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DESIGN OF A 300-BAUD FSK MODEM

USING CUSTOMIZED DIGITAL SIGNAL PROCESSORS

William L. Abbott

University of California, Berkeley

Department of Electrical Engineering

and Computer Sciences

I. INTRODUCTION

There are several approaches that may be taken to the design and

implementation of a single chip digital signal processing (DSP) system. One

approach is to use a processor that can be programmed in a way similar to that

of a microprocessor and that is specifically designed for DSP. While this

type of processor may be adequate for implementing simple DSP functions, it

becomes limited and inefficient when applied to the task of realizing complex

single chip DSP systems. Other alternatives are to do a custom design or to

use some kind of semicustom approach. An all-custom design takes relatively

too long to complete and is not financially worthwhile unless the finished

chip is one that will be produced in large quantities. The semicustom method

allows a designer to more specifically tailor the processors to the desired

application while avoiding an entire chip design.



The 300-baud frequency shift keyed (FSK) modem described in this

paper utilizes parallel digital signal processors which are configured

according to a set of macrocell descriptions. The computer-aided design (CAD)

system used to specify the modem will be referred to as the DSP integrated

circuit (IC) Layout Generator and will be described more completely in the

following chapter.

One of the purposes of this research project was to demonstrate the

feasibility of using the DSP IC Layout Generator to design and implement

monolithic DSP systems. Since the modem implementation requires a variety of

operations such as addition, multiplication, division, absolute value, delay,

multiplexing, and conditional, it is a good example for testing the

versatility of the DSP IC Layout Generator. Although a 300-baud FSK modem

could be implemented using one of the generalized digital signal processors

mentioned previously, a more complex and higher speed modem could not be

realized in this manner. It is in this more complex case that the DSP IC

Layout Generator has a great advantage over the generalized digital signal

processors.

The modem discussed in this paper includes the functions of

modulation, demodulation, and filtering in two parallel processors on a single

chip. The chip layout for the processors and their associated control lines

and input/output lines was generated automatically using the DSP IC Layout

Generator.

Research sponsored by the Defense Advanced Research Projects Agency under
contract no. N00039-84-C-0507.



II. THE DSP IC LAYOUT GENERATOR

The DSP IC Layout Generator provides for the automated macrocell

design of customized DSP systems [1], To develop a DSP chip using the Layout

Generator, the designer must specify a design file (the design file for the

300-baud modem is shown in Appendix A). The design file consists of a special

purpose language that describes which macrocells are needed and how they are

to be configured. An emulator allows the designer to test and debug his

design file. The Layout Generator produces a chip layout given the design

file and information from the emulator.

The basic architecture of a DSP system designed with the DSP IC

Layout Generator includes parallel processors, serial buffered data

connections for interprocessor communication, a parallel signal I/O bus, and a

buffered host I/O section (see Figure 1). An understanding of the processor

structure is enough to allow a basic understanding of the modem implemen

tation. Therefore, only the processor structure will be described in more

detail here.

II-l. Processor Structure

Each processor is made up of a number of macrocells, with the

particular configuration being dependent on the design file description.

The data memory macrocell consists of up to 128 RAM locations and is

used for storage of variables and constants. It may be addressed in an

absolute mode or in an indexed mode.

The arithmetic unit (see Figure 2) is a pipelined structure and has a

wordlength specified by the designer. Data is represented in two's complement

notation. The main functional blocks in Figure 2 are structured as follows:



1. Mor Register: The mor register is loaded with the contents of a
RAM word in a (r)ead operation and with %mir K= bit inversion)
in a (w)rite operation.

2. Barrel Shifter: The barrel shifter can perform a right shift of
0 to 6 bits or a left shift of 0 to 1 bit. Either the mor or
sor register may be used as input. Using the sor as input makes
it possible to perform a shift of more than 6 bits.

3. Complementer: The complementer outputs the true value, the
inverse value, or the absolute value of the sor register.

4. Adder: Since the adder saturates, a positive or negative
overflow is represented by the maximum or minimum value. Adder
output is accumulator input.

5. Mir Register and mbus: The mir register is loaded from the mbus
and is a transparent latch. The mbus may be driven by the
accumulator (default), the mor register, or the I/O unit.

A connection to the parallel I/O bus (for only one of the

processors), the serial interconnections with the other processors, and the

host I/O unit make up the processor I/O unit. The serial I/O units include

serial-to-parallel (s/p) or parallel-to-serial (p/s) converters and buffering

so that the designer does not have to worry about the timing of the variable

transfers.

The control sequencer macrocell consists mainly of two cycle counters

and the microcode instruction ROM. This macrocell is kept simple by allowing

no branching and only a restricted form of looping.

To handle the necessity of having conditional operations, a processor

may also include a finite state machine unit. The finite state machine

provides a program set condition code bit which controls a conditional write

instruction.

The address arithmetic unit supports either direct addressing or

indexed addressing of the data memory unit. Indexed addressing is accom-



plished using index registers ix and iy and makes it possible to execute a

number of iterations of a subprogram or the main program to implement

specialized addressing schemes such as table look-up.

11-2. Design File

As previously mentioned, a designer can completely specify a DSP IC

by writing out a design file. The syntax of this file and the instructions

that may be used are thoroughly discussed in part 2 of Reference [1], The

designer first specifies global variables to be used for signal and host I/O

and interprocessor communication and then specifies the processors. A

majority of the effort in writing the design file goes into these processor

specifications. Variables (locals) and constants are defined to make up the

data memory. A finite state machine is defined if the designer needs

conditional operations. Finally, a main program and optional subprogram are

written. The programs contain the instructions to be executed each sample

cycle and perform the DSP mathematical, data storage, and data transfer

operations. The desired mathematical and storage operations are converted

into the special microcode instructions, most of them being related to the

processor arithmetic unit.

Two's complement multiplications of two variables are performed using

a parallel-serial method in which a sequence of partial products is generated

in a bit-parallel, word-serial format and accumulated by the single

accumulator. An example of this method is as follows:

To multiply the two's complement numbers x and y (-l<y <1),

n-1 y,-
Represent y as y = -y0+ V l where y-j is the ith bit of the

1=1 21
two's complement representation.



"-1 XThen x*y = -x*yft + £ *r *y<
0 i=l 21 1

Thus, start with zero when y is positive and -x when y is negative

and add x, shifted by i positions, if the ith bit of y is a one. The

bits of y are needed serially on successive cycles, MSB first, in

order to control the addition of the shifted values of x.

Example:

x = 011000 (3/4)

y = 110100 (-3/8)

x*y = 101000 (= -x)
001100 (x/2)
000000

000011 (x/8)
110111 = (-9/32)

Multiplication of a variable with a constant is much easier and is

required for digital filtering applications. The constant coefficient is

represented in the canonical signed digit form:

J n,

c= £ x.*2 1
i=0 ^

where (c = constant)
(x1- = -1 or +1)
(n.j and j chosen to minimize the total number of digits)

Thus, a multiplication such as c*y, where c = 0110111 (55/64) can be achieved

by implementing (2°-2"3-2"6)*y.



Division of two variables is necessary for such operations as signal

normalization. Divisions are accomplished as follows:

To perform N/D (|D|>|N|)

1. Determine the sign of the result.

2. Load IMI in the accumulator.

3. Subtract |D|/2, |D|/4, etc., from the accumulator on successive
cycles.

4. Accumulate the results of these subtractions only when they are
positive, and place a 1 in the appropriate bit position of the
quotient.

5. The quotient is in sign magnitude form and must be converted to
two's complement form.

Example: N = 001 (1/4) D = 0101 (5/8)

First cycle: 001000 quot = 0
110110 = -IDI/2
TTTTTD" (do not accumulate since <0)

quot = 00

Second Cycle: 001000
111011 = -|D|/4
OOOOll (positive, so place 1 in quot)

quot = 001

Third Cycle: 0000110
1111011 = -|D|/8
UUUUUUl quot = 0011

etc.



III. OVERALL MODEM IMPLEMENTATION

III-l. Modem Functions Included

A full-duplex 300-baud FSK modem is made up of five main functional

blocks. These blocks are the modulator, demodulator, transmit and receive

filters, timing and control logic, and line driver and hybrid. All of the

above functional blocks are implemented in the modem discussed in this paper

except for some timing logic and the line driver and hybrid circuits (see

Figure 3).

The full-duplex feature of the modem means that it can simultaneously

transmit and receive data. This feature is accomplished by using different

frequency bands for transmitting and receiving and by using the hybrid to put

both sets of data on the same telephone wire pair. The different frequency

bands of the modem are shown in Table 1 along with the corresponding mode of

operation (originate or answer).

Data
Originate Mode

Transmit Receive
Answer Mode

Transmit Receive

0 = space

1 = mark

1070 Hz 2025 Hz

1270 Hz 2225 Hz

2025 Hz 1070 Hz

2225 Hz 1270 Hz

Tab"le 1. Full-Duplex 300-Baud Modem Tone Allocation

The inputs and outputs of the modem lowband and highband filters are

switched according to the desired mode of operation (controlled by 0/X

input). The filters are necessary because the hybrid combines the transmit



and receive signals onto the same wire pair resulting in some interference

between the two frequency bands. The receive filter removes the signal energy

in the adjacent transmission band so that the demodulator may more clearly

detect data in the receive band. The transmit filter is necessary to remove

sidebands caused by the FSK modulation of the data. This filter does not have

to have as high an attenuation in the adjacent band as does the receive

filter; however, since both a lowband and a highband receive filter are

necessary, it is no additional design effort to use these filters on the

transmitted signal.

III-2. Modem Design File

The modem design file listings shown in Appendices A and B implement

the functions shown within the dotted line in Figure 3. Two processors are

used in the design: one for the modulator and demodulator, and one for the

lowband and highband filters. Processor "filters" is the processor that is

attached to the parallel signal I/O bus. The requirement on the width of this

bus is 12 bits and was set by demodulator considerations discussed later. Two

input words and two output words use this bus each sample period (see Table

2).

Processor "filters" has a 20-bit word length in order to achieve the

computational accuracy required to meet the filter specifications. "Filters"

performs the multiplexing functions required to allow the modem to operate in

either originate or answer mode and either full-duplex or self-test mode. The

lowband filter is used in the originate self-test mode, and the highband

filter is used in the answer self-test mode. Of course, both filters are used

when the modem is in full-duplex mode, and their inputs and outputs are

determined according to Table 1.



Input words: wordin: O/A TXD SQT ALB

O/A
TXD

SQT
ALB

rxin

Mode pin (1 = originate, 0 = answer)
Digital data to be transmitted (1 = mark, 0 = space)
Squelch (modulator output = 0 if SQT is set (=1))
Self-test mode (if ALB = 1, then output of modulator
after transmit filter is fed directly to demodulator)
(ALB = 0 is full-duplex mode)

12-bit digital word from A/D of pin RXA. FSK signal to
be filtered and demodulated.

Output Words: wordout: RXD CD - - -

RXD = demodulated digital data (1 = mark, 0 = space)
CD = carrier detect signal (0 = carrier present, 1 = carrier

absent)

txout: 12-bit digital word for input to D/A and transmission on
pin TXA. FSK modulated and filtered data.

Table 2. Modem Data Words

Processor "modem" receives the "wordin" and filtered "rxin" variables

from "filters" and passes the "wordout" and unfiltered "txout" variables to

"filters" for output. "Modem" is 14 bits wide in order to achieve the

computational accuracy necessary to meet the demodulator bandpass and lowpass

filter specifications. The modulator segment of "modem" produces one of four

frequencies depending on 0/A and TXD (see Table 1) or zero if SQT is set. The

demodulator segment of "modem" takes a filtered word along with signals O/A

and ALB as input and produces CD and RXD as output. If ALB is set, the demod

ulator operates in the frequency band opposite to that of its normal full-

duplex operation. The necessity for this is apparent from the fact that in

self-test mode only one frequency band can be used at a time.
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IY. MODULATOR

The modulator segment in processor "modem" must produce one of four

frequencies depending on O/A and TXD as shown in Table 1. These frequencies

must be produced to within +1 Hz, and transitions between mark and space fre

quencies must be phase coherent. Harmonics should be not greater than

-32dB. Two different modulator designs were coded and tested.

IY-1. Sawtooth Wave Modulator

A digital sine wave oscillator may be implemented by first generating

a simple sawtooth wave and then modifying it by piece-wise linear transforma

tions [2]. The negatively sloped sawtooth wave of the appropriate frequency

is generated by successively subtracting a value from a variable "WAVE." When

WAVE is less than zero, one is added to WAVE to start the next period. The

frequency of oscillation is determined by the equation FQ = kFs where FQ =

oscillator frequency, k = step size, and Fs = sample frequency. For the modem

design presented here, the sampling frequency was chosen to be 9600 Hz.

Therefore, the step sizes shown in Table 3 are necessary to generate the four

required frequencies.

Frequency Step Size k

1070 Hz

1270 Hz

2025 Hz

2225 Hz

0.111458

0.132292

0.210938

0.231771

Table 3. Sawtooth Wave Step Sizes

11



Once the sawtooth wave has been generated, it must be shaped into a

sine wave approximation to remove some harmonic energy. Notice that this

shaping cannot be easily done by digital lowpass filtering since the sawtooth

wave samples are not band limited, and aliasing of higher harmonics could

interfere with the filtered waveform. Thus, the following piece-wise linear

transformation is used to shape the sawtooth wave:

WAVE

WAVE

WAVE

WAVE

= WAVE - 0.5 (center WAVE vertically around 0)

= |WAVE*2| (triangle wave from 0 to 1)

= WAVE - 0.5 (triangle wave from 0.5 to -0.5)

= WAVE*3 (clipped triangle wave approximation to sine wave)

The last operation depends on the saturating overflow characteristic of the

adder. The accumulator is purposely overflowed in order to clip the top of

the triangle wave. The above transformation removes all even harmonics and

attenuates the nth odd harmonic by sin (nir/3)| (n2 7r/3) (see Reference [2]).

Thus, the third harmonic is absent and the fifth harmonic is down by 30 dB.

The microcode listing of this modulator is given in Appendix B. By

using 14-bit wordlengths, all frequencies are realized to within ±0.5 Hz

(e.g., 9600/(8191/1084) = 1270.47 Hz, etc.). The transitions between

frequencies are phase coherent since only the step size is adjusted when the

frequency changes, and the continuity of variable WAVE is not upset. The

performance of this modulator is demonstrated in Figures 4 and 5 which are 512

point FFTs of 512 data samples generated from "modem3.df" (Appendix B) at a

sample rate of 9600 Hz. Figure 4 shows the originate mode space frequency of

12



1070 Hz. As expected, the aliased fifth harmonic at 4250 Hz is down by

approximately 30 dB, and the aliased seventh harmonic (2110 Hz) is down by

approximately 35 dB. These harmonics are removed by the transmit filter.

Figure 5 shows the answer mode mark frequency of 2225 Hz. It is more

difficult to distinguish the harmonics in this case, and some components

appear to be attenuated by only 18 dB. This relatively high component level

is probably caused by two aliased harmonics constructively interfering. When

used with the transmit filter, this modulator scheme meets the specifications.

IY-2. Sine Table Look-up Modulator

The .sine table look-up modulator produces a sine wave of the desired

frequency by varying the angle increment (step size) of a table indexing

variable. The step size through a table containing n sine values between 0

and 90 degrees for a desired frequency of fQ is given by: 4nfQ/9600 = step

size, where 9600 Hz is the system sample rate. A table of 24 values is used

in the modem design file (Appendix A). Hence, the step sizes shown in Table 4

are necessary to produce the four required frequencies.

Frequency
r-

Step Size

1070 Hz 10.70

1270 Hz 12.70

2025 Hz 20.25

2225 Hz 22.25

Table 4. Sine Tabl e Look-up Step Size

13



Implementing the fractional part of the step is done as follows:

1070 Hz: Step by 11 each program cycle; however, step by 8 every
10th cycle. (Total of 107 steps in 10 cycles =
10*(10.70).)

1270 Hz: Step by 13 each cycle; however, step by 10 every 10th
cycle

2025 Hz: Step by 20 each cycle, by 21 every 4th cycle.

2225 Hz: Step by 22 each cycle, by 23 every 4th cycle.

If the length of the table had been less than 24 values, accounting for the

fractional step would have been quite difficult, and the modulator would

produce the wrong frequency.

The table look-up modulator algorithm as coded in "modem.df" can be

summarized as shown in Table 5. This modulator scheme produces frequencies

whose accuracy depends only on the accuracy of the 9600 Hz sampling

frequency. The transitions between frequencies are phase coherent since only

the step size is adjusted when the frequency changes, and the index variable

is not reset. The modulator performance is demonstrated in Figures 6 to 11

which are 512 point FFTs of 512 data samples generated by the modulator. As

expected, the highband frequencies (2025 Hz and 2225 Hz) show very little

harmonic content, since the step is never off by more than one (approximately

four degrees). However, the lowband frequencies (1070 Hz and 1270 Hz) show

significant harmonic content at many different frequencies. This lowband

effect results from the fact that the step must be adjusted by three (twelve

degrees) every tenth count. These harmonics are never greater than 31 dB.

Figures 10 and 11 show the effect of the transmit bandpass filter on the

14



Get input sample

Set md = true if originate mode
ms = true if space

iy := step
sine := ry(table)
sine := ~sine +1 if PN (PN set means negative sine values)

output := sine

Calculate next step increment or decrement: (see microcode in Appendix A)

step := step + 8 if o-count & os & u counting up through table
originate-space

step := step + 10 if o-count & om & u

step := step + 11 if o-count & os & u

step := step + 13 if o-count & om & u

step := step + 20 if a-count & as & u

answer-mark

step := step - 23 if a-count & am & d counting down through table

step := step - 8 if o-count & os & d

Table 5. Table Look-Up Modulator Algorithm

15



Generate o-count and
a-count flags

for doing different step
every 10th sample for
1070 and 1270 Hz or every 4th
sample for 2025 and 2225 Hz.

oc := false

ac := false

o-count := o-count + 1

temp := o-count
temp := temp + (-10)

IF temp * 0 THEN o-count = 0, oc := true

a-count := a-count + 1

temp := a-count
temp := temp + (-4)

IF temp > 0 THEN a-count = 0, ac := true

IF (tx = u & (step > 23)) THEN d :
step :

IF (t2 = d & (step < o)) THEN u :
step :

PN :

Go back to start

Table 5. (Continued)

16

ti+d, u := tiu
2$ - (step + (-23))

t2+u, d := T2d
-step

PN for negative part of
sine wave cycle switch
sign of sine values



modulator output. In each case, the harmonics have been removed and the

signal is attenuated by at least 48 dB in the adjacent receiving band. This

performance is more than adequate. Figures 12 and 13 show the effect of the

bandpass filters on FSK modulated data that is toggling between mark and space

(300 bps). All sidebands of the modulation have been significantly

attenuated.

IV-3. Comparisons of Digital and Analog Modulators

Most analog modulators are based upon the principle of dividing down

a high frequency input clock. The division factor is changed according to

what frequency is desired, and this frequency is used to clock sine values

from a ROM or PLA [3]. However, this concept cannot be applied to DSP

modulators. DSP systems have a fixed sample rate (9600 Hz in this case), and

values coming out of a modulator block must be at that system sample rate in

order to be used as input to the next DSP functional block (digital filter in

this case). The analog method implies faster sampling to generate higher

frequency sine waves, since there are still the same number of sine values per

cycle. Thus, in the DSP approach, the number of values per cycle of the

desired sine wave frequency is varied. (Larger step size through a sine table

for higher frequencies.)

Another major difference in the two approaches is that the digital

input data is sampled for the DSP modulator while this data is not sampled in

the analog modulator. The data causes the analog modulator to switch clocking

rate as soon as the data changes (delayed only by circuit propagation

delays). However, in the DSP modulator, a change in input data is not

detected until the next sample is taken. This effect introduces modulator bit

jitter of 1/FS, where Fs is the sampling frequency.

17



Y. FILTERS

The lowband and highband bandpass filters in this modem must meet the

requirements shown in Table 6.

Bandwidth

Center Frequency

Group delay variation

between mark and space

frequencies

Amplitude Response:

50-600 Hz

1020-1320 Hz

1975-2275 Hz

3000-4800 Hz

Lowband Filter

300 Hz

1170 Hz

<100 Msec

<-20 dB

1 dB ripple

<-65 dB

<-55 dB

Highband Filter

300 Hz

2125 Hz

<100 /xsec

<-60 dB

<-65 dB

1 dB ripple

<-24 dB

Table 6. Filter Requirements

The filters were designed interactively using the computer program

Filsyn [4], The design was carried out in the digital frequency domain using

a bilinear z-transform, and the sample frequency is the system sample

frequency of 9600 Hz. For the lowband filter, zeros were placed at 2025 Hz

and 2225 Hz in order to get sharp attenuation of the adjacent band signal

frequencies. Similarly, for the highband filter, zeros were placed at 1070

Hz and 1270 hz. Each filter has an equal ripple type passband. Sixth order

18



filters met the amplitude response specifications, but not the group delay

requirement. Therefore, two second order sections were added to each filter

to equalize the delay in the passband. This resulted in filters that are each

tenth order.

Each filter is implemented as a cascade of five direct form II [5]

second order sections (see Figure 14). Filsyn was used to order and scale the

sections according to optimizations performed with respect to noise gain and

overflow. The coefficients were rounded to seven places by Filsyn. Table 7

lists each filter's coefficients and scale factors in both decimal and

canonical signed digit forms. Table 8 shows the performance of each filter as

calculated by Filsyn. Amplitude response performance easily exceeds

requirements and group delay performance is also within the requirements.

To implement the filters in microcode as listed in processor

"filters" in Appendices A and B, the following equations must be calculated

(in order) each sample period:

= <H+1<*i+2

For i = 1, 4, 7, 10, 13 q^

out,-

= scale * 1Ri + «li*qi+1 + Q!2i^i+2

• qi + 0li*<»i+l + 02i*qi+2

Processor "filters" requires 20-bit wordlengths to accurately process data

samples and to provide for the 65 dB of rejection in the adjacent band.

Figures 15 to 18 show the impulse responses of the lowband and highband

filters generated by processor "filters" using both 20-bit and 32-bit

wordlengths. These graphs were generated using a 1024 point FFT on 512 output

data samples from processor "filters." Notice that the impulse responses

19



generated using 32-bit wordlengths show negligible effects of finite register

length and closely match the performance calculated by Filsyn.

Lowband Filter
Canonical

Decimal Signed Digit

Highband Filter
Canonical

Decimal Signed Digit

Scale Factor 0.0625 2~4 0.125 2-3

Section 1

al 1.3125 20+2-2+2-4
0.3671875 2~2+2'3-2"7

a2 -0.8515625 -2°+2"3+2"5-2~7 -0.8515625 -2°+2"3+2"5-2"7

01 -1.640625 -2 -2 -2~3-?"^ -0.5703125 -2"1-2-4-2-7

02 1.171875 2°+2"3+2"5+2"6 1.3984375 2°+2~2+2~3+2~6+2~7

Scale Factor 0.25 2-2 0.125 2-3

Section 2

al 1.5078125 2°+2"1+2"7 0.40625 2-2+2-3+2-5

a2 -0.90625 -20+2"3-2"5 -0.7109375 -2"1-2"2+2'5+2"7

01 -0.484375 -2"1+2"6 -1.53125 -2°-2-1-2"5

02 1.0 2° 1.0 2°

Scale Factor 0.5 2-1 0.5 2-1

Section 3

al 1.2421875 2°+2~2-2~7 0.1328125 2-3+2-7

a2 -0.9375 -2°+2-4 -0.8984375 -2°+2"3-2"5+2"7

01 -1.4921875 -2°-2"1+2'7 -0.2890625 -2-2-2"5-2"7

02 1.203125 20+2-3+2-4+2-6
1.2578125 20+2-2+2-7

Table 7. Filter Coefficients (see Figure 14)
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Lowband Filter

Canonical

Decimal Signed Digit

Highband Filter
Canonical

Decimal Signed Digit

Scale Factor 0.25 2-2
0.25 2-2

Section 4

al

a2

el

62

1.2421875

-0.8359375

-0.2265625

1.0

2°+2"2-2"7

-2°+2"3+2"5+2"7

-2-2+2_5-2-7

2°

0.5546875

-0.9375

-1.3515625

1.0

2"1+2-4-2"7
.20+2-4

-2°-2~2-2~3+2~5-2~7

2°

Scale Factor 0.25 2-2 0.5 2-1

Section 5

al

a2

61

62

1.3984375

-0.8515625

0

-1.0

20+2"2+2"3+2"6+2"7

-2°+2"3+2"5-2"7

0

-20

0.2265625

-0.796875

0

-1.0

2"2-2"5+2"7

-2°+2"2-2"4+2"6

0

-2°

Scale Factor 2.125 2l+2-3 1.75 2°+2"1+2"2

Overall Gain
in Passband

0.93 - 0.97 -

Table 7. Filter Coefficients (See Figure 14) (Continued)
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Frequency (Hz)
Lowband F

Loss (dB) Del
i1ter

ay (sec*10~4)
Highband

Loss (dB) Del
Filter

ay (sec*10"4)

100 48.52 1.930 89.41 0.945

600 26.58 4.396 77.16 1.16

1020 0.0042 51.69 92.72 1.81

1070 -0.1367 53.59 119.28 1.95

1170 -0.1283 53.19 89.32 2.29

1270 0.1103 53.32 108.09 2.77

1320 0.2599 61.49 81.11 3.08

1975 — — 0.96 54.80

2025 115.05 1.935 0.83 43.92

2125 86.14 1.583 0.51 44.66

2225 119.23 1.327 0.44 44.68

2275 — — 0.59 45.77

3000 67.97 0.552 32.72 2.46

3500 68.59 0.407 41.07 1.18

4000 71.93 0.339 47.92 0.794

Group delay
between mark

and space
frequencies

27 Msec 76 /usee

Table 8. Filter Impulse Response Performance
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VI. DEMODULATOR

YI-1. Automatic Gain Control (AGC)

To ensure accurate demodulaton of the received signal, an automatic

gain control (AGC) function is implemented after the receive filter. The AGC

output is at a constant amplitude regardless of the amplitude of its input.

Although most analog implementations of an AGC use a hard limiter to achieve

the constant signal amplitude, this method cannot be used reliably in a DSP

approach. A hard limiter is a nonlinear function, and it produces harmonics

of the signal frequency. In an analog system, these harmonics can be removed

by a lowpass filter; however, in a DSP system these harmonics alias down and

interfere with the signal. It is therefore desirable to implement a linear

AGC function.

The AGC function used in the modem is shown in Figure 19 [6], The

full wave rectifier (FWR) and lowpass filter act as an envelope detector.

When the FWR output is divided by the envelope, the result is a signal uniform

in maximum level. This level depends on the gain of the lowpass filter and in

this modem is calculated to be slightly less than the maximum. Restoring the

original sign of the signal is just the inverse function of the FWR.

The FWR is realized using an absolute value instruction. The divide

function is implemented using microcode instructions that essentially execute

the divide algorithm discussed in Chapter II. The lowpass filter is third

order with a cutoff frequency of 300 Hz. It is the same as the one used in

the demodulator, except it has a gain of 1.625 in this case. This gain factor

is calculated so that sine wave dc levels of 0.7 are scaled up to be larger

than one.
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The AGC function is tested using an input signal (2225 Hz) that is

attenuated by 24 dB. The wordlength of the inputs and outputs to the modem

design file is twelve; therefore, the maximum level possible is 2047 and a

signal down by 24 dB has a maximum level of 127. The observed signal output

from the AGC is normalized to the maximum level of 2047. An FFT analysis of

the two signals shows that the spectral properties of the original signal are

unchanged by the AGC.

VI-2. Carrier Detect

The carrier detect signal (CD) indicates the presence or absence of a

carrier in the received signal to be demodulated. The level of the carrier

signal is available at the output of the lowpass filter in the AGC function.

This level is compared with a threshold to produce the "CD signal. The

requirements for the CD signal are as follows:

"CD" should turn off (=1) at -48 dB (10 msec delay)

"CD should turn on (=0) at -43 dB (20 msec delay)

Hysteresis is provided in the turn-off and turn-on levels of the CD

signal to prevent flickering of CD as the carrier is lost or regained. The

delays associated with the turn on and turn off of CD are desirable to prevent

CD from responding to noise spikes, quick fades, or surges of the signal. The

microcode algorithm used for generating the CD signal is shown in Table 9.

This algorithm was adopted from reference [6].
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cd (past value of cd)
Ipfout (output from AGC LPF)
cd - thresholdl (48 dB threshold)
cd - threshold2 if r<0 (43 dB threshold)

count := count + stl (20 msec delay for count up)
count := count - st2 if r<0 (10 msec delay for count down)

Get sign of c_past (scp)
Get sign of count (sc)

s__change := sc © scp
count := max if s_change & -srr)
count := min if s change & sc)

Limiter

c_past := count

CD := 0 (carrier present)

CD := 1 if sc true (carrier absent)

Table 9. Carrier Detect Algorithm
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Constants stl and st2 are calculated to give a 20 msec turn on delay and a 10

msec turn off delay from the equation:

delay = (8191)/(st*9600)

The threshold constants are calculated from the equations:

thl = (8191)*10-48/20

th2 = (8191)*10-43/20

The carrier detect function is tested using step sizes stl = 164 and

st2 = -328 (st2 = -328 corresponds to using a -164 step since the program

always adds stl). These step sizes correspond to on and off delays of 50

samples. Table 10 shows the characteristics of the input test signal and CD

output. Note that both the delay interval of 50 samples and the hysteresis

feature are tested by the "recin" test data. Referring to the table, "status"

means that the signal takes on this state at the specified sample number and

retains it until the next sample number. The CD signal does not turn on

until sample 64 because of delays associated with the initial transient

response of the receive filter and the lowpass filter in the AGC function.

Filter delays also account for CD not turning off until sample 229.
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"recin" Signal
Sample Number Status

CD Signal
Sample Number Status

0 0 dB 0 off (=1)

64 -60 dB 64 on (=0)

256 0 dB 229 off

272 -60 dB 318 on

304 -24 dB 496 on

432 -45 dB

496 -45 dB •

Table 10. Carrier Detect Test Data

YI-3. Delay Line Discriminator

In this scheme, the FSK signal is demodulated using a delay line of

one or two sample delays, a multiplier, a lowpass filter (LPF), and a

threshold comparator. Figure 20 shows a block diagram of this demodulator.

The frequency of the received FSK signal determines the level at the

output of the LPF. Therefore, the output of the LPF can be compared with a

threshold to determine the correct output data. Specifically, let:

FSK input = Acostat)

delay = T = one sample period

<t> = oil or w2T
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Then: Acos(u>t)*Acos(a>t + <*>) describes the delayed signal multiplied

by the undelayed signal:

Acos(wt)*Acos(u)t +<*>) = A2 cos(4>) + A2 cos (2wt + <t>)

The LPF removes the 2u)t term and leaves a voltage proportional only to co since

T = 1/9600 and A are both fixed. "A" is held constant at approximately one by

the AGC function.

To make the threshold values as close to zero as possible (for

discriminator linearity), one delay is used for demodulation in the highband

(originate mode), and two delays are used for demodulation in the lowband

(answer mode). Each threshold is chosen to correspond to halfway between the

mark and space frequencies and is calculated as follows:

Highband Threshold:

Lowband Threshold:

u = 2tt*(2125)
T = 1/9600

Az cos (uT) = A2 (0.179)
T IT

= 0.0895

= 733 (for 14-bit processor
where maximum value
is 8191)

w = 2tt*(1170)
T = 1/9600

Az cos U2T) = A2*(0.393) = 0.0196
T T

= 161 (for 8191 maximum value)

The design file listing for this demodulator is shown in Appendix C

under file name "dm3.df". The originate threshold was adjusted empirically

(to 680 instead of 733) to obtain the best demodulation characteristic. The
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delays are implemented in the same manner as the delays in the bandpass

filters discussed previously. The multiply function is implemented in

microcode using instructions which allow the designer to implement the

algorithm discussed in Chapter II. The LPF used in this demodulator is the

same as the one used in the demodulator of the following section and will be

discussed in that section. It should be noted that the LPF must be able to

attenuate frequencies which are generated by the multiply which are at twice

the signal frequencies. The minimum of these frequencies is 2140 Hz, so the

LPF stopband should begin at about 2000 Hz.

This demodulator was tested in both modes on FSK data that was

toggling between the mark and space frequencies. The data was toggled at 150

Hz, corresponding to the maximum rate of 300 bits per second (bps). At this

rate, 1 bit is represented by 32 samples (since the sampling rate is 9600

Hz). The requirement for the demodulator is that bit jitter be 100 usee. In

this modem, the minimum bit jitter that can be observed (besides zero) is 1

sample, or 1/9600 = 104 usee. In both the originate and answer modes, the

demodulated data showed no bit jitter.

VI-4. Bandpass Filters Demodulator

This demodulator compares the signal energy at the mark and space

frequencies to determine which one is being received. A block diagram is

shown in Figure 21.
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The bandpass filters are centered slightly above the mark frequency

and slightly below the space frequency so that there is a reasonably linear

discriminator response curve. The linearity is important to minimize jitter

in the receive data. The filters should show an equal attenuation (of 5-10

dB) at the center frequency between mark and space. Four different bandpass

filters must be realized corresponding to the four possible FSK data

frequencies.

The bandpass filters and the lowpass filter were designed

interactively using the Filsyn program (see Chapter V). Again, the designs

were carried out in the digital frequency domain using a bilinear

z-transform. The sampling frequency is 9600 Hz. Second order bandpass

filters proved to be sufficient, and each is implemented as one second order

section (see Figure 14). The filters all have a maximally flat passband and

monotonic stopband. The coefficients were rounded to seven places using

Filsyn and are shown in Table 11 in both decimal and canonical signed digit

forms. Table 12 shows the performance of each filter as calculated by

Filsyn. For the originate mode frequency betwen mark and space of 2125 Hz,

the mark filter shows an attenuation of 8,74 dB while the space filter shows

an attenuation of 8.44 dB. As expected, these two values are close

together. For the answer mode frequency between mark and space of 1170 Hz,

the mark filter shows an attenuation of 8.95 dB while the space filter shows

an attenuation of 8.12 dB. Again, the attenuations are close enough to

provide the linearity in discriminator response that is desirable.
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Originate
Mode:

Mark

Decimal

Filter

Canonical

Signed Digit

Space

Decimal

Filter

Canonical
Signed Digit

Scale

Factor 0 .015869141 2-6 + 2-12
0.015869141 2-6 + 2-12

al 0.1875 2-3 + 2-4
0.5 2-1

a2 -0.9375 -2° + 2~4 -0.9375 -2° + 2"4

81 0 0 0 0

82 -1.0 -2° -1.0 -2°

Scale Factor 2.0 21 2.0 2*

Answer Mode:

Scale

Factor 0 .015869141 2-6 + 2-12
0.015869141 2-6 + 2-12

al 1.28125 2° + 2"2 + 2"5 1.5 2° + 2"1

a2 -0.9375 -2° + 2'4 -0.9375 -2° + 2~4

81 0 0 0 0

82 -1.0 -2° -1.0 -20

Scale Factor 2.0 21 2.0 21

Table 11. Demodulator Bandpass Filters Coefficients
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Mark

Frequency
> Frequency Filter
(Hz) Loss (dB)

Space Frequency Filter
Frequency (Hz) Loss (dB)

Originate Mode:

14.34 1750 14.442000

2025 13.45 1875 8.75

2050 12.47 1950 3.07

2125 8.74 2000 -0.13

2200 3.16 2025 0.77

2225 1.00 2050 2.82

2250 -0.13 2125 8.44

2300 2.77 2200 12.14

2375 8.45 2225 13.11

2500 14.08 2250 13.99

Center Frequency = 2250 Hz 2000 Hz

Answer Mode:

14.94 795 15.301045

1070 13.97 920 9.14

1095 12.91 995 3.23

1170 8.95 1045 -0.13

1245 3.10 1070 0.70

1270 0.95 1095 2.67

1295 -0.13 1170 8.12

1345 2.79 1245 11.66

1420 8.28 1270 12.58

1545 13.63 1295 13.41

Center Frequency = 1295 Hz 1045 Hz

Table 12. Demodulator Bandpass Filters Performance (Impul se fResponse)
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To implement the filters in microcode as listed in processor "modem"

in Appendices A and B, the same types of equations as described in Chapter V

must be calculated. Since all four bandpass filters have the same coeffi

cients except for o^, a subprogram is written that calculates the equations

for the desired bandpass filter by calling the proper ot^ coefficient from

memory depending on the mode and whether the mark or space frequency filter is

desired. The subprogram executes twice each sample period. The first itera

tion corresponds to the space frequency filter, and the second iteration

corresponds to the mark frequency filter. Similarly, the equations for the

lowpass filter in the space frequency path are calculated in the first subpro

gram iteration, while the equations for the lowpass fil.ter in the mark

frequency path are calculated in the second iteraton. This "functional

multiplexing" reduces by a factor of two the number of microcode lines that

have to be written.

Processor "modem" requires a 14-bit wordlength to produce accurate

bandpass filter impulse responses. Figure 22 shows the answer mode mark and

space frequency bandpass filter impulse responses generated by 512 point FFTs

run on 256 output data samples from processor "modem." Figure 23 shows the

originate mode bandpass filter impulse responses. In both cases, the discrim

inator response is fairly linear.

Each LPF in the two paths of the demodulator shown in Figure 21 is

exactly the same. This LPF must attenuate frequency components at twice the

signal frequencies which are generated by the FWR operation. It must have a

bandwidth wide enough to allow the fastest rate of data to easily pass

through. In a 300-baud modem, the fastest data rate is 150 Hz. The LPF

cutoff frequency is chosen to be 300 Hz to make sure that 150 Hz data rates
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are not hindered by the filter. The LPF should have a step response rise time

that is significantly less than the length of a bit (3.33 msec) so that the

LPF can respond quickly enough to changes in data. The step response over

shoot should be as small as possible (less than 10%). With these design con

siderations in mind, Filsyn was used to design the LPF. The resulting LPF is

third order with a maximally flat passband and an equal ripple stopband. The

filter is implemented as a cascade of one second order section and one first

order section. The coefficients were rounded to seven places using Filsyn and

are listed in Table 13 in both decimal and canonical signed digit forms. The

step response rise time is approximately 1 msec and the overshoot is

approximately 5%. Figure 24 shows the LPF impulse response generated by a 256

point FFT on 256 output data samples from processor "modem." The impulse

response of the actual microcoded version agrees well with the impulse

response values calculated by Filsyn which are shown in Table 14.

VI-5. Demodulation Using a Digital Phase Locked Loop

Another possible method of demodulation is to use a Digital Phase

Locked Loop (DPLL) [7,8]. A block diagram of this scheme is shown in Figure

25. This demodulation scheme was not coded into a design file; however, a

brief description of how each functional block might be implemented is given

below.

The phase detector could consist simply of subtracting the voltage

controlled oscillator (VCO) output from the incoming signal. The loop filter

could be the LPF used in the demodulator described in VI-4; however, this

would have to be examined in more detail. The VCO should produce a reasonably

band-limited signal so that aliasing terms do not significantly affect the
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Section 1: Decimal

0.09375

Canonical

2"

Signed Digit
4 + 2-5Scale Factor

ai

a2

61

62

Section 2:

1.5625

-0.6875

-0.25

1.0

0.125

2° +

-2-1-

2-1 + 2-4

2-3 . 2"4

-2-2

2°

2-3Scale Factor

al

a2

61

62

0.65625

0

1.0

0

2-W 2-3 + 2-5

0

2°
0

Table 13. Demodulator Lowpass Filter Coefficients

Frequency (Hz)

100

150

300

1500

2000

2500

3000

4500

Loss (dB)

0.40

0.40

0.44

30.06

47.78

50.72

47.39

60.38

Tap1e 14. Demodulator Lowpass Filter Impulse Response
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signal going through the LPF. The sawtooth wave generator (with sine wave

shaping) described in Chapter IV could be used here. The step size for the

VCO would have to be a variable in this case (loaded from a scaled LPF output)

instead of one of several constants as before. A threshold comparator,

programmable between two different thresholds depending on the mode of

operation, would distinguish the size of the step driving the VCO, and

therefore, the resulting data.

Since the mark and space frequencies in each mode are fairly close

together, there would be only a small difference in the step sizes driving the

VCO, and switching of data frequencies might be accompanied by a fairly large

amount of bit jitter. This effect could be reduced by increasing the number

of bits in the processor. Other considerations such as the DPLL lock range

and response time would also have to be examined.
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VII. MODEM TESTS AND CONCLUSIONS

A variety of tests were run on the "modem.df" design file, the modem

was tested in both the full-duplex and self-test modes. Receive data

attenuated by 36 dB, data at 400 bits per second, and the modulator squelch

feature were all tested. Results of the tests are summarized in Table 15. In

all cases, except when the data rate is higher than the designed rate of 300

bps, bit jitter is not more than one sample, which is equal to 104 usee. This

performance is within the modem specifications.

The two modem design files in Appendices A and B were run through the

DSP IC Layout Generator. Various chip layout plots (including a CIF plot [9])

are shown in Appendix D. The design file "modem.df" produces an awkward

layout resulting in a more rectangular chip. The large finite state machine

and large RAM in processor "modem" are the main problems in this case. The

layout of the design file "modem3.df" produces a more compact chip that is

reasonably square. It is expected that the modem using the sawtooth wave

modulator has the same performance as the modem using the table look-up

modulator. The reason for this equality is that the spectrums of the

frequencies produced by the modulators are the same after being filtered by

the transmit filter. Because of its desirable chip layout characteristics,

the modem described by "modem3.df" is the best choice for actual

fabrication.

The CAD tools of the DSP IC Layout Generator system worked well

throughout the design of the 300-baud modem. However, writing the design
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files is somewhat tedious and can take a relatively long time. Hopefully, the

length of time it takes a designer to produce a chip using the DSP IC Layout

Generator will be further shortened with the development of a higher level

language compiler that will automatically generate the microcode instructions

in the design files.
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Test

Modem .df files
Bit jitter
observedctrlin recin transout dataout

1) SQT set
true

64 samples
of "512" -

64 samples
of 0 - -

2) Full-duplex
originate
mode

512 samples
of toggled data
of 150 Hz
(-2048,-1024)

512 toggled
FSK data

from transout

of test 3

512 samples
FSK toggled
data for

test 3

demodulated

data from test

3. (negative
numbers = mark,
positive or zero
= space)

0

3) Full-duplex
answer

mode

512 samples
of toggled
data at 150 Hz
(0,1024)

512 toggled
FSK data

from transout

of test 2

512 samples
FSK toggled
data for

test 2

demodulated

data from

test 2

1 sample =
1/32 of a bit
= 104 sec

4) 400 bps
in answer and

originate modes
ALB set =

self-test

512 samples
of toggled
data at 200 Hz

(256,1280)

-

512 samples
FSK data

demodulated

data from

transout

2 samples =
1/12 of a bit
= 208 sec

5) Receive
signal down
by 36 db,
originate
mode

512 samples
of toggled
data at 150 Hz

(-2048,-1024)

512 samples
generated by
pascal
program.
FSK toggled
data

-

demodulated

recin data 0

6) Self-test
mode (ALB set)
originate mode
(use lowband)

512 samples
pattern of 2
marks, 1 space
(-1792,-768)

-

512 samples
FSK data

demodulated
data from

transout

1 sample =
1/32 of a bit

7) self-test
mode,
originate mode

512 samples
pattern of
2 spaces,
1 mark

(-1792,-768)

-

512 samples
FSK dta

demodulated

data from

transout 1 sample =
1/32 of a bit

Table 15. Modem Test Results
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Test

Modem .df files Bit jitter
observedctrlin recin transout dataout

8) Self-test 512 samples 512 samples demodulated

mode, pattern of FSK data data from

answer mode 2 marks,
1 space
(256,1280)

transout 1 sample
1/32 of a
bit

9) Self-test 512 samples 512 samples demodulated

mode, pattern of FSK data data from 1 sample
answer mode 2 spaces,

1 mark

(256,1280)

transout 1/32 of a
bit

Table 15. Modem Test Results (Continued)
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modem,df modem,df

/* 300 Baud FSK modem - Two processors - */
/* Processor modem contains the modulator and demodulator */
/* Processor filters contains two tenth order bandpass filters V
/* for filtering the transmit and receive signals */

.global
begin
rxin<12>;
txout<12>;

wordin<12>;

/♦ FSK signal to be demodulated */
/♦ FSK modulated data to be transmitted */
/* _ V
/* wordin: 10/A\TXL\SQ7\ALB[ V

/* O/A = mode of operation (A-0) V
/* TXD = digital data to be transmitted ♦/

/* SQT = squelch modulator */
/* ALB = self-test mode, feeds modulated and */
/* filtered signal back to demodulator */
/• •/
/• wordout:\RXDiCD \ V
/* RXD = demodulated digital data out ♦/

/* CD=carrier detect signal(0=carrier present)*/
/* globals for interprocessor communication */

wordout<12>;

txmod< 12>;
demod<12>;
cword<12>;
wd out<12>;
tmpl<14>;
tmp2<14>;
end

/* for dwide operation in AGC circuit */
/* for multiply operation in demodulator */

.10

begin
recin: rxin : signal_in;
ctrlin: wordin : signal__ir,;
transout: txout : signal_out;
dataout: wordout : signal__out;
end

.processor : modem<14>

begin

.local
begin

tem
d[l7
cmp¥m
p[5];
step;

sine;

a_count;
o count;
IcT
alcin;
lpfln;
lpfout;
cd;
count;
c__past;
outdata;

end

.constant

begin

/♦ storage for demodulator bandpass and lowpass filters */
/* cmp = demodulated signal power at space frequency V
/* cmp[l~\ = demodulated signal power at mark frequency */
/* storage for lowpass filter in AGC circuit V
/* Index for table look-up. Step is incremented or V

/* decremented according to desired frequency and part V
/♦ of sine wave cycle */
/♦ value from table V
/* counter to provide step adjustment every fourth count */
/* counter to provide step adjustment every tenth count */
/* AGC output ♦/
/* AGC input */
/* input to lowpass filter in AGC circuit ♦/

/* output of lowpass filter in AGC circuit V
/* carrier detect variables */

/* data to be loaded to wordout */
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/* values in sinetable are equally spaced angles between */
/» 0 and 90 degrees */

sinetable[24] = 0,559,1115,1667,2210.2743,3263.3768,4256,
4724,5169,5591,5986,6354.6692,6999,7273,
7513,7718,7887,8020,8115,8172,8191;

/* constants for correcting 1's complement subtractions V

one=l;
two=2;
three=3;

/* demodulator bandpass filter coefficients */

ocoef[2]=4096, 1536;
acoef[2J=4096, 2304;

/* constants for computing step size ♦/

seven=7;
eight=8;
ten=10;
m_four=—4; /* for account test V
m_ten=—10; /* for ojsount test */
m_f_six=-46;
m_test=—24; /♦ for computing whether step has gone beyond ♦/

/* table range */
maxind=25; /* for pivoting step around top to table V
maskl=7168; /♦ to get TXD value V
mask2=3072; /* to get SQT value */
mask3=1024; /♦ to get ALB value ♦/

odata=-8l92; /♦ for writing a "1" to RXD V

/♦ Carrier detect constants */

stl=43;
st2=-128;
thl=-33;
th2=-25;
max=8191;
min=-8l91;

end

/* 20 msec on delay */
/* 10 msec off delay */
/* for -48 dB threshold V
/• for -43 dB threshold */
/* for limiter */

.fsm
begin

MSET: cc=!sign;
SET: cc=sign;
MD: md=!sign;
MS: ms=!sign;
ORIG: cc=((!md)&lb)|(md&(!lb));
ANSW: cc=((!md)&(!lb))|(md&lb);
ALB: lb=sign;
SQT: sqt=sign;
SQTSET: cc=sqt;
OS: os=md&ms;
OH: om=md&(!ms);
AS: as=(!md)&ms;
AH: am=(!md)dc(!ms);
Dl: d=cc|d;
Ul: u=!cc&u;
D2: d=!cc&d;
U2: u=ccju;

/* tnze if originate mode ♦/

/* trite if space */
/♦ for control of demodulator ♦/

/* bandpass filter coefficients V
/* true for ALB set */
/• true if SQT set •/

/♦ frnxe if originate and space */
/• etc. */

/♦ true if answer and space V
/* etc. */

/* for control of direction of stepping
/♦ through the table */

modem,df
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TG: u=!d; /• mafees sure only u or d is true V
TESTl: cc=(!sign)&u; /* for testing whether step is > 23 •/
TEST2: cc=sign&d; /* for testing whether step is < 0 */
PN: pn=(!cc&pn)|(cc&!pn); /* makes sine values negative for half */
PNSET: cc=pn; /♦ a cycle ♦/

OC: oc=cc; /• o-count flag */
AC: ac=cc; /* aTcount flag V

/* The following states Si to S16 are used in the modulator */
/* mainjpr to set step to the correct value */

Si: cc=oc&os&u;
S2: cc=oc&om&u;
S3: cc=!oc&os&u;
S4: cc=!oc&om&u;
S5: cc=!ac&as&u;
S6: cc=ac&as&u;
S7: cc=!ac&am&u;
S8: cc=ac&am&u;
S9: cc=ac&am&d;
S10: cc=!ac&am&d;
Sll: cc=ac&as&d;
S12: cc=!ac&as&d;
S13: cc=!oc&om&d;
S14: cc=!oc&os&d;
S15: cc=oc&om&d;
S16: cc=oc&os&d;

/* Carrier detect states V

CP: scp=sign; /* sign of c_past */
CT: sc=sign; /* sign of count V
XR sch=((!scp)&(sc))|((scp)&(!sc)); /* EX-OR of scp and sc V
LH1: cc=sch&!sc; /* for limiter operation */
LH2: cc=sch&sc;
end

.main_pr<*>

/• MODULATOR SEGMENT BEGINS HERE V

begin
/♦ get MD, MS, ALB, SQT values ♦/

mbus=cword, le, mor:=~mir;
acc:=mor, r(maskl), TG;
acc:=acc&mor, sor:=raor>l, MD;
acc:=acc+~sor, r(one);
acc:=acc+sor, sor:=mor, MS;
acc:=acc+sor, r(mask2);
acc:=acc&mor, sor:=mor>l;
acc:=acc+~sor, r(one);
acc:=acc+sor, sor:=mor, SQT;
acc:=acc+sor, r(mask3);
acc:=acc&mor, sor:=mor>l, r(step);

/♦ load step into iy to index table V

acc:=acc+~sor, mbus:=mor, iy:=mbus, sor:=mor, r(eight);
acc:=sor, sor:=mor, ALB;
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acc:=acc+sor, OS;
ry(sinetable), SI; /♦ step:=step+8 (WO Hz) */
le, wc(step), acc:=mor, sor:=mor, PNSET;
r(one);
acc:=mor+~sor, le, w(sine), OM;
le, wc(sine), acc:=0, SQTSET;
le, wc(sine); /* sine:=0 if squelci: set */
r(sine), AS;
rabus=mor, txmod:=mbus, r(step), AM; /♦ output sine vahje */

/* compute step for counting up through table */

sor:=mor, r(ten),S2;
acc:=sor+mor, r(one);
le, wc(step), sor:=mor; /* step:=step+10 (1270 hz) */
acc:=acc+sor, r(two), S3;
le, wc(step), sor:=mor; /* step:=step+11 (1070 hz) */
acc:=acc+sor, r(seven), S4;
le, wc(step), sor:=mor; /• step:=step+13 (1270 hz) */
acc:=acc+sor, r(one), S5;
le, wc(step), sor:=mor; /♦ step~step+20 (2025 hz) */
acc:=acc+sor, r(one), S6;
le, wc(step), sor:=mor; /* step;=step+21 (2025 hz) */
acc:=acc+sor, r(one), S7;
le, wc(step), sor:=mor; /* $tep:=step+22 (2225 hz) */
acc:=acc+sor, r(m_f_six), S8;
le, wc(step), sor:=mor; /* step;=step+23 (2225 hz) */
acc:=acc+sor, r(one), S9;

/* compute step for counting down through table */

le, wc(step), sor:=mor; /* step:=step-23 (2225 hz) */
acc:=acc+sor, r(one), S10;
le, wc(step), sor:=mor; /♦ etc. */
acc:=acc+sor, r(one), Sll;
le, wc(step). sor:=mor;
acc:=acc+sor, r(seven), S12;
le, wc(step), sor:=mor,
acc:=acc+sor, r(two), S13;
le, wc(step), sor:=mor;
acc:=acc+sor, r(one), S14;
le, wc(step), sor:=mor;
acc:=acc+sor, r(two), S15;
le, wc(step), sor:=mor;
acc:=acc+sor, r(one), S16;
le, wc(step), sor:=mor, acc:=0;
r(o_count), SET;
acc:=sor+mor, r(m_ten), OC; /* reset oc, oc •/
le, w(o__count), sor:=mor, AC;
acc:=acc+sor, r(one);
acc:=0, sor:=mor, r(account), MSET;
le, wc(o_count), acc:=sor+mor, OC; /* set oc true every l<*th count*/
r(m_four);
le, w(a_count), sor:=mor;
acc:=acc+sor, r(m_test);
acc:=0, sor:=mor, r(step), MSET;
le, wc(a__count), acc:=sor+mor, AC; /♦ set ac true every 4ih count */
r(one), TESTl;
r(maxind), sor:=mor, Dl;
acc:=acc+sor, sor:=mor, Ul;
le, mon=#wniir;
acc:=mor+sor, r(step);
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/* step:=25 - (step+(-23)) */le, wc(step), acc:=mor;
le, mor:=~mir, TEST2;
acc:=mor, U2;
le, wc(step), D2; /* step— -step */

/♦ DEMODULATOR SEGMENT BEGINS HERE */

/* Automatic Gain Control (AGC) */

modem,df

mbus=demod, le, w(alcin), PN;
r(alcin);
sor:=mor;

acc:=|sor|;
le, w(lpfin);

/♦ store input to remember sign */

/♦ FWR of alcin */
/* store Ipf input */

/* 3rd order lowpass filter for envelope detect */

r(lpfin);
sor:=mor>4;
acc:=sor, sor:=sor>l, r(p[2]);
acc:=acc+sor, sor:=mor>l;
acc:=acc+~sor, sor:=sor>2;
acc:=acc-*-/-sor, sor:=sor>l, r(three);
acc:=acc+~sor, sor:=mor, r(p[l]);
acc:=acc+sor, sor:=mor;
acc:=acc+sor, sor:=sor>l;
acc:=acc+sor, sor:=sor>3, r(p[l]);
acc:=acc+sor, scr:=mor>2, r(one);
le, w(p), acc:=acc+"-sor, sor:=raor;
acc:=acc+sor, r(p[2]);
sor:=mor, r(p[4j);
acc:=acc+sor, sor:=mor>l;
le, w(temp), acc:=sor, sor:=sor>2;
r(temp), acc:=acc+sor, sor:=sor>2;
sor:=mor>3, acc:=acc+sor, r(p[4]);
acc:=acc+sor, sor:=mor;
le, w(p[3]), acc:=acc+sor;
le, w(temp);
r(temp);
acc:=mor, sor:=mor>l;
acc:=acc+sor, sor:=sor>2;
acc:=acc+sor, r(one);
le, w(lpfout), sor:=mor;
acc:=sor+mor, r(lpfin);
le, w(temp), sor:=mor;
r(temp);
acc:=Jsor|, sor:=mor>l;
sor:=sor>l, acc:=sor+acc, aip;
sor:=sor>l, acc:=sor+acc, aip;
sor:=sor>l, acc:=sor+acc, aip;
sor:=sor>l, acc:=sor+acc, aip;
sor:=sor>l, acc:=sor+acc, aip;
sor:=sor>l, acc:=sor-facc, aip; /* update lowpass filter variables */
sor:=sor>l, acc:=sor+acc, aip, r(p[l]);
sor:=sor>l, acc:=sor+acc, aip, mbus=mor, le, w(p[2])
sor:=sor>l, acc:=sor+acc, aip, r(p);
sor:=sor>l, acc:=sor+acc, aip, mbus=mor, le, w(p[l])
sor:=sor>l, acc:=sor+acc, aip, r(p[3]);
sor:=sor>l, acc:=sor+acc, aip, mbus=mor, le, w(p[4])
acc:=sor+acc, aip;
tmpl:=quot, r(one);
mbus=tmpl, le, w(lc), sor:=mor; /* le has tmp=lpfin/lpfout */

/* scale output by 1.625 */
/♦ so that denominator of divide */

/* opeation is greater than numerator */

/* store Ipf output */

Jul 31 16:41 1984

/* temp has -Ipfout */
/* implement Ipfin/lpfout ♦/

/* to normalize received signals*/
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acc:=sor-rmor, r(alcin); /* ccc := —imp */
le, acc:=mor;
SET; /* recall sign of input to ale */
wc(lc); /* le := -tmp if cc set */
r(lc);

/* BEGIN CARRIER DETECT FUNCTION */

acc:=mor, r(cd);
le, w(d), sor:=mor; /* write output of AGC to demodulator */
acc:=sor, r(lpfout); /♦ bandpass filter inputs V
r(thl), sor:=mor, SET; /♦ sor;= Ipfout , ic-sign of cd */
acc:=sor+raor, r(th2); /* acc:= Ipfout - 48 dB threshold */
le, w(cd)» sor:=mor;
acc:=acc+sor, r(count); /* acc:= Ipfout — 43 dB threshold */
le, wc(cd), sor:=mor; /♦ use 43 dB threshold if cd was <0 */
r(stl);
acc:=sor+mor, r(st2); /* acc:= count + 43 for turn on delay*/
le, w(count), son=mor;
acc:=acc+sor, r(c__past); /* acc:= count-128 for turn off delay*/
le, wc(count), acc:=mor;
r(count), CP;
acc:=mor;

CT*
r(max), XR;
acc:=mor, LM1, r(min); /♦ Hmi count if there */
le, wcfcounO, acc:=mor, LM2; /• tuos c sign change between */
le, wc(count); /* count and cjpast */
r(count);
mbus=mor, le, w(c_past), acc:=mor;
acc:=0, SET, r(ocoef); /♦ cc= s gn of count */
le, w(outdata), acc:=mor; /* CD - 0 if carrier present */
le, wc(outdata);

/* Demodulator envelope detectors compariso't */

r(cmp);
sor:=mor, r(cmp[l]);
acc:=mor+~sor, r(one); /* cmp[l]—cmp > C : data=mark */
sor:=mor, r(outdata); /* cmp[l]-cmp < 0 : data=space */
acc:=acc+sor, sor:=mor, r(odata);
acc:=sor+mor, MSET;
le, wc(outdata);
r(outdata);
mbus=mor, wd_out:=mbus;
end

/♦ Implements demodulator bandpass and lowpiss filters. */
/* First iteration does space filtering in either 0 or A mode. */
/* Second iteration does mark filtering in eitfur 0 or A mode. */

.sub_pr <2>
begin

/* implement 2nd order bandpass filters */

rx(acoef), ORIG;
rabus=mor, le, w(temp);
rx(ocoef);
mbus=mor, le, wc(temp);
r(temp);
rx(d[3j), mbus=mor, tmp2:=mbus;
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sor:=mor;

sor:=scr>l, acc:=coef.~sor, coef:=tmp2;
sor:=scr>l, acc:=acc+coef.sor;
sor:=scr>l, acc:=acc-i-coef.sor;
sor:=sor>l, acc:=acc+coef.sor;
sor:=scr>l, acc:=acc-t-coef.scr;
sor:=scr>l, acc:=acc+coef.sor;
sor:=scr>l, acc:=acc+coef.sor;
sor:=scr>l, acc:=acc+coef.sor;
sor:=scr>l, acc:=acc+coef.sor;
son=scr> 1, acc:=acc+coef.sor,rx(d[9]);
sor:=scr>l, acc:=acc+coef.sor,mbus=mor, le, wx(d[ll]);
sor:=scr> 1, acc:=acc+coef.sor,rx(d[7]);
sor:=scr>l, acc:=acc+coef.sor,mDUs=mor, le, wx(d[9]);
acc:=acc+coef.sor, rx(d[3]);
sor:=mor;

le, w(temp), acc:=acc+sor, ANSW;
le, wc(temp);
r(temp);
sor:=mor, rx(d[5]);
acc:=sor, sor:=mor;

acc^acc+^sor, sor:=sor>4, r(d);
acc:=acc+sor, sor:=mor>6;
acc:=acc+sor, sor:=sor>6, r(one};
acc:=acc+sor, sor:=raor, rx(d[5]j;
acc:=acc+sor, sor:=mor, r(one);
le, wx(d[l]), acc:=acc+~sor, sor:=mor;
acc:=ecc+sor;
le, w(temp);

r(temp);
sor:=mor<l, rx(d[l3]);
acc:=Jsor|, mbus=mor, le, wx(d[l5]); /* full wave rectify (FWR) */
le, w(lemp); /* of bandpass filter output*/

/* 3rd order lowpass filter to remove components around 2fc */

r(temp);
sor:=mor>4;
acc:=sor, sor:=sor>l, rx(d[ll]);
acc:=acc+sor, sor:=mor>l, rx(d[3]);
acc:=acc+~sor, sor:=sor>2, mbus=mor, le, wx(d[5]);
acc:=acc+'wsor, sor:=sor>l, r(three);
acc:=acc+~sor, sor:=mor, rx(d[9]);
acc:=acc+sor, sor:=raor, rx(d[lj);
acc:=acc+sor, sor:=sor>l, rabus=mor, le, wx(d[3]);
acc:=acc+sor, sor:=sor>3, rx(d[9l);
acc:=ecc+sor, sor:=mor>2, r(one);
le, wx(d[7]), acc:=acc+~sor, sor:=mor;
r(terap), acc:=acc+sor, sor:=sor>2;
sor:=mor>3, acc:=acc+sor, rx(d[l5]);
acc:=acc+sor, sor:=mor;
le, wx(d[13l), acc:=acc+sor;
le, wx(cmp;;
end

end
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/♦ PROCESSOR FILTERS IMPLEMENTS TWO TENTH ORDER BANDPASS FILTERS */

.processor

begin

.local
begin

temp;
lq[16];
hqtl6];
alb;
tempi;
hresult;

end

filters<20>

/* storage for lowband filter */
/* storage for highband filter */
/* for self-test function */

/* highband filter output */

.constant
begin

/* constants for correcting l's complement subtractions V

one=l;
two=2;
three=3;
four=4;
mask=65536; /* to get ALB status from control word */

end

.fsm

begin
SET: cc=sign;
MSET: cc=!sign;
MD: md=!sign;
ORIG: cc=md;
ANSW: cc=!md;
ALB: lb=sign;
ALBO: cc=lb&md;
ALBA: cc=lb&!md;
ALBSET: cc=lb;

end

/• true for originate */

/* true if ALB set */
/* states for controlling ALB function */

.main_pr

begin

/* get MD and ALB and perform signal multiplexing */

mbus=wordin, le, mor:='s'mir, cword:=mbus; /♦ send wordin to processor*/
acc:=mor, r(mask); /♦ modem via cword */
acc:=acc&mor, sor.=mor>l, MD;
acc:=acc+'wsor, ORIG;
mbus=txmod, le, wc(lq), ALB; /* get txmod from processor modem */
ANSW; /* to filter it before transmitting */
wc(hq);
mbus=rxin, le, wc(lq), ORIG; /* get signal to be filtered and */
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wc(hq);
mbus=wd out, wordout:=mbus;

/* demodulated */
/* transfer processor modem variable */
/* wdjout to wordout output */

/♦ LOWBAND FILTER V

/* First second order section — 2 poles, then 2 zeros */

r(lq);
sor:=mor>4, r(lq[2]);
acc:=sor, sor:=mor, r(lq[5]);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(lq[6]);
acc:=acc4-sor, sor:=sor>2, r(lq[3]);
acc:=acc+sor, sor:=mor;
acc:=acc+~sor, sor:=sor>3, r(lq[4]);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(lq[5]);
acc:=acc+sor, sor:=sor>2, r(two);
acc:=acc+~sor, sor:=mor, r(lq[2J);
acc:=acc+sor, son=mor;
le, w(lq[l]), acc^acc+^sor, sor:=sor>l;
acc:=acc+',rfsor, sor:=sor>2;
acc:=acc+~sor, sor:=sor>3, r(four);
acc:=acc+'-sor, sor:=mor, r(lq[3]);
acc:=acc+sor, sor:=mor, r(lq[8j);
acc:=acc+sor, son=sor>3, mbus=mor, le, w(lq[9]);
acc:=acc+sor, son=sor>2, r(lq[7]);
acc:=acc+sor, sor:=sor>l, mbus=mor, le, w(lq[8]);
acc:=acc+sor, r(lq[5]);

/* Second second order section */

le, w(temp), acc:=mor, sor:=mor>l;
r(temp), acc:=acc+sor, sor:=sor>6;
sor:=mor>2, acc:=acc+sor, r(lq[6]);
acc:=acc+sor, sor:=mor, r(lq[llj);
acc:=acc+~sor, sor:=sor>3, mbus=mor, le, w(lq[12]);
acc:=acc+sor, sor:=sor>2, r(two);
acc:=acc+'wsor, sor:=mor, r(lq[5j);
acc:=acc+sor, son=mor>l;
le, w(lq[4]), acc:=acc+'wsor, sor:=sor>5;
acc:=acc+sor, r(one);
sor:=mor, r(lq[6]);
acc:=acc+sor, sor:=mor;
acc:=acc+sor, r(lq[8]);

/♦ Third second order section V

le, w(temp), acc:=mor, sor:=mor>2;
r(temp), acc:=acc+sor, sor:=sor>5;
sor:=mor>l, acc:=acc+~sor, r(lq[9]);
acc:=acc+sor, son=mor;
acc:=acc+~sor, sor:=sor>4, r(two);
acc:=acc+sor, son=mor, r(lq[8]);
acc:=acc+sor, sor:=mor;
le, w(lq[7]), acc:=acc+~sor, sor:=sor>l;
acc:=acc-f-"-sor, sor:=sor>6, r(two);
acc:=acc+sor, son=mor, r(lq[9]);
acc:=acc-rsor, son=mor, r(lq[lO]);
acc:=acc+sor, son=sor>3, mbus=mor, le, w(lq[ll]);
acc:=acc-i-sor, scr:=sor>l, r(lq[14]);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(lq[l5]);
acc:=acc-rsor, r(lq[ll]);
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/* Fourth second order section */

le, w(temp), acc:=mor, sor:=mor>2;
r(temp), acc:=acc+sor, sor:=sor>5;
sor:=mor>2, acc:=acc+~sor, r(lq[12]);
acc:=acc+sor, sor:=mor, r(lq[13J);
acc:=acc+~sor, sor:=sor>3, mbus=mor, le, w(lq[l4]);
acc:=acc+sor, sor:=sor>2;
acc:=acc+sor. sor:=sor>2, r(two);
acc:=acc+sor, sor:=nior, r(lq[llj);
acc:=acc+sor, sor=mor>2;
le, w(lq[lO]), acc:=acc+~sor, sor:=sor>3;
acc:=acc+sor, sor:=sor>2, r(two);
acc:=acc+~sor, sor:=mor, r(lq[12]);
acc:=acc+sor, son=mor;
acc:=acc+sor, r(lq[l4]);

/* Fifth second order section */

le, w(temp), acc:=mor, sor:=mor>2;
acc:=acc+sor, sor:=sor>l, r(lq[2]);
acc:=acc+sor, sor:=sor>3, mbus=mor, le, w(lq[3]);
r(temp), acc:=acc+sor, sor:=sor>l;
sor:=mor>2, acc:=acc+sor, r(lq[l5]);
acc:=acc+sor, sor:=mor, r(lq[ljj;
acc:=acc+"rfsor, sor:=sor>3, mbus=mor, le, w(lq[2]);
acc:=acc+sor, sor:=sor>2;
acc:=acc+sor, son=sor>2, r(two);
acc:=acc+~sor, sor:=mor, r(lq[l5]);
acc:=acc+sor, son=mor, r(cne);
le, w(lq[l3]), acc:=acc-*-~sor, sor:=mor;
acc:=acc+sor;

/* output scaling and signal multiplexing */

le, w(temp);
r(temp);
acc:=mor, sor:=mor, r(hresult), ORIG;
acc:=acc+sor, sor:=sor>3, mbus=mor, le, wc(temp), ALBA;
acc:=acc+sor, wc(alb), ANSW;
wc(templ);
le, wc(temp), ORIG;
wcftempl), ALBO;
wc(alb);
r(alb), ALBSET;
mbus=mor, le, wc(temp);
r(temp);
mbus=mor, demod:=mbus; /* send data to be demodulated to */

/* processor modem */

/* HIGHBAND FILTER */

/* First second order section */

r(hq);
sor:=mor>3, r(hq[2]);
acc:=sor, sor:=mor>2, r(hq[5]);
acc:=acc+sor, sor:=sor>l, mbus=mor, le, w(hq[6]);
acc:=acc+sor, sor:=sor>4, r(hq[3]);
acc:=acc+~sor, sor:=mor;
acc:=acc+~sor, sor:=sor>3, r(hq[4]);
acc:=acc+sor, son=sor>2, mbus=mor, le, w(hq[5]);
acc:=acc+sor, sor:=sor>2, r(three);
acc:=acc+~sor, sor:=mor, r(hq[2]);
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acc:=acc+sor, sor:=mor>l;
le, w(hq[l]), acc:=acc+*-sor, sor:=sor>3;
acc:=acc+~sor, sor:=sor>3, r(three);
acc:=acc+~sor, sor:=mor, r(hq[3]);
acc:=acc+sor, sor:=mor, r(hq[8J);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(hq[9]);
acc:=acc+sor, sor:=sor>l, r(hq[7]);
acc:=acc+sor, sor:=sor>3, mbus=mor, le, w(hq[8]);
acc:=acc+sor, son=sor>l, r(hq[5]);
acc:=acc+sor, sor=mor>2;

/* Second second order section */

le, w(temp), acc:=sor, sor:=sor>l;
r(temp), acc:=acc+sor, sor:=sor>2;
sor:=mor>3, acc:=acc+sor, r(hq[6]);
acc:=acc+sor, son=mor>l, r(hq[ll]);
acc:=acc+~sor, sor:=sor>l, mbus=mor, le, w(hq[l2]);
acc^acc+^sor, sor:=sor>3;
acc:=acc+sor, sor=sor>2, r(two);
acc:=acc+sor, son=mor, r(hq[5]);
acc:=acc+sor, son=mor;
le, w(hq[4]), acc:=acc+~sor, sor:=sor>l;
acc:=acc+~sor, sor:=sor>4, r(three);
acc:=acc+~sor, sor:=mor, r(hq[6]);
acc:=acc+sor, sor=mor, r(hq[8]);
acc:=acc+sor, sor:=mor>3;

/* Third second order section */

le, w(temp), acc:=sor, sor:=sor>4;
r(temp), acc:=acc+sor;
sor:=mor>l, r(hq[9]);
acc:=acc+sor, sor=mor, r(hq£lO]);
acc:=acc+~sor, sor:=sor>3, mbus=mor, le, w(hq[ll]);
acc:=acc+sor, sor:=sor>2;
acc:=acc+~sor, sor:=sor>2, r(two);
acc:=acc+sor, son=mor, r(hq[8]);
acc:=acc+sor, sor:=mor>2;
le, w(hq[7]), acc:=acc+~sor, sor:=sor>3;
acc:=acc+~sor, sar:=sor>2, r(three);
acc:=acc+~sor, sor:=mor, r(hq[9]);
acc:=acc+sor, sor:=mor, r(hq[l4j);
acc:=acc+sor, son=sor>2, mbus=mor, le, w(hq[15]);
acc:=acc-r-sor, son=sor>5, r(hq[ll]);
acc:=acc+sor, son=mor>l;

/♦ Fourth second order section */

le, w(temp), acc:=sor, sor:=sor>3;
r(temp), acc:=acc+sor, sor:=sor>3;
sor:=mor>2, acc:=acc+~sor, r(hq[l2]);
acc:=acc+sor, son=mor;
acc:=acc+'^or, sor:=sor>4, r(two};
acc:=acc+sor, son=mor, r(hq[ll];;
acc:=acc+sor, son=mor;
le, w(hq[lO]), acc:=acc-f~sor, sor:=sor>2;
acc:=acc+~sor, sor:=sor>l, r(hq[l3]);
acc:=acc+~sor, sor:=sor>2, mbus=mor, le, w(hq[14]);
acc:=acc+sor, sor:=sor>2, rffour);
acc:=acc+""sor, sor:=mor, r(hq[12]);
acc:=acc+sor, sor=mor, r(hq[l4]);
acc:=acc+sor, sor:=mor>2;
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/* Fifth second order section */

le, w(temp), acc:=sor, sor:=sor>3;
r(temp), acc:=acc+~sor, sor:=sor>2;
sor:=mor>l, acc:=acc+sor, r(hq[15]);
acc:=acc+sor, sor:=mor, r(hq[2j);
acc:=acc+~sor, sor:=sor>2, mbus=mor, le, w(hq[3]);
acc:=acc+sor, son=sor>2;
acc:=acc+~sor, sor:=sor>2, r(three);
acc:=acc+sor, son=mor, r(hq£l5]);
acc:=acc+sor, son=mor, r(one);
le, w(hq[l3]), acc:=acc+~sor, sor:=mor;
acc:=acc+sor,

/* output scaling */

le, w(temp);
r(temp);
acc:=mor, sor:=mor>l, r(hq[l]);
acc:=acc+sor, son=sor>l, mbus=mor, le, w(hq[2]);
acc:=acc+sor,
le, w(hresult);
r(templ);
mbus=mor, txout:=mbus; /♦ output filtered FSK signal */
end
end
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/» 300 Baud FSK modem - Two processors - */
/* Processor modem contains the modulator and demodulator */
/* Processor filters contains two tenth order bandpass filters */
/* for filtering the transmit and receive signals */

modem3.df

.global
begin
rxin<12>;
txout<12>;

wordin<12>;

wordout<12>;

txmod<12>;
demod<12>;
cword<12>;
wd_out<12>;
tmpl<14>;
tmp2<14>;
end

/* FSK signal to be demodulated */
/* FSK modulated data to be transmitted */
/* V
/♦ wordin: \0/A\TXE\SQ1\ALB[ */

/* O/A = mode of operation (A—0) */
/* TXD - digital data to be transmitted */
/* SQT - squelch modulator */
/* ALB = self-test mode, feeds modulated and */
/* filtered signal back to demodulator */
/* •/

/* wordout:\RXE\CD \ •/
/♦ RXD - demodulated digital data out */
/* CD=carrier detect signat(0=carrier present)*/
/* globals for interprocessor communication */

/♦ for divide operation in AGC circuit */
/* for multiply operation in demodulator */

.10

begin
recin: rxin : signal_in;
ctrlin: wordin : signal_jn;
transout: txout : signal_out;
dataout: wordout : signal_out;
end

.processor : modem<14>

begin

.local
begin

tern
d[17
cmp

p[5];
wave;

lc;
alcin;
lpfin;
Ipfout;
cd;
count;
c_past;
outdata;

end

/♦ storage for demodulator bandpass and lowpass filters */
/* cmp - demodulated signal power at space frequency */
/* cmp[l] = demodulated signal power at mark frequency */
/* storage for lowpass filter in AGC circuit */

/* AGC output */
/* AGC input */
/* input to lowpass filter in AGC circuit */
/* output of lowpass filter in AGC circuit */

/* carrier detect variables */

/* data to be loaded to wordout */

.constant

begin

/• constants for correcting l's complement subtractions */

one=l;
three=3;
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/* demodulator bandpass filter coefficients */

ocoef[2]=4096, 1536;
acoef[2]=4096, 2304;

/* constants for computing step size */

half=-4096;
kl=-9l3; /♦ step for 1070 Hz, step=(1070/9600)*'8191 */

/* The sample rate is F-9600 Hz */
k2=-171; /♦ additional step for 1270 Hz */
k3=-644; /* additional step for 2025 Hz */
k4=-170; /* additional step for 2225 Hz V
mask1=7168; /♦ to get TXD value */
mask2=3072; /* to get SQT value */
mask3=1024; /♦ to get ALB value */
odata=-8192; /* for writing a "1" to RXD */

/* Carrier detect constants */

stl=43;
st2=-128;
thl=-33;
th2=-25;
max=8191;
min=-8191;

end

/* 20 msec on delay */
/* 10 msec off delay */
/* for -48 dB threshold
/* for -43 dB threshold
/* for limiter */

*/

*/

.fsm
begin

MSET: cc=!sign;
SET: cc=sign;
MD: md=!sign;
MS: ms=!sign;
ORIG: cc=(r!md)<klb)j(md&(!lb));
ANSW: cc=((!md)&(!lb))|(md&:lb);
ALB: lb=sign;
SQT: sqt=sign;
SQTSET: cc=sqt;
OS: cc=md&ms;
OM: cc=md&(!ms);
AS: cc=(!md)&ms;
AH: cc=(!md)&(!ms);

/• true if originate mode */
/* true if space */

/* for control of demodulator */
/* bandpass filter coefficients */

/* true for ALB set */
/♦ true if SQT set */

/* true if originate and space */
/♦ etc. */
/* true if answer and space */

/* etc. */

modem3.df

/* Carrier detect states */

CP: scp=sign;
CT: sc=sign;
XR: sch=((!scp)&(sc))|((scp)&(!sc));
LM1: cc=sch&!sc;
LM2: cc=sch&sc;
end

/* sign of cjpast */
/* sign of count */

EX-OR of scp and sc */
/* for limiter operation */

.main_pr

/* MODULATOR SEGMENT BEGINS HERE */

begin
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/♦ gret MD, MS, ALB, SQT values • /

mbus=cword, le, mor:=~mir;
acc:=mor, r(maskl);
acc:=acc&mor, sor:=mor>l, MD;
acc:=acc+~sor, r(one);
acc:=acc+sor, sor:=mor, MS;
acc:=acc+sor, r(mask2);
acc:=acc&mor, sor:=mor>l;
acc:=acc+~sor, r(one);
acc:=acc+sor, sor:=mor, SQT;
acc:=acc+sor, r(mask3);
acc:=acc&mor, sor:=mor>l;

acc:=acc+~sor, r(wave);
acc:=mor, r(max), ALB;
sor:=mor, SET;
acc:=acc+sor;
le, wc(wave); /* waver-wave+1.0 f wave was < 0 */

/* wave—wave—step */
/* if OS is true, wave.—wi ve-913 */
/* if OM is true, wave—wive—1084 *.'
/* if AS is true, wave.—wcve-1728 */
/* if AM is true, wave—w*ve—1898 *.'

r(wave);
acc:=mor, r(kl);
sor:=mor, r(k2);
acc:=acc+sor, OS, sor:=mor, r(k3);
le, wc(wave), acc:=acc+sor, OM, soi =mcr;
r(k4);
le, wcfwave}, acc:=acc+sor, AS, sor =mor;
le, wciwave), acc:=acc-fsor, AM;
le, wc(wave);

/* shape sawtooth xuoi/e into a sinewave approximation */

r(wave);
sor:=mor, r(half);
acc:=sor+mor; /* wan e,—wave—0.5 */

le, mor—Tnir;
sor:=mor;

acc:=acc+~sor; /* waxz:—wave*2 '/

le, mon=rwmir;
sor:=mor;

acc:=|sor|; /* wave.=|tuave| V

r(half);
sor:=mor;

acc:=acc+sor; /* wav?:—wave—0..~ */

le, w(temp);
sor:=mor, r(temp);
acc:=acc+~sor, sor:=mor;
acc:=acc+sor; /* wav\~=wave*3 '/

/* wcve is now %clipped triangle */
/* siaewave approximation */
/* — notice thai the accumulator is */
/* pwposely ove-flowed */

le, w(temp), acc:=0, SQTSET;
le, wc(temp);
r(temp);
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mbus=mor, txmod:= mbus;
nop;

modem3.df

/♦ DEMODULATOR SEGMENT BEGINS HERE */

/* Automatic Gain Control (AGC) */

/* store input to remember sign */mbus=demod, le, w.alcin);
r(alcin);
sor:=mor;

acc:=|sor|;
le, w(lpfin);

/♦ FWR of alcin */
/* store Ipf input */

/* 3rd order lowpa.s filter for envelope detect */

r(lpfin);
sor:=mor>4;
acc:=sor, sor:=sor>\ r(p[2]);
acc:=acc+sor, sor:= nor>l;
acc:=acc+~sor, sor:-sor>2;
acc:=acc+~sor, sor: =sor>l, rfthree);
acc:=acc+~sor, sor:-mor, r(ptl]);
acc:=acc+sor, sor:= nor;
acc:=acc-t-sor, sor:=-or>l;
acc:=acc+sor, sor:=or>3, r(p[l]);
acc:=acc+sor, sor:= nor>2, r(one);
le, w(p), acc:=acc-K sor, sor:=mor;
acc:=acc+sor, r(p[2");
sor:=mor, r(p[4]);
acc:=acc+sor, sor:=ncr>l;
le, w(temp), acc:=s< r, sor:=sor>2;
r(temp), acc:=acc+i or, son=sor>2;
sor:=mor>3, acc:=a< c+sor, r(p[4]);
acc:=acc+sor, sor:= nor;
le, w(p[3]), acc:=ac< -r-sor;
le, w(temp);
r(temp);
acc:=mor, sor:=mor>l;
acc:=acc+sor, sor:= .or>2;
acc:=acc+sor, r(one';
le, w(lpfout), sor:=n or;
acc:=sor+mor, r(lpf 1);
le, w(temp), sor:=mjr;
r(temp);
acc:=fsor|, sor:=mor> 1;
sor:=sor>l, acc:=so-+acc, aip;
sor:=sor>l, acc:=so. 4-acc, aip;
sor:=sor>l, acc:=so. +acc, aip;
sor:=sor>l, acc:=so- -race, aip;
sor:=sor>l, acc:=so. -^acc, aip;
sor:=sor>l, acc:=so. -'-ace, aip; /* update lowpass filter variables */
sor:=sor>l, acc:=so +acc, aip, r(p[lj);
sor:=sor>l, acc:=so. +acc, aip, mbus=mor, le, w(p[2])
sor:=sor>l, acc:=so. -'-ace, aip, r(p);
sor:=sor>l, acc:=sc -i-acc, aip, mbus=mor, le, w(p[l])
sor:=sor>l, acc:=so.+acc, aip, r(p[3]);
sor:=sor>l, acc:=so. -race, aip, mbus=mor, le, w(p[4])
acc:=sor+acc, aip;
tmpl:=quot, r(one);
mbus=tmpl, le. w(l..), sor:=mon /* le has tmp-lpfin/lpfout */
acc:=sor+mor, r(alc n); /* ace := —tmp */
le, acc:=mor;

/♦ scale output by 1.625 */
/* so that denominator of divide */

/* opeation is greater than numerator */

/* store Ipf output */
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/* temp has -Ipfout */
/* implement IpfinApfout */
/* to normalize received signals*/
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SET; /* recall sign of input to ale */
wc(lc); /• le := -tmp if cc set */
r(lc);

/♦ BEGIN 7ARIIER DETECT FUNCTION */

acc:=mor, r(cd)
le, w(d), s<r:=nor; /♦ write output of AGC to demodulator */
acc:=sor, r'lpfoi t); /• bandpass filter inputs */
r(thl), sor:=mo), SET; /* sor— Ipfout , cc=stfim of cd */
acc:=sor+n or, )(th2); /* ace — Ipfout - 48 dB threshold */
le, w(cd), :or:=:nor;
acc:=acc+s jr, r count); /* occ:= Ipfout - 43 dB threshold */
le, wc(cd), sor:: mor; /♦ use 43 dB threshold if cd was <0 */
r(stl);
acc:=sor+n or, j (st2); /* ace:- count + 43 for turn on delay*/
le, w(count), so -:=mor;
acc:=acc+s jr, r'c_past); /* acc:= count-128 for turn off delay*/
le, wc(cour L), a :c:=mor;
r(count), C^;
acc:=mor;

CT*
r(max), XR
acc:=mor, '.Ml, r(min); /♦ limit count if there */
le, wc(court), a :c:=raor, LM2; /* was a sign change between */
le, wc(cour t); /* count and cjpast */
r(count);
mbus=mor, le, v(c_past), acc:=mor;
acc:=0, SE", r(c coef); /♦ cc= sign of count */
le, w(outda".a), ..cc:=mor; /* CD - 0 if carrier present •/
le, wc(outd ita);

/♦ Demodu'ator envelope detectors comparison */

r(cmp);
sor:=mor, -(cm]{l]);
acc:=mor+ -sor, r(one); /* cmp[l]-cmp > 0 : data=mark */
sor:=mor, (out lata); /♦ cmp\l\-cmp < 0 : daia=space */
acc:=acc+s ir, s jr:=mor, r(odata);
acc:=sor+nor, IISET;
le, wc(outddta);
r(outdata);
mbus=mor, wd_ out:=mbus;
end

/♦ Implemen s dervodulator bandpass and lowpass filters. */
/* First iten tion does space filtering in either 0 or A mode. */
/*♦ Second it<ratUn does mark filtering in either 0 or A mode. */

.3ub_pr <2>
begin

/• implem* nt l id order bandpass filters */

rx(acoef), ORIG;
mbus=mor1 le, v(temp);
rx(ocoef);
mbus=mor< le, vc(temp);
r(temp);
rx(d[3])( n-)us=nor, tmp2:=mbus;
sor:=mor;

sor:=sor>l, ace =coef.~sor, coef:=tmp2;
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sor:=sor>l, acc:=acc4-coef sor;
sor:=sor>l, acc:=acc+coef sor;
sor:=sor>l, acc:=acc+coef sor;
sor:=sor>l, acc:=acc+coei sor;
sor:=sor>l, acc:=acc-fcoef sor;
sor:=sor>l, acc:=acc-rcoel sor;
sor:=sor>l, acc:=acc+coef sor;
sor:=sor>l, acc:=acc+coef sor;
sor:=sor>l, acc:=acc+coef sor,rx(d[9]);
sor:=sor>l, acc:=acc+coef sor,mbus=mor, le, wx(d[ll]);
sor:=sor>l, acc:=acc+coef sor,rx(d[7]);
sor:=sor>l, acc:=acc+coef sor,mbus=mor, le, wx(d[9])
acc:=acc+coef.sor, rx(d[3].';
sor:=mor;

le, w(temp), acc:=acc+sor ANSW;
le, wc(temp);
r(temp);
sor:=mor, rx(d[5]);
acc:=sor, sor:=mor;

acc:=acc+~sor, sor:=sor>*. r(d);
acc:=acc+sor, sor:=mor>6
acc:=acc+sor, sor:=sor>6, r(one};
acc:=acc+sor, sor:=mor, rx(d[5];;
acc:=acc+sor, sor:=mor, i(one);
le, wx(d[l]), acc:=acc+'-scr, sor:=mor;
acc:=acc+sor;

le, w(temp);

r(temp);
sor:=mor<l, rx(d[13]);
acc:=J?or|, mbus=mor, le, wx(d[l5]); /* full tuave rectify (FWR) */
le, w(temp); /* of bandpass filter output*/

/* 3rd order lowpass filttr to remove components abound 2fc */

r(temp);
sor:=mor>4;
acc:=sor, sor:=sor>l, rx(d[ll]);
acc:=acc+sor, sor:=mor>l. rx(d[3]);
acc^acc+^sor, sor:=sor><, mbus=mor, le, wx(d[5]);
acc:=acc+'wsor, sor:=sor>3, r(three);
acc:=acc+'s'sor, sor:=mor, rx(d[9]);
acc:=acc+sor, sor:=mor, rx(d[l]);
acc:=acc+sor, sor:=sor>l, mbus=mor, le, wx(d[3]);
acc:=acc+sor, sor:=sor>3, rx(d[9]);
acc:=acc-i-sor, sor:=mor>2 r(one);
le, wx(d[7]), acc:=acc-r~scr, sor:=mor;
r(temp), acc:=acc+sor, so *:=sor>2;
sor:=mor>3, acc:=acc+sor rx(d[15]);
acc:=acc+sor, sor:=mor;
le, wx(d[13]), acc:=acc+sc~
le, wx(cmp);
end

end
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/♦ PROCESSOR FILTERS IMPLEMENTS TWO TENTH ORDEI BANDPASS FILTERS */

.processor : filters<20>

begin

.local
begin

temp;
lq[l6];
hq[16];
alb;
tempi;
hresult;

end

/* storage for lowband filter */
/* storage for highband filter */
/* for self-test function */

/♦ highband filter output */

.constant

begin
/* constants for correcting 1's complement subtraction-: */

one=l;
two=2;
three=3;
four=4;
mask=65536; /* to get ALB status from control word V

end

/♦ true for originate */

.fern
begin

SET: cc=sign;
MSET: cc=!sign;
MD: md=!sign;
ORIG: cc=md;
ANSW: cc=!md;
ALB: lb=sign;
ALBO: cc=lb&md;
ALBA: cc=lb&!md;
ALBSET: cc=lb;

end

/* true if ALB set */
/* states for controlling ALB function */

.main_pr

begin

/♦ get MD and ALB and perform signal multiplexing */

mbus=wordin, le, mor:=~mir, cword:=mbus; /* send wordii to processor*/
acc:=mor, r(mask); /* modem vie cword */
acc:=acc&mor, sor:=mor>l, MD;
acc:=acc+~sor, ORIG;
mbus=txmod, le, wc(lq), ALB; /* get txmod from processor modem */
ANSW; /* to filter it before transmitting */
wc(hq);
mbus=rxin, le, wc(lq), ORIG; /* get signal to be filtered and */
wc(hq); /* demodulated */
mbus=wd_out, wordout:=mbus; /* transfer processor modem variable */
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/* wdjout to wordout output */

/* LOWBAND FILTER */

/* First second order sectior. — 2 poles, then 2 zeros */

r(lq);
sor:=mor>4, r(lq[2]);
acc:=sor, sor:=mor, r(lq[5]);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(lq[6]);
acc:=acc+sor, sor=sor>2, r(l<i[3]);
acc:=acc+sor, sor:=mor;
acc:=acc+~sor, sor:=sor>3, r(lq[4]);
acc:=acc+sor, son=sor>2, mbus=mor, le, w(lq[5]);
acc:=acc+sor, sor:=sor>2, r(tvo);
acc:=acc+~sor, sor:=mor, r(kj2J);
acc:=acc+sor, son=mor;
le, w(lq[l]), ace: =acc+~sor, sor:=sor>l;
acc:=acc+~sor, sor:=sor>2;
acc:=acc+~sor, sor:=sor>3, r(four);
acc:=acc+~sor, sor:=mor, r(k[3]);
acc:=acc+sor, son=mor, r(lq[3J);
acc:=acc+sor, sor:=sor>3, mbus=mor, le, w(lq[9]);
acc:=acc+sor, sor:=sor>2, r(l<([7]);
acc:=acc4-sor, sor=sor>l, mbus=mor, le, w(lq[8]);
acc:=acc+sor, r(lq[5]);

/* Second second order section V

le, w(temp), acc:=mor, sor:=nor>l;
r(temp), acc:=acc+sor, sor:=sor>6;
sor:=mor>2, acc:=acc+sor, r( q[6]);
acc:=acc+sor, son=mor, r(lq[ll]);
acc:=acc+~sor, sor:=sor>3, irbus=mor, le, w(lq[l2]);
acc:=acc+sor, son=sor>2, r(tro);
acc:=acc+~sor, sor:=mor, r(k[5]);
acc:=acc+sor, son=mor>l;
le, w(lq[4]), acc:=acc+~sor, sor:=sor>5;
acc:=acc4-sor, r(one);
sor:=mor, r(lq[6J);
acc:=acc+sor, sor:=mor;

acc:=acc+sor, r(lq[8]);

/* Third second order section */

le, w(temp), acc:=mor, sor:=i ior>2;
r(temp), acc:=acc+sor, sor:=sor>5;
sor:=mor>l, acc:=acc+~sor, i(lq[9]);
acc:=acc+sor, son=mor;

acc:=acc+~sor, sor:=sor>4, r(two);
acc:=acc+sor, sor:=mor, r(lq[l]);
acc:=acc+sor, sor:=mor;
le, w(lq[7]), acc:=acc+~sor, sor:=sor>l;
acc:=acc+~sor, sor:=sor>6, r(two);
acc:=acc+sor, sor:=mor, r(lq[5]);
acc:=acc+sor, sor:=mor, r(lq£lO]);
acc:=acc+sor, sor=sor>3, mbus=mor, le, w(lq[ll]);
acc:=acc+sor, son=sor>l, r(l<i[l4]);
acc:=acc+sor, sor:=sor>2, mbus=mor, le, w(lq[15]);
acc:=acc+sor, r(lq[ll]);

/♦ Fourth second order sectim */

le, w(temp), acc:=mor, sor:=nor>2;
r(temp), acc:=acc+sor, sor:=sor>5;
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sor:=mor>2, acc:=acc+~sor, r(lq[12]);
ecc:=acc-rsor, sor:=mor, r(lq[13J);
ecc:=acc+~sor, sor:=sor>3, mbus=mor, le, w(lq[l4]);
acc:=acc+sor, sor:=sor>2;
ecc:=acc+sor, sor:=sor>2, r(two);
acc:=acc+sor, sor:=mor, r(lq[ll]);
ecc:=acc+sor, sor:=mor>2;
le, w(lq[10]), acc:=acc+~sor, sor:=sor>3;
tcc:=acc+sor, son=sor>2, r(two);
ecc:=acc+~sor, sor:=mor, r(lq[12]);
ecc:=acc+sor, sor.=raor;

ecc:=acc+sor, r(lq[14]);

/* Fifth second order section */

1-3, w(temp), acc:=mor, sor:=mor>2;
ecc:=acc+sor, sor:=sor>l, r(lq[2]);
ecc:=acc+sor, sor:=sor>3, mbus=mor, le, w(lq[3]);
r(temp), acc:=acc+sor, sor:=sor>l;
sor:=mor>2, acc:=acc+sor, r(lajl5]);
ecc:=acc+sor, son=mor, r(lq[lj);
£cc:=acc+~sor, sor:=sor>3, mbus=mor, le, w(lq[2]);
ecc:=acc+sor, son=sor>2;
ecc:=acc+sor, son=sor>2, r(two);
ecc:=acc+~sor, sor:=mor, r(lq[l5]);
Ecc:=acc+sor, sor:=mor1 r(ohe);
le, w(lq[l3]), acc:=acc+'N'sor, sor:=mor;
&cc:=acc+sor;

/"* output scaling and signal multiplexing */

te, w(temp);
r(temp);
ecc:=mor, sor:=mor, r(hresult), ORIG;
ecc:=acc+sor, sor:=sor>3, mbus=mor, le, wc(temp), ALBA;
£Cc:=acc+sor, wc(alb), ANSW;
vrc(templ);
U, wc(temp). ORIG;
•y-rc(templ), ALBO;
vc(alb);
r(alb), ALBSET;
inbus=mor, le, wc(temp);
r(temp);
r.ibus=mor, demod:=mbus; /♦ send data to be demodulated to */

/* processor modem */

/* HIGHBAND FILTER */

/* First second order section */

r(hq);
sor:=mor>3, r(hq[2]);
e.cc:=sor, sor:=mor>2, r(hq[5]);
ecc:=acc+sor, sor=sor>l, mbus=mor, le, w(hq[6]);
g.cc:=acc+sor, sor:=sor>4, r(hq[3]);
ECc:=acc+~sor, sor:=mor;
ecc:=acc+'s^or, sor:=sor>3, r(hq[4]);
£cc:=acc+scr, sor:=sor>2, mbus=mor, le, w(hq[5]);
£cc:=acc+sor, son=sor>2, r(three);
ecc:=acc+~sor, sor:=mor, r(hq[2]);
e.cc:=acc+sor, sor=mor>l;
H w(hq[l]), acc:=acc+~sor, sor:=sor>3;
£Cc:=acc+,>'sor, sor:=sor>3, r(three);
ecc:=acc+'vsor, sor:=mor, r(hq[3]);
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acc:=acc+sor, sor:=mor, r(hq[8]);
acc:=acc+sor, sor:=scr>2, mbus=mor, le, w(hq[9]);
acc:=acc+sor, sor:=scr>l, r(hq[7]);
acc:=acc+sor, sor:=scr>3, mbus=mor, le, w(hq[8]);
acc:=acc+sor, sor*=scr>l, r(hq[5]);
acc:=acc+sor, sor=mar>2;

/* Second second or>ler section */

le, w(temp), acc:=sor. sor:=sor>l;
r(temp), acc:=acc+so *, sor:=sor>2;
sor:=mor>3, acc:=acc-rsor, r(hqT6]);
acc:=acc+sor, sor:=m:>r>l, r(hq[ll]);
acc:=acc+~sor, sor:=:or>l, mbus=mor, le, w(hq[12]);
acc:=acc+~sor, sor:=: or>3;
acc:=acc+sor, son=scr>2, r(two);
acc:=acc+sor, sor:=roor, r(hq[5]);
acc:=acc+sor, sor:=m-r;
le, w(hq[4]), acc:=acc+~sor, sor:=sor>l;
acc:=acc+~sor, sor:=.«or>4, r(three);
acc:=acc+,s'sor, sor:=mor, r(hq[6]);
acc:=acc+sor, sor:=mar, r(hq[8]);
acc:=acc+sor, sor=mor>3;

/* Third second order section */

le, w(temp), acc:=sor sor:=sor>4;
r(temp), acc:=acc+so *;
sor:=mor>l, r(hq[9]);
acc:=acc-*-sor, sor:=mor, r(hq[lO]);
acc:=acc+~sor, sor:=: or>3, mbus=mor, le, w(hq[ll]);
acc:=acc4-sor, sor:=scr>2;
acc:=acc+~sor, sor:=: or>2, r(two);
acc:=acc+scr, sor:=mDr, r(hq[8]);
acc:=acc+sor, sor:=mor>2;
le, w(hq[7]), acc:=acc+~sor, sor:=sor>3;
acc:=acc+'vsor, sor:=: or>2, r(three);
acc:=acc+~sor, sor:=jnor, r(hq[9]);
acc:=acc+sor, sor:=m3r, r(hq[14j);
acc:=acc+sor, son=scr>2, mbus=mor, le, w(hq[15]);
acc:=acc+sor, sor:=scr>5, r(hq[ll]);
acc:=acc+sor, sor:=m-r>l;

/♦ Fourth second orcer section */

le, w(temp), acc:=sor. sor:=sor>3;
r(temp), acc:=acc+so •, sor:=sor>3;
sor:=mor>2, acc:=acc+~sor, r(hq[12]);
acc:=acc+sor, sor:=mDr;
acc:=acc+~sor, sor:=Jor>4, r(two};
acc:=acc+sor, sor:=m3r, r(hq[ll]);
acc:=acc+sor, son=mDr;
le, w(hq[10]), acc:=acc+~sor, sor:=sor>2;
acc:=acc-r~sor, sor:=i or>l, r(hq[l3]);
acc:=acc+~sor, sor:=: or>2, mbus=mor, le, w(hq[l4]);
acc:=acc4-sor, sor:=scr>2, r(four);
acc:=acc+~sor, sor: =3 nor, r(hq[l2]);
acc:=acc+sor, sor:=m3r, r(hq[l4]);
acc:=acc+sor, sor=m3r>2;

/* Fifth second orde-' section */

le, w(temp), acc:=sor sor:=sor>3;
r(temp), acc:=acc+~s:>r, sor:=sor>2;
sor:=mor>l, acc:=acc-rsor, r(hq[l5]);
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acc:=acc+sor, son=mor, r(hq[2]);
acc:=acc+~sor, sor:=sor>2, mbus=mor, le, w(hq[3]);
acc:=acc+sor, son=sor>2;
acc:=acc+~sor, sor:=sor>2, r(three);
acc:=acc-j-sor, sor:=mor, r(hq[15]);
acc:=acc+sor, sor:=mor, r(one);
le, w(hq[l3]), acc:=acc-?-~sor, sor:=mor;
acc:=acc+scr;

/* output scaling */

le, w(temp);
r(temp);
acc:=mor, sor:=mor>l, r(hq[l]);
acc:=acc+sor, sor:=sor>l, mbus=mor, le, w(hq[2]);
acc:=acc-rsor;

le, w(hresult);
r(templ);
mbus=mor, txout: =mbus; /• output filtered FSK signal */
end
end
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.global
begin

tmp<14>;
wordin<12>;

in<12>, out<12>;

end

/* for multiply operation */
/* for getting mode - */
/* wordin: \0/A\ | ♦/

/* datain is data in fsk form */
/* to be demodulated - it has been */
/* through the receive bandpass */
/* filter */

.10

begin
ctrlin: wordin : signaMn;
dm3in: in : signal_in;
dm3out: out : signal_out;

end

.processor : dm3<14>

/♦ This demodulator is the delay—line discriminator version. */
/* The signal is multiplied by a one sample delayed signal */
/* for the 1170 Hz threshold (answer mode), and by a two */
/* sample delayed signal for the 2125 threshold (originate */
/* mode). */

begin

.local

begin
temp;

n.
rxd;
end

.constant

begin
one=l;
three=3;
THO=—680; /* threshold for comparing mark and space */

/♦ when operating in originate mode */
THA=519; /* -680+519=-161 is threshold for comparing */

/* mark and space when operating in answer mode */
dataone=—8192; /* for data output V
end

.fsm
begin
MD: md=!sign;
ORIG: cc=md;
ANSW: cc=!md;
SET: cc=sign;
end

/* for the delay storage */
/* for the 3rd order lowpass filter
/* demodulated data */

/* trite for originate mode */
/* originate mode flag */
/* answer mode flag */

.mam_pr
begin
mbus=wcrdin, le, mor:=~mir;
acc:=mor;

MD; /♦ set mode of operation */

/* get input signal and load into tmp for multiply */

mbus=in, le, w(q), tmp:=mbus;

dm3.df
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/* multiply incoming signal by itself delayed by 1 sample or */
/* two samples depending on mode */

r(q[l]);
mbus=mor, le, w(temp);
r(q[2]), ANSW;
mbus=mor, le, wc(temp);
r(temp);
sor:=mor;

sor:=sor>l, acc.^coef.^scr, coef:=tmp;
sor:=scr>l, acc:=acc+coef.sor;
sor:=sor>l, acc:=acc+coef.sor;
sor:=sor>l, acc:=acc+coef.sor;
sor:=sor>l, acc:=acc+coef.sor;
sor:=sor>l, acc:=acc+coef.sor;
sor:=sor>l, acc:=acc+coef.sor; /♦ update states of lowpass filter */
sor:=sor>l, acc:=acc+coef.sor, r(p[l]);
8or:=sor>l, acc:=acc+coef.sor, mbus=mor, le, w(p[2]);
sor:=sor>l, acc:=acc-rcoef.sor, r(p);
sor:=sor>l, acc:=acc-rcoef.sor, mbus=mor, le. w(p[l]);
sor:=sor>l, acc:=acc-t-coef.sor, r(p[3]);
sor:=sor>l, acc:=acc~coef.sor, mbus=mor, le, w(p[4]);
acc:=acc+coef.sor;
le, w(temp);

/* Result of multiply is input to lowpass filter. */
/* The lowpass filter removes the frequency components */
/* at twice the signal frequency which are generated by */
/* the multiply. */

/* Lowpass filter is 3rd order - implemented as a cascade of */
/* one second order section and one first order section */

r(temp);
sor:=mor>4;
acc:=sor, sor:=sor>l, r(p[2]);
acc:=acc+sor, sor:=mor>l, r(q[l]);
acc:=acc+'vsor, sor:=sor>2, mbus=mor, le, w(q[2]);
acc:=acc+'wsor, sor:=sor>l, rfthree);
acc:=acc+~sor, sor:=mor, r(p[l]);
acc:=acc+sor, sor:=mor, r(q);
acc:=acc+sor, sor:=sor>l, mbus=mor, le, w(q[l]);
acc:=acc+sor, sor:=sor>3, r(p[l]);
acc:=acc+sor, sor:=mor>2, r(one);
le, w(p), acc:=acc-H~sor, sor:=mor;
acc:=acc+sor. r(p[2]);
sor:=mor, r(p[4]);
acc:=acc+sor, sor:=mor>l;
le, w(temp), acc:=sor, sor:=sor>2;
r(temp), acc:=acc4-sor, sor:=sor>2;
sor:=mor>3, acc:=acc+sor, r(p[4]);
acc:=acc+sor, sor:=mor, r(THO);
le, w(p[3]), acc:=acc+sor, sor:=mor;

/* compare with originate threshold */

acc:=acc+sor, r(THA), ORIG;
sor:=mor. le, wc(rxd);

/* compare with answer threshold */

acc:=acc+sor, ANSW;
le, wc(rxd);
r(rxd), acc:=0;

Jul 28 19:19 1984 •Pctflfe s °f dm3.df



dm3.df dm3.df

le, w(rxd), acc:=mor; /* write 0 to out if space */
r(dataone), SET;
aec:=mor;

le, wc(rxd); /* write 1 to out if mark */
/* note that the data is in the V
/* MSB position of the output word V
/* so that a 1 is represented by —8192 */

r(rxd);
mbus=mor, out:=mbus;
nop;

end
end
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Processor "filters" on the right side, "modem" on the left side
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