

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

RUBICC: A RULE-BASED EXPERT SYSTEM FOR

VLSI INTEGRATED CIRCUIT CRITIQUE

by

C. Lob

Memorandum No. UCB/ERL M84/80

28 September 1984

RUBICC: A RULE-BASED EXPERT SYSTEM FOR

VLSI INTEGRATED CIRCUIT CRITIQUE

by

C. Lob

Memorandum No. UCB/ERL M84/80

28 September 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Acknowledgements

I would like to thank Professor A.R. Newton for his encouragement and support

during this project and for his help throughout the 1983-84 academic year. Discussions

with Professors D.O. Pederson and A.L. Sangiovanni were highly beneficial in providing

background ideas and energy to me throughout the year.

My financial support came from Hewlett-Packard Company's "Resident Fellowship

Program." I would like to thank Dana Seccombe, Jack Anderson, Joe Beyers, and Norm

Vlass for making this opportunity available to me and Lavonne Gardner and Linda

Alvine for their help and support in the administration of this fellowship.

The Knowledge Base of the program came, in part, from a number of designers from

the System Technology Operation of Hewlett-Packard in Ft. Collins, Colorado. Their con

tributions are greatly appreciated.

A numbv of people from the Application Technology Laboratory of Hewlett-

Packard Laboratories provided assistance and support with the HPRL System. I would

like to thank Jeff Eastman,Steven Rosenberg, Pierre Huyn, Mike Lemon, and Doug Lanam

for their help.

The HP-9836 Systems, which supported the RUBICC development, were donated by

The Design Automation Group at Hewlett-Packard in Cupertino. Thanks to Bill McCalla

for his help in obtaining the equipment and to Martin Gates for his help with the system

configuration.

Special thanks to Tom Quarles, Peter Moore, Mark Hoffman, Ron Gyurcsik, Karti

Mayaram, Rick Spickelmier, Mike Klein and Grace Mah for making me feel welcome and

teaching me "the system."

The figures in this report were prepared using an HP-9836C running Hewlett-

Packard's Piglett Schematic and Layout Editor.

Finally, Fd like to thank JoAnn for her continuous support and Love during my

"Master's Degree Year."

Abstract

RUBICC is an Expert System written to critique the design of VLSI circuits at the

cell (transistor) level. The goal of this project is to explore the feasibility of using "Expert

System Technology" to provide meaningful feedback to circuit designers on the quality

of their designs in a manner similar to the critique provided by an experienced designer.

The use of a Rule Base facilitates the encapsulation of the "Knowledge Base" associated

with the design of circuits in a given technology and supports incremental additions to

that knowledge base. RUBICC performs its critique without the use of simulation, by

"reasoning" about the design using rules contained in its knowledge base. Early experi

ments with RUBICC indicate that the system performs a meaningful critique for a wide

variety of circuit and transistor configurations and can find problems which are elusive to

even worst case circuit simulation.

in

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION....

1.1 Problem Description

1.2 Brief System Overview

1.3 Personal Motivation

1.4 Report Organization

CHAPTER 2: EXPERT SYSTEMS CONSIDERATIONS.

2.1 Expert System Characteristics

2.2 System Language Choice , ,

CHAPTER 3: RELATED WORK / CRITIQUE ISSUES

3.1 Why Use Expert System Technology?

3.2 What Kind of Critique is Needed?

3.3 Analysis Approach

3.4 How And When to Use the Tool.

3.5 Fffipipnry

CHAPTER 4: HPRL OVERVIEW.

4.1 Frames. „

4.1.1 Generic Frames and Inheritance.

4.1.2 Data Stored in Slots

4.1.3 Dynamic Storage Management..

4.2 Pattern Matching

4.3 Backward and Forward Chaining Rules

4.3.1 Rule Overview »»_

4.3.2 Backward Chain Rules.

4.3.3 Forward Chain Rules

1

1

3

5

5

7

7

7

9

9

10

11

12

13

14

14

14

18

19

20

23

23

24

26

IV

4.4 TVmnnc 26

4.5 Escapes to Lisp 27

CHAPTER 5: RUBICC SYSTEM DESIGN 28

5.1 Program Structure and Cnntrni , 28

5.2 Circuit Input Format , 29

5.3 Frame Data Base 30

5.3.1 Schematic Frames 31

5.3.1.1 Transistor Hierarchy , 31

5.3.1.2 Circuit Hierarchy 33

5.3.1.4 Nodes 37

5.3.1.5 One and Two Port Elements 37

5.3.2 Program Control Frames 38

5.3.2.1 Elements Frames. 39

5.3.2.2 *G-Con . .. 39

5.3.3 Error Frames 39

5.4 RUBICC Programming Paradigms : 41

5.5 Program Output Format 45

5.6 Classification Strategies ~—~ 46

5.6.1 When to Classify 47

5.6.2 How to Classify 47

5.7 Separation of Program Control and Knowledge Base 49

CHAPTER 6: RESULTS 50

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 52

7.1 Conclusions 52

7.2 Future Work 52

7.2.1 User Interface 53

VI

7.2.2 Checking Actual Circuits 53

7.2.3 CMOS Compatibility 53

7.2.4 Additional Structure Classifications i .. 53

7.2.5 Program Tuning 54

CHAPTER 8: REFERENCES 55

APPENDIX A: FRAME HIERARCHIES 58

APPENDIX B: GENERIC FRAMES 59

APPENDIX G TECHNOLOGY FRAME 65

APPENDIX D: RUBICC EXAMPLES 66

APPENDIX E: IMPLEMENTED CIRCUIT CHECKS 96

APPENDIX F: RUBICC SOURCE CODE 110

CHAPTER 1

Introduction

1.1. Problem Description and Goals

Many tools exist to aid in the design, simulation and layout of VLSI Integrated Cir

cuits. A small subset of the tools at U.C. Berkeley include: Circuit and timing simulators

such as Spice [ll Splice [2,3] and Relax [4], timing analyzers such as Crystal [5\ behavioral

level simulators such as the FTL system [6\ hierarchical artwork systems such as Kic [7],

Caesar [8] Hawk [9], and Magic [10], and module generators such as Panda [ll]. A detailed

explanation of many of these and other CAD Toolsat U.C. Berkeley can be found in [12].

In addition, there is ongoing research and there exist operational systems which use

Artificial Intelligence Technology in the form of Expert Systems to perf' m tasks which

provide global synthesis functions to the designer. These systems incit ie: The Design

Automation Assistant [13] which starts from an algorithmic description and produces a

VLSI design to the level of "technology independent registers, operators, data paths and

control sequences"; The Talib System [14] which performs artwork layout; The Micon

System [15] which designs single board computers from a series of hardware descriptions;

and the SCHEMA System [16] which is intended to act in the capacity of a complete

design assistant, not limited to design critique alone.

The thrust of all these tools is to aid the designer by reducing the time and effort

required for analysis and synthesis during the design process.

Both RUBICC and the CRITTER System [17] represent research into another key area

of the circuit design process —that of design critique and review. At Hewlett Packard,1

Peer Group Review is one of the major checkpoints of the VLSI design process. During

this phase, a designer will have his work reviewed by other members of the project team.

This review usually takes the form of one or mgre experienced people who study the

schematics and layouts of a design, their mission being to "flush out bugs" that may have

been overlooked by the original engineer and to provide feedback to him on his work.

The items turned up during this review cycle take many forms. In some cases they

are very simple problems. Perhaps a new designer may not understand the implications of

a design rule or needs some guidance as to the more practical ways of implementing a logic

function. In other cases, extremely subtle problems are found which can elude even the

most careful worst case simulations. Charge coupling, MOS capacitor inversion time con

stants, charge sharing on dynamic buses, voltage swings on bootstrapped nodes, and prob

lems due to clock undershoot, overshoot, overlap and skew are some examples of the latter.

Peer Group Review also provides a forum for indepth discussions which can trigger a

designer's thought process to uncover errors in related designs.

Unfortunately, these reviews are time consuming and experience people are hard to

find within the organizational structure. Promotions, tight schedules and other job assign

ments make the "experts" a scarce commodity. With all of the other productivity tools

being developed and with the great influx of new VLSI designs and designers, there are

more new designs than there are experienced people to review them. Another problem is

that the total knowledge base exists only collectively in the minds of numerous designers.

Hence one expert's review may not catch something that another's might find.

The project described here, called RUBICC (Rule Based Integrated Circuit Critic),

addresses these problems by performing a design critique of NMOS VLSI Cells.

Specifically, RUBICCs goals are:

1author worked as a Project Manager at HP's Systems Technology Operation in Ft. Collins. Colorado and is
currently a Section Manager at the Corvallis Components Operation of HP in Corvallis. Oregon.

1. To explore the feasibility of using "Expert System Technology" to aid in the design
and feedback process of VLSI.

2. Determine the feasibility of encapsulating a "Knowledge Base" of Design Heuristics

3. Determine the productivity of using an expert system language for the implementa
tion of the program.

As will be seen later on in this report, RUBICC achieves a high degree of success in

addressing all of these goals.

The importance of the critique process should not be overlooked. Joe Beyers, R&D

Lab Manager for the Cupertino Intergated Circuits Operation of Hewlett-Packard [18] told

me that two of the major bottlenecks in the VLSI design process are designing new circuits

at the cell level and training new VLSI designers. RUBICC could be used by both new

and experienced designers to improve their productivity in these areas. It would also pro

vide a uniform critique since its knowledge base would contain the collective knowledge

of a large number of designers.

1.2. Brief System Overview

RUBICC is implemented asa Knowledge Based System using a language called HnRL

(Heuristic Programming and Representation Language) [19] developed at the Computer

Research Center of Hewlett-Packard Laboratories. It is modeled after Goldstein's and

Roberts Frame Based FRL System [20]. HPRL is implemented on top of PSL (Portable

Standard Lisp) [21]and currently runs on an HP's 9836 Desktop Computer. The HP-9836

is Motorola 68000 based. HPRL is licensed through HP-Labs.

RUBlCCs data base is implemented as Hierarchical Frames in HPRL. Frames are

similar to record structures in the "C" and "Pascal" programming languages with two

major differences: More than one type of data can be stored in the slot of a frame as com

pared to a field of a record and frames can be arranged hierarchically. These two

differences give the program very powerful search and pattern matching capabilities

which will be explained later. The actual knowledge base of RUBICC is implemented

using HPRL rules. These are similar to productions in other languages such as OPS-5 [22].

HPRL allows both Forward and Backward Chaining Rules as well as demons and escapes

to the underlying Lisp Language.2

To run RUBICC on a circuit, the designer provides a "spice-like" input in Lisp list

notation. The program first reads in the circuit description. It then applies its knowledge

base to the circuit. When finished, RUBICC prints out a summary of its critique. Example

inputs and outputs are included in Appendix D. A complete description of RUBICCs

current error checks is included in Appendix E Process-dependent parameters which are

needed by the rule system are stored as constants in a Technology Frame. In this way,

RUBICC can be changed to handle various technologies of the same type, such as two

NMOS processes having different transistor characteristics. For distinctly different

processes technologies (i.e. CMOS vs NMOS) the rule system would also be different.

The present system contains 110 rules which are used to pick out various structures

and to identify errors in these structures. Approximate*; 60 generic frames are required

to hierarchically arrange the circuit data base. A specie frame is instantiated3 for each

circuit element. These elements are: driver (enhancement transistor), load (depletion

transistor), capacitor, power-supply and clock. In addition, a specific frame is instantiated

for each unique circuit node. The system is approximately 110 KBytes of source code*

HPRL seemed a natural choice for the implementation of RUBICC. It is a state-of-

the-art system for the development of Expert Systems and the solving of general "reason

ing type problems." The features of Lisp are available along with the HPRL functions.

HPRL's rule system allowed separation of the program control from the knowledge base,

thereby making incremental additions to the knowledge base possible without changes to

the main control body of the program.

2productions are forward-chaining based
•3 instantiated means to make an instance of, or to create

13. Personal Motivation

The motivation for the RUBICC project came from my experience as a designer and

manager of VLSI chips and systems at the System's Technology Operation (STO) of

Hewlett-Packard Co., in Ft. Collins, Colorado. Examples of some of the work produced by

STO's design team can be found in [23,24,25]. In early 1983, I managed a VLSI design

team with limited experience in VLSI design. Being the only "expert" available, I spent

many hours reviewing the group's designs.

The Knowledge (Rule) Base for the program itself resulted from my experience and

the contributions of about 20 HP VLSI designers, mostly in Ft. Collins. RUBICCs current

knowledge base is not intended to be complete or all encompassing. Rather, a substantial

mix of rules was implemented to show the power of the program and to provide meaning

ful critique of interesting circuits. When completed, the current program surpassed my

expectations. In one instance, RUBICC picked out a subtle error in a test case which I

hadn't seen and which took on the order of a few minutes for me to understand.

1.4. Report Organization

The remainder of this report is organized as follows: In Chapter 2, considerations

involved in building an expert system are presented and the choice of HPRL is explained.

In Chapter 3, other related work applicable to this project is described and issues manifest

in the design of this type of system are presented. A detailed overview of the HPRL pro

gramming environment is included in Chapter 4 and in Chapter 5, a description of the

program, it's control structure, and frame hierarchy is given. Results, limitations and

efficiency considerations are presented in Chapter 6. A summary and considerations for

future work are given in Chapter 7. References are listed in Chapter 8. Five appendices

are included. In Appendix A, the generic frame hierarchies of the system are illustrated.

A complete listing of RUBICCs Generic-Frames is presente i in Appendix B. The Technol

ogy Frame, *G-Con, appears in Appendix C. Examples of RUBICCs critiques are presented

in Appendix D, and a detailed summary of RUBICCs implemented circuit checks appears

in Appendix E A full source code listing is included in Appendix F.

CHAPTER 2

Expert System Considerations

Many Expert Systems have been created to perform a variety of tasks. A thorough

treatment of the current state of the art of Expert Systems can be found in "Building

Expert Systems" [26].

2.1. Expert System Characteristics

What are the characteristics of an Expert System? A common thread throughout the

literature is that Expert Systems tend have the following five characteristics

1. Performance as good as a human expert in some small domain.

2. Avoidance of blind searches through all possible combinations of data to produce an
answer.

3. Reasonable efficiency — This doesn't necessarily mean that it has to be faster than a
human, only that its response time not be prohibitive.

4. Separation of Knowledge and Control Structures

5. Can answer "Why" —This usually means it can show how it arrived at its conclu
sions.

These five items were used as overall guidelines in making design decisions

throughout this project.

2.2. System Language Choice

A major design decision faced at the onset of this project was what language or

language system to use. Generally, expert systems are written in symbolic languages such

as Lisp. At the beginning of the project, I wondered why this work couldn't be done in

"C" or "Pascal". Afterall, couldn't combinations of transistors be just a* easily picked out

from a "C" subroutine as an HPRL rule? What was unique about Lisp in this application?

The answers to these questions came later, after I gained experience with Lisp and HPRL.

Lacking experience, I decided to take the AI Community's word and use a symbolic

language.

In addition, what symbolic language would be best? I considered two languages:

OPS-5 from CMU (Carnegie-Mellon University) [22] and HPRL from HP-Labs (Hewlett-

Packard Laboratories) [19]. I decided to use HPRL which is based on PSL (Portable Stan

dard Lisp) and is described in detail in Chapter 4. HPRL seemed to have all the charac

teristics that were said to be needed in the literature. HPRL diifered from the OPS-5 in

that backward chaining paradigms could be developed as well as the standard forward

chaining productions of OPS-5. In addition, HPRL was developed by people I knew at HP

Labs. I described my system to them and explained the design goals. They seemed to

think that HPRL would be more than adequate for my needs. Another consideration was

that as a loyal HP employee, I wanted to use an HP system and hopefully provide feed

back on its strengths and weaknesses.

After writing RUBIO". I feel more capable of addressing these issues. HPRL is a

powerful system. It was cl. n.rly and carefully thought out by people who recognized the

issues inherent in building an expert system and in using machines for reasoning func

tions in general. A system such as RUBICC could be written in a language such as "C"

though it would be harder, since the symbol manipulation features of Lisp are better

attuned to handling the problems inherent in this application and all the HPRL functions

would essentially have to be incorporated. Another key feature is that by its interpretive
'•V

nature, each function can be "debugged" independent of the other functions. This greatly

enhances coding productivity.

CHAPTER 3

Related Work

As previously mentioned, there exists substantial research in using Knowledge Based

Expert Systems in the area of design synthesis. Surprisingly, there is very little research

in progress for the analysis and critique areas of VLSI circuit design. In fact, Kelly's

CRITTER SYSTEM at Rutgers [17] is the only other work I was able to find in this area.

The CRITTER SYSTEM (Automated Critiquing of Digital Circuit Designs) was initially

intended to be used for TTL SSI/MSI designs. It is currently being extended for use in the

VLSI design environment.

Though both CRITTER and RUBICC have similar goals at the highest level (i.e.,

feedback to designers as to the quality and robustness of their design), their approaches to

and emphasis on the problem are uniquely different. In this chapter, the fundamental

issues of using machines as design critics are given. When appropriate, a comparison of

CRITTER's and RUBICCs methods are included since they have much in common and at

the same time have basic design differences.

3.1. Issue —Why use Expert System Technology?

The idea of writing computer programs to check designs is not new. Electrical Rule

Checking programssuch as NCA's ERC Program [27], and ECAD's Dracula [28] exist to aid

the designer in checking his design for electrical design rule violations. We used a program

at HP called "Funny-Fet" which flagged transistors which had strange properties such as

no connection to a terminal, or gate, drain and source shorted together. The Dialog Pro

gram [29] from the University of Leuven performs more in-depth checks of analog cir

cuits.

10

These programs share a common characteristic - their knowledge tends to be

hardwired in the sense that exact patterns and cases must be described in order for these

programs to perform their checks. Due to this characteristic, it is very difficult to describe

to these programs errors of a general nature which relate classes of transistors. Also,

because of this hardcoding, detailed knowledge of the program is required to add or make

changes to the knowledge-base. As a result, the checks performed, though highly useful,

tend to be shallow. With the exception of Dialog, none of these programs can reason about

complex timing or charge-sharing problems.

Expert System Technology provides an alternative to this situation and through its

use, hardwiring can be avoided. Separation of the rule base from the program control

allows incremental additions without affecting the overall program. The program can be

"taught" to reason about general patterns of transistors and and rules can be written to

check for classes of errors.

3.2. Issue —What Kind of Critique does a Designer Need ?

For a m .chine to provide a useful critique, it should be accurate, provide an under

standable summary of its analysis, allow the user to explore its conclusions in greater

detail, and avoid showering the user with cryptic messages and long lists of items to be

checked, some of which aren't real problems. With respect to the last point, the system

should be conservative in that it is better to show a non-error than miss a real one.

In this respect, RUBICC and CRITTER are very similar. Both produce a critique in

summary form. Both produce readable messages and both allow the user to go into more

depth concerning conclusions reached. CRITTER provides suggestions as to how to fix the

problem. RUBICC provides suggestions in some cases, though its major thrust as imple

mented is to flag and isolate the problems, leaving the fix to the designer. This is con

sistent with the types of errors RUBICC finds. Either the fix is obvious or the whole

scheme needs to be rethought. CRITTER's user interface seems more sophisticated and

11

more interactive with the user.

3.3. Issue — Analysis Approach ?

This issue highlights a significant difference between RUBICC and CRITTER.

CRITTER's critique method is based on a heuristic use of simulation. As Kelly states

on page 2 of his report [17], "It [CRITTER] collects comprehensive estimates of circuit per

formance by essentially emulating the operations of various circuit analysis techniques

(e.g„ subcircuit simulations, path delay analyses, proofs of key design specifications)." It

then "summarizes this data for the engineer, spotlighting whatever seems most useful for

diagnosing and fixing flaws _ ".

In contrast, RUBICCs critique method is based on heuristics of VLSI design obtained

from the knowledge base of experienced designers. Pattern* matching is performed

between the sequences of transistors in the circuit and the programmed rule base. As

various circuits are picked out, they are checked,and anomalies are reported. The patterns

analyzed and checked by RUBICC are of a general nature in the sense that most rules

check classes of objects rather than a specific "hardwired"* pattern. For example, a single

rule can pick out "nor gates" with arbitrary numbers of inputs, (an individual rule for a

2-input nor-gate, a 3-input nor-gate, _ is an example of hardwiring).

An advantage of CRITTER's simulation approach is that, in some sense, it's the

bottom-line in terms of whether and how well a circuit functions. If, given a set of

inputs, the outputs of the circuit perform as desired, then the circuit must work (given

that proper simulation was performed). CRITTER also checks internal timing as well.

From a set of timing constraints on the inputs and outputs, internal timing margins are

flagged. This addresses a problem with the use of large simulation tools. Namely a

designer might not notice a marginal or race condition on an internal node of a large cir

cuit if the external outputs of the circuit seem to be correct. Simulation can also give

12

confidence to the designer concerning the logical correctness of his circuit.

Whereas the simulation of TTL SSI/MSI functions seems to lend itself to the

CRITTER approach , it is not clear that this approach would do as well in the critique of

VLSI circuits — especially dynamic circuits sensitive to a variety of things such a charge

sharing, clock overlaps and capacitive coupling. In these cases, it is either very difficult

and time consuming or impossible to produce the "correct" worst case simulations to show

the problem.

RUBICC tests the hypothesis that a useful and indepth critique can be performed on

a VLSI circuit without simulation. Hence a conscious design decision was to NOT perform

logic or circuit simulation. It is felt that other tools should be used to handle these aspects

of the design.

The underlying idea behind RUBICCs critique method is that there are many circuit

problems and anomalies that elude even the most careful worst case simulations, but can

be found by careful, indepth thought. Many of these same problems would be caught by

le proper simulation yet they are sometimes missed. The reasons for this range from

••experienced designers, to trying to keep track of too many details, to not being able to

simulate the problem correctly. As an example of the latter, an error occurred on an HP

VLSI chip because the circuit simulator didn't predict the long time constant associated

with forming the inversion layer of an NMOS capacitor with a particularly long channel

length. This caused the chip to have poor high frequency operation margins.

3.4. Issue — How and When to Use the Tool ?

One danger of a design tool of this nature is that it can be used improperly. The key

misuse of such a program would be to use it blindly as the Final-Say on whether a circuit

had errors. The intended use RUBICC is to aid designers at the cell level. After a

designer has simulated his circuit (logically and electrically), he would presumably sub

mit it to RUBICC for a design review. He should think carefully about any errors flagged

13

by the program. If RUBICC flags no errors, the engineer's confidence in his design should

be enhanced. However, it is the engineer, not RUBICC who is responsible for the proper

operation of the circuit. Hence care and good judgement is needed to properly use a such a

tool. In addition, any organization which supported this type of tool would need to pro

vide a mechanism to enhance RUBICCs Rule Base with additional error checks.

3.5. Issue — How Efficient Does It Need To Be ?

Because of the interpretive nature of the Lisp Language, systems of this nature tend

to be slower than simulation programs written in C, Pascal, or Fortran. RUBICC is no

exception to this. As will be seen in the examples, a circuit with 50 transistors takes on

the order of 40-50 minutes to analyze (note that no attempt has been made to optimize the

code at this point). Is this too slow to be useful? I feel that even if it took overnight to

perform a valid design review it would be useful. An experienced designer (if one could

be found) would spend at least a few hours on a circuit of this complexity. However,

efficiency is important where debugging a program is concerned and hence, it should not

be completely ignored.

CHAPTER 4

HPRL Overview

HPRL (Heuristic Programming and Representation Language) was introduced in

Chapter 1 of this report. In this chapter, HPRL is described in more detail, focusing on the

key features of the system as used by RUBICC.

The HPRL system is comprised of approximately 2 Mbytes of Lisp source code. It

provides a number of key features which led to a natural implementation of the RUBICC

system. These features include hierarchical frame structures and inheritance among

frames, pattern matching, backward and forward chaining rules, demons, and escapes to

Lisp. These concepts are described in the remainder of this Chapter, drawing examples

from the RUBICC System where appropriate.

4.1. Frames

Frames are the basis for the HPRL data base structure and are similar to records in

"C or "Pascal". Frames have slots which are the analog of a record's fields. Data is

stored in the slots of frames in manner similar to storing data in the fields of records. The

three basic differences between HPRL frames and C or Pascal records involve generic-

frames and inheritance, the data stored in slots and dynamic storage management.

4.1.1. Generic Frames and Inheritance

Frames are arranged in a hierarchy starting with the distinguished frame THING.

The THING frame sits at the top of this hierarchy and is hence the root of the hierarchy

tree. Each frame has an ako (a kind of) slot which links it to a parent frame (likewise

each parent has an instance slot which links it to its child). The frame hierarchy forms a

tree in which frames must be either directly or indirectly ako-thing (a kind of thing). A

frame is directly ako-thing if it has the frame THING stored as data in its ako slot. It is

14

15

indirectly ako-thing if there exists a path along ako-links from it to the THING Frame.

Generic frames store information which is typical to a whole class of entities. By

design, these frames exist farther up in the hierarchy than their more specific children

frames. Generic frames form templates where typical properties of a general class of enti

ties are grouped. Values can be stored in generic frames as well as in more specific frames.

A process called inheritance is automatically supported by HPRL. Inheritance means

that more specific frames inherit the properties of their more generic parents. Slots

defined in parent frames by definition exist in the more specific children frames. Various

functions are provided by HPRL to access values stored in the slots of frames. These func

tions determine how inheritance should be used in finding the data requested. One such

function specifies that if there is no data in a particular slot of the specific frame named,

return "nil."1 Another function specifies that in this case, search through the frame

hierarchy starting at the named frame, ending at the THING frame, and return the data

from the requested slot of the first frame found containing data in that slot. If there is no

data found, "nil" is returned

In summary, inheritance allows information to be distributed throughout complex

frame hierarchies and accessed appropriately as needed.

Generic frames are used in RUBICC to define classes of items which have common

characteristics. Examples of these generic frames are circuit-elements (transistors, capaci

tors, supplies, etc.), structures (parallel-transistor-structure, etc.), and circuits (inverter,

super-buffer, register cell, etc.). These frames are explained in detail in Chapter 5.

Specific instances of these items are created when the circuit net-list is read in or as the

program picks out various patterns of transistors matching the descriptions of these ele

ments in the program rule base.

1Lisp symbol for the empty set

16

The frame hierarchy provides key features which are utilized throughout RUBICC.

It is used to limit and prune searches through the data base. By appropriately formatting

rules, a data base search can be limited to branches or sub-branches of the hierarchy tree,

thereby facilitating more efficient searchs. In addition, it allows rules to be written more

compactly and clearly. For example, writing a rule to reason about a specific class of

transistor such as a precharger is easier, clearer, and more compact than writing its full

description (an enhancement transistor with its gate tied to a clock, its drain tied to a sup

ply and its source non-grounded) in the rule.

As an example to clarify this point, consider the Hierarchical Frame Structure of

Figure 4.1 which shows a tree structure representing a small subset of the generic frames

used in RUBICC. This tree is involved in the classification of transistors. The frame

TRANSISTOR is a child of the frame THING. This is consistent with the hierarchy since

a Transistor is more specific than a THING. Loads (depletion mode transistors) and

drivers (enhancement mode transistors) are more specific instances of transistors and hence

are children of tn rsistor in the hierarchy. Below driver, two specific kinds of drivers are

shown (prechar^r and xfer-gate). Likewise, below load, two specific kinds of loads are

shown (ckc and src). L&cb of these specific transistors is differentiated by its connections

in the circuit. For example, an src-load is one which has its gate and source connected

together. Likewise an xfer-gate driver has either its source or drain tied to the gate of

another driver and its other side not tied to ground. When rules are written, they can

reason about all transistors or be restricted to only reason about drivers or be further res

tricted to reason only about xfer-gates.

The code in Figure 4.1 (alongside the tree) is the actual HPRL code required to

implement the hierarchy . "DEFRAME" is one of the HPRL functions used to create a

frame. Starting with the frame transistor, notice first that the value "thing" is found in

its ako slot (the Svalue will be explained in Section 4.1.2). Notice that the general infor-

(defrune transistor '.create transistor frame
(ako (Svalue (thing))) '.define slots
(d-node)
(g- node)
(s-node)

(width)
(length)
(1-div-w)
(class)
(status))

(deframe driver .create a child of transistor
(ako ($value(transistor))))

(deframe xfer-gate '.create a child of driver
(ako (Svalue (driver))))

(deframe precharger -.create a child of driver
(ako (Svalue (driver))))

(deframe load -.create another child of transistor
(ako (Svalue (transistor))))

(deframe ckc- load '.create a child of load
(ako (Svalue (load))))

(deframe src-load -.create a child of load
(ako (Svalue (load))))

THING

TRANSISTOR

LOAD

CKC-LORD SRC-LORD

XFER-GATE

Figure 4.1 Hierarchical Frame Structure

17

DRIVER

PRECHARGER

mation common to all transistors is defined as the names of slots in the transistor frame.

For example all transistors have a width (channel width), a d-node (drain node number)

and an l-div-w (channel length divided by channel width), etc. If there was some pro

perty unique to a specific transistor, then a slot in that frame could be defined. Only

frames existing below it would inherit that property.

Next the generic frame driver is created. Notice that it is ako-transistor; consistent

with the frame hierarchy. Also notice, except for the ako slot, no other slots are named.

Because a driver is ako-transistor, it implicitly inherits all the slots of transistor. Next,

xfer-gate is defined to be a specific instance of driver. Since it is ako-driver, it inherits all

the properties of a driver. In a similar manner the rest of the frames are defined to create

the hierarchy. During RUBICCs execution, specific instances of the tree's leaf frames are

18

instantiated. For example precharger "ml" might be created. Specific data describing

"ml" would be stored in "mi's" slots.

4.1.2. Data Stored in Slots

Unlike C or Pascal records, which can only store a single type of data in each field,

slots of frames can have many different types of data stored in them and multiple

instances of data of each type. The data stored in slots is actually stored in various

"Facets" of the slot. The purpose of the "SVALUE" facet (all facet names begin with a

"S") is to store data. This data can be any Lisp atom or s-expression. In addition, HPRL

allows multiple values to be stored on a facet. HPRL treats multiple values on a Facet as

a set in the sense that all HPRL rules which use this data understand that there may be

more that one value, that the same value can't be entered twice on the facet, and that the

order of data entry is indeterminate.

Each slot has associated with it a list of facets. Each facet has a name and a content

(data). HPRL has a set of predefined facets, but in addition the user is free to create any

addition facets. The significanc of the SVALUE facet is that there are built in HPRL

access functions which assume t, is facet. The data stored in other facets is use to control

interactions with the user (SASK), restrict the type of data stored on the facet (STYPE),

and to specify procedures called DEMONS which are run whenever a slot's SValue data is

modified (SIF-ADDED, SIF-REMOVED). The data stored in the SValue facet can also be a

procedure name with parameters which is called to calculate the slot's value based on data

elsewhere in the data base, (this procedure is referred to as a procedural variable).

Just as slots have facets with data, data can have tags with messages. Messages are

used to comment the data as desired. The use of this in RUBICC is limited to an automatic

HPRL function which places a message along with the data that is asserted into to a slot2

as the result of a rule's conclusion. This message essentially explains "why" the data got

2Note that in this report, when it is said that data is asserted into a slot, the meaning is that data is assert
ed onto the SValue facet.

19

asserted.

A summary of the above points is shown schematically in Figure 4.2 (Frame Organi

zation) [191

The features provided by the flexible data storage facilities are used and relied upon

throughout RUBICC They lend to a natural, flexible implementation allowing complex

associations and classes to be built.

4.1.3. Dynamic Storage Management

Since Lisp automatically handles the reclaiming of data structures which are no

longer in use, the program doesn't have to worry about this problem. Memory is allocated

as frames are created and data is added to these frames. When frames are no longer

needed their memory is reclaimed by the PSL garbage collection facility. This garbage

FRAME

I
SLOT-1 * * * SLOT-N

i • i

FACET-1 • • • FACET-M

1

DATUM-1 • ' * DATUrt-P

i ' i

TA6-1 • • * TAG-Q

_]

MESSAGE-1 • * * MESSAGE-R

Figure 4.2 Frame Organization

20

collection imposes approximately a 10% overhead. (i.e., the program spends about 10% of

it's execution time in garbage collection) for normal size circuits.

4.2. Pattern Matching

Pattern matching is the search mechanism used in HPRL for querying the data base

and "reasoning" about its contents. The pattern matching process is used to compare items

for similarities, to reason about patterns of items and to make conclusions about them.

Pattern matching variables in HPRL begin with a "?". Hence "?x", "?driver", "?foo" are

pattern matching variables. Variables that do not begin with a "?" are called literals.

Pattern matching variables can match anything. Literals are only allowed to match them

selves. Pattern matching variables can be thought of as "wild cards", and a pattern

matching search can be thought of as searching through a data base with wild cards (an

excellent treatment of pattern matching is found in Chapters 21,22 of [30]).

To further illustrate pattern matching concepts, consider the following examples.

Written in HPRL code, these examples concern dogs and whales, their breed, and the food

they like, (this example is not representative >f good frame hierarchies but it is illustra

tive of pattern matching concepts)

First a generic frame hierarchy is defined:

(deframe animal ;define a frame called animal
(ako($value(thing))) ;make it ako-thing
(breed) ;give it a breed slot
(favorite-food) ;favorite food slot
(home)) ;give it a home slot

(deframe dog -.define a frame called dog
(ako($value(animal)))) -.make it ako-animal

(deframe whale -.define a frame called whale
(ako(Svalue(animal)))) ;make it ako-animal

Next create some specific frames with data:

(deframe Fido '.define the frame Fido
(ako(Svalue(dog))) ;Fido is a dog
(breed(Svalue(poodle))) ;Fido is a poodle
(favorite-food(Svalue(caviar)))) ;Fido's like caviar

(deframe Morgan ;define Morgan
(ako(Svalue(dog))) 'Morgan is a dog
(breed(Svalue(golden-retriever))) Golden retriever
(favorite-focd(Svalue(chuck-wagon))));#te chuck-wagon

(deframe Dusty ;likewise for Dusty
(ako(Svalue(dog)))
(breed(Svalue(golden-retriever)))
(favorite-food(Svalue(purina-dog-chow))))

(deframe Moby-Dick ;Moby Dick is a whale
(ako(Svalue(whale)))
(breed(Svalue(white-whale))) ;He's a white whale
(favorite-food(Svalue(Ahab)))) ;likes Ahab to eat

21

Now that a data base has been created, we can perform some queries. ("Solve" is the

HPRL query function, and the "^ is needed to keep Lisp from treating the query pattern

as a function with arguments). HPRL assumes that the ordered format for a solve clause

is "frame, slot, value". (For readability, HPRL's response to a query is preceded by an

arrow symbol ("->"):

(solve '(?x ako dog)) ;find a the dog in the data base
->(FIDO AKODOG)

Here HPRL was asked to return any frame with the literal dog in its ako slot.

HPRL returned the first one it found, namely the Fido frame. During the search, the

variable "?x" was bound to the literal Fido.

(solve-all '(?x ako dog)) ;fnd all the dogs in the data base
-> ((DUSTY AKO DOG) (MORGAN AKO DOG) (FIDO AKO DOG))

"Solve-all" is the HPRL function used to find all frames with data matching the

solve clause (?x ako dog). HPRL returned all the frames it found which were ako dog. In

22

this case the variable "?x" was bound successively to the three frames: Dusty, Morgan, and

Fido.

(solve '(dusty favorite-food ?x)) -.find Dustys favorite food
-> (DUSTY FAVORITE-FOOD PURINA-DOG-CHOW)

Here Hprl returned Dusty's favorite food.

(solve '(and(?x breed golden-retriever)
(?x favorite-food chuck-wagon)))

-XAXD (MORGAN BREED GOLDEN-RETRIEVER)
(MORGAN FAVORITE-FOOD CHUCK-WAGON))

HPRL supports conjunctions. First the variable "?x" is bound to any frame that has

"golden-retriever" as its breed. This binding stays in effect throughout the rest of the con

junctive match. Then the frame's favorite-food slot is checked for the literal "chuck-

wagon". If it exists, the conjunctive match succeeds and the result of the match is

returned. If the match fails, HPRL looks for another frame whose breed is "golden- retri

ever". If no frames match, HPRL returns "nil", meaning that no data could be found in

the data base matching the query.

(solve '(and(?x breed poodle) ;find a dog
(?x favorite-food Ahab))) who likes to eat Ahab

->NIL

Moby Dick's favorite food is Ahab. There is no poodle in the data base whose

favorite food is Ahab.

23

(solve-all '(and(?x breed ?y)
(?x favorite-food ?z)))

->((AND (MOBY-DICK BREED WHITE-WHALE)
(MOBY-DICK FAVORITE-FOOD AHAB))

(AND (DUSTY BREED GOLDEN-RETRIEVER)
(DUSTY FAVORITE-FOOD PURINA-DOG-CHOW))

(AND (MORGAN BREED GOLDEN-RETRIEVER)
(MORGAjN FAVORITE-FOOD CHUCK-WAGON))

(AND (FIDO BREED POODLE)
(FIDO FAVORITE-FOOD CAVIAR)))

This solve-all clause indirectly requested all items in the data base. The first time

through, HPRL bound "?x" to "Moby-Dick", "?y" to "White-Whale", and "?z" to "Ahab".

Since solve-all was used, it then removed those bindings and looked for additional bind

ings that would make the match succeed.

These working examples are intended to familiarize the reader with pattern match

ing and also introduce the syntax of the HPRL language: Other HPRL functions are avail

able for pattern matching and accessing the values stored in the slots of frames. For

further detail, the reader is referred to the HPRL Manual, Part 2 [191

In summary, pattern matching is a flexible and powerful method of data bas- arch.

4.3. Backward and Forward Chaining Rules

Rules provide the reasoning and inference mechanisms of the HPRL system. They

form the "knowledge base" and are used to make conclusions about data patterns in the

data base as well as create new patterns and associations of patterns.

4.3.1. Rule Overview

In HPRL, rules are frames that have a name and three slots: type, premise and con

clusion.

The Conclusion Slot looks similar to a solve clause, in that it is of the form "frame,

slot, value". The Conclusion Slot represents the action which is to take place if the condi

tions in the premise slot are found to be true. The Premise Slot represents conditions

24

which must be present in the data base for the rule conclusion to be asserted. The general

form of the premise slot is also "frame, slot, value" though many forms (such as conjunc

tion and disjunction) can be combined to form complex queries. The Type Slot of a rule is

used to limit the data base search to certain branches of the frame hierarchy.

Whenever a rule concludes, some action occurs. The most common form of action is

to assert the "value" specified in a rule's conclusion onto the "SVALUE" facet of the

specific "frame" and "slot" also specified in the rule's conclusion, (this is always done for

Backward Chaining Rules. Forward Chaining Rules allow other actions as well).

4.3.2. Backward Chaining Rules

Backward chaining rules are goal driven rules. They are invoked by the solve

clause introduced in the previous section. In the context of Backward-Chaining Rules, the

solve clause is called the user goal. To invoke backward-chaining, a goal is asserted using

the solve clause as in the previous examples.

For illustration , consider the following backward chaining example, built upon the

data base in the previous example:

First create two rules:

(rule whale-home-rule backward-chain-rule -.define the rule
(type (animal ?a)) ;?a must be an animal
(premise(?a ako whale)) -.premise of rule
(conclusion(?a home sea))) yule conclusion

(rule dog-home-rule backward-chain-rule
(type (animal ?a))
(premise(?a ako dog))

(conclusion(?a home house)))

Each of these rules have their names following the atom "rule". Next the

"backward-chain-rule" literal implies that this rule is to be use in goal directed searches.

The type slot specifies that the pattern matching variable "?a" can only be bound to a

frame which is either directly or indirectly ako-animal. The first rule translates to the

25

following English description: "If any animal is a kind of whale, then its home is the

sea." Likewise, in the second rule, a dog's home is a house.

Backward-chaining can be invoked using the solve clause as follows

(solve '(Moby-Dick home ?y))

->Using Whale-Home-Rule:
Since (moby-dick ako whale),
Then (moby-dick home sea).

- >(MOBY-DICK HOME SEA)

Here's a description of what happened. HPRL first looked at the "SVALUE" facet of

Moby-Dick's home slot. If data existed there, it would have been returned. Since his

home had not been asserted in the data base, HPRL collected all the rules whose conclu

sions match the user goal asserted. In this case it found both rules. HPRL tested the

premises of both rules, found "whale-home-rules's" premise to be true and concluded that

Moby-Dick's home was the sea. HPRL actually asserted the literal "sea" into the home slot

as shown by the next HPRL command.

(fvalue-only 'Moby-Dick 'home)
->SEA

Fvalue-only is an HPRL frame access function which returns the data stored on the

SValue facet of the frame and slot named.

Each premise clause of a backward chaining rule is treated a user goal. HPRL will

try to satisfy each user goal by data base lookup first. If that fails then it will try to solve

it using additional rules. Hence a single solve command can trigger a very complex

sequence of backward chaining rules. All clauses in the premise must be proven true for

the conclusion to be asserted.

The conclusion of a rule can be made to do more than one thing using procedural

variables. A function can be specified as the "value" part of a rule's conclusion. If the

premise of a rule is proven to be true, this function is called. The function can generate

26

many "side-effects" before returning a value which is asserted into the SValue facet of the

specified frame and slot. This technique is one of the main programming paradigms in

RUBICC

4.3.3. Forward Chaining Rules

Forward chaining rules are invoked when the frame data base is updated and hence

are called data-directed or data-driven rules. Forward chaining rules are also known as

productions in Production Languages such as "OPS-5" [22l

Forward chaining rules can be thought of as watching the data base for changes. As

data is asserted, a certain rule's premise (or many rule's premises) may become true.

When this occurs, the rule(s) conclusion(s) are asserted into the data base. This assertion

may cause the premises of other forward chaining rules to become true. These rules assert

their conclusions and the process continues until all rules are satisfied.

Forward chaining rules have a format similar to backward chaining rules. For more

details see the HPRL Manual [19], part 2.

4.4. Demons

Demons are procedures which exist on the "SIf-added" and "SIf-removed" facets of

slots. These procedures are called when data is added or removed from the "SValue"

facet of a slot. Demons are similar to forward chaining rules and are usually used for

"house keeping functions" which involve no pattern matching. For example, data asserted

in the slot of some frame may also imply that data should be asserted somewhere else. A

demon can be used for this purpose. They are also useful for debugging. Sometimes, it is

hard to figure out how, why, or when data is being asserted into a specific slot. Tem

porarily adding an "If-added" demon to this slot allows functions to be called which aid

in tracking down these problems.

27

4.5. Escapes to Lisp

To deal with situations which cannot be handled by the normal control flow of the

pattern matching / rule system, it may be necessary to call a Lisp function. Procedural

variables, and demons are examples of escapes to Lisp. An example of where it is used in

RUBICC is as follows: RUBICC has rules which pick out patterns of transistors to make

specific circuits out of them. When the premise of such a rule becomes true, the normal

flow in HPRL would be to put a single piece of data into some slou However, RUBICC

needs to create a complete new frame structure for this circuit. Hence a function is called

which performs these needed tasks as side effects.

CHAPTER 5

RUBICC System Design

The key design issues and decisions involved in the development of the RUBICC sys

tem were:

- Program Structure and Control
- Circuit Input Format
- Frame Data Base

- Program Control Paradigms
- Program Output Format
- Classification Strategies
- Separation of Program Control and Knowledge

In this Chapter, these issues are explained and a description how they are addressed

in the RUBICC system is presented.

5.1. Program Structure and Control

Defining the program structure and control technique involved the tradeoffs

between writing Lisp routines and using functions provided by HPRL. It was decided to

write the overall program control routines in Lisp, utilizing the HPRL routines and the

rule base as needed. This proved to be an effective method, taking advantage of the

strengths of both Lisp and HPRL, without forcing either to handle situations to which it

was not well suited. HPRL does not lend itself to easily handle some of the initial pro

gram setup and initialization requirements. In addition, the use of Lisp routines which

perform explicit calls to HPRL's solve functions adds more control over the order of rule

firings than is currently implemented in HPRL1. HPRL's frame data base, pattern match

ing, goal directed and data driven reasoning functions are used extensively throughout the

program.

1 HPRL's next release will provide agenda control and rule-firing ordering functions directly to the user

28

29

Data driven programming techniques (similar to those described in [31,32]) are used

to keep the program control functions separate from the knowledge base. In this way

incremental rules, new circuit patterns, and additional error checks can be added with

minimum perturbation to the program control structures.

5.2. Circuit Input Format

At this stage, the circuit input format is similar to a Spice-Deck but written in Lisp

list notation. It is planned to add additional information, such as which mask layer a net

exists on, in a future version of RUBICC. An example of a circuit and is corresponding

input format is shown in Figure 5.1. Each subexpression of the list begins with a type of

circuit element. The types supported currently are driver (enhancement transistors), load

(depletion transistors), supply (static power supplies), clock (clock driver), capacitor (non-

mos capacitors) and pad (input pads of the chip). The next atom in the list is the name of

the circuit element. The only restriction on names is that they must be unique

throughout a given circuit. The atoms after the name represent appropriate values for ele

ments. For example, the five numbers fter driver "m2" represent its drain node, gate

node, source node, channel width, and ^annel length respectively. Similarly, the three

numbers after the supply "vl" represent its positive node, negative node, and voltage.

One other input format is allowed in RUBICC: If a sublist's first atom starts with a "*",

RUBICC assumes that this atom is the circuit name.

RUBICC has a few built-in conventions. Ground is always considered to be nodeO.

The negative node of a clock or supply is assumed to be connected to nodeO. Transistors

can be entered with sources and drains used symmetrically. If transistors are entered

with their drains connected to ground, an HPRL rule reverses the source and drain nodes.

Likewise for transistors entered with their sources connected either to a supply or clock.

Note that the last convention is not applicable to a CMOS Technology since, for example, a

supply is usually considered to be connected to the source of a p-channel transistor.

((•sample-circuit)
(supply vl 10 5) PKj
(clock del 8 0 5)
(pad in 3)
(load ml 1 2 2 4 8)
(driver m2 3 8 4 6 2)
(driveT m3 2 4 0 6 2)
(driveTm4 2 65 12 2)
IdriveT mS 5 7 0 12 2))

S-J^-H

Figure 5.1 Circuit Input Format

30

The conventions that are adopted in the examples are that transistors begin with an

"m" (i.e. ml m2 «.), supplies begin with a "v" (i.c, vl v2 -.), clocks begin with "ck" (ckl

ck2 -.) and capacitors begin with "c" (cl c2 «.).

It is envisioned that in the future, the output of a layout extract program would be

used as the input to RUBICC. In this case, either the extract output data could be "mas

saged" to the input format described or RUBICCs input format parser could be changed to

recognize the new format.

5.3. Frame Data Base

The design of the frame data base and frame hierarchy evolved along with the pro

gram. The organization of this data base along with the assignment of slots to each frame

is the paramount issue in the overall effectiveness of the program. It affects the reasoning

capabilities of the program, the classification of various circuit structures, and the direct

ness and simplicity of writing the rules to perform these tasks.

The frame data base is organized along three lines. Schematic Frames are those

frames which hold the information about the circuit elements as they are initially entered

and further classified by the program. Program Control Frames are used for program

"housekeeping" functions and as storage for technology dependent constants used

31

throughout the system. Error Frames hold the names of transistors and circuit elements

which violate rules and checks performed by the program.

In the remaining sections, these three frame hierarchies are described The complete

hierarchy is included in Appendix A. For a listing of the slots of these frames, see

Appendix E

53.1. Schematic Frames

A tree structure representation of the Schematic Frame Hierarchy is shown in Fig

ure 5.2. Note that these are generic frames. Circuit specific frames of the appropriate

types are instantiated as RUBICC runs. Just below the root ("Thing") there are six frames

Transistor. Circuit. Struct, Node, Two-Port-Element, and One-Port-Element. An explana

tion of each of these hierarchies is given in the following sections.

THING

TRRI HSTORX \NOOE STRUCT

/ CIRCUIT N.
TUQ-PORT-E.LEMENT ONE-PORT-ELEMENT

Figure 5.2 Schematic Frame Hierarchy

5.3.1.1. Transistor Frame Hierarchy

A representation of the Transistor Hierarchy is illustrated in Figure 5.3. The transis

tor hierarchy is further broken down into drivers (enhancement fets2), loads (depletion

fets), and mos-caps (a transistor with its drain and source connected together).

2fet * field effect transistor

PRECHRRGER

VI

THING

TRANSISTOR

CK1

DRIVER -"^ MOS-CRP ^* LORD

REG-DRIVER^f^ DRN-BOOT CKC.LOflD TySRC-LORD
PUP-DRIVER XI-DRIVER OTH-LORD DRC-LORD

32

REG-DRIVER PRECHRRGER DRN-BOOT PUP-DRIVER

VI VI

XI-DRIVER

i

CK1 <
SRC-LORD CKC-LORD DRC-LORD OTH-LORD riOS-CRP

Figure 5.3 Transistor Hierarchy

Figure 5.3 Transistor Hierarchy

RUBICC further classifies drivers and loads by how they are configured in the cir

cuit. These configurations, which are shown schematically in Figure 5.3, are:

33

Driver classifications

precharger— driver with a clock tied to its gate and a supply to its drain

drn-boot — (drain bootstrapper) - driver with a dynamic gate node and a clock
tied to its drain

xi-driver — driver with a transfer gate attached to its gate

pup-driver — driver with its drain tied to a supply and its gate not tied to a clock

reg-driver — (regular driver) - cannot be classified as any of the preceding classes

Load classifications:

src-load — load with its gate tied to its source

drc-load —. load with its gate tied to its drain

ckc-load — load with its gate tied to a clock

oth-load — (other load) - cannot be classified as any of the other preceding classes

53.1.2. Circuit Hierarchy

The circuit hierarchy is shown in Figure 5.4. Circuits are combinations of transistors

used to perform some basic function. Circuits are further divided into Gates. Buffers

Drain-Bootstraps and Registers. This set forms the circuits which RUBICC can recognize

and critique. (RUBICC also has rules which critique related sequences of transistors

which are not necessarily classified into the above circuits).

Gates are combinational circuits having one or more inputs and (in RUBICCs

domain) one output. Gates are further defined in RUBICC as having a single pull-up

transistor with it's drain connected to a supply and a single pull down structure (combi

nation of series and/or parallel fets) connected between the pull-up's source and ground.

Gates are further subdivided into static and dynamic classes. This classification is based on

whether the gate's pull-up transistor is a load (thereby making it static) or a driver. Fig

ure 5.4 also shows the specific schematics which RUBICC recognizes for each or these types

THIN8

I
CIRCUIT

BUFFER-

SUPER-BUFFER

BATE

•DRAIN-BOOTSTRAP

REGISTER

REQ-CEU. REB-CORE

STATIC

BATES

STATIC-QATE

-rH

DYNA-QATE

OTHER-BATE /YO"*^ OYMR«IC-ORTE OYNRHIC-XC-XOR

8TATXC-XC-X0R

REB-INVERTER

-J~H
REQ-INVERTER XI-INVERTER CLKOUT-INVERTER 8TATIC-XC-XOR

M

W
NOR

DYNAMIC

BATES

V

ANY

STRUCTURE

T

r*-t NUMBER

INPUTS

OYNAniC-QATE

HAND

DYNATIIC-Xe-XOR

Figure 5.4 Circuit Hierarchy

ANY

ARBITRARY

PULL-DOWN

STRUCTURE

OTHER-GATE

34

35

of gates.

Buffers are circuits which amplify signals. They may or may not perform other

logic functions on the signal. RUBICC recognizes a class of buffers called Super-Buffers.

Two types are recognized: inverting and non-inverting buffers. These are shown in Figure

5J.

Another type of circuit is a Drain-Bootstrapper. It is used to selectively switch a

clock signal to a given node. Drain-bootstrappers always have a driver classified as a

Dm-Boot in their output stage. In addition there is a predriver stage connected to the gate

of the Dm-Boot. RUBICC recognizes three typical types of predriver circuits for drain

bootstraps. These are shown schematically in Figure 5.5.

Registers are also recognized by RUBICC. A Register-Cell is composed of a Register-

Core and various transistors forming the inputs and outputs. Schematics are shown in

Figure 5^5.

In general, the lower level circuits such as inverters and gates are composed of

related transistors. The higher level circuits such as buffers, drain bootstraps and registers

«re composed of combinations of transistors, gates and other structures.

53.13. Struct(ures) Hierarchy

Structures are combinations of series and parallel enhancement fets or other struc

tures. No internal node of a structure may be connected to the gate of a transistor or to a

depletion transistor. RUBICC recognizes most combinations of transistors composed in this

manner and classifies them as follows:

36

INVERTING SUPERBUFFER NON-INVERTING SUPERBUFFER

CK2

_n

DRAIN-BOOTSTRAP CIRCUITS

r~L

Figure 5^ Other Circuit Schematics

37

series-struct — only composed of series driver fets

parallel-struct — only composed of parallel driver fets

super-struct — composed of combinations of series and parallel structs, super-
structs, and single transistors.,

xc-xor-struct — a specialized structure corresponding to a potential piece of a
cross-coupled xor gate.

These structures are shown schematically in Figure 5.6. They are a key pattern

recognition and classification method used in RUBICC. A present weakness in RUBICC is

that it cannot recognize certain combinations of transistors which a human would classify

as a structure. An example of such a structure is shown in Figure 5.6. At this time,

RUBICC would include these transistors in its list of circuit elements which were not

checked. This problem can be solved by the addition of new rules.

5.3.1.4. Nodes

Nodes are frames which correspond to where and how circuit elements are con

nected. An individual node frame is created for each unique circuit node. Node frames

store a large amount of data. They keep track of the gates, drain and sources, supplies and

clocks connected to it. In addition, nodal capacitances are kept as values in appropriate

slots. Nodes are not classified further in the hierarchy. However, they have class and

aspect slots which are used to further identify their properties and which are important

for reasoning about dynamic clocking situations. See Section 5.6 for more details.

53.1.5. Two and One Port Elements

Two port elements are classified as Active-Two-Port-Elements (ATP's) and Passive-

Two-Port-Elements (PTP's). See Figure 5.2. ATP's are either supplies or clocks. The only

PTP's which RUBICC recognizes at present are fixed capacitors. It is envisioned that in the

future, RUBICC would also recognize resistors and inductors.

*i Hc35>

SERIES STRUCTURE

PflRRLLEL STRUCTURE

SUPER STRUCTURE

STRUCTURE

NOT

RECOGNIZED

BY

RUBICC

Figure 5.6 Structures

38

53.2. Program Control Frames

There are two frames used for program control. These frames are the Elements

Frames and a frame called *G-Con. This hierarchy is represented in Figure 5.7.

THING

ELEMENTS «G-CON

I
ELEMENTSl

Figure 5.7 Program Control Hierarchy

39

53.2.1. Elements Frames

Elementsl is a frame used to hold the results of various solve commands given to

HPRL- Whenever backward chaining is invoked, a concluding rule must assert data.

Elementsl provides slots named to correspond to invocations of the HPRL "solve" com

mand and a corresponding place for rules to assert their data after their "side effects" have

been completed. Elementsl also proves useful for debugging and monitoring the progress

of the program since it contains a record of all deductions completed.

53.2.2. *G-Con —The Technology Frame

A Technology Frame called *G-Con (Global Constants) and is used to store all tech

nology dependent parameters used for reasoning about the circuit by RUBICC. Examples

of these constants are the beta-ratio's required for different load configurations, and gate

oxide capacitance. The complete *G-Con frame is included in Appendix C.

53.3. Error Frames

Error Frames, whose hierarchy is represented in Figure 5.8, are used to store the

names of circuit elements which have errors of the kind implied by the particular frame

and slou For example, consider the frame inv-errors (shown in Figure 5.9) which has the

following slots beta-ratio, coupling, and input-clocking. RUBICC checks all of the invert-

40

ers it finds in the circuit for these three types of errors. Suppose "reg-inverter-l" had a

beta-ratio error. RUBICC would store the lisp atom "reg-inverter-l" on the "SValue"

facet of the beta-ratio slot of the inv-errors frame.

The use of error frames faciliutes a data-driven programming technique which is

described in Section 5.4.

THING
I
1

ERRORS

INV-ERRORS *^\/ O^ DRN-BOOT-ERRORS

GATE-ERRORS ' // V\\ REGISTER-ERRORS

GRTE-ERRORS-B '// V\\ RACE-ERRORS

FUNNY-NODE^ / \\ CLK-SKEW-ERRORS

FUNNY-FET' \ \ CHARGE-SHARE-ERRORS

L^JPLING-ERRORS ^INPUT-PAD-ERRORS

SUPER-BUFFER-ERRORS

Figure 5.8 Error Frame Hierarchy

(deframe inv-errors

(ako (Svalue (thing)))
(beta-ratio)
(coupling)
(input-clocking))

Figure 5.9 Inverter-Errors Frame

41

5.4. RUBICC Programming Paradigms

RUBICCs main programming technique used for finding errors is as follows First,

backward-chaining rules are used to pick out patterns of transistors and circuits, after

which either backward or forward chaining rules are used to check these patterns.

Backward-Chaining is invoked explicitly with the HPRL "solve clause". Forward-

Chaining is invoked implicitly by the existence of rules which trigger when data that is

asserted into the data base makes their premise true. As higher level structures of transis

tors and circuits are built up, their constituents are marked "in-use". Rules which search

to identify new circuit patterns are only allowed to construct them from "free" lower

level elements. This method eliminates overlapping usages of transistors, structures and

circuits.

The complete upper-level control function of RUBICC is listed in Appendix F, and is

repeated in Figure 5.10 with numbers alongside each line. The following explanation of

these 48 lines of source code is intended to clarify the previous discussion.

Line 2 defines the main circuit function "check-circuit". This function is called

from the top level Lisp "read-eval-print loop" and is passed the name of a variable which

is bound to the net-list of the circuit which is to be checked. Lines 3-7 perform global

variable initialization.

Lines 8-11 perform the tasks of inputing and initializing the predefined Lisp func

tions, frames and rules. Line 12 is a call to the Lisp function "patom" which prints out

the string following it. "Terpri" is the Lisp "line-feed" command.

The real work begins on Line 13. The function "create-i-frames" (create-initial-

frames) is called with the net-list of the circuit to be checked as its actual parameter.

This function successively takes each sublist from the net-list and instantiates the initial

specific transistor, mos-capacitor, capacitor, supply, clock, pad and node frames. At this

point, all transistors are either ako-driver, ako-load or ako-mos-cap.

1 (setq 'input-functions nil)

;;::;:;;;;:;;::;:::;::; main program control function

2 (defun check -circuit (net-list)
3 (setq *ciTcuit-name 'unnamed)
4 (setq gctime?' 0)
5 (setq *clka nilXsetq *clkb nilXsetq "clkc nilXsetq *clkd nil)
6 (setq "longre 0)
7 (let((s-time (time)))

8 (input-functions)
9 (clear-frame-syms)
10 (input-frames-rules)
11 (make pop frame) ; push frame marker onto 'frames'
; create initial circuit frames
12 (paiom "BUILDING CIRCUIT FRAMES"!tab 30)Xterpri)
13 (creatc-i-frames net-list)

14 (patom "CIRCUIT-NAME: "Xpatom "circuit-nameXterpri)
15 (patom "88 88 88"Xterpri)
; transistor classification
16 (solve-all '(?transistor s-d-reversed ?x))
17 (solve-all t?elements src-load ?x))
18 (solve-all t?elements drc-load ?x))
19 (solve-all t?elements ckc-load ?x))
20 (solve-all '(?elements oth-load ?x)) ; must be last load solve
21 (solve-all '(?elements xi-driver ?x))
22 (solve-all '(?elements precharger ?x))
23 (solve-all t?elements pup-driver ?x))
24 (solve-all-drn-boots)
25 (solve all'(?elements reg-driver ?x)) ; must be last driver solve
; series-parallel combinations
26 (find-parallel-fets)
27 (find series-lets)
28 (cond((or(fchildren 'seriesstructA!VuildTen 'parallel-stTuct))
29 (com binc-st ruets)))
30 (find-other-structs)
; check circuit for errors
31 (solve-error-frame 'funny-fet)
32 (solve-erTor-frame 'funny-node)
35 (solve all t?elements inverter ?x))
34 (solve-all '(?elements static-gate ?x.))
35 (solve-all t?elements dynamic-gate ?x))
36 (solve-all t?elcments super-buffer ?x))
37 (solve-all-drain-bootstraps)
38 (solve all-reg-cells)
39 (solve-error-frame 'race-errors)
40 (solve error frame "gate-errors b)
41 (solve error-frame 'charge-share-errors)
42 (solve error-frame 'drn-boot-errors)

43 (solve error frame 'input pad errors)
44 (solve ail elk skew-errors)
; print results
45 (show-circuit-errorsXterpri)
46 (show-all-gatcs-and-circuitsXterpri)
47 (show-not-checkcdXterpri)
48 (print stats)))

Figure 5.10 RUBICC Main Control Function

42

43

Lines 16-25 call the HPRL function "solve-all" to classify transistors in the frame

hierarchy. The code in line 16 is used to find any transistors with sources and drains

reversed. A trace of how this rule works will help clarify RUBICC programming tech

niques. When Line 16 is executed, the following backward chain rule whose conclusion

matches (from a pattern matching point of view) the goal (?transistor s-d-reversed ?x)

will fire if any transistors have their sources and drains reversed.

(rule reverse-src-drn-rule backward-chain-rule
(type (transistor ?tr)(active-two-port-element ?ae))
(premise (or (and (?tr s-node ?sn)

(?ae pos-node ?sn))
(?tr d-node 0)))^

(conclusion(?tr s-d-reversed * (reverse-s-d ?tr))))

The type slot of this rule specifies that "?tr" is a pattern matching variable which

can be bound only to frames that are part of the transistor hierarchy. Likewise, "?ae" can

only be bound to a supply or clock.

The rule's premise contains a disjunctive clause consisting of two subclauses either of

which, if proven true, will, cause the conclusion to be asserted. The first subclause is a

conjunction which, translated in English says "Find a transistor and bind the pattern

matching variable "?snH to its source node number. If there is an active-two-port-

element connected whose positive node is also connected to this node then the premise is

true." The second clause says "Find a transistor with it's drain connected to nodeO

(ground)."

If the premise is proven true, the conclusion is asserted. The conclusion has a pro

cedural variable in its "value" position (signified by the '"*"). The action performed by

the conclusion is to assert the data returned by the Lisp function "reverse-s-d" into the

"s-d-reversed" slot of the transistor frame which is bound to the pattern matching vari

able "?tr". This function always returns V3. In addition, it also causes two side effects to

^isp symbol for "true"

44

"?tr", namely two swap the source and drain nodes of the transistor which is currently

bound to "?tr". Note also that the variable "?tr" was passed as a parameter to the func

tion " reverse-s-d".

Since the "solve-all" clause was used, HPRL will search through the entire data base

and find all transistors which satisfy the premise of this rule.

This represents the key programming method in RUBICC. Rules which classify

different patterns of transistors are invoked by "solve-all" commands. If the rules which

pick out these patterns conclude, a function is called. Depending on the situation, this

function will perform some action, such as switching the drain and source node of a

transistor, or instantiating a new specific frame corresponding to the new element picked

out and putting appropriate values in the slots of the new frame. When the data in the

new frame is complete, Forward-Chaining Rules which trigger off this data preform error

checks, putting the name of the offending circuit element in an appropriate slot. (In the

above case, there are no forward chaining rules which trigger on transistor classifications).

Lines 17-25 are additional examples of "so /e-all" clauses which classify transistors

The functions called in lines 26-30 find a.l series and parallel transistor structures.

These are Lisp routines which invoke HPRL solve functions. After their execution,

specific instances of series, parallel and super structures corresponding to these patterns of

transistors will have been created.

Lines 31-43 perform the bulk of the circuit checks and critiques. The "solve-error-

frame" function on line 31 is utilized for a data-driven programming technique. This

function is passed the name of a specific error frame. Using HPRL access functions, a list

of all the slots contained in the error frame is built up. "Solve-Error-Frame" then itera-

tively forms explicit "solve-all" commands using the names of these slots in conjunction

with the name of the specific error frame. In this way additional error checks can be

added to the program by simply adding new rules and additional slots to an appropriate

45

error frame. If a new error frame needs to be created, then only one single line need to be

added in the main control function — a call to "solve-error-frame" with the name of the

new error frame.

The "solve-all" command in line 33, instructs HPRL to find all the inverters that

exist in the circuit using rules that have the form (?x inverter ?y) in their conclusions.

These rules are found in Appendix F (in module inv-rules). As inverters are identified,

functions are called which instantiate them and fill their slots with appropriate data. For

ward chaining rules then fire which perform various checks on the new inverter. For

ward chaining is another form of data driven programming in that if a new inverter

check is desired, all that is required is a new forward chain rule. (If it doesn't make

sense for the new rule to conclude its answer in a currently existing error frame slot,

then a new error slot would also be added to the system.)

Line 45 is a call to the function "Show-Circuit-Errors", which prints out RUBICCs

error summary. Show-Circuit-Errors knows how to find all error frames in the hierar

chy. This is another example of data driven programming. If additional error frames are

added, no change to the function is required to print out new errors found in these

frames. Lines 46-48 call additional summary generating functions.

5£. Program Output Format

The output of the RUBICC is a summary of errors as shown in Figure 5.11. Each

error frame containing error data is printed out along with the corresponding slot name

and data. Error frames and slots are named to give the user some idea of the nature of the

error. Next, RUBICC prints out the transistor constituents of the various gates and circuits

it picked out. The last part of the summary is a list of all the transistors which RUBICC

didn't know what to do with and hence, probably weren't criticized. This is useful infor

mation because it tells a designer what hasn't been looked at. It also may indicate a prob

lem (either with the Circuit or RUBICC) or it may indicate an additional case for RUBICC

46

to check. Finally, the summary is concluded with statistics such as the total run time of

the program and the time spent during the run in garbage collection.

RUBICCs user interface could be improved upon. At present, a user would have to

read the documentation about the error slots to find out more details about the error. In

addition, the user would have to know something about the HPRL system to be able to ask

"why" a certain error occurred or which rule fired to cause a certain error. The "hooks"

exist within HPRL and the RUBICC system to improve the user interface.

5.6. Classification Strategies

Throughout the program design, decisions were made as to how and when to classify

various patterns of transistors, circuits and nodes. In this Section, the strategies involved

in these decisions are explained, using examples from RUBICC as appropriate.

ERRORS FOUND FOR CIRCUIT: "NET-LIST-14 -DYNAMIC-CLOCKING
COUPLING-ERRORS

XI-DRIVER-COUPLING (M22)
XI-DRIVER-COUPLING-1 (M10 Ml8 M34>

FUNNY-NODE

CLOCKING-FLAG (NODE4)
GATE-ERRORS

DYNAMIC-CLOCKING-1 (DYNAMIC-GATE-7 DYNAMIC-GATE-4 DYNAMIC-GATE 1)
DYNAMIC-CLOCKING-2 (DYNAMIC-GATE-?)
DYNAMIC-CLOCKING-4 (DYNAM1C-GATE-6)

CIRCUITS and GATES IDENTIFIED:
DYNAM1C-GATE-7 (M1M22M21)
DYNAMICGATE-6 (M33 M34 M35)
DYNAMIC GATE-5 (M28 M29 M30)
DYNAMIC-GATE-4 (M13 Ml4 Ml5)
DYNAMIC-GATE 3 (M11M10M12)
DYNAMIC GATE 2 (M6 M7 MS)
DYNAMIC-GATE 1 (M17 Ml 8 M20 M19)
XI INVERTER 2 (M27 M26 M25)

Xl-INVERTER-1 (M2 M4 M3)

FREE TRANSISTORS:

(M24)
garbage collection time = 4.116 min
total run time* 20.88633 min

Figure 5.11 Error Listing

47

5.6.1. When to Classify

The tradeoffs inherent in when to cause classifications to occur involve program

efficiency and simplicity. If all items are classified in all ways, the program becomes

prohibitively slow. Also, much of the work performed in creating data structures and

classifications may not explicitly be needed by the program. For example, in many circuits

it is not relevant whether a node is dynamic, hence work that was performed by the pro

gram to classify the node as such is wasted efforu On the other hand, classifications help

to simplify the writing of rules and tend to "prune" the search space. For example, it is

easier and more efficient (from a search point of view) to write a rule specifying a

precharger than a "driver with its gate tied to a clock, its drain tied to a supply and it's

source not tied to ground."

The strategy followed in RUBICC was to completely classify items only when it was

clear that program efficiency and/or simplicity would be positively affected. In these

cases, solve-all clauses are invoked which search through the entire data base. An exam

ple of this strategy is the fet classification statements in lines 16-25 of the main program

control function (Figure 5.10). Unless this criteria was met, classifications were not done

until specifically required by the program. The node classification strategy mentioned in

the previous paragraph is an example of this approach.

5.6.2. How to Classify

In general, a different classification-class is required for each unrelated item that is

to be checked for. Setting these classifications up in an efficient, consistent manner is a

major design issue. Too many classifications make rules clumsy, hard to read and hard to

understand. Too few actually limit the functionality of the program. Careful thought in

this area can really pay off.

An example of such a problem is the node classification scheme in RUBICC, which is

tricky because there are many seemingly unrelated ways in which nodes function in

48

dynamic circuits. To reason about complex clocking schemes, is necessary to have this

information available. For example a node can be static (always driven) or dynamic

(capable of being high impedance). It can be connected to a clock, connected to a driver

whose gate is connected toa clock; the driver being either a precharger or pull down, or in

the middle of some series/parallel fet string. A node can always be low on a given clock,

or will sometimes be low, depending upon some other logic function such as the firing of a

drain-bootstrap circuit. Another piece of information required is when are these nodes

active or driven. If driven by a clock, which clock phase? If a node is held low by a

clock and then released, how should it be classified?

The scheme adopted in RUBICC is to give nodes two attributes Class and Aspect.

Class refers to how it functions in the circuit, Aspect refers to what causes it to perform

the function. For example, if clkl (clock-driver-phase-1) is connected to a node3, then

node3*s class is always-clocked and it's aspect is clkl. Suppose the output of a drain-

bootstrap is connected to node4 and the drain bootstrap can fire on clk2. Node4's class is

clocked-conditional and its aspect isclkl. A summary of the Class and Aspect for nodes is

given in Figure 5.12. This straightforward scheme makes all the necessary information

about a node's function available for reasoning about complex clocking structures.

Node Class Node Aspect

dynamic (node can become high-impedance) nil
aiways-clocked clock phase
conditional-clocked clock phase
clocked-low (always low on a given clock) clock phase
always-high supply

Figure 5.12 Node Classifications

49

Backward chain rules exist to determine a node's classification and aspect. They are

invoked as needed in other rules by using the user goal "(?node class ?x)". Hence, only

those nodes which are specifically needed by the rule system are classified.

5.7. Separation of Program Control and Knowledge Base

The separation of program control from the knowledge base is achieved in RUBICC

by the Rule Domains inherent in HPRL and the data-driven techniques described previ

ously. This is a very powerful concept in that it allows allows additional rules and error

checks to be incrementally added to the system. A new rule which checks an existing

structure can be added by including the rule in the rule system and perhaps creating a

new error frame. If a new class of circuits is to be picked out, a new generic frame must

be included as well as the rules for picking this circuit and an additional solve-clause

would be added to the main Check-Circuit function. (This seems to be a change in the

program control —and it is. However, it is very simple, and straightforward. One could

imagine a data driven technique by which this new "solve-clause" is added to a list which

is used by the main program control loop.)

This separation is not achieved entirely throughout RUBk, * The lower level

transistor classifications are interrelated with Lisp function calls. If additions or changes

to the transistor classes are made, certain functions must be modified. There is no funda

mental reason for these dependencies; rewriting these routines could remedy this situation.

50

CHAPTER 6

Results

RUBICC was run on a number of test circuits included in Appendix D. These cir

cuits show the various types of errors which RUBICC can find. The real utility of the

program became apparent when RUBICC discovered errors which were not deliberately

put in these test-cases. This was especially significant since the creator of these cases was

a "highly experienced" , "seasoned" designer (the author). This example is described in

detail in Appendix D, the example for Net-List-27.

As previously mentioned, RUBICCs knowledge-base contains 110 rules. These rules

break down as follows A little over 50% are used in the classification of objects, a little

less than 50% are used to check for error cases and the remaining 10% or so are used for

"house-keeping" functions such as reversing transistors sources and drains. RUBICC is

approximately 110 KBytes of source code.

During the Spring Semester of 1984 at U.C Berkeley, I learned Lisp, investigate;'

Expert Systems, and became familiar with HPRL. Prior to this, I had no experience in any

of the above subjects. Starting from scratch, I spent about 80 hours learning HPRL. The

current RUBICC System was coded in about 450 hours (ll man-weeks) over a seven

week period This would not have been possible without the excellent introduction to

Lisp and Artificial Intelligence Programming Techniques covered in U.C. Berkeley's CS283

Course [31] which I took in the Spring, and the productive coding environment provided

by Lisp and HPRL.

The current implementation is very close to being usable for checking actual cir

cuits. About two weeks would be required to update the Technology Frame with process

specific parameters. In addition, another man month would be involved in running cells

51

through, checking the results, and extending the rule base.

CHAPTER 7

Conclusions and Future Work

7.1. Conclusions

As a system, RUBICC has met its goals which were:

1. Showing the feasibility of using Expert System Technology to build a system which
provides meaningful critique of circuits.

2. Showing feasibility of encapsulating a Knowledge-Base of Design-Heuristics.

3. Determining the productivity of using Lisp and HPRL in writing such a system.

The design examples and errors checked show that Goal 1 has been met. One could

imagine using this tool as part of the design cycle to check new designs and to aid in the

training experience of new designers. The Rule System as written shows that Goal 2 can

be met. It is envisioned that while the entire knowledge base would never be fully

encapsulated, a major subset would evolve from the contributions of engineers and

designers, working either specifically to add rules to RUBICC or as error cases arose which

RUBICC didn't check. HPRL and PSL proved to be highly productive, as shown by the

program statistics mentioned in Chapter 6. In addition, the system is very close to being

usable for real applications.

7.2. Future Directions

Further work on RUBICC should be considered in the following areas:

52

53

7.2.1. User Interface

The user interface should be improved to better aid the designer in understanding

the errors found by RUBICC. A number of items could be included: First a documenta

tion file which contained an explanation of each error, and a proposed fix for that error,

written by the author of the error check, would be helpful. The user could display this

information to obtain more information about the error. In addition, HPRL provides infor

mation as to why an item of data was asserted into the slot of a frame. This information

takes the form of the rule that asserted the data and is very cryptic. A user interface

function could be written to take better advantage of this feature of HPRL.

7.2.2. Checking Actual Circuits

RUBICC should be extended to handle one or more technologies utilized by U.C

Berkeley and run on complete cells from a real chip design. To perform this task, the

technology file must be updated for a particular process technology. Cells from a chip

design could be hand coded into RUBICC input format or a translator could be written to

convert chip "extract" outputs appropri' .ly.

7.2.3. CMOS Compatibility

RUBICCs rule base and frame hierarchy must be reimplemented for CMOS critique.

Though a significant task, RUBICC control structure and program paradigms would still

be valid, hence this does not involve a complete rewrite.

7.2.4. Additional Structure Classification Algorithms

As previously mentioned, RUBICC doesn't handle certain structures such as the one

shown in Figure 5.6. A more general algorithm could be devised for picking out these

types of structures. The utility of this algorithm would have to be weighed against the

costs involved versus the benefit it would provide.

54

7.2.5. Program Tuning

A 1.3-1.5x performance improvement could be achieved by compiling RUBICCs Lisp

routines. This speedup is estimated as follows HPRL routines are already compiled. The

program probably spends no more that 1/4 - 1/3 of its time in interpretive Lisp code. If

the time spent in this code went to zero (by compiling), the predicted performance

improvement would occur.

Another improvement in efficiency could come by program tuning. A histogram of

the times spent in each routine would show where to start. Suspected slow algorithms are

the series / parallel algorithms and the clock skew sensitivity checks.

CHAPTER 8

References

[I] Nagel, L.N., "Spice 2: A Computer Program to Simulate Semiconductor Circuits,"
University of California, Berkeley, Memo ERL-M520, May, 1975.

[2] Saleh, R., Kleckner, L, Newton, A.R., "Iterated Timing Analysis in Splice 1,"
Proceedings of the IEEE International Conference on Computer- Aided Design,
Santa Clara, Ca„ 1983, pp. 139-141.

[3] Newton, A.R., "The Simulation of Large-Scale Integrated Circuits," University of
California. Berkeley, Memo # UCB/ERL M78/52, July, 1978.

[4] Lelarasmee, E, "The Waveform Relaxation Method For Time Domain Analysis of
Large Scale Integrated Circuits Theory and Applications," University of California,
Berkeley. Memo# UCB/ERL M82/40, May, 1982.

[5] Ousterhout, J. K„ "Crystal: A Timing Analyzer for NMOS VLSI Circuits," Univer
sity of California, Berkeley, EECS Technical" Report #UCB/CAD 83/115A, 1983.

[6] Deutsch, J.T., "Behavioral-Level Simulation and Synthesis of Digital Systems,"
University of California, Berkeley, Memo # UCB/ERL M83/47, August, 1983.

[7] Keller, K., Newton, A.R., "KIC2: A Low Cost, Interactive Editor for I.C Design," Dig
est of Papers, Compcon 82, IEEE Computer Society, 1982, pp. 305-306.

[8] Ousterhout, J.K„ "Caesar: An Interactive Editor for VLSI Layouts," VLSI Design,
Q4, 1981, pp. 34-38.

[9] Keller, Kn "A Electronic Circuit CAD Framework," University of California,
Berkeley, DepL of EECS, Prof. A.R. Newton, June, 1984, Memo # UCB/ERL M84/54.

[10] OusterhoutJ.K., et^U "Magic: A VLSI Layout System,"Proceedings of the 21st
Design Automation Conference,, June, 1984, pp. 152-159.

[II] Mah, C, Newton, A.R., "Panda: A PLA Generator for Multiply-Folded PLA's," Proc.
1.EJE.E. Int. Conf. on Cad, Santa Clara, Ca., Nov., 1984, to appear.

[12] "CAD Tool Box User's Manual," University of California, Berkeley.

[13] Kowalski, TJ., "The VLSI Design Automation Assistant: A Knowledge Based Expert
System," Carnegie-Mellon University, Report # CMUCAD-84-29, April, 1984.

55

56

[14] Kim, J., McDermott, J., "TALIE An IC Layout Design Assistant," Proceedings of the
National Conference on A.I., American Association for Artificial Intelligence, Wil
liam Kaufman, 1983.

[15] Birmingham, W.P, "MICON: A Knowledge Based Single Board Computer Designer, "
Carnegie-Mellon University, Report #CMUCAD-83-21, December, 1983.

[16] Zipple, R, "An Expert System for VLSI Design," 1983 IEEE Symposium on Circuits
and Systems, 1983, pp. 191-193.

[17] Kelly, V.E, "The CRITTER System - Automated Critiquing of Digital Circuit
Designs," Rutgers University, Rutgers AL/VLSI Project memo # 13, May, 1984.

[IS] Beyers, J.P, Hewlett-Packard Co, Cupertino I.C. Operation, July, 1984.

[19] Lanam, D, et»al. "Guide to the Heuristic Programming and Representation
Language,", Parts 1-3, Application Technology Laboratory, CRC, Hewlett-Packard
Laboratories, 1984, available under license only.

[20] Goldstein, LP, Roberts, R.B, "The FRL Manual" Cambridge, Mass., Memo # 409,
1977.

[21] Griss, MX, et.al, "HP 9836 PSL User's Guide," Application Technology Laboratory.
CRC, Hewlett-Packard Laboratories, 1984.

[22] Forgy, C.L, "OPS-5 User's Manual," Carnegie-Mellon University, Memo # CMU-CS-
81-135 1981.

[23] "Hewle.t-Packard Journal", Volume 34, No. 8, August, 1983.

[24] Beyers, J.W, et. al, "A 32b VLSI Chip," Digest of Technical Papers, 1981 IEEE
International Solid State Circuits Conference, Tham 9.1, 1981.

[25] Mikkelson, J. et. al, "An NMOS VLSI Process for Fabrication of a 32b VLSI Chip,"
Digest of Technical Papers, 1981 IEEE International Solid State Circuits Conference,
Tham 9.1, 1981.

[26] Hayes-Roth, eu al. "Building Expert Systems,", Addison-Wesley, 1983.

[27] NCA Corp, "Electrical Rules Check User's Guide, Version 3.0," Santa Clara, Ca,
April 1984.

[28] ECAD Inc., "ERC-Dracula," Santa Clara, Ca, January 1984.

[29] DeMan, H, "Dialog," Catholic University of Leuven, Leuven, Belgium.

[30] Wilensky, R, "LispCraft," WW. Norton Co^ New York, N.Y, 1984.

57

[31] Wilensky, R, "CS-283: Artificial Intelligence Programming Techniques," University
of California, Berkeley, (course), Spring, 1984.

[32] Charniak, E. et^l, "Artificial Intelligence Programming Techniques, "Lawrence Eal-
baum Co^ 1980.

Appendix A - Frame Hierarchies

THO-PCRT -ClXnEMT

MCTXve-THO-PORT

«um.r clock

TWNSISTCR

driver-— ncs-CBP lord

KQ.DRlVtR'<^r!\^0HN-KJOT ate.uw,'̂ .
PVT-DRIVER I XI-DRIVER

PRECMWSCR

fTftTIC'QRTC

oncR-ame

STflTIC-XC-XOR

THXW

INVERTER

XI'INVERTER RCO-INVERTER

CLKCUT-INVERTER

CtC-PCRT-€LOCMT

Figure A-l Complete Generic Frame Hierarchy

58

Appendix B - Generic Frames

'FILE FRAMES-1SL

(deframe transistor
(ako($value(thing)))
(d-node)
(g-node)
(s-node)
(width)
(length)
(1-div-w)
(string-1)
(clk-input($ask(dont)))
(elk-class)
(class)
(s-d-reversed)
(trigger)
(fb-tran-flag) ; / if transistor is used as a feedback transistor
(o-ins(Sask(dont))) ; used for drain bootstrap rules
(check)
(status)) ; l$if-added((my-print:frame .-value)))))

(deframe load

(ako($value(transistor))))

(deframe src-load

(ako($value(load)).)
(instance($if-added((fput rvalue 'status *$value 'free))))) (deframe ckc-load
(ako(Svalue(load)))
(instance(Sif-added((fput rvalue "status "Svalue 'free))))) (deframe drc-load
(ako(Svalue(load)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))) (deframe oth-load
(ako(Svalue(load)))
(instance(Sif-added((fput :value 'status *Svalue 'free)))))

(deframe driver

(ako(Svalue(transistor))))

(deframe reg-driver
(ako($value(driver)))
(instance($if-added((fput rvalue 'status "Svalue "free))))) (deframe xi-driver
(ako(Svalue(driver)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(xfer-gate) i$if-addea%{ fput rvalue 'status 'Svalue 'in-use))))
(fb-tran) i$if-added((fput -.value 'status 'Svalue 'in-use))))
(in-node)
(ga-xfw-ratio)) ; gate area to xfer-gate width ratio (deframe mos-cap
(ako(Svalue(transistor)))
(instance(Sif-added((fput rvalue "status "Svalue Tree))))) (defTame precharger
(ako(Svalue(driver)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree))))
(pre phase)
(supply)) (deframe pup-driveT
(ako(Svalue(driver)))
(instance($if-added((fput rvalue 'status "Svalue TTee))))
(supply)) (deframe dm-boot
(ako($value(driver)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree))))
(s-node(Sask(dont)))
(other-elk- hold-down

($if-added((freplace rvalue 'status Rvalue 'in-use)))

59

(Sask(dont)))
(boot-phasc(Sask(dont)))
(xfer-gate)
(fb-tran))

(deframe node

(ako($value(thing)))
(instance(Sif-added((fput rvalue 'status Rvalue Tree))))
(number)
(status) -.class/aspect doc: (classiallowable aspects))
(class(Sask(dont))) Ustatidload push-pull)) (dynamic-hiZ(clk-phase))
(class-l(Sask(dont))) iclocked-always(clock-phase)) (clocked-conditional
(aspect(Sask(dont)) ; (clock-phase)) (precharge (clock-phase))

(Sifadded((aspect-print rframe rvalue))))
; (always-high(supply)) (gnd (gnd)))

(trans-struct) ; all transistors with what partconnected
(trans) ; all transistors connected
(gate) ; all transistors with gate connections
(src-drn) : all transistors with source or drain connections
(load) : all load transistors connected
(driver) ; all drivers connected to node
(struct) ; all structures connected to node
(cap) ; capacitors connected
(mos-cap) ; mos capacitorsconnected
(supply) ; power supplies connected
(clock) ; clocks connected
(gate-cap) ; capacitance of all gates connected to node (upf)
(static-cap) : capacitance of all capacitors tied to gnd orsupply
(clka-cap) ; capacitance of node to clka
(clkb-cap) ; capacitance of node to clkb
(clkc-cap) : capacitance of node to clkc
(clkd-cap) ; capacitance of node to clkd
(src-dnt-cap) ; capacitance of node to all sources and drains
(other-cap) : capacitance of node to other places
(total-cap) ; sum of all capacitances
(pad)) ; i/o pads connected

(deframe one-port-element
(ako(Svalue(thing)))
(node-num)
(prot-device(Sif-added((freplace rvalue 'status Rvalue 'in-use)))

(Sask(dont)))) (deframe pad
(ako($value(one-port-element))))

(deframe two-port-element
(ako(Svalue(thing)))
(pos-node)
(neg-node)
(e-value))

(deframe active-two- port-element
(ako(Sva!ue(two-port-element)))) (deframe passive-two-port-element
(ako(Svalue(two-port-element)))) (deframe cap
(ako(Svalue(passive-two-port-element)))) (deframe supply
(ako(Svalue(active-two-port element)))) (deframe clock
(akc^SvalueCactive-two-port-element))))

(deframe circuit
(ako(Svaluc(thing))))

(deframe gate
(ako(Svalue(thing)))
(beta-ratio)
(trigger)

60

(status)
(pull-up (Sif-added((fTeplace rvalue'status "Svalue 'in-use))))
(pull-down ($if-added((make-status-in-use rvalue))))
(in-node)
(out-node)
(supply-node)
(supply)
(struct(Sif-added((freplace rvalue 'status "Svalue "in-use))))
(dummy)) (deframe static-gate

(ako(Svalue(gate)))) (deframe dyna-gate
(ako($value(gate))))

(deframe dynamic-gate
(ako(Svalue(dyna-gate)))
(instanceSif-added((fput rvalue 'status "Svalue Tree))))
(pre-phase)
(true-phase))

(deframe dynamic-xc-xor
(ako(Svalue(dyna-gate)))
(instance($if-added((fput rvalue 'status 'Svalue Tree))))
(pre-phase)
(tTue phase))

(deframe invencr
(ako(Svalue(static-gate)))
(xfer-gate)) (deframe reg-inverter
(ako(Svalue(invener)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree)))))

(deframe xi-inverter
(ako(Svalue(inverter)))
(instancc($if-added((fput rvalue 'status "Svalue "free))))
(xfer-gate(Sif-added((freplace rvalue 'status "Svalue 'in-use))))
(clock-node)
(clock))

(deframe clkow 'iverter

(ako(Svalue(nv -!rter)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree))))
(xfer-gate(Sif-added((freplace rvalue 'status "Svalue 'in-use))))
(clock-node)
(clkgate($if-added((freplace rvalue 'status Rvalue 'in-use))))
(clock)) (deframe nor-gate
(ako(Svalue(static-gate)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree)))))

(deframe nand-gate
(ako(Svalue(static-gate)))
(instance($if-addcd((fput rvalue 'status "Svalue Tree))J))

(deframe other gate
(ako(Svalue(static-gate)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree)))))

(deframe static-xc-xor
(ako(Svalue(static-gate)))
(instance($if-added((fput rvalue 'status "Svalue Tree)))))

(defTame struct
(ako($value(thing)))
(status)
(1-div-w)
(string!) ; length of fet string

61

(node- l(Sask(dont)))
(node-2(Sask(dont)))
(clk-input(Sask(dont)))
(clk-class(Sask(dont)))
(class)
(clking-check)
(substruct(Sif-added((make-status-in-use rvalue))))
(trans(Sif-added((make-status-in-use rvalue)))))

(deframe parallel-stmct
(ako(Svalue(struct)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree)))))

(deframe series-struct
(ako($value(struct)))
(instance(Sif-added((fput rvalue 'status lvalue Tree)))))

(deframe super-struct
(ako(Svalue(struct)))
(instance(Sif-added((fput rvalue 'status "Svalue Tree)))))

(deframe xc-xor-struct
. <ako<Svalue''struct)))

(instance(Sif-added((fput rvalue 'status "Svalue Tree))))
(in-node)
(out-node))

62

;"•" ""FILE FRAMES-2JSL '

(deframe elements
(ako(Svalue(thing)))
(dummy)
(nodes)
(driver) (rcg-driverXxi-driverXprechargeTXpup-driverXdbl)

(drn-boot($ask(dont)))
OoadKsrc-loadXckc-loadXdrc-loadXoth-load)
(mos-cap)
(dynamic-gate)
(supply)
(clock)
(cap)
(inverter) (simple-invert erXd-i-inverter)
(static-gate)
(super-buffer)
(reg-coreXreg-cell)
(drain-bootstrap)
(struct)
(series-struct(Sif-added((fput rframe 'struct "Svalue rvalue))))
(parallel-struct(Sif-added((fput rframe 'struct "Svalue rvalue))))
(super-struct(Sif added((fput rframe 'struct "Svalue rvalue))))
(xc-xor-strucrfSif-added((fput rframe 'struct 'Svalue rvalue)))))

(deframe elementsl

(ako(Svalue(elements)))
(dummy(Svalue(1))))

(deframe errors
(ako(Svalue(thing))))

(deframe inv-errors
(ako(Svalue(errors)))
(dummy)
(beta-ratio(Sask(dont)))
(coupling(Sask(dont)))
(input-clocking(Sask(dont))))

(deframe gate-eTrors ; filled by forward chain rules
(ako(Sva lue(erTors)))
(nand-length($ask(dont)))
(beta-ratio($ask(dont)))
(dynamic-clocking(Sask(dont)))
(dynamic-clocking-l(Sask(dont))Xdynamic-clocking-2($ask(dont)))
(dynamic-clocking-3(Sask(dont))Xdynamic-clocking-4(Sask(dont)))
(race-condi t ion(Saskfdont))))

(deframe gate-errors-b
(ako(Svalue(errors)))
(feedback desirable(Sask(dont)))
(input-clocking-eiror(Sask(dont))))

(deframe funny fet
(ako(Svalue(errors)))
(max-driver- length(Sask(dont)))
(min-driver-width($ask(dont)))
(min -load-length(Sask(dont)))
(min-load-width! Sask(dont)))
(max-cap-length($ask(dont)))
(single-connection(Sask(dont))))

(deframe funnv-node

filled by backward chain rules

63

(ako(SvalueKerrors)))
(gate-only(Sask(dont)))
(supply-gate-only(Sask(dont)))
(clock-suppiy-short(Sask(dont)))
(single-connection(Sask(dont)))
(clocking-flag(Sask(dont)))
(long-rc-flag(Sask(dont))))

(deframe coupling-errors
(ako($value(errors)))
(xi-driver-coupling(Sask(dont)))
(xi-driver-coupling-KSask(dont))))

(deframe net-enors
(ako(Svalue(errors)))
(clocks(Sask(dont))))

(deframe super-buffer-eirors
(ako(Svalue(erroTs)))
(power-waste fiag(Sask(dont)))
(aggressive-br-flag(Sask(dont)))
(poor-input-drive(Sask(dont))))

(deframe drn-boot-errors

(ako(Svalue(en'ors)))
(phase-hold-down(Sask(dont)))
(clocking-error(Saskfdont)))
(mos-cap-backwardsfSask(dont)))
(boot-node-not-active-low(Sask(dont)))
(longer-driver-needed(Sask(dont))))

(deframe register-errors
(ako($value(errors)))
(critical-node flag (Sask(dont)))
(clocking-error (Sask(dont)))
(internal-connection (Sask(dont))))

(deframe race-errors
(ako(Svalue(errors)))
(precharge-loss(Sask(dont)))
(input-skew-flag(Sask(dont))))

(deframe elk-skew-errors
(ako(Sva lue(errors)))
(clock-skew-flag-l(Sask(dont)))
(clock-skew-flag-2(Sask(dont))))

(deframe charge-share-errors
(ako(Sva lue(errors)))
(feedback glitch flag(Sask(dont)))
(feedback-glitch erroriSaskfdont))))

(deframe input- pad-errors
(ako(Sva lue(errors)))

(missing protection-device(Sask(dont)))
(undershoot-flag<Sask(dont))))

64

Appendix C - Technology Frame

; * FILE: TECH-FILESL

; Technology Frame for 5v only A"A/OS, 2 phase non-overlapping clocks

(deframe *g-con ,
(ako(Svalue(thing))).;;;; transistor constants ::::::::;::

(mx-dr-l(Svalue(2-5))) ; maximum driver length
(mn-dT-w($value(3))) ; minimum driver width
(mn-ld-l(Svalue(3))) ; minimum load length
(mn-ld-w($value(3.5))) ; minimum load width
(mx-cap-l(Svalue(15))) ; maximum mos-cap length
(std-ld-current(Svaluel0.050))) ; current for load with w/l =- 1 (ma)
(dT-eq-ratio ; convert driver l-divw to load l-div-w

(Svalue(3)));;;;; gate constants ::::::;:;::;;;:;
(st-nand-sl(Svalue(3))) ; maximum static nand string length
(br-src-load($value(4.0))) ; beta ratio for source connected load
(br-drc load($value(6.0))) ; beta ratio for drain connected load
(br-ckc-load(Svalue(6.0))) ; beta ratio for clock connected load
(br oth- load(Svalue(4.0)))
(xi-dr-wrf(Svalue(0.9))) ; xi-driver width reduction factor
(mn-dr-ga-xf-w(Svalue(3.2))) ; minimum driver gate-area to xfer-gate

width :;;:: gate and overlap capacitances ::;;;;;
(gox-cap (Svalue(910e-6))) : gate area capacitance (pflu 2)
(gox-overlap-cap(Svalue(200c-6))) -.gate overlap capacitance (pflu);;;;; dynamic circuit constants
(noise-tau(Svalue(20))) ; time constant for noise(ns);;;;; super-buffer constants
(mn-sup-buf-pwr-ratio ; min ratio of predriver w/l to driver w/l

(Svalue(0.25)))
(mx-sup-buf-pwr-ratio ; max ratio of predriver w/l to driver w/l

(Svalue(0.75)))
(mx-sup-buf-agg-br ; max predriver aggressive beta-ratio

(SvalueC (• 0.9 (fvo "g-con 'br-src load)))))
(mn-sup-bufagg-br ; min predriver aggress:-.- beta-ratio

(Svalue!'* (• 0.8 (fvo "g-con 'br-src-load))))) ;;;;•. urge-share-ratios
(dr-cshare ratio ; (/ l/w of pull down l/w of xfer-gate)

(Svalue(4.0))) ; couple back at most 1/5 of ->oltage '
(cap-cshare-ratio ; (/ cap of driven node cap of couple-node)

($value(4.0))) : couple back at most 1/5 of voltage ;;:;: drain-bootstrap constants
(db-ahd-l($value(2.5))) ; drain bootstrap active holddown width ;:::: clock skew sensitivity
(clk-skew-flag(Svalueh))) ; true if clock skew is a problem)

65

66

Appendix D - RUBICC Examples

Examples of RUBICC critiques are given in this appendix. Each example contains a

circuit schematic, the circuit net-list input given to RUBICC, and critique summary.

67

Figure D-1 - "Net-List-2

Critique:

ERRORS FOUND FOR CIRCUITr 'NET-LIST-2
COUPLING-ERRORS

XI-DRIVER-COUPLING (M5)
FUNNY-NODE

GATE-ONLY (NODE3 NODE5 NODEIO NODE11 NODE13 NODE14 NODE15
NODE17NODE19)
FUNNY-FET

MIN-DRIVER-WIDTH (M2 MS)
SINGLE-CONNECTION (M3 M16 M15 M14 M13 M12 M10 M9 M2)

GATE-ERRORS

BETA-RATIO (OTHER-GATE 2 OTHER GATE 1)
INV-ERRORS

BETA-RATIO (XMNVERTER-1 REG-INVERTER-1)

CIRCUITS and GATES IDENTIFIED:

OTHER-GATE-2 (Mil M14 M12 M13 M15 Ml6)

OTHER-GATE-1 (Mb M9 M10 MS M7)

XI INVERTER-1 (M4 M5 M3)

REG-INVERTER 1 (Ml M2)

FREE TRANSISTORS:

NIL

garbage collection time = 0.95583 min
total run time= 5.91583 min

Circuit Input List:

(setq "net-list-2 *((*net-list-2)
(load ml 12 24 8)

(driver m2 2 30 2 2)
(driveT m3 2 5 4 4 2)

(load m4 1 6 64 8)

(driver m5 6 4 0 2 2)

(load m6 1 7 7 4 8)
(driver m7 7 6 8 6 2)
(driver m8 8 12 0 6 2)
(driver m9 7 10 9 6 2)
(driver mlO 9 11 0 6 2)

(load-mil 1 12 12 4 8)
(driver ml2 12 13 16 6 2)

(driver ml3 12 14 16 6 2)
(driver ml4 12 15 16 6 2)
(driver ml5 16 17 18 6 2)

(driveT ml6 18 19 0 6 2)
(supplv vl 1 0 5)

'))

68

VI

mi—mm

If

ni3

VI

1

rHNM3

5

v.

Hi

ri4

Figure D-2 - *Net-List-5

69

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-5
COUPLING-ERRORS

XI-DRIVER-COUPLING (M4)
FUNNY-NODE

GATE-ONLY (NODE3 NODEIO)
FUNNY-FET

MIN-DRIVER WIDTH (M2 M4)
SINGLE-CONNECTION (M2)

GATE-ERRORS

BETA-RATIO (NAND-GATE-1)
INV-ERRORS

BETA RATIO (XI-INVERTER 1 REG-INVERTER 1)

CIRCUITS and GATES IDENTIFIED:

NAND-GATE-1 (M5 M6 M7 M8)
NOR-GATEl (M9 M12M10M11)
XI-INVERTER-1 (M3 M4 Ml3)
REG-INVERTER-1 (Ml M2)

FREE TRANSISTORS:
NIL

garbage collection time = 0.44933 min
total run time- 3.37683 min

Circuit Input List:

(setq *net-list-5 t(*net-list-5)
(load ml 1 2 2 4 8)
(driver m2 2 3 0 2 2)
(supply vl 10 5)
(driver ml 3 2 10 4 4 2)
(load m3 1 5 5 4 8)
(driver m4 5 4 0 2 2)
(load m5 1 6 6 4 8)
(driver m6 6 5 7 6 2)
(driver m7 7 10 8 6 2)
(driver m8 8 10 0 6 2)
(load m9 1 9 9 4 8)
(driver mlO 9606 2)
(driver mil 9 10 0 6 2)
(driver ml 2 9 10 0 6 2)

))

70

71

VI

Ml

m

f12

113 3"

M4

£]4
ri5

N6

T
Figure D-3- Net-. s* -U

Critique:

ERRORS FOUND FOR CIRCUIT: *NET-LIST-8
FUNNY-NODE

GATE-ONLY (NODE5)

CIRCUITS and GATES IDENTIHED:

FREE TRANSISTORS:

(Ml M6 MS M4 M3 M2)
garbage collection time = 0.22767 min
total run time= 1.09267 min

Circuit Input List:

(setq "net-list-S '((*net-list-8)
(load ml 12 2 4 6)
(supply vl 10 5)
(driver m2 2 5 3 6 2)
(driver m3 2 5 4 6 2)
(driver m4 3 5 4 6 2)
(driver mS 3 5 0 6 2)
(driver m6 4 5 0 6 2)))

72

73

Figure D-4 -- Net-List-14

Critique:
ERRORS FOUND FOR CIRCUIT
COUPLING-ERRORS

XI-DRIVER-COUPLING

XI-DRIV ER-COUPLING-1
FUNNY-NODE

CLOCKING-FLAG
GATE-ERRORS

DYNAMIC-CLOCKING-1
DYNAMIC-CLOCKING-2
DYNAMIC-CLOCKING-4

: 'NET-LIST-14-DYNAMIC-CLOCKING

(M22)
(M10 M18 M34)

(NODE4)

(DYNAMIC-GATE 7 DYNAMIC-GATE-4 DYNAMIC-GATE-1)
(DYNAM1C-GATE-7)
(DYNAMIC-GATE-6)

CIRCUITS and GATES IDENTIHED:
DYNAMIC-GATE-7

DYNAMIC-GATE-6

DYNAMIC-GATE-5
DYNAMIC-GATE-4

DYNAMIC-GATE-3
DYNAMIC-GATE-2

DYNAMIC-GATE-1
XI-INVERTER-2

XMNVERTER-1

(Ml M22M21)
(M33 M34 M35)
(M28 M29 M30)
(M13M14 M15)
(Mil M10M12)
(M6 M7 M8)

(M17M18 M20 M19)
(M27 M26 M25)

(M2 M4 M3)

FREE TRANSISTORS:

(M24)
garbage collection time = 4.116 min
total run time= 20.88633 min

Circuit Input List:

(setq 'net-list-14
*(("net-list-14-dynamic-clocking)
(supply vl 1 0 5)
(driver ml 1 2 4 10 2)
(driver m4 6 5 0 10 2)
(driver m7 8 3 9 6 2)
(driver m 10 12 10 11 10 2)
(driver ml3 1 2 13 6 2)
(driver ml6 13 2 15 4 2)
(driver ml9 16 2 06 2)
(driver m22 4 18 0 6 2)
(drivcT m25 4 3 20 4 2)
(driver m28 1 2 27 6 2)
(driver m31 21 2 22 4 2)
(driver m34 25 24 26 16 2)

(clock ckl 2 0 5)
(load m2 1 6 6 4 8)
(driver m5 6 2 7 4 2)
(driver m8 9 7 0 10 2)
(driver mil 13 12 6 2)
(driver ml 4 13 12 14 6 2)
(driveTml7 1 3 17 6 2)
(driver m20 16 3 0 6 2)
(driver m23 1 19 18 6 2)
(driver m26 21 20 0 16 2)
(driver m29 27 3 23 6 2)
(driver m32 4 3 24 4 2)
(driver m35 26 0 0 6 2)))

(clock ck2 3 0 5)
(driver m3 4 3 5 4 2)
(driver m6 1 2 8 10 2)
(driver m9 4 3 10 4 2)
(driver ml2 11 2 0 6 2)
driver ml5 14 2 0 6 2)
(driveT ml8 17 15 16 12 2)
(driver m21 4 3 0 6 2)
(load m24 1 19 19 4 8)
(load m27 1 21 21 4 8)

(driver m30 23 22 0 16 2)
(driver m33 1 2 25 6 2)

74

75

d

VI

m

VI VI VI VI

i—(|X^3 [-[[Jm pQ^s p[[^6
VI

Aw

M2

M8 MS M10. mi

ni2

i

Figure D-5 - Net-List-17

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-17
FUNNY-NODE

GATE-ONLY (NODE3)

LONG-RC-FLAG (NODE2)
FUNNY-FET

SINGLE-CONNECTION (M2)

CIRCUITS and GATES IDENTIHED:
REG-INVERTER-6 (M7 M12)
REG-INVERTER-5 (M6M11)
REG-INVERTER-4 (M5 M10)
REG-INVERTER-3 (M4 M9)
REG-INVERTER-2 (M3 M8)
REG-INVERTER-1 (Ml M2)

FREE TRANSISTORS:
NIL

garbage collection time = 0.25783 min
total run time= 5.37133 min
NIL

Circuit Input List:

(setq *net-list-17 '((*net-list-17)
(supply vl 10 5)
(load ml 1 2 2 4 30)
(driver m2 2 3 0 6 2)
(load m3 1 5 5 4 6)
(load m4 1 6 6 4 6)
(load m5 1 7 7 4 6)
(load m6 1 8 8 4 6)
(load m7 1 9 9 4 6)
(driver m8 5 2 0 15 2)
(driver m9 6 2 0 15 2)
(driver mlO 7 2 0 15 2)
(driver mil 8 2 0 15 2)
(driver ml2920 15 2)

))

76

77

Figure D-6 - «Net-List-18

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-L1ST-18--SUPER-BUFFERS
SUPER-BUFFER-ERRORS

POWER-WASTE-FLAG (SUPER-BUFFER-4)
AGGRESSIVE-BR-FLAG (SUPER-BUFFER-4)
POOR-INPUT-DRIVE (SUPER-BUFFER-1)

COUPLING-ERRORS

Xl-DRIVER-COUPLING (M14)
FUNNY -FET

SINGLE-CONNECTION (Ml 8)
INV-ERRORS

BETA-RATIO (XI-INVERTER-2 XI-INVERTER-l)

CIRCUITS and GATES IDENTIHED:

SUPER-BUFFER-4 (REG-INVERTER-1 REG-INVERTER-2)
SUPER-BUFFER-3 (REG-INVERTER-4 REG-INVERTER-5)
SUPER-BUFFER 2 (XI-INVERTER-l XI-INVERTER-2)
SUPER-BUFFER-1 (XI-INVERTER-3 REG-INVERTER-3)
XI-INVERTER-3 (M10 M14 M9)
XI-INVERTER-2 (M2 M4 Ml8)
XMNVERTER-1 (Ml M3 M18)
REG-INVERTER-5 (Ml3 M17)
REG-INVERTER-4 (M12 M16)

REG-INVERTER-3 (Mil M15)
REG-INVERTER-2 (M6 M8)

REG-INVERTER-1 (M5 M7)

FREE TRANSISTORS:
NIL

garbage collection time = 0.68933 min
total run time= 3.71067 min

Circuit Input List:

(setq 'net-list-18 t(*net-list-18--super-bufi\:rs)
(supplv vl 10 5)
(clock ckl 2 0 5)
(load ml 1 12 12 6 4)
(load m2 1 12 4 10 4)
(driver m3 12 3 0 10 2)
(driveT m4 4 3 0 20 2)
(load m5 1 5 5 4 8)
(load m6 1 5 6 4 8)
(driver m7 5 4 0 6 2)
(driver m8 6 4 0 6 2)
(driver m9 4 2 7 10 2)
(load ml0 18 8 4 8)
(load mil 17 94 8)
(load ml2 1 10 10 4 8)
(load ml3 14 114 8)
(driver ml4 8 7 0 6 2)
(driver ml 5 9 806 2)
(driver ml6 10 4 0 6 2)
(driver ml 7 11 10 0 6 2)
(driveT ml8 3 2 20 4 2)

))

78

79

Figure D-7 - Net-List-22

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-22-REGISTER-CELL
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 ((M2 M3))

REGISTER-ERRORS

CRITICAL-NODE-FLAG (REG-CELL-1)
DRN-BOOT ERRORS

BOOT-NODE-NOT-ACTIVE-LOW (DRAIN BOOTSTRAP 1)

FUNNY-FET

SINGLE-CONNECTION (Mil M8)

CIRCUITS and GATES IDENTIFIED:

DRAIN-BOOTSTRAP-1 (M11M12M13)
REG-CELL-1 (REG-CORE 1 M2 M8)
REG-CORE-1 (XI INVERTER 1 XI INVERTER 2 M9)

XI- INVERTER 2 (M7 M10 M5)

XMNVERTER 1 (M6 M4 M3)

FREE TRANSISTORS:

(Ml)

garbage collection time = 0.70667 min
total run time= i.9ii5 min

Circuit Input List:

(setq *net-list 22 t(*net-list-22-register-cell)
(supply vl 10 5)
(clock ckl 2 0 5)

(clock ck2 3 0 5)
(driver ml 1 3 10 10 2)
(driver m2 10 14 4 6 2)
(driver m3 4 2 5 6 2)
(driver m4 6 5 0 10 2)
(driver m5 7 3 6 4 2)
(load m6 1 6 6 4 8>
(load m7 1 8 8 4 8)
(driver m8 8 14 9 6 2)
(driver m9 8 3 4 6 2)

(driver mlO 8 7 0 10 2)
(driver mil 12 3 13 6 2)
(driver ml2 2 13 14 20 2)
(driver ml3 14 3 0 10 2)

))

80

VI

ni

f13 th

ri4

VI

i

ri2

ris

M6

Figure D-8 - Net-List-23

81

VI

M8
CK2

M7

V

CK2

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-23-RACE-CONDITION

RACE-ERRORS

PRECHARGE-LOSS (DYNAMIC-GATE-1)
FUNNY-NODE

GATE-ONLY (NODE4)
SINGLE-CONNECTION (NODE2)

FUNNY-FET

SINGLE-CONNECTION (M3)

CIRCUITS and GATES IDENTIFIED:

DYNAMIC-GATE-1 (M8 M7)
NOR-GATE-2 (M2 M6 M5)

NOR-GATE-1 (Ml M4 M3)

FREE TRANSISTORS:

NIL

garbage collection time = 0.4755 min
total run tirne^ 2.53867 min

Circuit Input List:

(setq 'net-list-23 <(*net-list-23~race-condition)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver m3 5 4 0 10 2)
(driver m4 5 3 0 6 2)
(driver m5 6 5 0 6 2)
(driver m6 6 3 0 6 2)
(driver m7 7 6 0 6 2)
(driver m8 1 3 7 10 2)
(load ml 1554 8)

•>ad m2 1 6 6 4 8)

82

83

VI

r- f13

Figure D-9 - Nel-List-24

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-24-XC-XOR-GATES

FUNNY-NODE

GATE-ONLY (NODE6)
SINGLE-CONNECTION (NODE10)

GATE-ERRORS

BETA-RATIO (STATIC-XC-XOR -1)

CIRCUITS and GATES IDENTIFIED:

STATIC-XC-XOR-1 (M3 M6 M7 Ml M2)

FREE TRANSISTORS:
(M9 M8 M5 M4)

garbage collection time = 0.46267 min
total run time= 2.65583 min

Circuit Input List:

(setq *net-list-24 t(*net-list-24~xc-xor-gates)
(supply vl 10 5)
(clock ckl 10 0 5)
(driver ml 3 4 2 3 2)
(driver m2 2 3 4 6 2)
(load m3 1 2 2 4 8)
(driver m4 3 6 0 6 2)
(driver m5 4 6 0 6 2)
(driver m6 7 8 2 6 2)
(driver m7 8 7 2 6 2)
(driver m8 7 6 0 6 2)
(driver m9 8 6 0 6 2)

))

84

CK2

3

1-12

ri7

M9

VI

rlC"1
ii a

M3

* ni0

CKl

M5 1—CK2

Figure D-10 - Net-List-25

85

Cri tique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-25-FEEDBACK
CHARGE-SH ARE-ERRORS

FEEDBACK-GLITCH-FLAG ((NODE4 NODE8))
FEEDBACK-GLITCH-ERROR ((NODE4 NODE8))

FUNNY-FET

SINGLE-CONNECTION (M10)

CIRCUITS and GATES IDENTIHED:

NOR-GATE-1 (Ml M8 M3 M5)

FREE TRANSISTORS:
(M10)

garbage collection time = 0.4635 min
total run time= 2.37583 min

Circuit Input List:

(setq *net-list-25 '((*net-list-25~feedback)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 14 4 4 8)
(driveT m2 6 3 5 4 2)
(driver m3 4 5 0 10 2)
(driver m4 5 4 0 3 2)
(driver m5 4 3 0 6 2)
(driver m7 6 3 7 4 2)
(driver m8 4 7 0 10 2)
(driver m9 7 4 0 4 2)
(driveT ml0 4 2 8 10 2)
(cap cl 8 0 1)

))

86

cxi

«_TLjlJ
maI

iJI

CX2

Figure D-ll - Net-List-27

Explanation: RUBICC mentions a glitch error and flag involving node6 and
node7. After thinking about this for a few minutes it became apparent that
what's happening here is that node7 could still be high when transfer gate
"m3" turns on during clkl. Then the voltage at node5 is determined by the
ratio of drivers "m3" and "m7" rather than just "m3". The proper connec
tion to the gate of "m8" would be to node8.

87

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-27--BOOTSTRAPS-WITH-CLOCK-SKEW-ERRORS
CHARGE-SHARE-ERRORS

FEEDBACK-GLITCH-FLAG ((NODE7 NODE6) (NODE5 NODE4))
FEEDBACK-GLITCH-ERROR ((NODE7 NODE6))

CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-1 ((M13M17))
DRN-BOOT-ERRORS

PHASE-HOLD-DOWN (M9)

CLOCKING-ERROR (DRAIN-BOOTSTRAP-1)
MOS-CAP-BACK WARDS (DRAIN-BOOTSTRAP-2)
BOOT-NODE-NOT-ACTIVE LOW (DRAIN-BOOTSTRAP-1)
LONGER-DRIVER-NEEDED (M4 Ml 1)

COUPLING-ERRORS

XI-DRIVER-COUPLING (M8)
FUNNY-FET

MIN-DRIVER-WIDTH (M8)
SINGLE-CONNECTION (M9)

CIRCUITS and GATES IDENTIFIED:

DRAIN-BOOTSTRAP-3 (XI-INVERTER 1 M9)

DRAIN-BOOTSTRAP-2 (CLKOL'T INVERTER-1 Mb M5 M7)
DRAIN-BOOTSTRAP-1 (M14 M13 M15 M16)
CLKOUT-INVERTER-1 (Ml M4 M3J
XI-INVERTER-2 (M19 M18 M17)
XI-INVERTER-1 (M12 M11 M10)

FREE TRANSISTORS:
(M8)

garbage collection time = 0.96133 min
total run time- 5.02017 min

Circuit Input List:

(setq "net-list-27 t(*net-list-27--bootstraps-with-clock v .-w-errors)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 16 6 64)
(driver m2 6 2 7 6 2)
(driver m3 4 2 5 6 2)
(driveT m4 75 0 12 2)
(driveT m5 7 3 7 4 6)

(driver m6 3 7 8 20 2)
(driver m7 8 2 0 4 2)
(driver m8 5 7 0 3 2)
(driver m9 3 10 11 20 2)

(driver ml0 4 2 9 6 2)

(driver mil 10 9 0 10 2)
(load ml 2 1 2 10 4 8)

(driver ml3 3 12 13 20 2)
(driveT ml4 4 3 12 6 2)

(driver ml 5 3 12 3 4 8)
(driver ml6 13 2 0 10 2)
(driver ml 7 13 3 14 6 2)

(driver ml 8 15 14 0 10 2)
(load ml9 1 15 15 4 6)

))

88

89

Figure D-12 - Net-List-28

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-28-CLOCK-SKEW-ERROR
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 ((M4 M5))
DRN-BOOT-ERRORS

PHASE-HOLD-DOWN (M2)
FUNNY-NODE

GATE-ONLY (NODE7)
FUNNY-FET

SINGLE-CONNECTION (Ml M3)

CIRCUITS and GATES IDENTIFIED:
XI INVERTER-1 (M7 M6 M5)

FREE TRANSISTORS:
(M3M4 Ml)

garbage collection time = 0.48367 min
total run time= 2.688 min

Circuit Input List:

(setq 'net-list-28 t(*net-list-28-clock-skew-error)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driveT ml 4 2 11 4 2)
(driveT m2 3 11 5 20 2)
(driveT m3 6 7 0 6 2)
(driveT m4 8 5 6 4 2)
(driveT m5 9 3 8 6 2)
(driver m6 10 9 0 10 2)
(load m7 1 10 10 4 6)

))

90

CKl

5

M2-

Figure D-13 - Net-List-29

VI

1

Ml

—£3—

_J 2

M3

V

91

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-29--INPUT-PAD
INPUT-PAD-ERRORS

MISSING-PROTECTION-DEVICEdNl -PAD)
UNDERSHOOT-FLAG (INI-PAD)

FUNNY-FET

SINGLE-CONNECTION (M2)

CIRCUITS and GATES IDENTIFIED:

XI-INVERTER-l (Ml M3 M2)

FREE TRANSISTORS:

NIL

garbage collection time = O.OOOOOE-000 min
total run time= 0.63617 min

Circuit Input List:

(setq *net-list-29 •(("net-list-29--input-pad)
(supply vl 1 0 5)
(pad inl 3)
(load ml 1 2 2 4 8)
(driver m3 2 4 0 10 2)
(driveT m2 3 5 4 4 2)
(clock ckl 5 0 5)

))

92

VI

.V c« H^171—n?s
I'V nM

|ni9

KT'CKll

8CT'OCl/DUnP.QCl

He? r^ CX2/CUnP.CK2JJI^J ,l-^T.CK2

vx VI VI

"LJ

Li CK2 *48 a

9ET«CK1 CKl
tl

Ln_£
H49 •

CK2

_Lii -JL «-•-« JUL. 1 *-•43 | a I^M^-irl^

*frr

n-43

1J"
»CX2

VI

u
CX2

n
048

Figure D-14 -- Nel-List-30

93

OH>'CK2

M

VI

rat

,U

OUHP'Ctt

!• i

ra>

Critique:

ERRORS FOUND FOR CIRCUIT: 'NET-LIST-30--EXAMPLE-1
CLK-SKEW-ERRORS

CLOCK-SKEW-FLAG-2 ((M24 M25) (M39 M38))
REGISTER-ERRORS

CRITICAL-NODE-FLAG (REG-CELL-1 REG-CELL-2)
CLOCKING-ERROR (REG-CELL-1 REG-CELL-2)

DRN-BOOT-ERRORS

LONGER-DRIVER-NEEDED (M4 M55)
SUPER-BUFFER-ERRORS

AGGRESSIVE-BR-FLAG (SUPER-BUFFER-2 SUPER-BUFFER-1)
COUPLING-ERRORS

XI DRIVER-COUPLING (M36 M57 M58)
GATE-ERRORS-B

FEEDBACK-DESIRABLE (NOR-GATE-2)
GATE-ERRORS

DYNAMIC-CLOCKING-1 (DYNAMIC-GATED

CIRCUITS and GATES IDENTIFIED:

DRAIN-BOOTSTRAP-2 (XI INVERTER-1 Mil MlO M12)
DRAIN-BOOTSTRAP-1 (CLKOUT-INVERTER-1 M6 M5 M7)
REG-CELL-2 (REG-CORE 1 M39 M32)
REG-CELL-1 (REG-CORE-2 M24 M29)
REG-CORE-2 (XMNVERTER-4 XI-INVERTER 5 M30)
REG-CORE-1 (XI-INVERTER 7 XI-INVERTER-6 M56)

Interrupt
SUPER-BUFFER-1 (NOR-GATE-2 NOR-GATE-1)
DYNAMIC-GATE-1 (M23 M45 M22 M21 M47 M46)
STATIC-XC-XOR-1 (M50 M48 M49)
NOR-GATE-2 (M42 M58 M44)
NOR-GATE-1 (M41 M57 M43)
CLKOUT-INVERTER-1 (Ml M4 M2)
XI-INVERTER-7 (M37 M36 M38)
XI-INVERTER-6 (M34 M33 M35)
XI-INVERTER-5 (M52 M28 M27)
XI-INVERTER-4 (M51 M26 M25)
XI-INVERTER-3 (M18 M20 Ml 6)
XI-INVERTER-2 (M17 M19 M16)
XI-INVERTER-l (M9 M55 M8)
REG-INVERTER-1 - (Ml5 M14)

FREE TRANSISTORS:

(M31)
garbage collection time = 12.3875 min
total run time= 51.65183 min

94

Circuit Input List:

(setq 'net-list-30
<(*net- list-30~example-1)
(supply vl 10 5) (clock ckl 2 0 5) (clock ck2 3 0 5)
(pad inl 12) (load ml 16 6 6 4) (driver m2 4 2 5 6 2)
(driver m3 6 2 7 8 2) (driver m4 7 5 0 10 2) (driver m5 3 7 3 4 10)
(driver m6 3 7 8 20 2) (driveT m7 8 2 0 6 2) (driver m8 4 3 9 4 2)
(load m9 1 3 10 6 4) (driver ml0 2 10 2 4 10) (driver ml 1 2 10 11 20 2)
(driver ml2 11 3 06 2) (driver m55 10 9 0 20 2) (driver ml 3 12 0 0 10 2)
(driver ml4 13 12 0 10 2) (load ml5 1 13 13 4 8) (driver ml6 13 3 14 6 2)
(loadml7 1 15 15 6 6) (load ml8 1 15 16 8 6) (driver ml9 15 14 0 12 2)
(driver m20 16 14 0 16 2) (driveT m21 17 16 18 10 2) (driver m22 18 11 0 10 2)
(driver m23 1 3 17 20 2) (driver m24 17 11 36 6 2) (driver m25 36 2 22 6 2)
(driver m26 21 22 0 10 2) (load mil I 21 21 4 8) (load m52 1 23 23 4 8)
(driver m27 21 3 20 6 2) (driver m28 23 20 0 12 2) (driver m29 23 8 24 12 2)
(driver m30 23 3 36 6 2) (driveT m31 1 2 24 20 2) (driver m32 24 8 25 10 2)
(driver m33 25 31 0 10 2) (load m34 1 25 25 4 6) (driver m35 31 3 30 6 2)
(driver m36 30 29 0 6 2) (load m37 1 30 30 4 6) (driveT m56 25 3 28 6 2)
(driver m38 29 2 28 6 2) (driver m39 17 11 28 6 2) (driver m40 24 3 33 10 2)
(load m41 1 34 35 6 6) (load m42 1 34 34 4 6) (driveT m43 35 3 0 12 2)
(driver m44 34 3 0 10 2) (driveT m57 35 33 0 12 2) (driver m58 34 33 0 10 2)
(driver m45 17 Z5 0 20 2) (driver m46 27 11 0 10 2) (driver m47 17 26 27 10 2)
(driver m48 26 25 23 8 2) (driver m49 26 23 25 S 2) (load m50 1 26 26 4 12)))

95

96

Appendix E - Implemented Circuit Checks

In this Appendix, the errors checked for by the current implementation of RUBICC
are presented. The format is as follows: Each error frame is listed with its slots, the rules
which, if proven true, will fill these slots, the type of rule (forward or backward chain
ing) and the program module which contains the rule. Explanations of each of these
errors are included after each table.

E.1. Error Frame: INV-ERRORS (Inverter Errors)

Error Slot Rule Name Type Program Module

Beta-Ratio

Input-Clocking
Check-Beta-Ratio-1

Check-Clkout-Inverter-1
Check-Clkout-lnverter-2

F

F

F

Inv-Rules

Inv-Rules

Inv-Rules

Explanations:

BETA-RATIO is defined as the width to length ratio of the driver divided by the
width to length ratio of the load Static gates and inverters, must have a minimum beta
ratio to guarantee proper output zero levels. This number is dependent on numerous
parameters such as process technology characteristics, circuit operation voltages and load
configuration. RUBICC uses constants stored in *G-CON for the various load
configurations to determine the required beta-ratio of the gate.

INPUT-CLOCKING rules check clkout inverters (Figure E-l) to be sure that the same
clock drives the input transfer gate (ml) and the pull-up driver (m2).

Figure E-l Clkout-Inverter

97

E.2. Error Frames GATE-ERRORS

Error Slot Rule Name Type Program Module

Nmd-Length Static-Gate-Check-1 F Gate-Rules p.

Beta-Ratio • Static-Gate-Check-2 F Gate-Rules

Dynamic-Clocking-1 Dynamic-Gate-Check-1 F Gate-Rules

Dynamic-Clocking-2 Dynamic-Gate-Check-2 F Gate-Rules

Dynamic-Clocking-4 Dynamic-Gate-Check-4 F Gate-Rules

Race-Condition Dynamic-Gate-Check-3 F Gate-Rules

Explanations:

NAND-LENGTH refers to the maximum number of series fets in the gate's current
path from the gate-output to ground Most technologies have a maximum limit to this
number because each series transistor degrades the gau's output zero level. The consunt
RUBICC uses for this check is 3. Any static gates with greater that 3 transistors in this
path are flagged.

BETA-RATIO refers to the same type of check as listed in inverter errors, Section
El.

DYNAMC-CLOCKING-1 performs checks on dynamic gates to detect any of the fol
lowing error conditions:

Check if precharge and true phases are equal

Check if pull-down structure is clocked on more than one clock phase
Check if pull-down structure has a gate which is always held high

DYNAMC-CLOCKING-2 checks for a dynamic gate which is always pulled low on
a particular clock phase. This isn't a piricularly useful circuit.

DYNAMIC-CLOCKING-4 checks ' . a dynamic gate that is never clocked There are
cases where this wouldn't be an errc.\ sough its a strange use for this type of gate.

RACE-CONDITION checks if there twists an xi-driver (driver with transfer gate) in
the pull-down structure of a dynamic gate whose transfer gate is clocked on the phase
that the gate is supposed to be true. This can cause precharge loss problems at node4 (Fig
ure E-2) due to a race condition that occurs when the xi-driver ("ml") gate node comes
true during ck2.

98

EJ. Error Frame: GATE-ERRORS-B

Error Slot Rule Name Type Program Module

Feedback-Desirable

Input-Clocking-Error
Feedback-Check
Static-Gate-Input-Clock-Check

B

B

Gate-Rules

Gate-Rules

Explanations:

FEEDBACK-DESIRABLE means that a feedback transistor is recommended to be
placed in the position of "ml" in Figure E-3 to solve the following problem: the output
(node 4) is held low by the same clock phase that loads "m3's" gate (node3) through
transfer-gate "m2\ If a zero level was stored on node3, node4 will rise when the clock
phase goes low. Drain to gate coupling from node4 to node3 will cause node3 to also rise.
This can cause the gate to be slow. The feedback transistor is usually a minimum driver
since it's only job is to keep node 3 low in the event of this coupling.

INPUT-CLOCKING-ERROR checks any gate whose output is clocked low on a phase
(see Figure E-3) to be sure that any transfer gate (Bm2H) which loads any input to the
gate is clocked on the same phase. If this is not the case, an error occurs, since it doesn't
make sense for the input to such a gate to change during the time when the output is to
become true.

Figure E-3

99

E.4. Error Frame: FUNNY-FET

Error Slot Rule Name Type Program Module

Max-Driver-Length Funny-Fet-1 B F-F-Rules

Min-Driver-Width Funny-Fet-2 B F-F-Rules

Min-Load-Length Funny-Fet-4 B F-F-Rules

Mn-Load-Width Funny-Fet-3 B F-F-Rules

Max-Cap-Length Funny-Fet-5 B F-F-Rules

Single-Connection Funny-Fet-6 B F-F-Rules

Explanations:

These are transistors which either violate circuit design rules or make no sense. Note
that all the constants are accessed from the *G-Con Frame.

MAX-DRIVER-LENGTH flags drivers longer that 2-5 microns

MIN-DRIVER-WIDTH flags drivers narrower than 3J microns.

MIN-LOAD-LENGTH flags loads narrower than 3«5 microns.

MAX-CAP-LENGTH flags mos-capacitors which are longer than 15u. Mos-caps
longer than this may cause high-frequency problems due to time constants associated in
forming the inversion layer.

SINGLE-CONNECTIONflags transistors that have no other circuit elements connected
to them. These transistors are probably not very useful.

100

E^. Error Frame: FUNNY-NODE

Error Slot Rule Name Type Program Module
Gate-Only Funny-Node-1 B F-F-Rules

Supply-Gate-Only Funny-Node-2 B F-F-Rules

Clock-Supply-Short Funny-Node-3 B F-F-Rules

Single-Connection Funny-Node-4 B F-F-Rules

Funny-Node-5 B F-F-Rules

Clocking-Flag Dynamic-Qocking-Rule-1 B Gate-Rules
Long-Rc-Flag Long-Rc-Flag B Re-Rules

Explanations:

GATE-ONLY means that a node has only gates connected to it. This isn't a very use
ful part of a circuit.

SUPPLY-GATE-ONLY flags nodes with only gates and supplies connected to it.

CLOCK-SUPPLY-SHORT flags a node which is connected to both the positive end of
a supply and clock.

SINGLE-CONNECTION means that a given node has only one circuit element con
nected to it.

CLOCKING-FLAG means that this node has a probable error due to the following
conditions: The node is precharged, and there is a driver connected to this node in the
configuration of "m2" in Figure E-4. Either driver "m2*s" gate is always held high, or
connected to a clock.

LONG-RC-FLAG checks for noise sensitive cases where a static signal may drive
many gates over a long distance. Since the signal is static, there are no timing constraints
on it and hence the tendency is to use long, high impedance load fets for this application.
If the fets being driven control highly dynamic signals, coupling can dangerously reduce
the "high level on the static signal. RUBICC checks for this by calculating the total node
capacitance and approximating a resistance for the load transistor by using constants stored
in *G-COM An error is flagged if the "RC Time Constant"for the node is greater than a
*G-CO\ constant called "noise-tau".

CKl -H Ml

CKl -H M12

Figure E-4

E.6. Error Frame: Coupling Errors

Error Slot

Xi-Driver-Coupling
Xi-Driver-Coupling-1

Rule Name

Xi-Driver-Coupling-Rule-1
Xi-Driver-Coupling-Ru le- 2

J3SL

101

Program Module
Couple-Rules
Couple-Rules

Explanations:

XI-DRIVER-COUPLING flags an xi-driver (driver with transfer gate) whose ratio of
driver gate area to transfer gate width is below a constant stored in *G-CON (mn-dr-ga-
xf-w). See Figure E-5a. The problem here is that if "ml" is too wide, coupling from
node3 to node4 becomes significant and a serious loss of charge can occur at node4. If a
logical one-level is stored on node4 during a clock phase, "ml" comes out of inversion
when the clock falls. The coupling is just due to the gate-drain overlap capacitance
inherent in any mos-transistor.

XI-DRIVER-COUPUNG-1 flags xi-drivers whose sources are not grounded Consider
the circuit in Figure E-5b. Suppose a high level is stored on node3 during clkl. During
clk2, nodes 2 and 4 will start going low. Capacitive coupling from node2 to node3 and
node4 to node3 due to overlap capacitances and "m2'sH inversion layer will also pull
node3 low, limiting the performance of the circuit The solution to this problem is to put
the xi-driver on the bottom of the fet string with its source connected to ground

_ra

B

Figure E-5

E.7. Error Frame: SUPER-BUFFER-ERRORS

Error Slot

Power-Waste-Flag
Aggressive-Br-Flag
Poor-Input-Drive

Rule Name

Super-Buffer-Flag-1
Super-Buffer-Flag-2
Super-Buffer-Flag-4

TyjEL

102

Program Module
Supbuf-Rules
Supbuf-Rules
Supbuf-Rules

Explanations:

POWER-WASTE-FLAG checks for the following conditions in a super-buffer (Fig
ure E-6a) which may mean that its speed-power-product could be improved:

(W/Lof "ml" > 0.75*W/Lof"m2)or(W/Lof "ml" <0.25 W/Lof "m2")

AGGRESSIVE-BR-FLAG suggests that the beta-ratio of the inverter composed of
"ml" and "m4" (Figure E-6a) could be made smaller (more aggressive) than the
minimum required inverter beta-ratio because a slightly higher zero level on nodel will
make the buffer faster and not be detrimental. If the beta-ratio is too small, it will be
flagged as having a gate beta-ratio error.

POOR-INPUT-DRIVE flags the case where a transfer gate drives the input to a non-
inverting super-buffer. See Figure E-6b. This is a problem because transfer-gate "m5" lim
its the gate of "ml" to the voltage Vl-Vt, where Vt is "m5's" threshold.

Figure E-6

103

E£. Error Frame: DRN-BOOT-ERRORS

Error Slot Rule Name Type Program Module

Phase-Hold-Dow n

Clocking-Error
MosrCap-Backwards
Boot-Node-Not-Active-Low

Longer-Driver-Needed

Drn-Boot-Check-1
Check-Db-Clockin

Check-Db-Mos-Cap
Check-Db-Boot-Node

Check-Db-Hd-Length

B

B

B

B

B

D-Boot-Rules

D-Boot-Rules

D-Boot-Rules

D-Boot-Rules

D-Boot-Rules

Explanations:

PHASE-HOLD-DOWN flags a drain-bootstrap circuit without a pull-down transistor
Cm5" in Figure E-7a) on its output which is clocked by a phase other than the boot-phase.

CLOCKING-ERROR flags a bootstrapper whose predriver is clocked on the same
phase as the boot-phase (clock connected to the drain of the output transistor). This is not
a meaningful circuit.

MOS-CAP-BACKWARDS flags a bootstrapper whose mos-capacitor is connected back
wards. Drain bootstrapper mos-caps must be connected with their gates connected to the
boot node (node4 of Figure E-7a). If connected backwards the circuit doesn't work.

BOOT-NODE-NOT-ACTIVE-LOW means that the boot-node is not actively held low
when the bootstrapper is not supposed to fire. This is illustrated in Figure E-7b. In some
technologies, capacitive ratios are such that the bootstrapper may fire under this condition
even if node2 was initially precharged low during clkl.

LONGER-DRIVER-NEEDED means that the active hold down to the drain-
bootstrapper ("m3" in Figure E-7a) needs to be made longer. This is because the boot-node
(node4 in Figure E-7a) voltage goes above the supply voltage and a longer fet is needed to
avoid the occurrence of punch-through.

Kl 9

-Q-\

Figure E-7

_Q

CK2

B

E.9. Error Frame: Register Errors

Error Slot

Critical-Node-Flag
Clocking-Error

Internal-Connection

Rule Name

Reg-Critical-Node-Flag
Reg-Clocking-Check
Reg-Clocking-Check-2
Reg-Internal-Con-Check

Tvjpe.
B

B

B

B

104

Program Module
Reg-Rules
Reg-Rules
Reg-Rules
Reg-Rules

Explanations: (see Figure E-8)
CRITICAL-NODE-FLAG flags node2 in Figure E-8. This node is critical because it is

sensitive to coupling due to the fact that this register's refresh transistor ("m9") is con
nected to a clock phase, rather than an an inverted set signal. Care must be taken in the
layout to keep extraneous signals from coupling to this node.

CLOCKING-ERROR flags registers that are not clocked correctly. It means that the
register violates one of the following rules

The set transistor ("m2") must be clocked by the same phase as the
core input transistor ("m3").

The recirculate transistor Cm9") must be clocked on the same phase
as the second stage input ("m7").

The recirculate transistor ("m9) and the input transistor ("m2") must
be clocked on different phases.

The input transistor ("m2") and the output transistor ("m8") must
be clocked on the same clock phases.

INTERNAL-CONNECTION refers to errors caused by extraneous transistors connect
ing the internal nodes of the register cell together, and thereby not allowing the circuit to
function as a register celL

SET

—Q-^r-Q

105

E.10. Error Frame: Race Errors

Error Slot Rule Name Type Program Module

Precharge-Loss
Input-Skew-Flag

Race-Condition-1
Dynamic-Xor-Race-Condition

B

B

Race-Cond
Race-Cond

Explanations:

PRECHARGE-LOSS can occur on the output of a dynamic gate if driven by a static
gate under the following condition: Static gate "A" drives the input of static gate "B".
Static Gate "B" drives the input to dynamic gate "C\ Gates "A" and "B" are held low
during the precharge phase of dynamic gate "C". A race condition occurs when clk2 goes
low which could turn on dynamic gate "C" for a short time and thereby erroneously
discharge gate *Csm output. This situation is illustrated in Figure E-9a.

INPUT-SKEW-FLAG flags gates whose correct operation is sensitive to the timing
and / or rise and fall times of their inputs. This is illustrated by the dynamic xor-gate in
Figure E-9b. If nodes 2 and 3 don't fall within a certain amount of time relative to each
other (determined by process parameters and layout geometries), node4 which was
intended to stay high in this case can go low.

VI

SflTE C

B

Figure E-9

106

E.11. Error Frame: Clock-skew-errors

Error Slot Rule Name Type Program Module

Clock-Skew-Flag-1

Qock-Skew-Flag-2

Clock-Skew-Rule-1

Clock-Skew-Rule-2
Clock-Skew-Rule-3

B

B

B

Race-Cond
Race-Cond
Race-Cond

Explanations:

CLOCK-SKEW-FLAG-1 flags any transfer gate whose drain or source is driven by a
bootstrapper as sensitive to clock skew. This skew might come from distribution delays
on the chip or from timing delays inherent in the bootstrapper itself. This condition is
illustrated in Figure E-lOa. If there exists significant clock skew, node4 could be errone
ously charged or discharged before the transfer gate ("m2") is turned off.

CLOCK-SKEW-FLAG-2 flags two drivers who are connected in series, one whose
gate is connected to a clock, and the other whose gate is connected to a drain bootstrapper.
This is sensitive to the same problem as described above. This case is illustrated in Figure
E-l Ob, where "ml" is the drain-bootstrapper.

CK2
CKl

CK2
CKl

B

Figure E-10

E.12. Error Frame: Charge-share Errors

Error Slot

Feedback-Glitch-Flag
Feedback-Glitch-Error

Rule Name

Charge-Share-2
Charge-Share-1

Type

B

B

107

Program Module
Cshare-Rules
Cshare-Rules

Explanations:

FEEDBACK-GLITCH-FLAG implies that the nodes involved are sensitive to the
feed-back-glitch error described next. However, RUBICC performed some calculations and
the circuit seems to be OK. But be careful, this is a really nasty problem to find on a
fabricated chip because it's processing and voltage dependent.

FEEDBACK-GLITCH-ERROR means RUBICC has calculated that the nodes involved
will probably have this problem under some process and voltage conditions. The
schematic in Figure E-11 is sensitive to the "glitch". Here's what happens. Assume that
node3 is high at the end of clkl and that somehow capacitor "cl" got charged and hence
node5 is also high at the end of clkl. The designed intention of the circuit is for node4 to
stay low during clk2 under this circumstance. Depending upon the ratios of the W/L's of
"m3" and "m6' and the relative values of capacitor "cl" and the parasitic capacitance
"c2", node4 can glitch significantly above the threshold voltage when clk2 goes high. If
node4 gets above "m4's "Vt", "m4" turns on, discharging node3, which allows node4 to go
high, causing the circuit function improperly (die).

RUBICC performs the following calculations to determine the severity of this prob-'
lenr If the the W/L of "m3" is 4 times bigger that the W/L of "m6" then the maximum
glitch would be 0.2 times the supply voltage. For a 5v supply and a 1 volt threshold this
should be OK. Likewise if the value of "c2" is 4 times bigger that the value of "cl" then
the maximum glitch would be 1 volt also. Under either of these circumstances, RUBICC
gives the glitch flag. If neither of these condition are met, RUBICC gives the error flag.

_o
Cl

Figure E-11

108

E.13. Error Frame: Input-pad-errors

Error Slot Rule Name Type Program Module

Missing-Protection-Device
Undershoot-Flag

Input-Protection-Check
Input-Undershoot-Check

B

B

Pad-Rules

Pad-Rules

Explanations:

MISSING-PROTECnON-DEVICE flags any chip input pad without a protection dev
ice configured as "ml" in Figure E-12a. Without this device, the gate of "m3" will not be
protected against electrostatic zap and will probably cause the whole chip to die in assem
bly or be subject to infant mortality.

UNDERSHOOT-FLAG points out that the voltages on input pads of chips sometimes
will undershoot below ground Under these circumstances, transistors whose sources or
drains are connected to the pad can inadvertently turn on. In Figure E-l 2b, if during
clk2, the input pad went negative, it could turn on transistor "m3" and wrongly
discharge node3.

B

Figure E-l2

109

Appendix F - RUBICC Source Code

110

RUBICC Source Code Modules

Main-l^l . 111

Tech-File^l 114

Frames-1.si . 115

Frames-2^1 120

Init-Funcs^l 123

Fclass-Rules^l — 128

Fclass-Funcs^l ~ 130

S-P-Fet^l 132

Comb-Structs.sl 134

Inv-Rulesj>l 137

Inv-Funcs^l 139

F-F-Rules^l 141

Gate-Rules^l 143

Gate-Fun cs^l 147

Couple-Rules^l 148
Clking-Rules^l 149
Clking-Funcs^l 153
RC-Rules^l 155

RC-Funcs.sl 155

Supbuf-Rules^l 157
Supbuf-Funcs^l ; ~ 159
D-Boot-Rulesj»l 160

D-13«vu-Funcs^l 162

Reg-Rules^l 164
Reg-Funcs^l 166
Strut t-Rules^l 167

Struct-Funcs^l ~ 167

Cshare-Rules^1 169

Cshare-Funcs^l 169

Race-Conds\ 170

Race-Funcs^l 172

Pad-Rules^1 , 173

Ill

.«.......«........«.,pj££. MAJN-23£,*"**"*»"

(setq •input-functions nil)

»;;;;;;;;;;;;»;;;;;;.' main program control function ;;;;;;;;;;;;;;;;;;;;,v

check-circuit
(defun check-circuit (net-list) ,

(setq •circuit-name 'unnamed)
(setq gctime!* 0)
(setq "clka nilXsetq •clkb nilXsetq *clkc nilXsetq *clkd nil)
(setq "longrc0)
(let((s-time (time)))

(inpu t-functions)
(clear-frame-syms)
(input-frames-rules)
(make-pop-frame) ; push frame marker onto 'frames'

; create initial circuit frames
(patom "BUILDING CIRCUIT FRAMES"(tab 30)Xterpri)
(create-i-frames net-list)
(patom "CIRCUIT-NAME: "Xpatom •circuit-nameXterpri)
(patom "88 88 88"Xterpri)

; transistor classification
(solve-all t?elements src-load ?x))
(solve-all t?clements drc-load ?x))
(solve-all <?elements ckc-load ?x))
(solve-all <?elements oth-load ?x)) ; must be last load solve
(solve-all <?transistor s-d-reversed ?x))
(solve-all t?elements xi-driver ?x))
(solve-all t?elements precharger ?x))
(solve-all t?elements pup-driveT ?x))
(solve-all-dm-boots)
(solve-all X?elements reg-driver Tx)) ; mustbe last driver solve

; series-parallel combinations
(find-parallel-fets)
(find-series-fets)
(cond((or(fchildren 'series-stTuctXfchildren 'parallel-sir'"-i»

(combinc-structs)))
(find-other-structs)

; check circuit for errors
(solve-«rror-frame 'funny-fet)
(solve-erTor-frame *funny-node)
(solve-all t?elements inverter ?x))
(solve-all <?elements static-gate ?x))
(solve-all <?elements dynamic-gate ?x))
(solve-all <?elements super-buffeT ?x))
(solve-all-drain-bootst raps)
(solve-a11-reg-ce1Is)
(solve-«rror-frame *race-«rrors)
(solve-error-frame 'gate-errors-b)
(solve-error-frame 'charge-share-errors)
(solve-error-frame 'drn-boot-errors)
(solve-error-frame 'input-pad-errors)
(solve-all-clk-skew -errors)

; print results
(show -circuit-errorsX terpri)
(show-all-gates-and-circuitsXtcrpri)
(show-not-checkedXterpri)
(print-stats)))

main-J utility functions

input-functions

(defun input-functions 0
(cond((null •input-functions)

(setq •input-functions t)
(dskin "init-funcsjl")
(dskin "inv-funcsjl")
(dskin "gate-funcsjl")
(dskin "s-p-fetsl")
(dskin "comb-structsjf)
(dskin "fclass-funcs^D
(dskin "clking-funcs-sl")
(dskin "rc-funcs-sl")
(dskin "supbuf-funcs^f)
(dskin "d-boot-funo-sl")
(dskin "reg-funcwl")
(dskin "struct-funcs-sl")
(dskin "cshare-funcsf)
(dskin "race-funcisl")

)))

(defun input-frames-rules 0
(cond((null •] Frames* J read in generic frames

(fresetJ1

(patom "LOADING GENERIC FRAMES"(tab 30)XteTpri)
(accept-forward-references)
(dskin "tech-filcsl")
(dskin "frames-2jD
(dskin " frames-1 .si")
(dskin "frames 3-sl")
(patom ^LOADING RULES"(tab 30)XteTpri)
(dskin "inv-rules-sO
(dskin "f-f-rules-sl")
(dskin "gate-rules-sl")
(dskin "fclass- rules^D
(dskin "couple-rules-sl")
(dskin "clking-rules-sl")
(dskin "rc-rules-sl")
(dskin "supbuf-rules-sl")
(dskin "d-boot-rules-sl")
(dskin'"reg-rules-sl")
(dskin "race-condjl")
(dskin "struct-rules.sl")
(dskin "cshare-rules^D ; charge-sharing-rules
(dskin 'wpad-rules^!")
(end-forward-references)
(patom "BUILDING RULE SYSTEM"(tab 30)XteTpri)
(terpri)
(build-system))

(t (clear-fTarn esyms)
(pop frames)
(clear-errors)
(clear elementsl)
(build-svstem/J))

(defun pop-frames 0 ; remove all frames instantiated after 'pop'
(let((frame-list •frames*))
(while (and (car frame-listXneq (setq frame (car frame-list)) "pop*))

(setq frame-list (cdr frame-list))
(fremove frame))))

(defun make-pop-frame 0 ; add 'pop' onto 'frames'

112

input-frames-rules

pop-frames

make-pop-frame

113

(cond((null (fTamep '"pop*))
(finstantiate 'elements '*pop*))))

clear-elements 1
(defun clear-elementsl 0 ; clear the elements1 frame

(let ((slot-list (fslots 'elements l)Xe-slot nil))
(while (setq e-slot (car slot-list))

(setq slot-list(cdr slot-list))
(cond((and(neq e-slot 'akoXneq e-slot 'dummy))

(fremove 'elementsl e-slot))))))

clear-errors
(defun clear-errors 0 ;clear all error frames

(let ((frame-list (fchildren 'erTors)Xe-frame nilXslot-list nil)
(e-slot nil))

(while (setq e-frame (car frame-list))
(setq frame-list (cdr frame-list))
(fremove 'thing 'instance "Svalue e-frame) \demon removese-frame ako
(setq slot-list (delete 'ako (fslots-with-values e-frame)))
(cond ((null slot-listXnext)))
(while (setq e-slot (car slot-list))

(setq slot-list (cdr slot-list))
(fremove e-frame e-slot 'Svalue)))))

solve-error-frame
(defun solve-error -frame (s-frame)

(let ((slot-list (delete 'ako (fslots s-frame))Xslot nil))
(while (setq slot (car slot-list))

(setq slot-list (cdT slot-list))
(solve-all ts-frame .slot ?x);)))

my-freset
(defun my-freset 0

(clear-frame-syms)
(fresct))

; causes finstantiate naming to start over from "i"
clear-frame-syms

(defun clear-frame-syms 0
(let ((fr-list f rames'Xfr nil))

(while (setq fr (car fr-list))
(setq fr-list (cdr fr-list))
(put fr 'next-id-number nil))))

toggle-rule-msgs
(defun toggle-rule-msgs 0

(cond(*suppress-rule-messages* (setq 'suppress-rule-messages* nil))
(t (setq •suppress-rule-mcssages" t))))

toggle-skew-flag
(defun toggle-skew fla^; <)

(cond((fvo "g con 'elk skew flag)
(fTeplace '*g con 'elk-skew-flag 'Svalue nil))

(t(freplace "g-con elk skew-flag "Svalue t))))

114

.F71£; TECH-FILESL '""

; Technology Frame for 5v only NMOS, 2 phase non-overlapping clocks

*g-con
(deframe *g-con

(ako(Svalue(thing)))
ZZ transistor constants ;;;;;;;;;;;

(mx-dT-l($value(2.5))) ; maximum driver length
(mn-dr-w(Svalue(3))) ; minimum driver width
(mn-ld-l(Svalue(3))) ; minimum load length
(mn-ld-w($value(3-5))) ; minimum load width
(mx-cap-KSvalueGf))) ; maximum mas-cap length
(std-ld-curTent(Svalue(0.050))) ; current for load with w/l » 1 (ma)
(dr-eq-ratio ; convertdriver l-div-v to load l-div-w

(Svalue(3)))
»;:; gate constants ,*;.*;;;;;»;;»;;
(st-nand-sl(Svalue(3))) ; maximum static nand string length
(br-src-load($value(4.0))) ; beta ratio for source connected load
(br-drc-load($value(6.0))) ; beta ratio for drain connected load
(br-ckc-load($value(6.0))) ; beta ratio for clock connected load
(br-oth-load(Svalue(4.0)))
(xi-dr-wrf(Svalue(0.9))) ; xi-driver width reduction factor
(mn-dr-ga-xf-w(Svalue(32))) ; minimun driver gate-area to xfer-gate

width

;;;;; gate and overlap capacitances ;;;;;;;
(gox<ap (Svalue(910e-6))) ; gate area capacitance (pf/u 2)
(gox-overlap-cap($value(200e-6))) ;gate overlap capacitance (pf/u)

z;;; dynamic circuit constants
(noise-tau(Svalue(20))) . ; time constant for noise(ns)

zz; super-buffer constants
(mn-sup-buf-pwr-ratio ; min ratio of predriver w/l to driver w/l

($value(0.25)))
(mx-sup-buf-pwT-ratio ; max ratio of predriver w/l to driver w/l

(Svalue(0.75)))
(mx-sup-buf-agg-br ; max predriver aggressive beta-ratio

(SvalueC(' 0.9 (fvo "g-con 'br-src-load)))))
(mn-sup-buf-agg-br ; min predriver aggressive beta-ratio

(SvalueC(' 0.8 (fvo '•g-con T>r-STC-load)))))
;;;;; charge-share-ratios
(dr-cshare-ratio ; (/ Uw of pull-down l/w of xfer-gate)

(Svalue(4.0))) ; couple back at most 1/5 of voltage
(cap-cshare-ratio ; (/cap of driven node cap of couple-node)

(Svalue(4.0))) ; couple back at most 1/5 of voltage
;::;; drain-bootstrap constants
(db-ahd-l(Svalue(2^))) ; drain bootstrap active holddown width

:;;;; clock skew sensitivity
(clk-skew-flag(Svalue(t))) ; true if clock skew is a problem

)

'FILE FRAMES-1SL

(deframe transistor
(ako(Svalue(thing)))
(d-node)
(g-node)
(s-node)
(width)
(length)
(l-div-w)
(string-1)
(clk-input($ask(dont)))
(elk-class)
(class)
(s-d-reversed)
(trigger)
(fb-tran-flag) ; t if transistor is used as a feedback transistor
(o-ins($ask(dont))) ; used for drain bootstraprules
(check)
(status)) ; ($if-added((my-print:frame rvalue)))))

(deframe load
(ako($value(transistor))))

(deframe src-load
(ako($value(load)))
(instance(Sif-added((fput rvalue 'status Rvalue 'free)))))

(deframe ckc-load
(ako(Svalue(load)))
(instance(Sif-added((fput rvalue 'status Rvalue 'free)))))

(deframe drc-load
(ako($value(load)))
(instance($if-added((fput rvalue 'status "Svalue 'free)))))

(deframe oth-load
(ako($value(load)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free)))))

(deframe driver
(ako($valuc(transistor))))

(deframe rcg-driver
(ako<Svalue(rfriver)))
(instance($if-addcd((fput rvalue status 'Svalue 'fTee)))))

(deframe xi-driver

(ako(Svalue(driver)))
(instance($if-addcd((fput rvalue 'status "Svalue Tree))))
(xfer-gate) iSif-addedftfput rvalue 'status 'Svalue 'in-use))))
(fb-tran) iSif-added((fput rvalue 'status 'Svalue 'in-use))))
(in-node)
(ga-xfw-ratio)) ; gate area to xfer-*ate width ratio

(deframe mos-cap
(ako($value(transistor)))

115

transistor

load

src-load

ckc-load

drc-load

oth-load

driver

reg-driver

xi-driver

mos-cap

(instance(Sif-added((fput rvalue 'status 'Svalue "free)))))

(deframe precharger
(ako(Svalue(driveT)))
(instance($if-added((fput rvalue 'status "Svalue 'free))))
(pre-phase)
(supply))

(deframe pup-driver
(ako(Svalue(driveT)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(supply))

(deframe drn-boot
(ako(Svalue(driveT)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(s-node($ask(dont)))
(otheT-clk-hold-down

(Sif-added((freplace rvalue 'status "Svalue 'in-use)))
(Sask(dont)))

(boot-phase(Sask(dont)))
(xfeT-gate)
(fb-tran))

(defTame one-port-element
(ako(Svalue(thing)))
(node-num)
(prot-device(Sif-added((freplace rvalue 'status "Svalue 'in-use)))

(Sask(dont))))

(deframe pad
(ako($value(one- oort-element))))

(deframe two-pon-element
(ako($value(thing)))
(pos-node)
(neg-node)
(e-value))

116

precharger

pup-driver

drn-boot

one-port-element

pad

two-port-element

(deframe active-two-port-element
(ako(Svalue(two-port-element))))

(deframe passive-two-pon-element
(ako($value(rwo-port-element))))

(deframe cap
(ako(Svalue(passive-two-port-element))))

(deframe supply
(ako(Svalue(active-two-pc"-! -element))))

(deframe clock
(ako(Svalue(active-two-port -element))))

(deframe node
(ako($value(thing)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(number)

active-two-port-element

passive-two-port-element

cap

supply-

clock

node

117

(status) ;class/aspect doc: (class(allowable aspects))
(class(Sask(dont))) i(static(load push-pull)) (dynamic-hiZ(clk-phase))
(class-KSask(dont))) iclocked-always(clock-phase)) (clocked-conditional
(aspect(Sask(dont)) ; (clock-phase)) (precharge (clock-phase))

($if-added((aspect-print rframe rvalue))))
; (always-highisupply)) (gnd (gnd)))

(trans-struct) ; all transistors with what part connected
(trans) ; all transistors connected
(gate) : all transistorswith gateconnections
(src-drn) ; all transisitors with source or drain connections
(load) ; all load transistors connected
(driver) ; all drivers connected to node
(struct) : all structures connected to node
(cap) : capacitors connected
(mos-cap) ; mos capacitors connected
(supply) ; powersupplyies connected
(clock) : clocks connected
(gate-cap) ; capacitace of all gates connected to node (upf)
(static-cap) ; capacitance of all capacitors tied to gnd or supply
(clka-cap) ; capacitance of node to clka
(clkb-cap) : capacitance of nodeto clkb
(clkc-cap) ,• capacitance of node to clkc
(clkd-cap) : capacitance of nodeto clkd
(src-drn-cap) ; capacitance of node to all sources and drains
(other-cap) : capacitance of node to other places
(total-cap) : sumof all capacitances
(pad)) ; i/o pads connected

circuit
(deframe circuit

(ako($value(thing))))

gate
(deframe gate

(ako($value(thing)))
(beta-ratio)
(trigger)
(status)
(pull-up (Sif-added((freplace rvalue 'status "Svalue 'in-use))))
(pull-down ($if-added((make-status-in-use rvalue))))
(in-node)
(out-node)
(supply-node)
(supply)
(struct(Sif-added((freplace rvalue 'status "Svalue 'in-use))))
(dummy))

static-gate
(deframe static-gate

(ako($value(gate))))
dyna-gate

(deframe dyna gate
(ako($value(gate))))

dynamic-gate
(deframe dynamic-gate

(ako($value(dyna-gate)))
(instance($if-addcd((fput rvalue 'status "Svalue 'free))))
(pre-phase)
(true-phase))

dynamic-xc-xor
(deframe dynamic-xc-xor

(ako(Svalue(dyna-gate)))
(instance($if-added((fput rvalue 'status "Svalue 'free))))

118

(pre-phase)
(true-phase))

inverter
(deframe inverter

(ako(Svalue(static-gate)))
(xfer-gate))

reg-inverter
(deframe reg-inverter

(ako($value(inverter)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free)))))

xi-inverter
(deframe xi-inverter

(ako(Svalue(inveTter)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(xfer-gate(Sif-added((freplace rvalue 'status Rvalue 'in-use))))
(clock-node)
(clock))

clkout-inverter
(deframe clkout-inverter

(ako(Svalue(inverter)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free))))
(xfeT-gate(Sif-added((freplacervalue 'status "Svalue 'in-use))))
(clock-node)
(clkgate($if-added((freplace rvalue 'status "Svalue "in-use))))
(clock))

nor-gate
(deframe nor-gate

(ako(Svalue(static-gate)))
(instance($if-added((fput rvalue 'status "Svalue 'free)))))

nand-gate
(deframe nand-gate

(ako(Svalue(static-gate)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free)))))

other-gate
(deframe other-gate

(ako(Svalue(static-gate)))
(ia-!tance(Sif-added((fput rvalue 'sutus "Svalue 'free)))))

static-xc-xor
(deframe static-xc-xor

(ako(Svalue(static gate)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free)))))

struct
(deframe struct

(ako< $value< thing >>i
(status)
(l-div-w)

(string 1) : length of fet s'ring
(node KSask(doni)))
(node-2(Sask(dont)))
(elk-inpu t(Sask(dont)))
(clk-class(Sask(dont)))
(class)
(elkinfc-check)
(substruct(Sif-added((make-status-in-use rvalue))))
(trans(Sif-added((make-status-in-use rvalue)))))

(deframe parallel-struct
(ako($value(struct)))
(instance(Sif-added((fputrvalue 'status "Svalue 'free)))))

(deframe series-struct
(ako(Svalue(struct)))
(instance(Sif-added((fput rvalue 'status "Svalue 'free)))))

(deframe super-struct
(ako(Svalue(stTuct)))
(instance(Sif-added((fput rvalue 'status Rvalue 'free)))))

(deframe xc-xor-struct
(ako($value(struct)))
(instance($if-added((fput rvalue 'status "Svalue 'free))))
(in-node)
(out-node))

119

parallel-struct

series-struct

super-struct

xc-xor-struct

120

.......................F/££ FRAMES-23L

elements
(deframe elements

(ako(Svalue(thing)))
(dummy)
(nodes)
(driver) (reg-dri verXxi-driverXprechargerXpup-driverXdbl)

(drn-boot($ask(dont)))
(load)(sTc-loadXckc-loadXdrc-loadXoth-load)
(mos-cap)
(dynamic-gate)
(supply)
(clock)
(cap)
(inverter) (simple-inverterXd-i-inverter)
(static-gate)
(super-buffer)
(reg-coreXreg-cell)
(drain-bootstrap)
(struct)
(series-struct(Sif-added((fput rframe 'struct 'Svalue rvalue))))
(parallel-struct(Sif-added((fput rframe 'struct "Svalue rvalue))))
(super-struct(Sif-added((fput rframe 'struct Rvalue rvalue))))
(xc-xor-struct(Sif-added((fput frame 'struct "Svalue rvalue)))))

elements 1
(deframe elements1

(ako(Svalue(elements)))
(dummy(Svalued))))

errors
(deframe errors

(ako(Svalue(thing))))

inv-errors
(deframe inv-errors

(ako(Svalue(eTrors)))
(dummy)
(beta-ratio(Sask(dont)))
<coupling($ask(dont)))
(input<locking(Sask(dont))))

gate-errors
(deframe gate-errors ; filled by forward chain rules

(ako(Svalue(errors)))
(nand length(Sask(dont)))
(beta ratio(Sask(dont)))
(dynamic clocking*'Sask(dont)))
(dynamic-clocking KSasklriom))*dynamic-clocking-2(Sask(dont)))
(dynamic-clocking 3(Sask(dom)jKriynamic-clocking-<H$ask(dont)))
(race condition($ask(dont))))

gate-errors-b
(deframe gate-«rrors-b ; filled by backward chain rules

(ako(Svalue(eTTors)))
(feedback-desirable(Sask(dont)))
(input-clocking-«tTor(Sask(dont))))

funny-fet
(deframe funny-fet

(ako(Svalue(errors)))

(max-driver-length(Sask(dont)))
(min-driver-width($ask(dont)))
(min-load-lengt h(Sask(dont)))
(min-load-width($ask(dont)))
(max-cap-length(Sask(dont)))
(single-connection(Sask(dont))))

(deframe funny-node
(ako($value(eTTors)))
(gate-only($ask(dont)))
(supply-gate-only($ask(dont)))
(clock-supply-short($ask(dont)))
(single-connection(Sask(dont)))
(clocking-flag(Sask(dont)))
(long-rc-flag($ask(dont))))

(deframe coupling-errors
(ako(Svalue(eTTors)))
(xi-driv er-coupling($ask(dont)))
(xi-driver-coupling-1(Sask(dont))))

(deframe net-errors
(ako($value(eTrors)))
(clocks($ask(dont))))

(deframe super-buffer-errors
(ako($value(eTrors)))
(power-waste-flag(Sask(dont)))
(aggTessive-br-flag(Sa.sk(dont)))
(poor-input-drive(Sask(dont).)))

(deframe drn-boot-errors
(ako($value(eTrors)))
(phase-hold-down($ask(dont)))
(clocking-error($ask(dont)))
(mos-cap-backwards(Sask(dont)))
(boot-node-not-active-low($ask(dont)))
(longer-driver-needed(Sask(dont))))

(deframe register-errors
(ako($value(eTTors)))
(critical-node-flag (Sask(dont)))
(clocking-error (Sask(dont)))
(internal-connection (Sask(dont)»)

(deframe race errors
(ako(Sval ue(errors)))
(precharge loss(Sask(dont)))
(input-skew- flag(Sask(dont))X)

(deframe elk-skew-errors
(ako($value(eTTors)))
(clock-skew-flag-l(Sask(dont)))
(clock-skew-flag-2($ask(dont))))

121

funny-node

coupling-errors

net-errors

super-buffer-errors

drn-boot-errors

register-errors

race-errors

clk-skew-errors

122

charge-share-errors
(deframe charge-share-errors

(ako(Svalue(errors)))
(feedback-glitch-flag($ask(dont)))
(feedback-glitch-erTor(Sask(dont))))

input-pad-errors
(deframe input-pad-errors

(ako(Svalue(erTors)))
(missing-protection-device(Sask(dont)))
(undershoot-flag(Sask(dont))))

...M.................FILE: INIT-FUNCS.SL

(defun create-i-frames(nct-list)
(mapc net-list "(lambda(x)

(cond((circuit-name x)
(setq •circuit-name (car x))
(patom (car x)XterpTi))

((transistor xXmake-tran x))
((equal (e-type x) 'padXmake-pad x))
(t(make-element x))))))

(defun transistor (x)
(or(equal(e-type x) 'load)

(equal(e-type x) 'driver)))

(defun circuit-name (x)
(equal (cadr (explode x)) '•))

(defun make-tran (x)
(let ((t-name (name x))

(e-type (cond((equal (drain xXsource x)) 'mos-cap)
(t(e-type x)))))

(finstantiate e-type t-name)
(patom e-typeXpatom " "Xpatom t-nameXterpri)
(fput 'elementsl e-type "Svalue t-name)
(fput t-name 'd-node "Svalue (drain x))
(fput t-name 'g-node "Svalue (gate x))
(fput t-name 's-node "Svalue (source x))
(fput t-name 'width "Svalue (chan-width x))
(fput t-name 'length "Svalue (chan-length x))
(fput t-name 'class "Svalue'unclassified)
(fput t-name 'l-div-w "Svalue (/ (• 1.0(chan-length x))

(• 1.0 (chan-width x))))
(fput t-name 'string-1 "Svalue 1)
(fput t-name 'check "Svalue 'unchecked)
(make-t-nodc t-name (drain xXgate xXsoutoc x))))

(defun make-element (x)
(let((e-name (name x)))

(finstantiate (e-type x) e-name)
(patom (e-type x)Xpatom " "Xpatom enameXterpri)
(fput 'elements! (e-type x) "Svalue e name)
(fput e-name 'pos-nodc 'Svalue (pos node x))
(fput e-name 'neg-node 'Svalue (neg node x))
(fput e name 'e value 'Svalue (c value x;)
(condttequal (e-type x) 'clock)

(condKoKequal e name 'clkaX equal e-namc *clkb)
(equal e name *clkcXequal e name *clkd))

(fput 'net-errors 'clocks "Svalue e-name))
((null 'clkaXsetq *clka e-nome))
((null 'clkbXsetq *clkb e-name))
((null 'clkcXsetq "clkc e-name))
((null *clkdXsetq 'clkd e-name))
(t(fput 'net-errors 'clocks "Svalue e-name)))))

(make-en (e-type x) e-name(pos-node x) 'pos)
(make-en (e-type x) e-name (neg-node x) 'neg)))

123

create-i-frames

transistor

circuit-name

make-tran

make-element

make-t-node

124

(defun make-t-node (t-name d-node g-node s-node)
(make-tn t-name d-node 'drain)
(make-tn t-name g-node 'gate)
(make-tn t-name s-node 'source))

make-tn
(defun make-tn (t-name port-node port-type)

(let ((node-name (make-node-name port-node))
(tmpl nil))

(cond ((not (framep node-name))
(finstantiate 'node node-name)
(fput node-name 'numbeT "Svalue port-node)
(fput 'elementsl 'nodes "Svalue port-node)))

(setq tmpl (assoc t-name(fvalues-only node-name 'trans)))
(fremove node-name 'trans-struct "Svalue tmpl)
(fput node-name 'trans "Svalue t-name)
(fput node-name e-type "Svalue t-name)
(fput node-name (cond((equal port-type 'gate) "gate)

(t 'src-drn)) "Svalue t-name)
(fput node-name 'trans-struct "Svalue

(cond ((null tmpl) <.t-name ,port-type))
(t <,(car tmpl) .port-type ,(cadr tmpl)))))))

make-en
(defun make-en (e-type e-name port node port-type)

(let ((node-name (make-node-name port-node))
(tmpl nil))

(cond ((not (framep node name))
(finstantiate "node node-name)
(fput node-name "number "Svalue port-node)
(fput 'elementsl 'nodes "Svalue port-node)))

(setq tmpl (assoc e-name (fvalues-only node-name e-type)))
(fremove node-name e-type "Svalue tmpl)

. (fput node-name e-type "Svalue
(cond ((null tmpl) "(.e-name ,port-type))

(t X.(car tmpl) .port-type .(cadr tmpl)))))))

single-connection
(defun single-connection (node-number)

(let((node (make-node-name node-number)))
(<(+(length(fvalues-only node'trans))

(length(fvalues-only node'supply))
(length(fvalues-onlv node 'clock)))

2)))

make-pad
(defun make-pad (x)

(let ((p-name (implode *(.@(explode(name x)) - p a d)))
(node-num (caddT x)Xnode (make-node-name (caddr x))))

(finstantiate 'pad p-name)
(patom p-nameXterpri)
(fput p-name 'node-num "Svalue node-num)
(conri ((not (framep node))

(finstantiate 'node node)
(fput node 'number "Svalue node-num)
(fput 'elementsl 'nodes "Svalue node-num)))

(fput node 'pad "Svalue p-name)))

; the rest of these are Utility functions that are used throughout the program

125

my-solve-all
(defun my-solve-all (clause)

(let((s-list nilXr-frame nil)
(frame (car clause)Xslot (cadr clause)Xval (caddr clause)))

(cond((equal frame ?elementsXsetq r-frame 'elementsl))
(t (setq r-frame frame)))

(while (solve "(.frame .slot ,val))
(cond ((null s-listXsetq s-list (fvso r-frame slot)))

(t (setq s-list (cons (fvo r-frame slot) s-list))))
(fremove r-frame slot "Svalue))

(cond (s-list (fput-values r-frame slot s-list)))
s-list))

make-node-name
(defun make-node-name (x)

(implode *(n o d e ,@(explode x))))

; simple macro's for parsing the net-list

(dm e-type (1)
"(car Xcadr l)))

(dm name (1)
'(cadr Xcadr 1)))

(dm drain (1)
"(caddr .(cadr 1)))

(dm gate (1)
•(cadddr .(cadr 1)))

(dm source (1)
•(caddddr .(cadr 1)))

(dm chan-width (1)
Xcadddddr .(cadr 1)))

(dm chan-length (1)
<caddddddr Xcadr 1)))

(dm pos-node (1)
<caddr .(cadr 1)))

(dm neg-node(1)
"(cadddr .(cadr 1)))

(dm e-value (1)
<caddddr .(cadr 1)))

: needed macros not in PSL

(dm caadadar (x)
KcaaKcdadar Xcadr x))))

(dm caadadr (x)
"(caar(criadr Xcadr x))))

; macros for abbreviations of hprl functions:

: f value-only

(dm fvn(l)

tfvalue-onlv /cadr 1) .(caddr 1)))

: fvalues-only

(dm fvso (1)
"(fvalues-only .(cadr 1).(caddr 1)))

: symbol manipulation functions

newsym
(defun newsym (symb)

126

(let ((numb (get symb 'num)))
(cond ((null numbXsetq numb 0)

(put "syms* 'sym (cons symb (get '*syxns* 'sym)))))
(implode (append (explode symb)

(cons *- (explode (put symb 'num (+ numb l))))))))

clear-new-syms
(defun clear-new-syms (x)

(let ((sym-list (get x 'sym)Xsymbol nil))
(while (setq symbol (car sym-list))

(setq sym-list (cdT sym-list))
(remprop symbol 'num)
(remprop x 'sym))))

: print statistics on the program
print-stats

(defun print-stats 0
(patom "garbage collection time = ")

(patom (/ (/ gctimei* 1000.0) 60.0)Xpatom " min") (terpri)
(patom "total run time* ")

(patom (/ (/ (- (time) s-time) 1000.0) 60.0))
(patom " min" Xterpri))

; recursively finds all transistors in a gate or structure
get-trans

(defun get-trans (x)
(cond ((null x) nil)

((atom x) (cond ((akop x 'transistorXlist x))
((or(akop x "series-structXakop x 'parallel-struct))
(fvso x 'trans))

((and (akop x 'xc-xor-structXnuIl(fvso x 'substruct)))
(fvso x 'trans))

((akop x "gateXappend(fvso x 'pull-up)
(append(fvso x 'pull-downXfvso x 'xfer-gate))))

((akop x "super-buffer)
(append (fvso x 'predriverXfvso x 'driver)))

((akop x 'drain-bootstrap)
(append
(append (fvso x 'predriverXfvso x "dm-booO)
(append (fvso x 'mos-cap)

(fvso x 'otheT-clk-hold-dow n))))
((akop x 'reg-cell)

(append (fvso x 'reg-core)
(append(fvso x 'in-stageXfvso x 'out-stage))))

((akop x 'reg-core)
(append (fvso x 'in-stage)

(append(fvso x 'out-stage Xfvso x 'rec-stage))))
(t(get-trans (fvso x 'substruct)))))

(t(append (get trans (car x)Xget-trans (cdr x))))))

; will eventually be part of the user interface
phows all transistors in a given circuit

show-me
(defun show-me (x)

(cond((framep xXget trans x))
(t(patom xXpatom " is not a frame"Xterpri))))

show-all-gates
(defun show-all-gatesO

(let ((g-list (fringe 'gate)Xg nilXe-list nil))
(while (setq g (car g-list))

(setq g-list (cdr g-list))

(setq e-list (show-me g))
(cond (e-list

(patom g(tab 2)Xpatom
(patom e-list)
(terpri))))))

(defun show-all-circuitsO
(let ((g-list (fringe 'circuit)Xg nilXe-list nil))

(while (setq g (car g-list))
(setq g-list (cdr g-list))
(setq e-list (show-me g))
(cond (e-list

(patom g(tab 2)Xpatom " ")
(patom e-list)
(terpri))))))

127

show-all-circuits

(defun show-all-gates-and-circuits0
(patom "CIRCUITS and GATES IDENTIFIEDr "Xterpri)

(show -all-circuits)
(show-all-gates))

show-all-gates-and-circuits

(defun show-not-checked 0
(let ((c-list (append(solve-all "(Ttransistor status free))

(solve-all "(?struct status free))))
(new-list nil) (x nil))

(while (setq x (car c-list))
(setq c-list (cdr c-list))
(setq new-list (append (get-trans (car x)) new-list)))

(patom "FREE TRANSISTORSr "Xterpri)
(patom new-list(tab 5))))

(defun show-circuit-errors 0
(let ((frame-list (fchildren 'errors)Xe-frame nilXslot-list nil)

(e-slot nil))
(patom "ERRORS FOUND FOR CIRCUITr "Xpatom •circuit-nameXterpri)
(while (setq e-frame (car frame-list))

(setq frame-list (cdr frame-list))
(setq slot-list (delete 'ako (fslots-with-values e-frame)))
(cond ((null slot-listXnext))

(t(patom e-frameXterpri)))
(while (setq e-slot (car slot-list))

(setq slot-list (cdr slot-list))
(patom e-slot(tab 5))
(patom (fvalues-only e-frame e-slotXtab 30)Xterpri)))))

(defun aspect-print (frame val)
(patom "aspect addedr "Xpatom frameXpatom "Xpatom valXterpri))

(defun make-status-in-use (x)
(let((fb (fvo x "fb-tran)Xxf (fvo x 'xfer-gate)))

; (patom "make-status in-use "Xterpri)
; (patomxXpatom " "Xpatom fbXpatom" "Xpatom xfXterpri)

(cond(fb(freplace fb 'status "Svalue 'in-use)))
(cond (xf(freplace xf 'status "Svalue 'in-use)))
(freplace x 'status "Svalue 'in-use)))

show-not-checked

show-circuit-errors

aspect-print

make-status-in-use

..«««................a FILE: FCLASS-RULESSL"""

; find an xi-driver without feedback
(rule find-xi-driver backward-chain-rule

(type(elements ?elementsXdriver ?driver ?driverl))
(premise (test (and (?elements dummy l)

(?driver g-node ?dgn)
(or (?driverl s-node ?dgn (neq ?driveTl ?driver))

(?driverl d-node ?dgn (neq ?driverl ?driver))))
(xi-driveT-condition ?driverl ?dgn)))

(conclusion (?elements xi-driver * (make-xi-driver ?driver ?driverl nil))))

; find an xi-driver with feedback
(rule find-xi-driver-1 backward-chain-rule

(type(clements ?elementsXdriver ?dr ?drl ?dr2))
(premise (test (and (?elements dummy 1)

(?dr g-node ?dgn)
(?dr s-node ?dsn)
(?dr d-node ?ddn)
(ot (?drl s-node ?dgn (neq ?drl ?dr))

(?drl d-node ?dgn (neq ?drl ?dr)))
(?dr2 s-node0(neq ?dr2 ?drl))
(?dr2 d-node ?dgn(neq ?dr2 ?dr))
(?dr2 g-node ?gn2(or (equal ?gn2 ?dsn)

(equal ?gn2 ?ddn))))
(xi-driveT-condition-1 ?drl ?dgn)))

(conclusion (?elements xi-driver *(make-xi-driver ?dr ?drl ?dr2))))

(rule find-precharger backward-chain-rule
(type(driver ?drXclock ?clkXsupply ?supXelements ?el))
(premise (and (?el dummy 1)

(?dr d-node ?dn)
(?dr g-node ?gn)
(''elk pos-node?gn)
<"'sup pos-node ?dnD)

(conclusionCel precharger "(make precharger ?dr?clk ?sup))))

(rule find-pup-driver backward-chain-rule
(type(driver ?dTXclock ?clkXsupply ?supXelements ?el))
(premise (and Cel dummy 1)

(?dr d-node ">dn)
(?dr g-node ?gn)
(?sup pos-node ?dn)
(unknown 'elk pos node ?gn)))

(conclusion(?el pup-driver *(make pup driver ?dr?sup))))

(rule find-regulaT-drivers backward-chain-rule
(premise (?driver class unclassified))
(conclusion (elementsl reg-driver *(make-reg-driver ?driver))))

(rule find-sre-loads backward chain rule
(type (elements))
(premise (and ('elements dummy 1)

(?load class unclassified)
(?load g-node 7lgn)
(?load s-node ?lgn)
(?load d-node ?ldn (neq ?ldn ?lgn))
(?supply pos-node ?ldn)))

(conclusion (?elements src-load *(classify-load ?load 'src-load))))

(rule find-drc-loads backward-chain-rule
(type (elements))

(premise (and (?elements dummy 1)
(?load class unclassified)

128

(?load g-node ?lgn)
(?load d-node ?lgn)
(?load s-node?lsn (neq ?lsn ?lgn))
(?supply pos-node ?lgn)))

(conclusion (?elements drc-load " (class if y-load ?load 'drc-load))))

(rule find-ckc-loads backwaTd-chain-rule
(type (elements))

(premise (and (?elcments dummy 1)
(?load class unclassified)
(?load g-node ?lgn)
(?load d-node ?ldn (neq ?lgn ?ldn))
(?load s-node?lsn (neq ?ldn ?lsn))
(?clock pos-node ?lgn)
(?supply pos-node ?ldn)))

(conclusion (?elements ckc-load " (class if y-load ?load 'ckc-load))))

(rule find-oth-loads backward-chain-rule
(type (elements))
(premise (and(?elcments dummy 1)

(?load class unclassified)))
(conclusion (?elements oth-load " (class if y-load ?load 'oth-load))))

(rule reverse-src-drn-rule backward-chain-rule
(type (transistor ?trXactive-two-port-element ?ae))
(premise (or (and (?tr s-node ?sn (not(akop ?tr 'mos-cap)))

(?ae pos-node?sn))
(?tr d-node 0 (not (akop ?tr 'mos-cap)))))

(conclusion(?tr s-d-revcrsed * (reverse-s-d ?tr))))

129

130

^U.n...............^/L£. FCLASS-FUNCSSL '""

make-reg-driver
(defun make-reg-driver (dr)

(freplace dT 'ako "Svalue 'reg-driver)
(fireplace dr 'class "Svalue 'reg)
dr)

make-pup-driver
(defun make-pup-drivcr (dr sup)

(freplace dr 'ako Rvalue 'pup-driver)
' (freplace dr 'class "Svalue 'pup)
(freplace dr 'supply "Svalue sup)
dr)

make-precharger
(defun make-pTechaTger (dr elk sup)

(freplace dr 'ako "Svalue 'precharger)
(freplace dr 'class "Svalue 'precharger)
(freplace dr 'pre-phase "Svalue elk)
(freplace dT'supplv "Svalue sup)
dr)

xi-driver-condition
(defun xi-driver-condition (driver node-num)

(let ((nl (make-node-name node-num)Xn2 (find-next-node driver node-num)))
(and (oKequal 1 (length (fvso nl "sre-drn)))

(and(equal 2 (length (fvso nl 'sre-drn)))
(equal 1 (length (fvso nl 'mos-cap)))))

(null (fvso nl 'supply))
(null (fvso nl "clock))
(neq nl 0)
(neq n2 0))))

xi-driver-condition-1
(defun xi-driver-condition-1 (driver node num)

(let ((nl (make-node-name node-num)Xn2 (find-next-node driver node-num)))
(and (or(equal 2 (length (fvso nl 'sre-drn)))

(and(equal 3 (length (fvso nl 'sre-drn)))
(equal 1 (length (fvso nl 'mos-cap)))))

(null (fvso nl 'supply))
(null (fvso nl 'clock))
(neq nl 0)
(neq n2 0))))

make-xi-driver
(defun make-xi-driver (dT xf fb-tran)

(freplace dr 'ako "Svalue 'xi-driver.)
(freplace xf 'ako "Svalue 'reg-driver): makestatus free
(fput dr 'xfer-gate "Svalue xf)
(freplace dr 'class 'Svalue 'xi)
(freplace xf 'class "Svalue 'xfer)
(freplace dr 'ga-xi w ratio "Svalue

(/ (• 1.0 (fvo dr 'widthXfvo dr length))
(• 1.0 (fvo xf'width))))

(freplace dr 'width 'Svalue (• (fvo "g-con *xi-dr-wrf)
(fvo dr 'width)))

(freplace dT 1-div-w Rvalue (• 1.0(/ (fvo dr 'lengthXfvo dr 'width))))
(fput dr 'in-node "Svalue (cond ((equal (fvo dr 'g-nodeXfvo xf 'd node))

(fvo xf 's-node))
(t (fvo xf 'd-node))))

(cond(fb-tran (fput dr 'fb-tran "Svalue fb-tran)
(freplace fb-tran 'fb-tran-flag "Svalue t)))

(freplace dr 'trigger "Svalue t)

131

dr)

classify-load
(defun classify-load (load class)

(freplace load 'ako "Svalue class)
(freplace load 'class "Svalue class)
load)

reverse-s-d
(defun reverse-s-d (tran)

(let ((new-src (fvo tran 'd-node)Xnew-drn (fvo tran 's-node)))
(freplace tran 'd-node *$value new-dm)
(freplace tran 's-node "Svalue new-src)

0)

132

;.M.........mu....f>/1£. s-P-FETSL '"'"'

find-parallel-fets
(defun find-parallel-fets 0

(let ((tran-list (fvalues-only 'elementsl 'driver))
(trans nilXtransl nilXstruct nil)
(nl nilXn2 nil))

(patom "iind-parallel-fets"Xterpri)
(while (setq trans (car tran-list))

(setq tran-list (cdr tran-list))
(setq nl (fvalue-only trans 's-node))
(setq n2 (fvalue-only trans 'd-node))
(cond((setq trans1

(caadadKsolve
*(test(and(?dTiveT status freednember ?driver tran-list))

(?driver s-node ?x)
(?driver d-node ?y))

(or (and(equal ?x .nl Xequal ?y ji2))
(and(equal ?x ji2Xequal ?y 41D))))))

(setq tran-list (delete trans1 tran-list))
(setq struct (finstantiate 'parallel-struct))
(patom struct Xterpri)
(fput struct 'class "Svalue 'parallel)
(fput struct 'trans "Svalue trans)
(fput struct 'trans "Svalue transl) '
(fput struct 'node-1 "Svalue nl)
(fput struct 'node-2 Rvalue n2)
(fput struct 'string-1 "Svalue 1)
(freplace struct 1-div-w "Svalue

(max(fvalue-only trans "l-div-w)
(fvalue-only transl 'l-div-w)))

(while (setq transl (caadadr(solve
*(test(and(?driver status free(membeT ?driver tran-list))

(?driver s-node ?x)
(?driveT d-node ?y))

(or (and(equal ?x .nlXequal ?y ,n2))
(and(equal ?x jt2Xequal ?y ,nl)))))))

(setq tran-list (delete transl tran-list))
(freplace struct 1-div-w "Svalue

(max(fvalue-only struct 1-div-w)
(fvalue-only transl 1-div-w)))

(fput struct 'trans "Svalue trans1)))))))

find-series-fets
(defun find-series-fets 0

(let ((nodes (fvalues-only 'elementsl 'nodes))
(tmp nilXstart-node nilXcuTTent-node nil)
(next-node nilXtran-list nilXtran nilXstruct nil))

(patom "find-series-fets"Xterpri)
(setq tmp nodes)

(while (setq start-node (car tmp))
(setq tmp (cdr tmp))
(cond((series -fet-condit ion st art -node Xnext)))
(cond ((null (setq tran-list (find-trans start-node))Xnext)))

(setq current-node start-node)
(while (setq wan (car tran-list))

(setq tran-list (cdr tran-list))
(setq next-node (find-next-node tran current-node))

(cond ((null (series-fet-condition next-node)Xnext)))

133

(setq struct (finstantiate 'series-struct))
(patom structXterpri)
(fput struct 'node-1 "Svalue start-node)
(fput struct 'class 'Svalue 'series)
(fput struct 'trans "Svalue tran)
(freplace struct 1-div-w "Svalue (fvalue-only tran '1-div-w))
(freplace struct 'string-1 "Svalue 1)
(while (series-fet-condition next-node)

(setq current-node next-node)
(setq tmp (delete current-node tmp))
(setq tran (caadadKsolve

*(test(and(?driver status free)
(?driver s-node ?sn)
(?driveT d-node ?dn))

(oKequal ?sn .current-node)
(equal ?dn .current-node))))))

(fput struct 'trans "Svalue tran)
(freplace struct 1-div-w "Svalue (+(fvalue-only tran 1-div-w)

(fvalue-only struct 1-div-w)))
(freplace stTuct 'string-1 "Svalue (+ 1

(fvalue-only struct 'string-1)))
(setq next-node (find-next-node tran current-node))
(freplace stTuct 'node-2 "Svalue next-node))))))

series-fet-condition
(defun series-fet-condition (node)

(nulKor(> (length (fvalues-only (make-node-name node)'trans)) 2)
(solve *(?transistoT g-node .node))
(solve t?load s-node .node))
(solve *(?load d-node .node))
(solve *(?precharger s-node .node))
(solve *(?pup-driver s-node .node))
(solve "('drn-boot s-node .node))
(equal node 0)
(solve *(?xi-driver in node .node))
(single-connection node)
(solve *(?active-twO"port-elemen* . js-node .node))
(solve *(?active-two-port-element neg-node .node)))))

find-next-node
(defun find-next-node (tran node)

(fvalue-only tran (cond((equal node (fvalue-only tran 'd-node)) 's-node)
(t 'd-node))))

find-trans
(defun find-trans (node)

(let ((tran-list (caadadr (solve
*(test(and(?driver status free)

(?driver s node ?sn)
(?driver d node ?dn))

(or(cqual 7sn .nodeXequal ?dn .node))))))
(tran nil))

(cond'(null tran-list) nil)
(t(setq tran-list (list tran list))

(while (.setq tran (caadadr (solve
ttest(and(?driver status free(not

(member ?driver tran-list)))
(?driver s-node ?sn)
(?driver d-node ?dn))

(oKequal ?sn .nodeXequal ?dn .node))))))
(setq tran-list (cons tran tran-list)))))

tran-list))

134

J„................../7/I£ COMB-STRUCTSSL ""

combine-structs
(defun combine-structsO

(let ((keep-looking t))
(while keep-looking

(setq keep-looking nil)
(combine-parallel-structs)
(com bine-series-struets))))

combine-parallel-structs
(defun combine-parallel-structs 0

(let ((struct-list (nconc(get-free-driversXget-free-struas)))
(super-struct nilXstruct nilXstructl nilXnl nilXn2 nil))

(patom "combine-parallel-structs"Xterpri)
(while (setq struct (car struct-list))

(setq struct-list (cdr stTUct-list))
(cond ((flinkp 'ako struct 'driver)

(setq nl (fvalue-only struct 'd-node))
(setq n2 (fvalue-only struct 's-node)))

(t(setq nl (fvalue-only struct 'node-1))
(setq n2 (fvalue-only struct 'node-2))))

(cond((setq struct 1 (caadadr(soIve
*(test(and(?struct node-1 ?x (membeT ?struct struct-list))

(?struct node-2 ?y))
(oKand(equal jtl ?xXequal ,n2 ?y))

(and(equal .nl TyXequal #2 ?x))).))))
(setq struct-list (delete structl struct-list))
(setq super-struct (finstantiate "super-struct))
(patom super-structXterpri)
(fput super-struct 'class"Svalue 'parallel)
(fput super-struct 'substruct 'Svalue struct)
(fput super-struct 'substruct "Svalue structl)
(fput super-struct 'node-1 "Svalue nl)
(fput super-struct 'node-2 Rvalue n2)
(fput super-struct 'string-1 "Svalue

(max(fvalue-only struct 'string-1)
(fvalue-only structl 'string-1)))

(freplace supeT-struct 1-div-w "Svalue
(max(fvalue-only struct 1-div-w)

(fvalue-only structl "1-div-w)))
(while (setq struct 1 (caadadr(solve

<(test(and(?struct node-1 ?x (member ?struct struct-list))
(?struct node-2 ?y))

(or(and(equal ,nl TxXequal ,n2 ?y))
(and(equal ,nl TyXequal ,n2 ?x)))))))

(setq struct-list (delete structl struct-list))
(freplace supeT-struct '1-div-w "Svalue

(max(fvalue-only super-struct 1-div-w)
(fvalue-only structl "1-div-w)))

d'rep liter super-struct 'string! "Svalue
(maxi fvalue-only supcTstruct 'string-1)

(fvalue-only structl 'string-1)))
'fput super-struct 'substruct lvalue structl)))))))

get-free-drivers
(defun get-free-drivers ()

(let ((d-list nilXdr nil))
(setq d-list (car (solve t?driver status free))))
(cond ((null d-list) nil)

(t(setq d-list (list d-list))
(while (setq dr (car (solve

"(?dTiver status free(not(membcT ?driveT d-list))))))

(setq d-list (cons dr d-list)))
d-list))))

(defun get-free-structs 0
(let ((s-list nilXst nil))

(setq s-list (car (solve "('struct status free))))
(cond ((null s-list) nil) ,

(t(setq s-list (list s-list))
(while (setq st (car (solve

<?struct status free(not(member ?struct s-list))))))
(setq s-list (cons st s-list)))'

s-list))))

(defun combine-series-structs 0
(let ((nodes (fvalues-only 'elementsl 'nodes))

(tmp nilXstart-nodenilXcurrent-node nil)
(next-node nilXstruct-list nilXsuper-struct nilXstruct nil))

(patom "combine-series-structs"Xterpri)
(setq tmp nodes)
(while (setq start-node (car tmp))

(setq tmp (cdr tmp))
(cond((series-struct-condition start-node nilXnext)))
(cond ((null (setq struct-list (nconc (find-trans start-node)

(find-structs start-node nil))))
(next)))

(setq current-node start-node)
(while (setq struct (car struct-list))

(setq struct-list (cdr struct-list))
(setq next-node (find-next-struct-node struct current-node))

(cond ((null (series-struct condition next-node nil)Xnext)))

(setq supeT-struct (instantiate 'super-struct))
(patom super-structXterpri)
(setq keep-looking t)
(fput super-struct 'class "Svalue 'series)
(fput super-struct 'node 1 'Svalue start-node)
(fput super-struct 'substruct 'Svalue struct)
(freplace super-struct 1-div w "Svalue

(fvalue-only struct 1-div-w))
(fput super-struct 'string-1 'Svalue

(fvalue-only struct 'string-1))
(while (series-struct-condition next-node super-struct)

(setq current-node next-node)
(setq tmp (delete current-node tmp))
(setq struct (car(find-structs current-node supeT-struct)))
(fput super-struct 'substruct -Svalue struct)
(freplace super-struct 1-div-w 'Svalue

(+ (fvalue-only struct 1-div-w)
(fvalue-only super-struct 1-div-w)))

(freplace super-struct 'string-1 "Svalue
(+ (fvalue-only struct 'string-1)

(fvalue-only super-struct 'string-1)))
(setq next-node (find-next-struct-nodc struct current-node))
(freplace super-struct "node-2 "Svalue next-node))))))

(defun iries-struct-condiuon (node ss)
(let((sl nilXdl nil))

(null(or (equal node 0)
(single-connection node)

135

get-free-structs

combine-series-structs

series-struct-condition

136

(solve <?transistor g-node node))
(solve t?load s-node node))
(solve <?load d-node node))
(solve "(Tprecharger s-node .node))
(solve <?pup-driver s-node .node))
(solve <?drn-boots-node node))
(solve <?active-two-port-element pos-node node))
(solve t?xi-driver in-node node))
(solve t?active-two-port-element neg-node .node))

(solve K?driver s-node node (equal (fvo ?driver 'class) 'xfeT)))
(solve *(?driver d-node node (equal (fvo ?driver 'class) 'xfer)))

(>(setq dl (length (solve-all
ttest(and(?driver status free)

(?driver s-node ?sn)
(?driver d-node ?dn))

(or (equal ?sn nodeXequal ?dn node)))))) 2)
(> (setq si (length (solve-all

<test(and(?struct status free (neq ?struct \ss))
(?struct node-1 ?nl)
(?struct node-2 ?n2))

(ot (equal ?nl nodeXequal ?n2 node)))))) 2)
(>(-*dlsl)2)))»

find-next-struct-node
(defun find-next-struct-node (struct node)

(cond((fiinkp 'ako struct 'struct)
(fvalue-only struct

(cond((equal node(fvalue-only struct 'node-1)) 'node-2)
(t 'node-1))))

(t(fvalue-only struct
(cond((equal node (fvalue-only struct 's-node)) 'd-node)

(t 's-node))))))

find-structs
(defun find-structs (node ss)

(let ((struct-list (caadadr (solve
*(test(and(?struct status free (neq ?struct ',ss))

(?struct node-1 ?x)
(?struct node-2 ?y))

(or (equal ?x nodeXequal ?y node))))))
(struct nil))

(cond((null struct-list) nil)
(tCsetq struct-list (list struct-list))

(while (setq struct (caadadr (solve
"(tcst(and(?struct status free

(and(neq '.'struct 'fis)
(not(member ?struct struct-list))))

(?struct node 1 ,'x)
(?struct node 2 'y))

(or (equal ?x nodeXequal '.'y .n<*ir))>)))
(setq struct-list (cons struct struct list)))))

struct-list))

'FILE: INV-RULESSL

; regular inverter
(rule find-simple-inverter backward-chain-rule

(type(elements ?elements))
(premise (and(?reg -driveT status free)

(?load status free)
(?reg-driver s-node0)
(?Teg-driver d-node ?ddn)
(?reg-driveT g-node ?dgn)
(?load s-node ?ddn)
(?load d-node ?ldn)
(?supply pos-node ?ldn)
(?elements dummy 1)))

(conclusion (?elements inverter * (make-inverter
?reg-driver ?load ?supply))))

inverter with dynamic input
(rule find-dynamic-input-inverter backward-chain-rule

(type(elements ?elements))
(premise (and(?xi-driver status free)

(?load status free)
(?xi-driver s-node 0)
(?xi-driver d-node ?ddn)
(?xi-drivcT g-node?dgn)
(?load s-node ?ddn)
(?load d-node ?ldn)
(?supply pos-node ?ldn)
(?elements dummy 1)))

(conclusion (?elements inverter ~(makc-xi-inverter
?xi-driver ?load?supply))))

; inverter with driver below load •- used as drain-boot predriver
(rule find-clkout-inverter-1 backward-chain-rule

(typedoad ?ldXreg-driver ?dr2Xxi-driver?drlXnode ?no)
(elements ?elementsXsupply ?supXload ?ld))

(premise(and(?elements dummy 1)
(?drl s-node 0)
(?drl d-node ?dl)
(?drl status free)
(?dr2 s-node ?dl)
(?dr2 d-node ?d2)
(?dr2 status fTee)
(?dr2 g-node ?g2)
(?no number ?g2)
(?noclass?cl (equal ?cl 'always-clocked))
(?ld d-node ?ldn)
(?sup pos-node ?ldn)
(?ld s-node ?d2)
(?ld status free)))

(conclusion(?elements inverter
*(make clkouvinverter?drl ?ld 'sup ?dr2))))

(rule find-clkout-invcrter-2 backward-chain rule
(typedoad ?ldXrcg driver ?dr2Xxi-driver ?drlXnode ?no)

(elements 'elementsXsupply ?supXload ?ld))
(premise(and(?elements dummv 1)

(?drlsnode0)
(?drl d-node ?dl)
(?drl status free)
(?dr2 d-node ?dl)
(?dr2 snore ?d2)
(?dr2 status free)
(?dr2 g-node?g2)
(?no number ?g2)

137

(?no class ?cl (equal ?cl 'always-clocked))
(?ld d-node ?ldn)
(?sup pos-node?ldn)
(?ld s-node ?d2)
(?ld status free)))

(conclusion(?elements inverter
"(make-clkout-inverter ?drl ?ld ?sup ?dr2))))

«»;; inverter checks;;.";,

(rule check-beta-ratio-1 forward-chain-rule
(type (inveTter ?inverter))
(premise (?inverter beta-ratio ?brO

(< ?brO (req-br (fvalue-only ?inverter 'pull-up)))))
(conclusion (inv-erron beta-ratio ?inverter)))

; clocks to all inputs must be the same or error
(rule check-clkout-inverter-1 forward-chain-rule

(type(clkout-inverter ?invXdriver ?xf ?cgXclock ?clkl ?clk2))
(pTemise(and(?inv trigger t)

(?inv xfer-gate ?xf)
(?xf g-node ?xfg)
(?clkl pos-node ?xfg)
(?inv clkgate ?cg)
(?cg g-node ?cgg)
(?clk2 pos-node ?cgg(neq ?clk2 ?clkl))))

(conclusiondnv-errors input-clocking ?inv)))

(rule check-clkout-inverter-2 forwajd-chain-rule
(type(clkout-inverter ?invXload ?ldXdriver?xf ?cg)

(clock ?clkl ?clk2 *rlk3))
(pTernise(and(?inv trigger t)

(?inv xfer-gate 'xf)
(?xf g node'xlg)
(?clkl pos node 'xfg)
(?inv clkgate 'eg)
(?cg g-node ?cgg.)
(?clk2 pos-node ?cgg)
(?inv pull-up ?ld)
(?ld g-node ?lgn)
(?clk3 pos-node ?lgn (or< neq ?clk3 ?clk2Xneq?clk3 ?clkl))>>>

(conclusion(inv-erTors input-clocking ?inv)))

138

139

......................FILE: INV-FUNCSSL "'""

std-inv-put
(defun std-inv-put (driver load supply)

(fput inv-name 'pull-down "Svalue driver)
(fput inv-name 'pull-up Rvalue load)
(freplace driver 'status "Svalue 'in-use)
(freplace load 'status "Svalue 'in-use)
(fput inv-name 'supply "Svalue supply)
(fput inv-name 'out-node "Svalue (fvo driver 'd-node))
(fput inv-name 'supply-node "Svalue (fvo load 'd-node))
(fput inv-name 'struct "Svalue driver))

make-inverter
(defun make-inverter (driver load supply)

(let ((inv-name (finstantiate 'reg-inverter)))
(patom inv-nameXterpri)
(std-inv-put driver load supply)
(fput inv-name 'in-node "Svalue (fvo driveT 'g-node))
(fput inv-name 'beta-ratio "Svalue (calc-br driver load))
inv-name))

make-xi-inv erter
(defun make-xi-inveTter (driver load supply)

(let ((inv-name (finstantiate 'xi-inverter))
(xfeT-gate (fvo driveT 'xfer-gate)))

(patom inv-nameXteTpri)
(std-inv-put driver load supply)
(fput inv-name 'xfer-gate "Svalue xfer-gate)
(fput inv-name 'in-node "Svalue

(cond ((equal (fvo driver 'g-nodeXfvo xfer-gate "s-node))
(fvo xfer-gate 'd-node))

d(fvo xfer-gate 's-node))))
Upui inv-name 'beta-ratio "Svalue (calc-br driver load))
inv name))

make-clkout inverter
(defun make-clkout-inverter (driver load supply clkgate)

(let ((inv name (finstantiate 'clkout-inverter))
(xl er gate (fvo driver 'xfer-gate)))

(patom inv-nameXterpri)
(std inv-pui driver load supply)
(fput inv-name 'xfer-gate "Svalue xfer-gate)
(fput inv name 'in-node "Svalue

(cond ((equal (fvo driver 'g-nodeXfvo xfeT-gate 's-node))
(fvo xfer-gate "d-node))

(t(fvo xfer-gate 's-node))))
(fput inv-name 'clkgate 'Svalue clkgate)
(fput inv-name 'beta-ratio 'Svalue (calc-br-1 driver load clkgate))
(fput inv-name 'trigger Rvalue 0
inv name))

calc-br
(defun calc-br (p-down pup)

(• (/ 1 (fvo p-down 1-div-w)Xfvo p-up 1-div-w)))

calc-br-1
(defun calc-br-1 (p-down p-upclkgate)

(• (/ 1 (fvo p-down 1-div-w))
(+ (fvo p-up 1-div-wX* (fvo clkgate 1-div-w)

(fvo '•g-con 'dr-eq-ratio)))))

140

req-br
(defun req-br (load)

(let((class (fvo load 'class)))
(fvo "*g-con (implode *(b r - .©(explode class))))))

......................pj^. p-F-RULESSL ""'"

; Max Driver Length
(rule funny-fet-1 backward-chain-rule

(type(eTrors))
(premise (?driver length ?1

(>?1 (fvalue-only '*g-con 'mx-dT-1))))
(conclusion(funny-fet max-driver-length ?driveT)))

; Mm Driver Width
(rule funny-fet-2 backward-chain-rule

(type(erTors))
(premise (?driveT width ?w

(<?w (fvalue-only "g-con 'mn-dr-w))))
(conclusion(funny-fet min-driver-width ?driver)))

; Min Load Width

(rule funny-fet-3 backward-chain-rule
(type(errors))
(premise (?load width ?w

(<?w (fvalue-only "g-con 'mn-ld-w))))
(conclusion(funnyfet min-load-width ?load)))

; Min Load Length
(rule funny-fet-4 backward-chain-rule

(type(errors))
(premise (?load length ?1

(<?1 (fvalue-only "g-con 'mn-ld-1))))
(conclusion(funny fet min-load-length ?load)))

; Max Mos-Cap Length
(rule funny-fet-5 backward chain rule

(type(errors))
(premise (?mos-cap length '1

(>?] (fvalue only "g-con 'mx-cap-l))))
(conclusion(funny let max cap length ?mos-cap)))

: Single Connection
(rule funny-fet-6 backward-chain rule

(type(errors))
(pTemise(or (Ttransistor s ncxlc 'sn (single-connection ?sn))

(Ttransistor g node?gn (single-connection ?gn))
(Ttransistor d-node 9dn (single-connection ?dn))))

(conclusion(funny-fet single connection ?transistor)))

; Gate-Only Node Connection
(rule funny-node-1 backward-chain rule

(type (erTorsXnode ?node))
(premise (known ?node gate ?g (and(null (fvso ?nodc 'sre-drn))

(null (fvso ?node 'supply))
(null (fvso ?nodc 'clock)))))

(conclusiondunny node gate only ?node)))

; Supply-gate-only Node connection
(rule funny-node 2 backward-chain-rule

(type (errorsXnode 'node))
(premise (test(and (known ?node supply ?s)

(known ?node gate ?g))
(nulKfvso ?node 'sTC-drn))))

(conclusion (funny-node supply-gate-only ?node)))

; clock-supply-short Node connection
(rule funny-node-3 backward-chain-rule

(type(errors))

141

(premise (and(?supply pos-node ?spn)
(?supply neg-node ?snn)
(?clock pos-node ?spn)
(?clock neg-node ?snn)))

(conclusion(funny-node clock-supply-short *(make-node-name ?spn))))

; single-conection
(rule funny-node-4 backward-chain-rule

(type(errors))
(premise (?supply pos-node ?spn (single-connection ?spn)))
(conclusion (funny-node single-connection *(make-node-name ?spn))))

(rule funny-node-5 backward-chain-rule
(type(erTors))
(premise(?clock pos-node ?spn(single-connection ?spn)))
(conclusion (funny-node single-connection *(make-node-name ?spn))))

142

................p jLE. GATE-RULESSL "'""

static gate classification

(rule find-nor-rule backward-chain-rule
(type(elements ?elernentsXparallel-struct ?p-s))
(premise(test(and(?load status free)

(?p-s status free)
(?load d-node ?ldn)
(?load s-node ?lsn)
(?supply pos-node ?ldn)
(?p-s node-1 ?psnl)
(?p-s node-2?psn2)
(?elements dummy 1))

(or(and(equal ?psnl OXequal ?psn2?lsn))
(and(equal ?psnl ?lsnXequal ?psn2 0)))))

(conclusion(?elements static-gate " (make-gate?load ?p-s'nor-gate))))

(rule find-nand-rule backward-chain-rule
(type(elements ?elementsXseries-struct ?s-s))
(premise(test(and(?load status free)

(?s-s status free)
(?load ri-node ?ldn)
(?load s-node ?lsn)
(?supply pos-node ?ldn)
(?s-s node-1 ?ssl)
(?s-s node-2 ?ss2)
(?elements dummy l))

(or(and(equal ?ssl OXequal ?ss2 ?lsn))
(and(equal ?ss2 OXequal ?ssl ?lsn)))))

iconclusion(?elements static-gate"(make-gate ?load ?s-s 'nand-gate))))

(rule find-other-gate-rule backward-chain-rule
itype(elements ?elementsXsuper-struct ?s-s))
(premisedtest(and(?load status free)

(?s-s status free)
(?load d-node ?ldn)
(?load s-node ?lsn)
(?supply pos-node ?ldn)
(?s-s node-1 ?ssl)
(?s-s node-2 ?ss2)
(?elements dummy 1))

(or(and(equal ?ssl OXequal ?ss2 ?lsn))
(and(equal ?ss2 OXequal ?ssl ?lsn)))))

<conclusionCelcments static-gate "(make-gate?load ?s-s 'other-gate))))

(rule find-static-xc-xor backward-chain-rule

(type (elements ?elementsXxc-xor-struct TxcXload ?ldXsupply ?sup))
(prernise(and(.?elements dummy l)

(?ld s node ?sn)
(?1ri d node ?dn)
(?sup pos node ?dn)
(?lri status free)
(?xc out node ?sn)
C?xc status free)))

(conclusion ('elements static gate "(make-gate ?ld ?xc 'static xc xor))))
,v;;;;;;; dynamic gate classification

(rule find-d-gate-1 backward-chain-rule
(type(elements ?elXpTecharger ?preXstruct ?st))
(premise (test(and(?el dummy 1)

(?st status free)
(Tpre status free)
(?pre s-node ?sn)

143

(?st node-1 ?nl)
(?st node-2 ?n2))

(or (and (equal ?nl ?snXequal?n2 0))
(and (equal ?n2 ?snXequal ?nl 0)))))

(conclusion (?el dynamic-gate *(make-gate ?pTe ?st 'dynamic-gate))))

(rule find-d-gate-2 backward-chain-rule
(type(elements?elementsXprecharger ?prechargeTXdriver ?driver))
(premise (and(?elements dummy 1)

(?driver status free)
(?precharger status free)
(?precharger s-node ?sn)
(?driver d-node ?sn)
(?driver s-node 0)))

(conclusion (?elements dynamic-gate
*(make-gate ?precharger ?drivcr'dynamic-gate))))

(rule find-dynamic-xc-xor backward-chain-rule
(type(elements ?elementsXpTecharger ?prechargerXxc-xor-struct ?xc))
(premise (and(?elements dummy 1)

(?xc status free)
(?precharger status free)
(?precharger s-node 9sn)
(?xc out-node ?sn)))

(conclusion (?elements dynamic-gate
"(make-gate ?precharger ?xc 'dynamic-xc-xor))))

static gate checks zzzzzzzzz?,;,

; checks for string-length
(rule static-gate-check-1 forward-chain-rule

(type (static-gate ?ga))
(premise (?ga trigger t (> (fvalue-only

(fvalue-only ?ga 'struct) 'string-1)
(fvalue-only "o-con 'st-nand-sl))))

(conclusion lyate errors nand-length ?ga)>

; performs beta-ratio checks
(rule static-gate-check-2 forward-chain-rule

(type (static-gate ?ga))
(premise (?ga trigger t (gate-br-error ?ga)))
(conclusion (gate-errors beta-ratio ?ga)))

; checks for feedback on static gates whose outputs are clocked-low
(rule feed-back-check backward-chain rule

(type (static-gate 'gaXnode?noXxi-driver '.'drXsuper-buffer ?sup))
(premise(and(?ga out-nodc ?num)

(?no number ?num)
(?no class clocked-low)
(?ga pull-down ?dr (akop ''dr 'xi-driver))
(unknown 7dr fb tran ?fbt)
(unknown 'sup driver ?ga)))

(conclusion!gate-errors b t'eedback-desirable .'ga)))

; checks for correct clocking on a clocked low static-gate
(rule static-gate input clock cneck backward-chain-rule

(type (static gate?gaXxi-driver7drXdriver 'xgXnode 'no ?nol))
(premise(test(and(?ga trigger t)

(?ga out-node ?n)
(?no number ?n)
(?no class clocked-low)
(?ga pull-down ?dr (akop ?dr 'xi-driveT))
(?dr xfeT-gate ?xg)
(?xg g-node ?gn)

144

(?nol number ?gn)
(?nol class ?x (or (equal ?x 'always-clocked)

(equal ?x 'conditional-clocked))))
(neq (fvo ?nol 'aspeaXimplode (cddr (explode(fvo ?no 'aspea)))))))

(conclusion(gate-erTors-b input-clocking-error ?ga)))

:; dynamic gate and structure checks

-.error if precharge and true phases are equal
;error if pull-down structure is clocked on both phases
;error if pull-down structure is always held high
(rule dynamic-gate-check-1 forward-chain-rule

(type (dynamic-gate ?ga))
(premise (test (and (?ga trigger t)

(?ga pre-phase?pp)
(?ga true-phase ?tp))

(oKequal ?tp ?pp)
(equal ?tp 'etror)
(equal ?tp '"high))))

(conclusion(gate-erTors dynamic-clocking-1 ?ga)))

; error if pull-down structure is always low on a given clock phase
: tie on a given phase a pull down structure always pulls the precharge low)

(rule dynamic-gate-check-2 forward-chain-rule
(type(dynamic-gate ?gaXstruct ?st))
(premise(and (?ga trigger t)

(?ga struct ?st)
(?st elk-class hard)))

(conclusion (gate-errors dynamic-clocking-2 ?ga)))

race condition if a dynamic gate pull-down-structure has an xi-driver
and the xi-driver transfer gate is clocked on the true-phase
of the gate

(rule dynamic-gate-check-3 forward-chain-rule
(type (dynamic-gate ?gaXstrua ?stXxi-driver ?dTXdriver ?xf))
(premisedtest(and (?ga tTigger t)

(?ga strua ?st)
(?st trans ?dr(akop ?dr 'xi-driver))
(?dr xfer-gate ?xf)
(?ga true-phase ?tp)
(knowable ?xf elk-input ?clkin))

(equal ?tp ?clkin)))
(conclusion (gate-errors race-condition ?ga)))

,:;::: flag a dynamic gate whose pulldown stage is never clocked
(rule dynamic gate-check-4 forward chain-rule

(type'dynamic gate"'gatfstruct ?st>)
'premise 'and (?ga trigger t)

(?ga true phase nil)))
(conclusion (gate errors dynamic clocking 4 ?ga)))

probable dynamic clocking problem if the is precharged node
and there is a driver connected to this node which is clocked
on the precharge phase of the precharger

or driver's gate is always -high
(rule dynamic-clocking-rule-1 backward-chain-rule

(type(precharger ?pTeXdriver ?dr))
(premise(test(and (?pre s-node?sn)

145

(?pre pre-phase ?pp)
(?dr d-node ?sn)
(?dr s-node 0)
(?dr elk-input ?clkin))

(oKequal ?pp ?clkinXequal ?clkin"high))))
(conclusion(funny-nodc clocking-flag *(make-node-namc ?sn))))

146

147

;"• """"""FILE: GATE-FUNCSSL '

make-gate
(defun make-gate (load struct g-type)

(let ((gate (finstantiate g-type)Xtrannil)
(tran-list (g«-trans struct)))

(patom gateXterpri)
(fput gate 'out-node "Svalue (fvalue-only load 's-node))
(fput gate'struct "Svalue struct) '
(fput gate 'supply-node "Svalue (fvalue-only load"d-node))
(fput gate 'pull-up "Svalue load)
(fput gate 'beta-ratio "Svalue (calc-br struct load))
(freplace load 'status "Svalue 'in-use)
(freplace strua 'status "Svalue 'in-use)
(while (setq tran (car tran-list))

(setq tran-list (cdr tran-list))
(fput gate 'pull-down Rvalue tran)
(fput gate 'in-node "Svalue (fvalue-only tran 'g-node)))

(cond ((or(equal g-type 'dynamic-gateXequal g-type 'dynamic-xc-xor))
(fput gate 'pre-phase "Svalue (fvo load'pre-phase))
(fput gate 'true-phase "Svalue (fvo struct 'elk-input))))

(freplace gate 'trigger "Svalue t)
gate))

gate-br-error
(defun gate-br-error (gate)

(<(fvalue-only gate 'beta-ratio)
(get-req-br (fvalue-only gate'pull-up))))

get-req-br
(defun get-req-br(load)

(let((class (fvalue-only load 'class)))
(fvalue-only "g-con (implode tb r - .©(explode class))))))

;.................„..F/Z(£. COUPLE-RULESSL '""

(rule xi-driver-coupling-rule:l forward-chain-rule
(type (xi-driveT ?xi-dr))
(premise(and(?xi-dr trigger t)

(?xi-drga-xfw-ratio ?x (<?x (fvo "g-con *mn-dr-ga-xf-w)))))
(conclusion (coupling-errors xi-driver-coupling ?xi-dr)))

(rule xi-driver-coupling-rule-2 forward-chain-rule
(type (xi-driver ?xi-dT))
(premise (and(?xi-dr trigger t)

(Txi^r s-node ?sn (neq ?sn 0))))
(conelusion(coupling-errors xi-driver-coupling-1 ?xi-dr)))

148

......................FILE: CLKING-RULESSL"""

(rule deteTmine-struct-clocking-1 forward-chain-rule
(type (strua TstruaXdriver ?dr))
(premise (and (?strua class ?class)

(?struct trans ?dr)
(knowable ?dr elk-input ?clkin)))

(conclusion(and (replace ?struct elk-input
"(det-clk-input ?struct ?class ?dr ?clkin))

(replace?strua elk-class
" (det-clk-class ?struct ?class ?dr ?clkin)))))

(rule determinc-strua-clocking-2 forward-chain-rule
(type (struct ?stiuaXdriver ?dr))
(premise (and (?stma class ?class)

(?strua trans ?dr)
(unknowable ?dr elk-input ?clkin)))

(conclusion(and (replace ?struct elk-input
" (det-clk-input ?struct ?class ?dr nil))

(replace ?struct elk-class
" (det-clk-class ?struct ?class ?dr nil)))))

(rule determine-struct-clocking 3 forward-chain-rule
(type (struct '.'structXdriver ?dr))
(premise (and (?struct class ?class)

(?struct substrua ?dr)
(knowable ?dr elk-input ?clkin)))

(conclusion(and (replace ?strua elk-input
" (det-clk-input ?struct ?class ?dr ?clkin))

(replace ?struct elk-class
" (det-clk-class ?strua ?class ?dr ?clkin)))))

(rule determine-strua-clocking-4 forward-chain-rule
(type (strua ?structXdriver ?dr))
'premise (and (?struct class ?class)

(?struct substrua ?dr)
(unknowable ?dr elk-input ?clkin)))

(conclusion(and (replace ?strua elk-input
" (det-clk-input ?struct ?class ?dr nil))

(replace 9strua elk-class
* (del elk-class ?strua ?class ?dr nil)))))

(rule determine-struct clocking-5 forward -chain -rule
'type (struct ?struci ''si »
(premise (and (''struct class ?class)

(?struct substruct ?st)
(?st elk input ?clkin)))

(conclusion(and (replace 7struct elk-input
"('riei dk-input "'struct ?class ?st ?clkin))

(replace 'siruct elk cmvn
* (del elk class 'struct .'class 'st ?clkin)))))

(rule determine struct clocking 6 forward chain rule
(type (struct 'struct 7sii.»
(premise (and ('.'struct class /class)

(?struct substruct ?st)
(unknown ?st elk-input ?clkin)))

(conclusion(and (replace 'struct elk input
" (det-clk-input ?struct ?class?st nil))

(replace ?strua elk-class
" (det-clk-class ?strua ?class ?st nil)))))

; driver clock input classification

149

(rule elk-input-rule-1 backwaTd-chain-rule
(type (driver ?drXclock ?ck))
(premise (and (?dr g-node ?gn)

(?ck pos-node ?gn)))
(conclusion (?dT elk-input " (define-clking-class ?dT ?ckTurd))))

(rule clk-input-rule-2 backward-chain-rule
(type (driveT ?drXnode?no))
(premise (and(?dr g-node ?gn)

(?no numbeT ?gn)
(?no class ?x (equal ?x 'always-high))))

(conclusion(?dr elk-input " (define-clking-class ?dr "high "hard))))

(rule clk-mput-Tule-3 backward-chain-rule
(type (driver ?drXnode ?no))
(pTemise(and(?dr g-node ?gn)

(?no number ?gn)
(?no class ?x (equal 7x 'conditional-clocked))))

(conclusion(?dr elk-input " (define-clking-class ?dT (fvo ?no 'aspect)
'conditional))))

(rule clk-input-rule-4 backward-chain-rule
(type(driver ?drXnode ?no))
(premise(and(9dr g-node ?gn)

(?no numbeT ?gn)
(?no class ?x (equal ?x 'clocked-low))))

(conclusion(?dr elk-input "(define-clking-class ?dr (fvo ?no 'aspect)
'clocked-low))))

: node classifcation rules
(rule always-high-node-rule-1 backward-chain-rule

(type(*driver ?drXload ?ldXsupply ?supXnode ?no0 ?nol))
(premise (and(unknown ?no0 class always-high)

(?no0 number?gn(neq ?gn 0))
(?noO trans 't (= (length (fvso ?no0 'traas)) 2))
(?dT d node ?dn)
(?dr s-node ?gn)
(?sup pos-node ?dn)
(?dT g-node ?gnl)
(?nol number ?gnl)
(?nol class-1 ''x (equal?x 'always-high))))

Uonclusion(?noO class "(make node-class ?no0 'always-high nil nil))))
node class aspect witch

(rule always-high-node rule-2 backward-chain-rule
(typedoad ?ldXsupply ?supXnode ">no))
(premise (or (and(unknown ?no class always-high)

(?no number ?gn(neq ?gn 0))
(?sup pos-node ?gn))

(and (unknown ?no class always-high)
(?no number?gn (» (length (fvso ?no 'sre-drn)) D)
Cld s-node '.'gn'neq ''gn 0))
Cld d-node 'Idp)
('.'sup pos node ?lrip))))

(conclusionCno class *(make-node-class ?no 'always high nil 1))))

(rule always-high 3 backward-chain-rule
(type(node ?no))
(premise(and (unknown ?no class-1 always-high)

(?no class ?x (equal 7x 'always-high))))
(conclusion(?no class-1 "(make-node-class ?no 'always-high nil 1))))

(rule always-clocked-rule backwaTd-chain-rule
(type(node ?noXclock ?clk))
(premise(and (unknown ?no class always-clocked)

150

(?no number ?n)
(?clk pos-node ?n)))

(conclusion(?no class " (make-node-class ?no'always-clocked?clk nil))))

(rule conditional-clocked-rule backward-chain-rule
(type(node ?noXdm-boot ?db))
(pTemise(and(unknown ?no classconditional-clocked)

(?no number ?n)
(?db s-node ?n)
(?db d-node ?dn)
(?db boot-phase?bp))).

(conclusion(?no class
" (make-node-class ?no 'conditional-clocked ?bp nil))))

(rule precharged-node-rule backward-chain-rule
(type(node ?noXprecharger ?pre))
(premise(and(unknown ?no class precharge)

(?no number ?n)
(?pre s-node ?n)
(?pre pre-phase ?clk)))

(conclusion(?no class " (make-node-class ?no'precharge ?clk nil))))

(rule dynamic-node-rule-1 backward-chain rule
(type (node ?noXprecharger ?pdrKload ?ldXdriver ?drXclock ?clk)

(drn-boot ?dbXactive-two port-element ?atp))
(premise(and(unknown ?no class dynamic)

(?no number ?n(neq ?n 0))
(unknown ?ld s-node ?n)
(unknown ?atp pos-node ?n)
(unknown ?pdr s-node ?n)
(unknown ?db s-node ?n)))

(conclusion(?no class "(make-node-class ?no 'dynamic nil nil))))

; dynamic node if it has one clocked load
(rule dynamic-node rule-2 backward-chain-rule

(type' node ?nol ?noXload ?ldXsupply ?sup))
(premise(and(unknown ?no class dynamic)

(?no number ?n(equal 1 (length(fvso ?no'load))))
(?ld s-node ?n(neq ?n 0))
(known ?ld class?c(equal ?c 'ckc-load))
(?ld d-node ?dnum)
(?sup pos-node ?dnum)))

(conclusion!'.'no class " (make-node-class ?no 'dynamic nil nil))))

: clocked-low if it has pull-down driver which is clocked
(rule clocked low-rule backward-chain-rule

(type (node ?noXdrivcr ?drXclock?clkXprecharger ?pTcXdrn-boot ?db)
'load 'Id))

(premise(and(unknown ?no class clocked-low)
(?no number ?n)

(?dr d node ?n)

(?drs-node 0)

(Mr g-node ?gn)
('.'elk pos node ?gn)
(unknown 7pre s-node 'n)
(unknown ?db s-node 7n)))

(conc!usion(?no class
" (make-node-class ?no "clocked-low (implode tn - .©(explode ?clk))) nil))))

irule vice-versa-1 backward-chain-rule
(type(node ?no))
(premise{?no class ?x))
(conclusionQno class-1 7x)))

151

irule vice-versa-2 backward-chain-rule
(typeinode ?no))
(premise(and(?no class-1 ?x)))
(conclusicn(?no class ?x)))

: aspect detemination rules
(rule determine-aspea-rule-1 backwaid-chain-rule

(type(node ?noXsupply ?sup))
(prcmise(and(?no number ?n)

(?sup pos-node ?n)))
(conclusion(?no aspea ?sup)))

(rule determine-aspea-rule-2 backward-chain-rule
(type(node ?no?gnoXdriver ?drXclock ?clock))
(pTemise(and(?no number ?n(neq ?n 0))

(?dr s-node ?sn)
(?dT d-node ?dn(or (equal ?n ?dnXequal?n ?sn)))
(?dr g-node ?gn)
(?clk pos-node ?gn)))

(conclusion(?no aspea ?clk)))

(rule determine-aspect rule-3 backward-chain-rule
(type (node ?noXclock ?clk))

(premise (and(9no number ?n)
(?clk pos-node ?n)))

(conclusion(?no aspect ?clk)))

152

153

.•"•"•" FILE.CLKING-FUNCSSL"""

det-clk-input
(defun det-clk-input (struct class substrua substrua-clkin)

(let ((struct-clkin (fvo struct 'elk-input))
(strua-clk-class (fvo strua 'elk-class))
(substrua-elk-class (fvo substrua 'elk-class)))

(cond ((or (equal struct-clkin 'errorXequal substrua-clkin 'error))
'eiror)

((null struct-clkin) substrua-clkin)
((null substrua-clkin) strua-clkin)
((neq strua-clkin substrua-clkin) 'error)
(t strua-clkin))))

det-clk-class
(defun det-clk-class (struct class substruct substruct-clkin)

(let ((struct-clkin (fvo strua 'elk-input))
(struct-clk-class (fvo strua 'elk-class))
(substruct-elk-class (fvo substrua 'elk-class)))

(cond ((or (equal struct-clk-class 'cttot)
(equal substrua-elk-class 'eTror)) 'error)

((equal 1 (cond ((akop struct 'supeT-struct)
(length(fvso struct 'substruct)))

(t(length(fvso struct 'trans)))))
substruct-cIk-class)

((equal class 'parallel)
(cond ((oKequal struct-clk-class "hard)

(equal substruct-elk-class Tiard)) 'hard)
((oKequal strua-clk-class 'conditional)

(equal substrua-elk-class 'conditional))
'conditional)

(t nil)))
((equal class 'series)

(cond ((equal struct elk class substrua elk class): hard-hard
struct-clk-class) milnil cond-cond

((or (and(equal struct elk class 'hard)
(equal substruct-elk-class nil))

(and(equal strua-clk-class nil)
(equal substruct-elk-class 'hard)))

'condition.10

((or (equal struct-clk-class 'conditional) ; cond-any
(equal substruct-clk class 'conditional))
'conditional"))))

define-clking-class
(defun define-clking-class (driver elk class)

(fput driver 'elk-class "Svalue class)
elk)

make-node-class
(defun make :n»de class (node class aspect switch)

(cond -'sw itch (freplace node 'class "Svalue class))
<t (freplace node 'class 1 Svalue class)))

(cond(aspect (freplace node 'aspect "Svalue aspect))
(t(solve '(.node aspect ?x))))

class)

idefun determine-aspect (node class)
(condl(equal class 'always-highXcaaddrisolve

'(andijiode number ?xX?supply pos-node ?x)))))))

documentation of combinations
class of structure: series, parallel

elk-input to transistor or structure: ckl ckl
elk-class of transistor or structure:

hard —> source and drain or nodel nodel connected during clock
conditional —> connection is possible but conditional on other inputs
error —> violation of clocking rules

154

155

r...............,....F/1£. rc-RULESSL """

(rule long-TC-flag backward-chain-rule
(typedoad ?ldXnode?sn)(supply ?sup))
(premise(test(and(?ld d-node ?dn)

(?sup pos-node ?dn)
(?ld s-node ?lsn)
(?sn number ?lsn(>(length (fvso ?sn 'gate))0))
(?sn total-cap ?y))

(long-rc-condition ?ld ?sn ?sup)))
(conclusion (funny-node long-rc-flag ?sn)))

(rule node-total-cap backward-chain-rule
(type(node ?nde))
(premise(?nde number ?x))
(conclusion(?nde total-cap " (calc-capacitance ?nde))))

;.„..........„......f/L£:J?c.Ft/A,CS-SL...„.

long-rc-condition
(defun long-TC-condition (load node supply)
(let ((res (/ (* (fvo supply 'e-value) (fvo load '1-div-w))

(fvo "g-con 'std-Id-current)))
(cap (fvo node 'total-cap))) : res^kohms , cap=pf lau-ns

; (patom"long-rc "Xpatom resXpatom" "Xpatom capXterpri)
(> (* res capXfvo "g-con 'noise-tau))))

calc-capacitance
(defun calc-capacitance (node-name)

(let((n-class nilXn-aspea nil)
(cap-list (fvso node-name "cap)Xcap nil)
(tran-list (fvso node-name 'gate)Xtran nil)
(src-drn-list (fvso node-name 'src-drn)Xsrc drn nil)
(gate-cap OXstat-cap OXclka-cap OXclkb-cap 0)
(clkc-cap OXclkd-c •OXotheT-cap OXsrc-drn-cap 0))

(while(setq cap (caar cap-list)) ;add up static capacitances
(setq cap-list (cdr caj. list))
(setq other-node (make-node-name

(find-other-port cap (fvo node-name 'number))))
(solve pother-nodeclass ?x)) ; determines node class and aspect
(cond ((equal other-node 0)

(setq stat-cap (+ stat-cap(fvo cap 'e-value))))
((member (fvo other-node 'aspea) (fvso 'elementsl 'supply))

(setq stat-cap (+ stat-cap (fvo cap "e-value))))
((equal (fvo other-node 'aspect) *clka)

(setq elka-cap (+ elka-cap (fvo cap'e-value))))
((equal (fvo otheT-node 'aspect) *clkb)

(setq elkb-cap (+ elkb-cap(fvo cap 'e-value))))
(t(setq other-cap (+ other-cap (fvo cap 'e-value)))))) tend while

:adi! up oa.'e capacitance
(while (setq tran (car tran list))

(setq tran list (cdr tran list))
(setq gate cap (* gate-cap f* (1 vo tran 'widthXfvo tran 'length)

(fvo "g-con 'gox-cap))))) ;end while
;add up sre-drn capacitance

(while (setq sre-drn (car src-drn-list))
(setq src-drn-list (cdr STC-drn-list))
(setq STC-drn-cap (+ sre-drn-cap (• (fvo sre-drn 'width)

(fvo "g-con 'gox-overlap-cap)))))
; put them in the node frame

(freplace node-name 'static-cap "Svalue stat-cap)
(freplace node-name 'gate-cap "Svalue gate-cap)
(freplace node-name 'elka-cap "Svalue elka-cap)

156

(freplace node-name 'elkb-cap lvalue elkb-cap)
(freplace node-name 'other-cap "Svalue other-cap)
(freplace node-name 'src-drn-cap "Svalue src-dm-cap)
(+ stat-cap gate-cap elka-cap elkb-cap other-cap src-dm-cap)))

find-other-port
(defun find-other-port (cap node-number)

(cond((equal (fvo cap 'pos-node) node-number) (fvo cap 'neg-node))
(t(fvo cap'pos-node))))

'FILE: SUPBUF-RULESSL

; find inverting super-buffer
(rule find-supeT-buffer-1 backward-chain-Tule

(type(static-gate ?gl ?g2Xload ?lgl ?lg2Xelements 'elements))
(premise(test(and(?gl pull-up ?lgl)

(?g2 pull-up ?lg2 (neq ?gl ?g2))
(?lgl class ?x (equal ?x 'src-load))
(?lg2 class?y (equal ?y 'oth-load))
(?g1 out-node?g1on)
(?lg2 g-node ?glon)
(?elements dummy 1))

(super-buffer-condition ?gl ?g2)))
(conclusion (?elements supeT-buffer *(make-super-buffer ?gl ?g2 'inv))))

; find non-inverting super-buffer
(rule find-super-buffer-2 backward-chain-rule

(type(static-gate ?gl ?g2Xdriver?drlXload ?lgl ?lg2Xelements ?elements))
(premise(and(?elements dummy 1)

(?gl pull-up ?lgl)
(?g2 pull-up ?lg2 (neq ?gl ?g2))
(?lgl class ?x (equal ?x 'src-load))
(?lg2 class?y (equal ?y 'oth-load))
(?g1 out -node ?on1)
(?gl pull-down ?drl)
(?drl g-node ?inl)
(?g2 in-node ?onl)
(?lg2 g-node ?inl)))

(conclusion(?elements super-buffer "(make-super-buffer ?gl ?g2 'non-inv))))

; flag super-buffer that may be wasting power
(rule super-buffer-flag-1 forward-chain-rule

(type(supeT-buffer ?sb))
(premise(and(?sbclass ?x (equal 7x 'inv))

(?sb triggcTt (sb-power-waste condition 7sb))))
(conclusion (supeT-buffeT-eTrors power wa •* flag }sh)))

: flag super buffer without aggerssive predriver beta-ratio
(rule super-buffeT-flag-2 forwaTd-chain-rule

(type(supcr-buffeT ?sbXgate ?pd))
(premise (and(?sb class?x (equal ?x 'inv))

(?sb pTedriveT ?pd)
(?sb trigger t (>(fvo ?pd 'beta-ratio)

(fvo "g-con 'mx-sup-buf-agg-br)))))
(conclusion(supeT-buffeT-erroTS aggressive-br-flag ?sb)))

:; if predriver has aggressive beta-ratio then remove it from br errors
(rule super-buffer-flag-3 forward-chain-rule

(type(su per-buffer ?sbXgate ?pdr))
(premise (and(?sb class ?x (equal 7x 'inv))

(?sb predriver ?pdr)
(?sb trigger t (>(fvo?pdr 'beta-ratio)

(fvo "g-con 'mn supbul'-agg-br)))))
(conclusion (eval (fremove

(cond((akop 'pdr 'inverter) 'inv errors)
(t 'gate errors)) 'beta ratio 'Svalue '.'pdr))))

; error if non-inverting super-buffer input isn't connected to either
; a load, drain-bootstrapper, or clock
(rule super-buffer-flag-4 forward-chain-rule

(type (super-buffer ?supXdriver ?drXclock ?clk)
(static-gate ?gaXdrn-boot ?dmbXload ?ld))

(pTemise(and(?sup class ?x (equal ?x 'non-inv))
(?sup trigger t)

157

(?sup predriver?ga)
(?ga pull-down ?dr)
(?dr g-node ?in)
(unknown ?clk pos-node ?in)
(unknown ?drnb s-node ?in)
(unknown ?ld s-node ?in)))

(conclusion (super-buffeT-errors poor-input-drive ?sup)))

158

159

.- FILE: SUPBUF-FUNCSSL"""

sb-power-waste-condition
(defun sb-power-waste-condition (sb)

(let((pre-load (fvo (fvo sb 'predriver) 'pull-up))
(drv-load (fvo (fvo sb 'driver) 'pull-up))
(ratio nil))

(patom "predriver "Xpatom pre-loadXpatom " driver "Xpatom drv-loadXterpri)
(setq ratio (• (fvo drv-load '1-div-wX/ 1 (fvo pre-load "l-diviw))))
(or (> ratio (fvo "g-con mx-sup-buf-pwr-ratio))

(< ratio (fvo "g-con 'mn-sup-buf-pwr-ratio)))))

super-buffer-condition
(defun super-buffer-condition (predriver driver)

(let ((flag tXin-nodel (fvso predriver 'in-node))
(in-node2 (fvso driver 'in-node))
(node nil))

(cond((neq (length in-nodelXlength in-node2)Xsetq flag nil)))
(while (and flag (setq node (car in-nodel)))

(setq in-nodel (cdr in-nodel))
(cond((null(member node in-node2)Xsetq flag nil))))

flag))

make-super-buffer
(defun make-super-buffer (predriver driver class)

(let((sup-buf (finstantiate 'super-buffer)))
(patom sup-bufXteTpri)
(fput sup-buf 'class "Svalue class)
(fput sup-buf 'predriver "Svalue predriver)
(fput sup-buf 'driver "Svalue driver)
(fput sup-buf 'out-node "Svalue (fvo driver 'out node))
(fput-values sup-buf 'in-node (fvso predriver 'in node))
(fput sup-buf 'driver br "Svalue (fvo driver 'beta-ratio>)
(fput sup-buf 'pTedriveT br "Svalue (ivo predriver 'beta ratio))
(fput sup-buf "supply "Svalue(fvo driver supply))
(fput sup-buf 'supply-node "Svalue (fvo (fvo driver 'pull w d-node))
(fput sup-buf 'trigger "Svalue t)
sup-buf))

•tttft»*ff*

•"'""""FILE: D-BOOT-RULESSL*

:z;;z; find drn-boot drivers ;;^^*«;;;;^;;».';

: find a drn-boot driver
(rule find-dm-boot-1 backward-chain-rule

(type(driver?drXnode ?gnXelements ?elementsXclock ?clk))
(premise(and(?elements dummy l)

(known ?dr class ?c(or(equal ?c'unclassified)
(equal ?c'xiXequal ?c 'xfer)))

(?dr d-node ?d-num)
(?clk pos-node ?d-num)
(?dr g-node ?g-num)
(?gn number ?g-num)
(?gn class ?y (equal ?y 'dynamic))))

(conclusion(?elements dm-boot " (make-dm-boot ?dr ?clk))))

; find a drn-boot driver
(rule find-drn-boot-2 backward-chain-rule

(type(driver ?drXnode ?dn ?gnXelements?elements))
(premise(and(?elements dummy 1)

(known ?dr class?c (or(and(neq ?c"drn-boot)
(equal ?c 'unclassified))

(and(neq \ 'drn-boot)
(equal 9c 'xi))))

(?dr d-node ?d-num)
(?dn number ?d-num)
(?dn class?x (equal ?x 'conditional-clocked))
(?dr g-node ?g-num)
(?gn number ?g-num)
(?gn class ?y (equal ?y "dynamic))))

(conclusion(?elements dbl "(make-dm-boot ?dr nil))))

(rule other-clk-hold-down-1 backward-chain-rule

dype/dm-boot ?dbXdriver ?drXdock ?clkXnode ?no))
(premisc(and(?db s-node ?sn)

(?dr d-node ?sn)
(?dT s-node ?x (equal ?x 0))
(?dr g-node ?gn)
(?clk pos-node ?gn(neq ?clk (fvo ?dr'boot-phase)))))

(conclusion(?db other-clk-hold-down ?dr)))

find drain-bootstrap cellsz:;;z;;z;

(rule find-drain-bootstrap-1 backwaTd-chain-rule
ItypcXdrn-boot ?dbXinverter ?invXdriver?cgXelcments ?elements)

(node ?no))
(premise(and(?db status free)

(?inv status free)
(?db g-node ''gn)
(?inv out node -'gn)
(?inv in node ?m)
(?inv xfer gate 'eg)
(?cg g-node \ggn)
(?no number ?cggn)
(?no aspect ?clk)
(?elements dummy 1)))

(conclusion(?elements drain-boots trap
" (make-drain-bootstTap ?db ?inv ?clk ?in))))

(rule find-drain-bootstrap-3 backward-chain-rule
(type(dm-boot ?dbXdriver ?xfXelements?elementsXnode ?no))
(premise(and(?db status free)

160

(known ?db o-ins xi)
(?dbxfer-gate ?xf)
(?xf g-node ?g)
(?no number ?g)
(?no aspea ?clk)
(?elements dummy l)))

(conclusion(?elements drain-bootstrap
" (make-drain-bootstrap ?db ?xf ?clk nil))))

(rule find-mos-cap-rule backward-chain-rule
(type(drain-bootstrap ?dXmos-cap ?mXdm-boot ?db))
(premise(test(and(?d dm-boot ?db)

(?db g-node ?gn)
(?db d-node ?sn)
(?m status free)
(?m g-node ?mgn)
(?m s-node ?msn))

(or(and(equal ?gn ?mgnXequal ?sn ?msn))
(and(equal ?gn?msnXequal?sn?mgn)))))

(conclusion(?d mos-cap?m)))

drn-boot checks

: check for other phase hold-down
(rule drn-boot-check-1 backward-chain-rule

(type (dm-boot ?db))
(premise(and(elementsl drn-boot ?db)

(unknown ?db other-clk-hold-down ?x)))
(conclusion (dm-boot-erTors phase-hold-down ?db)))

; check for mos-cap in correctly
(rule check-db-mos-cap backward-chain-rule

(type(drain-bootstrap ?dXmos-cap ?m))
(premise(and(?d boot-node ?bn)

(known ?d mos cap ?m)
Cm g-node ?g (neq 'g ?bn))))

(conclusion(drn boot-errors mos cap-backwards ?d)))

; checkin for clocking errors in drain-bootstrap
(rule check-db-clockin backward-chain-rule

(type!drain-bootstrap ?d))
(premise(and(?d boot-phase ?bp)

(?d pre-phase ?bp)))
(conclusion (dm boot-errors clocking-error7d)))

; check for proper hold-down length
(rule check-db-hd-length backward chain-rule

(type(drain bootstrap ?dXdriver 9drXinverter ?pd))
(pTemise(and(?d predriver ?pd (null (akop ?pd 'transistor)))

(?pd pull-down ?dr)
Cdr length ?1 (< '1 (fvo "g con 'db ahd 1)))))

(conclusion'drn-boot-errors longer driver needed 7dr)))

; check for bootnode active low
(rule check-db boot node backward chain rule

(type(drain bootstrap 7d);
(premise(?d predriver ?pd (akop ?pd "transistor)))
(conclusion(dTn-boot-cTTors boot-node-not-aaive-low ?d)))

161

162

...................."FILE: D-BOOT-FUNCSSL"""

make-drn-boot
(defun make-drn-boot (dr boot-phase) ; trigger put is asserted later on
(let ((d-node (make-node-name (fvo dr 'd-node))Xxid nil)

(s-node (make-node-name (fvo dT 's-node))))
(cond((akop dT 'xi-driver)

(fput dr 'o-ins "Svalue 'xi)
(freplace dr 'width "Svalue (/ (fvo dr 'width)

(fvo "g-con 'xi-dT-wrf)))
(fremove 'elementsl 'xi-driver "Svalue dr)
(fremove 'coupling-errors 'xi-driver-coupling "Svalue dr)
(fremove 'coupling-ertots 'xi-driver-coupling-1 "Svalue dr)))

(freplace dr 'ako "Svalue 'dm-boot)
(freplace dr 'class "Svalue 'dm-boot)
(freplace dT 'boot-phase "Svalue

(cond ((null boot-phaseXfvo d-node 'aspect))
(t boot-phase)))

(make-node-class s-node 'conditional-clocked (fvo dr "boot-phase) nil)
(patom "dm-boot "Xpatom drXterpri)
dr))

so1ve-a11-drn-boots
(defun solve-all-dra-boots 0

(let((drn-boot-list nilXdb nilXtemp nilXtemp-list nil))
(solve-all X?elements dm boot ?x))
(setq temp-list (fvso 'elementsl 'dm-boot))
(while (setq temp (car temp-list))

(setq temp-list (cdr temp-list))
(fput 'elementsl 'dbl "Svalue temp))

(while (fvso 'elementsl 'dbl)
(setq dm-boot-list (append (fvso 'elementsl 'dbl) drn-boot-list))
(fremove 'elementsl 'dbl)
(solve-all '('elements dbl >x))»

(while (setq db (car drn-boot-list))
(setq drn-boot-list (cdr dm boot-list))
(freplace db "trigger Svalue t)
(fput 'elementsl 'dm-boot "Svalue db))

(fix-xi -driver-errors)
(solve-all <?drn-boot other-clk-hold-down ?x))))

make-other-clk-h-d
(defun make-other-clk-h-d (driver)

driver)

make-drain-bootstrap
(defun make-drain-bootstrap (dm-boot predriver inclk in-node)

(let((db (finstantiate 'drain-bootstrap)))
(patom dbXterpri)
1!put db 'predriver 'Svalue predriver)
' iput db 'drn boot "Svaiue dm boot)
ft put db 'in-node 'Svalue

(cond(.(nulI in node)

(cond((equal (fvo predriver 'd-nodeXfvo dm-boot 'g-node))
(fvo predriver "s-node))

(t (fvo predriver 'd node))))
(t in-node)))

(fput db 'out-node "Svalue (fvo dm-boot 's-node))
(fput db 'boot-node "Svalue (fvo dm-boot 'g-node))
(fput db 'pre-phase "Svalue inclk)
(fput db "boot-phase "Svalue (fvo dm-be'-t Txxn-phase))
(cond((fvso dm-boot "other-clk-hold-down)

(fput-values db 'other-clk-hold-down

163

db))
(fvso dm-boot 'other-clk-hold-down))))

(defun solve-all-drain-bootstraps 0
(find-drain-bootstrap-cells)
(solve-all *(?drain-bootstTap mos-cap ?x)))

solve-all-drain-bootstraps

(defun find-drain-bootstrap-cells ()
(let((db-list nil))

(while (solve *(?elements drain-bootstrap ?x))
(cond((null db-listXsetq db-list (fvso 'elementsl 'drain-bootstrap)))

(t(setq db-list (cons (fvo 'elementsl "drain-bootstrap) db-list))))
(fremove 'elementsl 'drain-bootstrap "Svalue))

(cond (db-list (fput-values 'elementsl 'drain-bootstrap db-list)))))

find-drain-bootstrap-cells

(defun fix-xi-driver-errors 0
(let((db-list (fvso 'elementsl 'dm-boot)Xdb nilXxid nil))
(while(setq db (car db-list))

(setq db-list (cdr db-list))
(cond((setq xid (cadKsolve *(known ?xi-driver xfer-gate .db))))

(fremove 'coupling-errors 'xi-driver-coupling Rvalue xid)
(fremove 'coupling-errors 'xi-driver-coupling-1 "Svalue xid))))))

fix-xi-driver-errors

......................p;.^. rec-RULESSL"""

(rule find-reg-core-l backward-chain-rule
(type(xi-invener ?xil ?xi2Xreg-driver ?drXelements ?elements)

(clock ?clkl ?clk2 ?clk3))
(premise(and(?elements dummy l)

(?xil in-node ?inl)
(?xil out-node ?outl)
(?xil status ?stl (equal ?stl 'free))
(?xi2 in-node?in2(equal ?in2 ?outl))
(?xi2 out-node ?out2)
(?xi2 status ?st2 (equal ?st2 'free))
(?dr status free)
(?dr d-node ?dn(or(equal ?dn ?inl)

(equal ?dn ?out2)))
(?dr s-node ?sn(or(equal ?sn ?inl)

(equal ?sn ?out2)))
(?xil xfer-gate ?xf1)
(?xfl g-node ?xf lgn)
(?clkl pos-node ?xf lgn)
(?xi2 xfeT-gate ?xf2)
(?xf2 g-node ?xf2gn)
(?clk2 pos-node ?xf2gn)
(?dr g-node ?drgn)
(?clk3 pos-node ?drgn)))

(conclusion(?elements reg-core
"(make-reg-core .'xil ?clkl ?xi2 ?clk2 ?dr ?clk3 ?inl ?out2 nil))))

(rule find-reg-cell-1 backward-chain-rule
(type(regcore 'rcXreg driver ?dTl ?dr2Xxi-inverter ?rcin)

(elements '.'elementsXnode ?nol ?no2))
(pTemise(test(and(?cIements dummy 1)

(?rc in-node ?in)
(?rc out node ?out)
C'rc status free)
C'drl ri node ?dnl)
(?drl s node ?snl (ortequal ?snl ?in)

(equal ?dnl ?in)))
(?drl status free)
Cdr2 d-node?dn2(neq?dr2 ?drl))
(?dr2 s-node ?sn2 (oKequal ?sn2 ?out)

(equal ?dn2 ?out)))
(?dr2 status free)
(?rc in stage ?rcin)
(?rcin out node ?rcinon))

(and(neq ?rcinon Mnl Xneq ?Trinon ?dn2)
(neq '.'rcinon 'snlXneq ?rcinon ?sn2))))

(conclusion (?elements reg cell "(make-reg-cell ?rc?drl ?dr2 nil))))

(rule find-reg inclk backward chain rule
(type* reg cell 'rcXreg driver ''drXnode 'no»)
(premise* and''re in stage Mr)

C'dr g node ''gn)
C'no number 'gn)
Cno class ?cl)»

(conclusion(?rc in-clk *(fvo .'no "aspect))))

(rule find-reg-outclk backward-chain-rule
(type(rcg-ceil ?rcXreg-driver ?drXnode ?no))
(premise(and(?rc out-stage?dr)

(?dT g-node ?gn)
(?no number ?gn)
(?no class ?cl)))

164

(conclusion(?rc out-clk *(fvo ?no 'aspea))))

; error if any other fets connected from internal core to outnode of reg
(rule reg-intemal-con-check-1 backward-chain-rule

(type(eTTOTsXreg-cell ?rcXstrua ?stXtransistor ?trXreg-core ?r)
(node ?nolXstrua ?stXxi-invcrteT ?os))

(pTemise(or(and(?rc reg-core ?r)
(?r in-node ?in)
(or (?tT s-node ?inX?tr d-node ?in))
(?tr status free))

(and(?rc reg-core ?r)
(?r out-stage ?os)
(?os in-node ?osin)
(?os out-node ?osout)
(or(and(?tr s-node ?osin)

(?tr d-node ?osout))
(and(?tr s-node ?osout)

(?tT d-node ?osin))
(and(?st node-1 ?osin)

(?st node-2 ?osout))
(and(?st node-1 ?osout)

(?st node-1 ?osin))))))
(conclusion (register-errors internal-connection ?rc)))

; reg clocking must ber correct
(rule reg-clking-check backward-chain-rule

(type(errorsXreg-cell ?rcXreg-core ?r))
(premise(test(and(?rc reg-core ?r)

(known ?rc in-clk ?inclk)
(known ?rc out-clk ?outclk)
(known ?r in-clk ?Tinclk)
(known ?t out-clk ?routclk)
(known ?r rec-clk ?rrecclk))

(or* neq "'inclk ?rinclkXequal ?inclk Tirecclk)
(neq 'rrecclk ?routclkKneq 7inclk ?outclk))))

(conclusion (register-errors clocking error?rc)))

iflag is register has only clocked gate for recirculate path
(rule Teg-cirtical-node-flag backward-chain-rule

(type (errorsXTeg-cell ?rcXreg-core 7r)>
(premise(and <?rc reg-core ?r)

(?r rec-stage ?rs (akop ?rs "driver))))
(conclusion(registcr-errors critical node flag ?rc)))

; error if register input is clocked on the same phase as the precharger .
(rule reg-clking-check-2 backward-chain rule

(type(pTecharger ?prXreg-cell ?rc))
(premise(and(?pr s node ?sn)

(?rc in-node ?sn)
(?pr pre phase ?pp)
(?rc in-clk 7pp)))

(conclusion'register errors clocking-error 're)))

165

166

f""---~—-»FILE:REG-FUNCSSL"—

solve-all-reg-cells
(defun solve-all-reg-cells 0

(solve-all X?elements reg-core ?x))
(solve-all t?elements reg-cell ?x))
(solve-all X?reg-cell in-clk ?x))
(solve-all t?reg-cell out-clk ?x))
(solve-error-frame 'registeT-erTors))

make-reg-core
(defun make-reg-core (in-s inclk out-s outclk rec-p recelk in-n out-n rec-n)

(let((core (finstantiate 'reg-core)))
(patom coreXterpri)
(fput core 'in-stage "Svalue in-s)
(fput core 'out-stage "Svalue out-s)
(fput core 'rec-stage "Svalue rec-p)
(fput core 'in-clk "Svalue inclk)
(fput coTe 'out-clk "Svalue outclk)
(fput core 'rec-clk "Svalue recelk)
(fput core 'in-node "Svalue in-n)
(fput core 'out-node *Svalue out-n)
(cond(rec-n (fput core rec-node "Svalue rec-n)))
core))

make-reg-cell
(defun make-reg-cell(core in-stage out-stage rec-inv)
(let((reg-cell (finstantiate 'reg-cell)))

(patom reg-cellXteTpri)
(fput reg-cell 'reg-core "Svalue core)
(fput reg-cell 'in-stage "Svalue in-stage)
(fput reg-cell 'out-stage "Svalue out-stage)
(fput reg-cell "in-node 'Svalue (find-reg-cell-node core in sugc 'in))
(fput reg cell 'out node "Svalue (find-reg-cell-node core out-stage 'out))
(cond(recinv (fput reg-cell 'rec-inv lvalue Tec-inv)))
reg-cell))

find-reg-cell-node
(defun find-reg-cell-node(core stage key)

(let((core-in (fvo core 'in-nodcjXcore-out (fvo core 'out-node')
(nodel (cond((akop stage 'driverXfvostage 'd-node))

(tvfvo stage taode-l))))
(nodc2 (cond((akop stage driverXfvo stage "s-node))

(t(fvo stage 'node 2)))))
(cond ((equal key 'in)

(cond((equal nodel (fvo core 'in-node)) node2)
(t nodel)))

((equal key 'out)
(cond ((equal nodel (fvo core 'out-node)) node2>

(model))))))

fm».„.M..~nm.FILE:STRTjCT_RULEssL''''''

(rule find-xc-xor-struct backward-chain-rule
(type(reg-driver ?drl ?dr2Xelements ?elements))
(pTemise(test(and(?drl s-node ?sl)

(?dTl g-node ?gl)
(?drl d-node ?dl)
(?drl status free)
(?dr2 s-node ?s2)
(?dr2 g-node?g2)
(?dr2 d-node ?d2)
(?dr2 status free)
(?elements dummy 1))

(or(and(equal ?dl ?d2Xequal ?sl ?g2Xequal ?s2?glXneq ?sl ?s2))
(and(equal ?dl ?s2Xequal ?sl ?g2Xequal ?d2 ?glXneq ?sl ?d2))
(and(equal ?sl ?d2Xequal?dl ?g2Xequal ?s2 ?glXneq ?dl ?s2))
(and(equal ?sl ?s2Xequal ?dl ?g2Xequal ?d2 ?glXncq ?dl ?d2)))))

(conclusion(?elements xc-xor-strua "(make-xc-xor-struct ?drl ?dr2))))

167

."*"" FILE: STRUCT-FUNCSSL"""

find-other-structs
(defun find-other-structsO

(solve-all '(?elements xc-xor-struct ?x))
(combine-xc-xor-struct))

make-xc-xor-struct
(derun make-xc-xor-struct (drl dr2)

(let((xor (finstantiate 'xc-xor-strua))
(dnl (fvo drl 'd-node)Xsnl (fvo drl 's-node))
(dn2 (fvo dr2 'd-node)Xsn2 (fvo dr2 's-node)))

' patvim xor* terpri)
(iput \or 'class "Svalue 'xc-xor)
>sput xur "1-div-w "Svalue (max (fvo drl 'l-div-wXfvodr2 '1-div-w)))
'•l'pvt xor 'trans "Svalue drl)
':?m xor "trans "Svalue dr2)
(fput xor 'string-1 "Svalue l)
(fput xor 'out-node "Svalue

(cond((equal dnl dn2) dnl)
((equal dnl sn2) dnl)
((equal snl sn2)snl)
((equal snl dn2) snl)
(t (patom "•••"make-xc-xor error,,"*,HXterpri))))

(fput xor "in node "Svalue
<cond((equal dnl (fvo xor 'out-node)) snl)

(t dnl)))
(fput xor 'in-node "Svalue

(cond((equal dn2 (fvo xor 'out-node)) sn2)
(t dn2)))

xor J i

combine-xc-xor-struct
(defun combine xc xor struct 0

(lct((xc list (fvso "elementsl 'xc xor struct)Xnew-list nilXxor nil)
(xor out nil* new -struct nilXxorl nil))

(while (setq xor (car xc-list))
(setq xc-list (cdr xc-list))
(setq xor-out (fvo xor 'out-node))
(cond ((setq xorl (caadadr (solve

*(test(and(?xc-xor-struct status free(neq ?xc-xor-strua '.xor))
(?xc-xor-strua out-node .xor-out))

(null (member ?xc-xor-strua new-list))))))
(setq xc-list (delete xorl xc-list))
(setq new-strua (finstantiate 'xc-xor-strua))

168

(patom new-strua)
(cond((null new-list Xsetq new-list (list new-strua)))

(t (setq new-list (cons new-strua new-list))))
(fput new-strua 'substruct "Svalue xor)
(fput new-strua 'class "Svalue 'xc-xor)
(fput new-strua 'string-1 "Svalue l)
(fput-values new-struct 'ih-node (fvso xor 'in-node))
(fput new-strua '1-div-w "Svalue (fvo xot '1-div-w))
(fput new-strua 'out-node "Svalue xor-out)
(add-next-strua new-strua xorl)

(while (setq xorl (caadadr (solve
ttest(and(?xc-xor-struct status free(neq ?xc-xoT-strua '.xor))

(?xc-xor-strua out-node jcor-out))
(null (member ?xc-xor-struct new-list))))))

(add-next-strua new-struct xorl)))))
(cond(new-list

(fput-values 'elementsl 'xc-xor-strua new-list)))))

add-next-struct
(defun add-next-strua(new-struct xorl)

(fput new-struct 'substrua "Svalue xorl)
(fput-values new-struct 'in-node (fvso xorl 'in-node))
(freplace new-struct "l-div-w "Svalue (max (fvo new-struct '1-div-w)

(fvo xorl '1-div-w))))

.—•••"• '""FILE: CSHARE-RULESSL"""

: flag capacitive-feedback into node with a feedback transistor
(rule charge-share-1 backward-chain-rule

(type(node ?nol ?no2 ?no3Xdriver ?drl ?dr2 ?fb))
(premise (and(?fb fb-tran-flag t)

(?fb g-node ?fbgn)
(?fb d-node ?fbdn)
(?drl g-node?fbdn)
(?nol numbeT ?fbgn)
(?nol class ?cl)
(?nol total-cap ?capl)
(?dr2 d-node ?fbgn)
(?dr2 s-node ?n2(neq ?n2 0))
(?no2 number ?n2)
(?no2 total-cap ?cap2)
(?dr2 g-node ?gn2)
(?no3 numbeT?gn2)
(?no3class ?x(or(equal ?x 'always-clocked)

(equal 7x 'conditional-clocked)))))
(conclusion(charge-share-erroTS feedback-glitch-flag

"(check-feedback-glitch ?drl ?dT2 ?capl ?cap2 ?nol ?no2))))

(rule charge-share-2 backward-chain-TUle
(type(node ?nol ?no2 ?no3Xdriver ?drl ?dr2 ?fb))
(premise (and(?fb fb-tran-flag t)

(?fb g-node ?fbgn)
(?fb d-node ?fbdn)
(?drl g-node ?fbdn)
(?nol number ?fbgn)
('nol class ?cl)
(?nol total-cap ?capl)
C'dr2 s-node ?fbgn)
C'rir2 d-node ?n2(neq ?n2 0))
i°no2 number ?n2)

C'no2 total-cap ?cap2)
>'d-2 g-node?gn2)
Cno3 number ?gn2)
(?no3 class ?x(or(equal ?x 'always-clocked)

(equal ?x 'conditional-clocked)))))
(conclusion'charge share-errors feedback-glitch-flag

" (check-feedback-glitch ?drl ?dr2?capl ?cap2 ?nol ?no2))))

169

.-"•"* FILE: CSHARE FUNCSSL"""

check-feedback-glitch
(defun check feedback glitch (drl dr2 cl c2 nl n2)

(let((rl (fvo drl '1 div-w)Xr2 (fvo dr2 '1-div-w)Xn-list (list nl n2))
(dr ratio (fvo "g-con *dr-cshare-ratio))
(cap ratio (fvo '"g-con cap-cshare-ratio)))

(cond((and(<cl (" cap ratio c2)X < r2 (" dr-ratio rl)))
(fput 'charge share-errors 'teedbock glitch error "Svalue n list)))

n-llst))

r..............~....F2LE. raCE-COND.SL"""

; prechargeloss if two gates connected to each other are bothclocked
: low on the same phase and the output of the second drives a dynamic
: gate input
(rule race-condition-1 backward-chain-rule

(type (erroTsXstatic-gate ?sgl ?sg2Xdynamic-gate ?dglXnode ?nol ?no2))
(premise(test(and (?sgl out-node?outl)

(?sg2 in-node ?outl (neq ?sgl ?sg2))
(?sg2 out-node?out2)
(?dgl in-node?out2)
(?nol number ?outl)
(?no2 number ?out2)
(?nol class ?x)
(?no2 class ?y))

(and(equal ?x 'clocked-lowXequal ?y 'clocked-low))))
(conclusion (race-erTOTS precharge-loss ?dgl)))

; dynamic xor has input timing sensitivities
(rule dynamic-xoT-race-condition forward-chain-rule

(type(dynamic-xc-xor ?xor))
(pTemise(?xor trigger 0)
(conclusion (race-errors input-skew-flag ?xor)))

,• flag a transfer gate driven by a bootstrapper if clockskew
: sensitivity flag in 'g-con is true
(rule clock-skew-rule-1 backward-chain-rule

(type(driveT?drXdm-boot ?dbXnode ?nl ?n2))
(premise (and('g-con elk-skew-flag t)

(?db check ?chkl(neq ?chkl 'skew-flag-D)
(?dr check ?chk2(neq ?chk2 'skew-flag-l))
(?db s-node ?sn)
(?dr d-node ?sn)
(?dr g-node ?dgn»
(?dr s-node ^sn)
(?n2 numb* Mgn '•
(?n2 cla- •....ays-*;locked)
(?n2 aspec "*- (equal ?a(fvo ?db 'boot-phase)))
(?nl number *~-n)
(?nl class dynamicW

(conclusion(clk-skew-errors clock skew flag-1 "(put-elk skew ?db?dr 1))))

; same as above rule , just with fet s-d reversed
(rule clock-skew-rule-2 backward-chain-rule

(type(driver ?drXdm-boot ?dbXnode ?nl ?n2))
(premise (and('g-con elk-skew-flag t)

(?db check ?chkl(neq ?chkl "skew-flag-D)
(?dr check ?chk2(neq ?chk2 "skew-flag-D)
(?db s-node ?sn)
(?dT s-node ?sn)
Cdr g-node ?dgn)
('dr d-node ?dsn)

(?n2 number ?dgn)
(?n2 class always-clocked)
Cn2 aspec: ?a (equal 'a (fvo 'db 'boot-phase)))
(?nl number Msn)
(?nl class dynamic)))

(conclusion(clk-skew-errors clock-skew-flag-1 " (put-elk-skew ?db?dr 1))))

:; flag two drivers connected together with one gate conditionally
; clocked and one gate always clocked
(rule clock-skew-rule-3 backward-chain-rule

(type(node?dnl ?snl ?gnl ?gn2Xdriver ?drl ?dr2))
(premise (and('g-con elk-skew-flag t)

170

(known ?gnl classconditional-clocked)
(?gnl number ?gl)
(?drl g-node ?gl)
(?drl check ?chkl (neq ?chkl 'skew-flag-2))
(?dr2 check ?chk2 (neq ?chk2 'skew-flag-2))
(?drl s-node ?sl)
(?drl d-node ?dl)
(?dr2 s-node ?s2(neq ?dr2 ?drl))
(?dr2 d-node ?d2(or(=?d2 ?slX= ?d2 ?d1) '

(=?s2?slX=?s2?dl)))
(?snl number ?sl)
(?dnl number ?dl)
(or(?snl class dynamic(or(= ?sl ?s2X= ?sl ?d2)))

(?dnl class dynamic(or(= ?dl ?s2X= ?dl ?d2))))
(?dr2 g-node ?g2)
(?gn2 number ?g2)
(?gn2 class always-clocked)
(known ?gnl aspea ?asp)
(known ?gn2 aspea ?asp)))

(conclusion(clk-skew-errors clock-skew-flag-2
*(put-clk-skew ?drl ?dr2 2))))

171

172

-»................„F/L£. RAQE-FUNCS.SL ""

solve-all-clk-skew-errors
(defun solve-all-clk-skew-errors 0

(l«((slot-list (delete 'ako (fslots 'clk-skew-errors))Xslot nil))
(cond((fvo "g-con 'elk-skew-flag)

(while (setq slot (caT slot-list))
(setq slot-list (cdr slot-list))
(patom "'suppress -"Xpatom •suppress-justifications'XteTpri)
(my-solve-all tclk-skew-errors ,slot ?x)))))))

put-clk-skew
(defun put-clk-skew(drl dr2 flag)

(let ((skew-fg (implode (skew-flag- ,@(explode flag))))
(drl-check (fvso drl 'check)Xdr2-check (fvso dr2 'check)))

(fremove drl 'check "Svalue)
(fremove dr2 'check *Svalue)
(fput-values drl 'check (cons skew-fg (delete 'unchecked drl-check)))
(fput-values dr2 'check (cons skew-fg (delete 'unchecked dr2-check)))
(list drl dr2)))

......................F22.E: PAD-RULESSL """

(rule input-proteaion-check backward-chain-rule
(type(pad ?padXdriver?dT))
(premise(and(?pad node-num ?n)

(unknowable ?pad prot-device?dr)))
(conclusion(input-pad-erTors missing-pToteaion-device ?pad)))

(rule input-undershoot-check backward-chain-rule
(type(pad ?padXdriver?dr))
(premise(test(and(?pad node-num ?n)

(?dr s-node ?sn)
(?dT d-node ?dn (oKequal?dn ?nXequal ?sn ?n))))

(and(neq ?sn OXneq ?dn 0))))
(conclusion(input-pad-erTors undershoot-flag ?pad)))

(rule find-pad-protea-device backward-chain-rule
(type(pad TpadXdriver?dT))
(premise(and(?pad node-num ?n)

(?dr d-node ?n)
(?dr g-node 0)
(?dr s-node 0)))

(conclusion(?pad prot-device ?dr)))

173

'FILE: NET-L1STSSL

(setq "net-list-l "(("net-list-l)
(load ml 1 2 2 4 8)
(driver m2 2 3 0 6 2)
(driveT m3 2 4 5 6 2)
(driver m4 5 6 0 6 2)))

(setq *net-list-2 <(*nct-list-2)
(load ml 1 2 2 4 8)
(driver m2 2 3 0 2 2)
(driveT m3 2 5 4 4 2)
(load m4 1 6 6 4 8)
(driver m5 6 4 0 2 2)
(load m6 1 7 7 4 8)
(driver m7 7 6 8 6 2)
(driver m8 8 12 0 6 2)
(driver m9 7 10 9 6 2)
(driver mlO 9 11 0 6 2)
(load mil 1 12 12 4 8)
(driver ml2 12 13 16 6 2)
(driver ml3 12 14 16 6 2)
(driver ml4 12 15 16 6 2)
(driver ml 5 16 17 18 6 2)
(driver ml6 18 19 0 6 2)
(supply vl 10 5)

))

(setq *net-list-4 "((*net-list-4)
(driveT ml7 20 23 25 6 2)
(driver ml 8 25 23 21 6 2)
(driver ml9 20 23 24 6 2)
(driver m20 24 23 21 6 2)
(driver m21 20 23 21 6 2)
(driveT m22 21 23 22 6 2)
(driver m23 22 23 0 o 2)
(driver m24 20 23 2ft 6 2)
(driveT m25 26 23 21 6 2)
(driver m26 21 23 27 6 2)
(driver m27 27 23 0 6 2)
(supply vl 20 0 5)

))

(setq "net-list-5 "(("net-list 5)
(load ml 1 2 2 4 8)
(driver m2 2 3 0 2 2)
(supply vl 1 0 5)
(driver ml 3 2 10 4 4 2)
(load m3 1 5 5 4 8)
(driveT m4 5 4 0 2 2)
0oadm5 16 6 4 8)
(driver m6 6 5 7 u 2)

(driver m7 7 10 K 6 2)
(driver m8 8 10 0 6 2)
(load m9 1 9 o 4 8)
(driver mlO <* 6 0 6 2)
(driver ml 1 9 10 0 6 2)
(driver ml 2 9 10 0 6 2)

))

(setq "net-list-6 "(("net-list-6)
(supply vl 10 5)
(load ml 1 2 2 4 8)
(load m2 1 4 4 4 8)

174

(load m3 1 6 6 4 8)
(load m4 1 8 8 4 8)
(driveT m5 2 3 0 6 2)
(driver m6 4 2 0 6 2)
(driver m7 6 5 0 6 2)
(driver-m8 8 7 0 6 2)
(driveT m9 4 9 5 4 2)
(driveT mlO 6 9 7 4 2)))

(setq "net-list-7 "(("net-list-7)
(supply vl 1 0 5)
(clock phi 2 0 5)
(load ml 1 4 4 4 8)
(load m2 1 1 5 4 8)
(load m3 1 1 5 4 8)
(load m4 1 2 7 4 8)
(load m5 1 2 8 4 8)
(load m6 8 2 9 4 8)
(driver m7 4 3 0 6 2)
(driver m8 5 4 0 6 2)
(driver m9 6 5 0 6 2)
(driver mlO 7 6 0 6 2)
(driver mil 8 7 06 2)))

(setq "net-list-8 \(*net-list-8)
(load ml 1 2 2 4 6)
(supply vl 10 5)
(driver m2 2 5 3 6 2)
(driver m3 2 5 4 6 2)
(driver m4 3 5 4 6 2)
(driver m5 3 5 0 6 2)
(driver m6 4 5 0 6 2)))

(setq "net-list 9 '((*net list-9)
(supply v 1 2 0 5)
(driver ml 2 3 0 6 2)
(driver m2 2 3 0 o 2)
(driver m3 2 3 0 6 2)
(driveT m4 2 3 0 6 2)
(driveT m5 2 3 0 6 2)
(driver m6 0 3 2 6 2)
(driver m7 2 3 0 6 2)))

(setq "net-list-10 t('net-list-10)
(supply vl 7 0 5)
(clock ckl 1 0 5)
(clock ck2 2 0 5)
(driver ml 3 10 5 6 2)
(driver m2 3 10 5 6 2)
(driver m3 7 10 3 6 2)
(driver m4 7 10 3 6 2)
(driver m5 5 1 0 6 2)

(driver m6 7 1 0 6 2)
))

(setq *net-list 11 '(("net list-11)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 12 5 6 2)
(driver m2 1 10 4 6 2)
(driver m3 4 2 5 6 2)
(driver m4 1 10 6 6 2)
(driver m5 6 10 7 6 2)

175

(driver m6 7 2 5 6 2)
(driver m7 5 10 8 6 2)
(driver m8 8 10 0 6 2)

))

(s«q "net-list-l 2 t(*net-list-12)
(supply vl 10 5)
(clock phi 2 0 5)
(driver ml 3 10 2 6 2)
(driver m2 3 10 0 6 2)
(driver m3 5 10 1 6 2)
(driver m4 1 10 5 6 2)
(driver m5 0 10 5 6 2)

))

(setq "net-list-13 "(("net-list-13—always-high)
(driver ml 14 6 6 2)
(driver m2 1 5 4 6 2)
(load m3 1 5 5 4 8)
(driver m4 2 6 0 6 2)
(driver m5 1 7 2 6 2)
(clock ckl 7 0 5)

(supply vl 10 5)
(clock ck2 8 0 5)

))

(setq "net-list-14 "(('net-list-l4-dynamic-clocking)
(supply vl 1 0 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 1 2 4 10 2)
(load m2 1 6 64 8)
(driver m3 4 3 5 4 2)
(driver m4 6 5 0 10 2)
(driver m5 6 2 74 2)
(driver m6 1 2 X 10 2)
(driver m7 8 3 9 6 2)
(driver m8 9 7 0 10 2)
(driver m9 4 3 10 4 2)
(driveT mlO 12 10 11 10 2)
(driver mil 1 3 12 6 2)
(driver ml2 11 20 6 2)
(driver ml 3 1 2 13 6 2)
(driveT ml4 13 12 14 6 2)
(driver ml5 14 2 0 6 2)
(driver ml6 13 2 15 4 2)
(driver ml 7 1 3 17 6 2)
(driver ml8 17 15 16 12 2)
(driver ml9 16 2 0 6 2)
(driver m20 16 3 0 6 2)
(driver m21 4 3 0 6 2)
(driver m22 4 18 0 6 2)

(driver m23 1 1^ 18 6 2)
(load m24 1 19 19 4 8)
(driver m25 4 3 20 4 2)
(driver m26 21 20 0 16 2)
(load m27 1 21 21 4 8)
(driveT m28 I 2 27 6 2)
(driver m29 27 3 23 6 2)
(driver m30 23 22 0 16 2)
(driver m31 21 2 22 4 2)
(driveT m32 4 3 24 4 2)
(driveT m32 1 2 25 6 2)
(driver m34 25 24 26 16 2)

176

(driver m35 26 0 0 6 2)
))

(saq "net-list-15 *(("net-list-15-small-dynamic-clocking)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 1 2 4 10 2)
(driver m9 4 3 10 4 2)
(driveT mlO 12 10 11 12 2)
(driver ml 1 1 3 12 6 2)
(driver ml2 11 2 0 10 2)
(driver ml 3 1 2 13 10 2)
(driver ml4 13 12 14 10 2)
(driveT ml5 14 2 0 10 2)

))

(setq "net-list-16 <("net-list-16)
(supply vl 1 0 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 1 2 5 10 2)
(driver m2 5 3 0 6 2)
(load m3 1 4 4 4 8)
(driver m4 4 5 0 6 2)
(driver m5 1 2 6 8 2)
(driver m6 6 3 0 6 2)
(cap cl 2 5 .01)
(cap c2 5 4 .027)
(cap c3 5 3 .14)
(cap c4 5 6 .3)

))

(setq "net-list-17 t(*net-list-17)
(supply vl 10 5)
(load m 1 2 2 4 30)
(driver .u2 2 3 0 6 2)
(load m3 1 5 5 4 6)
(load nw 1 6 6 4 6)
(load m5 1 7 7 4 6)
(load m6 1 8 8 4 6)
(load m7 1 9 9 4 6)
(driver m8 5 2 0 15 2)
(driver m9 6 2 0 15 2)
(driver mlO 7 2 0 15 2)
(driver mil 8 2 0 15 2)
(driver ml2 9 2 0 15 2)

))

(setq "net-list-l 8 *(("net-list-18-supeT-buffeTs)
(supply vl 10 5)
(clock ckl 2 0 5)
(load ml 1 12 12 6 4)
(loadm2 1 12 A 10 4)
(driver m3 12 3 0 10 2)

(driver m4 4 3 0 20 2)

(load m5 1 5 5 4 8)
(load m6 1 5 6 4 8)
(driveT m7 5 4 0 6 2)
(driveT m8 6 4 0 6 2)
(driver m9 4 2 7 10 2)
(load mlO 18 8 4 8)
(load mil 17 94 8)
(load ml2 1 10 10 4 8)

177

(load ml3 1 4 11 4 8)
(driver ml4 8 7 0 6 2)
(driver ml5 9 8 0 6 2)
(driver ml6 104 0 6 2)
(driveT ml7 11 10 0 6 2)
(driver ml 8 3 2 20 4 2)

))

(setq "net-list-l 9 t(«net-list-19)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 4 2 5 6 2)
(driveT m2 3 5 6 10 2)

))

(setq "net-list-20 <(*net-list-20—drn-boots)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 1 2 14 4 8)
(driver m2 3 14 4 10 2)
(driveT m3 5 2 6 4 2)
(driver m4 4 6 7 10 2)
(load m5 1 15 15 4 8)

(driver m6 15 2 8 6 2)
(driveT m7 8 5-0 6 2)
(driver mS 4 8 9 10 2)
(driver m9 9 10 11 10 2)
(driveT mlO 5 2 10 5 2)
(driver mil 9 12 13 10 2)
(driver ml2 5 2 12 6 2)
(driver ml 3 14 5 0 10 2)
(driver ml4 7 206 2)

))

(setq "net-list 21 f(*net list 21-drain-boot)
(supply vl 10 5)
(clock "ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 12 5 4 6)
(driver m2 5 4 0 6 2)
(driver m3 3 5 6 10 2)

))

(setq 'net-list-22 "(('net-list-22--register-cell)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 1 3 10 10 2)
(driveT m2 10 14 4 6 2)
(driver m3 4 2 5 6 2)
(driver m4 u 5 0 10 2)

(driver m5 7 3 6 4 2)
(load m6 1 6 6 4 8)
(load m7 1 S 8 4 8)
(driver mH 8 14 9 6 2)
(driver m9 8 3 4 6 2)
(driveT mlO 8 7 0 10 2)
(driver ml 1 12 3 13 6 2)
(driver ml2 2 13 14 20 2)
(driveT ml3 14 3 0 10 2)

))

(setq "net-list^ "(("net-list-23-race-condtton)

178

(supply vl 10 5)
(clock ckl 2 0.5)
(clock ck2 3 0 5)
(driver m3 5 4 0 10 2)
(driver m4 5 3 0 6 2)
(driveT m5 6 5 0 6 2)
(driver m6 6 3 0 6 2)
(driveT m7 7 6 0 6 2)
(driver m8 1 3 7 10 2)
(load ml 1 5 5 4 8)
(load m2 1 6 6 4 8)

))

(setq *net-list-24 t(*net-list-24-xc-xor-gates)
(supply vl 10 5)
(clock ckl 10 0 5)
(driveT ml 3 4 2 3 2)
(driver m2 2 3 4 6 2)
(load m3 1 2 2 4 8)
(driver m4 3 6 0 6 2)
(driver m5 4 6 0 6 2)
(driver m6 7 8 2 6 2)
(driver m7 8 7 2 6 2)
(driver m8 7 6 0 6 2)
(driver m9 8 6 0 6 2)

))

(setq "net-list-25 *((*net-list-25-feedback)
(supply vl 1 0 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 1 4 4 4 8)
(driver m2 6 3 5 4 2)
(driver m3 4 5 0 10 2)
(driver m4 5 4 03 2)
(driveT m5 4 3 0 6 2)
(driver m7 6 3 7 4 2)
(driveT m8 4 7 0 10 2)
(driver m9 7 4 0 4 2)
(driver mlO 4 2 8 10 2)
(cap cl 8 0 1)

))

(setq "net-list-26 "(("net-list 2o--clkout-inverters>
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 1 2 10 6 4)
(load m6 1 9 9 6 4)
(driver m2 10 3 5 6 2)
(driver m3 6 3 11 A 2)
(driver m4 5 11 0 10 2)

(driver m5 5 3 7 A 2)

(driver m7 8 3 9 6 2>
(driver m8 8 7 0 10 2)
(driver m9 12 804 2)

))

(setq "net-list-27 "(("net-list-27—bootstraps-with-clock-skew-errors)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(load ml 1 6 6 6 4)
(driver m2 6 2 7 6 2)

179

(driver m3 4 2 5 6 2)
(driveT m4 7 5 0 12 2)
(driver m5 7 3 7 4 6)
(driver m6 3 7 8 20 2)
(driver m7 8 2 0 4 2)
(driveT m8 5 7 0 3 2)
(driver m9 3 10 11 20 2)
(driver mlO 4 2 9 6 2)
(driver mil 10 9 0 10 2)
(load ml2 1 2 10 4 8)
(driver ml 3 3 12 13 20 2)
(driver ml4 4 3 12 6 2)
(driver ml5 3 12 3 4 8)
(driver ml 6 13 2 0 10 2)
(driver ml7 13 3 14 6 2)
(driver ml 8 15 14 0 10 2)
(load ml9 1 15 15 4 6)

))

(setq "net-list-28 "((*net-list-28~clock-skew-error)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 4 2 11 4 2)
(driver m2 3 11 5 20 2)
(driveT m3 6 7 0 6 2)
(driver m4 8 5 6 4 2)
(driver m5 9 3 8 6 2)
(driveT m6 10 9 0 10 2)
(load m7 1 10 10 4 6)

))

(setq "net-list-2** "(('net-list 29-input-pad)
(supply vl 10 5)
(pad inl 3)
(load ml 12 2 4 8)
(driver m3 2 4 0 10 2)
(driveT m2 3 5 4 4 2)
(clock ckl 5 0 5)

))

(saq "net-list-30 {("net-list-30—example-1)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(pad inl 12)
(load ml 16 6 6 4)
(driver m2 4 2 5 6 2)
(driver m3 6 2 7 8 2)
(driver m4 7 5 0 10 2)
(driver mi 3 7 3 4 10)
(driver m6 3 7 H 20 2)
(driver m7 8 2 0 0 2)

(driver mS 4 3 « 4 2)
(load m9 1 3 10 6 4)

(driver m 10 2 10 2 4 10)
(driver mil 2 10 11 20 2)
(driver ml2 11 30 6 2)
(driver m55 10 9 0 20 2)
(driver ml3 12 0 0 10 2)
(driver ml4 13 12 0 10 2)
(load ml5 1 13 13 4 8)
(driver m 16 13 3 14 6 2)
(load ml7 1 15 15 6 6)

180

(load ml 8 1 15 16 8 6)
(driveT ml9 15 14 0 12 2)
(driver m20 16 14 0 16 2)
(driveT m21 17 16 18 10 2)
(driver m22 18 11 0 10 2)
(driver m23 1 3 17 20 2)
(driver m24 17 11 36 6 2)
(driver m25 36 2 22 6 2)
(driveT m26 21 22 0 10 2)
(loadm51 121 21 4 8)
(load m52 1 23 23 4 8)
(driver m27 21 3 20 6 2)
(driver m28 23 20 0 12 2)
(driver m29 23 8 24 12 2)
(driver m30 23 3 36 6 2)
(driver m31 1 2 24 20 2)
(driver m32 24 8 25 10 2)
(driver m33 25 31 0 10 2)
(load m34 1 25 25 4 6)
(driver m35 31 3 30 6 2)
(driver m36 30 29 0 6 2)
(load m37 1 30 30 4 6)
(driver m56 25 3 28 6 2)
(driver m38 29 2 28 6 2)
(driver m39 17 11 28 6 2)
(driver m40 24 3 33 10 2)
(loadm41 1 34 35 6 6)
(load m42 1 34 34 4 6)
(driver m43 35 3 0 12 2)
(driver m44 34 3 0 10 2)
(driveT m57 35 33 0 12 2)
(driveT m58 34 33 0 10 2)
(driver m45 17 35 0 20 2)
(driveT m46 27 110 10 2)
(driver m47 17 26 27 10 2)
(driveT m48 26 25 23 8 2)
(driver m49 26 23 25 8 2)
(load m50 1 26 26 4 12)

))

(setq "net-list-31 <("net-list-3l)
(supply vl 10 5)
(clock ckl 2 0 5)
(clock ck2 3 0 5)
(driver ml 9 2 8 4 2)
(driver m2 9 3 5 10 2)
(load m3 1 4 4 4 8)
(loadm4 16 6 4 4)
(load m5 1 6 7 6 4)
(driver m6 6 5 0 10 2)
(driver m7 7 5 0 25 2)
(driver m8 6 2 0 8 2)
(driver m9 7 2 0 20 2)
(driver m 10 A 8 0 10 2)

))

(setq "net-list-32 tCnet-list-32)
(driveT m3 1 2 3 6 2)

(driver m4 6 3 0 6 2)
(driver m2 4 5 6 6 2)
(driver m8 3 6 0 6 2)

))

(setq "net-list-33 "(("net-list-33)

181

(driver m2 4 5 6 6 2)
(driver m8 3 6 0 6 2)
(driver m3 1 2 3 6 2)
(driver m4 6 3 0 6 2)

))

182

'! &

	Copyright notice 1984 - Copy
	ERL-84-80 (1 of 2)
	ERL-84-80 (2 of 2)

