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The possibility of feedback stabilization of the m = 1 MHD flute mode

for axisymmetric mirror machines is examined. By a proper choice of feedback

function, the m = 1 flute mode on the core plasma is stabilized by feedback

signals applied to segmented, ring shaped feedback plates which are in end-

contact with the relatively cold external halo plasma. A three region plasma

model is developed and analyzed, consisting of a hot core surrounded by a

warm transition annulus, which is in turn surrounded by a warm halo annulus

that is in contact with the feedback plates at the two endwalls. A simple

feedback transfer function is chosen, and root locus plots versus the feedback

gain are calculated for plasma parameters characteristic of the MFTF-B device

at Lawrence Livermore Laboratory and the MMX device at the University of

California, Berkeley. We conclude that feedback stabilization of the m = 1 flute

mode can be achieved in either device with a modest feedback gain.
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I. INTRODUCTION

Research on stabilizing the m = 1 MHD flute mode in axisymmetric mirror

machines has been persued by several authors using axial feedback1-5 using

radialfeedback6, and modifying the line-tying admittance7"'10. Radialfeedback

applies electrostatic signals to feedback plates around the plasma to suppress

the flute mode, whereas axial feedback applies the feedback signals to feedback

plates located at an end of the machine.

Earlier, an in-depth study5 on line-tying and feedback stabilization of the

flute mode for a simple mirror pointed out that the endwall sheath, which pro

vides the thermal insulation for the hot plasma by reducing electron conduction

to the endwall, would strongly degrade the stabilization due to line-tying alone,

and concluded that line-tying alone will not stabilize the flute mode in a sim

ple mirror. Lieberman et al1'2, Wong3, and Vandegrift4 have shown that, for

low-beta low-temperature mirror machines, the flute mode can be stabilized by

applying feedback signals on pie-shaped feedback plates located at the end of

the machine.

The U.C. Irvine group showed that flute stability can be obtained by in

creasing the line-tying admittance. Wickham and Vandegrift7'8 modified the

line-tying admittance by heating an electron emitting end-plate. They ob

served a reduced flute growth rate, and pointed out that the system becomes

flute stable if the end-plate emits enough electrons. Direct heat conduction to

an electron-emitting end-plate leads to excessive heat loss from the hot core

plasma. It has been suggested that the feedback plate be halo-shaped and in

contact with only the relatively cold external plasma. "Vandegrift et al9 used
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a halo-shaped electron emitting end-plate to modify the line-tying admittance,

observed reduced flute growth rate, and postulated that a larger mirror system

may become flute stable if the halo-shaped end-plate's inner radius is extended

to the radius where the plasma density, with a profile assumed to be a Gaussian,

drops to 1/e of the peak density. However, the end-wall heat loss is still too

great at the radius where the density drops by 1/e.

Here, we explore the possibility of stabilizing the flute unstable system by

applying proper feedback signals on halo-shaped feedback plates with arbitrary

inner and outer radii located at the end of the machine. In section II, we

represent the mirror confined plasma system with a three layer model and obtain

the dispersion relation and feedback equation for the system. In section III,

we apply our feedback equation to the MFTF-B experiment and the Berkeley

10 meter Multiple Mirror Experiment (MMX). In section IV, we discuss the

results and limitations of our three layer model.

n. FEEDBACK MODEL AND EQUATION

Fig.l shows the three layer model for the mirror confined plasma which we

consider here. Regions I -TV represent the core plasma, the transition plasma,

the external halo plasma, and the surrounding vacuum region, respectively. The

transition plasma (region II) couples the core plasma (region I ) to the halo

plasma (region III), on which the feedback signal is applied axially through

segmented, halo-shaped feedback plates located at the end of the machine.
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Fig.l

Three layer model for

the mirror confined plasma.

For the m = 1 flute mode, in cylindrical coordinates, we represent the

perturbed potential <f> which vanishes at r = oo as

</>p = Ar cos9,

<f>t = Brcoa$-\—cos0,
r

E
<f>h = Dr cos0 H— cos0,

F
<f>v = — cos $.

r

(i)

Enforcing the boundary conditions on (1), i.e., that <f> and the normal com

ponent of the electric dbplacement D be continuous across the boundary, and

assuming that the dielectric constants for the plasma are much greater than the

vacuum (/cp, Kt,«* »1) we obtain the dispersion relation as

(«p +Kt)(Kt - Kh)-jp]p ~(** ~*?)(** +Kk)~jg]p

1

•a?+(#Cp +Kt)(Kt +Kh)-j&jj2 +(«* - «?)(«* - «fc)^4 =° (2)

where, J?p, Rt, audi?/,, are the radii of the core, transition, andhalo boundaries,

respectively.
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We use the dielectric constants derived by Lieberman and Wong1,2 for a

gravitationally driven, m = 1 flute mode, in a magnetically confined plasma

that is connected to a conducting endwall through a sheath having admittance

per unit area ya, under the assumptions that the curvature and the electric

drift effect dominate over the T?B and the diamagnetic drift effect (cold, low-

beta,weak Vno plasma in the slab geometry):

"1+?t-?;rfe<i£+>;fc> (3)
where, w2a = g2na/(e0ma), fla = qaB/ma, wa = kga/na, ga = v*ha/Rc, Re

is the field line radius of curvature, It is the total plasma length, vtha is the

root mean square thermal velocity for the species a, and k = m/r is the wave

number for a perturbation of the form ertwt"m*).

Since, w^/n? > 1, w^ft2/^!]2) = mi/me » 1, and assuming that the

core temperature is much higher than the transition or halo temperature, we

can write

P"n2 W+Wift W+Wefle1 W

II2

«t * %-, (5)

^-ft-^dfc)- (6)
A typical tandem mirror geometry is shown in Fig.2. The bad curvature

drive is concentrated mainly in the plug regions having characteristic length lp.
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Fig.2 A typical tandem mirror geometry.

We define €i = a2/p/(/|7T), U = a^P/(^^r), e = (*i + *e)/2, and u =

(w—ni€i)/flt-. Here, aa is the meangyroradius for the species a, Ib is the mirror

scale length of the plug, and u is the doppler shifted frequency normalized to

the ion gyrofrequency 0;. Note that e1/2 is a normalized characteristic MHD

growth rate;

We rewrite (4) and (6) as

(40

Kh~ n? jn<(ti - 6<) ejbv v '

Multiplying (4'), (5), and (6') by

we have, respectively,

n?
-€0&2iVT(tt " 2e)ti-rL,^ jo;

ft2 1
-€0Kpk2AplT(u - 2c)u-ri- = jwCp + yp^+ -r-7- = Yp, (7)
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-e0Ktk2AMu - 2t)u$-^- ={ju>Ct +YHfe =Yt^, (8)
JOJ At At At

-eoKhk2AhlT(u - 2e)«^4E =(JwC* +Y»* +̂ T* =̂ 4^ (9)JwAfc " 'A* Ah

where, Yp, Yt, and Yh are the effective admittance of the core, transition, and

halo plasmas, respectively,

Cp" nf ' Y* =-> ft.—&.
Xp1 =-2c0fc2Ap/rwp\-€p, e0fe2At/r^p7a

Ct =

*t* = -J
m2eJ?AtlTi*>}f n*?

Oi ' ^ £0*2Aft/rW£'
p»Cfc =

**~ J ft, ' and Yhe = yeAh.

The physical meaning of each of these elements is explained in Wong3 and

Vandegrift4. Briefly, the C's are the capacitances seen acrossthe flute surfaces,

Lp < 0 is the inductance driving the flute mode, and the V^'s represent the

stabilising effect on the flute mode due to the finite rotational frequency (see

Appendix for futher details). By putting (7), (8), and (9) into (2) multiplied

by

4M2Vr(u-2c)3)2,

we can rewrite the dispersion relation without feedback in terms of the circuit

elements as

VV. • w- RP fo2 , p2\ . v2^P^hSt^*lYpYh +r***(jRa_iW«P +"t)+ Yt (£2 _ M)2

+r»r* (a? - a2)2 - °-
(10)

Now, we consider the equivalent circuit representation Fig.3.
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<\ • PYt-

9f >(p ory* 7Y* Yh

I

-*>

Yin

I
i-

Fig.3 Circuit representation of three layer model without feedback.

Taking Y*n = 0 ( resonance ), we obtain

YpYh + (a + 0)YtYk + (a/? + fa + <ry)I? + (/? +7)WP = 0. (11)

By comparing (10) with (11), we can recover the dispersion relation by setting

(12)a+p (n?-R*y

0+1 =
(*? - *2)2

flg(gg + .R?)

Solving for a, /3, 7, we obtain

JZg(J^ + it?)

p~ (je? - ^)»

(Jg + Rp(R? + R%) a
7" (fl?-.R*)2 P

(13)

(14)

(15)

(16)

(17)
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(For typical parameters of MFTF-B, a ~ —3, /? ~ 5, 7 ~ 8). The form of these

coupling coefficients a, £, 7 for MFTF-B imply the following: i) The effective

capacitance of the core plasma is decreased compared to the capacitance due

to the core plasma alone, because charge cancellation occurs at the boundary

with the transition plasma, it) If the halo plasma is perfectly line-tied, i.e.,

Yhe —*• 00, the effective capacitance due to the transition and halo plasma

is about 2Ct < Cp. Thus, the growth rate of the flute instability is somewhat

reduced due to the increased inertia of the system, but there is no circuit element

which provides L > 0 that can compensate Lp < 0 to obtain complete stability.

Hi) If we provide a positive inductance by feedback, we might have stability.

Now, we consider an equivalent circuit model with feedback. With feedback

voltage applied at the halo shaped feedback plates located at the end of the

machine, the lower terminal of the line-tying admittance is forced away from

system ground. So, we can represent the equivalent circuit model of the system

as Fig.4, where Yx = Yh - Yke.

5
* „, AV
? p»t

+

eP YP «Y* >Yt Y,

1\

A

^

Fig.4 Circuit representation of three layer model with feedback.

By taking Ytn = 0, we obtain the dispersion relation with feedback:
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Yp+aYt+mi$m+ PYtriYht
= 0

{P + l)Yt + Yh {{3 + j)Yt + Yh

where, n is the voltage transfer function of the feedback network. A simple

schematic feedback diagram is shown in Fig.5.

—^<£) HjksJI i—*

1^l

Fig.5 Schematic representation of the system

with feedback ( e; = 0 corresponds to Fig.4).

(18)

We can analyze this problem with more general feedback theory, but for

simplicity, we consider the case e* = 0 (e» ^ 0 corresponds to a signal that may

be mixed with the feedback signal to obtain overall stability of the system). If

we choose the feedback transfer function f?(s) as

(19)

the negative inductance included in Yp cancels out from (18) for G = 1, and

the system becomes stable. However, the feedback function n(s) given by (19)

is practically difficult to construct, because Yt and Yh contain imaginary con

ductance terms (the iys). So, we delete all Y^'s in the feedback function (19),

and examine the system stability with the easily realizable feedback function:

, s= G (P +^sCt+ sCh + Yhe (20)

The numerator of (18) with rj(s) given by (20) becomes
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a4 ((Cp +aCt)(Ch+{fi +7)ft) +j9ft(ft+7ft))
+*3 ((ft +W+7)ft)(n*+«**) +(Cp +aft)(Yfc*+Yfcc +(/? +7)n*)

+W*(ft +7ft)+0ft(ft*+Vfce +7**))
+*2 (i,;1 {ch +09 +7)ft).+ (i^+<*y*)(yM+Yfce +W+7)y^)

+£**(%*+nc+7n#) -GL-i(ft+(/?+7)ft))
+* (l-1 (y^+Yke+oj+7)y^) -^ (fty*e+y*(ft+w+7)ft))

-v^y&e = 0
LpCt

(21)

where, 3 = ju and G is a constant feedback gain. If we neglect all the Y^'s,

i.e., finite rotational frequency effects, we have

a4 ((ft +aCt)(Ck+09+7)ft) +0ft(ft+7ft))
+3* ((Cp +*ft)Yfce+/?ftyfce)
+a2 (i,;1 (ft +09 +7)ft) -GLp1(ft +09+7)ft))
+3 (j&-1yfc.-GL-ln.)=o

(22)

If we neglect Yh$ and Yt^, which are typically small, but retain Ypj,, and apply

azimuthally rotating feedback signals with the rotation frequency the same as

the go x B0 rotation frequency of the core plasma, then the effect of Yp^ drops

out, and we recover (22) from (21). The zeros of (18) determine the system

stability. However, in order to observe a pole-zero cancellation, we write the

denominator of (18) explicitly;
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denom. = 320LpCtYhe ((/? + 7)(aCt + Yt*) + aft + Yh<ff + Yfce). (23)

We will see in the next section that, by a proper choice of G, the feedback

function (20) stabilizes the system.

III. THE RESULTS OF FEEDBACK.

In this section, we apply the results of the previous section for parameters

and geometry characteristic of the MFTF-B and the MMX experiments. We

discuss the effects of feedback on the system's stability.

A. MFTF-B Experiment

We take the MFTF-B parameters to be as follows;

Ib = lm, lp = 5m, lT = 12.8m, Rp = 30cm,

Rt = 45cm, Rh = 60cm, nh/np = 10""*, nt/np = 10"l,

rip = 102om"3, Tp = lOfcev, Th = 50et;, Tt = 50ev,

where np is the plasma density of the core region. The corresponding circuit

elements can be calculated using the above parameters:

* Capacitors

Cj=^y»g .5.259 xio-2^^, u=p^h)
Cp = 6.73 x 10~6[F],

ft = 8.43 x 10"7[F],

Ck = 1.18 x 10'6[F\.

(Note that for the m = 1 flute mode, Ak2 = it ).
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* Inductor

Lp1 = -2e0k2AplTv£ep =-9.644 x 10-l%nJT,
Lp = -1.03 x 10"r[S\.

* Frequency-independent part of the imaginary conductance ( Y^'s )

Y^ =-,9.644 XlO"11?^^,
Yp+ = -j9.62 X I0-2[mho],

Yt<f, = -j'4.95 x 10-5[mH,

Yh* = -i3.52 x 10"6[m/io].

* Line - tying admittance

ft. =WU =iI?-Afe « j^-—^ (2* * r.)
Yfcc = 347[mH,

where we use Kunkel and Guillory's model10 for g0h-

* Coupling coefficient

a = -2.71,

fi = 4.80,

7 = 8.20.

Note that the system cannot be driven into instability by the form of the

coupling coefficients alone, even if a < 0. This can be shown by calculating the

total capacitance of the system without L^, Y^'s and Y^e:

Ctot = Cp + aCt +^r-rft >0,
0 + 7'

where V = (7Ct + ft)/Ct > 7 •
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By putting the MFTF-B numerical values for the circuit elements into

(21), and solving for the roots of the polynomial with G as a parameter, we

obtain Fig.6,vthe root loci of (21). Note a = a + ju, with a < 0 for stability.

iilmcs>

•* Recs>

Fig.6 Root loci of the dispersion relation (21) for the MFTF-B.

Without feedback, G = 0, we have four roots; root 1 at (0,0), root 2 at (1.36 x

106,9.80 x 103), root 3 at (-1.36 x 106,9.61 x 103), and root 4 at (-3.37 x

106,1.12 x 104). Root 2 is the flute unstable root that must be stabilized

by feedback. Root 3 is the stable conjugate root of 2. The very stable root

4 arises from the RheCcff tune constant of the system, which can easily be

seen from the high frequency limit of (21). Root 1 is the zero root of (21)

with G = 0, which is spurious since it is cancelled out by the pole at zero (

root of (23) ). However, for G ^ 0 the pole - zero cancellation is not exact.
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k Inus)

0.9 jsj$ <gL<a*a^o.9 ©' ? <g^G*o.
m /l «*i • I r?1 ' '« ' *"•"? *T^

-!# -IC* -«** -I*/*"
1.0 "

10* I04 l<* & &*«£>

..-10*

:.-i*

1.4* - -10'

Fig.7 Root loci of the dispersion relation (22) for the MFTF-B.

We can see these interpretations more clearly in Fig.7, which gives the root loci

of (22). (All Y^'s are taken to be zero). Here, for G = 0, root 4' represents the

discharging of the total separated charge through the line-tying admittance Y&e,

root 2' and 3' arise from the charge separation due to the gravitational force g,

and root 1' is a spurious root that drops out by the pole - zero cancellation. For

G > 0, the root loci are continuous with G, except that there is an exchange of

stability between roots 1' and 2' at G = 1. For G < 1, root 1' remains at (0,0);

for G > 1, root 2' remains at (0,0). Thus, a spurious root exists at (0,0), for

all values of G when the (small) imaginary conductances (Y^'s) are taken to be

strictly zero.
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In Fig.6, as compared to Fig.7, we introduced a finite g0 x B0 rotational

frequency effect through the Y/s. In this case the pole - zero cancellation is

not exact. The effect of rigid rotor motion due to the gravitational force g0

introduce a time averaging effect on the separated charge, and modifies the

effective capacitances. For large enough feedback, i.e., for large enough G, we

can see that root 4 remains nearly the same, root 3 remains stable, and roots 1

and 2 exchange their roles. Thus, we send root 2 into the negative half - plane,

i.e., we obtain flute stability with large enough feedback, G > 1; that is, we

convert the flute growing mode into a simple, decaying, rotating mode.

Two interesting limiting cases are At —• 0, G —• 0 i.e., the Irvine model9,

and Rt -+ Rh > Rp. For the case of At -+ 0 and G -+ 0, applying KCL for

Fig.3 we obtain the voltage transfer ratio

eP $Yt
eh Yp + (a + 0)Yt

2R2Rt(R} + R2h)1'2Yt
(R2 - Rj)2Yp + RftR2 + R?)Yt

R2
(1 +||)1/2 «« Rt~*Rp, t\e.f At

(24)

For this case the system can be represented by a transformer - coupled network

(Fig.8) with coupling coefficient n = (1 + (Rh/Rp)2)^2 .

Here, we can see that, if Yhe ~* oo, the core plasmais shorted out by the perfect

line-tying, and the system is stabilized.
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Yh

Fig.8 Equivalent circuit representation for At, G-+Q.

In the other limiting case of Rt-+ ifo » Rp, «i /?, 7 become

_ 2V2R*Rl

IP2

7={Rl-R2) {{R2> +Rl)" 2x/^
Then,

oyt + G9yt//7yt)
fl2

For Rh "> Rp, the dispersion relation (18) can be written as

p Yt + Yp = 0.
iq+RV*' p

Rewriting the above equation, we obtain

nR% +R2KtS* +**** ai^Kt +KJR$ =0;
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i.e., Kt + kp = 0, which is physically equivalent to the case of a core plasma

surrounded by an infinite external plasma. For Kt = Kvac = 1, we have a system

consisting of a core plasma only.

B. MMX Experiment

We take MMX parameters as follows:

B = 1.3[Tea/a], lB = 36cm, Rp= 2cm,

rip = 1019m~3, lT = 7.5cm, Rt = 3cm,

Tp = Th = Tt = 10[e«], Jp = 7.5cm, Rh = 4cm,

The corresponding circuit elements become as follows:

* Capacitors

Cp = 2.33 x 10~7[>],

ft = 2.56 x 10-8[f],

ft = 1.54 x 10"7[F].

* Inductor

Lp = -1.45 x 10"4[H].

* Frequency-independent part of the imaginary conductance

Yp* = -j5.54 x 10_5[mH,

Yt+ = -J6.09 x 10-6[mH,

Yk+ = -j'3.36 x 10-5[mH-

* Line - tying admittance

Yfce = 1.80[m/ko].

The root loci plots with and without the Y/s are given in Fig.s 9 and 10

respectively.

rip
= 0.66,

nk
= 0.11.

n.
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Imcs>

-icP -io4 -104 wo* RecS)

Fig.9 Root loci of the dispersion relation (21) for the MMX.

Al/mcs)

<& ®
I * I •»—H »» I

-to* ioM -to* -10*

IjO1

$»I.O 0/
^ I « I • I

®f to*

•-Kf

-l<f

Id* J \0*
G»o.

Recs>

»<T*

Fig.10 Root loci of the dispersion relation (22) for the MMX.



-20-

IV. DISCUSSION AND CONCLUSIONS

The three layer model analysis of axisymmetric mirror machines shows

that we can stabilize the m = 1 flute unstable core plasma by applying proper

feedback signals on segmented, ring-shaped feedback plates which are in contact

with the two ends of an external plasma. The feedback signals are applied on the

feedback plates through the line-tying admittance of the halo plasma sheath.

The constraints on the mode structure change the; core - transition plasma

boundary conditions to stabilize the core plasma against the flutes. This model

ignores finite - /? effects, diamagnetic drift effects, and finite Larmor radius

effects, and employs sharp boundaries.

The advantage of using active feedback on an end ring in contact with

the halo plasma, over modifying the line-tying admittance by employing an

emitting end ring, is that the three layer active feedback model predicts that

the flute can be suppressed at the core - transition boundary, while the passive

model predicts flute stability only if the ring is in contact with a substantial

part of the core plasma. Thus, for the active system, by a proper choice of

feedback transfer function, we can obtain absolute stability with sufficiently

large inner radius of the feedback plates that the plasma end loss heat flux

and the radiation or neutron damage on the feedback plates can be held to

acceptable levels.

* This work was supported by Department of Energy Contract DE-ATOE

76ET53059. Helpful discussion with A. J. Lichtenberg are greatefully ack-

lowledged.
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Appendix

The physical meaning of the circuit elements LCR of the plasma can be

seen from the guiding center approximation for the m = 1 mode:

i) Polarization drift

_ m9 dE
V*"" eaB* dt

__ mauli<f>
~1a~B2~

T V"* fn0nolT, ,

m8n0/r

*f B2Rp v

where C'p = Cp/icRp is the core capacitance per unit arc length of the core

boundary.

it) First order gxB drift

_ ma g! x B

using <?i « ^vtJp/^T, and £ & k<j>/wB for the low-/?, near-axis plasma, we

have

Jgrav. & / _,
nomagi0

o

-If Bl2B 'P«
iv^^omaV^/p



where L'p = Lp/(irRp) is the core inductance pre unit arc length of the core

boundary.

in) Finite rotational frequency effect correction

*p* = 'JCp2eQi

= jCpkVgo

where, ygo is the zeroth order gxB drift velocity. If we rewrite the admittance

of the capacitor to include Yp^, we have

n=iu,cp(i+^2).
This is the finite rotational frequency corrected admittance ofthe core capacitor.

This effect slightly reduces the flute growth rate.



-28-

References

1Lieberman, M. A. and Wong, S. L., Plasma Phyaica 19 745 (1977)

2Wong, S. L. and Lieberman, M. A., Ploama Phyaica 20 403 (1977)

3Wong, S. L., Ph.D. Thesis, University of California, Berkeley (1978)

4Vandegrift, G. G., Ph.D. Thesis, University of California, Berkeley (1982)

5Moir, R. (ed.), Lawrence Livermore Laboratory Report UCID-16736 (1975)

6Chuyanov, V. A., Culham Laboratory Report CTO/598 (1969)

7Wickham, M. and Vandegrift, G. G., Phyaica of Fluids 25 52 (1982)

8Vandegrift, G. G. and Timothy, G., Technical Report 83-71, Department of

Physics, University of California, Irvine (1983)

9Vandegrift, G. G., Good, T. N., and Rynn, N., Btdl Am. Phya Soc. 28 1048

(1983)

10Kunkel, W. K. and Guillory, J., 7th International Conference on Phenomena

in Ionized Gases Vol.2, Perovic, B. and Tosic, D. (ed.), Belgrade (1965)


	Copyright notice 1984
	ERL-84-61

