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I. Introduction

Nielsen and Will son gave the necessary and sufficient condition for a

transistor circuit to have a unique solution for all values of circuit para
meters [2]. Although their result is stated in topological terms, their proof is
analytical rather than topological.

Recently, Nishi and Chua [1] gave the necessary ansd sufficient conditions

for a more general class of nonlinear resistive circuits containing current-

controlled current sources (or voltage-controlled voltage sources) to have a

unique solution for all values of circuit parameters. This result is stated

in terms of the fundamental cutset or loop matrix of the associated graph.

The result in [1] differs from that in [2] in the following two respects:

i) The proof of [1] uses only matrix manipulations familiar in graph theory

and can be easily extended to more general classes of circuits; ii) The circuits

treated in [1] contain as a special case the transistor circuits treated in [2]

(where each transistor is represented by the Ebers-Moll model). However the

relationship between the results in [1] and [2] is not clear because the con

ditions are stated in quite different forms.

Our main objective of this paper is to prove that the results in [1] and

[2] are in fact equivalent to each other for transistor circuits modelled by

the Ebers-Moll equation.

II. Theorem

In this section we first briefly review both the Nielsen-Willson theorem

[2] and a recent theorem in [1]. We will then present a new theorem which relates

these two theorems.

Assumption 1. All circuits are connected.

Theorem 1. (Nielsen and Will son [2]).

A transistor circuit N-r has a unique solution for all values of circuit

parameters if and only if we cannot obtain the feedback structure shown in
Fig. 1 by applying the following three operations (I), (II) and (III) to Nyi

(I) Short-circuit all voltage sources and open-circuit all current sources.

(II) Short-circuit or open-circuit each linear or nonlinear resistor.

(III) Replace all transistors except two by one of the five circuits shown

in Figs. 2(b)-(f).
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Consider next a CCCS circuit N made of linear positive resistors,

strictly monotone-increasing nonlinear resistors, dc sources, and linear CCCS

with current gains a satisfying 0 < a < 1. The associated graph G of the cir

cuit N„ is obtained from N„ as follows:
c c

(i) Short-circuit all voltage sources and open-circuit all current sources.

(ii) Replace each linear or nonlinear resistor by a nonoriented branch (which

is called a resistor branch).

(iii) Replace each CCCS u (u=l,2,... ) by a pair of directed branches a and b

as shown in Fig. 3. The branches a and b are called an a- and a b- branch,

respectively.

Note that an a- and a b- branch correspond to an input and an output port

branch of a CCCS. Note also that the directions of the branches in Fig. 3

are identical to those of the currents in the CCCS. This is different from

those in the previous paper [4], which requires an unconventional graph in order

to include all 4 types of controlled sources.

From Assumption 1, the graph G is connected.

The notations O(-), S(*)> CtyS(-) and Z(-) are introduced as in [4]. Note

in particular that zero operation Z(-) is applied only to a pair of CCCS

branches and that Z'(u) means "S(a ) and 0(b )."

We apply the following operations to G.

(I)' Apply 0/S{-) to each resistor branch.

(II)' Apply Z(-) to some (possibly none) pairs of CCCS branches.

After the application of operations (I)' and (II)' we obtain a graph composed

only of some pairs of CCCS branches. Consider such a graph Gq composed of n pairs
of CCCS branches.

Assumption 2. The a-branches form a tree of GQ and GQ is connected.
Let the fundamental cutset matrix C^ of GQ be

ar..a

cf "

n L

We define A(GQ) by

A(GQ) = |I+Q|

bv..bn

(1)

(2)
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Remember that A(GQ) is defined only for a graph satisfying Assumption 2.
Theorem 2 [1]. A CCCS circuit HQ has a unique solution for all values of
circuit parameters if and only if G satisfies the following three conditions:

(i) There exists no loop composed exclusively of a-branches.

(ii) There exists no cutset composed exclusively of b-branches.

(iii) By applying operations (I)' and (II)' to G we cannot obtain any graph

GQ satisfying A(GQ) <0.
In Theorem 1 the transistors are assumed to be represented by the Ebers-

Moll model shown in Fig. 4(a). Let N denote the circuit obtained from a

transistor circuit Nj by replacing each transistor with the Ebers-Moll model.
Since N is a CCCS circuit, we can apply Theorem 2 to N. Note that G, the

associated graph of N, always satisfies conditions (i) and (ii) of Theorem 2.

To prove Theorem 1 by using Theorem 2, it is sufficient for us to prove the

following theorem.

Theorem 3. We can obtain a graph GQ satisfying A(GQ) <0 by applying opera
tions (I)' and (II)' to G if and only if a feedback structure can be obtained

from the original transistor circuit Nj by applying operations (I), (II), and
(III) of Theorem 1.

III. Proof of Theorem 3

3.1. Necessity

For the subsequent discussion let G(NT) denote the associated graph of the
circuit obtained from a transistor circuit N-r by replacing each transistor with

the Ebers-Moll model. Suppose the following assumption holds:

Assumption 3. Applying operations (I)' and (II)' to the associated graph

G(NT), we can obtain a graph such that A(Gq) <0.
To show the necessity we have to show that Nj can be reduced to a feedback

structure by applying operations (I)-(III) under Assumption 3. For the moment

we adopt the following operations:

(A) Apply the operation in Fig. 2(f) to some (possibly none) transistor of Nr
Let NT denote the resulting transistor circuit.
(B) Apply operations (I)* and (II)' to the associated graph G(NT).

As a result of operations (A) and (B) we can obtain a graph GQ such that
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A(Gq) <0.T (3)
In general there exist many graphs satisfying (3). So we impose the

following:

Assumption 4. The graph GQ has a minimum number of vertices among all such
graphs satisfying (3).

Let n denote the number of a-branches in GQ and let the fundamental cut
set matrix of GQ be given by (1). Then (3) implies

|I+Q| < 0. (4)

The proof of necessity will be accomplished by proving the following two

propositions:

Proposition 1. Operations (A) and (B) are equivalent to operations (II) and

(III) of Theorem 1.

Proposition 2. The graph GQ corresponds to a feedback structure.
The following lemmas prove these propositions.

Lemma 1. Any principal minor of I+Q (excluding |I+Q| itself) is nonnegative.

Proof. See Appendix 1.

Lemma 2. For our purpose, applying operations (I)' and (II)' to the Ebers-

Moll model is equivalent to replacing the graph in Fig. 4(b) by the graphs in

Figs. 5(a)-(d).

Proof. See Appendix 2.

Figures 5(c) and (d) are the same as Figs. 2(e) and (b), respectively.

If we apply operation Z(-) to Figs. 5(a) and (b), we would obtain Figs. 2(c)

and (d), respectively. Thus operation (II)1 contains the operations in Figs.

2(b)-(e) but not the operation of Fig. 2(f). From this we conclude that Propo

sition 1 holds.

Remark 1: A pair of CCCS branches (a ,b )of GQ corresponds to a transistor.
Let G denote the graph obtained from GQ by deleting each b-branch

b (u=l,...,n) and by adding an e-branch, e (u=l,2,...,n), as shown in Fig. 6
H U

Remember that A(*) is defined only for graphs satisfying Assumption 2. The
existence of a graph GQ satisfying (3) is guaranteed by Assumption 3, since

the case where Nj = Nj is included in operation (A).
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We call GQt a transition graph of GQ.' Since there is a one-to-one corres
pondence between GQ and GQt, we write this relation as GQ ~ Gq.. Note that the
a-branches form atree even in Got.+t Let the fundamental cutset matrix C,
of the graph GQ. be

. .a.

'tf

Lemma 3.

P = I+Q

Proof. See Appendix 3.

Lemma 4.

|P| - II+QI =-1

..e

'tf

(5)

(6)

(7)

Proof. Since P is a totally unimodular matrix, each minor of P is 0 or ± 1.

From this and from (4), (7) follows.

Lemma 5. The graph GQ. contains no loop composed only of e-branches. Thus
the e-branches form a tree of Gn..

Proof. See Appendix 4.

Lemma 6. No principal minor of P(=I+Q) is positive.

Proof. See Appendix 5.

Lemma 7. No principal minor of Q is positive.

Proof. See Appendix 6.

Lemma 8. Each diagonal element of Q equals -1.

This lemma follows from Lemma 6.

The following identity holds:

|I+Q| = 1 + the sum of all principal minors of Q (8)

From (7), (8) and Lemma 7 we conclude that

n = 2

and

4-

The subscript t of GQt means a transition graph.
TRecall the a-branches form a tree of GQ.
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"-1 ±1 "
Q - (9)

±1 -1

It is easily seen that the ± signs in (9) should be taken as + because of the

directions of the branches in Fig. 6(a). Thus we have

-1 1

(10)Q =
1 -1

The matrix (10) corresponds to the graph in Fig. 7. Since each pair of CCCS

branches corresponds to one transistor (see Fig. 6(a) and Remark 1), we have:

Lemma 9. The graph GQ in Fig. 7 represents a feedback structure.
Lemma 9 proves Proposition 2. Thus we conclude that under Assumption 3 a

feedback structure can be derived by applying operations (I)-(III) to Ny.

3.2 Sufficiency

Suppose that a feedback structure F can be obtained from a transistor

circuit Nj by applying operations (I)-(III). We will prove that we can obtain
a graph GQ satisfying A(GQ) <0 by applying operations (I)' and (II)' to G.
Since operations (I) and (II) are the same as operation (i) in Section II and

operation (I)', we consider mainly operations (III) and (II)'. As is seen

from the preceding necessity proof, the essential difference between operations

(III) and (II)' is the fact that the former include the operation in Fig. 2(f)

but the latter does not.

Case 1: F can be obtained without using the operation in Fig. 2(f).

In this case we can also obtain F by applying operation (II)'. Figure 8

shows F with each transistor replaced by the Ebers-Moll model. Here the

transistor Tu (u=l,2) is represented by two pairs of CCCS branches, (a ,b )

and (a ,b ) and two resistor branches R and R .' We use the same notation
y u y u

below. By applying operations (I)' and (II)' to Fig. 8, we can obtain a graph

Gq in Fig. 7, for which A(GQ) < 0.

Case 2: F can be obtained only by applying the operation in Fig. 2(f).

Without loss of generality we assume the following:

Assumption 5. F is obtained from Ny by the operation in Fig. 2(f) only.

Assumption 6. There is no other way to get F than applying the operation in

Fig. 2(f).

Referring to the Assumption 5, we can assume Ny consists of n (> 2)

+Two pairs of branches (a.-.b.,) and (a.bu) are called "complementary" to
each other. u u y u
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transistors only. Let two transistors in Fbe T-j and T2, and let the others
in Ny be T3, T4,...,Tn. It follows from Case 1 that by applying operations
(I)' and (II)' to Fwe can obtain the graph in Fig. 7 which satisfies
A(Gq) <0. Let GQt be the transition graph of GQ.

Suppose that we replace the transistors T, and T« in Ny, as shown
in Fig. 6(a), by two pairs of CCCS branches (a-j,^) and (a2,b2), respec
tively. Remember that (a-pb.,) and (a2,b2) were in GQ. Replace furthermore
each remaining transistor T^(u=3,4,...,n) by either one of two complementary
pairs of CCCS branches (a ,b ) and (a ,b ), as shown in Fig. 6(a). Let the

^y y y -^y
graph obtained above be GQ. Of course GQ consists of n pairs of CCCS branches
Let GQt be the transition graph of GQ. In general a-branches or e-branches
do not necessarily form a tree of GQt. However we have:

Lemma 10. By appropriately replacing T (y=3,4,...,n), by a-branches and

e-branches, we can get a transition graph GQ. such that
i) a-branches form a tree of G,

:ot

0t
ii) e-branches form a tree of G

Proof. See Appendix 7.

Let the fundamental cutset matrices of GQ and GQt be

Cr =

i a2
'tf = a.

where

ala2 a3"-an blb2 b3---bn
"1

1 o "n <V

o
1

1
"21 Q22

a1a2 a3-"an ele2 e3'--en
1

1 0 pll P12

0
1^

1
P21 P22

pn pi2
= 1 +

Qll Q12

P12 P22 J '21 y22

From Lemma 10 it follows that
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P22|M (11)

Since by Assumptions 5 and 6 GQ. is obtained from GQ. by applying opera
tions 0(a ) and S(e ) (y=3,4,...,n), the fundamental cutset matrix of GQt is
given by

ala2

'tf
I P11'P12P22P21

Since A(GQ) <0, we have

lPirP12P22lp2ll <0-
From Lemma 10 it follows that

(i)

(ii)

rn ri2

prt, p,
21 '22

We have to consider two cases

rn ri2

p„, p,
21 '22

In this case we have

A(G0) <0

11 12

r21 r22

In this case we conclude from (13) that

|P22| < 0.

Let Gq denote the graph obtained from GQ by applying Z(-) to two pairs
of CCCS branches (a,,b,) and (a2,b2). Then we have

A(Gq) = |p22| <0

In any case we can get a graph satisfying A(-) < 0.

This completes the proof of Theorem 3.

f o

< o

>0

(12)

(13)
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Appendix 1. Proof of Lemma 1

Let

Q =
'11

«21

n-k

'12

'22 } n-k (Al.l)

where Q^ and Q22 are square matrices. Assume that II+Q-.J <0. Let GQ
denote the graph obtained by applying Z(y) (y=k+l,k+2,...,n) to Gn. Then

Gq is connected and its fundamental, cutset matrix is given by [IIQ,-.]. There
fore we have A(GQ) < 0,
Assumption 4.

Now Gq has fewer vertices than GQ, which contradicts

A-l



Appendix 2. Proof of Lemma 2

By applying operations (I)' and (II)' to a graph of the Ebers-Moll model

(see Fig. 4(b)), we can obtain 16 distinct graphs, some of which are illus

trated in Figs. 5(a)-(g). It is sufficient for us to consider only the

cases where

1) no b-branch is a self-loop as shown in Fig. 5(g).

2) no a-branch is a bridge (which means a branch which itself forms a cutset)

as shown in Fig. 5(f).

3) 2 pairs of CCCS branches as shown in Fig. 5(e) do not remain simultaneously

in Gq.
The reasons are as follows:

Suppose that a b-branch, say b-,, is a self-loop in GQ satisfying (3).
Then the fundamental cutset matrix of GQ is given by

a.

alr = '

f a2

ll

1

an bl
; 0

O

b2...bn

/// //

Since |I+Q| = |I+Q-j|» we have |I+Q,| <0, which contradicts Lemma 1. We can
disucss in a dual way the case where an a-branch is a bridge.

Suppose next that Fig. 5(e) remains in Gq- Then the fundamental cutset
matrix of GQ is given by

a] a2 a3 ... aR

Cf "

ul u2

0 -1

-1 0

o

i n

from which we have

|I+Q| = 0

This contradicts A(GQ) < 0.
Among the 16 graphs cited above, only the graphs in Figs. 5(a)-(d)

satisfy 1)-3) above.
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Appendix 3. Proof of Lemma 3

We can identify the branches a and b with the u-th and the (n+u)-th

column of Cf in (1), respectively. Similarly we identify a branch e with the
y-th column of P in (5). Since from Fig. 6 it follows that

eu =au + by (A3.1)

we have Lemma 3.
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Appendix 4. Proof of Lemma 5

Suppose that branches e (y=l,2,...,k) form a loop. Then we have

e] x ... ± ek =0 (A4.1)

Here the ± sign should be taken appropriately. (Note that e is identified

with the y-th column of P). Equation (A4.1) implies that columns of P are not

independent. Thus we see |P| = |I+Q| = 0, which contradicts (4).
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Appendix 5. Proof of Lemma 6 v

Before we prove Lemma 6, we will define the following two operations:

Operation (A1). Let (ayl ,evl)...(ayh,eph) (h may possibly.be zero) be some

pairs of branches of the transition graph GQt. Then apply 0(a )and S(e )
y.j y.j

(i=l,2,...,h).

Operations (A"). Let (a .b )...(a ,b, ) (h may possibly be zero) be some
yl ul ^h yh

pairs of CCCS branches of GQ. Then delete a and b (1=1 h) and coalesce
yn- y^

the initial vertex of a and the end vertex of b (that is, merge vertices
i yi

C and E in Fig. 6(a)).

Then it is apparent that

Lemma A.I. Operations (A), (A1) and (A") are in essence equivalent to each

other in the sense that we can get the same graphs from the original transistor

circuitNyby applying operation (B) and any of operations (A), (A') and (A").
By introducing operations (A1) and (A") it becomes easy to handle opera

tion (A) algebraically. Let Got denote a graph obtained from GQt by applying
operation (A1). Note that in Gq. a-branches do not necessarily form a tree

Lemma A.2. In Gq^ a-branches form a tree if and only if the principal sub-
matrix of P corresponding to branches a and b (i=l,...,h) is nonsingular.

Let us prove Lemma 6. Let ] n

k n-k

P,

P =
11

21

12

22

and suppose that

11

Let

T =

= 1

P"1
*11

-P P
VZV 11

Then we have

Tl = ipil i = i

} n-k

(A5.1)

(A5.2)

(A5.3)
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and

where

(Ctf =)T C
tf

ar..ak

V1

ak+T"an

0

er..ek

I

ek+Ven

pnpi2

-p p I 0
/s

p

-1
p = p22 - P2ipnpi2

Since from (A5.4) and (A5.5)

0 > A(G0) = |I+Q| = |P| = |TP

I P^P12 - IPI,

we have

|P| < 0.

(A5.4)

(A5.5)

(A5.6)

The matrix Ctf is the fundamental cutset matrix of the graph GQ. with respect to
the tree {ak+1,...an, e-j,... ,ekh Let GQt denote the graph obtained from GQt by apply
ing operation (A1) to the branches (a^e^, (a2,e2),... ,(ak,ek).t Then a-branches
(ak+1 »..• »an} form a tree T in GQ. and the fundamental cutset matrix of GQ. with
respect to f is given by [IIP]. Let GQ - Got. Then A(GQ) =|P| <0 and GQ has
fewer vertices than GQ, which contradicts Assumption 4.

f
Note that deleting the i-th row of a fundamental cutset matrix Ce corresponds

to short-circuiting the tree branch i and deleting the i-th column of the
main part of Cp corresponds to open-circuiting the link branch i.
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Appendix 6. Proof of Lemma 7

Suppose that in (1)

B^+b,) +62(a2+b2)+ ... +B^a^+b^) ♦ bn =0

or

3ne, + a0e« + ... + 3
1C1 7C2 n-lVl + b = 0

(A6.1)

(A6.2)

holds. Here 3 (y=l,2,... ,n-l) are real numbers and a and b are the y-th and

the (n+u)-th column of C^ in (1), respectively, and e the y-th column of Pin
(5). By adding the product of the y-th column of P and3 to the n-th column of

P, we have the matrix

P"Celie2i ••• ien-lian]-
For, the n-th column of P is

6,8, +B2e2+ ... +Bn_1en.1 + en

= (B1e1+B2e2+...+Bn.1en.1+bn) + an =an.

We have, of course,

ri+Qi = ipi - ipi (<o)

Since an = [0 0 ... 0 1]', let +

P =

"pn o

W 1

Therefore we have

|Pnl = IPI < 0
11

On the other hand let us consider the graph GQ obtained from GQ by apply
ing Z(n). Of course GQ has fewer vertices than GQ. The fundamental cutset
matrix of GQ is given by [KQ-,-.] and P,, = I + Q.., holds. Thus we have A(GQ)
< 0, which contradicts Assumption 4. Therefore we conclude that (A6.1) (or

(A6.2)) does not hold.

Let us introduce some terminologies. Since the e-branches form a tree of

Gq. (see Lemma 5), we can partition the e-branches into two connected parts by

t The prime means the transpose of a matrix.
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open-circuiting an arbitrary e-branch, say e . Note that the a-branches should

be ignored in the above discussion, and an isolated vertex, if occurred, is regarded

as one part. One connected part composed of the e-branches, to which the

initial vertex of the branch e belongs, is called the "back part" of e and
y y

another connected part, to which the end vertex of e belongs, is called the

"front part" of e . If the end vertex of a belongs to the front (resp., back)

part of e ,then e is called a forward (resp., backward) branch in GQ..

Lemma A.3. That (A6.1) holds is equivalent to the branch e being a forward

branch of GQt.

Proof. We will explain Lemma A.3 by using Fig. A.l. We consider the branch

e2 in Fig. A.l. Then the branches eQ, e,, e0 belong to the front part of e2
and the branches e. and e5 belong to the back part of e2. Since the branch
a2 is directed to the front part of e2, e2 is a forward branch. Now in Fig.
A.l

-e, + e3 + b2 = 0

holds.

The general case follows along the reasoning as this example.

From Lemma A.3 we have Lemma A.4.

Lemma A.4. Every e (y=l ,2,...,n) in GQ. are backward branches.

Lemma A.5. Let (a ,b )be a pair of CCCS branches in GQ (see Fig. A.2(a)) and
let Gq be a graph obtained from GQ by replacing branches (a ,b )with (a ,b ).
(Attention to the directions of branches.) Here (a ,b ) and (a ,b ) are two

' v y' y' v y' y'
pairs of CCCS branches in an identical Ebers-Moll model and are called "com

plementary" to each other. Then the graph GQ can be obtained from G by appro
priately applying operations (A) and (B) in Section III.

Proof. It is apparent from the Ebers-Moll model. Note that the a-branches of

the graph GQ in Lemma A.5 do not necessarily form a tree.

Lemma A.6. Suppose that a principal minor, say the upper left-most k x k prin

cipal minor, of Qis positive (=1). Then the graph GL obtained from GQ by
replacing (a ,b ) (y=l ,2,... ,k) with its complement (a ,b ), as in Lemma A.5

satisfies

A(G0) =A(G0) (< 0) (A6.3)

Proof. Note that Lemma A. 6 asserts that the a-branches (i.e., {a, ,a~2,... ,a\,
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ak+1 an>) form a tree of GQ. Let the fundamental cutset matrix of GQ be
given by

Cf =
'k+1

aVak ak+T"an br..bk bk+Vbn

I o "ll "12

o I "21 Q22

where by assumption

IQll
= l

(A6.4)

(A6.5)

By multiplying Cf from the left by an appropriate nonsingular matrix we get

.0) -

aVak ak+Van br..bk bk+l'••bn

<h"i 0 i Ol2

-Wvi i 0 "fc-^ta
from which we see the branches b,, b0, ..., b. a. ,,,..., a

/1 \ \ c K K+1 n
Gq and C^ ' is the fundamental cutset matrix of GQ with respect to this tree.
It therefore follows that the branches a,, a2,...ak, ak+,,...,a form a tree T
of Gq and that the fundamental cutset matrix of GQ with respect to T is given by

ala2"-ak ak+Van br..bk

Cf "

Therefore we have

-1

11

,-1

I+Q

-1

11Q

*21*l]

-1
a(g0) -

%1'n I+Q22-Q2^n^2

A-9
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"^12
q22-q21Qi]q12

(A6.6)

form a tree of

(A6.7)



= IQ

o

Si

wi
A(Gq) =a(g0)

0

-I

Q11+I

'21

^12

Q22+I

0

-I

Lemma A.7. Suppose that the same assumption as in Lemma A.6 holds. Let Gq be
the graph obtainedin Lemma A.6 and let GQ ~ GQ..
...,k) are forward branches of GQt.

Proof Branches e in Grt^, th

Then the branches e (y=l,2,

ot, »,.,e transition graph of GQ, and e in GQt have oppo
site directions. On the other hand the end vertices of a and e (y=l,...,k)

Since all e (y=l,...,n) are backwardare the same vertices in GQt and GQ..
branches in GQ. (see Lemma A.4), branches e (y=l,...,k) are forward branches

in G0f
Suppose that Q has a positive principal minor. Then there exists another

graph GQ such that 1) GQ is obtained from G by applying operations (A) and (B)
(see Lemma A.5) and 2) A(GQ) = A(GQ) (see Lemma A.6). Furthermore, since GQt
has a forward branch (see Lemma A.7), we can derive another graph Gq which
satisfies A(GQ) = MGQ) (< 0) and which has fewer vertices than GQ. This con
tradicts Assumption 4. This completes the proof of Lemma 7.
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Appendix 7. Proof of Lemma 10

Suppose that GQt contains a loop consisting only of e-branches. Then we
can apply at least once the operation in Fig. 2(b) instead of that in Fig. 2(f)
to obtain F. This contradicts Assumption 6.

Suppose next that there exists a cutset consisting only of a-branches in
G0t* Then we cannot obtain a connected graph after we apply the operation in
Fig. 2(f). This also leads to the contradiction.

Similar discussion applies for a cutset consisting of e-branches and a
loop consisting of a-branches. Therefore Lemma 10 follows.
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Figure Captions

Fig. 1. Feedback structure.

Fig. 2. Operation (III), which means replacing (a) by one of (b)-(f).
Fig. 3. Graph representation of a CCCS.

Fig. 4. Ebers-Moll model and its graph representation.

Fig. 5. Resulting graphs by applying operations (II)' to the Ebers-Moll model

Fig. 6. Illustration of a transition graph.

Fig. 7. The graph GQ corresponding to a feedback structure.
Fig. 8. Graph representation of a feedback structure.

Fig. A.l. Illustration for the proof of Lemma A.3.

Fig. A.2. Replacement of (a ,b ) by its complement (a ,b )
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