Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RUBICC: A RULE-BASED EXPERT SYSTEM FOR
VLSI INTEGRATED CIRCUIT CRITIQUE

by
C. Lob

Memorandum No. UCB/ERL M84/80
28 September 1984

RUBICC: A RULE-BASED EXPERT SYSTEM FOR
VLSI INTEGRATED CIRCUIT CRITIQUE

C. Lob

Memorandum No. UCB/ERL M84/80
28 September 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Acknowledgements

I would like to thank Professor A.R. Newton for his encouragement and support
during this project and for his help throughout the 1983-84 academic year. Discussions
with Professors D.O. Pederson and A.L. Sangiovanni were highly beneficial in providing

background ideas and energy to me throughout the year.

My financial support came from Hewlett-Packard Company’s "Resident Fellowship
Program.”" 1 would like to thank Dana Seccombe, Jack Anderson, Joe Beyers, and Norm
Vlass for making this opportunity available to me and Lavonne Gardner and Linda

Alvine for their help and support in the administration of this fellowship.

The Knowledge Base of the program came, in part, from a number of designers from
the System Technology Operation of Hewlett-Packard in Ft. Collins, Colorado. Their con-

tributions are greatly appreciated.

A numbxc of people from the Application Technology Laboratory of Hewlett-
Packard Laboratories provided assistance and support with the HPRL System. I would
like to thank Jefl Eastman, Steven Rosenberg, Pierre Huyn, Mike Lemon, and Doug Lanam

for their help.

The 11P-9836 Systems, which supported the RUBICC development, were donated by
The Design Automation Group at Hewlett-Packard in Cupertino. Thanks to Bill McCalla
for his help in obtaining the equipment and to Martin Gates for his help with the system

configuration.

Special thanks to Tom Quarles, Peter Moore, Mark loffman, Ron Gyurcsik, Karti
Mayaram, Rick Spickelmier, Mike Klein and Grace Mah for making me feel welcome and

teaching me “the system.”

it

The figures in this report were prepared using an HP-9836C running Hewlett-

Packard’s Piglett Schematic and Layout Editor.
Finally, I'd like to thank JoAnn for her continuous support and Love during my

“Master’s Degree Year."

Abstract

RUBICC is an Expert System written to critique the design of VLSI circuits at the
;:ell (transistor) level. The goal of this project is to explore the feasibility of using "Expert
System Technology” to provide meaningful feedback to circuit designers on the quality
of their designs in a manner similar to the critique provided by an experienced designer.
The use of a Rule Base facilitates the encapsulation of the "Knowledge Base" associated
with the design of circuits in a given technology and supports incremental additions to
that knowledge base. RUBICC performs its critique without the use of simulation, by
“reasoning” about the design using rules contained ir. its knowledge base. Early experi-
ments with RUBICC indicate that the system performs a meaningful critique for a wide
variety of circuit and transist:or configurations and can find problems which are elusive to

even worst case circuit simulation.

iii

b

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Problem Description

1.2 Brief System Overview

1.3 Personal Motivation

1.4 Report Organization

CHAPTER 2: EXPERT SYSTEMS CONSIDERATIONS

2.1 Expert System Characteristics

2.2 System Language Choice

CHAPTER 3: RELATED WORK / CRITIQUE ISSUES

3.1 Why Use Expert System Technology?

3.2 What Kind of Critique is Needed?

3.3 Analysis Approach

3.4 How And When to Use the Tool

3.5 Efficiency

CHAPTER 4: HPRL OVERVIEW

4.1 Frames

4.1.1 Generic Frames and Inheritance

4.1.2 Data Stored in Slots

4.1.3 Dynamic Sworage Management

4.2 Pattern Matching

4.3 Backward and Forward Chaining Rules

4.3.1 Rule Overview

4.3.2 Backward Chain Rules

4.3.3 Forward Chain Rules

10
11
12
13
14
14
14
18
19
20
23
23
24

26

iv

4.4 Demons

4.5 Escapes to Lisp

CHAPTER 5: RUBICC SYSTEM DESIGN

3.1 Program Structure and Control

5.2 Circuit Input Format

5.3 Frame Data Base

5.3.1 Schematic Frames

5.3.1.1 Transistor Hierarchy

5.3.1.2 Circuit Hierarchy

5.3.1.3 Struct Hierarchy

5.3.1.4 Nodes

5.3.1.5 One and Two Port Elements

5.3.2 Program Control Frames

5.3.2.1 Elements Frames

5.3.2.2 *G-Con

5.3.3 Error Frames

5.4 RUBICC Programming Paradigms

5.5 Program Output Format

5.6 Classification Strategies

5.6.1 When to Classif'y

5.6.2 How 1o Classify

5.7 Separation of Program Control and Knowledge Base

CHAPTER 6: RESULTS

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.2 Future Work

7.2.1 User Interface

26
27
28
28
29
30
3
K3
33
35
37
37
38
39
39
39
41
45
46
47
47

49

. 50
. 52

52
52
53

7.2.2 Checking Actual Circuits
7.2.3 CMOS Compatibility
7.2.4 Additional Structure Classifications

7.2.5 Program Tuning

CHAPTER 8:
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
- APPENDIX F:

REFERENCES

FRAME HIERARCHIES

GENERIC FRAMES

TECHNOLOGY FRAME

RUBICC EXAMPLES
IMPLEMENTED CIRCUIT CHECKS
RUBICC SOURCE CODE

vi

53
53
53
54
55
58
59
65
66

. 9

110

CHAPTER 1

Introduction

1.1. Problem Description and Goals

Many tools exist to aid in the design, simulation and layout of VLSI Integrated Cir-
cuits. A small subset of the tools at U.C. Berkeley include: Circuit and timing simulators
such as Spice [1], Splice {2,3] and Relax [4], timing analyzers such as Crystal [5], behavioral
level simulators such as the FTL system [6), hierarchical artwork systems such as Kic [7),
Caesar [8] Hawk [9], and Magic [10], and module generators such as Panda [11]. A detailed

explanation of many of these and other CAD Tools at U.C. Berkeley can be found in [12].

In addition, there is ongoing research and there exist operational systems which use
Artificial Intelligence Technology in the form of Expert Systems to perf: m tasks which
provide global synthesis functions to the designer. These systems inci. -ie: The Design
Automation Assistant [13] which starts from an algorithmic description and produces a
VLSI design to the level of “technology independent registers, operators, data paths and
control sequences”; The Talib System [14] which performs artwork layout; The Micon
System [15] which designs single board computers from a series of hardware descriptions;
and the SCHEMA System [16] which is intended to act in the capacity of a complete

design assistant, not limited to design critique alone.

The thrust of all these tools is to aid the designer by reducing the time and effort

required for analysis and synthesis during the design process.

Both RUBICC and the CRITTER System [17] represent research into another key area

of the circuit design process — that of design critique and review. At Hewlett Packard,’
Peer Group Review is one of the majr checkpoints of the VLSI design process. During
this phase, a designer will have his work reviewed by other members of the project team.
This review usually takes the form of one or mgre experienced people who study the
schematics and layouts of a design, their mission being to "flush out bugs” that may have

been overlooked by the original engineer and to provide feedback to him on his work.

The items turned up during this review cycle take many forms. In some cases they
are very simple problems. Perhaps a new desiéner may not understand the implications of
a design rule or needs some guidance as to the more practical ways of implementing a logic
function. In other cases, extremely subtle problems are found which can elude even the
most careful worst case simulations. Charge coupling, MOS capacitor inversion time con-
stants, charge sharing on dynamic buses, voltage swings on bootstrapped nodes, and prob-
lems due to clock undershoot, overshoot, overlap and skew are some examples of the latter.
Peer Group Review also provides a forum for indepth discussions which can trigger a

designer’s thought process to uncover errors in related designs.

Unfortunately, these reviews are time consuming and experienc.4 people are hard to
find within the organizational structure. Promotions, tight schedules and other job assign-
ments make the "experts” a scarce commodity. With all of the other productivity tools
being developed and with the great influx of new VLSI designs and designers, there are
more new designs than there are experienced people to review them. Another problem is
that the total knowledge base exists only collectively in the minds of numerous designers.

Hence one expert’s review may not catch something that another’s might find.

The project described here, called RUBICC (Rule Based Integrated Circuit Critic),
addresses these problems by performing a design critique of NMOS VLSI Cells.

Specifically, RUBICC's goals are:

1 author worked as 2 Project Manager at HP's Systems Technology Operation in Ft. Coilins, Colorado and is
currently a Section Manager at the Corvailis Components Operation of HP in Corvallis, Oregon.

1. To explore the feasibility of using "Expert System Technology” to aid in the design
and feedback process of VLSL

2. Determine the feasibility of encapsulating a "Knowledge Base" of Design Heuristics

3. Determine the productivity of using an expert system language for the implementa-
tion of the program.

As will be seen later on in this report, RUBICC achieves a high degree of success in

addressing all of these goals.

The importance of the critique process should not be overlooked. Joe Beyers, R&D
Lab Manager for the Cupertino Intergated Circuits Operation of Hewlett-Packard [18] told
me that two of the major bottlenecks in the VLSI design process are designing new circuits
_at the cell level and training new VLSI designers. RUBICC could be used by both new
and experienced designers to improve their productivity in these areas. It would also pro-
vide a uniform critique since its knowledge base would contain the collective knowledge

of a large number of designers.

1.2. Brief System Overview

RUBICC is implemented as a Knowledge Based System using a language called H?RL
(Heuristic Programming and Representation Language) [19] developed at the Computer
Research Center of Hewlett-Packard Laboratories. It is modeled after Goldstein’s and
Roberts Frame Based FRL System [20]. HPRL is implemented on top of PSL (Portable
" Standard Lisp) [21] and currently runs on an HP’s 9836 Desktop Computer. The HP-9836

is Motorola 68000 based. HPRL is licensed through HP-Labs.

RUBICC’s data base is implemented as Hierarchical Frames in HPRL. Frames are
similar to record structures in the "C" and "Pascal" programming languages with two
major differencess More than one type of data can be stored in the slot of a frame as com-
pared to a field of a record and frames can be arranged hierarchically. These two

differences give the program very powerful search and pattern matching capabilities

which will be explained later. The actual knowledge base of RUBICC is implemented
using HPRL rules. These are similar to productions.in other languages such as OPS-5 [22].

HPRL allows both Forward and Backward Chaining Rules as well as demons and escapes
to the underlying Lisp Language.?

To run RUBICC on a circuit, the designer provides a "spice-like” input in Lisp list
notation. The program first reads in the circuit description. It then applies its knowledge
base to the circuit. When finished, RUBICC prints out a summary of its critique. Example
inputs and outputs are included in Appendix D. A complete description of RUBICC's
current error checks is included in Appendix E. Process-dependent parameters which are
needed by the rule system are stored as constants in a Technology Frame. In this way,
RUBICC can be changed to handle various technologies of the same type, such as two
NMOS processes having different transistor characteristics. For distinctly different

processes technologies (i.e. CMOS vs NMOS) the rule system would also be different.

The present system contains 110 rules which are used to pick out var?ous structures
and to identify errors in these structures. Approximate® ; 60 generic frames are required
to hierarchically arrange the circuit data base. A spec.”= frame is instantiated® for each
circuit element. These elements are: driver (enhancement transistor), load (depletion
transistor), capacitor, power-supply and clock. In addition, a specific frame is instantiated

for each unique circuit node. The system is approximately 110 KBytes of source code.

HPRL seemed a natural choice for the implementation of RUBICC. It is a state-of-
the-art system for the development of Expert Systems and the solving of general "reason-
ing type problems.” The features of Lisp are available along with the HPRL functions.
HPRL'’s rule system allowed separation of the program control from the knowledge base,
thereby making incremental additions to the knowledge base possible without changes to

the main control body of the program.

2 productions are forward-chaining based
Jinstantiated means to make an instance of, or to create

1.3. Personal Motivation

The motivation for the RUBICC project came from my experience as a designer and
manager of VLSI chips and systems at the System’s Technology Operation (STO) of
Hewlett-Packard Co., in Ft. Collins, Colorado. Examples of some of the work produced by
STO’s design team can be found in [23,24,25]. In early 1983, I managed a VLSI design
team with limited experience in VLSI design. Being the only "expert” available, I spent

many hours reviewing the group’s designs.

The Knowledge (Rule) Base for the program itself resulted from my experience and
the contributions of about 20 HP VLSI designers, mostly in Ft. Collins. RUBICC’s current
: knowledge base is not intended to be complete or all encompassing. Rather, a substantial
mix of rules was implerriented to show the power of the program and to provide meaning-
ful critique of interesting circuits. When completed, the current program surpassed my
expectations. In one instance, RUBICC picked out a subtle error in a test case which I

hadn’t seen and which took on the order of a few minutes for me to understand.

1.4. Report Organization

The remainder of this report is organized as follows: In Chapter 2, considerations
involved in building an expert system are presented and the choice of HPRL is explained.
In Chapter 3, other related work applicable to this project is described and issues manifest
in the design of this type of system are presented. A detailed overview of the HPRL pro-
gramming environment is included in Chapter 4 and in Chapter 5, a description of the
program, it’s control structure, and frame hierarchy is given. Results, limitations and
efficiency considerations are presented in Chapter 6. A summary and considerations for
future work are given in Chapter 7. References are listed in Chapter 8. Five appendices
are included. In Appendix A, the generic frame hierarchies of the system are illustrated.
A complete listing of RUBICC’s Generic-Frames is presente 1 in Appendix B. The Technol-

ogy Frame, *G-Con, appears in Appendix C. Examples of RUBICC’s critiques are presented

in Appendix D, and a detailed summary of RUBICC's implemented circuit checks appears

in Appendix E. A full source code listing is included in Appendix F.

CHAPTER 2

Expert System Considerations

Many Expert Systems have been created to perform a variety of tasks. A thorough
treatment of the current state of the art of Expert Systems can be found in "Building

Expert Systems™ [26).
2.1. Expert System Characteristics

What are the characteristics of an Expert System? A common thread throughout the

literature is that Expert Systems tend have the following five characteristics:
1. Performance as good as a human expert in some small domain.

2. Avoidance of blind searches through all possible combinations of data to produce an
answer.

3. Reasonable efficiency — This doesn’t necessarily mean that it has to be faster than a
human, only that its response time not be prohibitive.

4. Separation of Knowledge and Control Structures

5. Can answer "Why" — This usually means it can show how it arrived at its conclu-
sions.

These five items were used as overall guidelines in making design decisions

throughout this project.

2.2. System Language Choice

A major design decision faced at the onset of this project was what language or
language system to use. Generally, expert systems are written in symbolic languages such
as Lisp. At the beginning of the project,] wondered why this work couldn’t be done in
"C" or "Pascal”. Afterall, couldn’t combinations of transistors be just as easily picked out

from a "C" subroutine as an HPRL rule? What was unique about Lisp in this application?

IN

The answers to these questions came later, after I gained experience with Lisp and HPRL.
Lacking experience, I decided to take the Al Community’s word and use a symbeolic
language.

In addition, what symbolic language would be best? 1 considered two languages:
OPS-5 from CMU (Carnegie-Mellon University) [22] and HPRL from HP-Labs (Hewlett-
Packard Laboratories) [19). 1 decided to use HPRL which is based on PSL (Portable Stan-
dard Lisp) and is described in detail in Chapter 4. HPRL seemed to have all the charac-
teristics that were said to be needed in the literature. HPRL differed from the OPS-5 in
that backward chaining paradigms could be developed as well as the standard forward
chaining productions of OPS-5. In addition, HPRL was developed by people I knew at HP
Labs. I described my system to them and explained the design goals. They seemed to
think that HPRL would be more than adequate for my needs. Another consideration was

that as a loyal HP employee, I wanted to use an HP system and hopefully provide feed-

back on its strengths and weaknesses.

After writing RUBIC!". I feel more capable of addressing these issues. HPRL is a
powerful system. It was ci. ~rly and carefully thought out by people who recognized the
issues inherent in building an expert system and in using machines for reasoning func-
tions in general. A system such as RUBICC could be written in a language such as "C"
phough it would be harder, since the symbol manipulation features of Lisp are b:etter
attuned to handling the problems inheren.t in this application and all the HPRL functions
would essentially have to be incorporatec& Another key feature is that by its interpretive

nature, each function can be "debugged” independent of the other functions. This greatly

enhances coding productivity.

CHAPTER 3

Related Work

As previously mentioned, there exists substantial research in using Knowledge Based
Expert Systems in the area of design synthesis. Surprisingly, there is very little research
in progress for the analysis and critique areas of VLSI circuit design. In fact, Kelly’s
CRITTER SYSTEM at Rutgers [17] is the only other work I was able to find in this area.
The CRITTER SYSTEM (Automated Critiquing of Digital Circuit Designs) was initially

“intended to be used for TTL SSI/MSI designs. It is currently being extended for use in the

VLSI design environment.

Though both CRITTER and RUBICC have similar goals at the highest level (ie.,
feedback to designers as to the quality and robustness of their design), their approachés to
and emphasis on the problem are uniquely different. In this chapter, the fundamental
issues of using machines as design critics are given. When appropriate, a comparison of
CRITTER’s and RUBICC’s methods are included since they have much in common and at

the same time have basic design differences.
3.1. Issue — Why use Expert System Technology?

The idea of writing computer programs to check designs is not new. Electrical Rule
Checking programs such as NCA’s ERC Program [27], and ECAD’s Dracula [28] exist to aid
the designer in checking his design for electrical design rule violations. We used a program
at HP called "Funny-Fet” which flagged transistors which had strange properties such as
no conneciion to a terminal, or gate, drain and source shorted together. The Dialog Pro-

gram [29] from the University of Leuven performs more in-depth checks of analog cir-

cuits.

10

These programs share a common characteristic - their knowledge tends to be
hardwired in the sense that exact patterns and cases must be described in order for these
programs to perform their checks. Due to this characteristic, it is very difficult to describe
to these programs errors of a general nature which relate classes of transistors. Also,
because of this hardcoding, detailed knowledge of the program is required to add or make
changes to the knowledge-base. As a result, the checks performed, though highly useful,
tend to be shallow. With the exception of Dialog, none of these programs can reason about

complex timing or charge-sharing problems.

Expert System Technology provides an alternative to this situation and through its
use, hardwiring can be avoided. Separation of the rule base from the program control
allows incremental additions without affecting the overall program. The program can be
"taught” to reason about general patterns of transistors and and rules can be written to

check for classes of errors.
3.2. Issue — What Kind of Critique does a Designer Need ?

For a m .chine to provide a useful critique, it should be accurate, provide an under-
standable summary of its analysis, allow the user to explore its conclusions in greater
detail, and avoid showering the user with cryptic messages and long lists of items to be
checked, some of which aren’t real problems. With respect to the last point, the syste.m

should be conservative in that it is better to show a non-error than miss a real one.

In this respect, RUBICC and CRITTER are very similar. Both produce a critique in
summary form. Both produce readable messages and both allow the user to go into more
depth concerning conclusions reached. CRITTER provides suggestions as t0 how to fix the
problem. RUBICC provides suggestions in some cases, though its majr thrust as imple-
mented is to flag and isolate the problems, leaving the fix to the designer. This is con-
sistent with the types of errors RUBICC finds. Either the fix is obvious or the whole

scheme needs to be rethought. CRITTER’s user interface seems more sophisticated and

11

more interactive with the user.

3.3. Issue — Analysis Approach ?
This issue highlights a significant difference between RUBICC and CRITTER.

CRITTER’s critique method is based on a heuristic use of simulation. As Kelly states
on page 2 of his report [17], "It [CRITTER] collects comprehensive estimates of circuit per-
formance by essentially emulating the operations of various circuit analysis techniques
(e.g. subcircuit simulations, path delay analyses, proofs of key design specifications).” It
then “summarizes this data for the engineer, spotlighting whatever seems most useful for

diagnosing and fixing flaws .. ",

In contrast, RUBICC'’s critiqﬁe method is based on heuristics of VLSI design obtained
from the knowledge base of experienced designers. Pattern' matching is performed
between the sequences of transistors in the circuit and the programmed rule base. As
various circuits are picked out, they are checked, and anomalies are reported. The patterns
analyzed and checked by RUBICC are of a general nature in the sense that most rules
check classes of objects rather than a specific "hardwired" pattern. For example, a single
rule can pick out "nor gates” with arbitrary numbers of inputs. (an individual rule for a

2-input nor-gate, a 3-input nor-gate, . is an example of hardwiring).

An advantage of CRITTER’s simulation approach is that, in some sense, it’s the
bottom-line in terms of whether and how well a circuit functions. If, given a set of
inputs, the outputs of the circuit perform as desired, then the circuit must work (given
that proper simulation was performed). CRITTER also checks internal timing as well.
From a set of timing constraints on the inputs and outputs, internal timing margins are
flagged. This addresses a problem with the use of large simulation tools. Namely a
designer might not notice a marginal or race condition on an internal node of a large cir-

cuit if the external outputs of the circuit seem to be correct. Simulation can also give

12

confidence to the designer concerning the logical correctness of his circuit.

Whereas the simulation of TTL SSI/MSI functions seems to lend itself to the
CRITTER approach , it is not clear that this approach would do as well in the critique of
VLSI circuits — especially dynamic circuits sensitive to a variety of things such a charge
sharing, clock overlaps and capacitive coupling. In these cases, it is either very difficult
and time consuming or impossible to produce the “correct” worst case simulations to show

the problem.

RUBICC tests the hypothesis that a useful and indepth critique can be performed on
a VLSI circuit without simulation. Hence a conscious design decision was to NOT perform
logic or circuit simulation. It is felt that other tools should be used to handle these aspects

of the design.

The underlying idea behind RUBICC's critique method is that there are many circuit
problems and anomalies that elude even the most careful worst case simulations, but ¢an
be found by careful, indepth thought. Many of these same problems would be caught by

1] propef simulation yet they are sometimes missed. The reasons for this range from
experienced designers, to trying to keep track of too many details, to not being able to
simulate the problem correctly. As an example of the latter, an error occurred on an HP
VLSI chip because the circuit simulator didn’t predict the long time constant associated
with forming the inversion layer of an NMOS capacitor with a particularly long channel

length. This caused the chip to have poor high frequency operation margins.
3.4. Issue — How and When to Use the Tool ?

One danger of a design tool of this nature is that it can be used improperly. The key
misuse of such a program would be to use it blindly as the Final-Say on whether a circuit
had errors. The intended use RUBICC is to aid designers at the cell level. After a
designer has simulated his circuit (logically and electrically), he would presumably sub-

mit it to RUBICC for a design review. He should think carefully about any errors flagged

13

by the program. If RUBICC flags no errors, the engineer’s confidence in his design should
be enhanced. However, it is the engineer, not RUBICC who is responsible for the proper
operation of the circuit. Hence care and good judgement is needed to properly use a such a
tool. In addition, any organization which supported this type of tool would need to pro-

vide a mechanism to enhance RUBICC’s Rule Base with additional error checks.
3.5. Issue — How Efficient Does It Need To Be ?

Because of the interpretive nature of the Lisp Language, systems of this nature tend
to be slower than simulation programs written in C, Pascal, or Fortran. RUBICC is no
exception to this. As will be seen in the examples, a circuit with 50 transistors takes on
_ the order of 40-50 minutes to analyze (note that no attempt has been made to optimize the
code at this point). Is this too slow to be useful? I feel that even if it took overnight to
perform a valid design review it would be useful. An experienced designer (if one could
be found) would spend at least a few hours on a circuit of this complexity. However:
efficiency is important where debugging a program is concerned and hence, it should not

be completely ignored.

CHAPTER 4

HPRL Overview

HPRL (Heuristic Programming and Representation Language) was introduced in
Chapter 1 of this report. In this chapter, HPRL is described in more detail, focusing on the

key features of the system as used by RUBICC.

The HPRL system is comprised of approximately 2 Mbytes of Lisp source code. It
provides a number of key features which led to a natural implementation of the RUBICC
system. These features include hierarchical frame structures and inheritance among
frames, pattern matching, backward and forward chaining rules, demons, and escabes to
Lisp. These concepts are described in the remainder of this Chapter, drawing examples

from the RUBICC System where appropriate.

4.1. Frames

Frames are the basis for the HPRL data base structure and are similar to records in
"C" or "Pascal’. Frames have slots which are the analog of a record’s fields. Data is
stored in the slots of frames in manner similar to storing data in the fields of records. The
three basic differences between HPRL frames and C or Pascal records involve generic-

frames and inheritance, the data stored in slots and dynamic storage management.

4.1.1. Generic Frames and Inheritance

Frames are arranged in a hierarchy starting with the distinguished frame THING.
The THING frame sits at the top of this hierarchy and is hence the root of the hierarchy
tree. Each frame has an ako (a kind of) slot which links it to a parent frame (likewise
each parent has an instance slot which links it to its child). The frame hierarchy forms a
tree in which frames must be either directly or indirectly ako-thing (a kind of thing). A

frame is directly ako-thing if it has the frame THING stored as data in its ako slot. It is

14

15

indirectly ako-thing if there exists a path along ako-links from it to the THING Frame.

Generic frames store information which is typical to a whole class of entities. By
design, these frames exist farther up in the hierarchy than their more specific children
frames. Generic frames form templates where typical properties of a general class of enti-

ties are grouped. Values can be stored in generic frames as well as in more specific frames.

A process called inheritance is automatically supported by HPRL. Inheritance means
that more specific frames inherit the properties of their more generic parents. Slots
defined in parent frames by definition exist in the more specific children frames. Various
functions are provided by HPRL to access values stored in the slots of frames. These func-
tions determine how inheritance should be used in finding the data requested. One such
function specifies that if there is no data in a particular slot of the specific frame named,
return "nil"! Another function specifies that in this case, search through the frame
hierarchy starting at the named frame, ending. at the THING frame, and return the data
from the requested slot of the first frame found containing data in that slot. If there is no

data found, "nil" is returned.

In summary, inheritance allows information to be distributed throughout complex

frame hierarchies and accessed appropriately as needed.

Genet"ic frames are used in RUBICC to define classes of items which have common
characteristics. Examples of these generic frames are circuit-elements (transistors, capaci-
tors, supplies, etc.), structures (parallel-transistor-structure, etc.), and circuits (inverter,
super-buffer, register cell, etc.). These frames are explained in detail in Chapter 5.
Specific instances of these items are created when the circuit net-list is read in or as the
program picks out various patterns of transistors matching the descriptions of these ele-

ments in the program rule base.

1 Lisp symbol for the empty set

16

The frame hierarchy provides key features which are utilized throughout RUBICC.
It is used to limit and prune searches through the data base. By appropriately formatting
rules, a data base search can be limited to branches or sub-branches of the hierarchy tree,
thereby facilitating more efficient searchs. In addition, it allows rules to be written more
compactly and clearly. For example, writing a rule to reason about a specific class of
transistor such as a precharger is easier, clearer, and more compact than writing its full
description (an enhancement transistor with its gate tied to a clock, its drain tied to a sup-

ply and its source non-grounded) in the rule.

As an example to clarify this point, consider the Hierarchical Frame Structure of

. Figure 4.1 which shows a tree structure representing a small subset of the generic frames
used in RUBICC. This tree is involved in the classification of transistors. The frame
TRANSISTOR s a child of the frame THING. This is consistent with the hierarchy since
a Transistor is more specific than a THING. Loads (depletion mode transistors) and
drivers (enhancement mode transistors) are more specific instances of transistors and hence
are children of ¢r¢ 1sistor in the hierarchy. Below driver, two specific kinds of drivers are
shown (prechai-;»r and x fer-gate). Likewise, below load, two specific kinds of loads are
shown (ckc and src). Cach of these specific transistors is differentiated by its connections
in the circuit. For example, an src-load is one which has its gate and source connected
together. Likewise an xfer-gate driver has either its source or drain tied to the gate of
another driver and its other side not tied to ground. When rules are written, they can
reason about all transistors or be restricted to only reason about drivers or be further res-

tricted to reason only about x fer-gates.

The code in Figure 4.1 (alongside the tree) is the actual HPRL code required to
implement the hierarchy . "DEFRAME" is one of the HPRL functions used to create a
frame. Starting with the frame transistor, notice first that the value "thing" is found in

its ako slot (the $value will be explained in Section 4.1.2). Notice that the general infor-

17

(deframe transistor ;create transistor frame
(ako ($value (thing))) .dejfine slots
(d-node)
(g- node)
(s-node)
(width)
(length) THING
(1-div-w)
(class) l

(status)) TRANSISTOR

(deframe driver icreate a child of transistor /\

(ako ($value(transistor))))

LORD ORIVER

(deframe xfer-gate screate a child of driver

(ako (Svalue (driver))))
(deframe precharger :create a child of driver CKC-LORD SRC-LORD

(ako (Svalue (driver))))

(deframe load :«create another chid of transistor XFER-GATE PRECHARGE

(aka (Svalue (ransistor))))
(deframe cke-load icreate a child of load

(ako ($value (load))))
(deframe src-load ;create a child of load

(ako ($value (load))))

Figure 4.1 Hierarchical Frame Structure

mation common to all transistors is definned as the names of slots in the transistor frame.
For example all transisiors have a width (channel width), a d-node (drain node number)
and an [-div-w (channel length divided by channel width), etc. If there was some pro-
perty unique 1o a specific transistor, then a slot in that frame could be defined. Only

frames existing below it would inherit that property.

Next the generic frame driver is created. Notice that it is ako-transistor; consistent
with the frame hierarchy. Also notice, except for the ako slot, no other slots are named.
Because a driver is ako-transistor, it implicitly inherits all the slots of transisior. Next,
xfer-gate is defined to be a specific instance of driver. Since it is ako-driver, it inherits all
the properties of a driver. In a similar manner the rest of the frames are defined to create

the hierarchy. During RUBICC's execution, specific instances of the tree's leaf frames are

18

instantiated. For example precharger "m1" might be created. Specific data describing

"m1" would be stored in "m1’s" slots.
4.1.2. Data Stored in Slots

Unlike C or Pascal records, which can only store a single type of data in eich field,
slots of frames can have many different types of data stored in them and multiple
instances of data of each type. The data stored in slots is actually stored in various
"Facets" of the slot. The purpose of the "SVALUE" facet (all facet names begin with a
"$") is to store data. This data can be any Lisp atom or s-expression. In addition, HPRL
allows multiple values to be stored on a facet. HPRL treats multiple values on a Facet as
a set in the sense that all HPRL rules which use this data understand that there may be
more that one value, that the same value can’t be entered twice on the facet, and that the

order of data entry is indeterminate.

Each slot has associated with it a list of facets. Each facet has a name and a content
(data). HPRL has a set of prédefined facets, but in addition the user is free to create any
addition facets. The significanc of the SVALUE facet is that there are built in HPRL
access functions which assume t. is facet. The data stored in other facets is use to control
interactions with the user (SASK), restrict the type of data stored on the facet (STYPE),
and to specify procedures called DEMONS which are run whenever a slot’s $Value data is
modified (SIF-ADDED, SIF-REMOVED). The data stored in the $Value facet can also be a
procedure name with parameters which is called to calculate the slot’s value based on data

elsewhere in the data base. (this procedure is referred to as a procedural variable).
Just as slots have facets with data, data can have tags with messages. Messages are
used to comment the data as desired. The use of this in RUBICC is limited to an automatic

HPRL function which places a message along with the data that is asserted into to a slot?

as the result of a rule’s conclusion. This message essentially explains “why" the data got

2 Note that in this report, when it is said that data is asserted into a slot, the meaning is that daia is assert-
ed onto the $Value facet.

19

asserted.

A summary of the above points is shown schematically in Figure 4.2 (Frame Organi-

zation) {19]

The features provided by the flexible data storage facilities are used and relied upon
throughout RUBICC. They lend to a natural, flexible implementation allowing complex

associations and classes to be built.
4.1.3. Dynamic Storage Management

Since Lisp automatically handles the reclaiming of data structures which are no
longer in use, the program doesn’t have to worry about this problem. Memory is allocated
as frames are created and data is added to these frames. When frames are no longer

needed their memory is reclaimed by the PSL garbage collection facility. This garbage

FRAME
]
[l
SLOT-1 SRR SLOT-N

[J 1
FRCET-1 * * * FACET-M
r l 1
pATUM-1 - - - DATUM-P
s J 1
TAG-1 * °* * TARG-Q
b

P !
MESSAGE-1 * ° ° HNMESSAGE-R

Figure 4.2 Frame Organization

20

collection imposes approximately a 10% overhead. (i.e,, the program spends about 10% of

it’s execution time in garbage collection) for normal size circuits.

4.2. Pattern Matching

Pattern matching is the search mechanism uséd in HPRL for querying the data base
and "reasoning" about its contents. The pattern matching process is used to compare items
for similarities, to reason about patterns of items and to make conclusions about them.
Pattern matching variables in HPRL begin with a "?". Hence "?x", "?driver”, "?foo" are
pattern matching variables. Variables that do not begin with a "?" are called literals.
Pattern matching variables can match anything. Literals are only allowed to match them-
selves. Pattern matching variables can be thought of as "wild cards’, and a pattern
matching search can be thought of as searching through a data base with wild cards (an

excellent treatment of pattern matching is found in Chapters 21,22 of [30]).

To further illustrate pattern maiching concepts, consider the following examples.
Written in HPRL code, these examples concern dogs and whales, their breed, and the food
they like. (this example is not representative f good frame hierarchies but it is illustra-
tive of pattern matching concepts)

First a generic frame hierarchy is defined:

(deframe animal ide fine a frame called animal
(ako($value(thing))) imake it ako-thing
(breed) :give it a breed slot
(favorite-food) :favorite food slot
(home)) igive it a home slot

(deframe dog idefine a [rame called dog
(ako(Svalue(animal)))) imake it ako-animal

(deframe whale define a frame called whale
(ako($value(animal)))) ;make it ako-animal

Next create some specific frames with data:

21

(deframe Fido ide fine the frame Fido
(ako(Svalue(dog))) ;Fido is a dog
(breed(Svalue(poodle))) :Fido is a poodle
(favorite-food(Svalue(caviar)))) ;Fido's like caviar

(deframe Morgan ide fine Morgan
(ako(Svalue(dog))) :Morgan is a dog
(breed(Svalue(golden-retriever))) ;Golden retriever
(favorite-food(Svalue(chuck-wagon)))):likes chuck-wagon

(deframe Dusty Jdikewise for Dusty
(ako(Svalue(dog)))
(breed(Svalue(golden-retriever)))
(favorite-food(Svalue(purina-dog-chow))))

(deframe Moby-Dick :Moby Dick is a whale
(ako(Svalue(whale)))
(breed(Svalue(white-whale))) ;He's a white whale
(favorite-food(Svalue(Ahab)))) ;likes Ahab to eat

Now that a data base has been created, we can perform some queries. ("Solve" is the

”

HPRL query function, and the ™ is needed to keep Lisp from treating the query pattern
as a function with arguments). HPRL assumes that the ordered format for a solve clause
is "frame, slot, value". (For readability, HPRL’s response to a query is preceded by an

arrow symbol ("->"):

(solve (?x ako dog)) ;find a the dog in the data base
->(FIDO AKO DOG)

Here HPRL was asked to return any frame with the literal dog in its ako slot.
HPRL returned the first one it found, namely the Fido frame. During the search, the

variable "?x" was bound to the literal Fido.

(solve-all "(?x ako dog)) ;/ind all the dogs in the data base
->((DUSTY AKO DOG) (MORGAN AKO DOG) (FIDO AKO DOG))

“Solve-all" is the HPRL function used to find all frames with data matching the

solve clause (?x ako dog). HPRL returned all the frames it found which were ako dog. In

22

this case the variable "?x" was bound successively to the three frames: D_usty,_Morgan, and

Fido.

(solve *(dusty favorite-food ?x)) ;find Dusty's favorite food
->(DUSTY FAVORITE-FOOD PURIN A-DOG-CHOW)

Here Hprl returned Dusty’s favorite food.

(solve "(and(?x breed golden-retriever)
(?x favorite-food chuck-wagon)))
->(AND (MORGAN BREED GOLDEN-RETRIEVER)
(MORGAN FAVORITE-FOOD CHUCK-WAGON))

HPRL supports conjunctions. First the variable "?x" is bound to any frame that has
“golden-retriever" as its breed. This binding stays in effect throughout the rest of the con-
junctive match. Then the frame's favorite-food slot is checked for the literal "chuck-
wagon”. If it exists, the conjunctive match succeeds and the result of the match is
returned. If the match fails, HPRL looks for another frame whose breed is “golden- retri-
ever'. If no frames match, HPRL returns "nil", meaning that no data could be found in

the data base matching the query.

(solve *(and(?x breed poodle) :find a dog
(?x favorite-food Ahab))) ;who likes to eat Ahab
->NIL

Moby Dick’s favorite food is Ahab. There is no poodle in the data base whose

favorite food is Ahab.

23
(solve-all (and(?x breed ?y)
(?x favorite-food ?2)))
-X(AND (MOBY-DICK BREED WHITE-WHALE)
(MOBY-DICK FAVORITE-FOOD AHAB))
(AND (DUSTY BREED GOLDEN-RETRIEVER)
(DUSTY FAVORITE-FOOD PURINA-DOG-CHOW))
(AND (MORGAN BREED GOLDEN-RETRIEVER)
(MORGAN FAVORITE-FOOD CHUCK-WAGON))

(AND (FIDO BREED POODLE)
(FIDO FAVORITE-FOOD CAVIAR)))

This solve-all clause indirectly requested all items in the data base. The first time
through, HPRL bound "?x" to "Moby-Dick", "?y" to "White-Whale", and "?z" to "Ahab".
Since solve-all was used, it then removed those bindings and looked for additional bind-

ings that would make the match succeed.

These working examples are intended to familiarize the reader with pattern match-
ing and also introduce the syntax of the HPRL language. Other HPRL functions are avail-
able for pattern matching and accessing the values stored in the slots of frames. For

further detail, the reader is referred to the HPRL Manual, Part 2 [19].
In summary, pattern matching is a flexible and powerful method of data bas" arch.
4.3. Backward and Forward Chaining Rules

Rules provide the reasoning and inference mechanisms of the HPRL system. They
form the "knowledge base” and are used to make conclusions about data patterns in the

data base as well as create new patterns and associations of patterns.
4.3.1. Rule Overview

In HPRL, rules are frames that have a2 name and three slots: type, premuse and con-

clusion.

The Conclusion Slot looks similar to a solve clause, in that it is of the form "frame,
slot, value”. The Conclusion Slot represents the action which is to take place if the condi-

tions in the premise slot are found to be true. The Premise Slot represents conditions

24

which must be present in the data base for the rule conclusion to be asserted. The general
form of the premise slot is also "frame, slot, value" though many forms (such as conjunc-
tion and disjunction) can be combined to form complex queries. The Type Slot of a rule is

used to limit the data base search to certain branches of the frame hierarchy.

Whenever a rule concludes, some action occurs. The most common form of action is
to assert the "value" specified in a rule’s conclusion onto the "SVALUE" facet of the
specific “frame” and "slot” also specified in the rule’s conclusion. (this is always done for

Backward Chaining Rules. Forward Chaining Rules allow other actions as well).
4.3.2. Backward Chaining Rules

Backward chaining rules are goal driven rules. They are invoked by the solve
clause introduced in the previous section. In the context of Backward-Chaining Rules, the
solve clause is called the user goal. To invoke backward-chaining, a goal is asserted using

the solve clause as in the previous examples.

For illustration , consider the following backward chaining example, built upon the

data base in the previous example:
First create two rules:

(rule whale-home-rule backward-chain-rule ;de fine the rule

(type (animal 7a)) 7a must be an animal
(premise(?a ako whale)) ;premise of rule
(conclusion(?a home sea))) ;rule conclusion

(rule dog-home-rule backward-chain-rule
(type (animal 7a))
(premise(?a ako dog))
(conclusion(?a home house)))

Each of these rules have their names following the atom “rule’. Next the
“backward-chain-rule” literal implies that this rule is to be use in goal directed searches.
The type slot specifies that the pattern matching variable "?a" can only be bound to a

frame which is either directly or indirectly ako-animal. The first rule translates to the

25

following English description: “If any animal is a kind of whale, then its home is the

sea." Likewise, in the second rule, a dog’s home is a house.
Backward-chaining can be invoked using the solve clause as follows:

(solve (Moby-Dick home ?y)))
->Using Whale-Home-Rule:

Since (moby-dick ako whale),
Then (moby-dick home sea).

->MOBY-DICK HOME SEA)

Here’s a description of what happened. HPRL first looked at the "SVALUE" facet of
Moby-Dick’s home slot. If data existed there, it would have been returned. Since his
home had not been asserted in the data base, HPRL collected all the rules whose conclu-
sions match the user goa] asserted. In this case it found both rules. HPRL t?sted the
premises of both rules, ft;ung “whale-home-rules’s’ premise to be true and concluded that
Moby-Dick’s home was the sea. HPRL actually asserted the literal "sea” into the home slot

as shown by the next HPRL command.

(fvalue-only "Moby-Dick *home)
->SEA

Fvalue-only is an HPRL frame access function which returns the data stored on the

SValue facet of the frame and slot named.

Each premise clause of a backward‘chaining rule is treated a user goal. HPRL will
try to satisfy each user goal by data base lookup first. If that fails then it will try to solve
it using additional rules. Hence a single solve command can trigger a very complex
sequence of backward chaining rules. All clauses in the premise must be proven true for

the conclusion to be asserted.

The conclusion of a rule can be made to do more than one thing using procedural
variables. A function can be specified as the "value" part of a rule’s conclusion. If the

premise of a rule is proven to be true, this function is called. The function can generate

26

many "side-effects” before returning a value which is asserted into the $Value facet of the

specified frame and slot. This technique is one of the main programming paradigms in

RUBICC.
4.3.3. Forward Chaining Rules

Forward chaining rules are invoked when the frame data base is updated and hence
are called data-directed or data-driven rules. Forward chaining rules are also known as

productions in Production Languages such as "OPS-5" [22]

Forward chaining rules can be thought of as watching the data base for changes. As
data is asserted, a certain rule’s premise (or many rule’s premises) may become true.
When this occurs, the rule(s) conclusion(s) are asserted into the data base. This assertion
may cause the premises of other forward chaining rules to become true. These rules assert

their conclusions and the process continues until all rules are satisfied.

Forward chaining rules have a format similar to backward chaining rules. For more

details see the HPRL Manual [19)], part 2.

4.4. Demons

Demons are procedures which exist on the "SIf-added” and "SIf-removed" facets of
slots. These procedures are called when data is added or removed from the “$Value"
facet of a slot. Demons are similar to forward chaining rules and are usually used for
"house keeping functions” which involve no pattern matching. For example, data asserted
in the slot of some frame may also imply that data should be asserted somewhere else. A
demon can be used for this purpose. They are also useful for debugging. Sometimes, it is
hard to figure out how, why, or when data is being asserted into a specific slot. Tem-
porarily adding an "If-added" demon to this slot allows functions to be called which aid

in tracking down these problems.

27

4.5. Escapes to Lisp

To deal with situations which cannot be handled by the normal control flow of the
pattern matching / rule system, it may be necessary to call a Lisp function. Procedural
variables, and demons are examples of escapes to Lisp. An example of where it is used in
RUBICC is as follows: RUBICC has rules which pick. out patterns of transistors to make
specific circuits out of them. When the premise of such a rule becomes true, the normal
flow in HPRL would be to put a single piece of data into some slo.. However, RUBICC

needs to create a complete new frame structure for this circuit. Hence a function is called

which performs these needed tasks as side effects.

’l

CHAPTER 5

RUBICC System Design

The key design issues and decisions involved in the development of the RUBICC sys-

tem were:

- Program Structure and Control

- Circuit Input Format

- Frame Data Base

- Program Control Paradigms

- Program Output Format

- Classification Strategies

- Separation of Program Control and Knowledge

In this Chapter, these issues are explained and a description how they are addressed

in the RUBICC system is presented.
S.1. Program Structure and Control

Defining the program structure and control technique involved the tradeoffs
between writing Lisp routines and using functions provided by HPRL. It was decided to
write the overall program control routines in Lisp, utilizing the HPRL routines and the
rule base as needed. This proved to be an effective method, taking advantage of the
strengths of both Lisp and HPRL, without forcing either to handl;e situations to which it
was not well suited. HPRL does not lend itself to easily handle some of the initial pro-
gram setup and initialization requirements. In addition, the use of Li;p routines which
perform explicit calls to HPRL’s solve functions adds more control over the order of rule
firings than is currently implemented in HPRL!. HPRL’s frame data base, pattern match-
ing, goal directed and data driven reasoning functions are used extensively throughout the

program.

1 HPRL's next release will provide agenda control and rule-firing ordering functions directly to the user

28

29

Data driven programming techniques (similar to those described in [31,32]) are used
to Keep the program control functions separate from the knowledge base. In this way
incremental rules, new circuit patterns, and additional error checks can be added with

minimum perturbation to the program control structures.
5.2. Circuit Input Format

At this stage, the circuit input format is similar to a Spice-Deck but written in Lisp
list notation. It is planned to add additional information, such as which mask layer a net
exists on, in a future version of RUBICC. An example of a circuit and is corresponding
input format is shown in Figure 5.1. Each subexpression of the list begins with a type of
circuit element. The types supported currently are driver (enhancement transistors), load
(depletion transistors), supply (static power supplies), clock (clock driver), capacitor (non-
mos capacitors) and pad (input pads of the chip). The next atom in the list is the name of
the circuit element. The only restriction on names is that they must be unique
throughout a given circuit. The atoms after the name represent appropriate values for ele-
ments. For example, the five numbers fter driver "m2" represent its drain node, gate
node, source node, channel width, and .~annel length respectively. Similarly, the three
numbers after the supply "v1" represent its positive node, negative node, and voltage.
One other input format is allowed in RUBICC: If a sublist’s first atom starts with a "*",

RUBICC assumes that this atom is the circuit name.

RUBICC has a few built-in conventions. Ground is always considered to be nodeO.
The negative node of a clock or supply is assumed to be connected to nodeQ. Transistors
can be entered with sources and drains used symmetrically. If transistors are entered
with their drains connected to ground, an HPRL rule reverses the source and drain nodes.
Likewise for transistors entered with their sources connected either to a supply or clock.
Note that the last convention is not applicable to a CMOS Technology since, for example, a

supply is usually considered to be connected to the source of a p-channel transistor.

vi

((*sample-circuit) 1

gsupply v110 5)) o1 m

clock ck]1 805 2

(pad in 3) -
(loadm112248) n2 n3 ne ‘_s'
(driver m2 384 6 2) 3 4 s
(driver m3 2406 2)

(drivermd 26 512 2) ns I-,;

(driverm5 57012 2))

Figure 5.1 Circuit Input Format

The conventions that are adopted in the examples are that transistors begin with an
"m" (i.e. m1 m2 .), supplies begin with a "v" (i.e., v1 v2 .), clocks begin with "ck" (ck1

ck2 .) and capacitors begin with "c" (c1 ¢2).

It is envisioned that in the future, the output of a layout extract program would be
used as the input to RUBICC. In this case, either the extract output data could be "mas-
saged” 10 the input format described or RUBICC's input format parser could be changed to

recognize the new format.
5.3. Frame Data Base

The design of the frame data base and frame hierarchy evolved along with the pro-
gram. The organization of this data base along with the assignment of slots to each frame
is the paramount issue in the overall eflectiveness of the program. It affects the reasoning
capabilities of the program, the classification of various circuit structures, and the direct-

ness and simplicity of writing the rules to perform these tasks.

The frame data base is organized along three lines. Schematic Frames are those
frames which hold the information about the circuit elements as they are initially entered
and further classified by the program. Program Control Frames are used for program

"housekeeping” functions and as storage for technology dependent constants used

K}

throughout the system. Error Frames hold the names of transistors and circuit elements

which violate rules and checks performed by the program.

In the remaining sections, these three frame hierarchies are described. The complete
hierarchy is included in Appendix A. For a listing of the slots of these frames, see
Appendix B.

5.3.1. Schematic Frames

A tree structure representation of the Schematic Frame Hierarchy is shown in Fig-
ure 5.2. Note that these are generic frames. Circuit specific frames of the appropriate
types are instantiated as RUBICC runs. Just below the root ("Thing") there are six frames
Transistor, Circuit, Struct, Node, Two-Port-Element, and One-Port-Element. An explana-

tion of each of these hierarchies is given in the following sections.

THING

TRAt FISTOR NODE STRUCT
CIRCUIT

TWO-PORT-ELEMENT ONE-PORT -ELEMENT

Figure 5.2 Schematic Frame Hierarchy

5.3.1.1. Transistor Frame Hierarchy
A representation of the Transistor Hierarchy is illustrated in Figure 5.3. The transis-

tor hierarchy is further broken down into drivers (enhancement fets®), loads (depletion

fets), and mos-caps (a transistor with its drain and source connected together).

2fet = field effect transistor

32

THING

TRANSISTOR
_DRIVER MOS - CAP LORD
REG-DRIVER DRN-BOOT CKC-LORD’77§§?SRC-LORD
PUP-DRIVER | XI-DRIVER OTH-LOAD DRC-LORD

PRECHARGER

i ﬁ © %Q T

REG-DRIVER PRECHARGER DRN-BOOT PUP-DRIVER XI-DRIVER

LR

SRC-LORD CKC-L0AD DRC-LOAD OTH-LOARD MOS-CARP

Figure 5.3 Transistor Hierarchy

Figure 5.3 Transistor Hierarchy
RUBICC further classifies drivers and loads by how they are configured in the cir-

cuit. These configurations, which are shown schematically in Figure 5.3, are:

33

Driver classifications: L
precharger — driver with a clock tied to its gate and a supply to its drain

drn-boor — (drain bootstrapper) - driver with a dynamic gate node and a clock
tied to its drain

xi-driver — driver with a transfer gate attached to its gate
pup-driver — driver with its drain tied to a supply and its gate not tied to a clock
reg-driver — (regular driver) - cannot be classified as any of the preceding classes

Load classifications:

src-load - load with its gate tied to its source

drc-load -, load with its gate tied to its drain

ckc-load — load with its gate tied to a clock

oth-load -~ (other load) - cannot be classified as any of the other preceding classes

5.3.1.2. Circuit Hierarchy

The circuit hierarchy is shown in Figure 5.4. Circuits are combinations of transistors
used to perform some basic function. Circuits are further divided into Gates. Buffers
Drain-Bootstraps and Registers. This set forms the circuits which RUBICC can recognize
and critique. (RUBICC also has rules which critique related sequences of transistors

which are not necessarily classified into the above circuits).

Gates are combinational circuits having one or more inputs and (in RUBICC's
domain) one output. Gates are further defined in RUBICC as having a single pull-up
transistor with it’s drain connected to a supply and a single pull down structure (combi-
nation of series and/or parallel fets) connected between the pull-up’s source and ground.
Gates are further subdivided into static and dynamic classes. This classification is based on
whether the gate’s pull-up transistor is a load (thereby making it static) or a driver. Fig-

ure 5.4 also shows the specific schematics which RUBICC recognizes for each or these types

34

THINS
CIRCUIT
DRAIN-BOOTSTRAP
aullm QATE REGISTER
SUPER-BUFFER A -cm/.\m-m
STATIC-QATE DYNR-GATE
N
OTHER-QATE DYNAMIC-@RTE DYNAMIC-XC-XOR
STATIC-XC-
1C-XC-XO0R NOR
NAND INVERTER
xx-mvam:n/l\ REG- INVERTER
CLKDUT - INVERTER
STATIC
GATES v [,V
v . | .
3
Mg I
REQ- INVERTER XI-INVERTER CLKOUT - INVERTER STATIC-XC-XOR
v v
: -
ANY
_! ARSITRARY
ANY _’ _l |__ PULL -DOKN
NUMBER STRUCTURE
“ -
—i I—— INPUTS __I ANY
LOAD
CONF IQURATION OTHER-GATE
NOR NRD
DYNeRIIC v
@ATES
v
ANY T
TRUCTURE
DYNANIC-XC-XOR
DYNAMIC-GATE

Figure 5.4 Circuit Hierarchy

35

of gates.

Buffers are circuits which amplify signals. They may or may not perform other
logic functions on the signal. RUBICC recognizes a class of buffers called Super-Bu fers.

Two types are recognized: inverting and non-inverting buffers. These are shown in Figure

3.5.

Another type of circuit is a Drain-Bootstrapper. It is used to selectively switch a
clock signal to a given node. Drain-bootstrappers always have a driver classified as a
Drn-Boot in their output stage. In addition there is a predriver stage connected to the gate
of the Drn-Boot. RUBICC recognizes three typical types of predriver circuits for drain

bootstraps. These are shown schematically in Figure 5.5.

Registers are also recognized by RUBICC. A Register-Cell is composed of a Register-
Core and various transistors forming the inputs and outputs. Schematics are shown in

Figure 5.5.

In general, the lower level circuits such as inverters and gates are composed of
related transistors. The higher level circuits such as buffers, drain bootstraps and registers

«re composed of combinations of transistors, gates and other structures.
5.3.1.3. Struct(ures) Hierarchy

Structures are combinations of series and parallel enhancement fets or other struc-
tures. No internal node of a structure may be connected to the gate of a transistor or to a
depletion transistor. RUBICC recognizes most combinations of transistors composed in this

manner and classifies them as follows:

;| B

INVERTING SUPERBUFFER NON-INVERTING SUPERBUFFER

v oz N cx2
- cx2
exi
' exi L
CKI—I Sy cx?* ex1 _{

DRAIN-BOOTSTRAP CIRCUITS

i

CKZ

REGISTER CELL

Figure 5.5 Other Circuit Schematics

37

series-struct — only composed of series driver fets
parallel-struct — only composed of parallel driver fets
Super-struct — composed of combinations of series and parallel structs, super-

structs, and single transistors.,

Xxc-xor-struct — a specialized structure corresponding to a potential piece of a
crosscoupled xor gate.

These structures are shown schematically in Figure 5.6. They are a key pattern
recognition and classification method used in RUBICC. A present weakness in RUBICC is
that it cannot recognize certain combinations of transistors which a human would classify
as a structure. An example of such a structure is shown in Figure 5.6. At this time,
RUBICC would include these transistors in its list of circuit elements which were not

checked. This problem can be solved by the addition of new rules.

5.3.1.4. Nodes

Nodes are frames which correspond to where and how circuit elements are con-
nected. An individual node frame is created for each unique circuit node. Node frames
store a large amount of data. They keep track of ‘the gates, drain and sources, supplies and
clocks connected to it. In addition, nodal capacitances are kept as values in appropriate
slots. Nodes are not classified further in the hierarchy. However, they have class and
aspect slots which are used to further identify their properties and which are important

for reasoning about dynamic clocking situations. See Section 5.6 for more details.
5.3.1.5. Two and One Port Elements

Two port elements are classified as Active-Two-Port-Elements (ATP’s) and Passive-
Two-Port-Elements (PTPs). See Figure 5.2. ATP’s are either supplies or clocks. The only
PTP's which RUBICC recognizes at present are fixed capacitors. It is envisioned that in the

future, RUBICC would also recognize resistors and inductors.

38

L s

. PARALLEL STRUCTURE

P
| " g
SERIES ST:RUCTURE —-I I-_

SUPER STRUCTURE

STRUCTURE
NOT
RECOGNIZED

BY
] ‘—- RuUBICC

C

Figure 5.6 Structures

5.3.2. Program Control Frames

There are two frames used for program control. These frames are the Elements

Frames and a frame called *G-Con. This hierarchy is represented in Figure 5.7.

39

THING
AN
ELEMENTS = G-CON

ELEMENTS1

Figure 5.7 Program Control Hierarchy

5.3.2.1. Elements Frames

Elementsl is a frame used to hold the results of various solve commands given to
HPRL. Whenever backward chaining is invoked, a concluding rule must assert data.
Elementsl] provides slots named to correspond to invocations of the HPRL "solve” com-
mand and a corresponding place for rules to assert their data after their "side effects” have
been completed. Elements/ also proves useful for debugging and monitoring the progress

of the program since it contains a record of all deductions completed.
5.3.2.2. *G-Con — The Technology Frame

A Technology Frame called *G-Con (Global Constants) and is used to store all tech-
nology dependent parameters used for reasoning about the circuit by RUBICC. Examples
of these constants are the beta-ratio’s required for different load configurations, and gate

oxide capacitance. The complete *G-Con frame is included in Appendix C.
5.3.3. Error Frames

Error Frames, whose hierarchy is represented in Figure 5.8, are used to store the
names of circuit elements which have errors of the kind implied by the particular frame
and slot. For example, consider the frame inv-errors (shown in Figure 5.9) which has the

following slots beta-ratio, coupling, and input-clocking. RUBICC checks all of the invert-

’S

40

ers it finds in the circuit for these three types of errors. Suppose "reg-inverter-1" had a
beta-ratio error. RUBICC would store the lisp atom "reg-inverter-1" on the “$Value”

facet of the beta-ratio slot of the inv-errors frame.

The use of error frames facilitates a data-driven programming technique which is

described in Section 5.4.

THING
ERRLRS
INV-ERRORS DRN-BOOT -ERRORS
GATE-ERRORS REGISTER-ERRORS
GATE-ERRORS-B RACE -ERRORS
FUNNY -NCDE CLK-SKEW-ERRORS
FUNNY-FET CHARGE - SHARE - ERRORS
L WPLING-ERRGORS INPUT -PAD-ERRORS

SUPER-BUFFER-ERRORS

Figure 5.8 Error Frame Hierarchy

(deframe inv-errors .
(ako ($value (thing)))
(beta- ratio)
(coupling)
(input-clocking))

Figure 5.9 Inverter-Errors Frame

41

S.4. RUBICC Programming Paradigms

RUBICC’s main programming technique used for finding errors is as follows First.
backward-chaining rules are used to pick out patterns of transistors and circuits, after
which either backward or forward chaining rules are used to check these patterns.
Backward-Chaining is invoked explicitly with the HPRL “solve clause". Forward-
Chaining is invoked implicitly by the existence of rules which trigger when data that is
asserted into the data base makes their premise true. As higher level structures of transis-
tors and circuits are built up, their constituents are marked “in-use”. Rules which search
to identify new circuit patterns are only allowed to construct them from "free" lower
level elements. This method eliminates overlapping usages of transistors, structures and
circuits.

The complete upper-level control function of RUBICC is listed in Appendix F, and is
repeated in Figure 5.10 with numbers alongside each line, The following explanation of

- these 48 lines of source code is intended to clarify the previous discussion.

Line 2 defines the main circuit function "check-circuit". This function is called
from the top level Lisp “read-eval-print loop" and is passed the name of a variable which
is bound to the net-list of the circuit which is to be checked. Lines 3-7 perform global

variable initialization.

Lines 8-11 perform the tasks of inputing and initializing the predefined Lisp func-
tions, frames and rules. Line 12 is a call to the Lisp function "patom" which prints out

the string following it. "Terpri” is the Lisp "line-feed” command.

The real work begins on Line 13. The function "create-i-frames” (create-initial-
frames) is called with the net-list of the circuit to be checked as its actual parameter.
This function successively takes each sublist from the net-list and instantiates the initial
specific transistor, mos-capacitor, capacitor, supply, clock, pad and node frames. At this

point, all transistors are either ako-driver, ako-load or ako-mos—<cap.

42

’
1 (setq *input-functions nil)
sRunnnsnina main program control function suuniniiiii

(defun check-circuit (net-list)
{setq *circuit-name "unnamed)
(setq getimed 0)
(setq *clka nilXsetq *clkb nilXsetq *clke nilXseiq *clkd nil)
(se1q *longrc 0)
(ler((s-1ime (time)))
(input-functions)
(clear-frame-syms)
10 (input-frames-rules)

WO th &

11 (make pop I'rame) : push frame marker onto * frames”

; create initwal circuit frames

12 (patom "BUILDING CIRCUIT FRAMES"(1ab 30)Xterpri)
13 (create-i-frames net-list)

14 (paom "CIRCUIT-NAME: "Xpatom “circuit-nameXterpri)
15 (patom "88& 48 88" Xterpri)

; transistor classi fication

16 (solve-all (transistor s-d-reversed ?x))

17 (solve-all (?elements src-load ?x))

18 (solve-all (%elements drc-load ?x))

19 (solve-all (?elements cke-load ?x))

20 (solve-all ‘(?elements oth-load ?x)) ; nwst be last load solve
21 (solve-all (?elements xi-driver 7x))

22 (solve-all (%elements precharger ?x))

23 (solve-all (?elements pup-driver ?x))

24 (solve-all-drn-boots) .

25 (solve-all ‘(elements reg-driver ?x)) : must be last driver solve
; series- parallel combtnations

26 (find-parallel-fets)

27 (find series-fets)

28 (cond((or{fchildren ’series-struct Afv ildren ‘parallel-struct))
29 (combine-structs)))

30 (find-other-structs)

; check circuut for errors

31 (solve-error-frame ‘funny-fet)

32 (solve-error-frame ‘funny-node)

33 (solve-all (?elements inverter ?x))

34 (solve-all ‘(?elements static-gate ?x))

35 (solve-all (?elements dvnamic-gate ?x))

36 (solve-all (?elements super-buffer ?x))

37 (solve-all-drain-bootstraps)

38 (solve all-reg-cells)

39 (solve-error-frame ‘race-errors)

40 ftsolve error {rame ‘gate-errors h)

41 (solve error-frame ‘charge-share-errors)

42 (solve error-frame ‘drn-boot-errors)

43 (solve error frame ‘input-pad-errors)

44 (solve ail clk skew-errors)

; print results

45 (show-circuit-errorsXterpri)

46 (show-all-gates-and-circuitsXterpri)

47 (show-not-checked Xterpri)

48 (print-siats))

Figure 5.10 RUBICC Main Control Function

43

Lines 16-25 call the HPRL function "solve-all” to classify transistors in the frame
hierarchy. The code in line 16 is used to find any transistors with sources and drains
reversed. A trace of how this rule works will help clarify RUBICC programming tech-
niques. When Line 16 is executed, the following backward chain rule whose conclusion
matches (from a pattern matching point of view) the goal (?transistor s-d-reversed ?x)

will fire if any transistors have their sources and drains reversed.

(rule reverse-src-drn-rule back ward-chain-rule
(type (transistor ?tr)(active-two-port-element ?ae))
(premise (or (and (?tr s-node ?sn)
(?ae pos-node ?sn))
(?tr d-node 0)))
(conclusion(?tr s-d-reversed " (reverse-s-d 7tr))))

The type slot of this rule specifies that "?tr" is a pattern matching variable which
can be bound only to frames that are part of the transistor hierarchy. Likewise, "7ae" can

only be bound to a supply or clock.

The rule’s premise contains a disjunctive clause consisting of two subclauses either of
which, if proven true, will cause the conclusion to be asserted. The first subclause is a
conjunction which, translated in English says "Find a transistor and bind the pattern
matching variable "7sn" to its source node number. If there is an active-two-port-
element connected whose positive node is also connected to this node then the premise is
true." The second clause says: "Find a tranmsistor with it’s drain connected to nédeO

(ground).”

If the premise is proven true, the conclusion is asserted. The conclusion has a pro-
cedural variable in its "value” position (signified by the "~ "). The action performed by
the conclusion is to assert the data returned by the Lisp function "reverse-s-d” into the

"s-d-reversed” slot of the transistor frame which is bound to the pattern matching vari-

able "?tr". This function always returns "t"3. In addition, it also causes two side effects to

Hisp symbol for "true”

44

“Nnr", namely two swap the source and drain nodes of the transistor which is currently
bound to "7tr". Note also that the variable "?tr" was passed as a parameter to the func-

tion "reverse-s-d".

Since the "solve-all” clause was used, HPRL will search through the entire data base

and find all transistors which satisfy the premise of this rule.

This represents the key programming method in RUBICC. Rules which classify
different patterns of transistors are invoked by "solve-all" commands. If the rules which
pick out these patterns conclude, a function“is called. Depending on the situation, this
function will perform some action, such as switching the drain and source node of a
transistor, or instantiating a new specific frame corresponding to the new element picked
out and putting appropriate values in the slots of the new frame. When the data in the
new frame is complete, Forward-Chaining Rules which trigger off this data preform error
checks, putting the name of the offending circuit element in an appropriate slot. (In the

above case, there are no forward chaining rules which trigger on transistor classifications).
Lines 17-25 are additional examples of “so" ve-all" clauses which classify transistors

The functions called in lines 26-30 find a.l series and parallel transistor structures.
These are Lisp routines which invoke HPRL solve functions. After their execution,
specific instances of series, parallel and super structures corresponding to these patterns of

transistors will have been created.

Lines 31-43 perform the bulk of the circuit checks and critiques. The "solve-error-
frame” function on line 31 is utilized for a data-driven programming technique. This
function is passed the name of a specific error frame. Using HPRL access functions, a list
of all the slots contained in the error frame is built up. “Solve-Error-Frame" then itera-
tively forms explicit "solve-all” commands using the names of these slots in conjunction
with the name of the specific error frame. In this way additional error checks can be

added to the program by simply adding new rules and additional slots to an appropriate

45

error frame. If a new error frame needs to be created, then only one single line need to be
added in the main control function — a call to "solve-error-frame" with the name of the

new error frame.

The "solve-all" command in line 33, instructs HPRL to find all the inverters that
exist in the circuit using rules that have the form (?x inverter ?y) in their conclusions.
These rules are found in Appendix F (in module inv-rules). As inverters are identified,
functions are called which instantiate them and fill their slots with appropriate data. For-
ward chaining rules then fire which perform various checks on the new inverter. For-
ward chaining is another form of data driven programming in that if a new inverter
check is desired, all that is required is a new forward chain rule. (If it doesn’t make
sense for the new rule to conclude its answer in a currently existing error frame slot,

then a new error slot would also be added to the system.)

Line 45 is a call to the function “Show-Circuit-Errors”, which prints out RUBICC's
error summary. Show-Circuit-Errors knows how to find all error frames in the hierar-
chy. This is another example of data driven programming. If additional error frames are
added, no change to the function is required to print out new errors found in these

frames. Lines 46-48 call additional summary generating functions.
5.5. Program Output Format

| The output of the RUBICC is a summary of errors as shown in Figure 5.11. Each
error frame containing error data is printed out along with the corresponding slot name
and data. Error frames and slots are named to give the user some idea of the nature of the
error. Next, RUBICC prints out the transistor constituents of the various gates and circuits
it picked out. The last part of the summary is a list of all the transistors which RUBICC
didn’t know what to do with and hence, probably weren’t criticized. This is useful infor-
mation because it tells a designer what hasn’t been looked at. It also may indicate a prob-

lem (either with the Circuit or RUBICC) or it may indicate an additional case for RUBICC

46

to check. Finally, the summary is concluded with statistics such as the total run time of

the program and the time spent during the run in garbage collection.

RUBICC’s user interface could be improved upon. At present, a user would have to
read the documentation about the error slots to find out more details about the error. In
addition, the user would have to know something about the HPRL system to be able to ask
"why" a certain error occurred or which rule fired to cause a certain error. The "hooks"

exist within HPRL and the RUBICC system to improve the user interface.
5.6. Classification Strategies

Throughout the program design, decisions were made as to how and when to classify
various patterns of transistors, circuits and nodes. In this Section, the strategies involved

in these decisions are explained, using examples from RUBICC as appropriate.

ERRORS FOUND FOR CIRCUIT: *NET-LIST-14-DYNAMIC-CLOCKING
COUPLING-ERRORS
XI-DRIVER-COUPLING (M22)
XI-DRIVER-COUPLING-1 (M10 M18 M34)
FUNNY-NODE
CLOCKING-FLAG (NODE4)
GATE-ERRORS
DYNAMIC-CLOCKING-1 {DYNAMIC-GATE-7 DYNAMIC-GATE-4 DYNAMIC-GATE-1)
DYNAMIC-CLOCKING-2 (DYNAMIC-GATE-7)
DYNAMIC-CLOCKING-4 (DYNAMIC-GATE-6)

CIRCUITS and GATES IDENTIFIED:
DYNAMIC-GATE-7 (M1 M22 M21)
DYNAMIC-GATE-6 (M33 M34 M35)
DYNAMIC-GATE-5 (M2§ M29 M30)
DYNAMIC-GATE-4 (M13 M14 M15)
DYNAMIC-GATE 3 (M11 M10M12)
DYNAMIC-GATE 2 (M6 M7 M§)
DYNAMIC-GATE-1 (M17 M1§ M20 M19)
XIINVERTER 2 (M27 M26 M25)
XI-INVERTER-1 (M2 M4 M3)

FREE TRANSISTORS:

(M24)
garbage collection time = 4.116 min
wotal run time= 20.88633 min

Figure 5.11 Error Listing

47

5.6.1. When to Classify

The tradeoffs inherent in when to cause classifications to occur involve program
efficiency and simplicity. If all items are classified in all ways, the program becomes
prohibitively slow. Also, much of the work performed in creating data structures and
classifications may not explicitly be needed by the program. For example, in many circuits
it is not relevant whether a node is dynamic, hence work that was performed by the pro-
gram to classify the node as such is wasted effort. On the other hand, classifications help
to simplify the writing of rules and tend to "prune” the search space. For example, it is
easier and more efficient (from a search point of view) to write a rule specifying a
precharger than a "driver with its gate tied to a clock, its drain tied to a supply and it’s

source not tied to ground."

The strategy followed in RUBICC was to completely classif y items only when it was
clear that program efficiency and/or simplicity would be positively affected. In these
cases, solve-all clauses are invoked which search through the entire data base. An exam-
ple of this strategy is the fet classification statements in lines 16-25 of the main program
control function (Figure 5.10). Unless this criteria was met, classifications were not done
until specifically required by the program. The node classification strategy mentioned in

the previous paragraph is an example of this approach.

5.6.2. How to Classify

In general, a different classification-class is required for each unrelated item that is
to be checked for. Setting these classifications up in an efficient, consistent manner is a
majpr design issue. Too many classifications make rules clumsy, hard to read and hard to
understand. Too few actually limit the functionality of the program. Careful thought in

this area can really pay off.

An example of such a problem is the node classification scheme in RUBICC, which is

tricky because there are many seemingly unrelated ways in which nodes function in

438

dynamic circuits. To reason about complex clocking schemes, is necessary to have this
information available. For example a node can be static (always driven) or dynamic
(capable of being high impedance). It can be connected to a clock, connected to a driver
whose gate is connected to a clock; the driver being either a precharger or pull down, or in
the middle of some series/parallel fet string. A node can always be low on a given clock,
or will sometimes be low, depending upon some other logic function such as the firing of a
drain-bootstrap circuit. Another piece of information required is when are these nodes
active or driven. If driven by a clock, which clock phase? If a node is held low by a

clock and then released, how should it be classified?

The scheme adopted in RUBICC is to give nodes two attributes: Class and Aspect.
Class refers to how it funclioﬂs in the circuit, Aspect refers to what causes it to perform
the function. For example, if clk1 (clock-driver-phase-1) is connected to a node3, then
node3's class is always-clocked and it’s aspect is clkl. Suppose the output of a drain-
bootstrap is connected to node4 and the drain bootstrap can fire on clk2. Noded’s class is
clocked-conditional and its aspect is clk2. A summary of the Class and Aspect for nodes is
given in Figure 5.12. This straightforward scheme makes all the necessary information

about a node’s function available for reasoning about complex clocking structures.

Node Class Node Aspect
dynamic (node can become high-impedance) nil
always-clocked clock phase
conditional-clocked clock phase
clocked-low (always low on a given clock) clock phase
always-high supply

Figure 5.12 Node Classifications

49

Backward chain rules exist to determine a node’s classification and aspect. They are
invoked as needed in other rules by using the user goal "(?node class ?x)". Hence, only

those nodes which are specifically needed by the rule system are classified.
S.7. Separation of Program Control and Knowledge Base

The separation of program control from the knowledge base is achieved in RUBICC
by the Rule Domains inherent in HPRL and the data-driven techniques described previ-
ously. This is a very powerful concept in that it allows allows additional rules and error
checks to be incrementally added to the sys;em. A new rule which checks an existing
structure can be added by including the rule in the rule system and perhaps creating a
new error frame. If a new class of circuits is to be picked out, a new generic frame must
be included as well as the rules for picking this circuit and an additional solve-clause
would be added to the main Check-Circuit function. (This seems to be a change in the
program control — and it is. However, it is very simple, and straightforward. One could
imagine a data driven technique by which this new "solve-clause” is added to a list which

is used by the main program control loop.)

This separation is not achieved entirely throughout RUBI.. " The lower level
transistor classifications are interrelated with Lisp function calls. If additions or changes

to the transistor classes are made, certain functions must be modified. There is no funda-

mental reason for these dependencies; rewriting these routines could remedy this situation.

50

CHAPTER 6

Results

RUBICC was run on a number of test circuits included in Appendix D. These cir-
cuits show the various types of errors which RUBICC can find. The real utility of the
program became apparent when RUBICC discovered errors which were not deliberately
put in these test-cases. This was especially significant since the creator of these cases was
a "highly experienced” , "seasoned" designer (the author). This example is described in

detail in Appendix D, the example for Net-List-27.

As pr;viously mentioned, RUBICC’s know ledge-base contains 110 rules. These rules
break down as follows: A little over 50% are used in the classification of objcts, a little
less than 50% are used to check for error cases and the remaining 10% or so are used for
"house-keeping” functions such as reversing transistors sources and drains. RUBICC is

approximately 110 KBytes of source code.

During the Spring Semester of 1984 at U.C. Berkeley, I learned Lisp, investigate:’
Expert Systems, and became familiar with HPRL. Prior to this, I had no experience in any
of the above subjects. Starting from scratch, I spent about 80 hours learning HPRL. The
current RUBICC System was coded in about 450 hours (11 man-weeks) over a seven
week period This would not have been possible without the excellent introduction to
Lisp and Artificial Intelligence Programming Techniques covered in U.C. Berkeley’s CS283
Course [31] which I took in the Spring, and the productive coding environment provided

by Lisp and HPRL.

The current implementation is very close to being usable for checking actual cir-
cuits. About two weeks would be required to update the Technology Frame with process

specific parameters. In addition, another man month would be involved in running cells

through, checking the results, and extending the rule base.

51

CHAPTER 7

Conclusions and Future Work

7.1. Conclusions

As a system, RUBICC has met its goals which were:

1. Showing the feasibility of using Expert System Technology to build a system which
provides meaningful critique of circuits.

2. Showing feasibility of encapsulating a Knowledge-Base of Design-Heuristics.

3. Determining the productivity of using Lisp and HPRL in writing such a system.

The design examples and errors checked show that Goal 1 has been met. One could
imagine using this tool as part of the design cycle to check new designs and to aid in the
training experience of new designers. The Rule System as written shows that Goal 2 can
be met. It is envisioned that while the entire knowledge base would never be fully
encapsulated, a major subset would evolve from the contributions of engineers and
designers, working either specifically to add rules to RUBICC or as error cases arose which
RUBICC didn’t check. HPRL and PSL proved to be highly productive, as shown by the
program statistics mentioned in Chapter 6. In addition, the system is very close to being

usable for real applications.
7.2. Future Directions

Further work on RUBICC should be considered in the following areas:

52

53

7.2.1. User Interface

The user interface should be improved to better aid the designer in understanding
the errors found by RUBICC. A number of items could be included: First a documenta-
tion file which contained an explanation of each error, and a proposed fix for that error,
written by the author of the error check, would be helpful. The user could display this
information to obtain more information about the error. In addition, HPRL provides infor-
mation as to why an item of data was asserted into the slot of a frame. This information
takes the form of the rule that asserted the data and is very cryptic. A user interface

function could be written to take better advantage of this feature of HPRL.
7.2.2. Checking Actual Circuits

RUBICC should be .extended to handle one or more technologies utilized by U.C.
Berkeley and run on complete cells from a real chip design. To perform this task, the
technology file must be updated fér a particular process technology. Cells from 5 chip
design could be hand coded into RUBICC input format or a translator could be written to

convert chip "extract" outputs appropris .ly.
7.2.3. CMOS Compatibility

RUBICC's rule base and frame hierarchy must be reimplemented for CMOS critique.
Though a significant task, RUBICC control structure and program paradigms would still

be valid, hence this does not involve a complete rewrite.

7.2.4. Additional Structure Classification Algorithms

As previously mentioned, RUBICC doesn’t handle certain structures such as the one
shown in Figure 5.6. A more general algorithm could be devised for picking out these
types of structures. The utility of this algorithm would have to be weighed against the

costs involved versus the benefit it would provide.

54

7.2.5. Program Tuning

A 1.3-1.5x performance improvement could be achieved by compiling RUBICC’s Lisp
routines. This speedup is estimated as followss HPRL routines are already compiled. The
program probably spends no more that 1/4 - 1/3 of its time in interpretive Lisp code. If
the time spent in this code went to zero (by compiling), the predicted performance

improvement would occur.

Another improvement in efficiency could come by program tuning. A histogram of
the times spent in each routine would show where to start. Suspected slow algorithms are

the series / parallel algorithms and the clock skew sensitivity checks.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

CHAPTER 8

References

Nagel, L.N,, "Spice 2: A Computer Program to Simulate Semiconductor Circuits,”
University of Cali fornia, Berkeley, Memo ERL-MS520, May, 1975.

Saleh, R, Kleckner, J, Newton, A.R, "lterated Timing Analysis in Splice 1,"
Proceedings of the IEEE International Conference on Computer- Aided Design,
Santa Clara, Ca., 1983, pp. 139-141.

Newton, AR, "The Simulation of Large-Scale Integrated Circuits,” University of
California, Berkeley, Memo # UCB/ERL M78/52, July, 1978.

Lelarasmee, E., "The Waveform Relaxation Method For Time Domain Analysis of
Large Scale Integrated Circuits: Theory and Applications,” University of California,
Berkeley, Memo# UCB/ERL M&82/40, May, 1982.

Ousterhout, J. K., "Crystal: A Timing Analyzer for NMOS VLSI Circuits," Univer-
sity of California, Berkeley, EECS Technical Report # UCB/CAD 83/115A, 1983.

Deutsch, J.T., "Behavioral-Level Simulation and Synthesis of Digital Systems,”
University of California, Berkeley, Memo # UCB/ERL M83/47, August, 1983.

Keller, K., Newton, A.R, "KIC2: A Low Cost, Interactive Editor for 1.C. Design," Dig-
est of Papers, Compcon 82, IECE Computer Society, 1982, pp. 305-306.

Ousterhout, J.K. "Caesar: An Interactive Editor for VLSI Layouts," VLSI Design,
Q4, 1981, pp. 34-33.

Keller, K, "A Electronic Circuit CAD Framework," University of California,
Berkeley, Dept. of EECS, Prof. A.R. Newton, June, 1984, Memo # UCB/ERL M84/54.

Ousterhout,J.K, etal, "Magic: A VLSI Layout System,” Proceedings of the 2Ist
Design Automation Con ference, June, 1984, pp. 152-159.

Mah, G., Newton, A.R., "Panda: A PL.A Generator for Multiply-Folded PLA’s," Proc.
1.EE.E. Int.Conf. on Cad, Santa Clara, Ca., Nov., 1984, to appear.

"CAD Tool Box User’s Manual," University of California, Berkeley.

Kowalski, TJ., "The VLSI Design Automation Assistant: A Knowledge Based Expert
System,” Carnegie-Mellon University, Report # CMUCAD-84-29, April, 1984.

55

[14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

[28]
(29]

(30]

56

Kim, J, McDermott, J, "TALIB: An IC Layout Design Assistant," Proceedings of the
National Con ference on A.l., American Association for Artificial Intelligence, Wil-
liam Kaufman, 1983.

Birmingham, W.P,, "MICON: A Knowledge Based Single Board Computer Designer, "
Carnegie-Mellon University, Report # CVIUCAD-83-21, December, 1983.

Zipple, R., " An Expert System for VLSI Design," 1983 IEEE Symposium on Circuits
and Systems, 1983, pp. 191-193.

Kelly, VE., "The CRITTER System — Automated Crmqumg of Digital Circuit
Designs,” Rutgers University, Rutgers AL/VLSI Project memo # 13, May, 1984.

Beyers, J.P., Hewlett-Packard Co., Cupertino L.C. Operation, July, 1984.

Lanam, D, etal. “"Guide to the Heuristic Programming and Representation
Language,”, Parts 1-3, Application Technology Laboratory, CRC, Hewlett-Packard
Laboratories, 1984, available under license only.

Goldstein, LP., Roberts, R.B, "The FRL Manual® Cambridge, Mass., Memo # 409,
1977.

Griss, M.L,, etal, "HP 9836 PSL User’s Guide," Application Technologv Laboratory,
CRC, Hewlett-Packard Laboratories, 1984.

Forgy, C.L., "OPS-5 User’s Manual,” Carnegie-Mellon University, Memo # CMU-CS-
81-13° 1981.

"Hewle.t-Packard Journal”, Volume 34, No. 8, August, 1983.

Beyers, J.W, et. al, "A 32b VLSI Chip," Digest of Technical Papers, 1981 IEEE
International Solid State Circuits Conference, Tham 9.1, 1981.

Mikkelson, J. et. al, "An NMOS VLSI Process for Fabrication of a 32b VLSI Chip,”
Digest of Technical Papers, 1981 IEEE International Solid State Circuits Conference,
Tham 9.1, 1981.

Hayes-Roth, et. al. " Building Expert Systems,”, Addison-Wesley, 1983.

NCA Corp., "Electrical Rules Check User’s Guide, Version 3.0, Santa Clara, Ca,
April 1984,

ECAD Inc,, "ERC-Dracula,” Santa Clara, Ca., January 1984.
DeMan, H, "Dialog," Catholic University of Leuven, Leuven, Belgium.

Wilensky, R., "LispCraft,” W.W. Norton Co, New York, N.Y., 1984,

57

[31] Wilensky, R, "CS-283: Artificial Intelligence Programming Techniques,” University
of California, Berkeley, (course), Spring, 1984.

[32] Charniak, E. etal, "Artificial Intelligence Programming Techniques, " Lawrence Eal-
baum Co., 1980.

58

Appendix A - Frame Hierarchies

™G
apeNts
|
NODE fLoENTS]
Y-
§-con ONE-PORT - ELEPENT
1
rro
THO-PORT -ELEMENT
N
ACTIVE- TUO-PORT PRSSIVE - TWO-PORT
mv/'\u.nm o'v SERIE <XOR
PARRLLEL
TRASISTOR SROoRS
ORIVER ms-cP LORD
V- ERRORS -BOOT - RRORS
REG-DRIVER ORN-800T oxp.L0RD 'SRC-LORD ! o
PUP-CRIVER | XI-DRIVER OTH-LOAD ORC-LOAD QATE - ERRORS REGISTER-ERRORS
PRECHARGER GATE -CMORS -8 RACE - ERRORS
FUNNY-FET AR - SHARE - ERRORS
COUPLING-ERRORS INPUT -PRO - ERRORS
CIRCUIT
ORAIN-BOCTSTRAP) "
'“| &= oATE REGISTER
. F
SUPER - RFFER /\Ei-m{\ REG-CORE
STATIC-QRTE oMMN-GRTE
N
OTHER-GATE OMNIC-QATE DYMNMIC-XC-XOR
ATIC-XC-XOR
s NOR

O INVERTER
xt-tmu/l\m-lm

CLXOUT - INVERTER

Figure A-1 Complete Generic Fraine Hierarchy

Appendix B - Generic Frames

:a--- ‘ut-----t-n-oa-.--FILE FRAMES'I.SL Assmasaan

(deframe transistor
(ako($value(thing)))
(d-node)
(g-node)
(s-node)
(width)
(length)
(1-div-w)
(string-1)
(clk-input($ask(don1)))
(clk-class)
(class)
(s-d-reversed)
(trigger)
(fb-tran-flag) . ¢ if transistor is used as a feedback transistor
(o-ins(Sask(dont))) ; used for drain bootstrap rules
(check)
(status)) ; ($i f-added((my-print : frame :value)))

(deframe load
(ako($value(transistor))))

(deframe src-load

(ako($value(load)))

(instance(Sif-added((fput :value ‘status ‘$value 'free))))) (deframe ckec-load
(ako($value(load)))

(instance(Sif-added((fput :value ‘status ‘$value free))))) (deframe drec-load
(ako($value(load)))

(insiance($if-added((fput :value status "$value "free)))) (deframe oth-load
(ako($value(load)))

(instance(Sif-added((fput ;value status "$value free)))))

(deframe driver .
(ako{$value(transistor))))

(deframe reg-driver
(ako($value(driver)))
(instance($if-added((fput :value 'status "$value 'free))))) (deframe xi-driver
(ako($value(driver)))
(instance($if-added((fput :value 'status "$value ‘free))))
(xfer-gate) {$if-added((fput :value 'status ‘$value ‘in-use)))
(fo-tran) A$if-added((fput :value 'status '$value ‘in-use))))
(in-node)
(ga-xfw-ratio)) ; gate area (o x fer-gate width ratio (deframe mos-cap
(ako(Svalue(transistor)))
(instance($if-added((fput :value 'status "$value 'free))))) (deframe precharger
(akof$valueldriver)))
(instance($if -added((fput :value ‘status $value ‘free))))
(pre phase)
(supply)) (deframe pup-driver
(ako(Svalue(driver)))
(instance($if-added((fput :value 'status "$Svalue 'free))))
(supply)) (deframe drn-boot
(ako($value(driver)))
(instance($if-added((fput :value ‘status ‘Svalue ‘free))))
(s-node(Sask(dont)))
(other-clk-hold-down
($if-added((freplace :value ‘status ‘$value ‘in-use)))

59

($ask(dont)))

(boot-phase(Sask(don1)))
(xfer-gate)
(fb-tran))
(deframe node .
(ako(Svalue(thing)))
(instance(Sif-added((fput :value ‘status ‘Svalue ‘free))))
(number)
(status) iclass/aspect doc: (class(allowable aspects))

(class(Sask(dont))) A(staticlload push-pull)) (dynarmic-hiZ(cik- phase))
(class- 1(Sask(dont))) i(clocked-always(clock- phase)) (clock ed-conditional
(aspect(Sask(dont)) ; (clock-phase)) (precharge (clock-phase))
(Sif-added((aspect-print frame :value))))
: (always-high(supply)) (gnd (gnd))
(trans-struct) ; all transistors wuh what part connected

(trans) ; all transistors connected
(gate) ; all transistors wuh gate connections
(src-drn) : all transistors wuh source or drain connections
load) : all load transistors connected
(driver) : all drivers connected to node
(struct) ; all structures connected to node
(cap) ; capacitors connected
(mos-cap) ; rmos capacitors connected
(supply) ; power supplies connected
(clock) ; clocks connected
(gate-cap) ; capacitance of all gates connected to node (up f)
(swatic-cap) ; capacitance of all capacitors tied to gnd or supply
(clka-cap) : capacitance of node to clka
(clkb-cap) ; capacitance o f node to clkd
(clke-cap) ; capacitance o f node to clk¢
(cikd-cap) ; capacitance o f node to clkd
(stc-drn-cap) ; capacitance of node to all sources and drains
" (other-cap) ; capacitance o f node to other places
(toral-cap) ; sumof all capacitances
(pad)) ; /0 pads connected
(deframe one-port-element
(ako($value(thing)))
(node-num)

(prot-device(Sif -added((freplace :value ‘status Svalue ‘in-use)))
(Sask(don1)))) (deframe pad
(ako($value(one-port-clement))))

(deframe two-port-element
(ako($valuefthing)))
(pos-node)

(neg-node)
(e-value))

(deframe active-two-port-element
(akof Svalue(two-port-element)))) (deframe passive-two-port-element
(ako(Svaluel two-port-elemen)))) (deframe cap
(ako($value(passive-two-port-clement))) (deframe supply
(akof$value(acti ve-two-port-element)))) (deframe clock
(ako($value(active-two-port -element))))

(deframe circuit
(ako($Svalue(thing))))

(deframe gate
(ako(Svalue(thing)))
(beta-ratio)
(trigger)

W

61

(status)
(pull-up (Sif-added((freplace :value ‘status ‘$value ‘in-use))))
(puli-down ($if-added((make-status-in-use :value))))
(in-node)
(out-node)
(supply-node)
(supply)
(struct(Sif-added((frepiace :value ‘status ‘$value ‘in-use))))
(dummy)} (deframe static-gate
(ako(Svalue(gate)))) (deframe dyna-gate
(ako($value(gate))))

(deframe dynamic-gate
(ako($value(dyna-gate)))
(instance(Sif-added((fput :value ‘status "$value ‘free))))
(pre-phase)
(true-phase))

(deframe dvnamic-xc-xor
(ako($value(dyna-gate)))
(instance(Sif-added((fput :value ‘status ‘Svalue free))))
(pre-phase)
(true phase))

(deframe inverter
(ako(Svalue(static-gate)))
(xfer-gate)) (deframe reg-inverter
(ako(Svalue(inverter)))
(instance($if -added({fput :value 'status ‘$value 'free)))))

(deframe xi-inverter
{ako(Svalue(inverter)))
(instance($if-added((fput :value ’status "$value ‘free))))
(xfer-gate(Sif-added((freplace :value ’status "$value 'in-use))))
(clock-noded
(clock))

(deframe clkow. “wverter
(ako(Svaluelir:: >rter)))
(instance($if-addedi(fput :value ‘status "$value ‘free))))
(xfer-gate(Sif-added({freplace :value ‘status ‘Svalue ‘in-use))))
(clock-node)
(clkgate($if-added((freplace :value ‘status ‘$value ‘in-use))))
(clock)) (deframe nor-gate
(akof$value(static-gate)))
(instance($if-added((fput :value 'status ‘$value 'free)))))

(deframe nand-gate
(ako(Svalue(static-gate)))
(instance(Sif-added((fpu1 :value ’status ‘$value ‘free)))))

(deframe other-gate
(akof$value(static-gate)))
(instance($if-added((fput :value "status ‘$value ‘free))))

(deframe static-xc-xor
(akol$value(static-gate)))
(instance($if -added((fput :value ‘status "$value ‘free)))))

(deframe struct
(ako($value(thing)))
(status)
(1-div-w)
(string-1) ; length of fet string

62

(node-1(Sask(dont)))
(node-2(Sask(dont)))
(clk-input($ask(dont)))
(clk-class(Sask(don1)))
(class)
(elking-check) .
(substruct(Sif-added((make-status-in-use :value))))
(trans(Sif-added((make-status-in-use :value)))))

(deframe parallel-struct
(ako($value(struct)))
(instance($if-added((fput :value ‘status “Svalue ‘free)))))

(deframe series-struct
(ako($value(struct)))
(instance($if-added((fput :value ’status "Svalue ‘free)))))

(deframe super-struct
(ako(Svalue(struct)))
(instance(Sif -added({fput :value ‘status ‘Svalue ‘free)))))

(deframe xc-xor-struct
. {akof Svaluefstruct)))
{instance(Sif-added((fput :value ‘status "Svalue ‘free))))
(in-node)
(out-node))

:..Iltllll.ll.l-l‘.ll-lF]LE FRAMES-?.SL sHammsxne

(deframe elements
(ako(Svalue(thing)))
(dummy)
(nodes)
(driver) (reg-driverXxi-driver XprechargerXpup-driverXdbl1)
(drn-boot($ask(don1)))
(load) (src-load Xcke-load Xdrc-load Xoth-1oad)
(mos-cap)
(dynamic-gate)
(supply)
(clock)
(cap)
(inverter) (simple-inverterXd-i-inverter)
(static-gate)
(super-buffer)
(reg-coreXreg-cell)
(drain-bootstrap)
(struct)
(series-struct(Sif-added((fput :frame ‘struct “Svalue :value))))
(parallel-struct($if-added((fput :frame 'struct "$value :value))))
(super-struct(Sif added((fput :frame 'struct "Svaluc :value))))
(xc-xor-struct(Sif-added((fput :frame struct 'Svalue :value)))))

(deframe elementsl
(ako($value(elements)))
(dummy(Svalue(1))))

(deframe errors
(ako($valuelthing))))

(deframe inv-errors
(ako(Svalue(errors)))
(dummy)
(beta-ratio($Sask(dont)))
(coupling($ask(dont)))
(input-clocking(Sask(dont))))

(deframe gate-errors ; filled by forward chain rules
(ako(Svalue(errors)))
(nand-length(Sask(dont)))
(beta-ratio($ask(dont)))
(dynamic-clocking(Sask(dont)))
(dynamic-clocking-1($ask(dont))Xdynamic-clocking- 2(Sask(dont)))
(dynamic-clocking- 3(Sask(dont))Xdynamic-clocking-4(Sask(dont)))
(race-condition($ask(dont))))

(deframe gate-errors-b ; filled by backward chain rules
(akof$valuelerrors)))
(feedback -desirable($ask(dont)))
(input-clocking-error($ask(dont))))

(deframe funny fet

(akof Svaluelerrors)))
(max-driver-length($ask(dont)))
(min-driver-width($ask(dont)))
(min-load- leng th($ask(don1)))
(min-load- width($ask(dont)))
(max-cap-length($ask(dont)))
(single-connection($ask(dont))))

(deframe funny-node

63

(ako($value(errors)))
(gate-only(Sask(dont)))
(supply-gate-only(Sask(dont)))
(clock-suppiy-short($ask(dont)))
(singleconnection(Sask(dont)))
(clocking-flag($ask(dont)))
(long-re-fag(Sask(dont))))

(deframe coupling-errors
{akol$value(errors)))
(xi-driver-coupling(Sask(dont)))
(xi-driver-coupling- 1(Sask(dont))))

(deframe net-errors
(ako(Svalue{errors)))
(clocks(Sask(dont))))

(deframe super-buffer-errors
(akol$valuelerrors)))
(power-waste-flag(Sask(dont 1)
(aggressive-br-flag(Sask(dont)))
(poor-input-drivel Sask(dont)

(detrame drn-boot-errors
(akof$valuelerrors)))
(phase-hold-down(Sask(dont)))
(clocking-error(Sask(dont)))
(mos-cap-back wards($ask(don1)))
(boot-node-not-active-low(Sask(dont)))
(longer-driver-needed(Sask(dont))))

(deframe register-errors
(ako(Svalue(errors)))
(critical-node- Aag (Sask(dont)))
(clocking-error (Sask(dont)))
(internal-connection (Sask(dont))))

(deframe race -errors
(akofSvalue(errors)))
(precharge-loss(Sask(dont)))
(input-skew-flag(Sask(dont))))

(deframe clk-skew-errors
(akolSvalue(errors)))
(clock-skew - flag-1(Sask(dont)))
(clock-skew -flag- 2 Sask(dont))))

(deframe charge-share-errors
(ako($value(errors)))
(feedback glitch- flagfSask(dont)))
(feedback-glitch -error(Sask(dont))))

(deframe inputpad-errors
(ako Svalue{errors)))
(missing protection-device($ask(dont)))
(undershoot - Aag(Sask(dont))))

64

65

Appendix C - Technology Frame

---l-l.Il--I-.-ululllFILE: TECH_FILESL Ewans
: Technology Frame for 5v only NMOS, 2 phase non-overlapping clocks

(deframe *g-con
(ako($value(thing))). iy eransistor constants s

(mx-dr-1($value(2.5))) ; maxirmum driver length
(mn-dr-w($value(3)) ; minirmum driver width
(mn-1d-1($value(3))) ; minimum load length
(mn-1d-w($value(3.5)) : minirrum load width
(mx-cap- I(Svalue(15))) ; maxirum mos-cap length
(std-1d-curren ($value(0.050))) ; current for load with w/l = 1 (ma)
(dr-eq-ratio ; convert driver l-div-w to load l-div-w
(Svalue(30) ii; gate constants uuninuis "
(st-nand-sl($value(3))) ; maxirmum static nand string length
(br-src-load(Svalue(4.0))) ; beta ratio for source connected load
(br-drc load(Svalue(6.0))) : betc ratio for drain connected load

(br-ckc-load(Svalue(6.0))) ; beta ratio for clock connected load
(broth-load(Svalue(4.00)

(xi-dr-wrf($value(0.9))) : xi-driver width reduction factor
(mn-dr-ga-xf-wi(Svalue(3.2))) ; nunirmum driver gate-area to x fer-gate
width ;i gate and overlap capacitances jiii:
(gox-cap (Svalue(910e-6))) ; gate area capacitance (pf/u” 2)
(gox-overlap-cap(Svalue(200e-6))) ;gate overlap capacitance (p f/u) ;::; dynamic circuit constants
(noise-tau(Svalue(20))) ; time constant for noise (ns) ;;ii: super-bu ffer constants
(mn-sup-buf-pwr-ratio : min ratio o f predriver w/l to driver w/l
($value(0.25)))
(mx-sup-buf-pwr-ratio ; max ratio of predriver w/l to driver w/l
($value(0.75)))
(mx-sup-but-agg-br : max predriver aggressive beta-ratio
($value(” (* 0.9 (fvo "g-con "br-src- load)
(mn-sup-buf-agg-br ; min predriver aggressi. - deta-ratio
(Svalue(” (* 0.8 (fvo "*g-con 'br-src-load))))) ii* . .arge-share-ratios
(dr-cshare ratio (4 Uwof pull down l'w o xfer-gate)
(Svalue(4.0))) ; couple back at most 1/5 o, “oltage
(cap-cshare-ratio :{/ cap of driven node cap o)’ couple-node)
($value(4.0))) ; couple back at most 1/5 of voltage :;:;: drain-bootstrap constants

(db-ahd-1($value(2.5))) ; drain bootstrap active holddown width ;i clock skew sensuivity
(clk-skew-flag(Svalue(1))) ; true if clock skew is a problem)

66

Appendix D - RUBICC Examples

Examples of RUBICC critiques are given in this appendix. Each example contains a

circuit schematic, the circuit net-list input given to RUBICC, and critique summary.

vi

M1

Figure D-1 — *Net-List-2

67

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-2
COUPLING-ERRORS

XI-DRIVER-COUPLING (M5)
FUNNY-NODE

GATE-ONLY (NODE3 NODE5 NODE10 NODE11 NODE13 NODE14 NODE15
NODE17 NODE19)
FUNNY-FET

MIN-DRIVER-WIDTH (M2 MS5)

SINGLE-CONNECTION (M3 M16 M15 M14 M13 M12 M10 M9 M2)
GATE-ERRORS

BETA-RATIO (OTHER-GATE-2 OTHER-GATE-1)
INV-ERRORS
BETA-RATIO (XI-INVERTER-1 REG-INVERTER-1)

CIRCUITS and GATES IDENTIFIED:
OTHER-GATE-2 (M11 M14 M12 M13 M15 M16)
OTHER-GATE-1 (Mé M9 M10 M§ M7)

XTI INVERTER-1 (M4 M5 M3)
REG-INVERTER1 (M1 M2)

FREE TRANSISTORS:

NIL
garbage collection time = 0.95583 min
total run time= 5.91583 min

Circuit Input List:

(setq *net-list-2 ((*net-list-2)
(loadml112248)
(driver m223022)
(driver m325442)
(loadmd 16648)
(driver m564022)
(loadm617748)
(driver m7 76 86 2)
(driver m§ 81206 2)
(driver m9 71096 2)
(driver m1091106 2)
(load'ml111121248)
(driver m12 121316 6 2)
(driver m13 1214 16 6 2)
(driver m14 1215166 2)
(driver m1516 17186 2)
(driver m16 18 190 6 2)
(supply v1105)

68

vi
vi !
v
! MS
b 1
8
M1 ‘-l M3
Ll 3 M&
| 1 4]
| M2 M1 I M4 7

2l

(1]

Figure D-2 - *Net-List-5

69

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-5
COUPLING-ERRORS

XI-DRIVER-COUPLING (M4)
FUNNY-NODE

GATE-ONLY (NODE3 NODE10)
FUNNY-FET

MIN-DRIVER-WIDTH (M2 M4)

SINGLE-CONNECTION (M2)

GATE-ERRORS
BETA-RATIO (NAND-GATE-1)
INV-ERRORS
BETA RATIO (XI-INVERTER-1 REG-INVERTER-1)

CIRCUITS and GATES IDENTIFIED:
NAND-GATE-1 (M5 Mé M7 M¥)
NOR-GATE-1 (M9 M12 MI10 M11)
XI-INVERTER-1 (M3 M4 M13)
REG-INVERTER-1 (M1 M2)

FREE TRANSISTORS:

NIL
garbage collection time = 0.44933 min
total run time- 3.37683 min

Circuit Input List:

(setq *net-list-5 {(*net-list-5)
(loadm1122438)
(driver m223022)
(supply v1105)
(driver m1321044 2)
(loadm31554 8)
(driver m4 5402 2)
(loadm51664 8)
(driver m6 6 57 6 2)
(driver m7 71086 2)
(driver m8 81006 2)
(load m91994§)
(driver m1096 06 2)
(driver m11 9100 6 2)
(driver m129 100 6 2)

)]

70

Figure D-3 — Net-, *

71

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-8
FUNNY-NODE
GATE-ONLY (NODES)

CIRCUITS and GATES IDENTIFIED:

FREE TRANSISTORS:

(M1 M6 MS M4 M3 M2)
garbage collection time = 0.22767 min
total run time= 1.09267 min

Circuit Input List:

(setq *net-list-§ "((*net-list-8)
(lcadml12246)
(supply v1105)
(driverm225362)
(driverm3 2546 2)
(driverm4 3546 2)
(driverm5 3506 2)
(driver m6 4 50 6 2)))

72

L
4
vi vi v1
1
CX1
cx2 127 CK1 .?l rn2e cK2 3 133
3 2t 2 P F
K
nzs c 2 rn29 m— n34
2 29 3 m32
4 CK1 Iz 2%
) M3l = n3e n3S
q vi
2 1
n2i CK2 '
124

hd mn23 19

Figure D-4 -- Net-List-14

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-14-DYNAMIC-CLOCKING

COUPLING-ERRORS
XI-DRIVER-COUPLING

XI-DRIVER-COUPLING-1

FUNNY-NODE
CLOCKING-FLAG
GATE-ERRORS

DYNAMIC-CLOCKING-1
DYNAMIC-CLOCKING-2
DYNAMIC-CLOCKING-4

(M22)
(M10 M18 M34)

(NODE4)

CIRCUITS and GATES IDENTIFIED:
DYNAMIC-GATE-7 (M1 M22 M21)
DYNAMIC-GATE-6 (M33 M34 M35)
DYNAMIC-GATE-5 (M28 M29 M30)
DYNAMIC-GATE-4 (M13 M14 M15)
DYNAMIC-GATE-3 (M11 M10 M12)
DYNAMIC-GATE-2 (M6 M7 M§)
DYNAMIC-GATE-1 (M17 M18 M20 M19)
XI-INVERTER-2 (M27 M26 M25)

XI-INVERTER-1 (M2 M4 M3)

FREE TRANSISTORS:
(M24)

garbage collection time = 4.116 min

total run time= 20.88633 min

Circuit Input List:
(setq *net-list-14

{(*net-list-14-d ynamic-clocking)

(supply v1105)

(driver m1124102)
(driver m4 6 5010 2)
(driver m7 8396 2)
(driver m10 121011 10 2)
(driverm13121362)
(driver m16 132154 2)
(driver m19 16 206 2)
(driver m22 41806 2)
(driver m254 3204 2)
(driver m28 12276 2)
(driver m31 21 2224 2)
(driver m34 25 24 26 16 2)

(clock ¢ck1 20 5)
(loadm216648)
(driverm562742)
(driver m§ 97010 2)
(driverm111 3126 2)
(driver m14 1312146 2)
(driver m17131762)
(driver m20 16 306 2)
(driver m23 11918 6 2)
(driver m26 21 20 0 16 2)
(driver m29 27 323 6 2)
(driverm32432442)
(driver m35 26 00 6 2)))

(DYNAMIC-GATE-7 DYNAMIC-GATE-4 DYNAMIC-GATE-1)
(DYNAMIC-GATE-7)
(DYNAMIC-GATE-6)

(clock ck2 30 5)

(driver m343542)
(driverm6 12 § 10 2)
(driver m94 3104 2)
(driver m12 11 206 2)
driver m1514206 2)
(driver m18 17151612 2)
(driverm214306 2)
(load m24 119194 8)
(load m271212148)
(driver m30 2322016 2)
(driver m33122562)

74

A

75

Vi

M1

M2

vi

M7

Figure D-S -- Net-List-17

Mi2

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-17
FUNNY-NODE

GATE-ONLY (NODE3)
LONG-RC-FLAG (NODE2)
FUNNY-FET

SINGLE-CONNECTION (M2)

CIRCUITS and GATES IDENTIFIED:
REG-INVERTER-6 (M7 M12)
REG-INVERTER-5 (M6 M11)
REG-INVERTER-4 (M5 M10)
REG-INVERTER-3 (M4 M9)
REG-INVERTER-2 (M3 M§)
REG-INVERTER-1 (M1 M2)

FREE TRANSISTORS:
NIL
garbage collection time = 0.25783 min
total run time= 5.37133 min
NIL

Circuit Input List:

(se1q *net-list-17 ((*net-list-17)
(supply v1105)
(load m11 2 2 4 30)
(driver m223062)
(load m315546)
(load md 1664 6)
(load m517746)
(load mé6 1 8846)
(load m719946)
(driver m§ 52015 2)
(driver m9 6 2015 2}
(driver m107 2015 2)
(driver m11 82015 2)
(driver m1292015 2)

)

77

Figure D-6 — *Net:List-18

78

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-18--SUPER-BUFFERS
SUPER-BUFFER-ERRORS
POWER-WASTE-FLAG (SUPER-BUFFER-4)
AGGRESSIVE-BR-FLAG (SUPER-BUFFER-4)
POOR-INPUT-DRIVE (SUPER-BUFFER-1)
COUPLING-ERRORS
XI-DRIVER-COUPLING (M14)

FUNNY-FET
SINGLE-CONNECTION (M18)
INV-ERRORS
BETA-RATIO (XI-INVERTER-2 XI-INVERTER-1)

CIRCUITS and GATES IDENTIFIED: '
SUPER-BUFFER-4 (REG-INVERTER-1 REG-INVERTER-2)
SUPER-BUFFER-3 (REG-INVERTER-4 REG-INVERTER-S)
SUPER-BUFFER-2 (XI-INVERTER-1 XI-INVERTER-2)
SUPER-BUFFER-1 (XI-INVERTER-3 REG-INVERTER-3)
XI-INVERTER-3 (M10 M14 M9)

XI-INVERTER-2 (M2 M4 M18)
XI-INVERTER-1 (M1 M3 M18)
REG-INVERTER-5 (M13 M17)
REG-INVERTER-4 (M12 M16)
REG-INVERTER-3 (M11 Mi15)
REG-INVERTER-2 (M6 M§)

REG-INVERTER-1 (M5 M7)

FREE TRANSISTORS:

NIL :
garbage collection time = 0.68933 min
total run time= 3.71067 min

Circuit Input List:

(setq *net-list-18 ((*net-list-18--super-buffers)

(supply v1105)
(clock ¢k1205)
(load m1 1121264)
(load m21124104)
(driver m3 123010 2)
(driver m4 4 30 20 2)
(loadm515548)
(load m6 1 564 8)
(driver m7 5406 2)
(driver m8 6406 2)
(driver m942 710 2)
(load m101 884 8)
(load m11179438)
(load m12 110 10 4 §)
(load m1314114%)
(driver m14 8706 2)
(driver m159 806 2)
(driver m16104 0 6 2)
(driver m1711 1006 2)
(driver m18 32204 2)

)]

M13 }-— cK2
3

Figure D-7 -- Net-List-22

79

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-22--REGISTER-CELL
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 (M2 M3))
REGISTER-ERRORS

CRITICAL-NODE-FLAG (REG-CELL-1)
DRN-BOOT-ERRORS

BOOT-NODE-NOT-ACTIVE-LOW (DRAIN-BCOTSTRAP-1)
FUNNY-FET

SINGLE-CONNECTION (M11 M¥&)

CIRCUITS and GATES IDENTIFIED:
DRAIN-BOOTSTRAP-1 (MI11 M12 M13)
REG-CELL-1 (REG-CORE-1 M2 M§)

REG-CORE-1 (XI INVERTER-1 XI' INVERTER-2 M9)
XI-INVERTER 2 (M7 M10 MS5)
XI-INVERTER-1 (M6 M4 M3)

FREE TRANSISTORS:

(MD)
garbage collection time = 0.70667 min
total run time= 3.9335 min

Circuit Input List:

(setq *net-list 22 ((*net-list-22--register-cell)
(supply v11035)
(clock ck1 205)
(clock ck2 30 5)
(driver m1 1 310 10 2)
(driver m2 101446 2)
(driver m3425062)
(driver m4 6 5010 2)
(driver m5§ 7364 2)
(load m6 1 664 8)
(load m7 18§48
(driver m§ 814 96 2)
(driver m9 § 34 6 2)
(driver m10& 7010 2)
(driver m1112 3136 2)
(driver m1221314 20 2)
» (driver m1314 3010 2)

81

Vi Vi

Ji |+ li CK2
M1 M2 M8 3

j S j 3

| M3 & | MS c)——i M7

M4 | | CcK2

Figure D-8 -- Net-List-23

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-23--RACE-CONDITION
RACE-ERRORS

PRECHARGE-LOSS (DYNAMIC-GATE-1)
FUNNY-NODE

GATE-ONLY (NODE4)

SINGLE-CONNECTION (NODE2)
FUNNY-FET

SINGLE-CONNECTION M3)

CIRCUITS and GATES IDENTIFIED:
DYNAMIC-GATE-1 (M8 M7)
NOR-GATE-2 (M2 Meé MS5)
NOR-GATE-1 (M1 M4 M3)

FREE TRANSISTORS:

NIL
garbage collection time = 0.4755 min
total run time= 2.53867 min

Circuit Input List:

(setq *net-lis1-23 ((*net-lis1-23--race-condition)
(supply v110 5)
(clock ck1 20 5)
(clock ck2 30 5)
(driver m354010 2)
(driver m4 5306 2)
(driver m5 6506 2)
(driver m6 6306 2)
(driver m7 7606 2)
(driver m§ 1 3710 2)
(loadm115548)
‘nhadm216648)

vi

M3

Figure D-9 -- Net-List-24

83

‘I

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-24--XC-XOR-GATES
FUNNY-NODE

GATE-ONLY (NODESs)

SINGLE-CONNECTION (NODE10)
GATE-ERRORS

BETA-RATIO (STATIC-XC-XOR-1)

CIRCUITS and GATES IDENTIFIED:
STATIC-XC-XOR-1 (M3 M6 M7 M1 M2)

FREE TRANSISTORS:

(M9 M§ M5 M4)
garbage collection time = 0.46267 min
total run time= 2.65583 min

Circuit Input List:

(setq *net-list-24 ((*net-list-24--xc-xor-gates)
(supply v1105)
(clock ck1 100 5)
(driver m1 34232
(driver m223462)
{loadm312248)
(driver md 3606 2)
(driver m54606 2)
(driver m6 7826 2)
(driver m787262)
(driver m§ 7606 2)

) (driver m9 86 0 6 2)

84

85

vi
i
cK2 [I:"i
4 1108
3 £
T =
M3 2 e
M2 CK1
| \%
H4l 5
MS L—CKZ
T 7 Iy
M7

Figure D-10 — Net-List-25

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-25--FEEDBACK
CHARGE-SHARE-ERRORS

FEEDBACK-GLITCH-FLAG ((NODE4 NODES))

FEEDBACK-GLITCH-ERROR ((NODE4 NODES))
FUNNY-FET

SINGLE-CONNECTION (M10)

CIRCUITS and GATES IDENTIFIED:
NOR-GATE-1 (M1 M8 M3 M5)

FREE TRANSISTORS:

(M10)
garbage collection time = 0.4635 min
total run time= 2.37583 min

Circuit Input List:

(setq *net-list-25 '((*net-list-25--feedback)
(supply v1 10 5)
(ctock ck1 20 5)
(clock ck2 30 5)
(loadm]l 14448)
(driver m263542)
(driver m34 5010 2)
(driver m4 5403 2)
(driver m54306 2)
(driver m7 6374 2)
(driver m8 47010 2)
(driver m9 7404 2)
(driver m104 2810 2)
(capc1801)

»

86

Figure D-11 — Net-List-27

Explanation: RUBICC mentions a glitch error and flag involving node6 and
node7. After thinking about this for a few minutes it became apparent that
what’s happening here is that node7 could still be high when transfer gate
"m3” turns on during clk1. Then the voltage at nodeJ is determined by the
ratio of drivers "m3" and "m7" rather than just “m3". The proper connec-
tion to the gate of "m8” would be to node8.

87

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-27--BOOTSTRAPS-WITH-CLOCK-SKEW-ERRORS

CHARGE-SHARE-ERRORS
FEEDBACK-GLITCH-FLAG ((NODE7 NODE6) (NODES NODE4))
FEEDBACK-GLITCH-ERROR ((NODE7 NODES))
CLK-SKEW-ERRORS
CLOCK-SKEW-FLAG-1 (M13 M17))

DRN-BOOT-ERRORS ‘
PHASE-HOLD-DOWN . (M9)
CLOCKING-ERROR (DRAIN-BOOTSTRAP-1)

MOS-CAP-BACKWARDS (DRAIN-BOOTSTRAP-2)
BOOT-NODE-NOT-ACTIVE LOW (DRAIN-BOOTSTRAP-1)
LONGER-DRIVER-NEEDED (M4 M11)
COUPLING-ERRORS
XI-DRIVER-COUPLING (M§)
FUNNY-FET
MIN-DRIVER-WIDTH (M8)
SINGLE-CONNECTION (M9)

CIRCUITS and GATES IDENTIFIED:
DRAIN-BOOTSTRAP-3 (XI-INVERTER 1 M9)
DRAIN-BOOTSTRAP-2 (CLKOUT-INVERTER-1 Mo M5 M7)
DRAIN-BOOTSTRAP-1 (M14 M13 M15 M10)
CLKOUT-INVERTER-1 (M1 M4 M3)
XI-INVERTER-2 (M19 M18 M17)
XI-INVERTER-1 (M12 M11 M10)

FREE TRANSISTORS:

(M8)
garbage collection time = 0.96133 min
total run time= 5.02017 min

Circuit Input List:

(setq *net-list-27 {(*net-list-27--bootstraps-with-clock s ~w-errors)
(supply v1105)
(clock ck1 20 5)
(clock ck2 30 5)
(loadm! 1 666 4)
(driver m2 6276 2)
(driver m34256 2)
(driver md 75012 2)
(driver m573746)
(driver m6 37 & 20 2)
(driver m7 8204 2)
(driver m8 5703 2)
(driver m9 310 11 20 2)
(driver m104 296 2)
(driver m11 1090 10 2)
(load m1212104 8)
(driver m1331213202)
(driver m144 3126 2)
(driver m15312348)
(driver m16 132010 2)
(driver m1713 3146 2)
(driver m18 1514010 2)

)(load ml91151546)

)

88

89

M7

cK2
s cK2
12
E|2 el

S E 4
]

s

\Y,

Figure D-12 -- Net-List-28

18
Me

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-28--CLOCK-SKEW-ERROR
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 ((M4 MS5))
DRN-BOOT-ERRORS

PHASE-HOLD-DOWN (M2)
FUNNY-NODE
" GATE-ONLY (NODE7)
FUNNY-FET

SINGLE-CONNECTION (M1 M3)

CIRCUITS and GATES IDENTIFIED:
XI-INVERTER-1 (M7 M6 MS)

FREE TRANSISTORS:

(M3 Ma M1)
garbage collection time = 0.48367 min
total run time= 2.688 min

Circuit Input List:

(setq *net-list-28 "((*net-list- 28--clock-skew -error)

(supply v1105)
(clock ck1 20 5)
(clock ck2 30 5)
(driver m1 42114 2)
(driver m2 311 520 2)
(driver m36 706 2)
(driver m4 8564 2)
(driver m59386 2)
(driver m6 109010 2)
(load m7 1 10 104 6)

)]

9

INI

Vi

1

CK1 M1

|5 2
2
M2 M3

3 4

V

Figure D-13 — Net-List-29

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-29--INPUT-PAD

INPUT-PAD-ERRORS
MISSING-PROTECTION-DEVICE(IN1-PAD)
UNDERSHOOT-FLAG (IN1-PAD)

FUNNY-FET .
SINGLE-CONNECTION (M2)

CIRCUITS and GATES IDENTIFIED:
XI-INVERTER-1 (M1 M3 M2)

FREE TRANSISTORS:

NIL
garbage collection time = 0.00000E+000 min
total run time= 0.63617 min

Circuit Input List:

(setq *net-list-29 ((*net-list- 29--input-pad)
(supply v11035)
(pad inl 3)
(loadm112245§)
(driver m3 24010 2)
(driver m2 3544 2)
(clock ck1 50 5)
)]

92

Figure D-14 -- Net-List-30

- Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-30--EXAMPLE-1
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 ((M24 M25) (M39 M38))
REGISTER-ERRORS :

CRITICAL-NODE-FLAG (REG-CELL-1 REG-CELL-2)

CLOCKING-ERROR (REG-CELL-1 REG-CELL-2)
DRN-BOOT-ERRORS

LONGER-DRIVER-NEEDED (M4 MS5)
SUPER-BUFFER-ERRORS

AGGRESSIVE-BR-FLAG (SUPER-BUFFER-2 SUPER-BUFFER-1)
COUPLING-ERRORS

XI-DRIVER-COUPLING (M36 M57 MS8)
GATE-ERRORS-B

FEEDBACK-DESIRABLE (NOR-GATE-2)
GATE-ERRORS

DYNAMIC-CLOCKING-1 (DYNAMIC-GATE-1)

CIRCUITS and GATES IDENTIFIED:
DRAIN-BOOTSTRAP-2 (XI-INVERTER-1 M11 M10 M12)
DRAIN-BOOTSTRAP-1 (CLKOUT-INVERTER-1 M6 M5 M7)
REG-CELL-2 (REG-CORE 1 M39 M32)

REG-CELL-1 (REG-CORE-2 M24 M29)
REG-CORE-2 (XI-INVERTER-4 XI-INVERTER-5 M30)
REG-CORE-1 (XI-INVERTER 7 XI-INVERTER-6 M56)

Interrupt
SUPER-BUFFER-1 (NOR-GATE-2 NOR-GATE-1)
DYNAMIC-GATE-1 (M23 M45 M22 M21 M47 M46)
STATIC-XC-XOR-1 (M50 M4§ M49)

NOR-GATE-2 (M42 M58 M44)
NOR-GATE-1 (M41 M57 M43)
CLKOUT-INVERTER-1 (M1 M4 M2)
XI-INVERTER-7 (M37 M36 M3§)
XI-INVERTER-6 (M34 M33 M35)
XI-INVERTER-5 (M52 M2§ M27)
XI-INVERTER-4 (MS51 M26 M25)
XI-INVERTER-3 (M18 M20 M1e6)
XIIINVERTER-2 (M17 M19 M16)
XI-INVERTER-1 (M9 M55 M§)
REG-INVERTER-1 - (M15 M14)

FREE TRANSISTORS:

(M31)
garbage collection time = 12.3875 min
total run time= 51.65183 min

94

Circuit Input List

(setq *net-list-30
((*net-list-30--example-1)
(supply v1105)

(pad inl 12)

(driver m362782)
(driver m6 3 7 § 20 2)
(loadm9131064)
(driver m12 11 306 2)
(driver m14 13 12010 2)
(load m17 115156 6)
(driver m20 16 14 0 16 2)
(driver m23 1 317 20 2)
(driver m26 21 22010 2)
(driver m27 21 3206 2)
(driver m30 23 3366 2)
{driver m33 25 31 0 10 2)
(driver m36 30 2906 2)
(driver m38 29 2 28 b 2)
(loadmd1134 3566
(driver md4 34 30 10 ’)
(driver md5 17 35020 2)
(driver m48 26 25 23 8 2)

(clock ¢kl 20 5)
(loadml116664)
(driver m4 75010 2)
(driverm7 8206 2)
(driver m10 2 10 24 10)
(driver m551090202)
(load m151131348)
(load m181 1516 8§ 6)
(driver m21 17 16 18 10 2)
(driver m24 17 11 36 6 2)
(load mS1 121 2148)
(driver m28 2320012 2)
(driver m3112 24 0 2)
(loadm34 1252546
(load m37 1 30 30 4 b)
(driver m39 1711 286 2)
(load md42 1 34 34 4 6)
(driver m5735330122)
{driver m46 2711010 2)
(driver m49 2623 25§ 2)

(clock ¢ck2 30 5)

(driver m242562)
(driver mS 37 34 10)
(driver m8 4394 2)
(driver m11 21011 20 2)
(driver m13120010 2)
(driver m16 13314 6 2)
(driver m1915140122)
(driver m22 1811010 2)
(driver m25 36 2226 2)
(load m52 1 23234 8)
(driver m29 23824 12 2)
(driver m32 24 8 2510 2)
(driver m35 313306 2)
(driver m56 253286 2)
(driver m40 24 3 3310 2)
(driver m43 353012 2)
(driver m58 34 33010 2)
(driver m47 17 26 27 10 2)
(load m30 1 26 26 4 12)))

Appendix E - Implemented Circuit Checks

In this Appendix, the errors checked for by the current implementation of RUBICC
are presented. The format is as follows Each error frame is listed with its slots, the rules
which, if proven true, will fill these slots, the type of rule (forward or backward chain-
ing) and the program module which contains the rule. Explanations of each of these
errors are included after each table.

E.1. Error Frame: INV-ERRORS (Inverter Errors)

Error Slot Rule Name Type Program Module
Beta-Ratio Check-Beta-Ratio-1 F Inv-Rules
Input-Clocking Check-Clkout-Inverter-1 F Inv-Rules

Check-Clkout-Inverter-2 F Inv-Rules

Explanations:

BETA-RATIO is defined as the width to length ratio of the driver divided by the
width to length ratio of the load. Static gates and inverters, must have a minimum beta
ratio to guarantee proper output zero levels. This number is dependent on numerous
parameters such as process technology characteristics, circuit operation voltages and load
configuration. RUBICC uses constants stored in *G-CON for the various load
configurations to determine the required beta-ratio of the gate.

INPUT-CLOCKING rules check clkout inverters (Figure E-1) to be sure that the same
clock drives the input transfer gate (m1) and the pull-up driver (m2).

CK M2

I —

M

Figure E-1 Clkout-Inverter

97

E.2. Error Frame: GATE-ERRORS

Error Slot Rule Name Type Program Module
Nand-Length Static-Gate-Check-1 F Gate-Rules p.
Beta-Ratio - Static-Gate-Check-2 F Gate-Rules
Dynamic-Clocking-1 Dynamic-Gate-Check-1 F Gate-Rules
Dynamic-Clocking-2 Dynamic-Gate-Check-2 F Gate-Rules
Dynamic-Clocking-4 Dynamic-Gate-Check-4 F Gate-Rules
Race-Condition Dynamic-Gate-Check-3 F Gate-Rules

Explanations:

NAND-LENGTH refers to the maximum number of series fets in the gate’s current
path from the gate-output to ground. Most technologies have a maximum limit to this
number because each series transistor degrades the gate’s output zero level. The constant
RUBICC uses for this check is 3. Any static gates with greater that 3 transistors in this
path are flagged.

BETA-RATIO refers to the same type of check as listed in inverter errors, Section
El.

DYNAMIC-CLOCKING-1 performs checks on dynamic gates to detect any of the fol-
lowing error conditions: .

Check if precharge and true phases are equal . .
Check if pull-down structure is clocked on more than one clock phase
Check if pull-down structure has a gate which is always held high

DYNAMIC-CLOCKING-2 checks for a dynamic gate which is always pulled low on
a particular clock phase. This isn’t a p2—icularly useful circuit.

DYNAMIC-CLOCKING-4 checks / . a dynamic gate that is never clocked. There are
cases where this wouldn’t be an errc., “ough its a strange use for this type of gate.

RACE-CONDITION checks if there cists an xi-driver (driver with transfer gate) in
the pull-down structure of a dynamic gate whase transfer gate is clocked on the phase
that the gate is supposed to be true. This can cause precharge loss problems at node4 (Fig-
ure E-2) due to a race condition that occurs when the xi-driver ("m1") gate node comes
true during ck2.

X1 —

o B8

Figure E-2

98

E.3. Error Frame: GATE-ERRORS-B

Error Slot Rule Name Type Program Module
Feedback-Desirable Feedback-Check B Gate-Rules
Input-Clocking-Error | Static-Gate-Input-Clock-Check B Gate-Rules

Explanations:

FEEDBACK-DESIRABLE means that a feedback transistor is recommended to be
placed in the position of "m1" in Figure E-3 to solve the following problem: the output
(node 4) is held low by the same clock phase that loads "m3's" gate (node3) through
transfer-gate "m2". If a zero level was stored on node3, noded will rise when the clock
phase goes low. Drain to gate coupling from noded to node3 will cause node3 to also rise.
This can cause the gate to be slow. The feedback transistor is usually a minimum driver
since it’s only job is to keep node 3 low in the event of this coupling.

INPUT-CLOCKING-ERROR checks any gate whose output is clocked low on a phase
(see Figure E-3) to be sure that any transfer gate ("m2") which loads any input to the
gate is clocked on the same phase. If this is not the case, an error occurs, since it doesn’t
make sense for the input to such a gate to change during the time when the output is to
become true.

99

EA4. Error Frame: FUNNY-FET

Error Slot Rule Name Type Program NMbodule
Max-Driver-Length Funny-Fet-1 B F-F-Rules
Min-Driver-Width Funny-Fet-2 B F-F-Rules
Min-Load-Length Funny-Fet-4 B F-F-Rules
Min-Load-Width Funny-Fet-3 B F-F-Rules
Max-Cap-Length Funny-Fet-5 B F-F-Rules
Single-Connection Funny-Fet-6 B F-F-Rules

Explanations:

These are transistors which either violate circuit design rules or make no sense. Note
that all the constants are accessed from the *G-Con Frame.

MAX-DRIVER-LENGTH flags drivers longer that 2.5 microns
MIN-DRIVER-WIDTH flags drivers narrower than 3.5 microns.
MIN-LOAD-LENGTH flags loads narrower than 3.5 microns.

MAX-CAP-LENGTH flags mos-capacitors which are longer than 15u. Mos—caps
longer than this may cause high-frequency problems due to time constants associated in
forming the inversion layer.

SINGLE-CONNECTION fiags transistors that have no other circuit elements connected
to them. These transistors are probably not very useful.

100

ES. Error Frame: FUNNY-NODE

Error Slot Rule Name Type Program Module
Gate-Only Funny-Node-1 B F-F-Rules
Supply-Gate-Only Funny-Node-2 B F-F-Rules
Clock-Supply-Short Funny-Node-3 B F-F-Rules
Single-Connection Funny-Node-4 . B F-F-Rules

Funny-Node-5 B F-F-Rules
Clocking-Flag Dynamic-Clocking-Rule-1 B Gate-Rules
Long-Rec-Flag Long-Re-Flag B Rc-Rules
Explanations:

GATE-ONLY means that a node has only gates connected to it. This isn’t a very use-
ful part of a circuit.

SUPPLY-GATE-ONLY flags nodes with only gates and supplies connected to it.

CLOCK-SUPPLY-SHORT flags a node which is connected to both the positive end of
a supply and clock.

SINGLE-CONNECTION means that a given node has only one circuit element con- ~
nected to it

CLOCKING-FLAG means that this node has a probable error due to the following
conditionss The node is precharged, and there is a driver connected to this node in the
configuration of "m2" in Figure E-4. Either driver "m2's" gate is always held high, or
connected to a clock.

LONG-RC-FLAG checks for noise sensitive cases where a static signal may drive
many gates over a long distance. Since the signal is static, there are no timing constraints
on it and hence the tendency is to use long, high impedance load fets for this application.
If the fets bein,g driven control highly dynamic signals, coupling can dangerously reduce
the “high level” on the static signal. RUBICC checks for this by calculating the total node
capacitance and approximating a resistance for the load transistor by using constants stored
in *G-CON. An error is flagged if the "RC Time Constant"for the node is greater than a
*G-CON constant called " noise-tau”.

CK1 —| M1

CK1 —| M2

Figure E-4

101

E.6. Error Frame: Coupling Errors

Error Slot Rule Name Type Program Module
Xi-Driver-Coupling Xj-Driver-Coupling-Rule-1 F Couple-Rules
Xi-Driver-Coupling-1 Xi-Driver-Coupling-Rule-2 F Couple-Rules

Explanations:

XI-DRIVER-COUPLING flags an xi-driver (driver with transfer gate) whose ratio of
driver gate area to transfer gate width is below a constant stored in *G-CON (mn-dr-ga-
xf-w). See Figure E-5a. The problem here is that if "m1" is too wide, coupling from
node3 to noded becomes significant and a serious loss of charge can occur at noded. If a
logical one-level is stored on noded4 during a clock phase, “m1” comes out of inversion
when the clock falls. The coupling is just due to the gate-drain overlap capacitance
inherent in any mos-transistor.

XI-DRIVER-COUPLING-1 flags xi-drivers whose sources are not grounded. Consider
the circuit in Figure E-5b. Suppose a high level is stored on node3 during clkl. During
clk2, nodes 2 and 4 will start going low. Capacitive coupling from node2 to node3 and
noded4 to node3 due to overlap capacitances and "m2’s" inversion layer will also pull
node3 low, limiting the performance of the circuit. The solution to this problem is to put
the xi-driver on the bottom of the fet string with its source connected to ground.

vi

—Inal [T

CK2 — | M3

Figure E-§

102

E.7. Error Frame: SUPER-BUFFER-ERRORS

Error Slot Rule Name Type Program Module
Power-Waste-Flag Super-Buffer-Flag-1 F Supbuf-Rules
Aggressive-Br-Flag Super-Buffer-Flag-2 F Supbuf-Rules
Poor-Input-Drive Super-Buffer-Flag-4 F Supbuf-Rules

Explanations:

POWER-WASTE-FLAG checks for the following conditions in a super-buffer (Fig-
ure E-6a) which may mean that its speed-power-product could be improved:

(W/Lof "m1" > 0.75* W/L of "m2) or (W/L of "m1" <0.25 W/L of "m2")

AGGRESSIVE-BR-FLAG suggests that the beta-ratio of the inverter composed of
"m1" and "m4" (Figure E-6a) could be made smaller (more aggressive) than the
minimum required inverter beta-ratio because a slightly higher zero level on nodel will
make the buffer faster and not be detrimental. If the beta-ratio is too small, it will be
flagged as having a gate beta-ratio error.

POOR-INPUT-DRIVE flags the case where a transfer gate drives the input to a non-
inverting super-buffer. See Figure E-6b. This is a problem because transfer-gate "m5" lim-
its the gate of "m1" to the voltage V1-Vt, where Vt is "m5’s" threshold.

vi vi vi Vi
M1 M2 M2 (LM
! 1
3
{ _J—-l M3
2

|
‘—!;14 L 1 1S “—‘Lm

Figure E-6

103

E.8. Error Frame: DRN-BOOT-ERRORS

Error Slot Rule Name Type Program iviodule
Phase-Hold-Down Drn-Boot-Check-1 B D-Boot-Rules
Clocking-Error Check-Db-Clockin B D-Boot-Rules
Mos-Cap-Backwards Check-Db-Mos-Cap B D-Boot-Rules
Boot-Node-Not-Active-Low Check-Db-Boot-Node B D-Boot-Rules
Longer-Driver-Needed Check-Db-Hd-Length B D-Boot-Rules

Explanations:

PHASE-HOLD-DOWN flags a drain-bootstrap circuit without a pull-down transistor
("mS5" in Figure E-7a) on its output which is clocked by a phase other than the boot-phase.

CLOCKING-ERROR flags a bootstrapper whose predriver is clocked on the same
phase as the boot-phase (clock connected to the drain of the output transistor). This is not
a meaningful circuit.

MOS-CAP-BACKWARDS flags a bootstrapper whose mos-capacitor is connected back-
wards. Drain bootstrapper mos-caps must be connected with their gates connected to the
boot node (noded of Figure E-7a). If connected backwards the circuit doesn’t work.

BOOT-NODE-NOT-ACTIVE-LOW means that the boot-node is not actively held low
when the bootstrapper is not supposed to fire. This is illustrated in Figure E-7b. In some
technologies, capacitive ratios are such that the bootstrapper may fire under this condition |
even if node2 was initially precharged low during clkl.

LONGER-DRIVER-NEEDED means that the active hold down to the drain-
bootstrapper ("m3" in Figure E-7a) needs to be made longer. This is because the boot-node
(noded in Figure E-7a) voltage goes above the supply voltage and a longer fet is needed to
avoid the occurrence of punch-through.

K2
X1

M3 M2

CKI.-{ns

E.9. Error Frame: Register Errors

104

Error Slot Rule Name Type Program Module
Critical-Node-Flag Reg-Critical-Node-Flag B Reg-Rules
Clocking-Error Reg-Clocking-Check B Reg-Rules

Reg-Clocking-Check-2 B Reg-Rules
Internal-Connection Reg-Internal-Con-Check B Reg-Rules

Explanations: (see Figure E-8)

CRITICAL-NODE-FLAG flags node2 in Figure E-8. This node is critical because it is
sensitive to coupling due to the fact that this register’s refresh transistor ("m9") is con-
nected to a clock phase, rather than an an inverted set signal. Care must be taken in the
layout to keep extraneous signals from coupling to this node.

CLOCKING-ERROR flags registers that are not clocked correctly. It means that the
register violates one of the following rules:

The set transistor ("m2") must be clocked by the same phase as the

core input transistor ("m3").

The recirculate transistor ("m9") must be clocked on the same phase

as the second stage input ("m7").
The recirculate transistor ("m9) and the input transistor ("m2") must
be clocked on different phases.

The input transistor ("m2") and the output transistor ("m8") must

be clocked on the same clock phases.

INTERNAL-CONNECTION refers to errors caused by extraneous transistors connect-
ing the internal nodes of the register cell together, and thereby not allowing the circuit to

function as a register cell.

Vi Vi

SET oKt HS cK2 rl 7

I | 1
l L

Mo a— [M1 |Lre

105

E.10. Error Frame: Race Exrrors

Error Slot Rule Name Type Program Module
Precharge-Loss ~ Race-Condition-1 B Race-Cond
Input-Skew-Flag Dynamic-Xor-Race-Condition B Race-Cond

Explanations:

PRECHARGE-LOSS can occur on the output of a dynamic gate if driven by a static
gate under the following condition: Static gate "A" drives the input of static gate "B'.
Static Gate "B" drives the input to dynamic gate "C". Gates "A" and "B" are held low
during the precharge phase of dynamic gate "C". A race condition occurs when clk2 goes
low which could turn on dynamic gate "C" for a short time and thereby erroneously
discharge gate "Cs” output. This situation is illustrated in Figure E-9a.

INPUT-SKEW-FLAG flags gates whose correct operation is sensitive to the timing
and / or rise and fall times of their inputs. This is illustrated by the dynamic xor-gate in
Figure E-9b. If nodes 2 and 3 don’t fall within a certain amount of time relative to each
other (determined by process parameters and layout geometries), node4 which was
intended to stay high in this case can go low.

v1 vi

CK2— K
GATE C el _-!E

GATE A "‘I GATE B 3

vi vi

2
2 4
CK1 —
I e 3
A B

Figure E-9

E.11. Error Frame: Clock-skew-errors

106

Error Slot

Rule Name

Clock-Skew-Flag-1

Clock-Skew-Flag-2

Clock-Skew-Rule-1
Clock-Skew-Rule-2
Clock-Skew-Rule-3

Type Program Module
B Race-Cond
B Race-Cond
B Race-Cond

Explanations:

CLOCK-SKEW-FLAG-1 flags any transfer gate whose drain or source is driven by a
bootstrapper as sensitive to clock skew. This skew might come from distribution delays
on the chip or from timing delays inherent in the bootstrapper itself. This condition is
illustrated in Figure E-10a. If there exists significant clock skew, node4 could be errone-
ously charged or discharged before the transfer gate ("m2") is turned off.

CLOCK-SKEW-FLAG-2 flags two drivers who are connected in series, one whose
gate is connected to a clock, and the other whose gate is connected to a drain bootstrapper.
This is sensitive to the same problem as described above. This case is illustrated in Figure
E-10b, where "m1” is the drain-bootstrapper.

cK

cK1 -“_13

2
cK2
n EIS
' M2 4%

CcK1

Figure E-10

107

E.12. Error Frame: Charge-share Errors

Error Slot Rule Name Type Program Module
Feedback-Glitch-Flag Charge-Share-2 B Cshare-Rules
Feedback-Glitch-Error Charge-Share-1 B Cshare-Rules

Explanations:

FEEDBACK-GLITCH-FLAG implies that the nodes involved are sensitive to the
feed-back-glitch error described next. However, RUBICC performed some calculations and
the circuit seems to be OK. But be careful, this is a really nasty problem to find on a
fabricated chip because it's processing and voltage dependent.

FEEDBACK-GLITCH-ERROR means RUBICC has calculated that the nodes involved
will probably have this problem under some process and voltage conditions. The
schematic in Figure E-11 is sensitive to the "glitch”. Here’s what happens. Assume that
node3 is high at the end of clk1 and that somehow capacitor "c1” got charged and hence
node5 is also high at the end of clkl. The designed intention of the circuit is for node4 to
stay low during clk2 under this circumstance. Depending upon the ratios of the W/L’s of
"m3” and "mé6" and the relative values of capacitor "c1" and the parasitic capacitance
"¢2", node4 can glitch significantly above the threshold voltage when clk2 goes high. If
noded gets above "m4d’s "Vt", "m4" turns on, discharging node3, which allows noded to go
high, causing the circuit function improperly (die).

RUBICC performs the following calculations to determine the severity of this prob-
lem: If the the W/L of "m3" is 4 times bigger that the W/L of "m6" then the maximum
glitch would be 0.2 times the supply voltage. For a 5v supply and a 1 volt threshold this
should be OK. Likewise if the value of "¢2" is 4 times bigger that the value of "c1" then
the maximum glitch would be 1 volt also. Under either of these circumstances, RUBICC
gives the glitch flag. If neither of these condition are met, RUBICC gives the error flag.

c1

- ¥

108

E.13. Error Frame: Input-pad-errors

Error Slot Rule Name Type Program Module
Missing-Protection-Device Input-Protection-Check B Pad-Rules
Undershoot-Flag Input-Undershoot-Check B Pad-Rules

Explanations:

. MISSING-PROTECTION-DEVICE flags any chip input pad without a protection dev-
ice configured as "m1" in Figure E-12a. Without this device, the gate of "m3" will not be
protected against electrostatic zap and will probably cause the whole chip to die in assem-
bly or be subject to infant mortality.

UNDERSHOOT-FLAG points out that the voltages on input pads of chips sometimes
will undershoot below ground. Under these circumstances, transistors whose sources or
drains are connected to the pad can inadvertently turn on. In Figure E-12b, if during
clk2, the input pad went negative, it could turn on transistor "m3" and wrongly
discharge node3.

vi vi
cK1 M2
. , .
PAD | M3 PARD| M3
—l ni M1
A B

Figure E-12

109

Appendix F - RUBICC Source 'Cvo:d‘e '

Main-1si

RUBICC Source Code Modules

Tech-Filesl

Frames-1.sl

Frames-2.sl

Init-Funecs.sl

Fclass-Rules.sl

Fclass-Funcssl

S-P-Fetsl

Comb-Structs.sl
Inv-Rulessl

Inv-Funcs.sl

F-F-Rules.sl

Gate-Rules.sl

Gate-Funcs.s)

Couple-Rules.s]
Clking-Rulessl

Clking-Funcssl
RC-Rulessl

RC-Funcs.sl

Supbuf-Ruless]
Supbuf-Funcs.sl
D-Boot-Rulesst

D-Boot-Funcsssl

Reg-Ruless]
Reg-Funcs.sl

Struct-Ruless]

Struct-Funcs.sl

Cshare-Rulessl

Cshare-Funcs.slt
Race-Cond.sl

Race-Funcs.sl

Pad-Rulessl

Net-Lists.s]

110

111
114
115
120
123
128
130
132
134
137
139
141
143
147
148
149
153
155
155
157
159
160
162
164
166
167
167
169
169
170
172
173
174

111

."”.”“"“""""FILE: MA]N'ISL“”"””'
(setq *input-functions nil)
i IMQIN program condrol function ;i

check-circuit
(defun check-circuit (net-list) .
(setq *circuit-name ‘unnamed)
(setq getime!* 0)
(setq *clka nilXsetq *c1kb nilXsetq *clkc nilXsetq *clkd nil)
(setq *longre 0)
(let((s-time (time)))
(input-functions)
(clear-frame-syms)
(input-frames-rules)
(make-pop-frame) ; push frame marker onto * frames*
; create initial circuit frames
(patom "BUILDING CIRCUIT FRAMES"(tab 30)Xterpri)
(create-i-frames net-list)
(patom "CIRCUIT-NAME: "Xpatom *circuit-nameXterpri)
(patom " 88 88 88" Xterpri)
: transistor classi fication
(solve-all ‘(?elements src-load 7x)) .
(solve-all (?elements drc-load 7x))
(solve-all ‘(?elements cke-load 7x))
(solve-all "(elements oth-load ?x)) ; rrust be last load solve
(solve-all (?transistor s-d-reversed 7x))
(solve-all (%elements xi-driver ?x))
(solve-all (?elements precharger 7x))
(solve-all (?elements pup-driver ?x))
(solve-all-dm-boots)
(solve-all (Zelements reg-driver 7)) ; must be last driver solve
* ; series-parallel combinations
(find-parallel-fets)
(find-series-fets)
(cond((or(fchildren "series-structXfchildren 'parallel-strt})
(combine-structs)))
(find-other-structs)
; check circuit for errors
(solve-error-frame ‘funny-fet)
(solve-error-frame funny-node)
(solve-all (?¢lements inverter ?x))
(solve-all (?¢lements static-gate 7x))
(solve-ali "(?elements dynamic-gate ?x))
(solve-all ‘(Pelements super-buffer 7x))
(solve-all-drain-bootstraps)
(solve-all-reg-cells)
(solve-error-frame ‘race-errors)
(solve-error-frame 'gate-errors-b)
(solve-error-frame ‘charge-share-errors)
(solve-error-frame ‘drn-boot-errors)
(solve-error-frame ‘input-pad-errors)
(solve-all-clk-skew -errors)
: print results
(show <circuit-errorsX terpri)
(show -all-gates-and-circuits Xterpri)
(show -not-checked Xterpri)
(print-stats)))

; main-1 wility functions

input-functions

(defun input-functions O
(cond((null *input-functions)

)]

(setq *input-functions 1)
(dskin "init-funcssi™)
(dskin "inv-funcssi™)
(dskin "gate-funcssi™)
(dskin "s-p-fetsl”)
(dskin "comb-structssi™)
(dskin "fclass-funcssl™)
(dskin "clking-funcs.sl")
(dskin "re-funcssl”)
(dskin "supbuf-funcssl™)
(dskin "d-boot-funcssi™)
(dskin "reg-funcssl”)
(dskin "struct-funcssi”)
(dskin "cshare-funcs.si™)
(dskin "race-funcssl™)

(defun input-frames-rules ()
(cond((null *frames*) ; read in generic frames

(freset)

(patom "LOADING GENERIC FRAMES"(uab 30)Xterpri)
(accept-forward-references)

(dskin "tech-files]”)

(dskin "frames-2s1")

(dskin "frames-1s1")

(dskin "frames 3517)

(patom “"LOADING RULES"(tab 30)Xterpri)

(dskin "inv-rulessl™)

(dskin "f-f-rulessl”)

(dskin "gate-rulessi™)

(dskin "felass-rules.sl”™)

(dskin "couple-rulessi®)

(dskin "clking-ruless1™)

(dskin "rc-ruless!”)

(dskin "supbuf-rulessi”)

(dskin "d-boot-rulessi”)

(dskin "reg-rulessl™)

(dskin "race-conds1”)

(dskin "struct-rulessl”)

(dskin "cshare-rulessl”) ; charge-sharing-rules
(dskin "pad-rules.sl™)

(end-forward-references)

(patom "BUILDING RULE SYSTEM"(tab 30)Xterpri)
(terpri)

{build-system))

(1 (clear-frame-syms)

(pop frames)
(clear-errors)
(clear elementsl)
(build-system))))

(defun pop-frames () ; rermove all frames instantiated afrer *pop®
(lef((frame-list *frames*))
(while (and (car frame-listXneq (setq frame (car frame-list)) ™pop*))

(se1q frame-list (cdr frame-list))
(fremove frame))))

(defun make-pop-frame () ; add *pop* onto * frames"

112

input-frames-rules

pop-frames

make-pop-frame

(cond((null (framep "pop*))
(finstantiate 'elements "*pop*))))

(defun clear-elements] () ; clear the elementsl frame
(et ((slot-list (fslots ‘elements1)Xe-slot nil))
(while (setq e-slot (car slot-list))
(setq slot-list(cdr slot-list))
(cond((and(neq e-slot *akoXneq e-slot ‘dummy))
(fremove ’elements1 e-slot))))))

(defun clear-errors O iclear all error frames
(et ((frame-list (fchildren "errors)Xe-frame nilXslot-list nil)
(e-slot nil))
(while (setq e-frame (car frame-list))
(setq frame-list (cdr frame-list))
(fremove thing ‘instance ‘$value e-frame) ;dermon removes e- frame ako
(setq slot-list (delete "ako (fslots-with-values e-frame)))
(cond ((null slot-listXnext)))
(while (setq e-slot (car slot-list))
(setq slot-list (cdr slot-list))
(fremove e-frame e-slot "$value)))))

(defun solve-error-frame (s-frame)
(let ((slot-list (delete 'ako (fslots s-frame))Xslot nil))
(while (se1q slot (car slot-list))
(setq slot-list (cdr slot-list))
(solve-all ‘(;s-frame slot 7x)))))

(defun my-freset ()
(clear-frame-syms)
(freset))

; causes finstantiate narring to start over from™1"

(defun clear-frame-syms ()
(et ((fr-list *frames*Xfr nil))
(while (setq fr (car fr-lis1))
(setq fr-list (cdr fr-list))
(put fr 'next-id-number nil))))

(defun toggle-rule-msgs ()
(cond(*suppress-ru le-messages® (setq *suppress-rule-messages® nil))
(t (setq *suppress-rule-messages® 1))))

(defun toggle-skew -flag ()
(cond((fvo "*g con ‘clk-skew flag)
(freplace "*g-con ‘clk-skew-flag "$value nil))
((freplace "g-con ‘clk-skew-flag ‘$value 1))))

113

clear-elementsl

clear-errors

solve-error-frame

my-freset

clear-frame-syms

toggle-fule-msgs

toggle-skew-flag

SSERSER ST AR TWEIRIB R 'FILE: TECH_F ILE'SL ssnEn

; Technology Frame for 5v only NMOS, 2 phase non-overlapping clocks

(deframe *g-con

(ako(Svalue(thing)))

e transistor constanis ;i
(mx-dr-1($value(2.5))) ; maximum driver length
(mn-dr-w(Svalue(3)) ; minirran driver width
(mn-1d-1($value(3))) ; miniruon load length
(mn-1d-w($vaiue(35)) ; minirram load width
(mx-cap-1($value(15))) ; maxirnum mos-cap length
(std-1d-current($value(0.050))) ; current for load with w/l = 1 (ma)
(dr-eg-ratio ; convert driver [-div-w to load l-div-w

($value(3)))

nu: gate COMStants muunnin

(st-nand-si($value(3))) ; maximum static nand string length

(br-sre-load($vaiue(4.0))) ; beta ratio for source connected load
(br-dre-load(Svalue(6.0))) ; beta ratio for drain connected load
(br-cke-load(Svalue(6.0))) ; beta ratio for clock connected load
(br-oth-load($value(4.0)))

(xi-dr-wrf($value(0.9))) ; xi-driver width reduction factor
(mn-dr-ga-xf-w(Svalue(3.2))) ; minimun driver gate-area to x fer-gate
H width

wis gate and overlap capacitances i
(gox-cap ($value(910e-6))) : gate area capacitance (pf/u” 2)
(gox-overlap-cap($value(200e-6))) ;gate overiap capacitance (pf/u)
wis dynamic circuit constants

(noise-tau($value(20))) . ; time constant for noise (ns)
i super-bu ffer constants

(mn-sup-buf-pwr-ratio ; min ratio of predriver w/l to driver w/l
($value(0.25)))

(mx-sup-buf-pwr-ratio : max ratio o f predriver w/l to driver w/!
(Svalue(0.75)))

(mx-sup-buf-agg-br : max predriver aggressive beta-ratio

(Svalue(" (* 0.9 (fvo "g-con 'br-src-load)))))
(mn-sup-buf-agg-br ; min predriver aggressive beta-ratio

($value(" (* 0.8 (fvo "g-con "br-ste-load))))
su; charge-share-ratios

(dr-cshare-ratio :/ Uw of pull-down l/w of xfer-gate)
(Svalue(4.0))) ; couple back at most 1/5 o f voltage

(cap-cshare-ratio : (/'cap of driven node cap of couple-node)
(Svalue(4.0))) ; couple back at most 1/5 of voltage

su: drain-bootstrap constants

(db-ahd-1(Svalue(2.5))) ; drain bootstrap active holddown width
wi: clock skew sensitivity
)(clk-skew-ﬂag(Svalue(t))) : true if clock skew is a problern

114

*g-con

;cst-tttt'.ults---u..-FILE FRAMES'I.SL s sERSNES

(deframe transistor
(ako($value(thing)))
(d-node)

(g-node)
(s-node)
(width)
(length)
(1-div-w)
(string-1)
(clk-input(Sask(dont)))
(clk-class)
(class)
(s-d-reversed)
(trigger)

{fb-tran-flag) ; tif transistor is used as a feedback transistor

(o-ins($ask(dont))) ; used for drain bootstrap rules
(check)
(status)) ; ($if-added((my-print :frame value))))

(deframe load
(ako($value(transistor))))

(deframe src-load
(ako($value(load)))
(instance(Sif-added((fput :value 'status ‘$value 'free)))))

(deframe cke-load
(ako($value(load)))
(instance(Sif -added((fput :value status "$value ‘free)))))

(deframe drc-load
(ako($value(load)))
(instance($if-added((fput :value ’status "$value ‘free)))))

(deframe oth-load
{ako($value(load)))
(instance(Sif-added((fput :value ‘status ‘$value 'free)))))

(deframe driver
(ako($valueltransistor))))

(deframe reg-driver
(ako($value(driver)))
(instance(Sif -added((fput :value ‘status ‘$value 'free))))

(deframe xi-driver
(ako(Svalue(driver)))
(instance($if-added((fput :value 'status "Svalue free))))

(xfer-gate) {$if-added((fput :value ‘status '$value ‘in-use))))
(fo-tran) {$if-added((fput :value 'status '$value 'in-use)))

(in-node)
(ga-xfw-ratio)) ; gate area to x fer-~ate width ratio

(deframe mos-cap
(ako($value(transistor)))

115

transistor

_ load
src-load
ckc-load
drc-load

oth-load

driver
reg-driver

xi-driver

mos-cap

(instance($if-added((fput value 'status ‘Svalue ‘free)))))

(deframe precharger
(ako(Svalue(driver)))
(instance($if-added((fput :value ‘status "Svalue ‘free))))
(pre-phase)
(supply))

(deframe pup-driver
(ako(Svalue(driver)))
. (instance(Sif-added((fput :value ‘status Svalue free))))
(supply))

(deframe drn-boot
(ako(Svalue(driver)))
(instance($if-added((fput :value ’status "$value ‘free))))
(s-node(Sask(dont)))
(other—clk-hold-down
(Sif-added((freplace :value ‘status "Svalue ‘in-use)))

(Sask(dont)))
(boot-phase(Sask(don1)))
(xfer-gate)

(fb-tran))

(deframe one-port-element
(ako(Svalue(thing)))
(node-num)
(prot-device(Sif -added((freplace :value 'status “Svalue ‘in-use)))
(Sask(dont)))) :

(deframe pad
(ako(Svalue(one- port-element))))

(deframe two-port-clement
(ako(Svalue(thing)))
(pos-node)

(neg-node)
(e-value))

(deframe active-tw o-port-element
(ako(Svalue(two-port-element))))

(deframe passive-two-port-element
(ako(Svalue(two-port-element))))

{deframe cap
(ake($valuelpassive-two-port-element))))

(deframe supply
(ako($value(active-two-port-element))))

(deframe clock
(ako(Svalue(acti ve-two-port-clement))))

(deframe node
(ako(Svalue(thing)))
(instance($if-added((fput :value "status 'Svalue ‘free))))
(number)

116

precharger

pup-driver

drn-boot

one-port-element

pad

two-port-element

active-two-port-element
passive-two-port-element
cap

supply

clock

node

117

(status) sclass/aspect doc: (class(allowable aspects))
(class($ask(dont))) (static(load push-pull)) (dynamic-hiZ(clk-phase))
(class-1($ask(dont))) {clocked-always(clock-phase)) (clocked-conditional
(aspect($ask(dont)) ; (clock-phase)) (precharge (clock-phase))
($if-added((aspect-print frame :value))))
. . ; (always-high(supply)) (gnd (gnd)))
(trans-struct) ; all transistors with what part connected

(trans) ; all transistors connected

(gate) ; all transistors with gate connections

(stc-drn) ; all transisitors with source or drain connections
(load) ; all load transistors connected

(driver) ; all drivers connected to node

(struct) ; all structures connected to node

(cap) ; capacitors connected

(mos-cap) ; mos capacitors connected

(supply) ; power supplyies connected

(clock) ; clocks connected

(gate-cap) ; capacitace of all gates connected to node (up f)

(static-cap) ; capacitance of all capacitors tied to gnd or supply
(clka-cap) ; capacitance of node to clka
(clkb-cap) ; capacizance o f node to clkb

(clkc-cap) ; capacitance o f node to clkc
(clkd-cap) ; capacitance of node to clkd
(src-dm-cap) ; capacitance of node to all sources and drains
(other-cap) ; capacitance o f node to other places
(total-cap) ; sumof all capacitances
(pad)) ; i/o pads connected
circuit
(deframe circuit
(ako($value(thing))))
gate
(deframe gate
(ako($value(thing)))
(beta-ratio)
(trigger)
(status)

(pull-up ($if-added((freplace :value ‘status '$value ‘in-use))))
(pull-down ($if-added((make-status-in-use :vaiue))))
(in-node)
(out-node)
(supply-node)
(supply)
(struct(Sif-added((freplace :value ‘status “Svalue 'in-use))))
(dummy)))
static-gate
(deframe static-gate
(ako($value(gate))))
dyna-gate
(deframe dyna gate
(ako(Svaluc(gate))))

dynamic-gate
(deframe dynamic-gate
(ako($value(dyna-gate)))
(instance($if-added((fput :value ‘status "Svalue 'free))))
(pre-phase)
(true-phase))

dynamic-xc-xor
(deframe dynamic-xc-xor
(ako($value(dyna-gate)))
(instance(Sif-added((fput :value ‘status "Svalue ‘free))))

(pre-phase)
(true-phase))

(deframe inverter
(ako(Svalue(static-gate)))
(xfer-gate))

(deframe reg-inverter
(ako($value(inverter)))
(instance($if-added((fput value ’status ‘Svalue 'free)))))

(deframe xi-inverter
(ako($value(inverter)))
(instance($if-added((fput :value ‘status ‘$value "free))))

(xfer-gate($if-added((freplace :value ‘status "$value ‘in-use))))

(clock-node)
(clock))

(deframe clkout-inverter
(ako($value(inverter)))
(instance(Sif-added((fput :value ‘status ‘Svalue ‘free))))

(xfer-gate(Sif-added((freplace :value ‘status "$value ‘in-use))))

(clock-node)

(clkgate(Sif-added((freplace :value ‘status ‘Svalue ‘in-use))))

(clock))

(deframe nor-gate
(ako(Svalue(static-gate)))
(instance(Sif-added((fput svalue ‘status “Svalue 'free)))))

(deframe nand-gate
(ako(Svalue(static-gate)))
(instance($if-added((fput :value ‘status $value ‘free)))))

(detrame other-gate
(ako(Svalue(static-gate)))
(instance(Sif-added((fput :value ‘status ‘Svalue ‘free)))))

(deframe static-xc-xor
(akof Svalue(static-gate)))
(instance(Sif-added({(fput :value status Svalue 'free)))))

(detrame struct
(akol $valuel thing 1
(status)
(1-div-w")
(string 1) : length of fet st-ing
(node-1(Sask(dont))}
(node-2(Sask(dont)))
(cik-inpu(Sask(dont)))
(clk-class(Sask(dont)))
(class)
(clkiny, check)
(substruct($if-added((make-status-in-use :value))))
(trans($if-added((make-status-in-use :value)))))

118

inverter

reg-inverter

xi-inverter

clkout-inverter

nor-gate

| nand-gate
other-gate
static-xc-xor

struct

(deframe parallel-struct
(ako($value(struct)))
(instance(Sif-added((fput :value ‘status '$value ‘free)))))

(deframe series-struct
(ako($value(struct)))
(instance($if-added((fput rvalue 'status "Svalue ‘free)))))

(deframe super-struct
(ako($value(struct)))
(instance(Sif-added((fput :value ’status '$value 'free)))))

(deframe xc-xor-struct
(ako($value(struct)))
(instance($if-added((fput :value ‘status '$value ‘free))))
(in-node)
(out-node))

119

parallel-struct

series-struct

super-struct

Xc-xXor-struct

'.-tn-n--n--.nilonolnt-FILE FRAMES‘Z-SL ssssnesss

(deframe elements
(ako($value(thing)))
(dummy)
(nodes)
(driver) (reg-dri verXxi-driver XprechargerXpup-driver Xdbl)
(drn-boot($ask(dont)))
~ (load) (src-load Xcke-load Xdre-load Xoth-load)
(mos-cap)
(dynamic-gate)
(supply)
(clock)
(cap)
(inverter) (simple-inverterXd-i-inverter)
(static-gate)
(super-buffer)
(reg-coreXreg-cell)
(drain-bootstrap)
(struct)
(series-struct(Sif-added((fput frame "struct “Svalue :value))))
(parallel-struct(Sif-added((fput :frame ‘struct ‘Svalue :value))))
(super-struct(Sif-added((fput frame ‘struct ‘$value :value))))
(xc-xor-struct($if-added((fput frame ‘struct Svalue :value)))))

{deframe elementsl
(ako(Svalue{elements))}
(dummy(Svalue(1))))

(detrame errors
(ako($value(thing))))

(deframe inv-errors
(ako($value(errors)))
(dummy)
(beta-ratio(Sask(dont)))
tcoupling(Sask(dont)))
(input-clocking(Sask(dont)))

(deframe gate-errors ; flled by forward chain rules
(akol($value(errors)))
(nand length(Sask(dont)))
(heta ratiof Sask(dont)))
tdynamic clocking(Sask(dont)))
(dynamic-clocking 1(Sask(dont)X dynamic—locking- 2(Saskidont)))
tdynamic-clocking JHSask(dont)) Xdynamic-clocking-4(Sask(dont)))
trace condition($ask(dont))))

(deframe gate-errors-b ; Jilled by backward chain rules
(ako($valueerrors)))
(feedback-desirable(Sask(dont)))
(input-clocking-error(S$ask(dont))))

(deframe funny-fet
(ako($valuelerrors)))

120

elements

elementsl

errors

inv-errors

gate-errors

gate-errors-b

funny-fet

(max-driver-length($ask(dont)))
(min-driver-width($ask(dont)))
(min-load-length($ask(dont)))
(min-load-width($ask(dont)))
(max-cap-length(Sask(dont)))
(sing le-connection($ask(dont))))

(deframe funny-node
(ako($value(errors)))
(gate-only($ask(dont)))
(supply-gate-only(Sask(dont)))
(clock-supply-short($ask(dont)))
(single-connection(Sask(dont)))
(clocking-flag($ask(dont)))
(long-rc-flag(Sask(dont))))

(deframe coupling-errors
(ako($value(errors)))
(xi-driver-coupling($ask(dont)))
(xi-driver-coupling- 1(Sask(dont))))

(deframe net-errors
(ako(Svalue(errors)))
(clocks($ask(dont))))

(deframe super-buffer-errors
(ako(Svalue(errors)))
(power-waste-flag(Sask(don1))) .
(aggressive-br-flag($ask(dont)))
(poor-input-drive($ask(dont))))

(deframe drn-boot-errors
(ako($value(errors)))
(phase-hold-down($ask(dont)))
(clocking -error($ask(dont)))
(mos-cap-backwards(Sask(dont)))
(boot-node-not-active- low($ask(dont)))
(longer-driver-needed($ask(don1))))

(deframe register-errors
(ako($value(errors)))
(critical—node-ﬂag (Sask(dont)))
(clocking-error (Sask(dont)))
(internal-connection (3ask(dont)1)

(deframe race-errors
(ako{$valuelerrors)))
(precharge: loss(Sask(dont)))
(input-skew-flag(Sask(dont))))

(deframe clk-skew-errors
(ako(Svalue(errors)))
(clock-skew-flag-1($ask(dont)))
(clock-skew-flag-2(Sask(dont))))

121

funny-node

coupling-errors

net-errors

super-buffer-errors

drn-boot-errors

register-errors

race-errors

clk-skew-errors

b

(deframe charge-share-crrors
(ako($value(errors)))
(feedback-glitch-flag(Sask(dont)))
(feedback-glitch-error(Sask(dont))))

(deframe input-pad-errors
(ako($value(errors)))
(missing-protection-device(Sask(dont)))
(undershoot-flag(Sask(dont)))) '

122

charge-share-errors

input-pad-errors

;-uuu-- sesay -:o-u-aF ILE.. INIT_FUNCS.SL S8eE8ES

(defun create-i-frames(net-list)
(mape net-list (Jambda(x)
(cond((circuit-name x)

(setq *circuit-name (car x))

(patom (car x)Xterpri))

((transistor xXmake-tran x))

((equal (e-type x) "padXmake-pad x))
(t(make-element x)))))

(defun transistor (x)
(or(equal(e-type x) 'load)
{equal(e-type x) 'driver)))

(defun circuit-name (x)
(equal (cadr (explode x)) **))

(defun make-tran (x)
(let ((x-name (name x))
(e-type (cond((equal (drain x)Xsource x)) ‘mos-cap)
(t{e-type x)))))
(finstantiate e-type t-name)
(patom e-typeXpatom " "Xpatom t-nameXterpri)
(fput ‘elements] e-type $value t-name)
(fput t-name 'd-node '$value (drain x))
(fput t-name ‘g-node "$value (gate x))
(fput t-name ‘s-node "$value (source x))
(fput t-name "width ‘$value (chan-width x))
(fput t-name ‘length "$value (chan-length x))
(fput t-name ‘class "$value ‘unclassified) '
(fput t-name "I-div-w "$value (/ (* 1.0 (chan-length x))
(* 1.0 (chan-width x))))
(fput t-name ’string-1 "$value 1)
(fput t-name ‘check "Svalue 'unchecked)
{make-t-node t-name (drain xXgate xXsource x))))

(defun make-element (x)
(1et((e-name (name x)))
(finstantiate (e-type x) ¢-name)
(patom (e-type x)Xpatom " "Xpatom e-nameXterpri)
(fput ‘elements] (e-type x) '$valuc ¢ name)
(fput e-name "pos-node 'Svalue (pos-node x))
(fput e-name 'neg-node "Svalue (neg node x))
(fput e name ‘e value ‘Svalue (¢ value x)
(cond((cqual (e-type xJ ‘clock)
(condf(or{equal ¢ name *clka Xequal e-name *clkb)
(equal ¢ name *clkcXequal e name *clkd))
(fput ‘net-errors "clocks ‘Svalue ¢-name))
((null *clkaXsetq *clka e-name)}
((null *clkbXsetq *clkb e-name))
((null *cikcXsetq *clkc e-name))
((null *clkdXseq *clkd e-name))
(«(fput 'net-errors ‘clocks ‘$value e-name)))))
(make-en (e-type x) e-name (pos-node x) *pos)
(make-en (e-type x) e-name (neg-node x) ‘neg)))

123

create-i-frames

transistor

circuit-name

make-tran

make-element

make-t-node

(defun make-t-node (t-name d-node g-node s-node)
(make-tn t-name d-node ‘drain)
(make-tn t-name g-node gate)
(make-tn t-name s-node 'source))

(defun make-tn (t-name port-node port-type)
(let ((node-name (make-node-name port-node))
(tmpl nil)
(cond ((not (framep node-name))
(finstantiate ‘node node-name)
(fput node-name ‘number "$value port-node)
(fput ‘elementsl ‘nodes "Svalue port-node)))
(setq tmpl (assoc t-name (fvalues-only node-name ’trans)))
(fremove node-name ‘trans-struct ‘$value tmpl)
(fput node-name ‘trans ‘$value t-name)
(fput node-name e-type ‘Svalue t-name)
(fput node-name (cond((equal port-type ‘gate) ‘gate)
(t "src-drn)) $value t-name)
(fput node-name ‘trans-struct ‘Svalue
(cond ((null tmp!) (.t-name ,port-ty

)
(t ((car tmpl) ,port-type (cadr tmpl))))))

(defun make-en (e-type e-name port-node port-type)
(let ((node-name (make-node-name port-node))
(tmpl nil))

(cond ((not (framep node- name))
(finstantiate ‘node node-name)
(fput node-name ‘number ‘Svalue port-node)
(fput ‘elementsl ‘nodes "Svalue port-node)))

(serq tmpl (assoc e-name (fvalues-only node-name e-type)))

(fremove node-name e-type ‘Svalue tmpl)

_ (fput node-name e-type "Svalue
(cond ((null tmpl) {.e-name ,port-type))

(1 t{car tmpl) ,port-type (cadr tmp1))))))

(defun singleconnsction (node-number)
(1ex((node (make-node-name node-number)))
(< (+ (length(fvalues-only node ‘trans))
(length(fvalues-only node ‘supply))
)gength(fvalus-only node ‘clock)))
2

(defun make-pad (x)
(let ((p-name (implode {.@(explode(name x)) - pa d)))
(node-num (caddr x)Xnode (make-node-name {caddr x))))
{finstantiate ‘pad p-name)
{patom p-nameXterpri)
(fput p-name ‘node-num "Svalue node-num)
(coné ((not (framep node))
(finstantiate ‘node node)
(fput iiode ‘number $value node-num)
(fput ‘elements] 'nodes "Svalue node-num)))
(fput node ‘pad “Svalue p-name)))

: the rest of these are Utility functions that are used throughout the program

124

make-tn

make-en

single-connection

make-pad

(defun my-solve-all (clause)
(let((s-list nilXr-frame nil)
(frame (car clause)Xslot (cadr clause)Xval (caddr clause)))
(cond((equal frame ?elementsXsetq r-frame ‘elements1))
(t (setq r-frame frame)))
(while (solve (frame slot ,val)
(cond ((null s-listXsetq s-list (fvso r-frame slot)))
(1 (setq s-list (cons (fvo r-frame slot) s-list))))
(fremove r-frame slot ‘$value))
(cond (s-list (fput-values r-frame slot s-list)))
s-list))

(defun make-node-name (x)
(implode {n o d ¢ ,@explode x))))

; simple macro's for parsing the net-list

(dm e-type (1)
(car (cadr 1)))
(dm name (1)
(cadr (cadr 1))
(dm drain (1)
{caddr (cadr 1))
(dm gate (1)
(cadddr (cadr 1))
(dm source (1)
(caddddr (cadr 1)))
(dm chan-width (1)
{cadddddr ,(cadr 1)))
(dm chan-length (1)
{caddddddr (cadr 1)))
(dm pos-node (1)
(caddr (cadr 1))
(dm neg-node (1)
{cadddr (cadr 1))
(dm e-value (1)
(caddddr (cadr 1))

; needed macros not in PSL
(dm caadadar (x)
Y(caar(cdadar (cadr x))))
(dm caadadr (x)
(caar(cdadr [(cadr x))))

: macros for abbreviations of hpr! functions:

: fvalue-only

B
{fvalue-only [(cadr 1) (caddr 1))
:'mf.';az;s-only
(@m fvso (1)
{fvalues-only (cadr 1) (caddr 1))

: symbol manipulation functions

(defun newsym (symb)

125

my-solve-all

make-node-name

newsym

(let ((numb (get symb 'num)))
(cond ((null numbXsetq numb 0)
(put "syms* 'sym (cons symb (get "*syms* *sym)))))
(implode (append (explode symb)
(cons *- (explode (put symb 'num (+ numbd 1))

(defun clear-new-syms (x)
(let ((sym-list (get x 'sym)Xsymbol nil))
(while (setq symbol (car sym-list))
(setq sym-list {cdr sym-list))
(remprop symbol ‘num)
(remprop x 'sym))))

; print statistics on the program

(defun print-stats O
(patom "garbage collection time = ™)
(patom (/ (/ getime!* 1000.0) 60.0)Xpatom " min") (terpri)
(patom "total run time= ")
(patom (/ (/ (- (xime) s-time) 1000.0) 60.0))
(patom " min” Xterpri))

; recursively finds all transistors in a gate or structure

(defun get-trans (x)
(cond ((null x) niD)
(Catom x) (cond ((akop x ‘transistorXlist x))

((or(akop x 'series-structXakop x ’‘parallel-struct))
(fvso x ‘trans))
((and (akop x "xc-xor-structXnuil{fvso x ‘substruct)))
(fvso x ‘trans))
((akop x ‘gateXappend(ivso x ‘pull-up)

(append(fvso x *pull-downXtvso x "xter-gate))))
((akop x super-buffer)

(append (fvso x ‘predriverXfvso x ‘driver)))
((akop x ‘drain-bootstrap)

(append

(append (fvso x “predriver)Xfvso x ‘drn-boot))
(append (fvso x *mos-cap)

(fvso x ‘other-clk-hold-down))))

((akop x ‘reg-cell)

(append (fvso x ‘reg-core)

(append (fvso x ‘in-stageXfvso x ‘out-stage))))

((akop x ‘reg-core)

(append (fvso x ‘in-stage)

(append(fvso x ‘out-stageXfvso x ‘rec-stage))))
((get-trans (fvso x substruct)))))
(Wappend (get- trans (car x)Xget-trans (cdr x))))))

: will eventuclly be part of the user inter face
ishows all transistors (n a given circuit

(defun show -me (x)
(cond((framep xXget-trans x))
((patom xXpatom ” is not a frame” Xterpri))))

(defun show-all-gatesQ)
(let ((g-list (fringe ‘gate)Xg nilXe-list nil))
(while (setq g (car g-list))
(setq g-list (cdr g-list))

126

clear-new-syms

print-stats

get-trans

show-me

show-all-gates

(setq e-list (show-me g))

(cond (e-list
(patom g(tab 2)Xpatom " ")
(patom e-list)
(terpri)))))

(defun show-all-circuitsQ
(let ((g-list (fringe ‘circuit)Xg nilXe-list nil))
(while (setq g (car g-list))

(setq g-list (cdr g-list)

(setq e-list (show-me g))

{cond (e-list
(patom g(tab 2)Xpatom " ")
(patom e-list)
(terpri)))))

127

show-all-circuits

show-all-gates-and-circuits

(defun show-all-gates-and-circuits O

(patom "CIRCUITS and GATES IDENTIFIED: " Xterpri)
(show -all-circuits)
(show -all-gates))

(defun show-not-checked ()
(let ((c-list (append(solve-all (?transistor status free))
(solve-all (?struct status free))))

(new-list nil) (x nil))

(while (setq x (car c-list))
(setq c-list (cdr c-list))
(setq new-list (append (get-trans (car x)) new-list)))

(patom "FREE TRANSISTORS: " Xterpri)

(patom new -list(tab 5))))

(defun show-circuit-errors Q
(let {(frame-list (fchildren ‘errors)Xe-frame nilXslot-list nil)
(e-slot nil))

(patom "ERRORS FOUND FOR CIRCUIT: "Xpatom *circuit-nameXterpri)

(while (setq e-frame (car frame-list))
(setq frame-list (cdr frame-1list))
(setq slot-list (delete *ako (fslots-with-values e-frame)))
(cond ((null slot-listXnext))
((patom e-frameXterpri)))
(while (setq e-slot (car slot-list))
(setq slot-list (cdr slot-list))
(patom e-slot(tab 5))
(patom (fvalues-only e-frame e-slotXtab 30)Xterpri)))))

(defun aspect-print (frame val)
(patom "aspect-added: ” X patom frameXpatom

" "

Xpatom valXterpri))

(defun make-status-in-use (x)
(lex((fb (fvo x ‘fb-tran)Xxf (fvo x 'xfer-gate)))
; (patom "rmake-status-in-use " Xterpri)
; (patom xXpatom™ "Xpatom fbXpatom " " Xpatom x fXterpri)
(cond (ft(freplace fb ‘status "$value ‘in-use)))
(cond (xf(freplace xf ‘status "$value ‘in-use)))
(freplace x ‘status "$value ‘in-use)))

show-not-checked

show-circuit-errors

aspect-print

make-status-in-use

:'“-““"”.“““"FILE: FCLASS-RULESSL:-;---

; find an xi-driver without feedback
(rule find-xi-driver backward-chain-rule
(type(elements ?elementsXdriver ?driver ?driverl))
(premise (test (and (%elements dummy 1)
(?driver g-node ?dgn)
(or (?driverl s-node ?dgn (neq ?driverl ?drjver))
(?driver! d-node ?dgn (neq ?driverl ?driver))))
(xi-driver~condition ?driver1 ?dgn)))
(conclusion (?elements xi-driver " (make-xi-driver 2driver ?driverl nil))))

: find an xi-driver with feedback
(rule find-xi-driver-1 backward-chain-rule
(type(clements ?elementsXdriver ?dr ?drl ?dr2))
(premise (test (and (?elements dummy 1)
(?dr g-node ?dgn)
(?dr s-node ?dsn)
(?dr d-node ?ddn)
(or (?dr1 s-node ?dgn (neq ?drl %dr))
(?dr1 d-node ?dgn (neq ?drl 7dr)))
(?dr2 s-node O(neq ?2dr2 ?drl))
(?dr2 d-node ?dgn(neq ?dr2 7dr))
(?dr2 g-node ?gn2(or (equal ?gn2 ?dsn)
(equal 7%gn2 ?2ddn))))
(xi-driver-condition-1 ?drl ?dgn)))
(comclusion (Pclements xi-driver ~ (make-xi-driver 2dr 2drl 2dr2))))

(rule find-precharger backward-chain-rule
(type(driver 2drXclock ?clkXsupply ?supXelements %el))
(premise (and (?¢l dummy 1)
(?dr d-node ?dn)
(%dr g-node ?%gn)
(7clk pos-node 7gn)
(7up pos-node ?2dn 1)
(conelusion(el precharger ~ (make -precharger 2dr Zclk 2sup))))

(rule find-pup-driver backward-chain-rule

(type(driver 2drXclock ?clkXsupply ?supXelements ?el))
(premise (and (%1 dummy 1)

{7dr d-node ?dn)

(?dr g-node %gn)

(?sup pos-node ?dn)

(unknown “clk pos node ?gn)))
(conclusion(?¢] pup-driver ~ (make pup driver 2dr ?sup))))

(rule find-regular-drivers backward-chain-rule
(premise (?driver class unclassified))
(conclusion (elements] reg-driver ~(make-reg-driver ?driver))))

(rule find-sre-loads backward chain rule

(type (elemenis))

(premise (and {?eicments dummy 1)
{?10ad class unclassified)
(Noad g-node ?1gn)
(?l0ad s-node ?ign)
(?load d-node ?1dn (neq ?idn ?ign))
(?supply pos-node ?1dn)))

(conclusion (Pelements src-load ~ (classify-load ?load ‘sre-10ad))))

(rule find-dre-loads backward-chain-rule
(type (elements))
(premise (and (?elements dummy 1)
(?10ad class unclassified)

128

(?load g-node ?1gn)
(?10ad d-node ?gn)
(?1oad s-node ?1sn (neq ?1sn ?ign))
(?supply pos-node ?1gn)))
(conclusion (?elements drc-load ~ (classify-load ?load ‘drc-load))))

(rule find-ckc-loads backward-chain-rule
(type (clements))

(premise (and (%elements dummy 1)
(?10ad class unclassified)
(?10ad g-node ?ign)
(?1oad d-node ?dn (neq ?1gn ?1dn))
(?1oad s-node ?1sn (neq ?1dn ?1sn))
(?clock pos-node ?1gn)
(?supply pos-node ?1dn)))

(conclusion (?elements cke-load ~ (classify-load ?load ‘ckc-load))))

(rule find-oth-loads backward-chain-rule
(type (elements))
(premise (and(?elements dummy 1)
(?1oad class unclassified)))
(conclusion (?elements oth-load ~ (classify-load ?load 'oth-load))))

(rule reverse-src-drn-rule backward-chain-rule
(type (transistor ?trXactive-two-port-element ?ae))
(premise (or (and (?tr s-node ?sn (not(akop ?tr ‘mos-cap)))
(?ae pos-node ?sn))
(%11 d-node 0 (not (akop ?tr ‘mos-cap)))))
(conclusion(?tr s-d-reversed ~ (reverse-s-d ?tr))))

129

130

:-u-n-n.-tc--l:-l--aFILE: FCLASS‘FUNCS-SL sss=n

make-reg-driver
(defun make-reg-driver (dr)
(freplace dr 'ako Svalue 'reg-driver)
(freplace dr 'class 'Svalue 'reg)
dr)
make-pup-driver

(defun make-pup-driver (dr sup)
(freplace dr ‘ako '$value 'pup-driver)
* (freplace dr ‘class "Svalue ‘pup)
(fx;eplace dr 'supply "Svalue sup)
dr

make-precharger
(defun make-precharger (dr clk sup)
(freplace dr ‘ako "$value 'precharger)
(freplace dr ‘class "Svalue *precharger)
(freplace dr ‘pre-phase ‘Svalue clk)
(fre)place dr 'supply "$value sup)
dr

xi-driver-condition
(defun xi-driver-condition (driver node-num)
(let ((n1 (make-node-name node-num)Xn2 (find-next-node driver node-num)))
(and (or(equal 1 (length (fvso nl 'sre-drn)))
(and(equal 2 (length (fvso nl ’src-drn)))
(equal 1 (length (fvso nl 'mos-cap)))))
(null (fvso n1 ‘supply))
(null (fvso nl1 ‘clock))
(neq n1 0)
(neg n2 0))))

xi-driver-condition-1
(derun xi-driver-condition-1 (driver node-num)
(let ((n1 (make-node-name node-num)Xn2 (find-next-node driver node-num)))
(and (or(equal 2 (length (fvso nl ’sre-drn)))
(and(equal 3 (length (fvso n1 ‘sre-drn)))
(equal 1 (length (fvso n1 ‘mos-cap)))))
(null (fvso nl ’supply))
{null (fvso n1 ‘clock))
(neq n1 0)
(neq n2 0))))

make-xi-driver
(defun make-xi-driver (dr xf fb-tran)
(freplace dr ‘ako ‘Svalue "xi-driver)
(freplace xf ‘ako “Svalue ‘reg-driver) ; make status free
(tput dr "xfer-gate Svalue xf)
(freplace dr class "Svalue “xi)
(treplace xf ‘class ‘$value ‘xfer)
(freplace dr "ga-xt'w-ratio $value
(7 (* 1.0 (fvo dr 'widthXfvo dr 'length))
(* 1.0 (fvo xf "width)}
(freplace dr *width *$value (* (fvo "g-con ‘xi-dr-wrf)
(fvo dr *width)))
(freplace dr “1-div-w "Svalue (* 1.0 (/ (fvo dr ‘lengthXfvo dr "width))))
(fput dr ‘in-node $value (cond ((equal (fvo dr 'g-nodeXfvo xf ‘d nede))
(fvo xf ‘s-node))
(t (fve xf *d-node))))
(cond(fb-tran (fput dr 'fb-tran $value fb-tran)
(freplace fb-tran ‘fb-tran-flag ‘Svalue t)))
(freplace dr “trigger Svalue t)

131

dr)

classif'y-load
(defun classify-load (load class)
(freplace load "ako "Svalue class)
(freplace load ‘class "$value class)
load)

reverse-s-d
(defun reverse-s-d (tran)
(1et ((new-stc (fvo tran ‘d-node)Xnew-drn (fvo tran 's-node)))
(freplace tran 'd-node ‘$value new-drn)
)gfreplace tran 's-node "$value new-src)
t

:."l‘lt.l.lll.l“‘l‘lFILE: S_P_FETS sEzEnss

(defun find-parallel-fets O
(let ((tran-list (fvalues-only ‘elements] ‘driver))
(trans nilXtrans] nilX(struct nil)
(n1 nilXn2 nil))

(patom "find-parallel-fets” Xterpri)
(while (setq trans (car tran-list))
(setq tran-list (cdr tran-list))
(setq n1 (fvalue-only trans ‘s-node))
(setq n2 (fvalue-only trans ‘d-node))
(cond((setq transl
(caadadr(solve
(tesw(and(?driver status free{fmember ?driver tran-list))
(?driver s-node ?x)
(?driver d-node ?y))
(or (and(equal ?x ,n1Xequal ?y .n2))
(and(equal ?x n2Xequal ?y n1))))))
(setq tran-list (delete transl tran-list))
(setq struct (finstantiate "parallel-struct))
(patom structXterpri)
(fput struct ‘class "Svalue ‘parallel)
(fput struct 'trans ‘$value trans)
(fput struct ‘trans "$value transl) ’
(fput struct 'node-1 Svalue n1)
(fput struct ‘node-2 "$value n2)
(fput struct ’string-1 ‘Svalue 1)
(freplace struct "1-div-w ‘Svalue)
(max(fvalue-only trans ‘1-div-w)
(fvalue-only transl ‘1-div-w)))
(while (setq trans] (caadadr(solve
{test{and(?driver status free(member ?driver tran-list))
(?driver s-node ?x)
(?driver d-node ?y))
(or (and(equal ?x ,n1Xequal ?y .n2))
(and(equal ?x ;n2Xequal 2y 1))))
(setq tran-list (delete wans1 tran-list))
(freplace struct 1-div-w ‘$value
(max{(fvalue-only struct ‘1-div-w)
(fvalue-only transi ‘1-div-w)))
(fput struct ‘trans ‘Svalue trans1)))))

(defun find-series-fets O
(let ((nodes (fvalues-only ‘elements] ‘nodes))
(tmp nilXstart-node nilXcurrent-node nil)
(next-node nilXtran-list nilXtran nilXstruct nil)

(patom "find.series-fets” Xterpri)
(se1q tmp nodes)

(while (setq start-node (car tunp))
{(serq tmp (cdr wmp))
{cond((series-fet-condition start-node Xnexz)))
(cond ((null (se1q tran-list (ind-trans start-node))Xnext)))

(setq current-node start-node)
(while (setq tran (car tran-list))
(setq tran-list (cdr tran-list))
(setq next-node (find-next-nede tran current-nede))

(cond ((null (series-fet—condition next-node)Xnext)))

132

find-parallel-fets

find-series-fets

133

(setq struct (finstantiate ‘series-struct))
(patom structXterpri)
(fput struct ‘node-1 ‘$value start-node)
(fput struct ‘class "$value series)
(fput struct "trans "$value tran)
(freplace struct ‘I-div-w "$value (fvalue-only tran ‘I-div-w))
(freplace struct ‘string-1 ‘Svalue 1)
(while (series-fet-condition next-node)

(setq current-node next-node)

(setq tmp (delete current-node tmp))

(setq tran (caadadr(solve

(test(and(?driver status free)
(?driver s-node %n)
(?driver d-node ?dn))
(or(equal ?sn current-node)
(equal ?dn current-node))))))
(fput struct ‘trans ‘$value tran)
(freplace struct "1-div-w *$value (+(fvalue-only tran l-div-w)
(fvalue-only struct ‘1-div-w)))
(freplace struct ‘string-1 ‘$value (+ 1
(fvalue-only struct ‘string-1)))
(setq next-node (find-next-node tran current-node))
(freplace struct ‘node-2 "$value next-node))))))

series-fet-condition
(defun series-fet-condition (node)
(nuli(or (> (length (fvalues-only (make-node-name node) ‘trans)) 2)
(solve (?transistor g-node ,node))
(solve {?load s-node .node))
(solve {?load d-node ,node))
(solve (?precharger s-node ,node))
(solve {?pup-driver s-node ,node))
(solve {?drn-boot s-node ,node))
(equal node 0) :
(solve {(?xi-driver in node ,node))
(single-connection node)
(solve {?active-two-port-elemen* _ ss-node ,node))
(solve (?active-two-port-clement neg-node ,node)))))

find-next-node
(defun find-next-node (tran node)
(fvalue-only tran (cond((equal node (fvalue-only tran ‘d-node)) 's-node)
(1 'd-node))))
find-trans

(defun find-trans (node)
(let ((tran-list (caadadr (solve
(test(and(?driver swatus free)
(?driver s-node 7sn)
(?driver d node 7dn))
(or(vqual ?sn .nodeXequal 2dn .node))))
(tran nil))
{cond!(null tran-list) nil)
(i(setq tran-list tlist tran list))
(while (setq tran (caadadr (solve
{test{and(?driver status free(not
(member driver tran-list)))
(?driver s-node ?sn)
(?driver d-node ?dn))
(or(equal ?sn ,nodeXequal ?dn ,node))))))
(setq tran-list (cons tran tran-list)))))
tran-list))

134

:-un-.--tau--n;--:nFILE: COMB’STRUCTS.SL =as

combine-structs
(defun combine-structsQ
(let ((keep-looking 1))
(while keep-looking
(setq Keep-looking nil)
{combine-parallel-structs)
(combine-series-structs))))

combine-parallel-structs
(defun combine-paraliel-structs O
(let ((struct-list (nconc(get-free-driversXget-free-structs)))
(super-struct nilXstruct nilXstructl ailXal nilXn2 nit))

(patom "combine-parallel-structs” Xterpri)
(while (setq struct (car struct-list))
(setq struct-list (cdr struct-list))
(cond ((finkp ‘ako struct ‘driver)
(setq n1 (fvalue-only struct d-node))
(setq n2 (fvalue-only struct ’s-node)))
(t(serq n1 (fvalue-only struct ‘node-1))
(setq n2 (fvalue-only struct 'node-2))))
(cond((setq struct1 (caadadr(solve ~
{test(and(?struct node-1 ?x (member ?struct struct-list))
(?struct node-2 ?y))
(or(and(equal ,n1 ?xXequal n2 ?2y))
(and(equal ;nl1 ?yXequal n2 7))
(setq struct-list (delete structl struct-list))
(setq super-struct (finstantiate ‘super-struct))
(patom super-structXterpri)
(fput super-struct ‘class “§value ‘parallel)
(fput super-struct ’substruct ‘Svalue struct)
{fput super-struct "substruct ‘Svalue structl)
(fput super-struct 'node-1 ‘$value nl1)
{fput super-struct ‘node-2 ‘$value n2)
(fput super-struct ’string-1 ‘$value
(max(fvalue-only struct 'string-1)
(fvalue-only structl ’string-1)))
(freplace super-struct '1-div-w ‘Svalue
(max(fvalue-only struct 1-div-w)
(fvalue-only struct! ‘1-div-w)))
(while (setq struct1 (caadadr(solve
(test(and(?struct node-1 ?x (member ?struct struct-list)
(?struct node-2 ?y))
(or{and(equal ,n1 ?xXequal ,n2 ?y))
(and(equal ,n1 ?yXequal n2 ?x)M))
(setq struct-list (delete struct1 struct-list))
(freplace super-struct 'I-div-w Svalue
{max(fvalue-only super-struct "l-div-w)
(fvalue-only structl ‘l-div-w)))
(Freplace super-struct ‘string-1 "Svalue
{maxttvalue-only super struct ’string-1)
(fvalue-only structl ‘string-1)))
{fput super-struct ‘substruct ‘$value struct1)))))

get-free-drivers
(defun get-free-drivers ()
(let ((d-list nilXdr nil))
(setq d-list (car (solve (?driver status free))))
(cond ((null d-list) nil)
(t(setq d-list (list d-list))
(while (setq dr (car (solve
A?driver status free(not(member ?driver d-list))))))

135

(setq d-list (cons dr d-list)))
d-list))))

get-free-structs
(defun get-free-structs O
(let ((s-list nilXst nil))
(setq s-list (car (solve (struct status free))))
(cond ((null s-list) niD) .
(t(serq s-list (list s-list))
(while (setq st (car (solve
(7struct status free(not(member ?struct s-list))))))
(setq s-list (cons st s-list)))
s-list))))

combine-series-structs
(defun combine-series-structs O
(let ((nodes (fvalues-only ‘elements] ‘nodes))
(tmp nilXstart-node nilXcurrent-node nil)
(next-node nilXstruct-list nilX(super-struct nilXstruct nil))

(patom "combine-series-structs” Xterpri)
(se1q tmp nodes)
(while (setq start-node (car tmp))
(setq tmp €edr tmp))
(cond((series-struct-condition start-node nilXnext)))
(cond ((null (setq struct-list (nconc (find-trans start-node)
(find-structs start-node ni1))))
(nexv))

(setq current-node start-node)
(while (setq struct (car struct-list))
(setq struct-list (cdr struct-list))
(setq next-node (§nd-next-struct-node struct current-node))

(cond ((null (series-struct-condition next-node nil)Xnext)))

(setq super-struct (finstantiate ‘super-struct))
(patom super-structXterpri)
(setq keep-looking t)
(fput super-struct ‘class "$value 'series)
(fput super-struct 'node-1 "$value start-node)
(fput super-struct ‘subsiruct $value struct)
(freplace super-struct '1-div w *$value
(fvalue-only struct I-div-w))
(fput super-struct string-1 '$value
(fvalue-only struct 'string-1))
(while (series-struct-condition next-node super-struct)
(setq current-node nex1-node)
(setq tmp (delete current-node tmp))
(setq struct (car(find-structs current-node super-struct)))
(fput super-struct ’substruct "Svalue struct)
(freplace super-struct ')-div-w ‘$value
(+ (fvalue-only struct ‘1-div-w)
(fvalue-only super-struct ’I-div-w)))
(freplace super-struct 'string-1 "Svalue
(+ (fvalue-only struct ‘string-1)
(fvalue-only super-struct ’string-1)))
(setq next-node (find-next-struct-node struct current-node))
(freplace super-struct ‘node-2 "$value next-node))))))

series-struct-condition
(defun :ries-struct-condition (node ss)
(let((s1 nilXd1 ni1))
(nuli(or (equal node 0)
(single-connection node)

(solve (transistor g-node .node))
(solve (?load s-node ,node))
(solve (?lcad d-node ,node))
(solve (?precharger s-node Jnode))
(solve (?pup-driver s-node ,node))
(solve (?drn-boot s-node ,node))
(solve {?active-two-port-element pos-node ,node))
(solve (?xi-driver in-node ,node))
(solve (?active-two-port-element neg-node ,node))
(solve {?driver s-node ,node (equal (fvo driver ‘class) ‘xfer)))
(solve (?driver d-node ,node (equal (fvo ?driver ‘class) ‘xfer)))
(> (setq d1 (length (solve-all
(test(and(?driver status free)
(?driver s-node ?sn)
(?driver d-node ?dn))
(or (equal ?sn nodeXequal ?dn ,node))))) 2)
(> (setq sl (length (solve-all
(test(and(?struct status free (neq ?struct ’,ss))
(?struct node-1 ?n1)
(?struct node-2 ?n2))
(or (equal ?n1 ,nodeXequal ?n2 ,node)))))) 2)
(>(+d1sD 2N

(defun find-next-struct-node (struct node)
(cond((inkp ‘ako struct 'struct)
(fvalue-only struct
(cond({equal node (fvalue-only struct ‘node-1)) 'node-2)
(1 ‘node-1))))
(«(fvalue-only struct
(cond((equal node (fvalue-only struct ‘s-node)) ‘d-node)
(1 's-node))))))

(defun find-structs (node ss)
(let ((struct-list (caadadr (solve
(tes(and(?struct status free (neq ?struct ’ss))
(?struct node-1 7x)
(?struct node-2 ?y))
(or (equal ?x ,node¢Xequal %y ;node))))))
(struct nil))

(cond((null struct-list) nil)
(t(setq struct-list (list struet-list})
(while (setq struct (caadadr (solve
(test{and(?struct status free
(and(neq struct ’ss)
(not(member ?struct struct-list))))
(?struct node- 1 7x)
(?struct node- 2 7v))
(or (equal ?x .nodedequal 7y node!)))
(setq struct-list (cons struct struct list))))
struct-list })

136

find-next-struct-node

find-structs

:Ot‘tttttcl-t..:a----.FILE: INV‘RULES.SL sessuas

; regular inverter
(rule find-simple-inverter backward-chain-rule
(type(elements ?elements))
(premise (and(?reg-driver status free)
(?10ad status free)
(?reg-driver s-node 0)
(?reg-driver d-node ?ddn)
(?reg-driver g-node ?dgn)
(?10ad s-node ?ddn)
(?10ad d-node ?1dn)
(?supply pos-node ?1dn)
(?elements dummy 1)))
(conclusion (?elements inverter " (make-inverter

Treg-driver ?load ?supply))))

sinverter with dynamic input

(rule find-dynamic-input-inverter backward-chain-rule

(type(clements ?elements))

(premise (and(?xi-driver status free)
(?load status free)
(?xi-driver s-node 0)
(?xi-driver d-node ?ddn)
(?xi-driver g-node ?dgn)
(?load s-node ?ddn)
(?load d-node ?1dn)
(?supply pos-node ?1dn)
(?elements dummy 1)))

(conclusion (?elements inverter ~ (make-xi-inverter
2xi-driver ?load ?supply)

; inverter with driver below load -- used as drain-boot predriver

(rule find-clkout-inverter-1 backward-chain-rule

(type(load ?1dXreg -driver ?dr2Xxi-driver ?dr1 Xnode 7no)

(elements 2elements Xsupply ?sup Xload ?1d))
(premise(and(?elements dummy 1)

(?dr1 s-node 0)

(?dr1 d-node ?d1)
(?dr1 status free)
(7dr2 s-node 7d1)
(?dr2 d-node 7d2)
(2dr2 status free)
(?dr2 g-node 7%g2)
(?no number 7g2)

(?no class ?cl (equal 2%l ‘always-clocked))

(?1d d-node ?1dn)
(?sup pos-node ?1dn)
(?1d s-node 7d2)
(71d status free)))
(conclusion(?elements inverter

“ (make-clkout inverter ?dr] ?1d ?sup ?dr2))))

(rule find-clkout-inverter- 2 backward-chain rule

(type(load 21d Xteg driver ?dr2 Xxi-driver ?dr1Xnode ?no)
(elements ZelementsXsupply 2supXload ?21d))

(premiseland(?elements dummy 1)

(?dr1 s node 0)

(?dr1 d-node 72d1)
(?dr1 status free)
(2dr2 d-node 7d1)
(?dr2 s-nore 7d2)
(?dr2 status free)
(?dr2 g-node 7g2)
(?no number 7g2)

137

(?no class 7cl (equal 7%l ‘always-clocked))
(?1d d-node 21dn)
(?sup pos-node ?1dn)
(?1d s-node 7d2)
(71d status free)))
(conclusion(?elements inverter
" (make-clkout-inverter 2drl ?1d ?sup 2dr2))))

wun inverter checks i] b

(rule check-beta-ratio-1 forward-chain-rule
(type (inverter ?inverter))
(premise (Zinverter beta-ratio ?br0
(< 7610 (req-br (fvalue-only ?inverter ‘pull-up)))))
(conclusion (inv-errors beta-ratio ?inverter)))

; clocks to all inputs rrust be the sarne or error
(rule check-clkout-inverter-1 forward-chain-rule
(type(clkout-inverter ?invXdriver ?xf 2cgXclock 7clkl ?c1k2))
(premise(and(?inv trigger t)
(?inv xfer-gate ?xf)
(Oxf g-node ?xfg)
(%1k1 pos-node ?xfg)
(%inv clkgate 2cg) -
(%cg g-node 2cgg)
(%c1k2 pos-node ?cgglneq %clk2 ?clk1))))
(conclusion(inv-errors input-clocking ?inv)))

(rule check-clkout-inverter-2 forward-chain-rule
(type(clkout-inverter ?invXload ?1d Xdriver ?xf 7cg)
(clock %c1k1 2¢lk2 %¢1k3))

(premise(and(?inv trigger 1)

(%inv xfer-gate ”xt)

(?xt g node xtg)

(%c1k1 pos node "xig)

Q%inv cikgate ¢cg)

(?cg g-node 7cgg)

(?c1k2 pos-node ?cgg)

(?inv puli-up 7id)

(?1d g-node ?1gn)

%1k 3 pos-node ?1gn (orf neq 7clk3 2clik2Xneq 2clk3 Zelk)M
(conclusion(in v-errors input-clocking ?inv)))

138

139

:ottt.ct.-:-n---:-:--uF]LE: INV_FUNCSSL SERES S

std-inv-put

(defun std-inv-put (driver load supply)

(fput inv-name ‘pull-down "$value driver)

(fput inv-name 'pull-up 'Svalue load)

(freplace driver ’status ‘$value ‘in-use)

(freplace load 'status ‘$value ‘in-use)

(fput inv-name 'supply ‘$value supply)

(fput inv-name ‘out-node ‘$value (fvo driver ‘d-node))

(fput inv-name ‘supply-node "$value (fvo load ‘d-node))

(fput inv-name ‘struct "$value driver))

make-inverter
(defun make-inverter (driver load supply)
(let ((inv-name (finstantiate 'reg-inverter)))
(patom inv-name Xterpri)
(std-inv-put driver load supply)
(fput inv-name ‘in-node "$value (fvo driver ‘g-node))
(fput inv-name ’beta-ratio "$value (calc-br driver load))
inv-name))

make-xi-inverter
(defun make-xi-inverter (driver load supply)
(let ((inv-name (finstantiate ‘xi-inverter))
(xfer-gate (fvo driver 'xfer-gate)))
(patom inv-nameXterpri)
(std-inv-put driver load supply)
(fput inv-name "xfer-gate "$value xfer-gate)
(fput inv-name ‘in-node "$value
(cond ((equal (fvo driver ‘g-nodeXfvo xfer-gate 's-node))

(fvo xfer-gate 'd-node))

((fvo xfer-gate 's-node))))
ttput inv-name ‘beta-ratio ‘$value (calc-br driver load))
inv name))

make-clkout inverter
(defun make-clkout-inverter (driver load supply clkgate) ’
(1et ((inv name (finstantiate ‘clkout-inverter))
(xfer gate (fvo driver ‘xfer-gate)))
(patom inv-nameXterpri)
(std inv-put driver load supply)
(fput inv-name ’xfer-gate '$value xfer-gate)
(fput inv name ‘in-node "$value
(cond ((equal (fvo driver 'g-nodeXfvo xfer-gate ‘s-node))
(fvo xfer-gate ‘d-node))
(U fvo xfer-gate ‘s-node))))
{fput inv-name ‘clkgate $value clkgate)
(fput inv-name 'beta-ratio '$value (cale-br-1 driver load clkgate))
(1put inv-name ‘trigger ‘$Svalue 1}
inv name))

calc-br
(defun calc: br (p-down p-up)
(* (/ 1 (fvo p-down ‘I-div-w)Xfvo p-up "l-div-w)))

calc-br-1
(defun cale-br-1 (pdown p-up clkgate)
(* (/ 1 (fvo p-down ‘1-div-w))
(+ (fvo p-up "I-div-wX* (fvo clkgate ‘1-div-w)
(fvo "g-con "dr-eq-ratio)))))

140

reg-br
(defun req-br (load)
(ler((class (fvo load 'class)))
(fvo "*g-con (implode (b 1 - ,@(explode class)))))

:‘tt‘ SEESESSRESERS -.-‘FILE: F'F‘RULES-SL ssssans

; Max Driver Length
(rule funny-fet-1 backward-chain-rule
(type(errors))
(premise (?driver length 71
(> 71 (fvalue-only "*g-con 'mx-dr-1)))
(conclusion(funny-fet max-driver-length ?driver)))

; Min Driver Width
(rule funny-fet-2 backward-chain-rule
(type(errors))
(premise (?driver width ?w
(< ?w (fvalue-only "*g-con ‘mn-dr-w))))
(conclusion(funny-fet min-driver-width ?driver)))

: Min Load Width
(rule funny-fet-3 backward-chain-rule
(typelerrors))
(premise (?10ad width 2w
(< ?w (fvalue-only "™g-con ‘mn-1d-w))))
(conclusion(funny-fe1 min-load-width ?load)))

; Min Load Length
(rule funny-fet-4 backward-chain-rule
(type(errors))
(premise (?load length 71
(<71 (fvalue-only "g-con ‘mn-1d-1))))
(conclusion(funny-fet min-load-length ?load)))

: Max Mos-Cap Length
(rule funny-fet-5 backward-chain rule
(type(errors))
(premise (?mos-cap length 71
(> 21 (fvalue only "*g-con ‘mx-cap-1))))
(conclusion(funny ret max cap length ?mos-cap)))

; Single Connection
(rule funny-fet-6 backward-chain-rule
(type(errors))

(premise(or (?transistor s node 2sn (single-connection ?sn))
(Mransistor g node ?gn (single-connection ?gn))
(*transistor d-node ?dn (single-connection ?dn))))

(conclusion(funny-fet single connection ?transistor)))

: Gate-Only Node Connection
(rule funny-node-1 backward-chain rule
(type (errorsXnode ?node))

(premise (known ?node gate ?g (and(null (fvso ?node ‘src-drn))
(null (fvso ?node *supply))
(null (fvso Pnode clock))))

(conclusion(funny nude gate only ?node)))

; Supply-gate-only Node connection
(rule funny-node 2 backward-chain-rule
(type (errorsXnode “node))
(premise (tesi(and (known ?node supply ?s)
(known ?node gate %g))
(null(fvso ?node ‘src-drm))))
(conclusion (funny-node supply-gate-only ?node)))

; clock-supply-short Node connection
(rule funny-node-3 backward-chain-rule
(type(errors))

141

(premise (and(?supply pos-node ?spn)
(?supply neg-node ?snn)
(%clock pos-node ?spn)
(%clock neg-node ?snn)))
(conclusion(funny-node clock-supply-short ~ (make-node-name ?spn))))

; sitngle-conection
(rule funny-node-4 backward-chain-rule

(type(errors))

(premise (?supply pos-node ?spn (sing le-connection ?spn)))

(conclusion (funny-node single-connection ~ (make-node-name ?spn))))
(rule funny-node-$ backward-chain-rule

(type(errors))

(premise (?clock pos-node ?spn (single-connection ?spn)))

(conclusion (funny-node single-connection ~ (make-node-name ?spn))))

142

143

'..Uttllclntt.tt---nan-FILE: GATE_RULES'SL ssssees
wnwn Static gate classi fication

(rule find-nor-rule backward-chain-rule

(type(elements ?elementsXparallel-struct ?p-s))
(premise(test(and(?load status free)

(?p-s status free)

(?10ad d-node ?1dn)

(?10ad s-node ?1sn)

(?supply pos-node ?1dn)

(?p-s node-1 ?psnl)

(?p-s node-2 ?psn2)

(%elements dummy 1))

(or(and(equal ?psn1 0Xequal ?psn2 ?1sn))
(and(equal ?psnl ?1snXequal ?psn2 0)))))

(conclusion(?elements static-gate ~ (make-gate ?load ?p-s ‘nor-gate))))

(rule find-nand-rule backward-chain-rule
(type(elements ?elementsXseries-struct 7%s-s))
(premise(test(and(?load status free)

(?s-s status free)
(?load d-node ?ldn)
(?load s-node ?Isn)
(?supply pos-node ?ldn)
(?s-s node-1 7ss1)
(7s-s node-2 ?ss2)
(%elements dummy 1))
(or{and(equal ?ss1 0Xequal ?ss2 ?1sn))
(and(equal ?ss2 0Xequal ?ssl ?1sn)))))
(conclusion(?elements static-gate ~ (make-gate ?load ?-s ‘nand-gate))))

(ruie find-other-gate-rule backward-chain-rule

ttype(elements ?elementsXsuper-struct 7s-s))
t premise(test(and(?load status free)

(?s-s status free)

(?load d-node 71dn)

(?10ad s-node ?1sn)

(?supply pos-node ?1dn)

(2s-s node-1 7ss1)

(?s-s node-2 7ss2)

(?elements dummy 1))

(or{and(equal ?ss1 0Xequal ?ss2 ?Isn))
(and(equal ?ss2 0Xequal ?ss1 ?isn)))))

{conclusion(?elements static-gate ~ (make-gate ?load ?s-s ‘other-gate))))

(rule ind-static-xc-xor backward-chain-rule
(1ype (elements ?elementsXxc-xor-struct ?xcXload ?1d Xsupply ?sup))
(premise(and(?¢lements dummy 1)
(?1d s node ?sn)
(”d d node ?dn)
(7sup pos node ?dn)
(71d status free)
(?xc out-node ?sn)
{?7xc s1atus free)))
(conclusion (Pclements s1atic gate ~ (make-gate ?1d 7x¢ ‘static-xc xor))))
swsss dynamic gate classt fication

(rule find-d-gate-1 backward-chain-rule
(type(elements ?elXprecharger ?preXstruct ?st))
(premise (test(and(?el dummy 1)

(?st status free)
(?pre status free)
(?pre s-node ?sn)

(?st node-1 n1)
(?st node-2 ?n2))
(or (and (equal ?n1 ?sn)Xequal ?n2 0))
(and (equal 7n2 ?snXequal ?nl1 0)))))
(conclusion (%] dynamic-gate " (make-gate ?pre ?st ‘dynamic-gate))))

(rute ind-d-gate-2 backward-chain-rule
(type(elements ?elementsXprecharger ?precharger Xdriver ?driver))
(premise (and(?elements dummy 1)
(?driver status free)
(Pprecharger status free)
(?precharger s-node ?sn)
(?driver d-node ?sn)
(?driver s-node 0)))
(conclusion (Pelements dynamic-gate
" (make-gate ?precharger ?driver ‘dynamic-gate))))

(rule find-dynamic-xc-xor backward-chain-rule
(type(elements %elementsXprecharger ?precharger Xxc-xor-struct ?xc))
(premise (and(?elements dummy 1)
(?xc status free)
(?precharger status free)
(?precharger s-node ?sn)
(?xc out-node ?sn)))
(conclusion (?elements dynamic-gate
" (make-gate ?precharger ?xc *dynamic-xc-xor))))

s seatic gate checks

: checks for string-length
(rule static-gate-check-1 forward-chain-rule
(type (static-gate 2ga))
{premise (?ga trigger t (>(fvalue-only)
(fvalue-only ?ga 'struct) ‘string-1)
(fvalue-only "»-con 'st-nand-sl))))
(conclusion {gate errors nand-length 7ga))

; per forms beta-ratio checks

(rule static-gate-check-2 forward-chain-rule
(type (static-gate 7ga))
(premise (?%ga trigger t (gate-br-error 7¢a)))
(conclusion (gate-errors beta-ratio %ga}))

; checks for feedback on static gates whose outputs are clocked-low
(rule feed-back-check backward-chain rule
(type (static-gate gaXnode ?noXxi-driver ?drXsuper-buffer ?sup))
(premise(and(?za out-node num)
(?no number ?num)
(?no class clocked-low)
(?ga pull-down ?dr (akop ’dr xi-driver))
(unknown ?dr b tran ?t'bt)
(unknown sup driver 7ga)))
(conclusionigate-crrors b reedback-desirable ?ga)))

: checks for correct clocking on a clocked low static-gate
(rule static-gate-input cluck cneck backward-chain-rule
(type (static gate 7gaXxi-driver ?drXdriver 7xg Xnode 7no ?nol))
(premise(test(and(?ga trigger t)
(?ga out-node ?n)
(?no number ?n)
(?no class clocked-low)
(%ga pull-down ?dr (akop ?dr ‘xi-driver))
(7dr xfer-gate 7xg)
(?xg g-node 7gn)

144

145

(?nol number %gn)
(?nol class 2x (or (equal ?x ‘always-clocked)
(equal ?x ‘conditional-clocked))))
(neq (fvo ?nol ’aspect Ximplode (cddr (explode (fvo 7no ‘aspect))))))
(conclusion(gate-errors-b input-clocking-error 7ga)))

sunwns: dynamic gate and structure checks jiuiiiii

serror if precharge and true phases are equal
serror if pull-down structure is clocked on both phases
serror if pull-down structure is always held high
(rule dynamic-gate-check-1 forward-chain-rule
(type (dynamic-gate ?ga))
(premise (test (and (%ga trigger 1)
(?ga pre-phase ?pp)
(?ga true-phase ?tp))
(or(equal ?tp ?pp)
(equal ?tp ‘error)
(equal %tp "*high))))
(conclusion(gate-errors dynamic-clocking-1 7ga)))

;error if pull-down structure is always low on a given clock phase
: lie or a given phase a pull down structure always pulls the precharge low)

(rule dynamic-gate-check-2 forward-chain-rule
(type(dynamic-gate 7gaXstruct ?s1))
(premise (and (?ga trigger 1)
(?ga struct 7st)
(st clk-class hard)))
(conclusion (gate-errors dynamic-clocking-2 ?ga)))

; race condition i f a dynamuc gate puil-down-structure has an xi-driver
; and the xi-driver trans fer gate is clocked on the true-phase
: of the gate

(rule dynamic-gate-check-3 forward-chain-rule
(type (dynamic-gate ?gaXstruct ?s1Xxi-driver ?drXdriver ?xf))
(premise(test(and (%ga trigger t)
(?ga struct 7st)
(?st trans ?dr(akop ?dr ‘xi-driver))
(7dr xfer-gate 7xf)
(?ga true-phase ?tp)
(knowable ?xf{ ¢lk-input %clkin))
(equal ?tp ?clkin)))
(conclusion (gate-errors race-condition ?ga)))

asw flag a dynamic gate whose pulldown stage ts never clocked
(rule dynamic gate-check-4 forward -chain-rule
(rypefdynamic gate 7gaXstruct ?st))
(premise fand (7ga trigger t)
(7ga true phase nil)))
(conclusion (gate-errors dynamic clocking -4 ?ga)))

; probable dynamic clocking problem if the is precharged node
: and there is a driver connected to this node which is clocked
; onthe precharge phase of the precharger
; or driver's gate is always -high
(rule dynamic-clocking-rule-1 backward-chain-rule
(type(precharger ?preXdriver 7dr))
(premise(test(and (?pre s-node %sn)

(?pre pre-phase ?pp)
(?dr d-node ?sn)
(?dr s-node 0)
(%dr clk-input %clkin)
(or(equal ?pp ?clkin Xequal ?cikin "*high)))
(conclusjon(funny-node clocking-flag " (make-node-name %sn))))

146

147

‘.-t.tlou.o---.ntuu.t.FILE: GATE_FUNCSSL ssessse

make-gate
(defun make-gate (load struct g-type)
(let ((gate (finstantiate g-type)Xtran nil)

(tran-list (get-trans struct)))
(patom gateXterpri)
(fput gate ‘out-node ‘$value (fvalue-only load ’s-node))
(fput gate ‘struct 'Svalue struct) !
(fput gate ‘supply-node "$value (fvalue-only load ‘d-node))
(fput gate ‘pull-up "$value load)
(fput gate 'beta-ratio ‘$value (calc-br struct load))
(freplace load 'status ‘$value "in-use)
(freplace struct ‘status ‘$value ‘in-use)
(while (setq tran (car tran-list))

(setq tran-list (cdr tran-list))

(fput gate "pull-down '$value tran) .

(fput gate ‘in-node "$value (fvalue-only tran ‘g-node)))
(cond ((or(equal g-type *"dynamic-gateXequal g-type ‘dynamic-xc-xor))

(fput gate 'pre-phase "$value (fvo load ‘pre-phase))
(fput gate ‘true-phase *$value (fvo struct ‘clk-input))))

(freplace gate "trigger "$value t)
gate))

gate-br-error
(defun gate-br-error (gate)
(< (fvalue-only gate 'beta-ratio)
(get-req-br (fvalue-only gate ‘pull-up)))

get-req-br
(defun get-req-br (load)
(let((class (fvalue-only load ‘class)))
(fvalue-only "*g-con (implode (b r - ,@(explode class M

'.ll-a -l---l:-nnltll-ulF ILE: COUPLE_RULESSL sExEm

(rule xi-driver-coupling-rule-1 forward-chain-rule
(type (xi-driver 7xi-dr))
(premise(and(?xi-dr trigger t)
(?xi-dr ga-xfw-ratio 7 (< % (fvo "g-con ‘mn-dr-ga-xf-w)))))
{conclusion (coupling-errors xi-driver-coupling ?xi-dr)))

(rule xi-driver-coupling-rule-2 forward-chain-rule
(type (xi-driver 2xi-dr))
(premise (and(?xi-dr trigger 1)
(?xi-dr s-node ?sn (neq ?sn 0))))
(conclusion(coupling-errors xi-driver-coupling-1 ?xi-dr)))

148

:.III ---tnu---at-l'--oF]LE: CLKING_RULES_SL- e

(rule determine-struct-clocking-1 forward-chain-rule
(type (struct ?structXdriver 2dr))
(premise (and (?struct class ?class)
(?struct trans ?dr)
(knowable ?dr clk-input 2clkin)))
(conclusion(and (replace ?struct clk-input
* (det-clk-input ?struct ?class ?dr ?clkin))
(replace ?struct clk-class
“ (det-clk-class ?struct ?class ?dr ?clkin)))))

(rule determine-struct-clocking-2 forward-chain-rule
(type (struct ?structXdriver 2dr))
(premise (and (?struct class ?class)
(?struct trans ?dr)
(unknowable ?dr clk-input %clkin)))
(conclusion(and (replace ?struct clk-input
” (det-clk-input ?struct ?class ?dr nil))
(replace ?struct clk-class
“ (det-clk-class ?struct ?class ?dr nil)))))

(rule determine-struct-clocking- 3 forward-chain-rule
(type (struct ?struct Xdriver ?dr))
(premise (and (?struct class ?class)
(?struct substruct 2dr)
(knowable ?dr clk-input ?clkin)))
(conclusion(and (replace ?struct clk-input
" (det-clk-input ?struct ?class ?dr 2¢lkin))
(replace ?struct clk-class
" (det-clk~class ?struct 2class ?dr ?clkin)))))

(rule determine-struct-clocking-4 forward-chain-rule
tiype (struct ?struct Xdriver 2dr)
tpremise (and (struct class ?class)
(?struct substruct 2dr;
(unknowable 2dr clk-input 2clkin)))
(conclusion(and (replace ?struct clk-input
“ (det-clk-input ?struct ?class ?dr nil))
(replace struct clk-class
“tdet-clk-class ?struct ?class ?dr nil)))))

(rule determine-struct clocking-5 forward-chain-rule
f1ype (struct ?struct st))
(premise (and (?struct class ?class)
(?struct substruct ?st)
(?st ¢k input 2clkin)))
(conclusion(and (replace ?struct clk-input
" (det ¢lk-input ?struct 2class ?st %clkin))
(replace "struct ok clasy
“(det ek -class Mstruct Pelass 75t 2clkin)))))

trule determine struct clocking 6 forward chain rule
(1ype (struct ?struct 2s0)
(premise (and (7struct class ’class)
(?struct substruct ’st)
(unknown st clk-input ?clkin)))
(conclusion(and (replace ?struct clk input
“ (det-clk-input ?struct %class ?st nil))
(replace ?struct clk-class
" (det-clk-class ?struct 2class ?st nil)))))

; driver clock input classi fication

149

150

(rule clk-input-rule-1 backward-chain-rule
(type (driver ?2drXclock ?ck))
(premise (and (?dr g-node 7gn)
(?ck pos-node %gn)))
(conclusion (?dr clk-input ~ (define-clking-class 2dr 2ck ‘hard))))

(rule clk-input-rule-2 backward-chain-rule
(type (driver ?drXnode ?no))
(premise (and(?dr g-node %gn)
(?no number 7gn)
(?no class ?x (equal ?x ‘always-high))))
(conclusion(?dr clk-input ~ (define-clking-class ?dr "*high "hard))))

(rule clk-input-rule-3 backward-chain-rule
(type (driver ?drXnode 7no))
(premise(and(?dr g-node %n)
(?no number ?gn)
(?no class ?x (equal ?x ‘conditional-clocked))))
(conclusion(?dr cik-input " (define-clking-class ?dr (fvo 7no "aspect)
‘conditional))))
(rule clk-input-rule-4 backward-chain-rule
(type(driver ?dr)Xnode ?no))
(premise(and(?dr g-node %gn)
(?no number %gn)
(?no class 7x (equal ?x ‘clocked- low))))
(conclusion(?dr clk-input " (define-clking-class ?dr (fvo ?no ‘aspect)
*clocked-low))))

: node classifecation rules
(rule always-high-node-rule-1 backward-chain-rule
(type(driver ?drXload ?1d Xsupply ?supXnode ?no0 ?nol))
(premise (and(unknown ?no0 class aiways-high)
(?no0 number %gnineq %gn 0))
(?nc0 trans 7t (= (length (fvso ?no0 ‘trans)) 2)
(?%dr d node ?dn)
(%dr s-node %gn)
(?sup pos-node ?dn)
(?dr g-node %gnl1)
(?nol number %n1)
(?nol class-1 7 (equal % always-hxgh))))
tconclusion(?no0 class ~ (make - node-class ?nod ‘always-high nil nil) 1)
: node class aspect switch

(rule always-high-node-rule-2 backward-chain-rule

(type(load ?1d Xsupply ?supXnode ?no))

(premise (or (and(unknown ?no class always-high)
(?no number 2gn(neq %gn 0))
(?sup pos-node 7gn))

(and (unknown ?no class always-high)

(?no number %gn (= (length (fvso ?no ‘src-drn)) 1))
(71d s-node ?gnfneq 7gn 0))
(71d d-node Idp)
(“sup pos node ?1dp))))

(conclusion{?no class ~ (make-node-class ?no always high nil 1))))

(rule always-high 3 backward-chain-rule
(type(node ?n0))
(premise(and (unknown ?no class-1 always-high)
(?no class ?x (equal 2 ‘always-high))))
(conclusion(?no class-1 ~ (make-node-class no ‘always-high nil 1))))

(rule always-clocked-rule backward-chain-rule
(type(node PnoXclock ?clk))
(premise(and (unknown ?no class always-clocked)

(?n0 number ?n)
(?clk pos-node 7n)))
(conclusion(?no class ~ (make-node-class ?no ‘always-clocked ?clk nil))))

(rule conditional-clocked-rule backward-chain-rule
(type(node noXdrm-boot 7db))
(premise(and(unknown ?no class conditional-clocked)
(?no number ?n)
(?db s-node ™n)
(?db d-node ?dn)
(?db boot-phase ?bp))).
(conclusion(?no class
“ (make-node-class ?no "conditional-clocked ?bp niD)))

(rule precharged-node-rule backward-chain-rule
(type(node 2noXprecharger ?pre))
(premise(and(unknown ?no class precharge)
(?no number ?n)
(?pre s-node 7n)
(?pre pre-phase 2clk)))
(conclusion(?no class ~ (make-node-class ?no ‘precharge ?cik nil))))

(rule dynamic-node-rule-1 backward-chain rule
(type (node noXprecharger ?pdrXload ?1d Xdriver 2drXclock "clk)
(drn-boot 2dbXactive-two-port-element ?atp))
(premise(and(unknown ?no class dynamic)
(?no number ?n(neq ?n 0))
(unknown ?1d s-node ?n)
(unknown ?atp pos-node ?n)
(unknown ?pdr s-node ?n)
{unknown ?db s-node ?n)))
(conclusion(?no class ~ (make-node-class ?no ‘dynamic nil nil))))

: dynaruc node i f it has one clocked load
(rule dynamic-node-rule-2 backward-chain-rule
(1ypel node nol ?noXload ?1dXsupply ?sup))
(premiseland(unknown ?no class dynamic)
(?no number ?n(equal 1 (length(fvso ?no 'load))))
(?1d s-node ?n(neq ?n 0))
{known ?1d class % (equal ?c 'ckc-load))
(?1d d-node ?dnum)
(?sup pos-node ?dnum)))
(conclusion(?no class " (make-node-class ?no ‘dynamic nil nil))))

;s clocked-lov i f it has pull-down driver which is clocked
(rule clocked low -rule back ward-chain-rule
(1ype (node ?noXdriver ?drXclock ?clkXprecharger ?preXdrn-boot ?2db)
(1oad 71d))
(premiseland(unknown ?no class clocked-low)
(?no number ?n)
(%dr d node "n}
(2dr s-node O3
(dr g-node 7gn)
(?c1k pos node 7gn)
(unknown ?pre s-node n)
(unknown ?db s-node 1))
(conclusion(?no class

“ (make-node-class ?no ‘clocked-low (implode (n - ,@explode ?clk))) nil))))

[rule vice-versa-1 backward-chain-rule
; (typelnode no))

; (premise(’no class 7x))

: (conclusion(?no class-1 ?x))

151

152

{rule vice-versa-2 backward-chain-rule
; (typelnode 7no))

; (premiseland(?no class-17x)))

; (conclusicn(?no class ?x)))

; aspect detemination rules
(rule determine-aspect-rule-1 backward-chain-rule
(type(node 2noXsupply ?sup))
(premise(and(?no number ?n)
(?sup pos-node)
(conclusion(?no aspect ?sup)))

(rule determine-aspect-rule-2 backward-chain-rule
(type(node Mno 2gnoXdriver ?drXclock ?clock))
(premise(and(?no number ?n(neq ?n 0))
(?dr s-node ?sn)
(?dr d-node ?dn(or (equal ?n ?dnXequal ?n %n)))
(?dr g-node ?gn)
(%clk pos-nede 7gn)))
(conclusion(?no aspect %c1k)))

(rule determine-aspect rule-3 backward-chain-rule
(type (node ?noXclock ?clk))
(premise (and(?no number 7n)
(%clk pos-node ?n)))
(conclusion(?no aspect 2¢lk)))

153

:-l-a USER SIS ST NN ncF ILE: CLKING _FU NCS.SL"' =e

det-clk-input
(defun det-clk-input (struct class substruct substruct-clkin)
(let ((struct-clkin (fvo struct ‘clk-input))
(structclk-class (fvo struct ‘clk-class))
(substruct-clk-class (fvo substruct ‘clk-class)))
(cond ((or (equal)struci—clkin ‘errorXequal substructclkin ‘error))
‘error,

((null struct-cikin) substruct-clkin)
((null substruct-clkin) struct-clkin)
((neq struct-clkin substruct-clkin) ‘error)
(1 struct-clkin))))

detclk-—class
(defun det-clk-class (struct class substruct substruct-clkin)
(let ((struct-clkin (fvo struct ‘clk-input))
(struct-clk-class (fvo struct 'clk-class))
(substruct-clk-class (fvo substruct cik-class)))
(cond ((or (equal struct-clk-class ‘error)
(equal substruct-clk-class ‘error)) ‘error)
((equal 1 (cond ((akop struct ‘super-struct)
(length(fvso struct ‘substruct)))
(t(length(fvso struct ‘trans)))))
substruct-clk-class)
((equal class ‘parallel)
(cond ((or(equal struct-clk-class *hard)
(equal substruct-clk-class ‘hard)) *hard)
((or{equal struct-clk-class ‘conditional)
(equal substruct—lk-class ‘conditional))
*conditional)
(1 nil)))

((equal class 'series)
(cond ((equal struct clIk class substruct clk-class) ; hard-hard
struct-clk-class) :nul-nil cond-cond
(Cor (and(equal struct -clk-class *hard)
(equal substruci-clkclass nil))
(and(equal struct-clkclass nil)
(equal substruct-clk-class *hard)))
‘conditional}
((or (equal struct-clk-class ‘conditional) ; cond-any
(equal substruct-clk class ‘conditional))
'conditional))))

define-clking-class
(defun define-clking-class (driver clk class)
(fput driver ‘clk-class "$value class)
clk)

make-node-class
(defun make nude class (node class aspect switch)
(cond {switch (freplace node ‘class “Svalue class))
(t (I'replace node ‘class 1 ‘$value class)))
(cond{aspect (freplace node "aspect "$value aspect))
((solve (node aspect 7x))))
class)

Ade fun determine-aspect (node class)
; (condl{equal class ‘always-high Xcaaddr{solve
; (and(,node number ?xX?supply pos-node ?x))))))

; documnentation o f combinations
; class of structure: sertes, parallel

154

; clk-input to transistor or structure: ¢kl ck2

i clk-class of transistor or structure:

¢ hard —> source and drain or nodel node2 connected during clock

: conditional -- > connection is possible but conditional on other inputs
; error ~> violation of clocking rules

155

'.II‘.xtnt.‘lclxlll‘lilFILE: RC_RULES_SL EREEE

(rule long-rc-flag backward-chain-rule
(type(load ?1dXnode ?sn) (supply ?sup)
(premise(test(and(?1d d-node ?dn)
(?sup pos-node ?dn)
(71d s-node ?1sn)
(?sn number ?1sn(> (length (fvso ?sn ‘gate)) 0))
(?sn total-cap ?y))
(long-rc-condition ?1d ?sn ?sup)))
(conclusion (funny-node long-rc-flag ?sn)))

(rule node-total-cap backward-chain-rule
(type(node ?nde))
(premise(?nde number ?x))
(conclusion(?nde total-cap ~ (calc-capacitance ?nde))))

:lll- EEAZBEZESEERS -:-UFILE: RC_FU AICS_SL- sxmsm

: long-rc-condition
(defun long-rc-condition (load node supply)
(let ((res (7 (* (fvo supply "e-value) (fvo load "1-div-w))
(fvo ™g-con std-1d-current)))
(cap (fvo node "towal-cap))) ; res=kohms , cap=p f, tau=ns N
; (patom "long-rc " Xpatom resXpatom" "Xpatom capXterpri)
(> (* res capXfvo "g-con 'noise-tau))))

calc-capacitance

{(defun calc-capacitance (node-name)
(let((n-class nilXn-aspect nil)
(cap-list (fvso node-name "cap)Xcap nil)
(tran-list (fvso node-name ’gate)Xtran nii)
(src-drn-list (fvso node-name ’src-drn)Xsrc drn nil)
(gate-cap 0Xstat-cap OXclka-cap 0Xclkb-cap 0)
(clkc-cap OXclkd-c: - OXother-cap OXsrc-drn-cap 0))

(while(setq cap (caar cap-list)) :add up static capacitances
(setq cap-list (cdr cay list))
(setq other-node (make-node-name
{(find-other-port cap (fvo node-name 'number))))
(solve other-node class 7)) ; determines node class and aspect
(cond ((equal other-node 0)
(setq stat-cap (+ stat-cap (fvo cap ‘e-value))))
((member (fvo other-node ‘aspect) (fvso ‘elements] supply))
(setq stat-cap (+ stat-cap (fvo cap ‘e-value))))
((equal (fvo other-node ‘aspect) *clka)
(setq clka-cap (+ clka-cap (fvo cap ‘e-value))))
((equal (fvo other-node ‘aspect) *clkb)
(setq clkb-cap (+ clkb-cap (fvo cap ‘e-value))))
(1(setq other-cap (+ other-cap (fvo cap ‘e-value)))))) iend while
‘add up pate capacitence
(while (sctq tran (car tran list))
{setq tran list (cdr tran list))
(setq gate cap (+ gate-cap (* (f'vo tran 'widthXfvo tran 'length)
(fvo "g-con ‘gox-cap))))) jend while
.add up src-drn capucitance
(while (setq src-drn (car src-drn-list))
(setq src-drn-list (cdr src-drn-list))
(setq src-drn-cap (+ sre-drn-cap (* (fvo sre-dmn ‘width)
(fvo "g-con ‘gox-overlap-cap)))))
; put themin the node frame
(freplace node-name ‘static-cap "$value stat-cap)
(freplace node-name ‘gate-cap ‘$value gate-cap)
(freplace node-name "clka-cap "$value clka-cap)

(freplace node-name ‘clkb-cap *$value cikb-cap)

(Freplace node-name ‘other-cap ‘Svalue other-cap)

(freplace node-name ’stc-dm-cap "Svalue src-drn-cap)

(+ stat-cap gate-cap clka-cap cikb-cap other-cap src-drn-cap)))

(defun find-other-port (cap node-number)
(cond((equal (fvo cap "pos-nede) node-number) (fvo cap 'neg-nede))
(#(fvo cap *pos-nede))))

156

find-other-port

157

:‘un- S ERBR TS “"”F ILE: SUPBUF'RULES.SL.'- s

; find inverting super-bu ffer
(rule find-super-buffer-1 backward-chain-rule
(type(static-gate 7g1 7%g2Xload ?1g1 ?1g2Xelements Zelements))
(premise(test(and(?g1 pull-up ?igl)
(?g2 pull-up ?1g2 (neq %g1 %g2))
(?1g1 class ?x (equal ?x ’src-load))
(?1g2 class ?y (equal ?y ‘oth-load))
(?g1 out-node %glon)
(?1g2 g-node ?glon)
(%elements dummy 1))
{(super-buffer-condition ?g1 %g2)))
(conclusion (?elements super-buffer ~ (make-super-buffer ?g1 252 ‘inv)))

; find non-inverting super-bu ffer
(rule find-super-buffer-2 backward-chain-rule
(type(static-gate ?g1 ?g2Xdriver ?dr1 Xload ?1g1 ?1g2Xelements ?elements))
(premise(and(?elements dummy 1)
(%1 pull-up ?1g1)
(?g2 pull-up g2 (neq %1 7%g2))
(?1g1 class ?x (equal ?x ‘src-load))
(712 class ?y (equal ?y 'oth-1oad))
(?g1 out-node %onl)
(?g1 pull-down ?drl)
(7dr1 g-node ?in1)
(?g2 in-node %on1)
(7122 g-node ?in1)))
(conclusion(?elements super-buffer ~ (make-super-buffer 71 %2 ‘non-inv))))

: flag super-bu ffer that may be wasting power
(rule super-buffer-flag-1 forward-chain-rule
(type(super-buffer 7sb))
(premise(and(?sb class ?x (equal ?x 'inv))
(7sb trigger t (sb-power-waste condition ?sb))))
(conclusion (super-buffer-errors power-wa » flag ’sh)))

; flag super bu ffer without aggerssive precriver beta-ratio
(rule super-buffer-flag-2 forward-chain-rule
(type(super-buffer ?sbXgate ?pd))
(premise (and(?sb class ?x (equal ?x ‘inv))
(?sb predriver ?pd)
(?sb trigger t (>(fvo ?pd 'beta-ratio)
(fvo "*g-con 'mx-sup- buf-agg-br)))))
(conclusion(super-buffer-errors aggressive-br-flag sb)))

s if predriver has aggressive beta-ratio then rerrove it from br errors
(rule super-buffer-flag-3 forward-chain-rule
(type(super-buffer ?sbXgate ?pdr))
(premise (and(?sb class ?x (equal ?x ‘inv))
(7sb predriver ?pdr)
{(2b trigger t (> (fvo ?pdr 'beta-ratind
' (fvo "*g-con 'mn sup-bul-agg-br)}))
(conclusion (eval (fremove
(cond((akop ?pdr ‘inverter) ‘inv-errors)
(1 ’gate-errors)) ‘beta ratio “Svalue ?pdr)))

; error i f non-inverting super-buffer input isn't connected to either
; a load, drain-bootstrapper, or clock
(rule super-bufer-flag-4 forward-chain-rule
(type (super-buffer ?supXdriver 2drXclock cik)
(static-gate ?gaXdrn-boot ?drnbXload ?1d))
(premise{and(?sup class ?x (equal ?x ‘non-inv))
(?sup trigger)

h

158

(?sup predriver 7ga)
(?ga pull-down 7dr)
(?dr g-node ?%in) :
(unknown ?¢lk pos-node ?in)
(unknown ?dmb s-node %in)
(unknown ?id s'node ?in)))
(conclusion (super-buffer-errors poor-input-drive ?sup)))

159

:l"l SEBEEESIEES --u-:-FILE: SUPBUF_FU NCS_SL--:...

sb-power-waste-condition
(defun sb-power-waste-condition (sb)
(let((pre-load (fvo (fvo sb *predriver) ‘pull-up))
(drv-load (fvo (fvo sb "driver) *pull-up))
(ratio nil))
(patom "predriver "Xpatom pre-loadXpatom " driver " Xpatom drv-loadXterpri)
(setq ratio (* (fvo drv-load '1-div-wX/ 1 (fvo pre-load ‘1-diviw))))
(or (> ratio (fve **g-con ‘mx-sup-buf-pwr-ratio))
{ < ratio (fvo "*g-con ‘mn-sup-buf-pwr-ratio)))))

super-buffer-condition
(defun super-buffer-condition (predriver driver)
(let ((fag tXin-nodel (fvso predriver 'in-node))
(in-node2 (fvso driver ‘in-node))
(node nil))
(cond((neq (length in-nodel Xlength in-node2)Xsetq fag nil)))
(while (and flag (setq node (car in-nodel)))
(setq in-nodel (cdr in-nodel))
))(cond((null(member node in-node2)Xsetq flag nil))))
flag

. make-super-buffer
(defun make-super-buffer (predriver driver class)
(let((sup-buf (finstantiate 'super-buffer)))
(patom sup-bufXterpri)
(fput sup-buf ’class '$value class)
(fput sup-buf 'predriver ‘$value predriver)
(fput sup-buf “driver ‘Svalue driver)
(fput sup-buf ‘out-node "Svalue (fvo driver ‘out-node))
(fput-values sup-buf ’in-node ($'vso predriver ‘in-node))
(fput sup-buf ‘driver br ‘$Svalue (fvo driver ‘beta-ratio))
(fput sup-buf 'predriver br ‘$valuc (1vo predriver ‘beta ratio))
(fput sup-buf ‘supply "Svalue (tvo driver supply))
(fput sup-buf 'supply-node "Svalue (fvo (fvo driver ‘pull u- d-node))
(fput sup-buf "trigger ‘$value t)
sup-buf))

;nuct sseaseseass l-..I.F ILE: D_BOOT_RU LESSL sss e

; find a drn-boot driver
(rule find-dm-boot-1 backward-chain-rule
(type(driver ?drXnode 2gnXelements %elementsXclock %cik))
(premise(and(?elements dummy 1)
(known ?dr class 7¢ (or(equal ?¢ ‘unclassified)
(equal ¢ *xiXequal 2 ‘xfer)))
(?dr d-node ?d-num)
(?clk pos-node ?d-num)
(?dr g-node ?g-num)
(?%gn number %g-num)
(%gn class ?y (equal ?y ‘dynamic))))
(conclusion(?elements drn-boot ~ (make-drn-boot 2dr 2c1k))))

; find a drn-boot driver
(rule find-drn-boot-2 backward-chain-rule
(type(driver 72drXnode ?dn ?gnXelements 2elements))
(premise(and(?elements dummy 1)
(known ?dr class ?¢ (or{and(neq ?c *drn-boot)
_ (equal % 'unclassified))
(and(neq ?c "drn-boot)
(equal %¢ "xi))))
(?dr d-node 2d-num)
(?dn number ?d-num)
(?dn class ?x (equal ?x ‘conditional-clocked))
(?dr g-node ?g-num)
(?gn number ?g-num)
(?gn class ?y (equal ?y ‘dynamic))))
(conclusion(Zelements dbl ~ (make-drn-boot ?dr nil))))

trule other-clk-hold-down-1 backward-chain-rule

{1ypeldrn-boot ?dbXdriver ?drXclock ?clkXnode ?no))
{premise(and(?db s-node ?sn)

(?dr d-node ?sn)

(?dr s-node ?x (equal ?x 0))

(?dr g-node 7gn)

(%clk pos-node %gn(neg %Ik (fvo ?dr ‘boot-phase)))))
(conclusion(?db other-clk-hold-down 2dr)))

sunnnnaanaunes find drain-bootstrap cells;iisi:

(rule Gnd-drain-bootstrap-1 backward-chain-rule
(type(drn-boot 2dbXinverter %invXdriver 2cgXelements ?elements)
(node ?no))
(premise{and(?db status free)
(%inv status free)
{7db g-node %gn)
(?inv out-node ?gn)
(?inv in nodc ?in)
(Pinv xter gate 2cg)
(%cg g-node cppn)
(?no number Zcggn)
(?no aspect 7clk)
(?clements dummy 1))
(conclusion(?eiements drain-bootstrap
* (make-drain-bootstrap 2db ?inv 2cik %in))))

(rule find-drain-bootstrap-3 backward-chain-rule
(type{dm-boot ?dbXdriver ?xfXelements %elemen ts Xnode ?no))
(premise(and(?db status free)

(known ?db o-ins xi)

(7db xfer-gate 7f)

(7xf g-node 7%g)

(?no number %)

(?no aspect 2clk)

(?elements dummy 1))
(conclusion(?elements drain-bootstrap

" (make-drain-bootstrap ?db %f %cik nil))))

(rule find-mos-cap-rule backward-chain-rule
(type(drain-bootstrap ?2dXmos-cap ?mXdm-boot 2db))
(premise(test(and(?d drn-boot ?db)

(?db g-node 7gn)
(?db d-node ?sn)
(?m status free)
(?m g-node ?mgn)
(?m s-node ?msn))
(or{and(equal 7%gn ?mgnXequal ?sn ?msn))
(and(equal ?gn ?msnXequai ?sn ?mgn)))
(conclusion(?d mos-cap ?m)))

St drn-boot checks nunnanininn

; check for other phase hold-down
(rule drn-boot-check-1 backward-chain-rule
(type (drn-boot ?db))
(premise(and(elements] drn-boot ?db)
(unknown ?db other-clk-hold-down x)))
(conclusion (drn-boot-errors phase-hold-down 2db)))

: check for mos-cap in correctly
(rule check-db-mos-cap backward-chain-rule
(1vpe(drain-bootstrap ?dXmos-cap ?m))
(premiseland(?d boot-node ?bn)
(known ?d mos cap ?m)
(?m g-node % (neq g 7on))))
(conclusion(drn- boot-errors mos cap-backwards 2d)))

; checkin for clocking errors in drain-bootstrap
(rule check-dbclockin backward-chain-rule
(type{drain-bootstrap ?2d)}
(premise(and(?d boot-phase ?bp)
(?d pre-phase ?bp)))
(conctusion (drn boot-errors clocking-error ?d)))

s check for proper hold-down length
(rule check-db-hd-length backward-chain-rule
(type(drain bootstrap ?dXdriver ?drXinverter ?pd))
(premise(and(?d predriver ?pd (null (akop ?pd ‘transistor)))
(?pd pull-down ?dr)
(?dr length 21 (<71 (fvo g con ’db ahd 1))
(conclusion(drn- buot-errors longer driver needed 2dr)))

; check for bootnode active low

(rule check-dh boot node backward chain rule
(typeldrain bootstrap ?d))
(premise(?d predriver ?pd (akop ?pd ‘iransistor)))
(conclusion(drn-boot-errors boot-node-not-active-low ?d)))’

161

162

:3-:. s """..“"--.FILE: D'BWT‘FUNCS-SL sssase

make-drn-boot
(defun make-drn-boot (dr boot-phase) ; trigger pu: is asserted later on
(let ((d-node (make-node-name (fvo dr ‘d-node))Xxid nil)
(s-node (make-node-name (fvo dr ‘s-node))))
(cond((akop dr "xi-driver)
(fput dr 'o-ins Svalue 'xi)
(freplace dr *width "$value (/ (fvo dr *width)
(fvo '*g-con ‘xi-dr-wrf)))
(fremove ‘elementsl "xi-driver "Svalue dr)
(fremove ‘coupling-errors ‘xi-driver-coupling ‘Svalue dr)
(fremove ‘coupling-errors ‘xi-driver-coupling-1 ‘$value dr)))
(freplace dr *ako "Svalue 'drn-boot)
(freplace dr ‘class "$value ‘drn-boot)
(freplace dr "boot-phase Svalue
{cond ((null boot-phaseXfvo d-node ‘aspect))
(t boot-phase)))
(make-node-class s-node ‘conditional-clocked (fvo dr "boot-phase) nil)
(pa)t;!m drn-boot "Xpatom drXterpri)
dr

solve-all-drn-boots
(derun solve-all-drn-boots ()
(let({drn-boot-list nilXdb nilXwemp nilXtemp-list ml))
(solve-all (?elements drn- boot ?x))
(setq temp-list (fvso ‘elements] ‘drn-boot))
(while (setq temp (car temp-list))
(se1q temp-list (cdr emp-list))
(fput ’elements! ‘dbl ‘Svalue temp))
(while (fvso ‘elements! 'dbl)
(se1q drn-boot-list (append (fvse *elementsl ‘dbl) drn-boot-list)
(fremove 'clements! ‘dbl)
(solve-all (7clements dbl ?x))!
(while (setq db (car drn-buot-list))
(setq drn-boot-list (cdr drn- boot-list))
(freplace db "trigger ‘Svalue t)
(fput ’elements] ‘drn-boot Svalue db))
(fix-xi-driver-errors)
(solve-all (?drn-boot other-clk-hold-down "x))))

make-other-clk-h-d
(defun make-other-clk-h-d (driver)
driver)

make-drain-bootstrap
(defun make-drain-bootstrap (drn-boot predriver inclk in-node)
(ler((db (finstantiate "drain-bootwstrap)))
(patom dbXterpri)
rput db ‘predriver ‘Svalue predriver)
tiput db 'den boot ‘Svaiue dra boot)
(tput db ‘'in-node Svaiue
(cond((null in-node)
(cond((equal (fvo predriver ‘d-nodeXfvo drn-boot 'g-node))
(fvo predriver ‘s-node))
(1 (fvo predriver 'd-node))))
(t in-node)))
(fput db ‘out-node “Svalue (fvo drn-boot 's-node))
(fput db "boot-node $value (fvo drn-boot ‘g-node))
(fput db ‘pre-phase Svalue inclk)
(fput db boot-phase Ivalue (fvo drn-bet “boot-phase))
(cond((fvso drn-boot ‘other-c1k-hold-down)
(fput-values db ‘other-clk-hold-down

163

(fvso drn-boot ‘other-clk-hoid-down))))
db))

solve-all-drain-bootstraps
(defun solve-all-drain-bootstraps ()
(find-drain-bootstrap-cells)
(solve-all (?drain-bootstrap mos-cap ?x)))

find-drain-bootstrap-cells
(defun find-drain-bootstrap-cells () ,
(let((db-list nil))
(while (solve (?elements drain-bootstrap ?x))
(cond((null db-listXsetq db-list (fvso ‘elements] ‘drain-bootstrap)))
(x(setq db-list (cons (fvo ’elements] drain-bootstrap) db-list))))
(fremove ‘elements] ‘drain-bootstrap ‘$value))
(cond (db-list (fput-values ‘elements! 'drain-bootstrap db-list)))))

fix-xi-driver-errors
(defun fix-xi-driver-errors ()
(let((db-1ist (fvso ’elements] ‘drn-boot)Xdb nilXxid nil))
(while(setq db (car db-list)
(setq db-list (cdr db-list))
(cond((setq xid (cadr(solve ‘(known ?xi-driver xfer-gate .db))))
(fremove ‘coupling-errors 'xi-driver-coupling ‘$value xid)
(fremove ‘coupling-errors "xi-driver-coupling-1 ‘$value xid)))))

sanes ll.lllll..l.‘-.l.F ILE: REG_RULESSL.-- L)

(rule find-reg-core-1 backward-chain-rule
(type(xi-inverter ?xil ?xi2Xreg-driver ?drXelements Zelements)
(clock ?clk1 2clk2 %clk3))
(premise(and(?¢lements dummy 1)
(?xi1 in-node ?in1)
(?xil out-node Zoutl)
(?xil status ?stl (equal ?stl ‘free))
(?xi2 in-node ?in2(equal ?in2 2outl))
(?xi2 out-node ?out2)
(?xi2 status ?st2 (equal 2512 ‘free))
(?dr status free)
(?dr d-node ?dn(or(equal ?dn ?in1)
(equal ?dn 7out2)))
(?dr s-node ?sn(or(equal ?sn ?in1)
(equal ?sn ?out2)))
(?xil1 xfer-gate 2xf1)
(?xf1 g-node ?xf1gn)
(%clk1 pos-node ?xf1gn)
(?xi2 xfer-gate 7xf2)
(?xf2 g-node ?xf2gn)
(%c1k2 pos-node ?xf2gn)
. (?dr g-node ?drgn)
(?c1k3 pos-node ?drgn)))
(conclusion(?elements reg-core
" (make-reg-core ?xil 21kl ?xi2 %clk2 ?dr %cik3 ?inl %out2 niD))))

(rule find-reg-cell-1 backward-chain-rule
(type(reg-core ?rcXreg driver 2drl ?dr2Xxi-inverter ?rcin)
(elements ?elementsXnode ?nol ?no2))
(premise{testand(?clements dummy 1)
(?rc in-node ?in)
{?1¢ out-node Zout)
(?rc status {ree)
(dr1 d node 2dnl)
(?dr1 s node ?snl (or(equal ?sn1 %in)
(equal 2dn1 ?in)))
(?dr1 status free)
(%dr2 d-node ?dn2(neq ?dr2 2dr1))
(?dr2 s-node ?sn2 (or(equal ?sn2 2out)
(equal ?dn2 %out)))
(7dr2 status free)
(?rc in stage ?rein)
(?rein out node ?reinon))
(and(neq ?rcinon ’dnl ¥ neq ?rcinon ?dn2)
(neq ?rcinon ?snlXneq ?reinon ?sn2)))

(conclusion (Pelements reg cell ~ (make-reg-cell ?rc 2drl 2dr2 nil))))

(rule fnd reg inclk hackward chain rule
(typefrey cell Pre X reg driver “dr Xnode 7no))
(premisefand! ?re in stage ’dr)

(2dr g node gn)

(?no number “gn)

{70 class %))
(conclusion(?rc in-clk " (f'vo ?no ‘aspect))))

(rule find-reg-outclk backward-chain-rule
(type(reg-cell ?reXreg-driver ?drXnode ?no))
(premise(and(?rc out-stage ?dr)

(?dr g-node 7%gn)
(?n0 number %gn)
(?no class 2c1)))

165

(conclusion(?rc out-clk ~(fvo ?no ‘aspect))))

; error if any other fets connected from internal core to outnode of reg
(rule reg-internal-con-check-1 backward-chain-rule
(type(errors Xreg-cell ?rcXstruct ?stXtransistor ?tr)Xreg-core 7r)
(node 7nol1Xstruct ?stXxi-inverter os))
(premise(or(and(?rc reg-core 1)
(?r in-node ?in)
(or (?tr s-node ?inX?tr d-node ?in))
(?r status free))
(and(?rc reg-core 71)
(?r out-stage os)
(%s in-node ?osin)
(%0s out-node ?0sout)
(or(and(?tr s-node ?osin)
(?r d-node Zosout))
(and(?tr s-node ?osout)
(?tr d-node ?osin))
(and(?st node-1 Zosin)
(?st node-2 ?osout))
(and(?st node-1 Zosout)
(?st node-1 20sin)))))
(conclusion (register-errors internal-connection ?rc)))

; reg clocking must ber correct
(rule reg-clking-check backward-chain-rule
(type(errorsXreg-cell ?rcXreg-core 1))
(premise(test(and(?re reg-core ?r)
(known ?rc in-clk %inclk)
(known ?rc out-clk ?outclk)
(known ?r inclk ?rinclk)
(known ?r out-clk ?routclk)
(known ?r rec-clk ?rrecclk))
(or' neq ?inclk ?rinclk Xequal ?inclk ?rreccik)
(neq ?rrecclk ?routclk Xneq ?inclk 2outclk))))
(conclusion (register-errors clocking error ?rc)))

;flag is register has only clocked gate for recirculate path
(rule reg~cirtical-node-flag backward-chain-rule
(type (errorsXreg—cell ?rcXreg-core 7r))
(premise(and t ?rc reg-core 1)
(?r rec-stage ?rs (akop ?rs ‘driver))))
(conclusion(register-errors critical node flag ?re)))

, error i f register input is clocked on the same phase as the precharger .
(rule reg-clking-check-2 backward-chain ruie
(type(precharger ?prXreg-cell ?rc))
(premise{and(?pr s-node %sn)
(?rc in-node %sn)
(?pr pre phase ?pp)
(?rc in-clk ?pp))
(conclusion(register errors clocking-error ?rc)))

:l.-.tl.‘l.tl....l‘.lOF ILE: REG‘FU&VCS-SL"““

(defun solve-all-reg-cells ()
(solve-ail (?elements reg-core ?x))
(solve-all (?elements reg-cell 7))
(solve-all (?reg-cell in-clk 7))
(solve-all {?reg-cell out-clk ?x))
(solve-error-frame 'register-errors))

(defun make-reg-core (in-s inclk out-s outclk rec-p recclk in-n out-n rec-n)

(lex((core (finstantiate ‘reg-core)))
(patom coreXterpri)
(fput core “in-stage Svalue in-s)
(fput core 'out-stage ‘Svalue out-s)
(fput core 'rec-stage “Svalue rec-p)
(fput core ‘in-clk "$value inclk)
(fput core ‘out-clk "$value outclk)
(fput core ‘rec-clk ‘Svalue recclk)
(fput core ‘in-node ‘$value in-n)
(fput core out-node "Svalue out-n)
(cond(rec-n (fput core rec-node ‘Svalue rec-n)))
core)) -

(defun make-reg-celi(core in-stage out-stage rec-inv)
(tet((reg-cell (finstantiate ‘reg-cell)))
(patom reg-cellXterpri)
(fput reg-ce!l *reg-core 'Svalue core)
(fput reg-cell ‘in-stage ‘$value in-stage)
(fput reg-cell ‘out-stage $value out-stage)
(tput reg-cell “in-node *Svalue (find- reg-cell-node core in swge ‘in))
(fput reg-ce!l ‘out-node "Svalue (ind-reg-cell-node core out-stage ‘out)
(cond(rec-inv (fput reg-cell *rec-inv "Svalue rec-inv)))
reg-cell))

(defun find-reg-cell-node(core stage key)
(1ee{(core-in (fvo core 'in-node)X core-out (fvo core ‘out-node !
(nodel (cond((akop stage "driverXfvo stage ‘d-node))
(t(fvo stage ‘node-1))))
(node2 (cond((akop stage ‘driverXfvo stage ‘s-node))
(dfvo stage ‘node 2)))))
(cond ((equal key ‘in)
(cond((equal nodel (fvo core ‘in-node)) node2)
(t node1)))
((equal key ‘out)
(cond ((equai nodei (fvo core ‘out-node)) node)
(t nodei) NN

166

solve-all-reg-cells

make-reg-core

make-reg-cell

find-reg-cell-node

167

:'t“..ll.tl.lt‘.i t--tFILE: STRUCT'RULES.SL”“”

(rule find-xc-xor-struct backward-chain-rule
(type(reg-driver 7dr1 ?dr2Xelements ?elements))
(premise(test(and(?dr1 s-node ?s1)
(%dr1 g-node %g1)
(?dr} d-node ?d1)
(?dr1 status free)
(?dr2 s-node 7s2)
(?dr2 g-node 7g2)
(?dr2 d-node 7d2)
(?dr2 status free)
(?elements dummy 1))
(or{and(equal ?d1 7d2Xequal ?s1 ?g2Xequal ?s2 7g1Xneq ?s1 ?s2))
(and(equal ?d1 ?s2Xequal ?s1 ?g2Xequal ?d2 7%g1 Xneq ?s1 2d2))
(and(equal 7s1 ?d2Xequal ?d1 ?g2Xequal ?s2 7%g1Xneg ?d1 ?s2))
(and(equal 7s1 ?s2Xequal ?d1 ?g2Xequal ?d2 ?g1Xneq ?d1 2d2)))))
(conclusion(?elements xc-xor-struct ~ (make-xc-xor-struct 2drl 2dr2))))

:Il'l mramns ‘....‘---.‘FILE: STRUCT-FUAYCS-SLIUCII.

find-other-structs
(defun find-other-structs()
tsolve-all (?elements xc-xor-struct 7x))
(combine-xc-xor-struct))

make-xc-xor-struct
(detun make-xc-xor-struct (drl dr2)
(let{(xor (finstantiate *xc-xor-struct))
tdnl (fvodrl ‘d-node)Xsnl (fvo drl 's-node))
tdn2 irvo dr2 ‘d-node)Xsn2 (fvo dr2 's-node)))
fpatom xorX terpri)
(1 put xor ‘class ‘$value "xc-xor)
v put Ner l-div-w Svalue (max (fvo drl "1-div-wXfvo dr2 '1div-w)))
Hput xor “trans *$value drl)
‘Il xor “trans ‘Svalue dr2)
(rput xor ‘string-1 ‘$value 1)
(fput xor ‘out-node "$value
(cond((equal dn1 dn2) dnl)
((equal dn1 sn2) dnl)
((equal sn1 sn2) snl1)
((equal sn1 dn2) sn1)
(1 (patom "*****make-xc-xor error*******Xterpri))))
(rput xor ‘in node $value
tcond((equal dn1 (fvo xor ‘out-node)) sn1)
(tdn1)))
(fput xor 'in-node Svalue
{cond((equal dn2 (fvo xor ‘out-node)) sn2)
(1 dn2)))

Xor)}

combine-xc-xor-struct
(defun combine xc xor-siruct ()
(let((xc list (fvso ‘elements] *xc-xor-struct)Xnew-list nilXxor nil)
(xor out nilXnew -struct nilXxorl nil))
(while (setq xor (car xc-list)
(setq xc-list (cdr xc-list))
(setq xor-out (fvo xor ‘out-node))
(cond ((setq xor1 (caadadr (solve
(test(and(?xe-xor-struct status free(neq ?xc-xor-struct *,xor))
{?xc-xor-struct out-node ,xor-out))
(null (member ?xc-xor-struct new-list))))))
(setq xc-list (delete xorl xc-list))
(setq new-struct (finstantiate xc-xor-struct))

168

{patom new-struct)
{cond((null new-listXse1q new-list (list new-struct)))
(t (serq new-list (cons new-struct new-list))))
(fput new-struct ‘substruct ‘Svalue xor)
(fput new-struct ‘class "$value ‘xc-xor)
(fput new-struct ’string-1 "Svalue 1)
(fput-values new-struct ‘in-node (fvso xor ‘in-node))
{fput new-struct 'I-div-w "Svalue (fvo xor "-div-w))
(fput new-struct ‘out-node Svalue xor-out)
(add-next-struct new-struct xorl)
(while (setq xor1 (caadadr (solve
(test(and(?xc-xor-struct status free(neq ?xc-xor-struct *,xor))
(?xc-xor-struct out-node xor-out))
(null (member ?xc-xor-struct new-list))))))
(add-next-struct new-struct xor1)))))
(cond(new -list
(fput-values "elements] *xc-xor-struct new-list)))))

add-next-struct
(defun add-next-struct(new-struct xori)
(fput new-struct ‘substruct "Svalue xorl)
(fput-values new -struct ‘in-node (fvso xorl ‘in-node))
(freplace new -struct ‘I-div-w ‘Svalue (max (fvo new -struct 'I-div-w)
(fvo xor! ‘I-div-w)))

169

.'.“..'..””.‘..“..'FILE: CSHARE'RULES-SL“””

: flag capacitive- feedback into node with a feedback transistor
(rule charge-share-1 backward-chain-rule
(type(node ?nol ?no2 ?no3Xdriver ?dr1 2dr2 ?fb))
(premise (and(?fb fb-tran-flag t)
(?fb g-node ?fbgn)
(?fb d-node ?fbdn)
(?dr1 g-node ?fbdn)
(?no1 number ?fbgn)
(?nol class 1)
(?nol total-cap ?capl)
(?dr2 d-node ?fbgn)
(?dr2 s-node ?n2(neq ?n2 0))
(?n02 number ?n2)
(?no2 total-cap ?cap2)
(?dr2 g-node 7%gn2)
(?no3 number %gn2)
(?no3 class ?x(or{equal ?x ‘always-clocked)
(equal ?x ‘conditional-clocked)))))
(conclusion(charge-share-errors feedback-glitch-flag

" (check-feedback-glitch ?dr1 ?dr2 ?capl ?cap2 ?nol ?no2)))

. (rule charge-share-2 backward-chain-rule

(type(node ?nol ?no2 o3 Xdriver ?dr] ?dr2 7fb))

(premise (and(?fb fb-tran-flag t)
(?b g-node ?fbgn)
(?fb d-node ?fbdn)
(7dr1 g-node ?fbdn)
(?no] number ?fbgn)
(’nol class ?%1)
(?nol total-cap ?capl)
(7dr2 s-node ?{bgn)
(?dr2 d-node 7n2(neq ?n2 0))
{"no2 number ?n2)
("no2 total-cap ?cap2)
t7d72 g-node ?gn2)
(’no3 number %gn2)
(?no3 class ?x(or(equal ?x ‘always-clocked)

(equal ?x ‘conditional-clocked)))))
(conclusiant charge share-errors feedback-glitch-flag

" (check-feedback-glitch ?dr1 ?dr2 ?cap} ?cap2 ?nol 7no2))))

:.---:-.-o--------o---FILE: CSHARE'FUNCS-SL..""

check-feedback-glitch
(defun check feedback-plitch (drl dr2 cl c2 nl n2)

Qer((r1 (fva dr) "I-div-w)Xs2 (fvo dr2 ‘I-div-w)Xn-list (list n1 n2))

(dr-ratio (rvo ™g-con ‘dr-cshare-ratio))

(cap-ratio (fvo "g-con ‘cap-cshare-ratio)))
(cond((and(< c¢1 (* cap-ratio c2)X < 12 (* dr-ratio r1)))

(fput ‘charge share-errors ‘teedback glitch error $value n list))

n-list))

:l“l“l.l".'..“ll‘.FILE: RACE'COND-SL““"

; precharge loss if two gates connected to each other are both clocked
s low on the same phase and the output of ihe second drives a dynamic
gate input
(rule race-condition-1 backward-chain-rule
(type (errorsXstatic-gate ?sgl ?sg2Xdynamic-gate ?dg1Xnode ?nol ?no2))
(premise(test(and (?sg1 out-node 2outl)
(?sg2 in-node %outl (neq ?sg1 ?sg2))
(?sg2 out-node 7out2)
(?dgl in-node 2out2)
(?nol number outi)
(?n02 number 2out2)
(?nol class %)
(?n02 class %)
(and(equal % "clocked-low Xequal ?y ’clocked-low))))
(conclusion (race-errors precharge-loss 7dg1)))

; dynarnic xor has input timing sensitivities

(rule dynamic-xor-race-condition forward-chain-rule
{type(dvnamic-xc-xor ?xor))
(premise(?xor trigger 1))
(conclusion (race-errors input-skew -flag ?xor)))

; flag a trans fer gate driven by a bootstrapper if clockskew
: sensitivity flag in *g-con is true
(rule clock-skew-rule-1 backward-chain-rule
(type(driver ?2drXdrn-boot ?dbXnode ?n1 ?n2))
(premise (and(°g-con clk-skew-flag t)
(7db check ?chkl(neq ?chkl ‘skew-flag-1))
(?dr check ?chk2(neq %chk2 ‘skew-flag-1))
(?db s-node %sn)
(?dr d-node ?sn)
(?dr g-node ?dgn’
(?dr s-node *sn)
(?n2 numb- *dgn:
(?n2 cla-. :..~ays-clocked)
(?n2 aspex - {2nual 2a (fvo 2db ‘boot-phase)))
(?n1 number ")
(?n} class dynamic ™
(conclusion(clk-skew-errors clock skew flag-1 ~(put-clk-skew ?db ?dr 1))))

; sarme as above rule , just with fet s-d reversed
(rule clock-skew -rule-2 backward-chain-rule
(type(driver 2drXdm-boot ?dbXnode ?n1 ?n2))
(premise (and(*g-con clk-skew-flag t)
(?db check 2chk1(neq ?chkl ‘skew-fag-1))
(?dr check ?chk2(neq ?chk2 ‘skew -flag-1))
(?db s-node ?sn)
(?dr s-node ?sn)
(7dr g-node ?dgn)
(7dr d-node ?dsn)
(?n2 number 2dgn)
(?n2 class always-clocked)
(?n2 aspect ?a (equal ?a (fvo ?db ‘boot- phase)))
(?n1 number ?dsn)
(?n1 class dynamic)))
(conclusion(cik-skew -errors clock-skew-flag-1 ~(put—clk-skew 2db ?dr 1))))

: flag two drivers connected together with one gate conditionally
; clocked and one gate always clocked
(rule clock-skew-rule-3 backward-chain-rule

(type(node ?dnl 7snl ?gnl 2gn2Xdriver 2drl 2dr2))

(premise (and(*g-con clk-skew-flag t)

170

171

(known %gn1 class conditional-clocked)
(?%gn1 number %g1)
(7dr1 g-node ?g1)
(?dr1 check ?chk1 (neq ?chk1 'skew-flag-2))
(?dr2 check ?chk 2 (neq ?chk2 'skew-flag-2))
(?dr1 s-node 7s1)
(?dr1 d-node ?7d1)
(?dr2 s-node ?s2(neq ?dr2 ?dr1))
(?dr2 d-node 2d2(or(= 72d2 ?s1X= 7d2 2d1)
(= 752 %1 X= %2 7d1)))
(?sn1 number ?s1)
(?dn1 number ?d1)
(or(?sn1 class dynamic(or(= ?s1 2s2X= ?s1 72d2)))
(?dn1 class dynamic(or(= 2d1 ?s2X= ?d1 ?2d2))))
(?dr2 g-node 7g2)
(?gn2 number ?7g2)
(?gn2 class always-clocked)
(known %gnl aspect ?asp)
(known ?7gn2 aspect ?asp)))
(conclusion(clk-skew-errors clock-skew-flag-2
“ (put-clk-skew 2drl ?dr2 2))))

.

172

:nua--n--:.s..--un-n-FILE: RACE‘FU(VCS.SL su=a

solve-allclk-skew-errors
(defun solve-allclk-skew-errors Q
(lex((slot-list (delete "ako (fslots "clk-skew-errors))Xslot nil))
(cond((fvo "*g-con "clk-skew-flag)

(while (setq slot (car slot-list))
(setg slot-list (cdr slot-list))
(patom "*suppress =" Xpatom *suppress-justifications*Xterpri)
(my-solve-all {clk-skew-errors slot 2x))))))

put-clk-skew
(defun put-clk-skew (dr! dr2 flag)
(ler ((skew-fg (implode (s k e w - f 1 a g - ,@(explode flag))))
(dri-check (fvso drl "check)Xdr2-check (fvso dr2 ‘check)))
(fremove drl ‘check "Svalue)
(fremove dr2 ‘check Svalue)
(fput-values drl ‘check (cons skew-fg (delete 'unchecked drl-check)))
(Fput-values dr2 "check (cons skew-fg (delete "unchecked dr2-check)))
(list drl dr2)))

:lll. -.t‘-.-llnll--uI-FILE: PAD_RULES.SL sEEESE

(rule input-protection-check backward-chain-rule
(type(pad ?padXdriver 7dr))
(premise(and(?pad node-num ?n)
(unknowabie ?pad prot-device 7dr)))
(conclusion(input-pad-errors missing-protection-device ?pad)))

(rule input-undershoot-check backward-chain-rule
(type(pad ?padXdriver ?dr))
(premise(test(and(?pad node-num ?n)
(?dr s-node 7sn)
(?dr d-node ?dn (or(equal ?dn ?nXequal ?sn ?n)))
(and(neq ?sn 0Xneq ?dn 0)))) :
(conclusion(input-pad-errors undershoot-flag ?pad)))

(rule find-pad-protect-device backward-chain-rule
(type(pad ?padXdriver 2dr))
(premise(and(?pad node-num ?n)
(?dr d-node 7n)
(?dr g-node 0)
(?dr s-node 0)))
(conclusion(?pad prot-device ?dr)))

173

."“.‘"."""..“.'-FILE: ‘VET_LISTSSL

(setq *net-list-1 ((*net-list-1)

(load m1 12248)
(driver m22 306 2)
(driver m324562)
(driver m4 5606 2)))

(setq *net-list-2 ((*net-list-2)

)

(loadml1122438)
(driver m223022)
(driver m325442)
(loadmd4 1664 8)
(driver m564022)
(loadmé617748)
(driver m7 76 8 6 2)
(driver m8 8 1206 2)
(driver m9 7109 6 2)
(driver m10911 06 2)
(load mi1 112124 8)
(driver m1212131662)
(driver m13 121416 62)
(driver m14 121516 6 2)
(driver m1516 17 18 6 2)
(driver m16 18 1906 2)
(supply v1 10 5)

(setq *nez-list-4 ((*net-list-4)

)]

(driver m17 20 23 25 6 2)
(driver m18 25 23 21 6 2)
(driver m19 20 23 24 6 2)
(driver m20 24 23 21 6 2
(driver m21 20 2321 6 2)
(driver m22 21 23226 2)
(driver m23 222306 2)
(driver m24 20 23 26 6 2)
(driver m25 26 23 21 6 2)
(driver m26 21 2327 6 2)
(driver m27 27 2306 2)
{supply v1 200 5)

(serq *net-list-S ((*net-list S)

D)

(loadml1122438)
(driver m223022)
(supply v1 10 3)
(driver m1321044 2)
(loadm315548)
(driver m4 5402
{loadm51664§)
ldriver m6 6 57062
(driver m7 710 % 6 "l
(driver m8 8§ 100 6 2)
(load m9 1994 8)
(driver m1096 06 2)
(driver m1191006 2)
(driver m129 1006 2)

2)

(setq *net-list-6 ((*net-list-6)

(supply v1105)
(loadm1122438)
(lcadm214443)

174

(setq *net-list-7 ((*net-list-7)

(setq *net-list-8 ((*net-list-8)

(setq *net-list 9 ((*net list-9)

(setq *net-list-10 t(-net-list-10)

)

(setq *net-list 11 *(*net list-11)

(loadm316648)

(loadm4 1884 8)

(driverm523062)
(driver m6 4206 2)
(driver m76 506 2)
(driverm8 8 706 2)
(driver m94954 2)

(driver m10 6 9 7 4 2)))

(supply v1105)
(clock ph1 20 5)
(loadmi114448)
(loadm211548)
(loadm311548)
(loadmd412748)
(loadm512848)
(load m6 8294 8)
(driver m74 306 2)
(driver m8 5406 2)
(driver m96 506 2)
(driver m10 7606 2)

(driver m11 8 70 6 2)))

(loadm112246)
(supply v1 10 5)
(driverm225362)
(driver m325462)
(driver m4 35462)
(driverm5 3506 2)

(driver m6 4 50 6 2)))

(supply v1 20 51

(driver m1 2306 2)
(driver m2230062)
(driver m323062)
(driver m4 2306 2)
(driver m§2 3062
(driver m6 0 326 2)

(driver m7 2306 2))

(supply v1 705
(clock ck1 10 5)
(clock ck2 20 5)
(driver m1 310 5 6 2)
(driver m2 310 56 2)
(driver m3 71036 2)
(driver m4 710 36 2)
(driver m55106 2)
(driver m6 7106 2)

(supply v1105)
(clock ck1 20 5)
(clock ck2 30 5)
(driver m112562)
(driver m2 1104 6 2)
(driver m342562)
(driver m4 1106 6 2)
(driver m56 1076 2)

175

(driver m6 72 5 6 2)

(driver m7 51086 2)

(driver m8 8 100 6 2)
))]

(setq *net-list-12 ((*net-list-12)
(supply v1105)
(clock phl 205)
(driverm1 31026 2)
(driverm2 31006 2)
{driver m3510162)
(driverm4 11056 2)

) (driver m50 10 56 2)

(setq *net-list-13 ((*net-list-13—always-high)
(driver m1 1466 2)
(driver m215462)
(loadm315548)
(driver m4 2606 2)
(driver m517262)
(clock ck1 70 5)
(supply v11035)
(clock ck2 § 0 5)
N

(setq *net-list-14 {(net-list-14-dynamic-clocking)

(supply v11035)

(clock ck1 20 5)

(clock ck2 30 5)

(driver m1 12410 2)
(loadm216648)

(driver m343542)
(driver m4 6 5010 2)
(driver m562742)
(driver m6 12810 2)
(driver m7 8396 2)
(driver m8 97010 2)
(driver m94 3104 2)
(driver m10121011102)
(driver m11131262)
(driver m1211206 2)
(driver m13121362)
(driver mi4 1312 14 6 2}
(driver m1514206 2)
(driver m16 132154 2)
(driver m17131762)
(driver m18 17151612 2)
(driver m1916 206 2)
(driver m2016 306 2)
(driver m21 43006 2)
(driver m224 15006 2)
(driver m23 119186 2)
(lcad m24 119194 °§)
(driver m254 3204 2)
(driver m26 21 20016 2)
(load m27 121 214°8)
(driver m28 1227 6 2)
(driver m29 27 2)
(driver m30 23
(driver m31 21
(driver m324 3
(driver m331 2
(driver m34 25

By

176

.

(driver m352600 6 2)
)

(setq *net-list-15 ((*net-list-15-small-dynamic-clocking)

)

(supply v1105)

(clock ck1 20 5)

(clock ck2 30 5)

(driver m1 12410 2)
(driver m94 3104 2)
(driver m1012 10 11 12 2)
(driver m11131262)
(driver m1211 2010 2)
(driver m131213102)
(driver m14 1312 14 10 2)
(driver m1514 20 10 2)

(setq *net-list-16 ((*net-list-16)

)]

(supply v1 10 5)
(clock ck1 20 5)
(clock ck2 30 5)
(driver m1 12510 2)
(driver m2 5306 2)
(load m314448)
(driver m4 4506 2)
(driver m512682)
(driver m6 6 306 2)
(cap c1 2 5.01)

(cap c2 54.027)

(cap ¢35 3.14)

(cap ¢4 56.3)

(setq *net-list-17 ((*net-list-17)

D)

(setq *net-list-18 ((*net-list-18--super-buffers)

(supply v1105)
(loadm 1224 30)
(driver 122306 2)
(loadm315546)
(load m« 1 6 6 4 6)
(loadm517746)
(load m6 18846
(load m719946)
(driver m8 52015 2)
(driverm96 2015 2)
(driver m107 2015 2)
(driverm11 820 15 2)
(driver m12920152)

(supply v1 10 5)
(clock ck1 205)
(load m1 112126 4)
(load m21124104)
(driver m3 12 30 10 2)
(driver m4 4 3020 2)
(loadmS515548)
(load mé6 1564 8)
(driver m7 5406 2)
(driver m8 6406 2)
(driver m94 2710 2)
(lcadm1018848)
(load m1117948)
(load m121 10104 8)

177

(load m13 14114 38)
(driver m14 8706 2)
(driver m159806 2)
(driver m16 10406 2)
(driver m17 111006 2)
) {driver m18 32204 2)

(setq *net-list-19 {(*net-list-19)
(clock ck1 20 5)
(clock ck2 30 5)
(driver m1 4256 2)
(driver m2 35610 2)

(serq *net-list-20 {(*net-list-20~drn-boots)
(supply v1105)
(clock ck1 20 5)
(clock ck2 30 5)
(loadm1121448)
(driver m2 314 410 2)
(driver m352642)
(driver m4 46 710 2)
(loadm51151548)
(driver m6 152§ 6 2)
(driver m7 & 5-06 2)
(driver m§ 4§ 910 2)
(driver m9 9 10 11 10 2)
(driver m10521035 2)
(driver m11 9121310 2)
(driver m1252126 2)
(driver m1314 5010 2)
(driver m14 7206 2)

)]

(setq "net-list 21 {(*net list 21--drain-boot)
(supply v1 1 0 5)
(clock ¢k1205)
(clock ck2 30 5)
(loadml12546)
(driver m2 5406 2)
) (driver m3 35610 2)

(serq *net-list- 22 {(*net-list- 22--register-cell)
(supply v11035)
(clock ¢kl 20 5)
(clock ck2 30 5)
(driver m1 131010 2)
(driver m2 10 144 6 2)
(driver m342562)
(driver m4 0 5010 2)
(driver m5 73064 2)
(lcadmo 1 664 8)
(load m7 1 § 84 §)
(driver m8 8§ 149 6 2)
(driver m9 8 346 2)
(driver m10 87010 2)
(driver m11 123136 2)
(driver m12 21314 20 2)
) (driver m13 143010 2)

(setq *net-list-23 ((*net-list-23--race-conditon)

178

»

(setq *net-list-24 ((*net-list-24--xc-xor-gates)

)

(setq *net-list-25 ((*net-list-25-—-feedback)

)]

(setq *net-list-26 ((*net-list 20--clkout-inverters)

)

(setq *net-list-27 ((*net-list-27--bootstraps-with-clock-skew -errors)

(supply v11035)
(clock ck1 2 0.5)
(clock ck2 30 5)
(driver m3 54010 2)
(driver m4 5306 2)
(driver m56 506 2)
(driver m6 6 306 2)
(driver m7 7606 2)
(driver m8 13710 2)
(loadm115548)
(load m2 1664 8)

(supply v1 10 5)
(clock ck1 10 0 5)
(driver m1 34232)
(driver m223462)
(load m3122438)
(driver m4 3606 2)
(driver m54 606 2)
(driver m6 7826 2)
(driver m7 8726 2)
(driver m8 7606 2)
(driver m9 8606 2)

(supply v1 10 5)
(clock ck1 20 5)
(clock ck2 30 5)
(loadml114448)
(driver m2 6 354 2)
(driver m34 5010 2)
(driver md4 5403 2)
(driver m54 306 2)
(driver m763742)
(driver m8 47010 2)
(driver m9 7404 2)
(driver m104 2 8 10 2)
(capc1801)

(supply v110 5)
(clock ck1 20 5)
(clock ¢k2 30 5)

(load m1121064)
(lcad m6 1996 4)
(driver m2103562)
(driver m36 3114 2)
(driver m4 511010 2)
(driver m§ 5374 2)
(driver m7 8396 2)
(driver m§ 8 7010 2)
(driver m9 12504 2)

(supply v1 10 5)
(clock ck1205)
(clock ck2305)
(load m116664)
(driver m2 6276 2)

179

180

(driver m342562)
(driver m4 75012 2)
(driver m573746)
(driver m6 37 820 2)
(driver m7 8204 2)
(driver m8 5703 2)
(driver m9 3 10 11 20 2}
(driver m104 296 2)
(driver m11 1090 10 2)
(lcad m1212104 8)
(driver m13 31213 202)
(driver m144 312 6 2)
(driver m15 31234 8)
(driver m16 132010 2)
(driver m17 13314 6 2)
(driver m18 1514 010 2)
) (load m19 1 15154 6)

(setq *net-list-28 ((*net-list-28--clock-skew -error)
(supply v1105)
(clock ck1 20 5)

(clock ¢k2 30 5)
(driver m1 42114 2)
(driver m2 311 520 2)
(driver m36706 2)
(driver ma $ 564 2)
(driver m5 9386 2)
(driver mé6 1090 10 2)

) (load m7 110104 6)

)}

(setq “net-list- 29 ((*net-list- 29--input-pad)
(supply v11035)
(pad inl 3)
(lcadm112248)
(driverm3240102)
(driverm2 3544 2)

) (clock ¢kl 50 5)

(setq *net-list-30 ((*net-list- 30--example-1)
(supply v1 10 5)
(clock ck1 20 5)
(clock ck2 30 5)
(pad in1 12)
(loadml 16664)
(driver m242562)
(driver m362782)
(driver m4 75010 2)
(driver m3 37 34 10)
(driver m6 375202
(driver m7 52006 2)
(driver m§4 394 2)
(load m9 1 310 6 4)
(driver m10 2 10 24 10)
(driver m11 210 11 20 2)
(driver m1211 306 2)
(driver m55 1090 20 2)
(driver m13 120010 2)
(driver m14 1312010 2)
(load m1511313438)
(driver m16 13314 6 2)
(load m171151566)

(load m18 1 15 16 8 6)
(driver m19 1514012 2)
(driver m20 16 14 0 16 2)
(driver m21 17 16 18 10 2)
(driver m22 18 11 0 10 2)
(driver m23 1317 20 2)
(driver m24 17 11 36 6 2)
(driver m25 36 222 6 2)
(driver m26 21 22 0 10 2)
(load m51 121 21 4 8)
(load m52 1 23 23 4 8)
(driver m27 21 3206 2)
(driver m28 2320012 2)
(driver m29 23 82412 2)
(driver m30 23 3 36 6 2)
(driver m31 1224 20 2)
(driver m32 24 8 2510 2)
(driver m33 25 31 0 10 2)
(load m34 1 25 25 4 6)
(driver m35 31 3306 2)
(driver m36 30 290 6 2)
(load m37 1 30 30 4 6)
(driver m56 25 3 28 6 2)
(driver m38 29 228 6 2)
(driver m39 17 11 28 6 2)
(driver m40 24 3 33 10 2)
(load m41 1 34 35 6 6)
(load m421 34 344 6)
(driver m43 353012 2)
(driver m44 34 3010 2)
(driver m57 35 33012 2)
(driver m58 34 330 10 2)
(driver m45 17 350 20 2)
(driver m46 27 11 0 10 2)
(driver m47 17 26 27 10 2)
(driver m48 26 25 23 8 2)
(driver m49 26 23 25 8 2)
(load m50 1 26 26 4 12)
)

(setq *net-list-31 ((*net-list-31)

(supply v1105)
(clock ck1 20 5)
(clock ¢k2 30 5)
(driver m192842)
(driver m2 9 35 10 2)
(l,adm314448)
(loadm4 1664 4)
(loadmS16764)
{driver m6 6 50 10 2)
(driver m7 75025 2)
{(driver m§ 6 20 8 2)
(driver m9 72020 2)
(driver m104 80 10 2)

)}

(setq "net-list-32 ((*net-list-32)
(driver m31236 2)
(driver m4 6 306 2)
(driver m245662)
(driver m8 3606 2)

(setq *net-list-33 {(*net-list-33)

181

(driver m24 566 2)
(driver m8 3606 2)
(driver m312362)
_(driver m4 6306 2)

182

	Copyright notice 1984 - Copy
	ERL-84-80 (1 of 2)
	ERL-84-80 (2 of 2)

