

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RAMP: GATE-ARRAY, STANDARD-CELL AND

MASTERIMAGE PLACEMENT MANUAL

by

C. K. Cheng and E. S. Kuh

Memorandum No. UCB/ERL M84/71

1 July 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

RAMP: Gate-Array, Standard-Cell and Masrterimage
Placement Manual

RAMP is an acronym for Resistive Analog Module Placement System. It util
izes the analogy of resistive network to tackle the placement problems, espe
cially the problems of very large scaled integrated circuits. Currently, the sys
tem is implemented for the Gate-Array, Standard-Ceil and Masterimage
Approaches.

The system places the modules automatically. It reads in the specification
of the chip, the netlist and the modules with different widths and heights. The
user can fix some of the modules. The system uses the objective function of the
sum of the squared wiring lengths. It utilizes the network optimization method
to distribute the modules into subregions, then, uses spacing process to
separate the overlapping modules. In the spacing, the prefixed modules might
be shifted from the predefined positions to avoid overlapping.

Currently, RAMP runs on a VAX 11/780 under 4.2 Berkeley UNIX. The HP
2648A is used as the graphics display. The entire system is implemented in C.
In order to install the system, user should run make in the directories
RAMP/sparsity and RAMP/ to compile the program.

Research sponsored by the National Science Foundation Grant ECS-8201580,
the University of California, Berkeley, MICRO Program, and by the
Semiconductor Research Consortium, grant no, SRC-82-11-008,

RAMP: Gate-Array, Standard-Cell and Masterimage
Placement Manual

1. What is RAMP?

RAMP is an acronym for Resistive Analog Module Placement[l-3]. It utilizes
the analogy of resistive network to tackle the placement problems, especially
the problems of very large scaled integrated circuits. Currently, the System is
implemented for the Gate-Array, Standard-Cell and Masterimage Approaches.

1.1. Gate-Array and Standard-Cell Approaches:
The chip has a regular structure. The 10-Pads are placed on the boundary

of the chip, while the modules are assigned to an array of rows inside the chip.
All modules are assumed to have same height but varying width. The routing
area is embedded between the rows and around the periphery of the array. In
the Gate-Array approach, rows of transistors are preprocessed. The chip size
and routing areas are therefore fixed. In the Standard-Cell approach, chip size
and routing areas are adjustable. Thus, routing is different for these two sys
tems. However, the formulation on placement is similar.

1.2. Masterimage approach:

The masterimage approach[4] has the same basic chip structure as that of
the Gate-Array. However, the modules to be placed are allowed to have different
widths and heights. This method is considered to be intermediate between
unconstrainted and constrainted placement.

The masterimage approach releases the constraint on the size of the
modules. Thus, the placement of Gate-Array and Standard-Cell approaches are
considered as special cases of Masterimage approach.

2. What can RAMP do?

The System places the modules automatically. It reads in data, does
assignment and outputs the result.

2.1. Input

The program reads in the following information.
1. Modules: All modules are rectangular with different widths and heights.

Some of the modules are fixed by the user. The modules can not be
rotated. However, they can be reflected with respect to the x and y coordi
nates. The pins are fixed on the modules for connections.

2. Netlist: Each net contains a certain list of pins. Nets which contain only one
pin or more than thirty pins are deleted by the input subroutine.

3. 10-Pads: 10-Pads are fixed on the boundary of the chip.

4. Chip: Chip has arrays of subregions for the placement of modules.

-2-

2.2. Assignment
RAMP employs a the objective function of the sum of the squared wiring

lengths. It uses network optimization to divide the modules into subregions,
then, uses spacing process to separate the overlapping modules. In spacing, the
prefixed modules might be shifted from the predefined positions to avoid over
lapping.

2.3. Output

The location and orientation of all the modules.

3. How to use the program?

3.1. Command

To use the program, the user should create two files for the program to
read. They are the file (netlist_file) describing the netlist and the file (chip_iile)
describing the chip specifications. The command "ramp netlist_file chip_file"
causes the execution of the placement program. The user can define the name
of the output file (place_J51e) by adding place.Jile after chip_JUe in the command.
Otherwise, the default output file name is "image.P".

3.2. Options

1. Merging: As described in [1-3], after partitioning, we can merge the subre
gions and do partitioning again to improve the result. However, the execu
tion time would be longer.

2. Plotting: The user can set TOLAYOUT flag for different level of plotting. 0:
No plotting, 1: Plot the modules after each level of partitioning, 2: Plot the
modules and nets after each level of partitioning, 3: Plot the process of
relaxation scheme.

3 beta: beta is a constant used in the relaxation scheme. Based on the value
of beta, some modules are fixed at part of the region and the network
optimization is done on the other modules to spread the modules over the
entire region. It should be set within 0^0.4. We recommend to set the value
near 0.25.

4 Debugging: In order to debug, user can set the flag of TOPRINT. 0: No
debugging. 1: Print the process, 2: Print the information in partitioning, 3:
Print the description of subregions, 4. Print the sparse matrix in network
optimization, 5: Print the netlist, 6: Print the information in spacing. User
should notice that the printed output might be very large, if the chip is
large and TOPRINT is set larger than 1.

5 Interaction: User can set the above options in each iteration of partitioning.
Or he can set the options in the beginning and choose no interaction.

4. Input files

4.1. netlist_file

The format of netlistjile is similar to the Berkeley Building-Block Layout
System (BBL) input file[5]. The prefixed modules are indicated by the letter T
after the string "MOD". Rectilinear modules are allowed; however, they are
replaced with the minimum rectangles containing the module by the input sub
routine. Based on our network optimization model, any subset of movable
modules should connect other modules or 10-Pads.

-3-

4.2. chipjile

The chip_file describes the chip specifications. The first four lines define
the window to be plotted on the screen of HP2648A graphics terminal. The array
structure of the chip is described by the left and right x coordinates of each
column and the bottom and top y coordinates of each row.

x <lx> /• left x coordinate of the window used in plotting the chip */
X <rx> /* right x coordinate of the window used in plotting the chip */
y <by> /* bottom y coordinate of the window used in plotting the chip */
Y <ty> /* top y coordinate of the window used in plotting the chip */
W<number of columns> /* This line should be above the lines starting with w */
H <number ofrows> /* This line should be above the lines starting with h*/
w 0 <lxO> <rxO> /* left and right corner of each column */
w 1 <lxl> <rxl> /* It should be described from left to right */

h 0 <byO> <tyO> /* bottom and top corner of each row */
h 1 <byl> <tyl> /* It should be described from bottom to top */

5. Example

This example has 3 by 3 subregions. The circuit contains eleven modules
including four 10-Pads. There are fourteen nets and twenty eight pins. On the
graph, "bkg" module is prefixed by the user.

5.1. netlist_file

-4

\ z
*

bKf Mi bKJ

tke

P3" N?

a/o A/if

bU

/^6 *"7 A/5

bfcL N/4 fcKb h'Kc
/v/ »

4

a/c

p*

SN 14

MOD
00
%boun

0

00

BO

68
08

S
T
1-1 N022
91 Nl 3 2
79N202

-J 7N312

$
DES
hi 1
vt 1

PI

he 1

ve 1

S
MOD

00
bka

0

00

20

22

02

$
T
01 NO 0 2
21N422

12N632

S
MOD-

30
bkb

0

00

20

22

02

S
T
01N402
21N522

12N732
9

MOD
60

bkc

0

00

20

22
02

T
01N502
21N122
12N832

S
MOD
03
bkd

0

00

50
52
02

$

-5

T

10N612
4 0N712

51N922

12N1032

42N11 32
S

MOD
63

bke

0

00
20

25

0 5

S
T

01N902

10N81 2

04N1302

15N232
S

MOD
06
bkf
0

00

20

22
02

S
T
1 0 N10 1 2

21 N12 22

12N332
S
MODf
36
bkg
0
00

20

22

02

S
T

0 1 N12 0 2

10 Nil 12
21N1322

S
$

-6-

-7

5.2. chipJUe

M

8

6

5

2

•/? i
s

x-i

ATP

V-J
yp
FP3

#3

it; 002

wl 35

w268

h002

hi 35
h268

5.3. Execution

Given the input files, user types "ramp netlistjple chipjile" to start the
execution. The program does process on three phases: Input Phase, Assignment
Phase and Output Phase. The information of Input Phase demonstrates on the
screen as:

\unput phase mmmmmmmmmmmmmmmmmmw
I 1 User^ime, 8 System_time.
j ====Readnetlist from file: Test /netlist_Jile to BBL database.
I ====/?ead chip description from file: Test /chip_file.

-8-

==== =Transform from BBL dot 06 ase to Array, h s true ture
This chip has 11 cells, 4 pads, 14 nets and 28pins.
The chip is divided by 3 by 3 subregions.
It takes 5 level of partitioning process.

== ==£e£ the options.
Default options: No debugging, No merging, beta- 0.25

No interaction, Plot graph in the process
Use the default options? (y/n) [y]:

In the interrogation, the user can type a return key to choose the default
value as set in the bracket. Or he can type y or n with a return key to set the
option. The default options are set no debugging, no merging and no interaction
mode. The beta value is set at 0.25. The program will plot the process on the
screen, if it is the HP 2648A terminal. Thus the program ask the type of the ter
minal.

I Is this HP 2648A GRAPHICS TERMINAL? (y/n) [y]:

If this is not an HP 2648A terminal, the user should response n. Otherwise,
the plotting of the graph will generate garbage on the screen.

If the user wants to set options, the program will ask the following questions

Print process data for the debugging? (y/n) [n]:
value of beta? (0.0-0.4) [0.25] :
Hot the result? (y/n) [y]:
Do merging? (y/n) [n]:
Continue to interact, or not? (y/n) [n]:

Then he can set the flags of options. If the value of any flag is set outside
the legal value, the program will keep on asking the same question until it is
correct.

Finally the program asks the user any change he wants to make. If the
options are right, then he can response n. Or, the interrogation process will
start again to make sure every option is right.

I Want to change the options? (y/n) [n]:

At the end of Input Phase, the program will check the format of netlist and
chip description to avoid the input of garbages.

I ====C7iecA: the format of netlist and chip descriptions.
\mmmmmmmMmmMmmmMMMmM#m end of input phase

In the assignment phase, there are two sections: Initialization Section and
Iteration Section.

^.assignment phasemmmmmmmmmmmmmmmmmmM
I 19 Usermtime,26System_time.
I ^INITIALIZATION SECTION:

-9-

In the Initialization Section, the program checks the sum of the manhattan
lengths and the sum of the squared lengths of the original placement. All the
subregions are initialized and the optimization is done.

=== =C7iecA: the original placement,
manhattan length = 14
squared length =14

20 User_time, 27 System_time.
====Initialize the subregions.
====Da optimization.

The result of optimization:
manhattan length = 46.9767
squared length = 99.3697

In the Iteration Section, there are two stages. In the first stage, the critical
modules are placed. The other modules are then placed in the next stage.

In the first stage, the chip is partitioned into level 4 subregions. the
prefixed modules are set and the capacity of subregions are updated. In each
iteration of partitioning, the measurements of wiring lengths are checked to
indicate the evolution of placement results.

it.ITERATION SECTION:

==== fix predefined modules.
26 User_time, 31 System_time.

====Partition the chip to level 4 to place the critical modules.
28 User_time, 31 System^time.

ft**

Partition to level 0.

manhattan length - 33.6388
squared length = 71.9867

Partition to level 1.

manhattan length = 32.586
squared length = 69.6415

ft**

Partition to level 2.

manhattan length = 38.6464
squared length = 84.2181

Partition to level 3.

manhattan length = 38.6464
squared length = 84.2181

Then spacing is used to separate the critical modules and fixed them. The pro
gram will also ask the user whether to plot the spacing process or not.

| ====Do spacing on critical modules.
j 61 User_time, 38 System^time.
j Plot the Spacing process? (y/n) [n]:

Spacing calls for repeated use of Selection of Preferable Direction, Compac
tion and Decompaction until no overlapping occurs. The maximal number of

10-

iterations is set by ten.

-Selection of Preferable Direction;
-Compaction in y direction;
-Decompaction in y direction;
-Compaction in x direction;
-Decompaction in x direction;

manhattan length = 64
squared length = 328

Plot the Spacing result? (y/n) [n]:
====/fcc critical modules.

65 User^time, 40System_time.

In the second stage, network optimization is done to partition the chip into
last level of subregions. Then, spacing is done to assign all the modules.

====Partition the chip from level 0 to level 5 to place all the modules.
66 User_time, 40_System_time.

Partition to level 0.
manhattan length = 19.4581
squared length = 22.952

ft**

Partition to level 1.
manhattan length = 19.9142
squared length = 29.6373

Partition to level 2.
manhattan length =19.7426
squared length = 29.75

====.Oo spacing on all modules.
83 User^time, 43 System_time.

Layout the Spacing process? (y/n)[n]:
Selection of Preferable Direction;
Compaction in y direction;
Decompaction in y direction;
Compaction in x direction;
Decompaction in x direction;

manhattan length = 14
squared length =14

Plot the Spacing result? (y/n) [n]:
== = =/Sa: all the modules.

89 Usermtvme, 44 System_time.
Ml modules are found to be fixed.

m§mmmmmmmmmmMmmm*wmm end ofassignment.

In the Output Phase, the program checks the result and writes the place
ment to a file.

///. OUTPUT PHASE MMMMMMMMm§M§MMM§HMMMMmmMifMmm
90 User_time, 44 System_time.

t. THE RESULT OF PLACEMENT:
manhattan length = 14
squared length =14

-11-

| ii. OUTPUT TO FILE: image.P:
I 95 User^Jime, 47 System_Jime.
\tm§m§mmmmmmmmmmMmmmm end of output phase

Because the output file is not defined by the user, the placement is written to
file "image.P". The format of the output file is the same as the input netlist_file.
In this example, the plot of the placement result looks like the first graph.

6. Reference

[1] C.K. Cheng and E.S Kuh, "Module Placement Based on Resistive Network
Optimization" IEEE Trans, on Computer-Aided Design pp.218-225 July 1984.

[2] C.A. Desoer and E.S. Kuh, Basic Circuit Theory, McGraw-Hill Book Company,
1969.

[3] C.K Cheng, Placement Mgorithms and ^plications to VLSI Design,
Memorandum No. UCB/ERL M84/40 16 May. 1984 Electronics Research
Laboratory Univ. of California, Berkeley.

[4] R.L. Donze and G. Sporzynski "Masterimage Approach to VLSI Design," IEEE
Computer Mag., pp. 18-25, Dec. 1983.

[5] N.P. Chen, C.P. Hsu, H.H. Chen, E.S. Kuh and M. Marek-Sadowska, BBL User's
Manual, Memorandum No. UCB/ERL M83/68 4 Nov. 1983 Electronics
Research Laboratory Univ. of California, Berkeley.

	Copyright notice 1984 - Copy
	ERL-84-71

