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I. Introduction

The Nielsen-Will son theorem [1] gave the topological necessary and sufficient

condition for a transistor circuit to have a unique solution for all values of

circuit parameters. This theorem assumes the transistors are represented by the

Ebers-Moll model consisting of two monotone-increasing nonlinear resistors and

two current-controlled current sources (abbreviated as CCCS's) whose current

gains lie between 0 and 1. Since the reverse current gain of real transistors
is less than 0.5, the following practical question naturally arises: If in

the Ebers-Moli model we assume that the reverse current gain af is restricted to
0 <ar <0.5 and the forward current gain af to 0 <af <1, does the feedback
structure in [1] remain, a necessary and sufficient condition for the existence
of a unique solution? To answer this question, it is necessary to generalize
the above theorem to a more general class of CCCS circuits. The same generali
zation is also desirable for VCVS (voltage-controlled voltage source) circuits.
For, since VCVS circuits can be regarded as a model of op-amp circuits, they
are the most important circuits from the practical viewpoint.

Related to this problem, several results have already been given for some
classes of circuits [2]-[6]. These circuits may be classified by the "active"
elements allowed. They are 1) linear CCCS's whose current gains lie between 0
and oo [2], 2) four types of linear controlled sources whose controlling coeffi
cients lie between 0 and « [3], 3) nonlinear op-amps [4], 4) linear op-amps [5],
[6], and 5) linear CCCS's whose current gains lie between 0 and 1 [5].

In this paper we consider the most general CCCS (resp., VCVS) circuits com
posed of dc sources, linear resistors, nonlinear resistors each of which has its
own v-i characteristic represented by a strictly-monotone-increasing function
mapping Ronto R (henceforth referred to as a nonlinear resistor in this paper),
and linear CCCS's (resp., VCVS's) whose controlling coefficients ay lie between
0 and a (< »). For complete generality, we allow each CCCS (resp., VCVS)
to have its own maximum controlling coefficient. In Theorems 1 and 2, we give

the necessary and sufficient conditions for CCCS (resp., VCVS) circuits to have
a unique solution for all values of circuit parameters.TT Theorem 1 corresponds

+A controlling coefficient should be read as a current gain for a CCCS and as
a voltage gain for a VCVS.

real values of dc sources, which may be connected at "any place of a circuit.
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to the case where the controlling coefficients of a]2 CCCS's (resp., VCVS's)

have the same maximum value, that is, a, = a2max = ••• =^ax* Theorem 2,
a generalization of Theorem 1, corresponds to the case where each CCCS (resp.,

VCVS) has its own maximum controlling coefficient.

Due to space limitation, only a few simple examples illustrating Theorems

1 and 2 are given. Many more interesting applications of these theorems,

including an alternate proof of the Nielsen-Willson theorem, will be given in

future papers.

II. Symbols, Notations, and Assumption *

Since our results will be stated in completely topological terms, we first

define some graph-theoretic terminologies.

Let N denote a CCCS (resp., VCVS) circuit in which the controlling coeffi

cient a of each CCCS (resp., VCVS) "y" satisfies 0 <ay <aymax. Let the
associated graph G be obtained from N by the following operations,

(i) Short-circuit all dc voltage sources and open-circuit all dc current

sources,

(ii) Replace each linear or nonlinear resistor by a nondirected branch (which
we call a resistor branch),

(iii) Replace each CCCS (resp., VCVS) "y" by a pair of branches {\i9\i) as shown
in Fig. 1(a) (resp., (b)).+ These branches are called CCCS (resp., VCVS)
branches.

Note that after applications of operations (i), (ii) and (iii), the result

ing graph G contains only resistor and CCCS (resp., VCVS) branches.

Assumption 1. We assume without loss of generality that the associated graph

G is connected.

Graph operations 0(-)» S{-)9 0/S{>), and^(-) are defined as in the pre
vious paper [3]. That is, operations 0(y) and S(\i) mean "open-circuiting the
branch y" and "short-circuiting the branch y," respectively. Operation 0/S{v)
means 0{\i) or S(\i). Operation4(-), called zero operation, is applied only to
a pair of CCCS or VCVS branches. That is, 2(y) means " S(input

+Since N contains only one type of controlled sources, it is more convenient
to represent each CCCS by two conventional branches. On the other hand, if
we adopt the unconventional representation as in [3], a similar result can
of course be obtained.
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branch y of the CCCS y) and 0(output branch y of the same CCCS) or 0(input

branch y of the VCVS y) and S(output branch y of the same VCVS).
The following operations will be often applied for the reduction of the

associated graph G.

(I) Apply 0/S(-) to each resistor branch of the associated graph G.
(II) Apply /J(-) to some (possibly none) pairs of CCCS or VCVS branches.

Note that after applications of operations (I) and (II), we have a graph
consisting exclusively of CCCS or VCVS branches, henceforth called a controlled
source graph and denoted by Gq.

Let us consider a controlled source graph GQ composed exclusively of n
pairs of CCCS (resp., VCVS) branches {(y^), ^.u^"*" <vV}- Assume
that in GQ n input branches of CCCS's(resp., VCVS's) (i.e., branches y], y2,
...,y ) form a tree (resp., cotree) of a graph GQ. Then we can obtain a fundamental
cutset matrix Cf (resp., loop matrix Bf) with respect to this tree (resp.,
cotree) as follows:

. yi

Cf = vz

yl

Bf = y2

'2 ••• % V} U2 "• "m

2 "• Mn "1
I

I

I

I

y«nl2 •"• Hn

(la)

Ob)

where I denotes the identity matrix and Qis called the main part of the funda
mental cutset matrix (resp., loop matrix).

(2)We define A^^Gq) and Avcy(GQ) as follows:

a<1>-aW«!0).a<1)(«.g0)
£ |I+oQ| (2)
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a<2W2>(g0)=a(2>(a,g^
A |I+AQ|

where |M| denotes the determinant of M, a denotes a scalar, and

0 « (3)

A — diaaCa »a •....a ]. (4)y,max' y^max' ' ynmax

III. Main Results

Throughout this paper, a CCCS (resp., VCVS) circuit N is a circuit contain

ing only linear positive resistors, strictly monotone-increasing nonlinear

resistors, independent voltage and current sources, and linear current-controlled
current sources (resp., voltage-controlled voltage sources) having controlling

coefficients 0 <ay <a^, y =l,2,...,k, and o^ <«.
If in addition

a-, - ou a a, = a (> 0). (5)
lmax 2max kmax maxv '

we say N has identical maximum controlling coefficient a
max

Theorem 1. A CCCS (resp., VCVS) circuit with identical maximum controlling

coefficient a has a unique solution for all values of circuit parameters if
max 3—

and only if the associated graph G satisfies the following three conditions:

1) G contains no loop (resp., cutset) consisting exclusively of input branches

of CCCS (resp., VCVS) branches.

2) G contains no cutset (resp., loop) consisting exclusively of output branches
of CCCS (resp., VCVS) branches.

3) By applying operations (I) and (II) defined in Section II to G, we cannot
obtain a connected controlled source graph GQ such that

*(1)(wV<° (6)

Remark 1: When we examine whether condition 3) of Theorem 1 is satisfied or not,
we need not consider all the controlled source graphs in which input branches form
a tree in the case of CCCS circuits or a cotree in the case of VCVS circuits. It

+Note that A(1) and A^ are defined only for acontrolled source graph G0 in
which the input branches of CCCS's (resp., VCVS's) form atree (resp., cotree)
of Go. Remember furthermore that A(1) and A(2) are defined by using the funda
mental cutset matrix (resp., loop matrix) for CCCS (resp., VCVS) circuits.
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suffices to consider only controlled source graphs having neither a self-loop
nor a bridge (i.e., a branch which forms a cutset by itself) (see Appendix 1).

Since the above results for CCCS circuits and for VCVS circuits are dual

each other, we will explain Theorem 1 mainly for CCCS circuits.

Example 1. Consider the circuit in Fig. 2(a), of which the associated graph G

is shown in Fig. 2(b). The graph G satisfies conditions 1) and 2) of Theorem
1. By applying operations (I) and (II) to G, we cannot obtain a controlled
source graph GQ in which the input branch 1 forms a tree of GQ and which has no
self-loop.+ Thus condition 3) of Theorem 1 is satisfied by default. Hence,
this circuit has a unique solution for arbitrary values of c^. Indeed we can
verify the above conclusion by a direct analysis of the circuit.

Example 2. Consider the circuit in Fig. 3(a), of which the associated graph G
is shown in Fig. 3(b). The graph Gsatisfies conditions 1) and 2) of Theorem 1.
By applying S(R,) we get the controlled source graph GQ in Fig. 3(c). The fun
damental cutset matrix Cf of GQ is given by

1 1

cf = [i : -i]

Therefore A(1) =1- amax- If amax 11then A(1) I 0. Therefore we conclude
that if a, < 1 then the circuit has a unique solution for all values of circuit
parameters?* If amax >1, then A(1)(amax) <0. Therefore the circuit does not
have a unique solution for amax >1 for at least one choice of circuit parameters

If the direction of the output branch of the CCCS is reversed, then the
circuit has a unique solution for any maximum current gain a^ (> 0).

Example 3. Consider the circuit in Fig. 4(a), of which the associated graph
is shown in Fig. 4(b). Note that Gsatisfies conditions 1) and 2) of Theorem
1. It remains to investigate condition 3). The first step we have to do is to
find a controlled source graph which is obtained from G by applying operations
(I) and (II) and in which the input branches of CCCS's form a tree. By inspec
tion we can find a total of four such graphs shown in Figs. 4(c)-(f). For
example, the graph in Fig. 4(d) is obtained from Gby applying 0(R-|), S(R2)>
S(R3), and *(1) and the graph in Fig. 4(e) by applying 0^), S(R2) and S(R3).
However, we need not consider the graphs in Figs. 4(d) and (e) since they have

+Note that if we open-circuit R2 and R3> node (?) would not be a part^of the
input branch. If we short-circuit R2 or Rg, then the output branch 1 would
form a self-loop (see Remark 1).
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a bridge and/or a self-loop (See Remark 1). The fundamental cutset matrices

of the graphs in Figs. 4(c) and (d), denoted by Gc and Gd, are, respectively,
given by

12 12

•(c) -
1

4d> - [i

1

2

1]

0

-1

-1

1

Assume that a1max = a2max =W

A(1)(GC) -
-a.

max

-ct
max

1+ct
max

(1) (GJ - 1 + ctmav > 0
max

Therefore tP' are calculated as follows:

= 1 + a - a
max max

Observe that if a av <(^+l)/2 then A '̂(Gr) >0. Thus we conclude: The
%

0)
...ax -

circuit in Fig. 4(a) has a unique solution if 0 <c^ax <(/5 +D/2. If
a > (v^+D/2 then the circuit does not have a unique solution for some

max x '
circuit parameters.

If in Fig. 4(a) we reverse the polarity of the output port of the CCCS 2,
then the maximum value amav for the circuit to have a unique solution is 1.

max

Example 4. Consider the VCVS circuit in Fig. 5(a), of which the associated
graph Gis shown in Fig. 5(b). Since Gsatisfies conditions 1) and 2) of
Theorem 1, we will investigate condition 3). The first step we have to do is
to find a controlled source graph GQ such that (i) in GQ input branches of
VCVS's form a cotree and (ii) GQ has neither a self-loop nor a bridge.

Suppose first we apply S(R}) to G. Since then the branch 1 forms aself-
loop, we have to apply g(l) so that we will get a controlled source graph satis
fying (i) and (ii) above. From the resulting graph we obtain a controlled
source graph shown in Fig. 5(c).

Next suppose we apply S(R3) to G. Since in this case the branch 2 forms
aself-loop, we have to apply $(2) successively so that we get a graph satisfying
(i) and (ii). From the resulting graph we obtain the controlled source graph in

Fig. 5(d).
Thirdly we apply 0(R-,) and 0(R3) and let the resulting graph be G-j. It

can easily be seen that if we apply 0(R2) to Gr we cannot obtain acontrolled

-6-



source graph satisfying (i) and (ii). So we apply S(R-j) to G-j. From the
resulting graph we obtain the graph shown in Fig. 5(e).

The graphs in Figs. 5(c)-(e), denoted by Gc, Gd, and Ge, are the only
graphs we need to investigate. The fundamental loop matrices of these graphs

are given by

2 2

b}c) =tn : l]
1 1

B<d) =i[i : -l]

Bf

l

i["i : o -l 1
2|_ l : l oj

Assume that ctlmax =a2max =o^. Then A '̂(-) are calculated as follows:

a(1)<gc> =1+<w

Therefore we conclude that the circuit in Fig. 5(a) has a unique solution for

all values of circuit parameters if and only if 0 <ctmax< 1.
To demonstrate the generality of Theorem 1, we will derive a useful corol

lary, which can be applied by inspection.

Corollary 1.1. Let N be a circuit containing k CCCS's or k VCVS's having

identical maximum controlling coefficient c^ . If Nsatisfies conditions 1)
and 2) of Theorem 1 and if

a < 1/k (7)
max = '

then N has a unique solution for all values of circuit parameters.

Proof. See Appendix 2.

Corollary 1.1 is the best result that we can obtain in the sense that if

a > 1/k then there exists a circuit which does not have a unique solution

for some choice of circuit parameters (See Appendix 3).
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Theorem 2. (General CCCS or VCVS circuit)

Consider a CCCS (resp., VCVS) circuit containing k CCCS's (resp., VCVS)

whose controlling coefficients c^ satisfy 0<a <a x (y=l,2,...,k). Then
the circuit has a unique solution for all values of circuit parameters if and

only if in addition to conditions 1) and 2) of Theorem 1 the following condi

tion holds.

3') By applying operations (I) and (II) defined in Section II to G, we cannot

obtain a connected controlled source graph Gq such that

A(2)(GQ) <0 (8)

Remark 2: When we examine whether condition 3') is satisfied or not, it

suffices to consider only controlled source graphs in which input branches of

CCCS's (resp., VCVS's) form a tree (resp., cotree) and which has neither a self-

loop nor a bridge.

Observe that Theorem 1 is a special case of Theorem 2. The proof of

Theorem 2 is given in Section V.

Corresponding to Corollary 1.1 we have:

Corollary 2.1. Consider a CCCS (resp., VCVS) circuit containing k CCCS's (resp.,

k VCVS's) whose controlling coefficients a satisfies 0 < a < a m •(y=l,2,
y y yniax

...,k). If the circuit satisfies conditions 1) and 2) of Theorem 1 and if

k

^ ymax =

then the circuit has a unique solution for all values of circuit parameters.

Proof. See Appendix 4.

Corollary 2.1 is also the best result possible in the sense that if (9)
does not hold then there exists a circuit which does not have a unique solution

for some choice of circuit parameters.

Example 5. Consider the flip-flop circuit NT in Fig. 6(a) where arrows repre
senting the emitters of the transistors T-j and T2 are not shown intentionally.
Note that NT is a typical circuit having a feedback structure [1]. By repre
senting two transistors in Fig. 6(a) by the Ebers-Moli model, we have the
circuit in Fig. 6(b), of which the associated graph Gis shown in Fig. 6(c).
Here the CCCS branches (1,1) and (2,2) belong to the transistor T-, and the
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branches (3,3) and (4,4) to the transistor T2- Let a denote the current gain
of the CCCS yand assume that ct x < 1.

By applying operations (I) and (II) to G, we obtain many controlled

source graphs, of which only three graphs, denoted by Ga, G^ and Gc, are shown
in Figs. 7(a)-(c). By noting Remark 2, we can easily verify that it suffices

to consider only the above three graphs. Now the fundamental cutset matrices

of these graphs are given by

(a) =

•(b) _

(c)

14 14

1 1 -1 l

4 l : -1 0.

2

2

" 1
3 2

0

3

-l'

3 1 ', 1 -1.

2

2

" 1
4 2

: -i

4
-

1

4 1 : l -1.

Therefore we have

A(2)(Ga) =
"almax almax

-a
" almax + almax a4max

4max

-a

A<2)(Gb) =
a

2max

^max
= 1' a3max + a2max a3max

3max

A(2)(GC) =
^^ax a2max

a4max "a4max
" a2max " a4max*

Since 0<a < 1, we have A^(GJ >0and Avt;(Gh) >0. Therefore, if
(t>\ ymax = a d

Au;(Gr) > 0, that is, if

a2max + a4max < 1•

then NT has aunique solution for all values of circuit parameters. We

-9-
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therefore conclude that if both cu and a* are reverse current gains, and if

a2max = a4max <°*^' tJien NT cannot Unction as a flip-flop circuit. If, how
ever, either cu or a* is forward current gain, then we can expect Nj to function
as a flip-flop circuit.

Remark 3: This example shows the important fact that in general the Nielsen

and Willson theorem is not valid for transistor circuits if the reverse current

gains are less than 0.5.

Example 6. Consider the circuit in Fig. 4(a) again. A^ '(•) are calculated for
the graphs in Figs. 4(c) and (d) as follows:

A(2)(GC) =1 +"2max - «1max "2max

i(2)<Gd> =1+a2n,ax>0
Therefore if a, < 1 + a2 , then the circuit has a unique solution. For
example, if ot2max =0.5 and a, =3, then the circuit has a unique solution
(cf. Example 3).

If we reverse the polarity of the output port of CCCS 2, we can easily

show that the necessary and sufficient condition for a solution to be unique

is: (0 <) a2 < 1 and a, is an arbitrary positive number.

Example 7. Consider again the circuit in Fig. 5(a). A^ '(•) are calculated for
the graphs in Figs. 5(c)-(e) as follows:

\*c) almax a2max

i(2)<Gd) =' - "imax

A(2)(Ge) =1♦ a2max

From this we conclude the circuit has a unique solution if 0 <a-jmax <1 and
0 < cu < ».

2max
If we reverse the polarity of the output port of VCVS 1, then the condition

for a unique solution is ctlmax a2max < 1.

Example 8. Consider the VCVS circuit in Fig. 8(a), of which the associated
graph Gis shown in Fig. 8(b). By applying operations (I) and (II) to G, we
find 6 controlled source graphs in Figs. 8(c)-(h) need be considered. Other
controlled source graphs obtained by the above operations either
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(i) has no cotree composed only of input branches of VCVS's, or

(ii) has a self-loop or a bridge (see Remark 2).

The fundamental loop matrices of the graphs in Figs. 8(c)-(h), denoted by

Gc, Gd, ..., Gh, are given by

(c) .

W) -

(e) =

1 2

0 -1"

1 0.

1 3

1 -1'

-1 1.

2 3

-1 -V

1 -1

1 1

B^f) =i[i : l]
2 2

b{9) - 2[1 : -1]
3 3

B<h) =3[1 : 1]

Therefore £r '(*) are calculated as follows:

-a

A(2)(GC) =
a.

Imax

1
= } + almax a2max

A(2)(Gd) -

A<2>(Ge) =

2max

1+a-i -ou
lmax lmax

"a3max 3max

^max "a2max

-a
3max

A^2'(Gx) =1+a,
v f; lmax

= 1 + almax + a3max

= •1-''"^max "^max a3max
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*(2)(V =1- °2max
a(2)«V - ! +a3max

We conclude from this that if 1 - ou - a2max a3max = °* then the circuit in
Fig. 8(a) has a unique solution.

If in Fig. 8(a) o,^ =o^ =o^- a^, then the. circuit has a unique
solution for a ax < (/5-l)/2.

As an application of Theorem 2, we show that when we connect two circuits

in some classes of circuits having a unique solution, the resulting circuit also

has a unique solution.

In the following a CCCS or a VCVS one-port N-j is said to have a unique
solution if in both cases where the input port is open-circuited and short-

circuited N, has a unique solution for all values of circuit parameters. Simi

larly, a CCCS or a VCVS two-port N2 is said to have a unique solution if for
any combination where the input port and the output port are open-circuited and/

or short-circuited N2 has a unique solution for all values of circuit parameters

Theorem 3. If a CCCS (resp., VCVS) two-port having a unique solution is termi

nated in a CCCS (resp., VCVS) one-port having a unique solution, then the

resulting one-port has a unique solution.

Proof. See Appendix 5.

Theorem 4. If two CCCS (resp., VCVS) two-port having a unique solution are

connected in cascade, then the resulting two-port has a unique solution.

Proof. We can prove Theorem 4 in a similar way as that of Theorem 3 in Appen

dix 5.

These theorems can be used to synthesize many CCCS or VCVS circuit having

a unique solution.

IV. Special Case Where q,,„ = 1

Let us focus our attention on the special case where the maximum current

gain « of CCCS's equals 1 in Theorem 1 since this is the most important
situation in practice. We assume in this section that the current gain a of
each CCCS satisfies 0<a <1. Note that A^(G0) <0means in this case
that

|I +Q| <0 0°)
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where [I I Q] 1s the fundamental cutset matrix of GQ.
Consider the 3 CCCS circuits in Figs. 9(a)-(c). Here, each diamond-shape

symbol denotes a CCCS, each box labelled L, L.. (i=0,l,...,n) denotes an arbi
trary connected circuit composed of dc sources and linear/nonlinear resistors

and each box labelled C. (i=l,2,...) denotes either the circuit in Fig. 10(a)

or the circuit in Fig. 10(b).

Theorem 5. The CCCS circuits in Figs. 9(a)-(c) have a unique solution for all

values of circuit parameters if they satisfy conditions 1) and 2) of Theorem 1.

Proof. See Appendix 6

Remark 4. The circuits in Figs. 9(a) and (b) can be regarded as a generalization

of a grounded-base transistor circuit. The circuits in Fig. 10 include the

Ebers-Moli model as a special case.

Remark 5. In Fig. 9(a) the directions of both controlling and controlled current-
sources can be taken arbitrarily, but in Fig. 9(b) they must be assigned as

shown in the figure.

Remark 6. There exists a VCVS version of Theorem 5, but it is omitted because

the configurations are not very interesting.

Theorem 6. A circuit made of transistors (modelled by Ebers-Moli model), dc

sources, linear and/or nonlinear resistors has a feedback structure in the sense
defined in [1] if and only if by applying operations (I) and (II) in Section II
to the associated graph we obtain a controlled source graph GQ such that

A(1)(1,G0) <0
The detailed proof of Theorem 6 as.well as its application to derive the

Nielsen-Willson theorem will be given in a future paper.

V. Outline of the Proof of Theorem 2

Since the dual discussion holds for a CCCS circuit and a VCVS circuit, we

will prove Theorem 2 only for a CCCS circuit.

5.1. Analytical condition for a solution to be unique

Consider a CCCS circuit N which contains k CCCS's and m nonlinear resis

tors. Then N can be represented as in Fig. 11 where the (2k-Hn)-port NQ
contains only linear resistors and dc sources. Let
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Va =

Vb =

k+1

fk+2

2k

Ia =

!b =

ik

k+1

k+2

i2k

v2k+l hk+l

Vc =
•

•

• h-
•

•

v2k+m
m m

12k-Hn

The characteristics of the CCCS's and the nonlinear resistors are represented

by

va =o

*b " AIa

-Vc = F(IC)

where

A=diag[a-j ,0^,... ,a. ]

satisfies

0<0U<cS«ax' ^ =1*2' "•' k
and

F(IC) = f2^2k+2)

satisfies:

-14-
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Assumption 2. f (u=l,...,m) are strictly monotone-increasing functions mapping

R onto R.

Suppose for the moment the following assumption is satisfied.

Assumption 3. NQ has the following impedance representation:

aa ab ac

Zba Zbb Zbc
7 Z Z
^ca ^cb cc

!a Ea

*b + Eb

h Ec

(14)

Equations (11)-(14) are the basic equations for our present analysis. Set.

Z

r =

Zaa+zabA

zca+zcbA

'ac

Z .+D
cc

(15)

where Dis a positive definite diagonal matrix, henceforth denoted by D (> 0).

Lemma 1. For any given values of linear resistors, the circuit in Fig. 11 has
a unique solution for all A and all f satisfying (12b) and Assumption 2 if and

only if

(i) T>0 for all A and all D (> 0), and

<"> lzaal *0'

(16a)
(16b)

Proof. See Appendix 7.

Let Kbe a set of numbers {l,2,...,k} and let IC, and Kg denote a partition
of K, i.e., R, DKg'K and K} fl ^ =<J>. Let

aa ab ac

ill
Lca cb cc+D = [p-j »P2»* ••>P|c|(l'i »(^2,, **,('kirl ,r2'*" *,rnr

k k m

be denoted by 2k+m column vectors, p1, p2

m1
*oo = |t«j »t2,... ,t^.r-|,... ,rr

where

t =

p+qa mav for u € K,
ru y umax 1

for y € K2

Then we have:

-15-
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Lemma 2. The condition (16a) is equivalent to the following conditions:

r„~ ° f°r a^ D (> 0) and ^or any partition of K
and

r^ > 0 for some D (> 0) and for at least one partition of K

This lemma can easily be proved by using Lemma A.2 in [3].

Since |ZaJ > 0 (see (A7.3)), we have
aa

r„ >0 for Kj =<J>, Kg =Kand D•* co.+

(20a)

(20b)

(21)

Therefore the condition (20b) is always satisfied. So it remains to investi

gate only the condition (20a).

5.2. Topological Condition for Uniqueness

Let us analyze the condition for (20a) to be satisfied for all values of

linear resistors and all D (> 0).

Let

(22)
"aa •ab

Z »
ba bb be

U ca cb cc+D

Then Z is the impedance matrix of the (2k+m)-port N in Fig. 12, which is
obtained from NQ in Fig. 11 by (i) short-circuiting all voltage sources, (ii)
open-circuiting all current sources, and (iii) connecting a resistor yy (vsl»
2,...,m) in series with the (2k+u)-th port. It is clear that condition (20a)
depends on Z only.

The associated graph Gof the (2k-Hn)-port Nis defined as a graph obtained
from Nby replacing each resistor (including y ), each port y(y=l ,2,...,k),
each port u+k (y=l,2,...,k), and each port 2k+v (u=l,2,...,m), respectively,
by directed branches R , a , b and c .The direction ofR^may be arbitrarily
chosen. However, the directions of a^, by, and cy must be chosen to be the
same as those of the port currents. The graph Gis connected by Assumption 1.

D -»• ~ means that each diagonal element is positive and sufficiently large.

In this section and Appendix 8 we call the branches a^, by, and cy, a-, b-, an J
c-branches, respectively. An a-branch and a b-branch are branches which are
called an input and an output branch of a CCCS in the previous sections.

ft

-16-



For the moment let us assume that

Assumption 4. There exists no loop consisting exclusively of a-, b-, and

c-branches.

The case where Assumption 4 does not hold will be treated in Section 5.3.

Let

mQ =rank of G-total number of a-, b-, and c-branches (23)

From Assumption 4 it follows that mQ > 0. We can modify Gby adding mQ g-
branches, g (y=l,2,...,mQ) so that all the a-, b-, c-, and g-branches form a
tree, say T, of G. For simplicity we denote hereafter the modified graph by

the same symbol G as before.

Let the fundamental cutset matrix of G with respect to T be

T T

Cf =[T:^]
and let the rows of Cc be arranged in the order of a-, b-, c-, and g-branches.

Without loss of generality we will investigate the condition

for

Set

r > 0 (24)
00 =

K, = {l,2,...,k,} (Olk^k)
1 "1 ~ ,_ (25)

1^ ={^+1,^+2,...^}.

Kg =k - kr (26)

Then C, can be written as in Fig. 13 where M= {l,2,...,m} and MQ ={1,2,...,nig}
and aK, means the set of branches a (u € K-j) and so on. Let

H=C^R'̂ l (27)

where the prime means the transpose of a matrix and R is a diagonal matrix

whose diagonal elements are the values of linear resistors including y in Fig.

12. Note that Z in (22) is the upper left-most (2k-Hn) x (2k+m) principal sub-

matrix of H" (see Appendix 8).
Let B denote a matrix and let B denote the matrix obtained from B by adding

the product of the (s+u)-th row (u=l,2,...,k) and A to the (t+u)-th row. We

represent Bby Fig. 14(a) where A=diag [X1,X2»...,Xg]. Similarly Fig. 14(b)
denotes the matrix obtained from B by adding the product of the (s+u)-th

-17-
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«i =e DJ -AK,Q+P
1 ° K' (e-+1) (34)

«2=£lDol lpl

we have

6= |I+AK1Q|.

Lemma 5. Let G^ ' be a graph obtained from Gin Section 5.2 by the following
operations:

(i) Apply S(«) to each c-branch and O(') to each g-branch.

(ii) Apply S(«) to resistor branches belonging to RQ and 0(«) to all of the
remaining resistor branches,

(iii) Apply 4(-) to CCCS branches of CCCS k-j+1, k-j+2,...,k.
Then G^3' is aconnected graph with atree aK1 and has the fundamental cutset
matrix ^ ^

43) " aKlf l ; 13
if and only if 6 f 0.

We omit the proof of this lemma, since it is similar to that of Lemma 5

in [3].

From Lemmas 5 and 4 we obtain Theorem 2.

5.3. On Assumptions 3 and 4

Assumption 3 means that there exists no cutset consisting exclusively of

a-, b-, and c- branches. We need not consider the case where the cutset

includes an a-branch or a c-branch. The reason is the same as that of Appendix

8 in [3]. If there exists a cutset of b-branches only, then the voltages of

controlled sources corresponding to the b-branches included in this cutset

cannot be determined uniquely. Thus Condition 2) of Theorems 1 and 2 is

necessary.

The dual discussion holds for Assumption 4.
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Appendix 1. On the Remarks 1 and 2

We consider only Remark 2 because the same discussion holds for Remark 1

Let us consider the case of CCCS circuits and let GQ be a controlled source
graph in which input branches 1,2, n form a tree of GQ. Suppose that
the branch 1 is a self-loop. Then the fundamental cutset matrix of GQ is
written as

Cf = [r.Q] = 2
1

1 2 ... n

" 1
1

0

2 ... n

////A
2
•

•

•

1
•

• 0 \
n 1

m

(Al.l)

Therefore if |I+AQ| <0then U+A-jQ-jl <0where A1 is the matrix Awith the
first row and column deleted. Now [IjQj] is the fundamental cutset matrix of
the graph G, obtained from GQ by applying operation 2(1). Thus if A(GQ) <0
then there exists a graph G, such that G1 has fewer vertices than GQ and
MG^ <0.

Suppose next that the branch 1 is a bridge. Then the fundamental cutset

matrix of GQ is given by

1 2 ... n 1 2 ... n

Cf =[i:q] = 2
' 1 0 0

1 ^

• ^ <h
# ^

1 ^

(A1.2)

Therefore if |I+AQ| <0then |I+A1Q11 <0where A1 is the same as in the above.
Thus we have the same conclusion as before.
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Appendix 2. Proof of Corollary 1.1

Let

f(X) = |XI+Q| (A2.1)

where Q= [q,^] 1S a totally unimodular matrix of order n. We have, of course,

f(X) > 0 for X sufficiently large (A2.2)

*0)Kax> " l^axQl
=°Cax l°WxI+Ql

n */ -1 \
="max fl%nx> (A2.3)

Suppose that f(X) = 0 does not have a positive root. Then by (A2.2) we

(A2.4)

have

A(1)(a ) >0
v max'

So we consider the case where f(X) =0 has a positive root. Let XQ (> 0) be
the maximum positive root of f(X) = 0. Then we have

f(X) > 0 for Xq < X<~.

Note that XQ is an eigenvalue of the matrix - Q.
The following lemma is well-known [8].

Lemma A.1. Let B = [b..] be an nxn complex matrix and let X (u=l,...,n) be
IJ r*

eigenvalues of the matrix B. Then

|X I < min max

l<i<n
l |b..| |, max

.j=l 1J J l<i<n

r n

X bidi=l

Since Q is totally unimodular, we have by definition

«ij • °-+-'
Therefore it follows from Lemma A.l, (A2.6) and (A2.7) that

0< Xq 1 n.

From (A2.3), (A2.5) and (A2.8) we conclude that

a0)(<W =° for amax=1/n

(A2.6)

(A2.7)

(A2.8)

(A2.9)

Now consider the circuit described in Corollary 1.1. From the associated

graph of the circuit we can obtain in general many controlled source graphs.

A-2



Some may contain k pairs of controlled source branches and others contain less

than k pairs of controlled source branches. However if a < 1/k then

ll+a Ql £ 0
1 max y|

for the matrix Qof order n (<, k) since 1/n >1/k (> c^).
This completes the proof of Corollary 1.1.

A-3



Appendix 3. A Comment on Corollary 1.1

For example, consider a circuit N from which we can derive a controlled

source graph GQ such that the main part of the fundamental cutset or loop
matrix of GQ is given by

-1 -1 ... -1

Q = -1 -1 ... -1

-1 -1

It is apparent that such a graph GQ and a circuit Nexists
of (A3.1), we have

11 +a Ql < 0 for a > 1/k.
1 maxwl max '

A-4
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Appendix 4. Proof of Corollary 2.1

Let

f(X) = |XI+AQ | (A4.1)

where A and Q are given by (1) and (4). For X sufficiently large, we have

f(X) > 0 (A4.2)

Suppose f(X) = 0 has a positive root (otherwise we have f(X) > 0 for X

real) and let XQ be the maximum positive root. Of course XQ is an eigenvalue
of the matrix -AQ. Then we have

f(X) >0 for Xq <X<» (A4.3)

Let B = [b..] = AQ. Then by (9) we have

m n k

I |b<,|< I a m < 7 a. av£l (A4.4)
•S1 ij'—-is y.max *t-i imax

Therefore it follows from Lemma A.l in Appendix 2 and (A4.4) that

X0<1 (A4.5)

In particular by setting X = 1 in (A4.3), we have

|I +AQ|>0, (A4.6)

completing the proof of Corollary 2.1.
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Appendix 5. Proof of Theorem 3

Let us consider the CCCS one-port Nin Fig. A.l where N^ ' (resp., N^ ']
is a one-port (resp., two-port) with a unique solution. Let N^ ' (open) (resp.,
n' ' (short)) denote the one-port N^ ' with the input port open-circuited
(resp., short-circuited) and \r ' (open; short) denote the two-port N* ' with

the input port open-circuited and the output port short-circuited. Similarly
,(2) (short; open) etc., are defined.

First consider N(open). By applying operations (I) and (II) to the asso

ciated graph of N (open) we get some graphs GQ in which input branches of CCCS's
form atree of GQ. The graph GQ can be partitioned into two parts; one part
belongs to N^ and is called G^ and another to N*2' and is called G^ ' (see
Fig. A.2). There exist two cases to be considered.

m(i) The input branches of CCCS's form a tree of G^ '.
In this case the main part Qof the fundamental cutset matrix of GQ

given by

Q =
0

'6
°2.

is

(A5.1)

(1)where the rows of Q, (resp., Q2) correspond to the input branches in G^ (resp.,
g!2^). By (A5.1) we have

|I+AQ| = |I+A1Q1I |I+A2Q2|

Since Q, (resp., Q2) is the main part of the fundamental cutset matrix of the
graph g!1^ (resp., g!2' with 2-2' short-circuited) which is obtained from N^
(open) (resp., N^ ' (open; short)), we have

|I+A,QJ > 0
and

VI

|I+A2Q2| ^0

by definition. Therefore we conclude

|I+AQ| = 0
(2)(ii) The input branches of CCCS's form a tree of G^

In this case we have

Q =
\ 0 '

//// Q2.

A-6
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where Q, (resp., Q2) is the main part of the fundamental cutset matrix of the
graph g' ' with 2-2' short-circuited (resp., GA ') which is obtained from
N* ' (short) (resp., n' ' (open; open)). Therefore it follows that

|I+A1Q11 ^0

|I+A2Q2| >0

Thus we have

|I+AQ|^0 (A5.5)

From (A5.4) and (A5.5) we conclude that N (open) has a unique solution.

Next consider N (short). Similar discussion holds in this case and we

conclude that N (short) has a unique solution. Thus we have Theorem 3.
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Appendix 6. Proof of Theorem 5

Let Gq be any controlled source graph obtained from the associated graph
of the circuits in Fig. 9 by applying operations (I) and (II) and assume that

the input branches of the CCCS's form a tree of Gn. Then, to prove Theorem 5,

it is sufficient to show that Av '(GQ) = |I+Q| >0. Here [IIQ] is the funda
mental cutset matrix of GQ. Referring to Remark 1 in Section III we can
assume without loss of generality that GQ satisfies:

Assumption A.1. No input branch is a bridge.

Assumption A.2. No output branch is a self-loop.

We will prove the theorem for each circuit in Fig. 9.

Case 1: Circuit in Fig. 9(a).

Without loss of generality we assume GQ consists of n pairs of CCCS
branches, (1,1), (2,2), ..., (n,n). By referring to Assumptions A.l and A.2 and

the configuration in Fig. D(a)and by noting the input branches form a tree of GQ,
we see that in GQ each input branch is in parallel with only one output branch.
Thus Gq can be drawn generally as in Fig. A.3 where (y.j,u2,... ,yn) is apermuta
tion of (l,2,...,n). The directions of iand ^ in Fig. A.3 may or may not be
identical. The main part (that is, Q) of the fundamental cutset matrix of the

graph in Fig. A.3 can be written (by remembering the CCCS branches appropriately)

as the direct sum of the following types of matrices.

St = [e]

S2 =

o

e, ei =± 1.

Since

e2

0

o 1

p-1

1 + e = 0 or 2

|I +S2| =l+(-l)P+1er e2,.

*\

(pi 2)

,ep =0or 2

The phrase "of the CCCS's" will be omitted hereafter.

A-8
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we have

|I+Q|>0 (A6.3)

for Gn. We therefore conclude that we cannot derive a controlled source graph

Gq such that Av '(Gq) <0 for the circuit in Fig. 9(a).

Case 2: Circuit in Fig. 9(b).

Without loss of generality we can replace each L. (i=0,!,...,m) in Fig.

9(b) by a single resistor branch, r.. When we apply operations (I) and (II) to

the associated graph there occur three cases:

(i) All r.. (i=0,l,...,m) are short-circuited.

This case corresponds to a special case of Fig. 9(a). Therefore we cannot

derive any controlled source graph GQ such that A^ (GQ) <0.
(ii) Some of r. (i=l,2,...,m) are open-circuited.

In this case we cannot obtain a graph GQ in which the input branches form
a tree of GQ. For, if r. is open-circuited, then an input branch cannot reach
one of the terminal points of the branch r^, unless all output branches connected
to the branch r. are open-circuited. Even in the latter case an isolated point

remains (and therefore GQ cannot be connected). So we don't need to consider this case
(iii) rQ is open-circuited and r. (1*1,2,...,m) are short-circuited.

As before we assume without loss of generality that Gn consists of n pairs

of CCCS branches, (1,1), (2,2) (n,n). Let the common initial vertex of

all input branches be vQ and a terminal vertex of the branch i be v.. Since
the input branches form a tree, all v. (i=0,l,...,n) are distinct. All output

branches have a common vertex (grounded terminal), say v. The vertex v may be

Vq. The case v =vQ reduces to that in Fig. 9(a). Therefore we assume v f vQ.
Without loss of generality we assume v = v . The terminal vertex of each output

branch is one of v. (i=0,l,...,n-l). By referring to Assumptions A.l and A.2,

it suffices to consider only the following two cases:

(a) Each v. (i=0,l,...,n-l) is a terminal vertex of some output branch (see
Fig. A.4).

In this case the main part, Q, of the fundamental cutset matrix of GQ can
be written as

A-9



Q =

«1 o o o

o «! o o

o o
•

• o

o o o «0
-1-1...-1-1...-1 -1...-1

(A6.4)

after we renumber the CCCS branches appropriately. Here, Q,, Q2, ... are
matrices of the type S, or S2 (in which e and e. are all 1) in Case 1 and QQ
is

r 0 1
~ (A6.5)% =

Q =

0 1

0

o

.o

0 1

^-1-1-1 ... -1_

Since

|I+Q.| = 0 or 2 (i=l,2,...)

|I+Q0| =0 or 1

we have

|I + Q| > 0.

(b) The vertex vQ is not a terminal vertex of any output branch.
In this case Gq can be drawn as in Fig. A.5, where (y^,y2,...,yn) is a

permutation of (l,2,...,n).

Assume that the main part Q of the fundamental cutset matrix of GQ can be
written as

"«1 0

«2

where Q, and Q2 are square matrices. Then

A-10
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Il+Ql = U+Q-,1 |I+Q2I
holds. If |I+Q| <0, then either U+Q^l <0 or |l+Q2l <0 holds. Since both
[I!Q,] and [I*Q2] are the fundamental cutset matrices of the graphs obtained
by applying operation ^(*) to GQ, it suffices to consider Q, and Q2 instead
of Q itself. So we can assume without loss of generality that:

Assumption A.3. Q cannot be written as in (A6.7) even by renumbering the CCCS

branches appropriately. Then in Fig. A.5 we have to consider four cases depend

ing on the value of y, and y2.
(b.l) y, = 1 and y2 =n

In this case by Assumption A.3 we have

n = 2

and Fig. A.5 becomes Fig. A.6. Since in this case

1 1

Q -
-1 -1

(A6.8)

we have

II+QI - I-

(b.2) y.j =1 and y2 f n
In this case we can draw Fig. A.5 as Fig. A.7 without loss of generality.

Then we have

Q =

1 1

0 1

0 1

o
o

0 1

-1 -1 ... -1 -1

from which we have

|I+Q| -

2 1

1 1

, o0

o

-1 -1 . .

1

. -1

(A6.9)

= 1 > 0

(A6.10)
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(b.3) y.| f 1and y2 = n

Without loss of generality Fig. A.5 can be redrawn as in Fig. A.8. Then

the main part Q of the fundamental cutset matrix of GQ is given by

1 r
(A6.ll)Q =

1 o

1

-1 -1

1

0 0

-1 -1

Therefore we

I+Q =

have

1 1

1

1 1

o

-1 -1

o

1 0

1 0

-1 0
_| J

1 when n is even

0 otherwise

(b.4) y-j, y2 f 1, n
This case is more complicated. Even in this case, however, we can

verify by the same consideration mentioned above that |I+Q| ,> 0 holds.
In any case case we have |I+Q| £ 0.

Case 3: Circuit in Fig. 9(c).

As in Case 2 we can replace each L.. (i=0,l,... ,4) in Figs. 10(a) and (b)
by a resistor branch, r.. First we consider a simple case where m = 1 in Fig.
9(c) and where C, is acircuit in Fig. 10(b). Suppose that we apply operation
0(rQ) to the associated graph G. In addition we apply operations (I) and (II)
such that the resulting graph GQ has atree composed of the input branches
only. Then GQ is one of three graphs in Fig. A.9. In Fig. A.9(a) we have

A-12
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Q =

and in Fig A.9(b) and (c) we have

-1

Q =

(A6.13)

(A6.14)

In any case we have

|I+Q| - 0

Thus if we apply 0(rQ) to the associated graph, then we get |I+Q| = 0. Even
when we replace the circuit in Fig. 10(b) by that in Fig. 10(a), the same

conclusion holds if we apply 0(rQ).
We will next consider the general case where m = 1. Even in this case

we get the same conclusion so long as we apply 0(«) to some rQ. Therefore
it suffices to consider only the case where we apply S(-) to every rQ in
Figs. 10(a) and (b). Since this case is a special case of Fig. 9(a), we

conclude a'^Gq) >0.
This completes the proof of Theorem 5.
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Appendix 7. Proof of Lemma 1

Necessity: Substituting (11) into (14) we have

Zaa+ZabA

Zca+ZcbA

"ac

"cc

'l r o p,
a

+ = _
a

Jc wc) Ec

(A7.1)

If |Zaa| =0, then the rank of the matrix [Z Z b Z ] is less than k
because Z is a positive semi-definite matrix. This means that if |Z | = 0,

then the first k equations of (A7.1) are not satisfied for some Efl. There
fore we see that

|Zaal i 0 (A7-2)

is necessary for the circuit to have a unique solution. Since Z as well as

Zaa is a semi-DOsitive definite matrix, (A7.2) means
aa

lzaal >°-

Consider the linear case where

Wc) -DIc
D= diag[d1,d2,...,d(n]

Then (A7.1) becomes

zaa+zabA zac l

zca+zcbA

From (A7.5) we see the condition

r f 0 for all A and all D (> 0) (A7.6)

is necessary for (A7.5) to have a unique solution. Under the condition (A7.3),

(A7.6) implies (16a). Thus (16) is a necessary condition.

Sufficiency: Suppose that (16) is satisfied. Then (A7.3) holds. If

|Z +Z lA| < 0 for some A, then for sufficiently large D, r < 0 follows, a
1 aa at) '

contradiction. Therefore we see |7-aa+ZabA| >0. If |Zaa+zaDA| =0 for some
A, we can choose Asuch that |7-aa+ZabA| <0 because A belongs to an open set
and because (A7.3) holds. Therefore we conclude that (16a) implies |Zaa+ZabA|
> 0.

From (A7.1) we have

0 < d. < °°

cc
I
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F(IC) +BIC =b (A7.7)

where

B• Zcc - (Zca+ZcbAHZaa*ZabA)-1Zac
, (A7.8)

b"* Ec + <Zca+ZcbA><Zaa+ZabA> Ea

Under the condition |Zaa+ZabA| > 0, Eq. (16a) means

|B+D| > 0 for all D > 0. (A7.9)

Applying Lemma A.l in [3], we conclude that (A7.7) has a unique solution

for all f .
y

This completes the proof.
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Appendix 8. Proof of Lemma 3

First we will describe the relation between H in (27) and Z. In order

to calculate Z, we connect a current source j to each of the a-, b-, c-,

and g-branches. Here jy =0 (y=2k+m+l,2k+m+2,...,2k+ntfmQ). Let the voltage
of each current source be u.. Then we have a standard cutset equation

-HU = J (A8.1)

where

U = and J = (A8.2)

'2k-nn

u
2k+m+m'0 u

From (A8.1) we see that Z is the upper left-most (2k+m) x (2k-Hn) principal sub-
matrix of H . Now r is the determinant of the submatrix shaded by oblique

00

lines in Fig. A.10.

There exists a well-known relation between the minors of a matrix and

of its inverse matrix (see Lemma A.3 in [3]). By using Lemma A.3 in [3],

we will describe r in terms of H.
00

We will write r^ symbolically as follows:

1 2
wl

roo=Z00 ^"Imax^* 2©<Wk+2| - ^©^max^M
., k, 2k+l, ..., 2k+m

., k, 2k+l, ..., 2k-Hn

k^l,

k.j+1, ..

The upper line enclosed within the parenthesis denotes suffixes of rows

included in r and the lower line denotes suffixes of columns included in
00

r . Here y©a mav(k+v) denotes that the y-th column of r^ is the sum of
the y-th column of Z and the product of the (k+y)-th column and c^jmax (see
Fig. A.10). Therefore r in (A8.3) can be expanded as follows:
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r = z
l,2,...,k, 2k+l, ..., 2k-Hn

1,2,...,k, 2k+l,...,2k+m

+ almax Z
1,2 k, 2k+l,...,2k+m

k+l,2,...,k, 2k+l,..,,2k+m

1, 2, 3,...,k, 2k+l,...,2k+m

l,k+2,3,...,k, 2k+l,...,2k+m

1»... »k1-l ,k-j ,k-j+l,... ,k,2k+l,... ,2k+m

+a2max Z

k,max 1,...,t| ,k+k1,k^+l,...k,2k+l,...2k+m
1, 2, 3,...,k, 2k+l,...,2k+m

+almaxa2max Z

+ ...

+ a

k+l,k+2,3,...,k, 2k+l,...,2k+m

~ / I, t, ..., K"i , K^'l,...,K,b K't I ,.
a,

lmax 2max
• • • 9 01

k,max
Z

lmax I k+1 ,k+2,... ,k+k] ,^+1,... ,k,2k+l,.
By applying Lemma A.3 in [3] to each term in (A8.4), we get

_1 / k+l,...,2k,2k+m+l,...,2k+m+m0
^ k+l,...,2k,2k-Hn+l,...,2k+m+mQ

Jn""" I , K"*"t ,...,bK,.«.

r = |H|

- a
lmax

a2maxf
k+l,k+2,k+3,...,2k,...

«N~ I ) w 9 Ix ' O 5 • • • 9 £ l\ ) • • •

± a, a

K^ I , . . . , K"**K^ , K"> K"i • I j. . . jtK j

1max"2n,ax "I^max" I ^ fc k+ki+1> 2k>

Now (A8.5) can be expressed compactly as follows:

K • I , • • • , K+Ki , k+k,+l,

r„ - |H|_1H
r^Mx")©^)^,^!)®^).^^

'1
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...,2k,2k+m+l,...,2k+m+mn
0 1 (A8.6)

...,2k,2k+m+l,...,2k+m+m0

This gives the determinant of the shaded part in Fig. 15.
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gure Captions

g. 1. Graph representations of a CCCS and a VCVS.

g. 2. Circuit and its associated graph for Example 1.

g. 3. Graph and controlled source graphs associated with the circuit for Example 2.

g. 4. Graph and controlled source graphs associated with the circuit for Example 3.

g. 5. Graph and controlled source graphs associated with the circuit for Example 4.

g. 6. Flip-flop circuit for Example 5.

g. 7. Controlled source graphs obtained from the associated graph in Fig. 6.

g. 8. Circuit for Example 8.

g. 9. Circuits having a unique solution.

0. Subcircuits for the circuit in Fig. 9(c)

1. Circuit containing CCCS's and m nonlinear resistors.

2. Linear resistive (2k+m)-port corresponding to Z in (22).

3. The main part of the fundamental cutset matrix of the graph G.

4. Representation of B.

5. The coefficient matrix Hin (27) and 6Q in (28).
6. Submstrix of C, in Fig. 13.
7. Matrices C,^ and C,2 in (29).
8. . Illustrations of 61 and 62 in (30).
9. Matrix obtained from cf ' by applying operations (i)-(iii) in

Section 5.2.

ig. A-l. Connection of a two-port N^ ' and a one-port N* K where both N^ '
(2)

and Nv ' have a unique solution.

ig. A.2. Graph representation of the circuit in Fig. A.l.

ig. A.3. Controlled source graph in the Case 1 of Appendix 6.

ig. A.4. Controlled source graph in the item (a) of Case 2 of Appendix 6.

ig. A.5. General configuration of controlled source graphs in the item (b)
of Case 2 of Appendix 6.

ig. A.6. Controlled source graph in the item (b) of Case 2.

ig. A.7. General configuration of controlled source graphs in the item

(b.2) of Case 2.

ig. A.8. General configuration of controlled source graphs in the item (b.3)
of Case 2.

ig. A.9. Graphs for the explanation in the Case 3.

Fig. A.10. Illustration of r .
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