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ABSTRACT

Longitudinal electrostatic waves are simulated in a magnetized plasma,
propagating perpendicular to B0. Groups of particles are arranged in one or
more rings and spokes in velocity space. Using various loading schemes to
represent different particle velocity-space distributions in the simulations,
/(vj_), these particles are then distributed uniformly in position space along the
length of the system. In particular, the evolution of magnetized cold and warm
rings are followed (physically unstable), and of a magnetized Maxwellian
(unstable due to the paticle loading) through to saturation. Rules are deduced
for useful loading methods.
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1. INTRODUCTION

The objective of this report will be to present observations of the behavior of different
loading schemes which were tried, and to comment on simulation results with respect to appli
cable theory. The main concern will be to find the loading scheme or schemes which most
closely reproduce the predictions of analytic theory. The problems considered will progress
from a one-ring Dory Guest Harris (DGH) instability, to a number of equally weighted,
unequally spaced rings meant to approximate a physically stable Maxwellian distribution, then
to a fully random loading of a Maxwellian distribution. The number of rings and spokes used
and the particle loading method will be varied; resulting characteristics examined will include
the initial quietness, the instability growth rates and the saturation level of the field energy.
Finally, these characteristics will be compared with those derived from theory.

An ideal "quiet loading" scheme should start off with total electrostatic field energy at a
very low level, ie. with modes excited only by round-off errors. When this initial excitation is
followed by very low growth rate unstable modes, then such a "quiet loading" start should allow
some time before the field energy rises to a thermal level, that is, saturates. A practical simula
tion run requires some "reasonable number" of particles to be quiet; it turns out that in 1V2 or
more dimensions, the number can be quite large.

2. THE MODELS

2.1. The Physical Model

The model used in the simulation consists of a magnetized plasma, assumed to be spa
tially uniform (homogeneous) both in the direction of the magnetic field and perpendicular to
it; in the third, mutually perpendicular direction periodicity of length L is imposed. The model
simulates only wave modes propagating perpendicular to the magnetic field.

The particles are of only one species, electrons in this case, though the sign of the charges
is not important. There is no gravitational field. The particles move only in response to their
own collective electrostatic fields and to the external magnetic field. Collisions between parti
cles occur, and are not enhanced by added scattering. There is a neutralizing background of
immobile charges.

A comparison of the two distributions to be modeled appears in Figure 1. A plot of both
f(vL)dvL and f(vx)dvx are shown for the single ring distribution and the Maxwellian distribu
tion.

2.2. The Numerical Model

The code used for this project is a version of ESI, which was originally written by A. B.
Langdon, with changes made only in the loading and diagnostic options. These changes will be
described in the next section. In brief, the ESI code keeps track of the particle positions and
velocities at discrete instants of time, using this information to calculate their future velocities
and positions. Particle velocities and positions are advanced in time knowing only the present
velocities and positions; these determine the self-consistent electric field as generated from the
present net charge distribution.
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3. THE ESI CODE

3.1. The Original Code

The original ESI code basically is made up of the main program and six subroutines; HIS-
TRY, INIT, FIELDS, SETV, ACCEL and MOVE. The first subroutine, HISTRY, is called
every timestep; its function is to record the various computed quantities, such as thermal
energy, kinetic energy, field energy, etc., and to plot these records every five hundred
timesteps. The first call of HISTRY is just to zero all of the arrays at the beginning of the run.

After the first HISTRY call, the subroutine INIT is called. INIT contains the loader,
which establishes the initial positions and velocities of the particles, as determined by the
choice of loading options. INIT also establishes a uniform, fixed, neutralizing charge (neces
sary when only one species is being used, as in all cases considered in this project). This is
equivalent to loading a second species having an infinite mass while the species of interest is
mobile.

' FIELDS is then called to compute the initial electric field and potential. FIELDS also
records the energies of specified modes and does any necessary snapshot plotting (see Sec. 3.3
below).

Because the positions of the particles are known at the times t = wA/, while the veloci
ties of the particles are known at J+A//2, the velocities of the particles must initially be moved
backwards a half timestep. This function is carried out by the subroutines SETV and ACCEL.

The timestep loop now begins, in which the snapshots are plotted and the particle veloci
ties advanced with the subroutine ACCEL. The particle positions are then advanced with the
subroutine MOVE after which FIELDS calculates the new electric field and potential from the
new particle positions. After the timestep loop has been cycled through nt times, it is exited
and HISTRY is called to plot the last history plots.

3.2. The Loading Options

When the particles are loaded in INIT, there are three coordinates over which they must
be distributed: x, vx and vv. Or, since there is axial symmetry about the magnetic field, the
three coordinates can also be considered as x, vp and 0V, representing position, perpendicular
velocity and gyrophase angle respectively. The distribution of the groups in vp is determined by
the type of velocity distribution chosen. The several types of velocity distributions considered
in this paper all consist of one or more rings, equally weighted when there is more than one.
The term "ring" is used in this report to mean a collection one or more particles, all of which
have the same perpendicular velocity (vp or vL).

The parameters be and Ithv control the manner in which the particles are loaded in the
position and the gyrophase angle dimensions, respectively. The loading options available are:
bit-reversed, trit-reversed, random and ordered, corresponding to values for be and Ithv of 0,1,2
and 3, respectively. Bit—reversed is a binary based loading scheme for scrambling the position
or velocity of the particles with respect to the number of the particles, as explained in more
depth in QPR IV 1980* and below. Trit—reversed is identical to bit-reversed, except that it is
trinary based, (using base three instead of base two). The random loading scheme uses a ran
dom number generator whose seed may be set beforehand. By using different seeds we can
reduce possible correlations between different coordinates. If this precaution were not taken,
the random-random option simulation results would be the same as if the ordered option were
used in one of the two coordinates. The ordered option gives each particle a position (or velo
city) which is proportional to its subscript number.

The parameter nig controls the number of "loading groups'. When nig is greater than
one, the first n/nlg particles are loaded into the system from x = 0 to x = 11nig. This loading



is then replicated in space to fill the rest of the system.

Successive particles along the length of the system can by rotated or "twisted" in their
gyrophase angle with the parameter tw. Depending on the value chosen for twy there will be
either "no twist", a "distributed twist" or the loading groups will be "twisted individually". When
a distributed twist is chosen, the amount of change in the gyrophase angle will be proportional
to the position and the total twist along the length of the system equal to —tw. When the load
ing groups are twisted individually, each loading group is twisted as a whole, the amount being
proportional to the position of the particle in the group farthest from x = 0, and with the total
twist equal to" tw. No twist is chosen when tw «• 0. Figure.2 shows a typical loading arrange
ment consisting of 2 rings and 8 spokes. The relation between the position, perpendicular velo
city and gyrophase angle are all indicated in the Figure. The distributed twist option is shown,
for a tw = -0.25.

Since it was not practical to write one version of INIT which could produce all of the pos
sible loading combinations, a second version of INIT was written which could produce a loading
scheme that was thought to be promising. This scheme has been called the 'rings and spokes'
loading, though it is possible to produce a very similar loading with the original version of
INIT. In the 'rings and spokes' loading scheme there are one or more particles at each inter
section in Vp, 0V space, though they will have different positions in x space. In this version of
INIT, the number of spokes is set by the parameter nplg, the number of rings is set by the
parameter nvlg, and the total number of particles, n, divided by nvlg and nplg is the number of
particles at each spoke-ring intersection, or "beam". In this report, a "beam" will refer to a set
of one or more particles which have the same (v^ ,0V) coordinates.

The arrangement of the particles along the length of the system can be selected through
be. As previously, the options available are: bit-reversed, trit-reversed, random and ordered.

3.3. The Diagnostics

The diagnostics in the original ESI code fall into two general categories: snapshots are
plots at regular intervals of time during the simulation run; histories are running plots versus
time. The original snapshot diagnostic options included: <f> vs. xy E vs. x, p vs. x, vx vs. x,
vy vs. vx and /(vv). As the name implies, these diagnostics are records of the state of the

particles at a specific time. Exactly when the snapshots are to be taken is determined by the
value given the appropriate control parameters. If a value of m is given, for example, then a
snapshot is taken every m timesteps beginning at t = 0.

The second type of diagnostic in the original ESI code, the history plots, are time plots
(histories) of particular quantities which are of interest. These history plots are plotted every
500 timesteps, or at the end of the run, whichever comes first. The history plots of interest
are: the field energy, the kinetic energy, the drift energy, the thermal energy, the total energy,
and the mode energies. The field energy is the sum of all the spatial fourier mode energies; the
energies of selected spatial modes can also be individually plotted as an option.

3.3.1. New Diagnostics

Three new snapshot options were added. Two of these were (1) the perpendicular velo
city distribution function /( vp) and (2) the phase space vp vs. x. The third new snapshot was
of the energies of the various spatial modes plotted vs. the mode numbers. All the spatial
modes from the first through highest selected are plotted, the highest being set by the value of
the parameter modmax. Since there is a certain amount of variation in the mode energies from
timestep to timestep, an average is taken over several timesteps previous to the one on which
the plot is made. The number of timesteps over which the average is taken is determined by
the value of the parameter mav. Spatial mode energy plots should not be requested closer
together than the time over which the average is taken.



Fig. 2. Loading of 2 rings with 8 spokes,
with a twist.



4. THE DORY-GUEST-HARRIS RING INSTABILITY RESULTS

The instability discussed by Dory, Guest and Harris 2 can occur when an infinite, homo
geneous magneto-plasma has a "ring" shaped velocity distribution function /(vj.,vh) which
vanishes at vL = 0. The unstable modes considered in their article were those with kn = 0, and
could include a mode with the frequency equal to zero (purely growing). The simplest distribu
tion function which satisfies this criterion is a single velocity ring: fivL,v\\) —
(1/2-77vi)8( vi—a)8( V[|). With this distribution function, the various possible growing modes
will be unstable only if the quantity b = k± vj(ac has certain values. For the purely growing
mode to occur, b must lie in any of the following ranges: 2.40 ^ b < 3.83, 5.52 < b < 7.02
... c„ < b < dn where c„ is the nth zero of J0(b) and d„ is the nth zero of J\(b). If in addi
tion to the above, the condition

O),

a. <M«(b)

is satisfied, then the plasma is unstable. For other modes, (those with non-zero frequencies),
to be unstable, b must lie in different ranges as explained in the next section.

The authors then show that if the cold ring is given a thermal width v,A, then stability is
improved; the instability threshold value of <ap/ac increases with vlh/<vL>. A graph of the
predicted variation of threshold g>p/o>c vs. the half-width of the distribution function,
vth /< vi >, for the zero-frequency mode is reproduced from Dory, Guest and Harris as Figure 3.
The results of efforts to simulate both of these aspects of the Dory-Guest-Harris (DGH) insta
bility will be presented in the next three sections.

4.1. The Cold Ring

A suitable approximation to a cold ring, (vth =0), was loaded and the simulation results
were compared with DGH theory. Values chosen for the input parameters were as follows:
//(number of particles) = 4096, <oc = 0.2, L = 3.14, ng = 64, qm = 1.0 and v0 = 0.3. The
value of (ap was then varied from 0.5 to 1.2, with the result that the ring became unstable with
<i)p at about 0.57, or <op/(ac = 2.8, which corresponds to a higher mode (a> ^ 0). The mode
in fact had o>/&it. =» 2.5 and k = 4 so b = 6. This satisfies the criteria presented in Dory, Guest
and Harris that for a wave with frequency n < a)/(oc < w+1 to be unstable, it is necessary that
Jn,m < b < ./„+i,/H, where jlljn is the wth zero of /„. In this case the zeros of J„ which are of
interest are the first zeros of Ji and .A?, (5.136 and 6.380 respectively), which bracket b = 6.

Therefore the growing mode observed was indeed a legitimate mode whose parameters
conformed to those predicted by Dory, Guest and Harris. The growth rates y/(oc vs. (op/a>c are
presented in Figure 4a for both the cold ring and various warm rings, as discussed in the next
section. This growing mode is also in conformance with the results derived in the article by
Tataronis and Crawfora*, where it was shown that as o>p/o>c2 increased, the first unstable mode
was in the frequency band 2 < oi/<ac < 3. The critical instability threshold value of Qtp/o} was
calculated to be 6.62, which corresponds to <op/<ac = 2.57. The difference between the
observed critical <nj/<ac and that derived in Tataronis and Crawford may be attributed to the
discreteness of the allowed k values.



Q
-J

O

if)
u
cr
x

o

3

3

0.05 0.10 0.15

Vth/tVj.)
0.20

Fig. 3. Density threshold vs. half-width of the
distribution for the zero-frequency DGH
mode.

0.25



3
X

OJp/Wc

Fig. 4a. Growth rate vs. density for various cold and
warm rings.



4.2. The Warm Ring

A warm ring was then loaded and the value of o>p was varied to find the new threshold
value of (ap f(oc for which the ring was unstable. The warmth of the ring was adjusted using v/2
so that several different threshold values could be found for rings of different degrees of
warmth. Values of vtl were chosen so that v,/,/<vi> was equal to 0.05, 0.10, 0.15, and 0.20.
The threshold value for stability increased with the increased thermal spread of the ring, as
predicted in Dory, Guest and Harris. The increase in stability is slight at first,but then increases
more rapidly after v,h/<vL> becomes more than approximately 0.10, as is shown in Figure 4b.

Because of the thermal spread of the warm ring, more simulation particles were needed to
represent the distribution adequately. For this reason the number of particles was increased in
the warm ring simulation to n = 8192 (n = 16384 was also tried but as the improvement was
not significant enough to justify the increased expense, n =8192 was used). As vth was
increased, with n/nlg held constant, the quality of the simulation of the warm ring decreased,
ie. the plots were noisier and the growth rates were not as well defined. A few runs were made
with larger n/nlg, but the variation of the simulation results with n/nlg was not sufficient to
merit increasing n further.

In ESI, due to the finite spatial grid, only discrete spatial (Fourier) modes exist. The
maximum spatial mode number (minimum wavelength) m which the code can simulate is lim
ited by the grid spacing; the smallest wavelength the grid can detect is \mi„ ^2L/ng. In gen
eral the wavelength of the mth mode is \m = L/m, so this maximum spatial mode is:
'"max = ng/2. The minimum mode number (m = 1) corresponds to the maximum wavelength:
Xi = L. Since k = 2rr/\y then in general k,„ = lirm/L.

Care was taken to ensure that the k value of the growing mode fell on or near an allowed
mode number. This was necessary because if the most unstable mode had a k value which
corresponded to an m value which was not allowed (either because it was not an integer or it
was too large), then it would not grow. Initially mode 2 was the growing mode which
corresponded to k = 4, but as the thermal spread was increased to v/A/<vi> =0.15, mode 1
became the growing mode. This indicated that the value of k was changing. To determine k
more accurately it was necessary to increase the resolution of k by decreasing 2ir/L since as
shown above, k was an integral multiple of 2tr/L. The only way to increase the resolution of
k was to increase L.

To determine more accurately what value k was, L was increased to 16tt, whereupon the
primary growing mode was m = 24, which corresponded to k = 3. In addition to increasing the
resolution of k, the total number of allowed modes must also be increased, otherwise the
desired k value may no longer be covered by the range of allowed m values. This was accom
plished by increasing the number of grid cells, loading groups and particles (ng, nig and /?,
respectively) by the same factor that L was increased by.

A measure of how closely spaced the kvlh/o)c values are can be obtained by calculating
the value of k\v,h/<t>c. With the typical values of L = 4ir, v0 =0.3, and (oc =0.2, then
^i vih /<•><• "* u-^5. The value for v0 is used here for vlh since this is a ring distribution in which
the thermal spread is small compared to the ring velocity.
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4.3. The Loading Schemes

For the ring configuration, (cold and warm), the original version of INIT was used almost
unaltered. The number of loading groups was set equal to the number of cells (nig = ng) so
that at each (vv ,vy) location there would be one particle per cell in each "beam" on the aver
age. This prevented the grid from seeing the regularity which is present since the grid cannot
resolve a mode number equal to or higher than the number of cells. Fewer particles per cell
would result in a large amount of energy in a mode corresponding to ngx(particles/cell). This
excited mode would usually not be a growing mode and thus would remain at its initial level
but its presence would obscure the other, growing modes in the total field energy plot. Particles
per cell here refers only to those particles which all have the same initial (vY, vy).

The particles were then loaded into position space with the bit—reversed option, while they
were loaded in gyrophase with the ordered option. The duplication of the first loading group
into the rest of the system introduces a certain amount of regularity, but no two collections of
particles, each at different (vx,vy)y occupy the same positions in x-space. In this loading
scheme the thermally spread ring is made up of n/nlg rings, each ring consisting of only one
'spoke' with the gyrophase angle of the spokes arranged in a bit-reversed manner. Thus, no
two rings have their spokes at the same gyrophase angle.

5. THE QUIET START MAXWELLIAN RESULTS

In simulating a quiet start Maxwellian distribution, two different loading schemes were
used. The first was the 'rings and spokes' scheme in which there were a number of rings, each
of which consisted of some number of particles. When the particles were arranged so that there
was one particle from each ring at each gyrophase angle, the effect of "spokes" in (vp,0„) space
was given. Thus, particles which were in different rings (different vp), but had the same gyro
phase angle (0V) were in the same spoke.

5.1. The Unmagnetized Maxwellian

The case where the magnetic field is zero was treated by Gitomer and Adams4. They stu
died two different schemes for loading a Maxwellian velocity distribution: (1) equally weighted
but unequally spaced beams and (2) equally spaced but unequally weighted beams. In this
unmagnetized case the 'rings' become beams, (there is no vy). The first loading scheme was
relevant to my work as a limiting case as the magnetic field goes to zero. This equally weighted
beam case was simulated using approximately the same parameters as in Gitomer and Adams. It
was found that those beams with the highest velocity were the most unstable, thus reproducing
results obtained by Gitomer and Adams. The growth of the electric field energy and a v vs. x
phase space plot after growth has proceeded sufficiently to be visible are presented here in Fig
ure 5.
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5.2. The Magnetized Maxwellian

When a magnetic field is present, the loading scheme becomes more complicated. Those
particles which all have the same total velocity can no longer be called "beams", but could
better be termed "rings". The term beam can now be restricted to a set of one or more particles
which have the same total velocity and the same gyrophase angle. In the magnetic case, a
beam is merely the intersection of a ring and a spoke, so rings and spokes can be made up of
many beams each. When there are no particles at a ring-spoke intersection, as was sometimes
the case in the loading schemes considered in this project, the rings and spokes are poorly
denned.

This was the case in the loading scheme used previously in the warm ring simulation and
in Sec. 4.2.3 for the saturation simulations. In both of these cases each ring consisted of a set
of one or more particles positioned at a single gyrophase angle. Similarly, each spoke consisted
of a set of one or more particles positioned at a single perpendicular velocity.

5.2.1. The Ring-Spoke Loading Schemes

In the ring-spoke loading scheme, each ring consisted of a number of beams (nplg), all
with the same perpendicular velocity, and evenly distributed in gyrophase. Each spoke consisted
of a number of beams (nvlg)> all with the same gyrophase angle but with different perpendicu
lar velocities. A typical arrangement of 16 rings and 32 spokes is shown in Figure 6. The posi
tion of the particles was assigned using the bit-reversed loader, with all the beams loaded from
the same sequence of bit-reversed numbers. A diagram clarifying this loading scheme sequence
is presented in Figure 7, where A, B and C indicate the sequence in which the loading takes
place. Each beam was completely loaded before the next one was begun (A, in Figure 7), start
ing from the highest velocity beam in a spoke and working inward (as shown by B in Figure 7).
In this way each spoke was loaded in turn, so that all the beams were loaded in each spoke
before the next spoke was begun (sequence C in Figure 7). The loading sequence was impor
tant since in all the cases considered in this project, the number of rings, spokes and particles
per beam was a power of two. This was used mainly because of convenience, even though it
caused undesirable correlations when a loading sequence such as BAC was used, which caused
particles in the rings to be bunched. Since the bunching was caused by not completely filling a
"beam" before moving on to the next one, the only other acceptable loading sequence would be
ACB.

The number of particles per cell in the beams was more important than the number of
spokes or the number of rings. As the number of rings was decreased the results of the simu
lations resemble those expected from the theoretical predictions for the Maxwellian distribution
less and less, but only gradually without any abrupt loss of stability. A similar result was
obtained when the number of spokes was decreased. However, when the number of particles
in a beam was decreased to one for every two grid cells (ng/n = 2), the highest mode number
possible (k = ng/2) was excited; fortunately this mode is usually was not a growing mode.
When the number of particles was reduced further to one for every four grid cells (ng/n = 4),
the mode which was half the highest possible (k = ng/4) was excited; the distribution lost its
original order, though only in (vp ,0v) space. The excited modes quickly reached a saturation
level in the first few time steps approximately proportional to the If No thermal fluctuation
level, beyond which no growth occured. The best way to describe the result would be to say
that the distribution was unstable in velocity space, but stable in position space: the order in
velocity space becomes randomized, while the distribution remains ordered in position space.
The velocity of the beams changed drastically, while the beams as a whole remained intact (all
the particles in a beam continued to have identical velocity components) and the distribution of
the particles of the beams in position space remained uniform.

The loading schemes used to simulate a Maxwellian in this section will therefore presume
that there are sufficient particles per beam to prevent the excitation of the previously discussed
modes, unless otherwise specified. The main goal will be to confirm the dependency of the

13



stability on the number of rings and spokes, as derived by Kim in QPR II 805 and by Otani,
Cohen and Gerver in QPR IV 806. In these articles the conditions derived for the stability of
the rings and spokes loading were, approximately (for continuous rings),

brings ^ .3
0),

(tit

and (for rings composed of discrete spokes)

^fspokes > (8/rmaxVfA/<»c)

where kmax=* it ng/L denotes the maximum value of k. These two conditions would then
indicate that

8 (tip

(tic

2
*maxv/A

3 "< ,
** ^ ™rings™spokes™beam — •* N,beam

must be satisfied for numerical stability. Here A^eam is used to denote the number of particles
per beam, which is equal to the number of grid cells in the nig = ng case. So if a simulation is
desired out to ^maxVrt/^c =• 30, then it would be necessary to have N
cles, to avoid numerical instabilities.
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Fig. 7. Loading sequence for the Ring-Spoke loading scheme,
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5.2.2. The Ring-Spoke Maxwellian Instability Threshold Results

To test these conditions, it was necessary to find the critical o>^/a>c2 as the number of rings
or spokes was varied. A grid of 1024 cells was chosen initially to provide enough room for all
of the growing modes which might be present. The grid was later reduced to 128 cells when it
was found that this was sufficient as none of the higher modes were growing and all of the
lower growing modes were allowed.

Since the stability criterion for the minimum number of rings in a Maxwellian distribution
assumes that the rings are continuous, the verification of the relation which predicts the
minimum number of spokes must be tested first. It was decided to choose a number of rings,
say 8 or 32, and then vary the number of spokes from around 8 to 64. In this way any varia
tion of the results due to the number of rings could also be observed in order to see if it was
worthwhile to increase the number of rings.

The general trend as more spokes were added was for the critical stability level of &}/(*}
to rise, with the rise becoming faster after the number of spokes had become greater than 16.
When an insufficient number of spokes were~used to simulate a continuous ring, the critical sta
bility level of oij/oi} was lower than predicted. This was true regardless of how many rings
were used, at least up to the maximum that was possible (64). However, when the number of
spokes was increased beyond a certain point, the stability was greater than predicted for con
tinuous rings (an infinite number of spokes). This critical number of spokes depended on the
number of rings; for 8 rings it was about 16 spokes and for 32 rings it was closer to about 32
spokes. It was thus possible to produce loadings which were more stable than predicted by the
theory, though only if enough spokes were used.

The number of grid cells could not be reduced below 128 without reducing the accuracy
of the simulation, due to the necessity of having enough allowed modes to permit all the possi
ble growing modes to appear. Because this meant at least 128 particles were needed in each
beam and at least 32 rings were needed to adequately represent the Maxwellian, the number of
spokes was limited to 64 or less due to the limit of about a quarter-million particles per simula
tion run. The number of spokes could have been increased still further only by correspond
ingly reducing the number of rings or the number of allowed modes. Because of the cost of
the simulation runs with more than 260,000 particles, very few were made compared to those
with fewer particles. Thus, the relationship between the stability of the distribution and the
numbers of rings and spokes could not be as fully explored for the cases with larger numbers of
rings and spokes as for the cases with fewer rings and spokes.

In order to explore the relationship between the number of rings, the number of spokes
and the stability of the distribution a fixed number of rings was chosen for which the stability
threshold was found at different numbers of spokes. To find the dependency of the results on
the number of rings, two different series of runs were made, one with 8 rings and the other
with 32 rings. The result was that the distribution with 32 rings had a higher value of
(aip/oi^)crit at any particular number of spokes, as shown in Figure 8.

To allow the number of rings to be varied through a wide range, a case was chosen in
which each ring consisted of only one beam. Instead of having all the beams lined up to form a
single spoke as would have been the case if the standard loading routine was used, they were
bit-reversed in gyrophase angle. The critical o>p/o>2 for stability was then found for different
numbers of rings. The resulting relation between (u}/*>}) cm and Nri„gS, as shown in Figure 9,
was of course different from that predicted for continuous rings, but only in the magnitude of
the values of (<ti}/ai})cr„.

An indication of where the critical threshold would be for Nspokes = 8, 16 or 32 was
gained by graphing the appropriate points from Figure 8 onto Figure 9. Since two points were
not enough to more than roughly indicate the dependency of the stability on the number of
rings at the higher numbers of spokes, more points were determined to clarify the relationship.
It can be seen that with the number of spokes equal to 32, the stability threshold is greater than
that predicted by theory (both the simple relation and the more rigorous theory), though it is
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roughly proportional to it. It can also be seen from Figure 9 that for Nspokes = 8 and 16, the
dependency of the stability threshold on the number of rings is weaker for the larger number of
rings.

5.3. Saturation Results

In this section the growth of the electric field energy to saturation (presumably at the
thermal fluctuation level) was investigated. Since a quiet start of the level that could be
achieved with one particle per cell in each beam was not heeded, each beam was allowed to
consist of only one particle. There was also only one particle per ring and one particle per
spoke so that each particle occupied a unique (x,vp ,0V) position. This style of loading scheme
was sufficient in this case since it was not important how quickly the electric field saturated but
at what level. The saturation levels of this loading scheme and of the previous (ring-spoke)
loading schemes were approximately the same, depending only on the total number of particles,
though not all the simulation runs were run long enough for the field energy to saturate
because of the expense. The saturation level was expected to be proportional to some power of
\/ND where ND = n vth/(ap. This configuration was tested with a strong magnetic field
(<ii}/(n} •» 10) anda weak magnetic field (&}!<*} = 400).

5.3.1. The Saturation Loading Schemes

All of the possible combinations of the different loading schemes were used; bit-reversed,
trit-reversed and random in position space and gyrophase angle space. The simulation results
are summarized in table 1 for o»//o»c2 = 400. Figures 10and 11 are vy vs. vx plots of the bit-
reversed and trit-reversed gyrophase angle loadings, respectively, at t = 0, with vth = .5. Each
particle in these loadings has its own position in velocity phase space. The loading scheme used
for particle positions was more important than the gyrophase angle loading scheme, because
only the position determines the mode excitation levels. This caused the initial mode energy
plots to be identical if the position loading was the same, though the distribution of the mode
energy changed in later plots due to the influence of the gyrophase angle loading. This meant
that if a loading in position space was poor, it was very unlikely that there was a gyrophase
angle loading that would improve the results.

In all the Magnetized cases in which a Maxwellian distribution was loaded, the perpendic
ular velocities (vL= vp) were chosen using the inverse linear interpolation of the velocity
integral. In ESI, the parameter NV2 was set equal to 1, producing a thermal velocity distribu
tion. The particle velocities were chosen such that the v,s satisfied the integral equation

for the respective values of /.

/

i
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5.3.2. The Weakly Magnetized Case

The first case tried was with a weak magnetic field; a>p/a)c2= 400. The loading scheme
chosen was the best of the ones tried in the preceeding section; bit-reversed in position and
trit-reversed in gyrophase angle. This had the advantage of a smooth rise of the electric field
energy of about 2 orders of magnitude to a fairly stable saturation level, as shown in Figure 12
for n = 32768. For comparison, Figure 13 is a history plot of the electric field energy,
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Table 1.

Velocity Phase Angle j
Position Bit-Reversed Trit-Reversed j Random

Bit-Reversed BAD: A strong mode 1
component due to the
correlation. The initial

normalized electric field

energy is very low
< 10"27, but jumps to
10~2 on the first time

step.

GOOD: No single 1 POOR: Initial jump to
strong mode and with a > 10"4 and then fast
smooth rise as t2 to the rise to saturation at
saturation level of ap- i 10~3.
prox. 10-3. |

Trit-Reversed FAIR: Similar to bit-

trit, except every ninth
mode is excited and the

rise from the initial lev

el of approx. 10~5 to
the saturation level is

rather abrupt.

BAD: Similar to the | POOR: Virtually ident-
bit-bit loading with the 1 ical to the bit-random
same strong mode 1 loader,
component but with a
more abrupt rise to the i
saturation level. |

Random POOR: Initial field en
ergy level virtually
equal to the saturation
level. The field energy
oscillates around the sa

turation level with a

variation of about a fac

tor of 4 and a slight de
cay of the magnitude of
the oscillations.

POOR: Virtually ident- POOR: A strong mode
ical to the random-bit i 1 component and an
loader. | oscillating field energy

I saturation level.

obtained using the trit-reversed in position, bit-reversed in gyrophase angle loading scheme,
with n = 8192. The electric field energy, along with all the other energies measured by the
code in the history plots, was normalized with respect to the initial total energy (ESE0 + KE0),
which was virtually equal to the kinetic energy since the initial electric field energy was never
more than about one percent of the initial kinetic energy.

To find the relationship between the electric field energy saturation level and No, a series
of runs were made with all inputs identical except for the number of particles, which was dou
bled on each succeeding run. The runs were made with n = 8192 to 262144 particles (213 to
218). The initial rise of the electric field energy was found to be roughly proportional to t2.
The saturation level was found to be proportional to I/Nd as shown in Figure 14, though it was
not equal to I/Nd as was derived on pages 74-76 of Krall and Trivelpiece1.

5.3.3. The Strongly Magnetized Case

In the next case at}/at2 was set equal to 10, (i.e. the strong magnetic field case). The
same set of runs was made as in the weakly magnetized case to observe if there was any
difference in the relation between the saturation level of the electric field energy and n. The
growth of the electric field energy was roughly proportional to t2 and the saturation level was
now observed to be roughly proportional to (\/Nd)2, though at a higher overall level as is
shown in Figure 15.
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6. Summary

As the primary subject of this paper is that of different loading schemes for a Maxwellian
distribution, it cannot be overemphasized that there are many different distinct loading
schemes, and many different ways of loading each distinct scheme. As occurred in this project,
two different routines for loading virtually the same arrangement of particles produced results
which were nearly identical but not quite. Because of the three coordinates over which the par
ticles must be distributed, the various permutations of the different loading schemes can
become extremely complex, with unexpected correlations between the loading routines for each
coordinate.

The simplest kind of loading scheme gives each particle a unique position in each of the
three coordinates; there is only one particle per ring, one particle per beam, and one particle
per spoke. Using this condition, many different kinds of routines can be used to load the actual
positions, such as: ordered, bit-reversed, trit-reversed, etc. Once the particles had been
"loaded," various methods could be used to mix them to remove correlations or repeated
sequences, such as "twisting" the particles in velocity space about the zero velocity axis, as is
shown in Figure 14. This basic loading scheme was used with various combinations of loading
routines, and found to have a basic problem in which the electric field energy jumped from an
extremely low (" 10"27 of K.E.) initial value to a value near 10"6 or 10~5 of K.E. on the first
time step. The electric field energy then rose relatively slowly to saturate finally at a value
which was roughly proportional to 1/ No or a power of \/ ND. The problem with this loading
scheme as a whole was that the initial rise was fairly short, even for the best of the combina
tions of routines, approximately 25 time steps or less (see Figure 10 (MS report version)).

The next logical step was to increase the number of particles per ring, spoke, or beam.
This complicated the loading schemes enormously and, consequently, the number of tests was
proportionately smaller. The number of particles also increased quickly, especially if some
theoretical predictions were to be tested rigorously. It was found, however, that it was possible
to load the particles in such a way that the electric field energy grew from a very low initial
level (approximately 10~27 K.E.) at a rate determined by the value of (q>p/<oc)2. Below a
minimum value of ((np/(tic)2, the simulation was stable, while above that level, the electric field
grew many orders of magnitude to a final saturation level. It can only be presumed that this
final saturation level was proportional to \f ND as before, as it was prohibitively expensive to
follow more than a very few runs all the way out to saturation because of the large number of
particles. The key observation of this phase of the project was that it was almost always neces
sary to have one particle per grid cell in each beam to avoid the presence of unwanted modes.

While the number of particles per beam leaves the velocity distribution function
unchanged, the number of particles per spoke and the number of particles per ring change the
form of the velocity distribution function. For example, the number of particles per spoke is
equal to the number of rings and vice versa. The first simulations were run with only one ring;
this resulted in the velocity distribution functions shown in Figure 15, where two different ways
of looking at the distribution are shown: f(vx) and f(vp). These are the integrations of the
velocity function over vp and vx. The same "views" of a Maxwellian distribution ( /(vx) and
f(vp) ) are shown in Figure 16. This distribution function is what would result if the number
of spokes were infinite (continuous rings) and the number of rings are infinite. Neither of
these conditions could of course be satisfied, so the actual distributions were not quite as
smooth as those shown in Figure 16.
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