

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SQL-Like and Quel-Like

Correlation Queries with Aggregates

Revisited

by

Werner Kiessling

Memorandum No. UCB/ERL 84/75

17 September 1984

Electronics Research Laboratory

SQL-LIKE AND QUEL-LIKE

CORRELATION QUERIES WITH AGGREGATES

REVISITED

by

Werner Kiessling

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA.

Abstract

Recent transformation algorithms for speeding up evaluation of nested SQL-like queries with
aggregates are reviewed with respect to the correctness for aggregates over empty sets. It turns
out that for a particular subset of such queries these algorithms fail to compute consistent
answers. Unfortunately there seems to be no way that these transformations can be made
correctly under all circumstances. Also the algorithms for QL"EL are reexamined, likewise
revealing a bug for nesting levels greater than one. However, in contrast, this error can easily
be fixed. Moreover, as a valuable by-product from the user's view, for a specific subset of
QUEL-queries with aggregates a simple semantics can be associated a posteriori.

This report was prepared while the author was on leave from the Technische Universitaet
Muenchen. lnstitut fuer lnformatik. West Germany.
Die Arbeit wurde mit Unterstuetzung eines Stipendiums des Wissenschaftsausschuss der
XATO ueber den DAAD ermoeglkht.

-I"

1. INTRODUCTION

This note is concerned with a specific type of nested queries, involving aggregates and
correlated predicates in a nested query block. This query type is exemplified by the following
sample relations and SQL-query:

Relations:

PARTS (PNUM, QOH)
SUPPLY (PNUM, QUAN, SHIPDATE)

Query Ql:

SELECT PNUM

FROM PARTS
WHERE QOH = (SELECTMAX(QUAN)

FROM SUPPLY

WTiERE SUPPLY.PNUM = PARTS.PNUM AND
SHIPDATE < 1-1-80)

Each PARTS tuple contains the part number and the actual quantity on hand. In the SUP
PLY relation each tuple has a part number and information on the quantity of that part
shipped at a particular date. The meaning of query Ql is:
Find the part numbers of parts whose quantites on hand equal the highest quantities of
thiose parts shipped before 1-1-80.

A similar example can be found in [KLMS2]. In his paper a terminology for nested SQL-like
queries is developed. We will exactly be concerned with what is there termed type-JA
queries. A nested query Q is of type JA if the WHERE clause of the inner block contains a
.join predicate that references the relation of the outer block (PARTS.PNUM in our example)
and an aggregate function (here MAX) is associated with the SELECT clause of the inner
block. Similar classifications of nested SQL-like queries can also be found in [MAK81] and
[KIES3J.
The standard method for evaluating correlation queries with aggregates is by nested-iteration ,
evaluating the inner query block once for each substituted correlation value (PARTS.PNUM-
value in our case).1 By this nested-iteration procedure also the semantics of a type-JA SQL-
query is defined in a convenient way. As a matter of fact, for a large set of such" queries and
database characteristics this method suffers from very poor performance. In order to design
faster algorithms obviously one has to look for ways where the inner query block, calculating
the aggregates, may be evaluated only once. This has been recognized independently at several
sites and has led to the design of alternate algorithms to process correlation queries with
aggregates, see [KEV182] and (KIES3] for SQL-like queries and [EPS79) for QUEL-like queries.
While in the first two works the nested-iteration semantics is taken as a starting point from
which hopefully equivalent transformation algorithms can be developed, the last work
defines the semantics of QUEL-queries using aggregates entirely by the given evaluation algo
rithm and no attempt is made to relate the semantics thereby defined to a more easily
comprehensible semantics like nested-iteration. As an additional means to speed up the pro
cessing of correlation queries with aggregates the utilization of dvnamic filters is desirable, as
described in [KIE84].
However, these semantic transformations must be treated very carefully in order to give con
sistent results with respect to the original semantics, defined by nested-iteration. The main

1Ingres folks are reminded that in SOL theTe L< an implicit binding of PARTS.PNl*M it, the inner querv block
with the outer PARTS.QX.H.

•2-

thrust of this note is to exhibit the kind of possible mistakes and ,more importantly, to show
special cases where these semantic transformations fail. As it will turn out, the solutions
given in [KLMS2] and [KIE83] fail for some queries applying the COUNT aggregate. Unfor
tunately those algorithms cannot easily be adjusted to produce the desired answers. On the
other hand, the algorithms given in [EPS79] for processing analogous QUEL-queries yields the
desired results unless an additional optimization procedure is applied, which fails for nesting
levels greater than one.

2. SOURCES OF INCONSISTENCY FOR SQL

2.1. Handling of aggregates over empty sets.

Let us assume the following instantiation of our PARTS and SUPPLY relations:

PARTS j PNUM QOH
* "'"'3 6

10 1

! S 0

supply;| PNUM _QL'AN__SHIPDATE_
3 " " "4"""" 7-3^79
3 2 10-1-78

.10 1 6-8-78

10 2 8-10-81

| S 5 5-7-83

What should the desired answer for our given query Ql be in this particular case? Evaluat
ing Ql by nested-iteration proceeds here as follows Fetch each PARTS tuple, extract its
PNUM value and substitute it into the inner query block where it replaces PARTS.PNUM
Thereafter the inner block is evaluated and its result compared to QOH of that tuple in ques
tion.

Doing so, the question how to handle aggregates over empty sets arise immediately. Let us dis
tinguish two cases:

(a) The default value for aggregates over empty sets is set to zero.2

Result: PARTS.PNUM

10

8

(b) Agggregates like AVG, SUM MIN. MAX are set to a special NULL-value for empty sets.
Additionally, expressions like "QOH = NULL" evaluate to the unknown truth value (denoted
by ? in [CHA76]). The truth value of an entire WHERE clause is computed using three-
valued logic ([CHA76]), whereby tuples are considered to not satisfy the WHERE clause if the
overall truth value is false or ?.

This is done e^. in INGRES GSTOSOj:.

-3-

Result: PARTS.PNUM

10

Now we perform the transformation of query Ql due to the algorithms described in [KIM82].

- First transform the type-JA query into a type-J query by NEST-JA algorithm ([KIMS2]):

TEMP (SUPPNUM MAXQUAN) = (SELECT PNUM, MAX(QUAN)
FROM SUPPLY

WHERE SHIPDATE < 1-1-80

GROUP BY PNUM)

SELECT PNUM

FROM PARTS
WHERE QOH = (SELECT MAXQUAN

FROM TEMP

WHERE TEMP.SUPPNUM = PARTS.PNUM)

This transformation results in materializing a temporary relation TEMP and in a query of
type J.

- Second transform the type-J query by NEST-N-J algorithm ([KLM82]>.

SELECT PNUM

FROM PARTS. TEMP

WHERE PARTS.QOH = TEMP.MAXQUAN AND
PARTS.PNUM = TEMP.SUPPNUM

This resulting querv now is a vanilla join query.
In order to materialize the temporary relation TEMP we recall the semantics of SQL-queries
with a WHERE clause and a GROUP BY clause ([CHA76]): First the WHERE clause is applied
to qualify tuples, then the respective groups are formed and then an aggregate function is
applied to each group.
This semantics produces:

TEMP SUPPNUM MAXQUAN
3 4

10 1

The evaluation of our query Ql following this semantic transformation yields the following:

Result: PARTS.PNUM
10

.As can be seen, this result matches thai of employing MT.L-values for the nested-iteration
semantics.

2.2. Troubles with the COUNT-aggregate.

^ell, up until now everything seems to work quite nicely, assuming the proper use of
NLLL-values which assures the equivalence of the transformation algorithm of [KIM82] to
the nested-iteration semantics. (This remark also applies to the related algorithms in [KIE83].)
There seem to be troubles with this semantic transformation onlv in the event of an inade
quate treatment of aggregates over empty sets. Unfortunately there are examples where there
is no way out of this dilemma of aggregates over empty sets and which prove that this type
of semantic transformation for type-JA SQL-queries is incorrect for a certain subset of JA-
type queries. To demonstrate this, we will evaluate a querv Q2 which is derived from our
original Ql by simply substituting the aggregate MAX bv COUNT. The reason for choosing
COUNT instead of MAX is that COUNT is a totally defined function, i.e, COUNT over the
empty set is defined as zero. (This implies also that for this new example the existence/non
existence of NULL-values is irrelevant.)

Query Q2:

SELECT PNUM
FROM PARTS
WHERE QOH = (SELECT COUNT(SHIPDATE)

FROM SUPPLY

WHERE SUPPLY.PNUM = PARTS.PNUM AND
SHIPDATE < 1-1-80)

The meaning of query Q2 is supposed to be as follows:
Find the part numbers of those parts whose quantities on hand equal the number of ship
ments of those parts before 1-1-80.

Evaluating Q2 due to nested-iteration semantics yields:

Result: PARTS.PNUM
10

8

The transformation of Q2 using Rim's algorithms gives the following outcome:

TEMP' (SUPPNUM CT) = (SELECT PNUM COUNT(SHIPDATE)
FROM SUPPLY

WHERE SHIPDATE < 1-1-80
GROUP BY PNUM)

SELECT PNUM

FROM PARTS. TEMP'
WHERE PARTS.QOH = TEMP.CT AND

PARTS.PNUM = TEMP.SUPPNUM

Evaluation of the above yields (remember the semantics of WHERE-GROUP BY->.

5-

TEMP' SUPPNUM CT

3 2"
10 1

Result: PARTS.PNUM

10

Again the results differ. But unfortunately we now have no resort to establish a match
because COUNT is a totally defined function. The very reason, why this transformation fails
in this particular case is as follows due to the WHERE-.GROUP BY semantics, materializing
TEMP eliminates non-present SUPPLY.PNUM values; thus these empty sets are not counted
and evaluated to CT = 0. On the other hand, the nested-iteration method accounts for counting
empty sets. As a matter of fact, similar deficiencies will show up for the case where the
outer correlation column (PARTS^NUM) is not a subset of the inner correlation column
(SUPPL.PNUM), as in our example.
Remark: The loophole in Kim's paper lies in the proof of his lemma2 upon w hich his NEST-
JA algorithm relies. .An existential quantifier is implicitly assumed when it is stated: "Then it
is clear that the query may be processed by fetcMng each tuple of Ri, then fetching the Re
tuple whose CI column iias the same value as the Cp column of the Ri tuple.J'
(In our example the roles of Ri, Rt, Cl and Cp are occupied bv PARTS. TEMP', PARTS.PNUM
and TEMF.SUPPNUM)

Bow to fix these bugs?

If one does not want to resort to a quite different algorithm then the following modification
comes into mind:

Trial correction: Adjust the transformation algorithm for JA-queries involving COUNTs by a
posteriori recovering lost aggregates over empty sets in the following way:
TEMP' is defined as before, however the remaining query is modified into

SELECT PNUM

FROM PARTS/TEMP'
WHERE (PARTS.QOH = TEMPXT .AND

PARTS.PNUM = TEMP\SUPPNUM)
OR

(PARTS.QOH = 0 AND
PARTS.PNUM IS NOT L\ (SELECT SUPPNUM

FROM TEMP*))

Unfortunately this solution only works for 1-level deep correlated type-JA queries like our
Q2. The following, somewhat more complex, example shows that in general the transforma
tion under consideration cannot be fixed for arbitrarily correlated SQL-queries using COUNTs.

Relations:

Ri ' Ck Ch Cr

3 6 3

10 1 10

8 0 8

5 1 5

15 0 15

12 0 12

-6-

Rj I Cm Cn Rk
79 4

84 2

78 1

81 1

77 5

82 6

74 0

83 12

Cp Cq
1 8

2 8

3 8

3 5

4 3

5 10

1 15

2 15

4 15

Query Q3:

SELECT Ri.Ck
FROM Ri

WHERE Ri.Ch = (SELECT COUNT. Rj.Cm)
FROMRj
WHERE RiCn = (SELECT COUNT(Rk.Cp)

FROM Rk

WHERE Rk.Cq = Ri.Cr
AND Rk.Cp != 3)

.AND Rj.Cm < 80)

Expected result due to nested-iteration semantics '10. 8. 5. 15 I

Following the transformation of [KIM82], Q3 would be processed as follows:

RtllCl, C2) = (SELECT Rk.Cq. COUNTC Rk.Cp >
FROM Rk

WHERE Rk.Cp != 3
GROUP BY Rk.Cq)

Rt2(Cl. C2) = CSELECT Rtl.Cl. COUNTl Rj.Cm)
FROMRtl.R:
WHERE Rj.Cn = Rtl.C2 AND R iCm < SO
GROUP BY Rtl.Cl)

SELECT Ri.Ck

FROM Ri.Rt2

WHERE Ri.Ch = Rt2.C2 .AND Ri.Cr = Rt2.Cl

The two temporaries Rtl and Rt2 materialize as follows

R^J Cl C2 Rt2 ; Cl __C2_
r8 3 3" 1
I 3 1 ; 10 1
I 10 1 '

•7-

Result for this original transformation: 110 1

Can this mismatch be corrected afterwards by a modification like that for the 1-level nested
query Q2? Modifying the final subquery above to

SELECT Ri.Ck

FROM Ri, Rt2
WHERE (Ri.Ch = Rt2.C2 AND Ri.Cr = Rt2.C2)

OR

(Ri.Ch = 0 .AND Ri.Cr IS NOT IN (SELECT Rt2 FROM C2))

produces as result 10, 8, 15, thus recovering 8 and 15 lost by the outer COUNT. But unfor
tunately there seems to be no general wTay to recover values lost by COUNTs on a correlation
level greater than 1. In this example recovering 5 cannot be done using the same approach as
for the outer COUNT.

Consequently in order to devise a transformation which will produce consistent results for
any type-JA query, different algorithms must be considered. As a preparation for the QUEL
approach let us review the reason that the considered solution fails in some cases.
The transformation algorithm projects the inner correlating column (SUPPLY.PNUM for Q2)
into a temporary (TEMP) for a subsequent GROUP BY computation. This is correct as long as
the outer correlation column's values (PARTS.PNUM) are a subset of the inner ones. Other
wise some outer correlating values may not be accounted for in the final join.
Therefore a consistent algorithm should start by projecting the outer correlation column into a
temporary relation, which is done by QL'EL.

3. REVISITING QUEL SEMANTICS FOR AGGREGATES

3.1. Discussion of the QUEL Approach.

As mentioned introductorily the semantics of QUEL queries with aggregates are not
defined that conveniently by nested-iteration. The reason is probably founded in the following
complications with QUEL, as compared to SQL Unlike SQL, QUEL distinguishes between
simple aggregates and aggregate functions ([EPS79]). The difference is best shown by the fol
lowing example, which at first glance could be thought to be the QUEL-equivalent of our
SQL-query Q2:

RANGE OF P IS PARTS
RANGE OF S IS SUPPLY
RETRIEVE (P.PNUM)
WHERE P.QOH = COUNT (S3HIPDATE

WHERE S.PNUM = P.PNUM AND S.SHIPDATE < 1-1-80)

However, in this query P.PNUM is completely local to the aggregate COUNT, U. there is no
linking between the outer P.QOH and the inner P.PNUM This usage of an aggregate is termed
a scalar aggregate, and it evaluates to a single value which is substituted to compute the outer
query. If we want to write the QL'EL equivalent to Q2, then we must explicitly establish
this desired link by using a BY-list containing the outer correlation column P.PARTS for the
COUNT aggregate, which is done below:

Query 2':

RANGE OF P IS PARTS
RANGE OF S IS SUPPLY
RETRIEVE (P.PNUM)
WHERE P.QOH = COUNT (S3HIPDATE iBY P.PNUM:

WHERE S.PNUM = P.PNUM AND S3HIPDATE < 1-1-80)

In contrast to the type-JA SQL-queries where the user can conveniently think of the associ
ated semantics in terms of nested-iteration, QUEL is unable to assign an analogously simple
semantics to all correlation queries with aggregates This is founded in the fact that due to the
freedom of explicit bindings through BY-lists a much broader class of aggregate queries than
in SQL is defined.3 In fact, the semantics of QUEL-queries with aggregates is soly defined by
the evaluation procedure described informally in [EPS79].4 His algorithm is similar to those of
[KIMS2] and [KIE83] in so far that it likewise attempts to evaluate the inner block only once,
but it avoids the pitfalls with the COUNT aggregate by initially projecting the outer correla
tion column into a temporary relation, which guarantees not to lose any outer correlation
values. Applied to Q2\ in principal this algorithm ..orks as follows

/* (1) Project outer correlation column (being exactly the BY-list) and initialize aggregates */

RETRIED INTO TEMPI (P.PNUM, CT •= 0)

/* (2) Evaluate partial query with aggregate function locally, maintaining
the connection between the inner correlation column values and their
respective aggregate value. *.
;* Be carefully not to remove duplicates for TEMP2a. *

RETRIEVE INTO TE\P2a (P.PNUM. SSHIPDATE)
WHERE S.PNUM = P.PNUM AND S.SHIPDATE < 1-1-80

RANGE OF T2a IS TEMP2a

RETRIED INTO TEMP2b (T2a.PNUM, CT = COUNT(T2a-SHIPDATE BY T2a.PNUM)

/* (3) Replace aggregates over non-empty sets by their real values in TEMPI. *••

RANGE OF Tl IS TEMPI
RANGE OF T2b IS TEMP2b

REPLACE TH CT = T2b.CT) WHERE Tl.PNUM = T2b.PNUM

' (4) Establish the link on PNUM and evaluate outer block. *

RETRIEVE (P.PNUM :•
WHERE P.QOH = Tl.CT AND P.PNUM = Tl.PNUM

The evaluation of Q2' due to this algorithm proceeds as follows

'* Steps 1 - 3 *••

TEMPI PNUM CT TEMP2a ' PNUM SHIPDATE
3 6" 3 7-3-79

i 10 0 3 10-1-78
I 8 0 10 6-8-78

3 However, it is strongly doubted whether this degree of freedom has any advantages' over the restrictive impli
cit binding mechanism in SQL.

4 Tnis algorithm is implemented in University Ingres as well as in the commercial version RTl-bigrei.

TEMP2b ' PNUM CT TEMPI PNUM CT
3 2 3 2

10 1 10 1
1 SO

Result: 10, 8.

Remarks:

(1) If we assume that there are no duplicate values for the outer correlation column
PARTS.PNUM, then the correctness of this algorithm should be clear after all preceeding dis
cussions (this proposition has to be taken modulus the remarks stated subsequently in section
3.2). In particular the reader should convince himself that this algorithm is not sensitive to a
specific choice of the defaults for aggregates over empty sets. (Nevertheless, NULL values
should be supported.) Note also that in general the join clause in step2 must not be dropped. If
however for whatever reasons there are duplicate values in the outer correlation column then
this algorithm fails to be equivalent to nested iteration. (In the contrary, this issue does not
arise for KIM'S algorithm.) In order to establish an equivalence to nested-iteration in every
conceivable case the computation of TEMP2a would have to be changed as follows:

RANGE OF Tl IS TEMPI

RETR1E\T INTO TEMP2a (Tl.PNUM S3HIPDATE)
WHERE S.PNUM = Tl.PNUM AND SSHIPDATE < 1-1-80

(2) For type-JA queries involving aggregates different from COUNT this algorithm is slower
compared to Kim's. However, it is capable of processing a larger class of correlation queries
which are no longer of type-JA, e.g. consider the query

SELECT rl,r2 FROM R
WHERE r3 - (SELECT AVG(si) FROM S. T

WHERE s2 - tl .AND r4 = t2)

This query may be correctly processed using this algorithm5 , while [KIMS2] is not directly
applicable to it.

The most important result however is that we are now able to assign an easy semantics to a
certain subclass of QUEL-queries with aggregates. Namely, if we "consider the class of ail
QUEL-queries which is retained by translating type-JA SQL-queries into their QUEL-
counterparts with the proper BY-list choice, then the algorithm of [EPS79] implements the
nest-iteration semantics (up to the mentioned exceptions).

3.2 BY-list optimization in QUEL.

As stated, the result obtained concerning the correctness of [EPS79J holds only if a pro
cedure called BY-list optimization in [EPS79] is not applied unconditionally. We will demon
strate the intension and the effect of this BY-list optimization by the QUEL-counterpart of our
previous SQL-query Q3. The QUEL-equivaient of .Q3 looks as follows:

ALso |KIES3i car. procesi thii larger class of correlation queries

10-

QUERY Q3':

RANGE OF 1 IS Ri

RANGE OF J IS Rj
RANGE OF K IS Rk
RETRIEVE (I.Ck)
WHERE l.Ch = COUNT(J.Cm 1BY I.Cr!

WTIERE J.Cn = COUNK K.Cp iBYLCrl
WHERE K.Cq = I.Cr
.AND K.Cp != 3)

.AND J.Cm < 80)

If we omit the BY-list optimization then Q3' is evaluated as follows (using the procedure
given in the previous section 3.1):

Phase A: Evaluate innermost aggregate

(1) RETRIEVE LNTO TEMPI (l.Cr, CTl = 0)

(2a) /* don't eliminate duplicates *•
RFTRIEVE INTO TEMP2a (I.Cr, K.Cp)
WHERE K.Cq = l.Cr AND K.Cp != 3

(2b) RANGE OF T2a IS TEMP2a
RETRIEVE INTO TEMP2B (T2a.Cr, CTl = COUNTC T2a.Cp by T2a.Cr))

(3) R.ANGE OF Tl IS TEMP1
RANGE OF T2b IS TEMP2b

REPLACE Tl (CTl = T2b.CTl) WTHERE Tl.Cr = T2b.Cr

Phase B: Replace innermost aggregate by computed result, accomplishing the proper
links required by the BY-list.

/* The remaining query to be processed now is *

RETRIEVE LCk

• WHERE I.Ch = COUNTl J.Cm BY I.Cr
WTHERE J.Cn = Tl.CT AND J.Cm < 80

AND LCr = Tl.Cr .)

Phase C: Evaluate aggregate in abovemodified query.

I1\> RETRIEVE INTO TEMP3 (I.Cr. CT2 = 0 ;

(2a*) •'* don't eliminate duplicates *••
RETRIEVE INTO TEMP4a (LCr. J.Cm >
WHERE J.Cn = T1.CT1 AND J.Cm <80
.AND LCr = Tl.Cr

(2b0 RANGE OF T4a IS TEMP4a
RETRIEVE INTO TEMP4b (T4a.Cr. CT2 = COUNTX T4a.Cm BY T4a.Cr))

11-

(30 RANGE OF T3 IS TEMP3
RANGE OF T4b IS TEMP4b

REPLACE T3 (CT2 = T4b.CT2) WHERE T3.Cr = T4b.Cr

Phase D: Process remaining query, being modified accordinglx.

(4) RETRIEVE (l.Ck) WHERE l.Ch = T3.CT2 AND LCr = T3.Cr

/* Steps 1 - 3 */

TEMPI Cr CTl TEMP2a • Cr Cp TEMP2b 'Cr CTl
3 0 " 3 4 3 1*

10 0 10 5 10 1

8 0 8 1 8 2
5 0 8 2 15 3
15 0 15 1 •

12 0 15 2

TEMPI Cr CTl

3 1

10 1

8 2

5 0

15 3

12 0

Steps 1' - 3'

15

TEMP3

3

CT2

0

TEMP4a ' Ct Cm

78

TEMP4b ' Cr

3

CR2

1

10 0 10 78 10 1

8 0 5 74 5 1
> 0 i 12 74 , 12 1

. 15 0

i 12 0

TEMP3 ' Cr

= 3

10

8
c

15

! 12

CT2

1

1

0

1

0

1

The computed result in step 4 finally becomes: 10, 8. 5. and 15, which is the desired one.

Now we want to discuss what the mentioned BY-hst optimization is about and why it fails
for correlation queries with a correlation level greater than 1.

12-

Let us reconsider the recent processing of Q3' and take a closer look at the modified query
after phase B is finished. To repeat, this query is

RETRIEVE I.Ck

WHERE I.Ch » COUNTt J.Cm BY LCr
WHERE J.Cn = Tl.CT .AND J.Cm < 80
AND l.Cr = Tl.Cr)

At this point Ingres would attempt to eliminate some logically superfluous range variables
from the subquery inside the COUNT according to the following reasoning: Knowing that
Tl.Cr is a complete projection of LCr (with duplicates removed), LCr is replaced by Tl.Cr
unless this would yield semantically incorrect transformations, with respect to the considered
subquery inside the COUNT. In the given situation this procedure (called BY-list optimization)
would produce:

RETRIEVE I.Ck

WHERE l.Ch = COUNK J.Cm BY Tl.Cr
WHERE J.Cn - Tl.CT AND J.Cm < 80
AND Tl.Cr = Tl.Cr)

Thereafter this query is rescanned for trivial clauses like Tl.Cr =Tl.Cr which are dropped.
Thus finally this procedure produces as input for phase C the following query:

RETRIEVE I.Ck
WHERE I.Ch = COUNT(J.Cm IBY Tl.Cr

WHERE J.Cn = Tl.CT .AND J.Cm < 80)

The gained result for TEMP3 is of course the same as before. However the modified query for
phase D now would become:

RETRIEVE l.Ck
WHERE l.Ch = T3.CT2 .AND JT1.C-- = T3.Cr

In this way one crucial link between Ri and TEMP3 would get lost with the undesired effect
that Ingres actually delivers as result: 10, 8, 5, 15 and 12.
Consequently, the application of the Ingres BY-hst optimization produces inconsistent results
for correlation levels greater than one. Fixing this bug can be easily done, because for nested
aggregates a range variable replacement in the BY-list optimization must only make sure that
the variable in question does not appear in an outer BY-list.

4. CONCLUSION

In this note we showed that for SQL-like correlation queries involving the COUNT
aggregate the transformation algorithms described in the literature fail to yield consistent
results for some cases. For the remaining correlation queries (using MAX, WSX, SUM, AVG
aggregates.) those transformation algorithms are consistent, provided the proper use of NULL-
values. On the other hand, the algorithms used to process analogous QL'EL-like queries are
reported to give the desired answers at any time, up to a minor repairable bug. Whether the
SQL transformations can be adjusted in an elegant way relying on the current semantics of
WHERE _. GROUP BY clauses is however questionable due to some inherent semantical
deficiencies. To demonstrate this, a query given in [CHA76] for the well-known employee
paradigm is reviewed:

-13-

SELECT DNO FROM EMP
WHERE JOB = 'CLERK'

GROUP BY DNO HAVING COUNTC) > 10

The meaning of this query is supposed to be:
List the departments that employ more than ten clerks.
However, consider the slightly changed query where we ask for department that emplov less
than ten clerks. Now the current W7HERE - GROUP BY evaluation order fails to report
departments that employ no clerks. In turn, QUEL allows a consistent formulation (OP
stands for < or >):

RANGE OF E IS EMP
RETRIEVE (EDNO)
WHERE COUNT(ENAME BY EDNO WHERE EJOB = 'CLERK*) OP 10

In [KIM82] it is stated that the reason of the less-than-satisfactory performance of nested
queries in existing relational database systems is that most types of nesting are not well
understood. It remains to be added that these semantic transformations are indeed an impor
tant step towards efficiency for processing nested queries. However, the well-known' fact that
aggregates do not fit well into relational algebra has been emphasized by illustrative examples.
Concerning the abstract Group-By operator an interpretation as generalized projection is given
in [GRA81J. Doubtlessly further works needs to be done to integrate aggregates more smoothly
into relational algebra. Then the design of query evaluation algorithms relying on query
transformation will become a more reliable and powerful tool for efficiently processing very
complex queries.

Literature:

[CHA76]D.D. Chamberlin, et aL
SEQUEL2: A Unified Approach to Data Definition, Manipulation and Control, IBM J.
Res.&Dev, Vol.20, No.6. Nov. 1976, pp. 560-575.

[EPS79] R. Epstein:
Techniques for Processing Aggregates in Relational Database Svstems. VC Berkeley
1979. \fcmo No. UCB'ERL' M79'8.

[GRA8l]P.M.D Gray:
The "Group bvM Operation in Relational Algebra, Deen and Hammersiev, Databases
1981.

[KIE83] W. Kiessluig:
Database Systems for Computers with Intelligent Subsystems. Ph.D. thesis, Techn.
Univ. Muenchen. July 1983 (in German).

[KIE84] W. Kiessling:
Tuneable Dynamic Filter Algorithms for High Performance Database Systems, Proc.
Intern. Workshop on High Level Computer Architecture, Los Angeles, Mav 21-25
,1984, pp. 6.10-6.20.

[KIMS2] W. Kim:
On Optimizing an SQL-like Nested Query. ACM TODS, Vol. 7. No. 3, Sept. 1982, pp.
443-469.

[MAK81]
A. Makinouchi. et a I--

The Optimization Strategy for Querv Evaluation in RDB/Yl, Proc VLDB Cannes
1981, pp. 518-529.

-14-

[ST080] M Stonebraken
Retrospection on a Database System. ACM TODS, Vol. 5, No. 2, June 1980, pp. 225-
240.

	Copyright notice 1984 - Copy
	ERL-84-75

