DBMS provides a selection of access methods, and ideally it

should be easy to add new ones [91]. Our goal is to allow any access method to

operate in the more general context ofADTs. Hashing and indexed-sequential (ISAM)

are the access methods currently supported by INGRES, and we focus the discussion

136

on extending these. As a running example, we use the BOXES relation defined above.

An index can be created using the INGRES index command:

index on BOXES is B-INDEX (box-desc)

This will create a relation of the following form which will be used as a secondary

index:

B-INDEX (box-desc, pointer-to-tuple)

A row exists in B-INDEX for each row in the BOXES relation and contains the box-

desc field along with a pointer to the given tuple in BOXES. The index B-INDEX is

initially stored as a heap and must be modified to hash or ISAM to be useful. For

example:

modify B-INDEX to hash on box-desc using my-function

The only change to the current modify command is the inclusion of a "using" clause.

INGRES normally builds hashed secondary indexes by allocating a number of buckets,

then reading the tuples one by one, calling its internal hash function to obtain a

bucket number and storing the tuple in the correct bucket. In this context INGRES

calls my-function instead of its built-in hashing function to obtain bucket numbers.

My-function must be a valid function registered through the ADT registration facility

which expects a box-adt as an argument and returns an integer. No other

modifications are required to the code if my-function returns a single integer.

However, suppose we have a grid in the x-y plane as shown in Figure 5.1, and we

want my-function, when passed a box, to return the numbers of all the grid cells that

it intersects. Grid cell zero is reserved for boxes which extend outside the boundary of

^

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

>

137

A grid structure for my-function
Figure 5.1

the above structure. In this situation my-function returns a list of buckets instead of

a single bucket number and INGRES must insert a row in the appropriate bucket in

B-INDEX for each value in the list. The modify command for this structure is

modify B-INDEX to hash on box-desc
using my-function (param-list)

Here param-list is a character string containing necessary information such as the

number and size of the grid squares and the location of the grid in the plane. These

values could be hard-wired into my-function, but it is preferable that they be setable

for each index.

We now illustrate how to use an ISAM structure with new columns and

operators. Again, we could run the following modify command:

modify B-INDEX to isam (box-desc) using <+

Normally, an ISAM structure is built by sorting the values for box-desc using the

138

built-in operator < to define the sort order. In this case the index can be built in an

analogous way by substituting the operator <+ to define some ordering on boxes, for

example by comparing their areas. <+ would be expected to compare two box

descriptions and return true or false if one was "less than" the other. The ISAM

structure would then support the ordering determined by <+.

Once a hashed or ISAM secondary index is created for the boxes relation, one

must specify to INGRES how the index can be used in processing queries. INGRES

has a built-in function, FIND, for hashed structures which will return the hash

buckets which must be inspected for tuples which satisfy a particular query. In the

current implementation a hash bucket is identical to a UNIX page, so FIND returns a

collection of pages. An analogous FIND function returns a collection of pages for an

ISAM structure. These functions are called by specifying the value used in a

qualification and the operator involved. For example, for the qualification

where e.salary > 1000

FIND is called with parameters > and 1000. In our extended environment, a FIND

function must be provided for each possible operator for which the index can be used.

We propose a new INGRES command for the purpose, i.e.

use B-INDEX with find-function

for (| | box-adt, box-adt I I)

This command specifies the circumstances under which the the routine, find-function,

should be called to provide the required collection of pages to search. The above

example indicates that this function is appropriate when the intersection operator I I

is encountered connecting a variable and a value of type box-adt. Moreover, the value

139

can be on either side of the I I operator. For example, suppose one submitted the

query:

range of b is boxes
retrieve (b.all)
where b.box-desc 1| "0,0,1,1"

The string on the right is converted automatically to an object of type box-adt

because I I is defined to take box-adt arguments. After the conversion, the

qualification is of the form

where b.box-desc I I box-adt

and therefore B-INDEX can be used to process the query. The ADT function find-

function is called to return a list of pages which must be examined. Then, INGRES

simply iterates over the list examining each index entry, following the appropriate

pointer, obtaining a tuple from boxes and finally evaluating the user's qualification to

ascertain if it is satisfied for the tuple in question.

It is possible to define different FIND routines for different operators as

illustrated below. Suppose one defines a new operator "# I" which compares a box

and a line and returns true if the box is "to the left of" the line. The index B-INDEX

can be used to process queries involving the #1 operator; however, a new FIND

function must be used:

use B-INDEX with second-fn for (# | line-ADT)

A user can submit a query such as

retrieve (b.all)
where b.box-desc #| "0,0,1,3"

140

whereby he want3 to sec all boxes which are to the left of the line from (0,0) to (1,3).

If the grid structure for B-INDEX from Figure 5.1 is one unit long on each side, then

the boxes which qualify must lie in grid cells 1, 6, 11 or 0 and the others can be

excluded. The function second-fn can provide the needed semantics.

When more than one index can be used to process an INGRES query, e.g.

where b.box.desc 1I "0,0,1,1"
and b.box.desc # | "0,0,1,3"

then INGRES must choose which index to use in processing the query. This is

currently done by a hard-wired strategy routine. To be able to choose in the above

context, this routine must be generalized to call both find functions to obtain list of

pages and then compare the sizes of the results, choosing the smaller list for iteration.

5.3. R-trees with Abstract Indexes and New Operators

Implementation of an R-tree access method in INGRES as outlined in the

preceding chapter should combine well with abstract indexes. For example, suppose

the tuples of a relation represent geometric objects whose limits along the various

dimensions are not given directly by the values of columns, but must be derived from

the value of an abstract data type. The user can supply a routine that calculates a

covering rectangle from the abstract data type stored in a tuple, and INGRES can

invoke the routine for each new tuple in order to determine a rectangle for use in an

R-tree index.

An R-tree index may also be useful for queries containing new operators. An

example is an "overlap" operator, which could be used to retrieve all the geometric

141

objects overlapping a constant figure. An overlap query can be expressed much more

compactly using such an operator than by listing ranges along each dimension

separately. Furthermore, the geometric object and even the constant figure can be of

abstract data types. A user-supplied routine, linked in by the method outlined above,

can translate an overlap qualification into a list of ordinary inequality terms, which

INGRES can use with an R-tree index to process the query.

CHAPTER 6

Multi-Valued Attributes

6.1. Introduction

In database applications varying-sized collections of entities of the same type

often need to be treated as composite objects. Examples are committees (which are

collections of people), polygons represented as ordered collections of vertices, and

integrated circuit cell designs as collections of layout rectangles. A collection of

entities of the same type can be represented by an owner-coupled set in the DBTG

data model by having records in the set correspond to elements of the collection, and

letting the owner record stand for the composite object. However this data model has

many disadvantages which have been well documented in the past [16]. Collections

can also be represented in a normalized relational schema, in which each element

becomes a tuple in a relation. Tuples belonging to a particular composite entity are

bound together by having a common value in an "owner" field. For example,

polygons can be represented by tuples in a POLYGON relation, and their component

vertices by tuples in a VERTEX relation:

POLYGON (polygon-num, . . . other data . . .)
VERTEX (polygon-num, vertex-num, x-coord, y-coord)

Each tuple in the POLYGON relation stands for a polygon whose vertices are

represented by multiple VERTEX tuples sharing the same value in the polygon-num

column. The vertex-num column serves to order the vertices for each polygon.

142

143

This approach produces a "flat" database in which all objects, regardless of

whether they are composites or components of some other object, are represented by

tuples. A join is required to collect the elements of a particular composite. This is

appropriate where the composite and its components both need to be independently

accessible, as in the case of committees made up of professors. However in other cases

component parts are rarely referenced independently from their composites, and the

join to collect the group together makes queries unnecessarily complicated and slows

processing. For example one rarely retrieves polygon vertices without first selecting

the ones belonging to a particular polygon.

Objects whose components are rarely accessed separately can be modeled by

relations whose attributes can take multiple values, so that component parts can be

grouped directly in tuples representing the composites. This makes independent

access to component objects more difficult but makes access to them as parts

composites easier. If multi-valued relation attributes are available, then a relational

query language like QUEL [34] can provide for searching within the database down to

the level of tuples representing composite objects. Searching within multi-valued fields

is also needed, and new features added for this purpose are likely to make the data

access language excessively complicated unless searching within a collection can be

done using almost the same language constructs as for searching in relations. In

addition, because the number of components in a composite object may be very large,

access methods of the kind used for relations are needed to make searching within

them efficient. As an example, geographic databases often store large map objects like

the outlines of countries as single polygons with thousands of vertices. Searching

144

through collections like these by linear scanning will clearly be very inefficient.

In this chapter we outline three ways to provide for set or array attributes in

relations: by defining an abstract data type (ADT) "array-oP, by providing built-in

array types as part of the basic type system of the DBMS, and by allowing relations to

nest. Additions to QUEL are presented for each plan. We show that the third

alternative offers significant advantages in keeping the data definition and data access

languages simple, while allowing easy implementation and efficient data access using

existing mechanisms.

The database language GEM [101] includes provision for set-valued attributes of

a kind that is somewhat different from what is needed here, and also supports

aggregate objects similar to the composites described above. The differences between

GEM's features and our third proposal is discussed in Section 6.5. Non first normal

form relations have been the subject of previous writings by other authors who took

different approaches; see [21,40,64].

6.2. Arrays as Abstract Data Types

Multiple data values in a single column of a relation can be provided by means of

an "array-of" abstract data type defined as outlined by Fogg [28] and Ong [74] and

parameterized by the type of the array elements. Thus we can declare an array of

integers, of characters, or of some other abstract data type, including array-of. The

definition of the array-of type and routines to perform all legal operations on objects

of the type are implemented outside the database system and provided as a package to

database users, so that arrays can be used in any application. We have chosen to use

145

ordered arrays as an example, but the ADT mechanism works equally well for

unordered sets if the application does not require ordering.

The following small set of operations on objects of the array-of type is required:

(1) A read function, to extract the value at a particular position in an array. This

function can be invoked by the use of a column name in standard array notation

as used in the C programming language [51], e.g. column-namepndex], on the

right of an equals sign or in another place where retrieval of a value is implied.

The keyword ALL used in place of an index number indicates that all values

should be retrieved, one after the other. Fogg and Ong's implementation of

abstract data types does not provide for such elaborate syntax, but a fully

developed ADT facility could.

(2) A write function, again invoked by standard array notation: column-namepndex]

= new value.

(3) An insert function, which adds a new value in the middle of an array and moves

all higher-numbered elements up: column-name[index,INSERT] = new value.

(4) An append function, which adds a new element after the last occupied cell in an

array: column-name[APPEND] = new value.

(5) A delete function, which causes all higher-numbered elements to move down:

column-namepndex] = DELETE. Again, ALL can be used in place of the index

to delete all elements of an array.

As an example consider a relation describing airline flights. Each flight can have

an arbitrary number of stops, characterized by a city name and arrival and departure

146

times.

create FLIGHT (
num = int,
city = array-of(c20),
arr-time = array-of(int),
dep-time = array-of(int))

The queries below retrieve the first three stops of flight 99, and all stops.*

retrieve (FLIGHT.cityfl], FLIGHT.city[2], FLIGHT.city[3])
where FLIGHT.num = 99

retrieve (FLIGHT.city[ALL]) where FLIGHT.num = 99

We can change the third stop from Las Vegas to Reno with

replace FLIGHT (city[3] = "Reno") where FLIGHT.num = 99

The following query adds a new second stop to flight 99, and causes the old second

and later stops to move to higher-numbered positions in the array:

replace FLIGHT (
city[2,INSERT] = "Boulder",
arr-time[2,INSERT] = 1030,
dep-time[2,INSERT] = 1045)

We can also provide aggregates for numeric arrays:

array-min(array name)
array-max . . .

array-count . . .
array-avg . . .

array-sum . . .

array-prod . . .

We have used the name of a relation as a tuple variable, which is not allowed in
standard QUEL. This obvious addition to the language has been included in both GEM and a
commercial version of QUEL [82].

The following query uses aggregates to find the total duration of flight 99:

retrieve (duration =
array-max(FLIGHT.arr-time) - array-min(FLIGHT.dep-time))
where FLIGHT.num « 99

147

Access to array elements by index is not very useful for searching within an

array, although it is possible to put a query inside a program loop in order to examine

the elements one by one. An alternative is to provide searching functions along with

aggregates as part of the array-of type, but this is equivalent to inventing a second

query language just for use within arrays. Users of the database system would have to

use the database query language to locate tuples containing arrays of interest, then

switch to another language to select the desired elements. Probably the two languages

would be mixed within a query.

The power of using ADTs with a database system lies in their ability to support

special-purpose functions that are not normally provided by a general-purpose DBMS.

As an example, consider a CAD application that uses polygons, and represents them

by arrays of vertices stored in a relation:

POLYGON (poly-num = int, vertex = array-of(point-adt))

Here point-adt is another abstract data type, previously defined, containing the

coordinates of a point in two dimensions. In this application it is quite possible that

the areas of polygons are important, but calculating them from ordered arrays of

points using a general-purpose query language would be difficult. A routine to

perform the calculation would logically be implemented as part of the application, and

then used to organize the POLYGON relation in an isam structure ordered by area,

148

using methods described in Fogg [28] and Ong [74] and in the preceding chapter:

modify POLYGON to isam on vertex using area-function

Then operators could be defined for use within QUEL to help process queries referring

to the areas of polygons. For example a "bigger-than" operator, denoted by >>,

could be defined and used to find all polygons with area greater than 100:

retrieve (POLYGON.poly-num) where POLYGON.vertex >> 100

This example illustrates how special semantics can be used to search within

relations efficiently in order to find tuples with qualifying arrays. We can provide

similar semantic routines to help search within arrays. Continuing the above example,

functions can be implemented to find the vertices of a polygon which are farthest to

the right, to the left, up and down:

max-x(array-of(point-adt))
min-x . . .

max-y . . .

min-y . . .

These functions take arguments whose type is array-of(point-adt) and return results

of type point-adt. It is easy to imagine situations in which special routines perform

non-trivial calculations on large arrays stored in specially designed and highly tuned

storage structures. The package would outperform any combination of general-

purpose database schemas and queries for particular searching jobs, but each one

would require its own functions and data structures.

According to the ADT paradigm, design of the internal storage structure of an

array ADT is entirely up to the implementor of the type and is handled outside the

149

database system. In the case of variable arrays of unbounded size, it would be

impractical to try to store the array data itself in tuples. Instead, the tuple would

contain a pointer, file name or some other identifier and the data would be stored

externally in a file. It would not be possible to make use of storage structures

provided by the DBMS for relations, like B-trees and hashing, or secondary indexes.

All search mechanisms and supporting structures would have to be implemented from

scratch. The DBMS's query processing and optimization capabilities also would not be

available, nor could array data be protected by the database system's crash recovery

mechanisms, because it would be stored outside the database.

Use of ADTs allows a good division of work between a DBMS and a set of

application programs. The DBMS provides efficient data storage and retrieval along

with other facilities, while application-dependent semantics are handled in the

application. In addition, semantic routines developed as part of the application can be

used to help the DBMS process queries. ADT-arrays are most useful for relatively

small composite objects which have special semantics, where little searching within

objects is required. For extremely complex objects, ADTs become less practical

because the routines that must be supplied to unpack the component parts become

numerous and difficult to use, and they duplicate the functions of a query language.

For extremely large arrays sophisticated methods of internal searching become

necessary and this requires duplication of the DBMS's query processing functions.

150

8.3. Built-in Array Types

A second way to allow a varying number ofdata values to occupy a column of a

relation is to build array types directly into the database system. In this section we

present syntactic extensions to QUEL for defining array columns in relations and for

expressing queries that refer to individual array elements.

Array columns can be declared using square brackets with syntax similar to that

of C. The relation mentioned earlier describing airline flights is defined as follows:

create FLIGHT(num=int, city[]=c20, arr-time[]=int, dep-time[]=int)

The empty brackets [] indicate array columns with no pre-determined number of

elements. A number inside the brackets would indicate a fixed number of elements.

Individual elements of arrays can be addressed using constant indexes; for example the

following queries (identical to the ones for ADT arrays) print the names of the first

three cities visited by flight 99, and change the third stop to Reno:

retrieve (FLIGHT.city[l], FLIGHT.city[2], FLIGHT.city[3])
where FLIGHT.num = 99

replace FLIGHT (city[3] = "Reno") where FLIGHT.num = 99

The update operators that took the form of user routine calls for ADT arrays are now

part of the DBMS. Append, insert and delete can be implemented with the same

syntax and semantics as proposed for ADT arrays, and the query to add another stop

to flight 99 looks the same:

151

replace FLIGHT (
city[2,INSERT] — "Boulder",
arr-time[2,INSERT] = 1030,
dep-time[2,INSERT] = 1045)

The addition of another new feature, index variables, extends QUEL to allow it

to search within arrays in a way that is very similar to the way it searches in

relations, and makes possible operations that are not feasible with ADT arrays. An

index variable is similar to a tuple variable but ranges over elements of an array

instead of tuples in a relation. It is represented by a letter or name that is not a

keyword and is not otherwise used in query, and is declared implicitly by being used

to index an array. All uses of an index variable within a query are bound to each

other. An index variable would be used to list all elements of an array, in ascending

index order:

retrieve (FLIGHT.cityp], FLIGHT.arr-timep], FLIGHT.dep-timep])
where FLIGHT.num = 99

In each line of the result, i has the same value for all arrays, so that all data for a

particular stop is printed on the same line. Thus index variables serve to iterate over

arrays and also to coordinate indexes used in several arrays simultaneously. Both

these functions parallel the use of tuple variables with relations. Iteration over ADT

arrays is achieved in a crude way by use of the ALL keyword, but coordination

between arrays is not possible.

Index variables can appear in qualification clauses by themselves or as indexes for

arrays, as in the following example which prints the numbers of all flights arriving in

St. Louis after at most two earlier hops:

152

retrieve (FLIGHT.num)
where i <= 3 and FLIGHT.cityp] = "St. Louis"

Note that extended QUEL with index variables provides both direct and associative

access to array elements. Direct access is achieved by using specific numbers as array

indexes, and selection of array elements by value is accomplished by the use of

variable-indexed arrays in qualification clauses.

Numeric aggregates similar to those proposed for ADT arrays can be defined and

made part of the query language, just as aggregates over relations are included in

current QUEL.

array-min (numeric expression where qualification)
array-max . .

array-sum . . .

array-avg . . .

array-prod . . .

Index variables make it possible to include qualification clauses and to refer to more

than one array element in a single expression. Two additional boolean valued

aggregates are useful, all and any.

all (boolean expression where qualification)
any (boolean expression)

All takes a boolean expression as argument, and returns true if all array elements

satisfying the (optional) qualification clause caused the expression to be true. For

example,

all(FLIGHT.num < 300 where FLIGHT.cityp] = "Dallas")

returns true if all flights through Dallas are numbered less than 300. Any returns true

if there is some array element or combination of elements that makes the expression

153

true. A separate qualification clause is unnecessary because the qualification can be

included as part of the main boolean expression. For example,

any(FLIGHT.city[i] = "Dallas" and FLIGHT.num = 99)

returns true if flight 99 passes through Dallas, and

any(FLIGHT.city[i] = "St. Louis"
and FLIGHT.cityp] = "Kansas City"
and i < j)

returns true if there is a flight going from St. Louis to Kansas City. The last example

also illustrates the use of more than one index variable in an aggregate. Two more

examples examples further demonstrate the power of index variables combined with

QUEL.

(1) Print the starting and ending times of the longest-running flights.

range of fl is FLIGHT
range of f2 is FLIGHT
retrieve (fl.num, fl.dep-timep], fl.arr-time[j])

where fl.arr-timep] - fl.dep-timep] =
array-max(f2.arr-time[k] - f2.dep-time[m])

(2) Calculate the earliest time it is possible to reach Houston starting from Atlanta

after 8 am., changing planes once:

154

range of fl is FLIGHT
range of f2 is FLIGHT
retrieve (arrival-time —

array-min(f2.arr-time[m]
where fl.cityp] — "Atlanta"
and fl.dep-timep] > 0800
and i < j
and fl.city[j] = f2.city[k]
and fl.arr-timep] < f2.dep-time[k]
and k < m

and f2.city[m] = "Houston"))

Arrays can be nested, as in the following relation representing integrated circuit

wires as collections of conducting runs, each run described by the sequence of points it

passes through. To make the example more readable, we first define a symbol POINT

which stands for the declarations required for a single point. Then we use the symbol

in a QUEL statement to create a WIRE relation:

macro POINT (x=float, y=float)
create WIRE (wire-num=int, run[]=(run-num=int, point[]=POINT))

The following query lists all points in wire 99, run by run. The nesting of loops

for iterating over arrays is determined by the nesting of the arrays they index, or by

the order of their appearance if there is an ambiguity.

range of w is WIRE
retrieve (w.runp].run-num, w.runp].x[j], w.run[i].y[j])

where w.wire-num = 99

Multiple index variables that are not bound to each other can be used to

generate a cross product. In the relation below each tuple compactly represents a set

of grid crossing points for a map, by storing two vectors of coordinates for the

longitude and latitude lines. The following query generates the coordinates of all grid

155

crossing points as the cross product of the vectors:

create GRID (map-num=int, Iongitude[]=float, latitude[]=float)

retrieve (GRID.longitudep], GRID.latitudep])
where GRID.map-num = 99

An array stored in a database is accessible only through its parent tuple, and this

means that a query must be processed in two parts: First, the database system must

plan and executes the main query, finding qualifying tuples corresponding to all tuple

variables. Then for each set of tuples it must apply those parts of the query dealing

with arrays. The second phase of this process may even use different strategies for

different arrays, depending on their sizes and other characteristics.

It would be desirable to store arrays with their parent tuples, in order to insure

fast access through them. In general this is impractical because arrays may be very

large, and placing them among tuples of the relation would spread the tuples out over

large areas of storage and make scans over the relation inefficient. Furthermore

arrays can grow after their parent tuples are in place, and this complicates storage

allocation. Therefore it is probably best to store arrays in aseparate place, still under

control of the database system, and keep pointers to them in the parent tuples.

If arrays can be presumed to be fairly small, or if it is rare to access only subsets

of their elements, then the elements can be stored consecutively in index order. In this

case the processing of subqueries within arrays would be based on full scans of all the

elements. More sophisticated array storage structures would allow more efficient

query processing, but language constructs to specify them would complicate the data

definition language considerably. The same applies to secondary indexes on arrays.

156

Providing arrays as part of the standard type definition mechanism of a database

system is justified by the fact that they are useful in a wide variety of applications.

The query language for manipulating data inside arrays is very similar to standard

QUEL, is comparably powerful and only moderately more complicated. Unfortunately

the wide variety of physical storage structures available for relations cannot be used

for arrays, so searching may often be less efficient than in relations. Moreover it is not

possible to incorporate application-dependent semantics in a way that speeds

processing, as is possible with ADT arrays. Built-in arrays can be protected by the

database system's crash recovery facilities because they are stored inside the database,

unlike ADT arrays.

6.4. Repeating Fields as Nested Relations

Let us consider representing multi-valued columns as relations instead cf arrays.

This allows a simpler user interface than is possible with either ADT arrays or built-in

array types, because most of the language constructs for schema definition and data

access can be adapted from standard QUEL with very few changes.

An important difference between relations and arrays as described above is that

arrays are ordered and relations are not. Order plays an important role in some

composite object representations, e.g. polygons as sequences of vertices, but in other

cases it is not important, for example for a VLSI circuit composed of layout rectangles.

If order is required it can be supported by the addition of an extra column to a

relation or by the use of an ordered relation [59,63].

157

Definition of nested relations is accomplished by using parentheses to nest the

lists of column definitions in QUEL create statements. Our earlier example involving

airline flights becomes

create FLIGHT (num—int,
stop=(num=int, city=c20, arr-time=int, dep-time=int))

Dot notation is used to reference specific columns of nested relations:

retrieve (FLIGHT.stop.city)
where FLIGHT.stop.num <= 3
and FLIGHT.num =» 99

The following alternative form for the same query illustrates how range variables are

used with nested relations. When a tuple variable / takes on the value of a tuple in

the FLIGHT relation, then f.stop is a relation, and therefore another tuple variable

can range over it:

range of f is FLIGHT
range of s is f.stop
retrieve (s.city) where s.num <= 3 and f.num = 99

Variable s ranges over a different relation for each value of f, and is always bound by

the current value of / during processing of a query.

Changing the third stop of flight 99 from Las Vegas to Reno is done by applying

a replace command to a tuple in a nested relation:

replace FLIGHT.stop (city="Reno")
where FLIGHT.num =» 99 and FLIGHT.stop.num = 3

To add a new second stop, it is necessary to renumber all the later stops. This

would be done automatically with ordered relations as defined by Lynn [63].

158

replace FLIGHT.stop (num=num-rl)
where FLIGHT.num = 99 and FLIGHT.stop.num >= 2

append to FLIGHT.stop (num=2, city="BouIder", arr-time=1030, dep-time=1045)
where FLIGHT.num = 99

Multiple tuple variables can be used just as in standard QUEL, as in this query

to find all the flights going from St. Louis to Kansas City:

range of f is FLIGHT
range of si is f.stop
range of s2 is f.stop
retrieve (f.num)

where si.city = "St. Louis"
and s2.city = "Kansas City"
and sl.num < s2.num

Variables si and s2 are constrained to range over the same nested relation because

they are both derived from /. Independent nested relation variables would be used to

find two flights passing through Yellow Knife:

range of fl is FLIGHT
range of si is fl.stop
range of f2 is FLIGHT
range of s2 is f2.stop
retrieve (fl.num, f2.num)

where si.city = "Yellow Knife"
and s2.city =* "Yellow Knife"

Or, equivalently:

range of fl is FLIGHT
range of f2 is FLIGHT
retrieve (fl.num, f2.num)

where fl.stop.city = "Yellow Knife"
and f2.stopxity = "Yellow Knife"

It is not necessary to redefine the aggregates already included in QUEL. The

following query finds the first plane out of Boulder after nine o'clock, using the

159

standard QUEL min:

range of f is FLIGHT
retrieve (FLIGHT.num)

where FLIGHT.stop.city = "Boulder"
and FLIGHT.stop.dep-time = —

min(f.stop.dep-time
where f.stop.dep-time > 0900
and f.stop.city = "Boulder")

To illustrate deeper nesting we recast our earlier definition of the WIRE relation

and the query to retrieve all runs in wire 99, as follows:

macro POINTREL (point-num=int, x=float, y=float)
create WIRE (wire-num=int, run=(run-num=int, point=POINTREL))

range of w is WIRE
range of r is w.run
range of p is r.point
retrieve (r.run-num, p.point-num, p.x, p.y)

where w.wire-num = 99

Unfortunately this produces the points of each run in random order. To get them in

sequence we would have to retrieve the points for each run into a temporary relation

and sort by point-num.

The extensions to QUEL outlined above provide for the definition of database

schemas incorporating descriptions of set-like composite objects, and for easy access to

them. The power for searching among components of a composite object is the same

as for top-level relations. Additions to the language are minor and should be easy for

users to learn. There are no pairs of parallel language constructs for searching in

relations and in composites, as is necessary for both ADT and built-in arrays.

Language for defining indexes and storage structures can also be applied to nested

relations in the obvious way.

160

Nested relations can be stored in the same way as top-level relations, in order to

take advantage of existing lower-level database facilities. Thus instances of nested

relations are stored as separate relations, which are accessible only through their

parent tuples. Catalog information that applies to all instances can be stored in

system catalogs as usual and fetched once when a query is about to be processed.

Information that varies from one instance to another, such as the size of a nested

relation instance and the disk address where it is stored, can be kept in its parent

tuple in order to avoid repeated references to system catalogs during processing of a

query.

Storage structures and access methods for relations are very well developed, and

can be used immediately with nested relations, whereas arrays require different

techniques that are foreign to relational database systems. A similar body of

knowledge exists about how to automatically optimize the processing of relational

queries by making use of existing access paths, characteristics of stored data, and

query structure. This also can be applied to nested relations, but arrays require new

methods. For this reason we expect that nested relations will scale well to very large

objects and perform better than arrays. In addition a nested relation system should

be relatively easy to implement because so much of the necessary machinery is already

in place.

Special semantics for composite objects cannot be supported as well by either

nested relations or built-in arrays as by abstract data types. Hence we expect that

ADTs will be more effective for small, array-like composite objects that have

important special meanings in particular applications.

161

6.5. GEM and Nested Relations

Set-valued attributes are allowed in GEM [101], but set elements must be of

atomic types, and there is no way to access individual elements. The intent seems to

be to support small sets whose elements do not need to be manipulated in the same

way as other database entities. Only set operations like set equivalence and set

inclusion, and aggregates like count are provided. Examples given include sets of

colors in which products can be ordered. One might be interested in seeing an entire

set (a dozen or so colors) or in determining whether it is included in another set. The

situation is quite different for an integrated circuit containing hundreds of layout

rectangles, among which we want to search, changing one rectangle at a time.

Smith and Smith define an aggregate as a relationship between entities that is

promoted to be an entity itself [89]. An example is a hotel reservation, which is a

relationship between a person, a hotel, and a date. This kind of aggregate differs from

the composites defined in this chapter, which are variable-sized collections of objects of

the same type. GEM supports aggregates as defined by Smith and Smith, and uses

dot notation to refer to participating lower entities. For example, given the schema

PERSON (p-name=c20, p-address=c50)
HOTEL (h-name=c20, h-address=c50, rate=int)
RESERVATION (guest=PERSON, accommodation=HOTEL, date=cl2)

we can find the address of the hotel where Jones is staying on July 4th with the query

retrieve (RESERVATION.accommodation.h-address)
where RESERVATION.guest.p-name = "Jones"
and RESERVATION.date = "July 4"

162

This use of dot notation is very similar to the way we have used it to refer to

component elements of collections. The two meanings do not conflict; in fact they can

coexist quite nicely as illustrated by the example below. The schema can store

descriptions of parts, manufacturers and supplies. A supply is a relationship between

a part and a manufacturer and also includes a nested relation containing the available

sizes of the part and the corresponding prices.

PART (p-num=int, descr=c20)
MFR (m-name=c20, address=c40)
SUPPLY (source^MFR, item=PART, variety=(size=clO, price=float))

The following query retrieves the names of all companies that supply 2-inch bolts.

GEM's dot notation is used to refer to the PART and MFR entities participating in a

SUPPLY, and our dot notation addresses tuples in the nested variety relation.

retrieve (SUPPLY.source.m-name)
where SUPPLY.item.descr="bolt"

and SUPPLY.variety.size="2 in."

CHAPTER 7

Conclusions

7.1. Summary

The objective of this thesis has been to develop ways to make relational database

systems more efficient and easier to use in support of computer aided design

applications. Our approach has been to design a series of new features that could

reasonably be added to a relational system that would make it more useful for CAD,

and possibly for other non-business database applications. In this chapter we

summarize the work that was done and suggest directions for future research.

It is generally recognized that data management is an important part of

computer aided design. Database systems claim to offer data management services,

but CAD system designers have found it difficult to use them effectively because they

are cumbersome, slow, and do not offer the services needed [88]. This thesis began

with a discussion of how data management has been handled in a number of CAD

systems, including some that used commercial database systems. Then in Chapter 2

we described an experiment in which we used INGRES to store VLSI CAD data and

tested its performance on typical CAD retrieval operations. The goal of the

experiment was to find performance bottlenecks and to look for ways in which

INGRES was difficult to use, so that we could develop improvements.

163

164

We found that retrieval of hierarchically structured VLSI designs was inefficient

and hard to program because it required transitive closure operations, which current

INGRES does not support. We have developed a way to provide for transitive closure

queries by adding an append* command, and this was the subject of Chapter 3.

INGRES performed poorly on retrieval of spatial data falling within a small area,

for two reasons. First, it does not have access methods suitable for efficient retrieval

of multi-dimensional overlapping data, and so spatial queries must be processed by

sequential searches of relations. Chapter 4 presents a new index structure for spatial

data called an R-tree, which has been shown to be effective for spatial searching and is

suitable for implementation as a database access method.

The second reason for INGRES's poor performance on spatial searches is that

spatial proximity is not supported semantically by INGRES, whose query language

and processing facilities are oriented toward numbers and strings. As a result

proximity queries are difficult to write and they run inefficiently. Spatial proximity

can be viewed as one example of special semantics characteristic of a particular

application, and in Chapter 5 we outline a way for a database system to use semantic

routines that are part of any application to help it construct indexes and optimize

query processing. New operators can also be defined to allow compact expression of

queries involving special semantics. This work builds on that of Fogg [28] and Ong

[74] who added abstract data types (ADTs) to INGRES.

Entities modeled in a computer aided design database often are composites made

up of many small pieces of the same type, for example circuit designs consisting of

165

layout rectangles. It is desirable to find a convenient way to manipulate such

composites efficiently and still be able to access the component parts when necessary.

In Chapter 6 we have discussed three ways to represent such composites: by using an

ADT facility to create an array type, by building array types directly into the

database system, and by allowing relations to nest. We have outlined language

extensions and implementation requirements for each approach, and have argued that

nested relations provide the best combination of simplicity and power in the query

language, with potential for compact and efficient implementation.

7.2. Directions for Future Work

Relational systems should be especially well suited to supporting the managerial

and design-control functions of a CAD system. Examples are control of versions and

revisions, and the partitioning of a design into segments to be delegated to different

groups or people. Some work has been done in this area [46,47,61] and more is

needed.

Our investigation of transitive closure operations was narrowly focused on the

problem of expanding hierarchically structured designs. There is much more to be

done with transitive closure, both in exploring how to apply it in a database context

and in further development of implementation methods and query processing

techniques.

The R-tree index structure would benefit from further development to make it as

efficient as possible for actual use in a database system. It has been pointed out that

better ways than linear scanning surely exist for searching within a node [66,98] and

166

this should be investigated. In addition it would be interesting to look for less

expensive methods for eliminating nearly-empty nodes than the one proposed.

Abstract data types and abstract indexes inarelational database seem to be very

promising, but it is hard to* assess their effectiveness without actually using them in an

application. This would involve implementing ADT's and abstract indexes in a high-

performance (i.e. non-prototype) relational DBMS and developing of a set of types and

semantic routines for an application. A CAD system would be a good place to try

this, but to our knowledge no such project is underway.

References

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley Publishing Company, Reading,

Massachusetts, 1974.

2. E. P. Allman, M. Stonebraker and G. D. Held, Embedding a relational data

sublanguage in a general purpose programming language, Proc. of a Conf. on

Data: Abstraction, Definition, and Structure, March 1976, 25-35. Special

issue.

3. M. Arnold and J. Ousterhout, Lyra: A new approach to geometric layout rule

checking, Proc. 19th Design Automation Conference, Las Vegas, Nevada , June

1982, 530-536.

4. M. Astrahan, et al., System R: Relational approach to database management,

ACM Transactions on Database Systems 1, 2(June 1976), 97-137.

5. R. Bayer and E. McCreight, Organization and maintenance of large ordered

indices, Proc. 1970 ACM-SIGFIDET Workshop on Data Description and

Access, Houston, Texas, Nov. 1970, 107-141.

6. A. Beetem, J. Milton and G. Wiederhold, Performance ofdatabase management

systems in VLSI design, IEEE Database Engineering 5, 2(June 1982), 15-20.

7. C. G. Bell and A. Newell, Computer Structures: Readings and Examples,

McGraw-Hill, New York, 1971.

167

168

8. J. L. Bentley, Multidimensional binary search trees used for associative

searching, Communications of the ACM 18, 9(September 1975), 509-517.

9. J. L. Bentley, D. F. Stanat and E. H. Williams, Jr., The complexity of fixed-

radius near neighbor searching, Inf. Proc. Lett. 6, 6(December 1977), 209-212.

10. J. L. Bentley and J. H. Friedman, Data structures for range searching,

Computing Surveys 11, 4 (December 1979), 397-409.

11. T. Beretvas, A general purpose multi-indexed data management system with

history capabilities, Technical Report TR00.2078, IBM Data Systems Division

Laboratory, Poughkeepsie, NY, 1970.

12. G. C. Billingsley, Program reference for KIC, Master of Science Report, Dept.

Elec. Eng. and Comp. Sci., University of California, Berkeley, August 1983. Also

available as Electronics Research Laboratory Memorandum No. UCB/ERL

M83/62.

13. M. Blasgen, et al., System R: An architectural update, Research Report RJ2581,

IBM Research Laboratory, San Jose, California, July 1979.

14. D. Chamberlin, et al., Views, authorization, and locking in a relational database

system, Proc. AFIPS 1977 NCC 44, (1977), 425-430.

15. P. L. Ciampi, et al., Control and integration of a CAD database, Proc. ISth

Design Automation Conference, June 1976.

16. E. F. Codd and C. J. Date, Interactive support for non-programmers: The

relational and network approaches, ACM-SIGMOD Workshop on Data

Description Access and Control, May 1974, 11-41.

169

17. E. F. Codd, Extending the relational Model to capture more meaning, ACM

Trans, on Database Sys. 4, 4 (1979), 397-434.

18. D. Comer, The ubiquitous B-tree, Computing Surveys 11, 2 (1979), 121-138.

19. D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker and D. Wood,

Implementation techniques for main memory database systems, Proc.

ACM/SIGMOD International Conference on Management of Data, Boston,

June 1984.

20. C. M. Eastman, System facilities for CAD databases, Proc. 17th Design

Automation Conference, June 1980, 50-56.

21. A. Ege, Non first normal form relations and engineering data bases, Texas

Tech University, Lubbock, Texas, c. 1982.

22. R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, Extendible hashing - A

fast access method for dynamic files, ACM Transactions on Database Systems

4, 3 (September 1979), 315-344.

23. D. Fairbairn and J. Rowson, ICARUS: An interactive integrated circuit layout

program, Proc. 15th Design Automation Conference, July 1978, 188-192.

24. S. J. Feldman, Make — a program for maintaining computer programs, Bell

Laboratories, Murray Hill, 1978.

25. R. A. Finkel and J. L. Bentley, Quad trees - A data structure for retrieval on

composite keys, Acta Informatica 4, (1974), 1-9.

26. D. Fitzpatrick, Cifplot — CIF interpreter and plotter, in 1983 VLSI Tools -

Selected Works by the Original Artists, R. N. Mayo, J. K. Ousterhout and W.

170

S. Scott, (eds.), Computer Science Division, EECS Dept., University of

California, Berkeley, California, March 1983.

27. D. Fitzpatrick, R. N. Mayo, J. K. Ousterhout and W. S. Scott, eds., MEXTRA,

Computer Science Report UCB/Computer Science Dept. 83/115, University of

California, Berkeley, March 1983.

28. D. Fogg, Implementation of domain abstraction in the relational database

system, INGRES, Master of Science Report, Dept. Elec. Eng. and Comp. Sci.,

University of California, Berkeley, Sept. 1982.

29. H. Garcia-Molina, R. J. Lipton and J. Valdes, A massive memory machine,

. IEEE Trans, on Computers c-88, 5 (May 1984), 391-399.

30. D. Gries and N. Gehani, Some ideas on data types in high-level languages,

Comm. ACM 20, 6 (June 1977), 414-420.

31. J. A. Guinea, A High-Frequency Differential Narrow-Band Switched Capacitor

Filtering Technique, Ph.D. Thesis, University of California, Berkeley, June 1982.

32. A. Guttman and M. Stonebraker, Using a relational database management

system for computer aided design data, IEEE Database Engineering 5, 2 (June

1982).

33. M. A. Harrison, Introduction to formal language theory, Addison-Wesley

Publishing Company, Reading, Massachusetts, 1978.

34. G. Held, M. Stonebraker and E. Wong, INGRES - A relational data base system,

Proc. AFIPS 1975NCC 44, (1975), 409-416.

171

35. K. Hinrichs and J. Nievergelt, The grid file: A data structure designed to

support proximity queries on spatial objects, Nr. 54, Institut fur Informatik,

Eidgenossische Technische Hochschule, Zurich, July 1983.

36. M. Hofmann, A method for topological compaction of programmed logic arrays,

Master of Science Report, Dept. Elec. Eng. and Comp. Sci., University of

California, Berkeley, California, December 1980.

37. M. Hofmann and U. Lauther, HEX: An instruction-driven approach to feature

extraction, Proc. 20th Design Automation Conference, 1983, 331-336.

38. M. Y. Hsueh, Symbolic layout and compaction of integrated circuits, ERL Memo

UCB/ERL M79/80, University of California, Berkeley, December 1979.

39. B. Infante, D. Bracken, B. McCalla, S. Yamakoshi and E. Cohen, An interactive

graphics system for the design of integrated circuits, Proc. 15th Design

Automation Conference, July 1978, 182-187.

40. G. Jaeschke and H. J. Schek, Remarks on the algebra of non first normal form

relations, Proc. ACM SIGACT News-SIGMOD Conf. on Principles of

Database Systems, March 1982.

41. S. C. Johnson, YACC - Yet Another Compiler Compiler, Computer Science

Technical Report 32, Bell Laboratories, Murray Hill, New Jersey, 1975.

42. W. N. Joy, R. S. Fabry and K. Sklower, UNIX Programmer's Manual, Seventh

Edition, Virtual VAX-11 Version, Computer Science Division, Dept. of EECS,

University of California, Berkeley, June 1981.

172

43. J. Kaplan, Buffer management in a database environment, Master of Science

Report, Dept. Elec. Eng. and Comp. Sci., University of California, Berkeley,

December 1979.

44. M. G. H. Katevenis, R. W. Sherburne, D. A. Patterson and C. H. Sequin, The

RISC II micro-architecture, Proc. VLSI 83 Conference, Trondheim, Norway,

August 1983.

45. R. H. Katz, Performance enhancement for relational systems through query

compilation, Proc. AFIPS National Computer Conference, 1979, 741-747.

46. R. H. Katz, A database approach for managing VLSI design data, Proc. 19th

Design Automation Conference, June 1982, 274-282.

47. R. H. Katz and T. Lehman, Storage structures for versions and alternatives,

Computer Sciences Technical Report #479, University of Wisconsin, Madison,

July 1982.

48. K. H. Keller, KIC: A graphics editor for integrated circuits, Master of Science

Report, Dept. Elec. Eng. and Comp. Sci., University of California, Berkeley,

June 1981.

49. K. H. Keller, A. R. Newton and S. Ellis, A symbolic design system for integrated

circuits, Proc. 19th Design Automation Conference, June 1982, 460-466.

50. K. H. Keller, An Electronic Circuit CAD Framework, Ph.D. Thesis, Dept. of

Elec. Engr. and Comp. Sci., University of California, Berkeley, 1984.

51. B. Kernighan and D. Ritchie, The C Programming Language, Prentice-Hall,

Englewood Cliffs, New Jersey, 1978.

173

52. J. E. Kleckner, Advanced Mixed-Mode Simulation Techniques, Ph.D. Thesis,

University of California, Berkeley, California, 1984.

53. W. Koenig and R. A. Lorie, Storage of VLSI physical designs in a relational

database, IBM Research Laboratory, San Jose, California, 1982.

54. W. Koenig and R. Etienne, A model for representing parameterized objects

using a graphical editor, IBM Research Laboratory, San Jose, California, 1982.

55. A. J. Korenjak and A. H. Teger, An integrated CAD data base system, Proc.

12th Design Automation Conference, June 1975, 399-406.

56. H. Landman, Automatic Layout of Optimized PLA Structures, Master of Science

Report, Dept. Elec. Eng. and Comp. Sci., University of California, Berkeley,

June 1982,

57. B. H. Liskov and S. N. Zilles., Programming with abstract data types,

SIGPLAN Notices Notices 9, 4 (1974).

58. G. M. Lohman, J. C. Stoltzfus, A. N. Benson, M. D. Martin and A. F. Cardenas,

Remotely-sensed geophysical databases: Experience and Implications for

Generalized DBMS, Computer Science Research Report RJ 3794 (43491)

2/17/83, IBM Research Laboratory, San Jose, California, February 17, 1983.

59. R. Lorie, R. Casajuana and J. Becerril, GSYSR: A relational database interface

for graphics, IBM Research Report RJ2511 (32941), IBM Research Labs, San

Jose, California, April 1979.

60. R. A. Lorie, Issues in database for design applications, IBM Research Report

RJ3176 (38928) 7/10/81, IBM Research Laboratory, San Jose, California, July

174

1981.

61. R. Lorie and W. Plouffe, Complex objects and their use in design transactions,

Computer Science Research Report RJ 3706 (42922), IBM Research Laboratory,

San Jose, California, Dec. 8, 1982.

62. R. Lorie and W. Plouffe, Relational databases for engineering data, Computer

Science Research Report RJ 3847 (43914), IBM Research Laboratory, San Jose,

California, April 6, 1983.

63. N. Lynn, Implementing ordered relations in the relational database system

INGRES, Master of Science Report, Dept. Elec. Eng. and Comp. Sci., University

of California, Berkeley, August 1982.

64. A. Makinouchi, A consideration on normal form of not-necessarily-normalized

relation in the relational data model, Proc. IEEE-ACM Conf. on Very Large

Data Bases, Tokyo, October 1977, 447-453.

65. R. N. Mayo, J. K. Ousterhout and W. S. Scott, eds., 1983 VLSI Tools - Selected

Works by the Original Artists, Report No. UCB/CSD83/115, Computer Science

Division, EECS Dept., University of California, Berkeley, California, March

1983.

66. R. McCord, private communication, April 1984.

67. T. McWilliams and L. Widdoes, Jr., SCALD: Structured Computer-Aided Logic

Design, Technical Report No. 152, Digital Systems Laboratory, Stanford

University, Stanford, California, March 1978.

175

68. T. McWilliams and L. Widdoes, Jr., The SCALD physical design subsystem,

Technical Report No. 153, Digital Systems Laboratory, Stanford University,

Stanford, California, March 1978.

69. C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,

Reading, Massachusetts, 1980.

70. L. W. Nagel, SPICE2: A computer program to simulate semiconductor circuits,

ERL Memo ERL-M520, University of California, Berkeley, May 1975.

71. W. Newman and R. Sproull, Principles of interactive computer graphics,

McGraw-Hill, New York, 1979.

72. A. Newton, D. Pederson, A. Sangiovanni-Vincentelli and C. Sequin, Design aids

for VLSI: The Berkeley perspective, IEEE Transactions on Circuits and

Systems CAS-28, 7 (July 1981).

73. L. A. O'Neill, et al., Designers workbench -- efficient and economical design aids,

Proc. 16th Design Automation Conference, June 1979, 185-199.

74. J. Ong, The design and implementation of abstract data types in the relational

database system, INGRES, Master of Science Report, Dept. Elec. Eng. and

Comp. Sci., University of California, Berkeley, Sept. 1982.

75. J. Ousterhout, Caesar: An interactive editor for VLSI circuits, VLSI Design II,

4 (November, 1981), 34-38.

76. J. K. Ousterhout and D. M. Ungar, Measurements of a VLSI design, Proc. 19th

Design Automation Conference, June 1982, 903-908.

176

77. J. K. Ousterhout, Corner stitching: A data structuring technique for VLSI

layout tools, Computer Science Report Computer Science Dept. 82/114,

University of California, Berkeley, 1982.

78. D. A. Patterson and C. H. Sequin, RISC I: A reduced instruction set VLSI

computer, Proc. Eighth International Symposium on Computer Architecture,

Minneapolis, Minnesota, May 1981, 443-457.

79. G. M. Pavlovic, Using a relational data base system to store text, Memorandum

No. UCB/ERL M83/44, Electronics Research Laboratory, University of

California, Berkeley, CA, July 1983.

80. M. L. Powell and M. A. Linton, Database support for programming

environments, Proc. Database Week Special Session on Engineering Design,

San Jose, California, May 1983, 63-70.

81. ORACLE SQL Language - Reference Guide, Relational Software Incorporated,

Menlo Park, California, October 1980.

82. INGRES Reference Manual, VAX/UNIX Version 2.0, Relational Technology,

Inc., Berkeley, California, June 1983.

83. K. A. Roberts, T. E. Baker and D. H. Jerome, A vertically organized computer-

aided design data base, Proc. 18th Design Automation Conference, June 1981,

595-602.

84. J. T. Robinson, The K-D-B tree: A search structure for large multidimensional

dynamic indexes, ACM-SIGMOD Conference Proc, April 1981, 10-18.

177

85. M. Rochkind, The Source Code Control System, IEEE Trans, on Soft. Eng.

SE-1, 4 (December 1975).

86. G. M. Sacco and M. Schkolnick, A mechanism for managing the buffer pool in a

relational database system using the hot set model, Computer Science Research

Report RJ-3354, IBM Research Laboratory, San Jose, California, January 1982.

87. J. L. Sanborn, Evolution of the engineering design system data base, Proc. 19th

Design Automation Conference, June 1982, 214-218.

88. T. W. Sidle, Weaknesses of commercial data base management systems in

engineering applications, Proc. 17th Design Automation Conference, June 1980,

57-61.

89. J. Smith and D. Smith, Database abstractions: Aggregation, Comm. ACM 20, 6

(June 1977), 405-413.

90. M. Stonebraker, Implementation of integrity constraints and views by query

modification, Proc. 1975 SIGMOD Conf., San Jose, California, June 1975, 65-

78.

91. M. Stonebraker, E. Wong, P. Kreps and G. Held, The design and

implementation of INGRES, ACM Trans, on Database Sys. 1, 3 (September

1976), 189-222.

92. M. Stonebraker, Hypothetical databases as views, Proc. ACM SIGMOD

Conference, May 1981.

93. M. Stonebraker, J. Woodfill, J. Ranstrom, M. Murphy, M. Meyer and E. Allman,

Performance enhancements to a relational data base system, Memorandum No.

178

UCB/ERL M81/62, Electronics Research Laboratory, University of California,

Berkeley, CA, September 1982.

94. M. Stonebraker, H. Stettner, J. Kalash, A. Guttman and N. Lynn, Document

processing in a relational database system, ACM Transactions on Office

Information Systems, April 1983.

95. D. Weller and R. Williams, Graphics and relational data base support for

problem solving, Computer Graphics 10, 2 (Summer 1976), 183-189,

SIGGRAPH-ACM.

96. D. Weller and F. Palermo, Database requirements for graphics, Proc. 18th IEEE

Compcon, February 1979, 231-234.

97. K. C. Wong and M. Edelberg, Interval hierarchies and their application to

predicate files, ACM Transactions on Database Systems 2, 3 (September 1977),

223-232.

98. H. Wong, private communication, May 1984.

99. J. Woodfill, P. Siegel, J. Ranstrom, M. Meyer and E. Allman, Ingres version 7

reference manual, Dept. Elec. Eng. and Comp. Sci., U. C. Berkeley, 1981.

100. G. Yuval, Finding near neighbors in k-dimensional space, Inf. Proc. Lett. 3, 4

(March 1975), 113-114.

101. C. Zaniolo, The database language GEM, SIGMOD Record 13, 4 (May 1983),

207-218.

102. G. Zintl, A CODASYL CAD data base system, Proc. 18th Design Automation

Conference, June 1981, 589-594.

179

103. M. Zloof, Query by example, Proc. National Computer Conference 44, (1975),

431-438, AFIPS Press.

104. M. Zloof, Query-By-Example: Operations on the transitive closure, IBM

Research Report RC5526 (revised) (#24020), IBM Research Labs, San Jose,

California, October 1976.

APPENDIX A

Test Programs for Chapter 2

Test 1: Top Level Geometry Retrieval

#include <stdio.h>
#include <sys/types.h>
#include <sys/fames.h>
#include "macros.h"

#define CPUOHEAD 0.6
#define ELOHEAD 1

main(argc, argv)
int argc;
char *argv[];
{
char *cname, *dbname, *defstatus;
long cellid;

dbname = *++argv;
—argc;

printfCVProgram %s", "@(#)unexp.q 1.10 2/U/$3n);
printf(" database %s\n", dbname);

while (—
{

—argc > 0)

cname == *+-rargv;
cellid = NULL;
defstatus = "n";

ingres dbname
range of c is cell_master
retrieve (cellid = c.master_id, defstatus == c.defined)
where e.name = cname

{

##
>

}
exit

180

®

%

181

}
printffV);

if (cellid == NULL I I *defstatus != 'y')

printf(n\n%s not found or undefined.\nB, cname);

else

{
printff\ncell %s, id is %Id\n", cname, cellid);
unexp(dbname, cname, cellid);

>

}

unexp(dbname, cname, cellid)
char *dbname, *cname;
long cellid;

{
long ecellid;
char *elname[6];
float exl, ex2, eyl, ey2;
int i;

extern int Iltupcnt;
int queries;
long tuples;
struct tms start, stop;
float equeltime, ingrestime, cputime;
long time(), estart, estop, etime;

ecellid = cellid;
elname[0] = "NM";
elnamejl] = nNPn;
elname[2] = "ND";
elname[3] = "NC";
elname[4] = "NI";
elname[5] = BNGB;

/* start the clock */

times(&start);
estart » time(O);
tuples = 0;
queries = 0;

ingres dbname
range of r is cell_ref
range of b is box

182

range of w is wire
range of p is polygon

/* collect geometries of each type in a temporary relation, */
/* then retrieve one layer at a time for grouping. */ «.

printfCcollecting boxes..\nB);
retrieve into btemp (layer «= b.use, 4
xl — b.xl, yl « b.yl, x2 = b.x2, y2 = b.y2)
where b.owner = ecellid

queries++;

range of bt is btemp
for (i =» 0; i < 6; i++)
{

retrieve (exl =* bt.xl, eyl » bt.yl, ex2 == bt.x2, ey2 « bt.y2)
where bt.layer = elnamep]
{

}
queries++;
tuples += Iltupcnt;
printf(n %s layer, %d tuples\n'', elnamep], Iltupcnt);

destroy btemp
queries-r+;

printfCcollecting wires..\nn);
retrieve into wtemp (layer = w.use,
xl = w.xl, yl = w.yl, x2 =» w.x2, y2 ~ w.y2)
where w.owner = ecellid

queries++;

range of wt is wtemp
for (i = 0; i < 6; i++) ^

retrieve (exl = wt.xl, eyl = wt.yl, ex2 = wt.x2, ey2 = wt.y2)
where wt.layer = elnamep]
{

}
queries++;
tuples += Iltupcnt;
printf(n %s layer, %d tuples\nn, elnamep], Iltupcnt);

183

destroy wtemp
queries++;

printfCcollecting polygons..\nB);
retrieve into ptemp (layer = p.use, id = p.polygon_id,
vnum = p.vertnum, x ~ p.x, y = p.y)
where p.owner = ecellid

queries++;
modify ptemp to heapsort on layer, id, vnum
range of pt is ptemp
retrieve (exl = pt.x, eyl = pt.x)
{

}
queries += 2;
tuples += Iltupcnt;
PrintfC %d tuples sorted & retrieved.\nB, Iltupcnt);

destroy ptemp
queries++;

/* stop the clock and print statistics */

exit
times(&stop);
estop = time(O);
equeltime = (stop.tms_utime — start.tms_utime

+ stop.tms_stime — start.tms_stime) / 60.0;
ingrestime = (stop.tms_cutime — start.tms_cutime

+ stop.tms__cstime — start.tms__cstime) / 60.0;
cputime = equeltime + ingrestime - CPUOHEAD;
etime = estop - estart - ELOHEAD;
printfC\ncell %s, top level\nB, cname);
printf(Bcpu time: equel = %3.1f, equeltime);
printf(B ingres = %3.1P, ingrestime);
printfC o'head constant = %3.ir, CPUOHEAD);
printf(B net = %3.1f\nB, cputime);
printfCelapsed time = %ld o'head constant = %ld net = %ld\nB,

estop - estart, ELOHEAD, etime);
printfC queries = %d\nB, queries);
printf(B geometry tuples = %Id\nB, tuples);

printf(Btuples per cpu second = %3.ir, tuples / cputime);
if (tuples > 0)

printf(B CPU msec per tuple = %2.0f\nB,
(cputime * 1000) / tuples);

184

else

printfC \nB);

printf(Btuples per elapsed second «= %3.1f, (float)tuples / etime);
if (tuples > 0)

printf(B elapsed msec per tuple = %2.0f\nB,
((float)etime * 1000) / tuples);

else

printfCV);

4.

185

Test 2: Design Tree Expansion with Geometry Retrieval

#include <stdio.h>
#include <sys/types.h>
#include <sys/times.h>
#include Bmacros.hB

#derme CPUOHEAD 0.6
#define ELOHEAD 1

main(argc, argv)
int argc;
char *argv[];
«
char *cname, *dbname, Mefstatus;
long cellid;

dbname = *++argv;
—argc;

printfC\nProgram %sB, B@(#)expand.q 1.14 2/U/fc3B);
printf(B database %s\nB, dbname);
while (—argc > 0)
{

cname = *++argv;
cellid = NULL;
defstatus = BnB;

ingres dbname
range of c is cell__master
retrieve (cellid = c.mastered, defstatus = c.defined)
where cname = cname
{

}
exit

if (cellid = NULL 1| 'defstatus != V)

printfC \n%s not found or undefmed.\nB, cname);

else

{

}
>
printf(" \n");

printfC \ncell %"> id is %ld\n", cname, cellid);
expand(dbname, cname, cellid);

186

}

expand(dbname, cname, cellid)
char 'dbname, 'cname;
long cellid;

{
long ecellid;
int egener;
char *elname[6];
float exl, ex2, eyl, ey2;
int i;

int toggle, queries;
long tuples, cells;
extern int Iltupcnt;
struct tms start, stop;
long time(), estart, estop, etime;
float equeltime, ingrestime, cputime;

ecellid = cellid;
elname[0] «= BNMB;
elnamefl] = BNP";
elname[2] = BNDB;
elname[3] = BNCB;
elname[4] = BNIB;
elname[5] = BNGB;

/* start the clock and expand the tree */

times(festart);
estart = time(O);
tuples = 0;
queries = 0;

ingres dbname
range of r is cell_ref
range of b is box
range of w is wire
range of p is polygon
create tempi (cell—i4, gener=i2,
tll=f4, tl2=f4, t21=f4, t22=f4, t31=f4, t32=f4)
create temp2 (cell=i4, gener=i2,
tll=f4, tl2=f4, t21=f4, t22=f4, t31=f4, t32=f4)
create btemp (layer = c4, xl = f4, yl = f4, x2 = f4, y2 = f4)
create wtemp (layer = c4, xl = f4, yl = f4, x2 = f4, y2 = f4)
create ptemp (layer =» c4, id = i4, vnum = i2, x = f4, y = f4)
range of bt is btemp

187

range of wt is wtemp
range of pt is ptemp
append to tempi (cell=ecellid, gener=0, tl 1=1.0, t22=1.0)
range of t is tempi

queries += 6;
toggle » 1;
cells = 1;
egener = 0;

printf(B Generation 0, 1 cell instance\nB);
do {

/* collect geometries of each type, applying transform. */
/* then retrieve one layer at a time for grouping. *"/

printf(Bcollecting boxes..\nB);
append to btemp (layer = b.use,
##
##
##
##
##

xl = b.xl * t.tll + b.yl * t.t21 + t.t31,
yl = b.xl * t.tl2 + b.yl * t.t22 + t.t32,
x2 = b.x2 * t.tll + b.y2 * t.t21 + t.t31,
y2 = bjc2 * t.tl2 + b.y2 * t.t22 + t.t32)

where b.owner = t.cell
queries++;

for (i = 0; i < 6; i++)
{

retrieve (exl = bt.xl, eyl = bt.yl,
ex2 =» bt.x2, ey2 = bt.y2)
where bt.Iayer = elnamep]
{

>

}
queries++;
tuples += Iltupcnt;
printf(B %s layer, %d tuples\nB,

elnamep], Iltupcnt);

modify btemp to truncated
queries++;

printf(B collecting wires..\nB);
append to wtemp (layer = w.use,
xl = w.xl * t.tll + w.yl * t.t21 + t.t31,
yl = w.xl * t.tl2 + w.yl * t.t22 + t.t32,
x2 = w.x2 * t.tll + w.y2 * t.t21 + t.t31,
y2 = w.x2 * t.tl2 + w.y2 * t.t22 + t.t32)

WW where w.owner = t.cell
queries++;

for (i » 0; i < 6; i++)
{

WW retrieve (exl = wtjcl, eyl = wt.yl,
ex2 = wt.x2, ey2 = wt.y2)
WW where wt.layer = elnamep]
WW {

188

ww }
queries++;
tuples += Iltupcnt;
printfC %s layer, %d tuples\nB,

elnamep], Iltupcnt);

WW modify wtemp to truncated
queries++;

printfCcollecting polygons..\nB);
append to ptemp (layer = p.use,
ww id =s p.po!ygon__id, vnum = p.vertnum,
x = p.x * t.tll + p.y * t.t21 + t.t31,
y = p.x * t.tl2 + p.y * t.t22 + t.t32)
WW where p.owner = t.cell

queries++;
WW modify ptemp to heapsort on layer, id, vnum
WW retrieve (exl =» pt.x, eyl = pt.y)
WW {

ww }
queries += 2;
tuples += Iltupcnt;
printf(B %d tuples sorted & retrieved.\nB, Iltupcnt);

WW modify ptemp to truncated
queries++;.

/* print statistics for operation so far */

printfC\ncell %s so far: %Id cells, %ld geometry tuples\nB,
cname, cells, tuples);

printf(B queries = %d\nB, queries);
printf(B geometry tuples = %d\nB, tuples);

/* collect next generation in other temporary */
/* compute new transform matrices */

189

egener-f+;

if (toggle==l)
{

printfC\ngeneration %d, in temp2..\nB, egener);
WW append to temp2 (cell = r.child, gener = egener,
til = t.tll * r.tll + t.tl2 * r.t21,
ww tl2 « t.tll * r.tl2 + t.tl2 * r.t22,
WW t21 — t.t21 * r.tll + t.t22 * r.t21,
WW t22 = t.t21 * r.tl2 + t.t22 * r.t22,
t31 = t.t31 * r.tll + t.t32 * r.t21 + r.t31,
WW t32 = t.t31 * r.tl2 + t.t32 * r.t22 + r.t32)
WW where t.gener = egener — 1
WW and t.cell = r.parent

queries++;

printf(B %d cell instances\nB, Iltupcnt);
cells += Iltupcnt;
if (Iltupcnt <= 0) break;

WW modify tempi to truncated
WW range of t is temp2

queries++;
toggle = 2;

} else
{

printf(B\ngeneration %d> in tempi..\nB, egener);
WW append to tempi (cell = r.child, gener = egener,
til = t.tll * r.tll + t.tl2 * r.t21,
WW tl2 = t.tll * r.tl2 + t.tl2 * r.t22,
t21 = t.t21 * r.tll + t.t22 * r.t21,
WW t22 = t.t21 * r.tl2 + t.t22 * r.t22,
t31 = t.t31 * r.tll + t.t32 * r.t21 + r.t31,
t32 = t.t31 * r.tl2 + t.t32 * r.t22 + r.t32)
WW where t.gener = egener — 1
WW and t.cell = r.parent

queries++;
printf(B %d cell instances\nB, Iltupcnt);
cells += Iltupcnt;
if (Iltupcnt <= 0) break;

WW modify temp2 to truncated
WW range of t is tempi

queries++;
toggle = 1;

190

"* } while (egener < 30); /* exit if running too long */
destroy tempi
WW destroy temp2
WW destroy btemp
WW destroy wtemp
WW destroy ptemp
WW exit

queries += 5;

/* stop the clock and print final statistics */

tiznes(&stop);
estop = time(0);
equeltime «=* (stop.tms_utime — start.tms__utime

+ stop.tm3_stime — start.tms_stime) / 60.0;
ingrestime = (stop.tms_cutime — start.tms_cutime

+ stop.tms_cstime — start.tms_cstime) / 60.0;
cputime = equeltime + ingrestime - CPUOHEAD;
etime = estop — estart — ELOHEAD;
printfC\ncell %s, expanded\nB, cname);
printfCcpu time: equel = %3.1F, equeltime);
printfC ingres = %3.1F, ingrestime);
printf(B o'head constant = %3.1P, CPUOHEAD);
printf(B net = %3.1f\nB, cputime);
printf(Belapsed time = %ld o'head constant = %Id net = %ld\nB,

estop - estart, ELOHEAD, etime);
printfCqueries = %d\nB, queries);
printf(B geometry tuples = %d\nB, tuples);

printf(Btuples per cpu second = %3.1P, tuples / cputime);
if (tuples > 0)

printf(B cpu msec per tuple = %2.0f\nB,
(cputime * 1000) / tuples);

else

printf(B \nB);

printf(Btuples per elapsed second = %3.1f, (float)tuples / etime);
if (tuples > 0)

printfC elapsed msec per tuple = %2.0f\n",
((float)etime * 1000) / tuples);

else

printf(B \nB);

191

Test 3: Geometry RetrieTal in a Small Area

#include <stdio.h>
#include <sys>Aypes.h>
#include <sys/times.h>
#include Bmacros.hB

#define CPUOHEAD 0.6
#defme ELOHEAD 1

main(argc, argv)
int argc;
char *argv[];
{
WW char *cname, Mbname, Mefstatus;
WW long cellid;

dbname = *++argv;
—argc;

printf(B \nProgram %sB, B@(#)area.q 1.7 2/tl/S3B);
printf(B database %s\nB, dbname);
while (—argc > 0)
{

cname = *-f+argv;
cellid = NULL;
defstatus = BnB;

WW ingres dbname
WW range of c is cell_master
WW retrieve (cellid = c.master_id, defstatus = c.defined)
WW where cname = cname
ww {

WW }
WW exit

if (cellid == NULL I I *defstatus !— 'y')

printf(B \n%s not found or undefined.\nB, cname);

else

{

}
}
printfO");

printf(°\ncell %s, id is %ld\n\ cname, cellid);
getarea(dbname, cname, cellid);

102

}

getarea(dbname, cname, cellid)
char 'dbname, *cname;
long cellid;

{
WW long ecellid;
WW char *elname[6];
WW float exl, ex2, eyl, ey2;
WW int i;
WW long left, right, bottom, top;
WW long blleft, b2left, blright, b2right;
WW long blbottom, b2bottom, bltop, b2top;

extern int Iltupcnt;
long width, height;
int queries;
long tuples;
struct tms start, stop;

float equeltime, ingrestime, cputime;
long time(), estart, estop, etime;

ecellid = cellid;
elname[0] = BNMB;
elname[l] = BNPB;
elname[2] =» BNDB;
elname[3] = BNCB;
elname[4] = BNIB;
elname[5] = BNGB;

/* find the middle ninth of the area covered by top—level boxes */
/* (assume other geometry likely to be there too) */

WW ingres dbname
WW range of b is box
retrieve (blleft = min(b.xl where b.owner = ecellid),
WW blright = max(b.xl where b.owner = ecellid),
WW blbottom =» min(b.yl where b.owner = ecellid),
WW bltop =. max(b.yl where b.owner = ecellid),
WW b2left => min(b.x2 where b.owner = ecellid),
WW b2right = max(b.x2 where b.owner = ecellid),
WW b2bottom = min(b.y2 where b.owner = ecellid),
WW b2top = max(b.y2 where b.owner = ecellid))
{

ww }
WW exit

193

if ((left = blleft) > b2left)
left = b2Ieft;

if ((right = blright) < b2right)
right = b2right;

if ((bottom = blbottom) > b2bottom)
bottom = b2bottom;

if ((top = bltop) < b2top)
top = b2top;

printf(Barea occupied by cell: x =* %ld to %ld,B, left, right);
printfC\n y = %ld to %ld\nB, bottom, top);

width = right — left;
height = top — bottom;

left += width / 3;
right -= width / 3;
bottom += height / 3;
top —= height / 3;
printfCmiddle ninth: x = %ld to %ld,B, left, right);
printf(B\n y = %ld to%ld\nB, bottom, top);

/* start the clock */

times(&start);
estart = time(O);
tuples = 0;
queries = 0;

WW ingres dbname
WW range of r is cell_ref
WW range of b is box
WW range of w is wire
WW range of p is polygon

/* collect geometries of each type in a temporary relation, */
/* then retrieve one layer at a time for grouping. */

printf(Bcollecting boxes..\nB);
WW retrieve into btemp (layer = b.use,
WW xl = b.xl, yl = b.yl, x2 = b.x2, y2 = b.y2)
WW where b.owner = ecellid

WW and (b.xl<=right or b.x2<=right) and (b.xl>=left or b.x2>=left)
WW and (b.yl<=top or b.y2<=top) and (b.yl>=bottom or b.y2>=bottom)

queries++;

WW range of bt is btemp

194

for (i — 0; i < 6; i++)
{

WW retrieve (exl = bt.xl, eyl = bt.yl, ex2 = bt.x2, ey2 = bt.y2)
WW where bt.layer = elnamep]
WW {

WW }
queries++;
tuples += Iltupcnt;
printfC %s layer, %d tuples\nB, elnamep], Iltupcnt);

WW destroy btemp
queries++;

printfCcollecting wires..\nB);
WW retrieve into wtemp (layer = w.use,
xl = w.xl, yl = w.yl, x2 =» w.x2, y2 = w.y2)
WW where w.owner = ecellid

WW and (w.xl<=right or w.x2<=right) and (w.xl>=left or w.x2>=left)
WW and (w.yl<=top or w.y2<=top) and (w.yl>=bottom or w.y2>=bottom)

queries++;

ww range of wt is wtemp
for (i = 0; i < 6; i++)

retrieve (exl = wt.xl, eyl « wt.yl, ex2 = wt.x2, ey2 = wt.y2)
WW where wt.Iayer =* elnamep]
WW {

WW }
queries++;
tuples += Iltupcnt;
printf(B %9 layer, %d tuples\nB, elnamep], Iltupcnt);

ww destroy wtemp
queries++;

printfCcollecting polygons..\n");
WW retrieve into ptemp (layer =* p.use, id = p.po!ygon_id,
WW vnum = p.vertnum, x = p.x, y ~ p.y)
WW where p.owner = ecellid

queries+H-;
WW modify ptemp to heapsort on layer, id, vnum
ww range of pt is ptemp
WW retrieve (exl = pt.x, eyl = pt.y)

195

WW where max(pt.x by pt.id) > left
WW and min(pt.x by pt.id) < right
WW and max(pt.y by pt.id) > bottom
WW and min(pt.y by pt.id) < top
{

j

WW }
queries += 2;
tuples += Iltupcnt;
printfC sorted, %d tuples retrieved.\nB, Iltupcnt);

ww destroy ptemp
WW exit

queries++;

/* stop the clock and print statistics */

times(festop);
estop = time(O);
equeltime = (stop.tms_utime — start.tms_utime

+ stop.tms_stime — start.tms_stime) / 60.0;
ingrestime = (stop.tms_cutime — start.tms_cutime

+ stop.tms_cstime — start.tms_cstime) / 60.0;
cputime = equeltime + ingrestime - CPUOHEAD;
etime = estop — estart — ELOHEAD;
printf(B\ncell %s, top level geometry in middle ninth area\nB, cname);
printf(B cpu time: equel = %3.1F, equeltime);
printf(B ingres = %3.1P, ingrestime);
printf(" o'head constant = %3.ir, CPUOHEAD);
printf(B net = %3.1f\nB, cputime);
printf(Belapsed time = %ld o'head constant = %\d net = %ld\nB,

estop — estart, ELOHEAD, etime);
printf(" queries = %d\nB, queries);
printf(B geometry tuples = %ld\nB, tuples);

printf(Btuples per cpu second = %3.1f, tuples / cputime);
if (tuples > 0)

printf(B cpu msec per tuple = %1.0f\nB,
(cputime * 1000) / tuples);

else

printfC \nB);

printf(Btuples per elapsed second = %3.1f\ (float)tuples / etime);
if (tuples > 0)

printf(B elapsed msec per tuple = %1.0f\nB,
((float)etime * 1000) / tuples);

196

else

printfCK);

i

I

APPENDIX B

Tree Expansion Tests of Chapter 3

197

Table 1
Expansion of a Tree Without Duplicate Tuples

Data: RISC CPU

Test
Number

Algorithm Direct
Update

Result
Struct

Global
Dup
Elim
on

Result

Global
Dup
Elim

During
Walk

Dup
Elim

Within
Gener.

Dup
Elim

on Path
to Root

Tuples
in

Result

Disk
Reads

Disk
Writes

Disk
Time®
30 msec

CPU
Sec

Elapsed
Time

1

2

3

4

Breadth-First

Breadth-First

Breadth-First

Breadth-First

Yes

Heap

Heap

Hash

Heap

Yes Yes Yes

Yes

14050

14050

14050

14050

1247

1227

5580

1230

1831

900

4003

2745

02

64

287

120

301

314

568

401

333

278

733

551

5

6

7

B

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

Heap

Heap

Hash

Hash

Yes

Yes Yes

14050

14050

14050

14050

805

B14

4687

7584

007

007

3380

4149

51

52

241

351

257

250

523

532

281

264

678

747

8

10

11

12

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

Heap

Heap

Hash

Hash

Yes

Yes Yes

Yes

Yes

Yes

Yes

14050

14050

14050

14050

805

814

4887

7584

007

007

3380

4140

51

52

241

351

259

250

522

533

283

263

675

747

13

14

15

18

Breadth-First

Breadth-First

Depth-First

Depth-First

None

None

None

None

Yes

Yes

1238

1230

804

804

015

1820

0

0

65

92

24

24

280

477

225

231

308

532

238

241 CO
00

^p

Table 2
Expansion of a Tree Without Duplicate Tuples.

Data: RISC Cache

Test
Number

Algorithm Direct
Update

Result
Struct

Global
Dup
Elim
on

Result

Global
Dup
Elim

During
Walk

Dup
Elim

Within
Gener.

Dup
Elim

on Path
to Root

Tuples
in

Result

Disk
Reads

Disk
Writes

Disk
Time®
30 msec

CPU
Sec

Elapsed
Time

17

18

19

20

Breadth-First

Breadth-First

Breadth-First

Breadth-First

Yes

Heap

Heap

Hash

Heap

Yes Yes Yes

Yes

9854

9854

9854

9854

2839

2830

5149

2843

1279

636

2294

1919

124

104

223

143

287

265

463

380

301

301

575

435

21

22

23

24

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

Heap

Heap

Hash

Hash

Yes

Yes Yes

9854

9854

9854

9854

2517

2521

3874

3938

635

635

1658

1659

95

95

166

168

239

238

428

432

266

256

508

531

25

28

27

28

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

Heap

Heap

Hash

Hash

Yes

Yes Yes

Yes

Yes

Yes

Yes

9854

9854

9854

9854

2517

2521

3874

3936

635

635

1658

1659

95

95

168

168

242

239

428

428

289

258

507

526

29

30

31

32

Breadth-First

Breadth-First

Depth-First

Depth-First

None

None

None

None

Yes

Yes

2838

2840

2516

2518

641

1281

0

0

104

124

75

75

258

382

219

221

286

422

234

237 CO
CO

Table 3
Expansionof a Tree Having Many Duplicate Tuples

Data: RISC CPU

Test
Number

Algorithm Direct
Update

Result
Struct

Global
Dup
Elim
on

Result

Global

£"*
Elim

During
Walk

Dup
Elim

Within
Gener.

Dup
Elim

on Path
to Root

Tuples
in

Result

Disk
Reads

Disk
Writes

Disk
Time©
30 msec

CPU
Sec

Elapsed
Time

33

34

35

36

Breadth-First

Breadth-First

Breadth-First

Breadth-First

Yes

Heap

Heap

Hash

Heap

Yes Yes Yes

Yes

14050

14050

259

2881

878

857

438

410

353

169

70

115

37

31

15

16

161

137

27

33

179

160

43

57

37

38

39

40

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

.Heap

Heap

Hash

Hash

Yes

Yes Yes

•

14050

14050

250

259

805

813

815

493

187

167

10

100

29

29

25

18

123

121

132

20

138

134

143

33

41

42

43

44

Depth-First

Depth-First

Depth-First

Depth-First

Yes

Yes

Heap

Heap

Hash

Hash

Yes

Yes Yes

Yes

Yes

Yes

Yes

14050

14050

259

259

805

813

815

493

167

167

10

109

29

29

25

18

123

120

133

21

137

133

144

33

45

46

47

48

Breadth-First

Breadth-First

Depth-First

Depth-First

None

None

None

None

Yes

Yes

869

401

804

804

177

71

0

0

31

14

24

24

-

143

30

102

101

161

52

116

114 to
o
O

-~> ^^

*
]

Table 4
Expansion of a Tree Having Many Duplicate Tuples

Data: RISC Cache

Test
Number

Algorithm Direct
Update

Result
Struct

Global
Dup
Elim
on

Result

Global
Dup
Elim

During
Walk

Dup
Elim

Within
Gener.

Dup
Elim

on Path
to Root

Tuples
in

Result

Disk
Reads

Disk
Writes

Disk
Time®
30 msec

CPU
Sec

Elapsed
Time

49 Breadth-First Heap 0854 2581 245 85 173 188

50 Breadth-First Yes Heap 9854 2571 118 81 162 210

51 Breadth-First Hash Yes Yes Yes 113 383 35 13 27 37

52 Breadth-First Heap Yes 3763 359 107 14 34 50

53 Depth-First Heap 9854 2517 117 79 149 168

54 Depth-First Yes Heap 9854 2520 117 79 147 163

55 Depth-First Hash Yes 113 2527 10 76 152 165

58 Depth-First Yes Hash Yes Yes 113 394 51 13 23 31

57 Depth-First Heap Yes 9854 2517 117 79 147 167

58 Depth-First Yes Heap Yes 9854 2520 117 79 147 164

59 Depth-First Hash Yes Yes 113 2527 10 76 152 165

60 Depth-First Yes Hash Yes Yes Yes 113 394 51 13 24 32

61 Breadth-First None 2578 125 81 164 178

62 Breadth-First None Yes 358 50 12 30 44

63 Depth-First None 2516 0 75 133 152

64 Depth-First None 1 Yes 2516 0 75 133 151 to
o

	Copyright notice 1984
	ERL-84-52 (1 of 2)
	ERL-84-52 (2 of 2)

