Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SQL-Like and Quel-Like
Correlation Queries with Aggregates

Revisited

by

Werner Kiessling

Memorandum No. UCB/ERL 84/75
17 September 1984

Electronics Research Laboratory

SQL-LIKEAND QUEL-LIKE
CORRELATION QUERIES WITH AGGREGATES
REVISITED
by

Werner Kiessling

Department of Electrical Engineering and Computer Science
University of California
Berkeley, CA.

Abstract

Recent transformation algorithms for speeding up evaluation of nested SQL-like queries with
aggregates are reviewed with respect to the correctness for aggregaies over empty sets. It turns
out that for a particular subset of such queries these algorithms fail 1o compute consistent
answers. Unfortunately there seems to be no way that these transformations can be made
correctly under all circumstances. Also the algorithms for QUEL are reexamined, likew ise
revealing a bug for nesting levels greater than one. However. in contrast, this error can easily
be fixed. Moreover. as a valuable by-product from the user's view, for a specific subset of
QUEL-queries with aggregates a simple semantics can be associated a posteriori.

This report was prepared while the author was on leave from the Technische Universitaet
Muenchen. Institut fuer Informatik, West Germany.

Die Arbeit wurde mit Unterstuetzung eines Supendiums des Wissenschaftsausscbuss der
NATO ueber der. DAAD ermoeglicht.

1. INTRODUCTION

This note is concerned with a specific type of nested queries, involving aggregates and
correlated predicates in a nested query block. This query type is exemplified by the following
sample relations and SQL-query:

Relations:

PARTS (PNUM, QOH)
SUPPLY (PNUM, QUAN, SHIPDATE)

Query Qt:

SELECT PNUM
FROM PARTS
WHERE QOH = (SELECT MAX(QUAN)
FROM SUPPLY |
WHERE SUPPLY.PNUM = PARTS.PNUM AND
SHIPDATE <1-1-80)

Each PARTS tuple contains the part number and the actual quantity on hand. ln the SUP-
PLY relation each tuple has a part number and information on the quantity of thai part
shipped at a particular date. The meaning of query Q1 is:

Find the part numbers of parts whose quantites on hand equal the highest gquantities of
those parts shipped be fore 1-1-80.

A similar example can be found in [KIMS2] In his paper a terminology for nested SQL-like
queries is developed. We will exactly be concerned with what is there termed rvpe-JA
gueries. A nested query Q is of tvpe JA if the WHERE clause of the inner block contains a
join predicate that references the relation of the outer block (PARTS.PNUM in our example)
and an aggregate function (here MAX) is associated with the SELECT clause of the inner
[b]ock. Similar classifications of nested SQL-like queries can also be found in [MAKS81] and
KIES3) :

The standard method for evaiuating correlation queries with aggregates is by nested-ireration ,
evaluating the inner query block once for each substituted correlation value (PARTS.PNUM-

value in our case)! By this nested-iteration procedure also the semantics of a type-JA SQL-
query is defined in a convenient way. As a matter of fact, for a large set of such queries and
database characteristics this methoc sufiers from very poor performance. In order to design
faster algorithms obviously one has to look for ways where the inner query block. calculating
the aggregates, may be evaluated only once. This has been recognized independently at several
sites and has led to the design of alternate algorithms to process correlation queries with
aggregates, see [KIM82] and [KIE83) for SQL-like queries and {EPS79) for QUEL-like queries.
While in the first two works the nested-iteration semantics is taken as a starting point from
which hopefully equivalent transformatior algorithms can be developed., the last work
defines the semantics of QUEL-queries using aggregates entirely by the given evaluation alge-
rithm and no attempt is made t relate the semantics thereby defined t0 a more easily
comprehensible semantics like nested-iteration. As an additionai means to speed up the pro-
cessing of correlation queries with aggregates the utilization of dvnamic filters is desirable, as
described in [KIE84]

However, these semantic transformations must be treated very carefully in order to give cop-
sistent results with respect to the original semantics. defined by nested-iteration. The main

! Ingres folks are reminded that in SQL there is an implicit binding of PARTS.FNUM 1nt the inner query biock
with the outer PARTS.QC. H.

-2-

thrust of this note is to exhibit the kind of possible mistakes and ,more imporiantly, 10 show
special cases where these semantic transformations fail. As it will turn out, the solutions
given in [KIM82] and [KIE83] fail for some queries applying the COUNT aggregate. Unfor-
tunately those algorithms cannot easily be adjusted to produce the desired answers. On the
other hand, the algorithms given in [EPS79] for processing analogous QUEL-queries yvields the
desired results unless an additional optimization procedure is applied, which fails for nesting
levels greater than one.

2. SOURCES OF INCONSISTENCY FOR SQL
2.1. Handling of aggregates over empty sets.

Let us assume the following instantiation of our PARTS and SUPPLY relations

.PARTS | PNUM QOH_
6

! 3
10 1
| § 0

&'PPLE’..'}._B&"\J__ QUAN __ SHIPDATE
3

4 7-3-79

3 2 10-1-7§
.10 1 6-8-78
P10 2 8-10-81
| $ 5 5-7-83

What should the desired answer for our given query Q1 be in this particular case? Evaluat-
ing Q1 by nested-iteration proceeds here as follows Fetch each PARTS tupie, extract its
PNUM value and subsutute it into the inner query block where it replaces PARTS.PAUM
Thereafter the inner block is evaluated and its result compared to QOH of that tuple in ques-
tion.

Doing so, the question how to handle aggregates over empty sets arise immediately. Let us dis-
linguish two cases:

(a) The default value for aggregates over empty sets is set to zero.”

Result: PARTS.PAU'M
10
)

(b) Agggregates like AVG, SUM MI\. MAX are set 10 a special NULL-value for empty sets.
Additionally, expressions like "QOH = NULL" evaluate to the unknown truth value (denoted
by ? in [CHA76]). The truth value of an entire WHERE clause is computed using three-
valued logic (ICHA76)), whereby tupies are considered to not satisfv the WHERE clause if the
overall truth value is faise or 2.

2 This is done eg. in INGRES {STOS0;j..

Result: PARTS.PAUM
10

Now we perform the transformation of query Q1 due to the algorithms described in [KIMV82]

- First transform the type-JA query into a type-J query by NEST-JA algorithm ({KIM82]:

TEMP (SUPPNUM, MAXQUAN) = (SELECT PNUM, MAX(QUAN)
FROM SUPPLY
WHERE SHIPDATE < 1-1-80
GROUP BY PNUM)

SELECT PNUM
FROM PARTS
WHERE QOH = { SELECT MAXQUAN
FROM TEMP
WHERE TEMP.SUPPNUM = PARTS.PAUM)

This transformation resuits in materializing a temporary relation TEMP and in a query of
tvpe J. .

- Second transform the type-J query by NEST-N-J algorithm ((KIM82]x

SELECT PNUM

FROM PARTS. TEMP

WHERE PARTS.QOH = TEMP.MAXQUAN AND
PARTS.PAUM = TEMP.SUPPNUM

This resulting querv now is a vanilla join querxv.

In order 1w materiaiize the wemporary relation TEMP we recall the semantics of SQL-queries
with a WHERE clause and a GROUP BY clause ([CHA76]): First the WHERE clause is applied
to qualif v tuples. then the respective groups are formed and then an aggregate function is
applied to each group.

This semanucs produces:

TEMP | SUPPNUM MAXQUAN
3 4
10 1

The evaluauion of our query Q1 following this semantic transformation vields the following:

Resuir: PARTS.PNUM
10

As can be seen, this result matches that of emploving NULL-values for the nested-iteration
semantics.

2.2. Troubles with the COUNT-aggregate.

-4

Well, up until now evervthing seems to work quite nicely, assuming the proper use of
NULL-values which assures the equivalence of the transformation algorithm of [KIMS82] to
the pested-iteration semantics. (This remark also applies to the related algorithms in [KIE83])
There seem to be troubles with this semantic transformation only in the event of an inade-
Quate treatment of aggregates over empty sets. Unfortunatelv there are examples where there
is no way out of this dilemma of aggregates over empty sets and which prove that this type
of semantic transformation for type-JA SQL-queries is incorrect for a certain subset of JA-
type queries. To demonstrate this, we will evaluate a query Q2 which is derived from our
original Q1 by simply substituting the aggregate MAX by COUNT. The reason for choosing
COUNT instead of MAX is that COUNT is a totally defined function, i.e. COUNT over the
empty set is defined as zero. (This implies also that for this new example the existence/non-
existence of NULL-values is irrelevant.)

Query Q2:

SELECT PAUM
FROM PARTS
WHERE QOH = (SELECT COUNT(SHIPDATE)
FROM SUPPLY
WHERE SUPPLY.PNUM = PARTS.PANUM AND
SHIPDATE <1-1-80)

The meaning of query Q2 is supposed to be as follows:
Find the part numbers of those parts whose quantities on hand equal the number of ship-
ments of those parts before 1-1-80.

Evaluating Q2 due 10 nested-iteration semantics vields:

Resultt PARTS.PAUM
10
s

The transformation of Q2 using Kim’s algorithms gives the following outcome:

TEMP' (SUPPNUM, CT } = (SELECT PNUM, COUNT(SHIPDATE !
FROM SUPPLY :
WHERE SHIPDATE <1-1-80
GROLUP BY PNUM)

SELECT PNUM

FROM PARTS. TEMP'

WHERE PARTS.QOH = TEMP.CT AND
PARTS.PNUM = TEMP'SUPPNUM

Evaluation of the above vields (remember the semantics of WHERE..GROUP BY .}

TEMP SUPPNUM CT.
3 2
10 1

Resultt PARTS.PNUM
10

Again the results differ. But unfortunately we now have no resort to establish a match
because COUNT is a totally defined function. The very reason. why this transformation fails
in this particular case is as follows: due to the WHERE..GROUP BY semantics, materializing
TEMP eliminates non-present SUPPLY.PNUM values; thus these empty sets are not counted
and evaluated to CT = 0. On the other hand, the nested-iteration method accounts for counting
empty sets. As a matter of fact, similar deficiencies will show up for the case where the
outer correlation coiumn (PARTS.PNUM) is not a subset of the innmer correlation column
(SUPPL.PNUM), as in our example.

Remark: The loophole 1n Kim’s paper lies ir the proof of his lemma2 upon which his NEST-
JA algorithm relies. An existential quantifier is implicitly assumed when it is stated: "Then iz
is clear that the query may be processed by ferching each tuple of Ri.then fetching the Rt
tuple whose C1 column has the same value as the Cp coiumn of the Ri tupie..

{In our exampie the roles of Ri, Rt, C1 and Cp are occupied by PARTS. TEMP', PARTS.PAUM
and TEMP'SUPPN\U'M)

How tc fix these bugs?

If one does not want to resort to a quite differen: algorithm then the following modification
comes into mind:

Trial correction: Adjust the transformation algorithm for JA-queries involving COUNTs by a
posterior: recovering lost aggregates over empty sets in the following way:

TEMP’ is defined as before, however the remaining query is modified into

SELECT PNUM
FROM PARTS, TEMP
WHERE (PARTS.QOH = TEMP.CT AND
PARTS.PNUM = TEMP’SUPPNUM)
OR
(PARTS.QOH = G AND
PARTS.PAUM 1S NOT IN(SELECT SUPPAULM
FROM TEMP'))

Unfortunately this solution only works for 1-level deep correlated tyvpe-JA queries like our
Q2. The following. somew hat more complex, example shows that in general the transforma-
tion under consideration cannot be fixed for arbitrarily correlated SQL-queries using COUNTs.

Relations:
Ri 'Ck Ch Cr Rj:Cm Cn Rk Cr (g
3 6 3 79 4 1 8
10 1 10 84 2 2 8
§ 0 8 78 1 -3 8
5 1 5 81 1 3 5
15 0 15 77 5 .4 3
12 0 12 82 6 -5 10
74 0 | 15
. 83 12 2 15
. 4 15
Queryv Q3:
SELECT Ri.Ck
FROM Ri
WHERE Ri.Ch = (SELECT COUNT{ RjCm)
FROMR;j
WHERE RiCn = (SELECT COUNT(Rk.Cp)
FROM Rk

WHERE Rk.Cg = Ri.Cr
AND RkCp'=3)
AND RjCm <80}

Expected result due to nested-iteration semantics: 110, §, 3, 15!

Foliowing the transformation of [KIM82}, Q3 would be processed as follows

R:1(C1, C2!} = (SELECT Rk.Cq. COUNT! Rk.Cp }
FROM Rk
WHERE RKk.Cp = 3
GROUP BY Rk.Cq)

R12(C1. C2) = (SELECT Rt1.C1, COUNT(RiCm)
FROM Rt1, R;
WHERE RjCn = Rt1.C2 AND RiCm < 80
GROUP BY Rt1.C1)

SELECT Ri.Ck
FROM Ri. Rt2
WHERE Ri.Ch = R12.C2 AND Ri.Cr = Rt2.C1

The two temporaries Rt1 and Rt2 materialize as follows:

Ruy :C1_C2 Rt2 " C1__C2
- 31
P30 (10 1

iw 1 ‘

Result for this original transformation: ;10 |

Can this mismatch be corrected afterwards by a modification like that for the 1-level nested
query Q2? Modifving the final subquery above to
SELECT Ri.Ck
FROM R, Rt2
WHERE (Ri.Ch = Rt2.C2 AND Ri.Cr = R12.C2)
OR
(Ri.Ch = 0 AND Ri.Cr IS NOT IN (SELECT Rt2 FROM C2))

produces as result 10, §, 15, thus recovering 8 and 15 lost by the outer COUNT. But unfor-
tunately there seems to be no general way to recover values lost bv COUNTS on a correlation
level greater than 1. In this example recovering S cannot be done using the same approach as
for the outer COUNT. ,

Consequently in order to devise a transformation which will produce consistent results for
any type-JA query, different algorithms must be considered. As a preparation for the QUEL
approach let us review the reason that the considered solution fails in some cases.

The transformation algorithm projects the inner correlating column (SUPPLY.PAUM for Q2)
into a temporary (TEMP) for a subsequent GROUP BY computation. This is correct as long as
the outer correlation column’s values (PARTS.PNUND are a subset of the inner ones. Other-
wise some outer correlating values may not be accounted for in the final join.

Therefore a consisient algorithm should start by projecting the outer correlation column into a
temporary relation. w hich is done by QUEL.

3. REVISITING QUEL SEMANTICS FOR AGGREGATES

3.1. Discussion of the QUEL Approach.

As mentioned introductorily the semantics of QUEL queries with aggregates are not
defined that conveniently by nested-iteration. The reason is probably founded in the following
complications with QUEL. as compared to SQL. Unlike SQL, QUEL distinguishes between
simple aggregates and aggregate functions ((EPS79)). The difference is best shown by the fol-
lowing example, which at first giance could be thought to be the QUEL-equivalent of our
SQL-query Q2:

RANGE OF P IS PARTS
RANGE OF SIS SUPPLY
RETRIEVE (P.PNUM)
WHERE P.QOH = COUNT (SSHIPDATE
WHERE S.PAUM = P.PAUM AND SSHIPDATE <1-1-80)

However, in this querv P.PNUM is completely local to the aggregate COUNT, ie. there is no
linking between the outer P.QOH and the inner PPNUM This usage of an aggregate is termed
a scalar aggregate, and it evaluates 10 a single value which is substituted to compute the outer
query. 'If we want te write the QUEL equivalent to Q2, then we must explicitly establisk
this desired link by using a BY'-list containing the outer correlation column P.PARTS for the
COUNT aggregate, which is done below::

Query 2

RANGE OF P IS PARTS
RANGE OF S IS SUPPLY
RETRIEVE (P.PNUM)
WHERE P.QOH = COUNT (S.SHIPDATE [BY P.PNUM.
WHERE S.PNUM = P.PNUM AND SSHIPDATE < 1-1-80 }

-8-

In contrast to the type-JA SQL-queries where the user can conveniently think of the associ-
ated semantics in terms of nested-iteration, QUEL is unable to assign an analogously simple
semantics 1o all correlation queries with aggregates. This is founded in the fact that due to the
freedom of explicit bindings through BY-lists a much broader class of aggregate queries than
in SQL is defined. In fact, the semantics of QUEL-queries with aggregates is soly defined by
the evaluation procedure described informally in [EPS79).% His algorithm is similar to those of
[KIMS2] and [KIE83] in so far that it likewise attempts to evaluate the inner block only once,
but it avoids the pitfalls with the COUNT aggregate by initially projecting the outer correla-
tion column into a temporary relation, which guarantees not to lose any outer correlation
values. Applied to Q2’, in principal this algorithm .orks as follows

7* (1) Project outer correlation column (being exactly the BY-list) and initialize aggregates. */
RETRIEVE INTO TEMP1 (PPNUM,CT =0)

/* (2) Evaluate partial query with aggregate function locally, maintaining
the connection between the inner correlation column values and their
respective aggregate value. *-

* Be carefully not to remove duplicates for TEMP2a. *

RETRIEVE INTO TEMP2a (P.PNUM., SSHIPDATE
WHERE S.PNUM = PPNUM AND SSHIPDATE < 1-1-80

RANGE OF T2a IS TEMP2a
RETRIEVE INTO TEMP2b (T2a.PNUM, CT = COUNT(T2a.SHIPDATE BY T2a.PNUM)

#*(3) Replace aggregates over non-empty sets by their real values in TEMP1. *-
RANGE OF T1 1S TEMP1

RANGE OF T2b IS TENMP2b

REPLACE T1 (CT = T26.CT)} WHERE T1.PNUM = T2b.PAUM

“*(4) Establish the link on PNUM and evaluate outer block. *

RETRIEVE (P.PNUM
WHERE P.QOH = T1.CT AND P.PAUM = T1.PAUM *

The evaluation of Q2' due 1o this algorithm proceeds as follows:

* Steps 1 - 3 *:
TEMP1 PNUM CT TEMP2a PNUM SHIPDATE
© 3 0O 3 7-3-79
i 10 0 3 10-1-78
8 0 10 6-5-78

3 However. it is strongiv doubted wWhether this degree of freedom has any advantages over the resiriccve impli-
c¢it binding mechanism in SQL.

4 This aigorithm is impiemented in University Ingres as well as in tae commercial version RT]-Ingres.

-9-

TEMP2b " PNUM CT TEMP1 PN\UM CT
3 2 3 2
.10 1 10 1
! 8 0
Result 10, 8.
Remarks:

(1) f we assume that there are no duplicate values for the outer correlation column
PARTS.PNUM, then the correctness of this algorithm should be clear after all preceeding dis-
cussions (this proposition has to be taken modulus the remarks stated subsequentlv in section
3.2). In particular the reader should convince himself that this algorithm is pot sensitive to a
specific choice of the defaults for aggregates over emptv sets. (Nevertheless, NULL values
should be supported.) Note also that in general the join clause in step2 must not be dropped. If
however for whatever reasons there are duplicate values in the outer correlation column then
this algorithm fails to be equivalent to nested iteration. (In the contrary, this issue does not
arise for KIMs algorithm.) In order to establish an equivalence to nested-iteration in every
conceivable case the computation of TEMP2a would have to be changed as follows:

RANGE OF T1 1S TEMP1
RETRIEVE INTOQ TEMP2a (TLPNUM SSHIPDATE)
WHERE S.PNUM = T1.PNUM AND SSHIPDATE < 1-1-80

(2) For 1ype-JA queries involving aggregates different from COUNT this algorithm is- slower
compared o Kim's. However, it is capable of processing a larger ciass of correlation queries
which are no longer of type-JA, e.g. consider the query

SELECT r1, r2 FROMR
WHERE r3 = (SELECT AVG(s1) FROMS. T
WHERE s2 =t1 ANDr4 =12)

This query may be correctly processed using this axlgorithn:5 . while [KIMS82] 1s not directly
applicable 1o it.

The most important result however is that we are now able to assign an easy semantics 10 a
certain subciass of QUEL-queries with aggregates. Namely, if we consider the class of ai}
QUEL-queries which is retained by translaung tvpe-JA SQL-queries inwo their QUEL-
counterparts with the proper BY-list choice. then the algorithm of [EPS79] impiements the
nest-iteration semantics (up 1o the mentioned exceptions).

3.2 BY-list optimization in QUEL.

As stated, the result obtained concerning the correctness of [EPS79] holds only if a pro-
cedure called BY-List oprimization in [EPS79] is not applied unconditionally. We will demon-
strate the intension and the effect of this BY-list optimization by the QUEL-counterpart of our
previous SQL-query Q3. The QUEL-equivaient of.Q3 looks as foliows:

$ Also IKIES3] car: process this larger class of correlation queries.

-10-

QUERY Q3"

RANGE OF 1 IS Ri
RANGE OF J IS Rj
RANGE OF K IS Rk
RETRIEVE (L.Ck)
WHERE 1.Ch = COUNT(J.Cm [BY I.Cr}
WHERE J.Cn = COUNT(K.Cp (BY I.Cr]
WHERE K.Cq = 1LCr
AND KCp=3)
AND JCm <80)

If we omit the BY-list optimization then Q3 is evaluated as follows (using the procedure
given in the previous section 3.1)

Phase A: Evaluate innermost aggregate
(1) RETRIEVE INTO TEMP1(1Cr,CT1=0)

(2a) /* don't eliminate duplicates *.
RETRIEVE INTO TEMP2a (1.Cr, K.Cp)
WHERE K.Cq =1.Cr ANDKCp =3

(2b) RANGE OF T2a IS TEMP2a
RETRIEVE INTO TEMP2B (T2a.Cr, CT1 = COUNT(T2a.Cp by T2a.Cr))

(3) RANGE OF T1 IS TEMP1
RANGE OF T2b IS TEMP2b
REPLACE T1 (CT1 = T2b.CT1) WHERE T1.Cr = T2b.Cr

Phase B: Replace innermost aggregate by computed result, accomplishing the proper
links required by the BY -lis:.

/* The remaining query 10 be processed now is: *

RETRIEVE 1Ck

WHERE L.Ch = COUNT(J.Cm BY LCr
WHERE J.Cn = T1.CT AND J.Cm <8G
AND 1.Cr = T1.Cr }

Phase C: Evaluare aggregate ir. above modi fied query.
(1) RETRIEVE INTO TEMP3 (1.Cr. CT2 = 0 i

(22’) /* don't eliminate duplicates *:
RETRIEVE INTO TEMP4a (1L.Cr. J.Cm !
WHERE J).Cn = T1.CT1 AND JCm <§0
AND 1LCr = T1.Cr

(2v") RANGE OF T4a IS TEMP4a
RETRIEVE INTO TEMP4b (T4a.Cr. CT2 = COUNT{ T4a.Cm BY T4a.Cr))

(3) RANGE OF T3 IS TEMP3
RANGE OF T4b IS TEMP4b
REPLACE T3(CT2 = T4b.CT2) WHERE T3.Cr = T4b.Cr

Phase D: Process remaining guery. being mod: fied accordingly.

-11-

(4) RETRIEVE (1.Ck) WHERE LCh = T3.CT2 AND LCr = T3.Cr

/* Steps 1 - 3%/

TEMP1 Cr
3

10

8

5

15

12

TEMP1 : C:

»

A Steps 1 - 3

TEMP3 | Cr

-t
(38

'nvgu;

bk b
[S RV

QW D

CcT2
O
Q
4]

¢

b

Cp TEMP2b ' Cr

TEMP22 ' Cr
3 4
10 5
§ 1
) 2
15 1
18 2
P15 4
TEMP4a " Cr Cm
3 78
10 7§
5 74
i 12 74

3
10
8

15

TEVP4: Cr

ww-—aug

The computed result in step 4 finally becomes: 10, 8, 5. and 15, which is the desired one.

Now we want to discuss what the mentioned BY-list optimizauon is about and why it faiis
for correlation queries with a correlation level greater than 1.

-12-

Let us reconsider the recent processing of Q3' and take a closer look at the modified query
after phase B is finished. To repeat. this query is

RETRIEVE 1.Ck

WHERE L.Ch = COUNT(J.Cm BY ILCr
WHERE J.Cn = T1.CT AND J.Cm <80
AND 1Cr=TiCr)

At this point Ingres would attempt to eliminate some logically superfluous range variables
from the subquery inside the COUNT according to the following reasoning: Knowing that
T1.Cr is a complete projection of LCr (with duplicates removed), L.Cr is replaced by T1.Cr
unless this would vield semantically incorrect transformations, with respect to the considered
subquery inside the COUNT. In the given situation this procedure (called BY-list optimization)
would produce:

RETRIEVE 1.Ck

WHERE 1.Ch = COUNT(J.Cm BY T1.Cr
WHERE J.Cn = T1.CT AND J.Cm <80
AND T1.Cr = T1.Cr)

Thereafter this query is rescanned for trivial clauses like T1.Cr = T1.Cr which are dropped.
Thus finally this procedure produces as input for phase C the following query:

RETRIEVE 1.Ck
WHERE 1.Ch = COUNT(J.Cm [BY T1.Cr
WHERE J.Cn = T1.CT AND J.Cm < 80)

The gained result for TEMP3 is of course the same as before. However the modified query for
phase D now would become:

RETRIEVE 1.Ck
WHERE 1.Ch = T3.CT2 AND {T1.C- = T3.Cr

In this way one crucial link between Ri and TEMP3 would get lost with the undesired effect
that Ingres actually delivers as resulw: 10, §, 5, 15 and 12.

Consequently, the application of the Ingres BY-list optimization produces inconsistent results
for correlation levels greater than one. Fixing this bug can be easily done, because for nested
aggregates a range variable replacement in the BY-list optimization must only make sure that
the variable in question does not appear in an outer BY-list.

4. CONCLUSION

In this pote we showed that for SQL-like correlation queries involving the COUNT
aggregate the transformation algorithms described in the literature fail to vield consistent
results for some cases. For the remaining correlation queries (using MAX., ML\, SUM, AVG
aggregates) those transformation algorithms are consistent, provided the proper use of NULL-
values. On the other hand, the algorithms used to process analogous QUEL-like queries are
reported to give the desired answers at any time, up t0 a minor repairabie bug. Whether the
SQL transformations can be adjusted in an elegant way relying on the current semantics of
WHERE . GROUP BY clauses is however questionable due to some inherent semantical
deficiencies. To demonstrate this, a query given in [CHA76} for the well-known emplovee
paradigm is reviewed:

-13-

SELECT DNO FROM EMP
WHERE JOB = "CLERK"’
GROUP BY DNO HAVING COUNT(*) > 10

The meaning of this query is supposed to be:

List the depar:ments that employ more than ten clerks.

However, consider the slightly changed query where we ask for department that employ less
thap ten clerks. Now the current WHERE .. GROUP BY evaluation order fails to report
departments that employ no clerks. In turn, QUEL allows a consistent formulation (OP
stands for <or >X ‘

RANGE OF E IS EMP
RETRIEVE (EDNO))
WHERE COUNT(EXNAME BY E.DNO WHERE E.JOB = 'CLERK’) OP 10

In [KIM82] iz is stated that the reason of the less-than-satisfactory performance of nested
queries in existing relational database systems is that most types of nmesting are not well
understood. It remains to be added that these semantic transformauons are indeed an impor-
tant step towards efficiency for processing nested queries. However, the well-known fact that
aggregates do not fit well into relational algebra has been emphasized by illustrative examples.
Concerning the abstract Group-By operator an interpretation as generalized projection is given
in [GRAS1] Doubtlessly further works needs to be done 1o integrate aggregates more smoothly
into relational algebra. Then the design of query evaiuation algorithms relying on query
transformatior will become a more reliable and powerful tool for efficiently processing very
complex queries.

Literature:

[CHA76]D.D. Chamberlin, et al:
SEQUEL2: A Unified Approach to Data Definition. Manipulation and Control, IBM J.
Res.&Dev. Vol.20. No.6. Nov. 1976, pp. 560-575.

[EPS79] R. Epstein:
Techniques for Processing Aggregates in Relational Database Sysiems, UC Berkelev
1979, Memo No. UCB/ERL * M79.8.

[GRA&1]P.MD Gray:
The "Group by" Operation in Relational Algebra, Deen and Hammersiey. Databases
1981.

[KIES3} W. Kiessling: .
Database Svstems for Computers with Inteliigent Subsystems. Ph.D. thesis, Techn.
Univ. Muenchen, July 1983 (in German).

[KIES4! W. Kiessling:
Tuneable Dynamic Filter Algorithms for High Performance Datatese Systems, Proc.
Intern. Workshop on High Level Computer Architecture, Los Angeles, May 21-25
,1984, pp. 6.10 - 6.20.

[KIMS82] W. Kim:
On Optimizing an SQL-like Nested Query. ACM TODS, Vol. 7. No. 3, Sept. 1982, pp.
443-469.

[MAKS1)
A. Makinouchi. et al:
The Optimization Strategy for Querv Evaluation in RDB/V1, Proc. VLDB Cannes
1951, pp. 518-529.

-14-

[STO80] M. Stonebraker: .
Retrospection on a Database System. ACM TODS, Vol. §, No. 2, June 1980, pp. 225-
240, .

	Copyright notice 1984 - Copy
	ERL-84-75

