

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COMPUTER GENERATION OF DIGITAL FILTER BANKS

by

P. A. Ruetz

Memorandum No. UCB/ERL M84/94

30 October 1984

COMPUTER GENERATION OF DIGITAL FILTER BANKS

by

Peter A. Ruetz

Memorandum No. UCB/ERL M84/94

• 30 October 1984

ELECTRONICS RESEARCH LABORATORY

Col1ege of Engi neeri ng
University of California, Berkeley

94720

TABLE OF CONTENTS

I INTRODUCTION 1

II THE HIERARCHY 2

IB THE CIRCUIT CELLS 3

1 The Controller

2 The Data Path

W LAYOUT GENERATOR 7

1 Layout Generation Issues
2 The Floor Plan

3 Examples of Generated Circuits
4 Output File Format
5 Mock Assembly

V THE FILTER COMPILER 11

1 Filter Specification
2 The Filter Library
3 Operation

YI THE TESTER 15

VII FABRICATED CIRCUITS 16

14 pole BPF Chip
2 The speech Recognition Chip
3 Consumer Stereo Spectrum Analyzer

YIB CONCLUSONS 18

REFERENCES 20

APPENDIX A. Using the Filter Compiler 22

1. General Description
2. Input File Format
3. Input File Example
4. The Filter library
5. Micro Code Format

6. Micro Code Timing
7. Macros for Programmed Filter Sections

APPENDIX B. Using the Layout Generator 37

1. General description
2. ROM File Format

APPENDIX C. Using the Tester ; 41

1. General Description
2. Tester/Chip connections

APPENDIX Dl. Speech Recognition Filter Bank Chip 44

1. Coefficient Listings
2. ChipPinout
3. Signal Timing

APPENDIX D2. Consumer Stereo Chip 46

1. 3 dB frequency files
2. Coefficient listings
3. Chippinout

APPENDIX D3. Single Filter Chip 54

1. Coefficient listing
2. Pinout

APPENDIX E. Chip Timing 58

1. General Description
2. Timing Diagrams

APPENDIX F. The Circuit Cells 61

1. Hierarchy
2. Schematics

APPENDIX G. FIFO Buffer 65

1. General Description
2. Circuit Schematics

3. Circuit Timing

APPENDIX H. SPICE SIMULATIONS 70

1. spice parameters -
2. simulation results

APPENDIX I. Simulation From Layout 73

1. General Description
2. Simulation Files

APPENDIX J. KNOWN PROBLEMS 69

Computer Generation of Digital Filter Banks

Peter A Ruetz

University of California, Berkeley

Electronics Research Lab

Berkeley, California 94720

I INTRODUCTION

Fully automated design of complex integrated circuits has often resulted in

limited usefulness because of poor performance or inefficient silicon space utili

zation. If few restrictions are placed on the function of the ICs to be generated,

then the optimization problem becomes difficult, yielding circuits far inferior to

custom designs. Another important aspect of using automated design systems

is the time required to develop the software and its reliability. There is no

advantage in reducing hardware design time if the resultant software develop

ment effort becomes equally time consuming and error prone.

It has become apparent that tradeoffs between development time, general

ity and final circuit performance must be made. The design system described

here was based on an emphasis on high performance with minimal software

effort. Instead of treating the software and hardware designs as distinct prob

lems, the hardware architecture and layouts were designed in a way that made

automation simpler while maintaining performance.

-2-

Some automated design systems have been developed which allow the user

to interact only at the highest level. If this is incompatible with the require

ments of the user, then the entire design system is of no use. If however, the

software is designed to allow the user to operate at a lower level, more jobs can

be accomplished. Our design system has been developed in a hierarchical

manner. For those wishing to generate filter banks, the task can be accom

plished from the highest level, Le. totally automated. The user can also use the

lower levels of the system (i.e only partially automated) for other applications.

Further, the system can be extended at the highest level for the specific needs

of the user.

The scope of applications that has been chosen is digital filter banks which

are a parallel and/or cascade connection of filter sections. Digital filter banks

are found in applications as diverse as MODEMs and spectrum analyzers for

speech recognition, channel vocoders, consumer stereo and EEG analysis. Deci

mation and rectification are required in addition to digital filtering in the spec

trum analysis applications.

II THE HIERARCHY

Currently, the hierarchy is four levels deep. At the lowest level are the cir

cuit 'cells'. These cells consist of basic building blocks such as counters,

adders, RAM cells, ROM cells, etc. The cells can be used without any automation

for a totally manual design. At the next level, the layout generator assembles

these cells into more complex blocks such as data paths and controllers from

hardware descriptions. This would be useful for users that desire a signal proces

sor, but need a few additional circuits that have not been designed or are not

handled by the layout generator. The user would only have to specify the

hardware specifications including the RAM size and ROM contents and add the

new circuit blocks to form a completed chip. At the third level, the layout

-3-

generator assembles the data path and the controller into a completed chip. For

those that have a non-filter digital signal processing application, a chip could be

generated completely from this hardware description. Finally, at the highest

level, the filter compiler generates the hardware description from a digital filter

description. At this level, digital filter banks can be generated completely

automatically.

To generate filter bank chips, the design procedure shown in figure 1 is fol

lowed. The digital filter bank structure and coefficients are specified in a input

file. The filter compiler converts the input file to the hardware description. To

check the algorithms before the circuit is fabricated, the hardware description

can be used as an input to a real-time tester. When the designer is satisfied, the

layout generator is used to create a layout file.

Ill THE CELLS

The basic architecture of the hardware is shown in figure 2. There are two

main blocks: the controller consisting of the program counter, the ROM and the

address index register and the data path consisting of the ALU and RAM.

There are several reasons for having few large circuit blocks. The block

division was chosen to minimize assembly difficulty while retaining adequate

generality. With few blocks, the automatic assembly is simplified. Routing

difficulty is reduced by having fewer blocks that need to be routed together.

The blocks are also made up primarily of abutting circuit cells which are very

simple to assemble.

The large blocks were chosen to be functionally complete. That is, the

blocks can be easily used to perform some complex function. The blocks would

be complicated to use, except at the lowest level of cells, in a partially assem

bled form. The program counter may be useful without the ROM but it is easily

-4-

assembled from counter cells so that it need not be a separate block.

There is also a somewhat natural division. As all cells in the data path could

be designed with the same bit slice pitch, the data path could be made a single

block requiring no data bus routing. The ROM was designed to minimize area

that determined the pitch of ROM cells. The ROM cell pitch is, however, vastly

different from the pitch of the control lines entering the data path. That makes

it more efficient to optimize each as separate blocks with routing between the

two than to stretch the ROM to the pitch of data path control lines.

m-1 The Controller

The controller was designed to be small with high performance. To achieve

these goals it was made very simple with a minimum number of features. For

example, there is no branching capability or micro coded instructions. Adding

complexity can result in vastly increased area as the extra registers and routing

are a significant fraction of the controller. ROM bits are very small, regularly

spaced and hence very efficient. Instead of putting the convenience of micro

coded instructions in hardware, it is put in the software (at the highest level)

where it does not add to the silicon area.

Every cycle the controller outputs a valid horizontal control word. This hor

izontal control word specifies the value of every data path control line. Each

controller output comes directly from the ROM with the exception of some of the

RAM address lines when decimation is used. With decimation, the index register

modifies the RAM address. Although this increases controller complexity, it

saves ROM space and averts the need to perform address computations in the

data path. The data path is never used for any control operation, allowing con

tinuous signal processing. The circuit is also more compact since busses are not

needed to connect the control and data path.

-5-

ffl-2 The Data Path

Figure 3 is a block diagram of the data path. As in most signal processors

there is a RAM, adder, accumulator, some form of negation/absolute value logic

and i/o. However, no array multiplier is included.

Again, only a minimum of features are provided. In this way the size can be

kept small making room for additional data paths on a single chip for greater

throughput. The cell circuit design problem is also reduced, while programming

the data path is more complicated. This is not a problem when automation is

used, as the filter compiler generates and optimizes the micro code. *

Since there is no array multiplier, fixed coefficient multiplies are imple

mented in a serial-parallel manner [l]. This is accomplished with the use of the

barrel shifter, adder and accumulator. Since a restriction of fixed coefficient

multiplies is placed on the system, less that N cycles are required for an MxN

multiply, where M is the signal width and N is the multiply coefficient length, by

programming the ROM properly. Because a barrel shifter can shift several (0 to

5 in this case) places in a single cycle, multiplies require only a number of

cycles equal to the number of 'l's in the coefficient.

By using coefficients encoded in canonical signed digit format [2], it is pos

sible to save more cycles in a serial-parallel multiply when there are more than

two consecutive ones in the coefficient. This arises because in hardware it is

just as easy to subtract as it is to add a partial product. For example:

to perform: (O.Ollll)Yn

rewrite: =((0.1)-(0.00001))Yn

=(0.1000(-l))Yn

=(0.1)Yn-(O.O00O0l)Yn

-6-

Therefore, only two cycles-are necessary to perform the multiplication, whereas

four cycles would be required for the direct implementation.

The adder is a ripple-carry type. To ensure high speed, different even and

odd cells are used which minimizes the delay through the carry chain. This

results in very compact circuits which can operate at rates over 4 MHz. The rip

ple carry adder is also particularly well suited for a bit slice design which makes

the automatic layout very straight forward. The output of the adder saturates

instead of simply overflowing to prevent limit cycles. This is easily incorporated

in the hardware but would require several cycles per computation to implement

in software.

Pipelining in the data path increases the performance of the circuit by

making higher clock rates feasible. The pipeline registers are at the output of

the RAM, the input of the RAM and at output of the adder (the accumulator).

With pipelining, the RAM and the barrel shifter, adder combination both get a full

cycle for operation. Although pipelining makes micro coding more difficult, it is

transparent to the user when the filter compiler is used.

The memory input register is the only register of the three which can be

selectively written. In some cases, the result of a computation can be held in

this register until the RAM is inactive during a serial-parallel multiply. At this

point, the result .can be written into the RAM without requiring an extra cycle.

Proper use of this register reduces the length of the micro code by preventing

the data path from becoming memory bound.

The RAM is a four transistor dynamic type with a schematic shown in figure

4. A dynamic memory was chosen over static designs because the dynamic RAM

is smaller with lower power consumption. The RAM is automatically refreshed as

long as the sample rate is kept over 1 KHz because every location is both written

and read each sample.

-?-

Three possible choices for the RAM design were the one, three of four

transistor cells. The four transistor cell was chosen over one transistor designs

to niinimize process sensitivity. To avoid running busses between the RAM and

ALU, it was desired to have the same pitch for both so they could be attached

directly, simplifying automatic layout. To use space efficiently, this required

that the RAM have a single column decode as the optimized cell pitch was

approximately half that of the ALU bit slice. The three transistor design is more

difficult to column decode so the four transistor design was chosen.

IV LAYOUT GENERATOR

The layout generator assembles the cells into a data path and a controller

block from hardware descriptions. If desired these blocks are then assembled

into a complete chip. The hardware is described by several parameters includ

ing: data path word width. RAM size, decimation ratio and ROMcontents.

IV-1 Layout Generation Issues

Before starting development of the layout generator, several aspects of

automated layout were identified as difficult problems. General placement of

the major circuit blocks requires sophisticated optimization algorithms to gen

erate space efficient designs. A two level router would be needed to rout

between these blocks. An extensive data base would be needed to store the

necessary data for the router and placer. The data base would contain the ter

minal locations on each block and the available routing area.

Other aspects of the automated layout were found to be easily handled

problems. It is not difficult to assemble blocks (ie the ROM, ALU and RAM) from

abutting cells since the relationships involved are all well determined by the

hardware parameters specified by the user and the cell characteristics. The

way the ceils go together is determined by the cell designer so that proper cell

-8-

design can help the automated layout. For example, by including the signal

routing within the cells, the need for inter-block routing by the program is

avoided. Fixed routing, where the routing terminals have a constant relation

ship throughout all changes in hardware parameters, can be accomplished by

inserting a cell with the appropriate wires in it. That is, no algorithm for routing

is required at all. Regular routing, where the routing terminals are evenly

spaced throughout changes in the hardware parameters, is implemented by a

simple program loop.

IV-2 The Floor Plan

In order to avoid the more difficult problems, two major restrictions were

made. The first was to use a fixed floor plan, the relative placement of circuit

blocks, pads and routing areas on the chip. The floor plan was chosen to reduce

the complexity of the algorithms used and the number of layout decisions that

must be made by the program. With the chosen floor plan all routing is either

fixed or regular.

The decision was also made to have the program 'know all'. That is, all infor

mation regarding the cells and their connection was coded directly into the

algorithms. Using specific information of the application avoids having to solve

the general problem and reduces the software design time. Software reliability

is enhanced when the simplest algorithms are used instead of complex general

algorithms with obscure failure modes. This approach obviously makes the pro

grams very specific to the particular cells which are used so that changes in the

cells may require changes in the software. Therefore, one should not expect to

make major upgrades without significant software changes with a system such

as this. However, because the software development time is relatively small,

new software can be written when significant changes are made.

-9-

IV-3 Examples of Generated Circuits

The circuit remains easy to assemble over the large changes in hardware

parameters shown in figure 5a-d. The hardware parameters for each is listed in

table 1. From the figure the fixed floor plan can be seen. The controller, data

path, pads and routing areas are always in the same relative position. The I/O

parallel buss at the top of the chip is an example of regular routing. The routing

area does not change shape or relative position as the parameters change. The

routing between the controller and the data path is a function only of the RAM

size and whether decimation is used. As there are only a few cases, each is

treated as fixed routing and a cell with the appropriate wires is simply inserted.

Wiring from the PC to the ROM is handled similarly. The wiring of supplies and

clocks requires little jumping (except in the fixed routing cells) and a minimal

amount of decision making.

The- silicon area is also used efficiently over the range of parameter

changes. Virtually the only wasted area is near the pads or due to differences in

length of the controller and data path (see figures 5b,5c). The RAM gets

longer as the number of states in the filter bank increases. The controller

increases in length with the program length. Since adding states requires a

longer program to process these states, the ROM and RAM tend to get larger

together. In figures 5a-c the ROM is not column decoded and the waste area is

not too large. In figure 5d the ROM length increased significantly so that a

column decoded ROM was used to minimize the unused space.

Some waste of space is allowed if the waste is not large while the savings in

effort is. For example, when decimation is used, the ROM width is constant

regardless of the RAM size. Up to 3 bits of RAM are unused but the routing is

simplified. The data buss routing area between the data path and pads on the

right side of the chip is of constant size. These simplifications reduce the

-10-

number of cases to be handled with some space wasted for the very small chips.

However, the designs would likely not be used anyway, due to the large overhead

involved.

IV-4 Output File Format

The output of the layout generator are KIC format [3] files. This format was

chosen because layout stations are being used which read this format making

visual checks convenient. The KIC format also supports the hierarchical organi

zation of the hardware. The CIF format [4] is used for actual fabrication but

does not allow arrays as the KIC format.

IV-5 Block Assembly

As mentioned previously, the assembly of blocks from cells is a straight

forward task. An output file is written that lists the celis with the appropriate

offsets and orientation. This information is calculated from the hardware

parameters and cell parameters (eg size).

The controller is a connection of many celis that makes its manual layout

difficult. Most variations in the controller are functions of the ROM width and

length (found from the binary listing), and the decimation ratio all of which the

user specifies expUcitly. The ROM length determines how many bits will be used

in the PC and decoder and how the decoder is programmed. Since there are

only 5 different PC sizes, each is a cell with appropriate routing wires. The deci

mation ratio determines which type of ROM output register will be used and how

the index register itself is configured. If there is no decimation, all output regis

ters are the same and no index register is used. If there is decimation the out

put registers that feed the index register input are of a different type and an

index register must be included and programmed to decimate properly.

-11-

The data path assembly is quite simple due to the bit sliced nature and the

small number of blocks. The entire ALU only requires one line in a KIC file speci

fying an array of bit slices. The entire RAM array is similarly specified. The RAM

decoder can be generated in the same way as the ROM decoder with each cell

being described by one line in the KIC file.

V THE FILTER COMPILER

The filter compiler generates hardware descriptions from digital filter

descriptions. This allows the automatic generation of filter banks with virtually

no knowledge of the final hardware.

V-l filter Specification

The compiler reads an input file specifying the filter bank organization in

terms of a parallel connection of channels. Each channel is a cascade connec

tion of sections. Variations on this format are allowed that have been found use

ful in some applications. A section can be factored out and used by different

channels. An example of this is the direct form band pass filter. The zeros are

the same for all channels and can be factored out and computed only once. Fig

ure 6 shows an example of a filter bank organization. In this example there are

16 parallel channels, each consisting of a 4th order BPF section, rectifier, 1 pole

LPF section, decimation by 8 and a 2nd order LPF section.

Each section is a single input, single output structure with delays, multipli

cations and additions. Diagrams of some of the currently programmed sections

are shown in figure 7.

All multiplies defined in the sections use fixed coefficients of canonical

signed digit format. Use of this format, which was described earlier, optimizes

the usage of the adder by minimizing the number of cycles required to perform

multiplication.

-12-

There are several options allowed in each section in the bank. The user can

full wave rectify the input of any section. This is useful in spectrum analyzer

applications. Decimation is also handled but in a somewhat restricted way. A

number of channels can have their outputs decimated and modified by some

specified filter. The post decimation filter is the same for all channels being

decimated and the decimation ratio is always the same as the number of chan

nels being decimated. These restrictions were applied simply to reduce the

development time and could be relaxed in future systems. The user can also

specify that the output of any section be sent off chip through the parallel buss

while setting an output strobe. To implement multiple inputs, the input of any

section can be taken from any channel output or any channel input. Being able

to specify a channel output, allows the use of a filter by many other channels

(described above) and really allows very arbitrary filter organizations. Nor

mally, the default (no specification) results in the parallel channels operating on

the same input data.

The format of the input file is tailored to filter banks and was chosen to sim

plify the compiler. The format is as follows:

1. Input channels (one or more)
These sections receive data from off chip and may perform
some filtering (eg zeros of direct BPF).

2. Standard channels (one or more)
These are just the regular channels, ie some cascade
connection of sections. These channels will be decimated
if a decimation channel is specified.

3. Decimation channel (optional)
This is the channel that operates on the output of all
standard sections above after decimation.

4. Non-decimated Standard channels (optional)
More regular channels that are not to be decimated.

The format for the the sections is as follows:

1. Section identifier (2 letters), <options, if any>, N coefficients

-13-

The format specifies the order that micro code is generated and stored in the

ROM and hence the order that it is executed. This save the compiler from having

to determine this information.

V2 The Filter library

The compiler references a filter library which contains pertinent informa

tion about the allowed sections. A file contains a list of valid section identifiers

along with the number of memory locations and coefficients required for each

section.

For each section there is also a file containing the macro for that section.

The macro file contains the symbolic micro code that implements a section

without the coefficients or options inserted. Symbolic micro code is just a

description of data path control lines that have been grouped functionally. The

symbolic micro code has fields to describe the following:

memory operation (read or write)
relative memory address (actual address computed by compiler)
barrel shifter input mux selection (memory or BS output)
number of shifts (constant or taken from input file)
adder a input mux select
adder b input mux select
i/o operation

Currently, this micro code must be written by hand for each section. This

involves a detailed knowledge of the timing and architecture that the average

user would not have. Although software could generate the micro code from

difference equations, this was not chosen because higher performance code

could be generated by hand. For a second order section the length of the micro

code is typically only 8 words.

V-3 Compiler Operation

The operation of the filter compiler is shown in figure 8. On the first pass,

-14-

the input file is checked for errors and hardware requirements such as RAM size

and decimation ratio are determined. On the second pass, symbolic micro code

for the entire bank is generated. The symbolic micro code is then compressed,

finally, the symbolic micro code is assembled to binary micro code.

During the first pass, several errors are checked for, the amount of RAM is

determined and each state is assigned a RAM location. The error check will

locate syntax errors, undefined sections, filter library errors or the use of the

wrong number of coefficients. If decimation is used, the decimation ratio is

determined by counting the number of standard sections before the decimation

section. The RAM requirements can then be determined. Without decimation,

the amount of RAM required can be found by simply adding up the memory

requirements for each section. With decimation, things are not as simple. The

index register supplies the high order RAM address lines when the decimation is

performed so that some RAM may not be used.

Amount of RAM accessed A= (RAM needed for input and standard sections)
+(RAM needed for decimation channel)
♦(number of decimated channels)

Amount ofRAM included on chip B= 2(int(logj,(A-l))+l)

Each state is then assigned to a.RAM location. The states are assigned to

sequential RAM locations as they are encountered in the input file if there is no

decimation. That is, the first state of the first filter is stored in the first RAM

location while the last state of the last section is stored in the last location. With

decimation, the states accessed by the decimation filter are assigned first at

fixed increments. The remaining states are then filled in sequentially.

The symbolic micro code for the entire bank is generated during the second

pass. To accomplish this the input file is scanned until a section declaration is

found. The macro for that section is read from the library and expanded into

complete micro code by inserting the coefficients and options from the input

-15-

file. This process is repeated until the end of the input file is found.

The symbolic code generated in the second pass is compressed by looking

for sequences of code that can be shortened. There are three cases that are

optimized. First, and most important, is the performing of the first memory

access during the final computation of the previous section. This appears at

nearly every section boundary and utilizes the pipelining of the data path.

Another case is the utilization of both adder inputs when the accumulator is

empty. Normally the B input is zeroed and data is brought in through the A

input. If a coefficient has certain properties, additional data can be brought in

through the B input, saving one cycle. One cycle can be save if data needed for

the next operation is found to be left in the adder during the previous calcula

tion. This occurs for certain filter structures with some coefficients.

These optimizations help produce code with essentially the same efficiency

as that done by hand. For a speech recognition filter bank, the number of micro

instructions was reduced from 480 to 384 words. The optimization is performed

on the symbolic code because the cases are easier to identify than when the

code has been assembled to binary.

With the symbolic code optimized, it is converted to binary for use by the

layout generator. This is a simple operation because for each symbolic field

value there is exactly one binary pattern for one or more control lines. This

data is written directly to a file for the layout generator or tester control data is

included for use by a real time tester.

VI THE TESTER

The tester set-up in shown in figure 9 is quite valuable in producing designs

which work the first time fabricated. The filter compiler running on the VAX 11-

780 generates tester code that is down loaded to a pattern generator. The pat-

-16-

tern generator performs exactly the same function as the controller block

included in the complete chip. It sends the horizontal control words in real time

to a data path that is the same as that used in a final chip. The spectrum

analyzer generates digital input data and examines the filter outputs. In this

way, the filter designer can check the input file for errors and the effects of

finite data word with and coefficient truncation on the filter responses. If there

is a problem, it is found before fabrication. Further, this set up will verify that

the compiler is working properly and that the filter library data is correct.

Mil FABRICATED CIRCUITS

Several circuits have been fabricated using this system. A single band pass

filter chip was fabricated to determine the efficiency of a small chip. A 16 chan

nel filter bank for the front end of a speech recognition system and a 16 channel

consumer stereo spectrum analyzer have been generated and fabricated. Table

2 gives a summary of the performance of these chips.

All circuits have been fabricated with a four micron NMOS depletion load

process and are designed to work with a single 5 V supply. Although a 3 MHz

non-overlapping clock is sufficient for the chips to operate at the designed sam

ple rates, they can be run reliably with clocks up to 4 MHz.

VIM A Small Chip

The 4 pole band pass filter chip die photo is shown in figure 10a and meas

ured frequency response in figure 11a. Although the area per pole for this chip

is quite high it might be useful when data is in digital form so that a switched

capacitor or other analog filter would not be appropriate because of the high

overhead in including the A/D and D/A. The circuit shown has a word width of 10

bits and a dynamic range of 48 dB. Since each additional bit increases the

dynamic range 6 dB, a chip with 100 dB of dynamic range would only be 30 %

-17-

larger.

~VH-2 A Spectrum Analyzer for a Speech Recognition System

A block diagram of 112 pole speech recognition system [5] chip is shown in

figure 6. Each channel consists of a 4 pole Butterworth band pass filter, followed

by a full wave rectifier and the first pole of a 3 pole Butterworth low pass filter.

The output of the 1 pole anti-aliasing filter is decimated and low pass filtered

with the rest of the Butterworth filter. A photo of the die is shown in figure 10b.

The frequency response of all 18 channels is shown in figure lib.

The number of cycles available to perform all filtering is given by:

number of micro instr= (number of processors)*(max clock rate)/(sample rate)

To ensure that this maximum number of operations was not exceeded, several

steps were taken. Filter structures were carefully chosen. The state variable

form shown in figure 7a has a relatively complex structure compared to the

direct form (figure 7b). However, the state form is less sensitive to coefficient

truncation than the direct form when there is a large ratio of sample frequency

to filter band edge frequency. For low frequency filters, the insensitivity to

coefficient truncation makes the state form filter more efficient than the direct

form. At high frequencies, the direct form becomes more efficient due to its

simpler structure. Therefore, the five lowest frequency filters are state form

while the upper eleven are direct form. To save more cycles, the zeros of the

direct form were factored out of each channel and computed only once. In the

state form, at low frequency the zero at 1/2 the sample frequency has little

effect and was left out.

VII-3 A Spectrum Analyzer for Consumer Stereo

The structure of the 16 channel consumer stereo spectrum analyzer is very

similar to that of the speech recognition chip. The sample rate was increased to

-18-

20 KHz to allow higher frequency filters and the band pass filters were limited to

2 poles. The 1/2 octave filters range in center frequency from 45 Hz to 8 KHz.

The ratio of the lowest frequencies of interest to the sample rate is extremely

small (much worse than the speech recognition chip) indicating that the state

form will be better at lower frequencies. The photo of the die is shown in figure

10c with the log-log frequency response shown in figure lie.

The design of this chip was automated one more level than the others.

Instead of specifying the digital filters, a program was written to generate the

digital filter specifications from desired 3 dB frequencies. The program picked

the most suitable structure and determined and truncated all coefficients.

Yin CONCLUSIONS

The tools discussed here have been extremely valuable in the development

of the circuits that have been fabricated. These tools not only shortened the

hardware design time, but provided testing that found all errors before fabrica

tion. Minor changes, such as increasing the width of the data path and fine tun

ing the gains of the channels, were made by simply editing the filter description

file. Normally this would be a tedious task prone to careless mistakes. By care

ful design of the circuit cells and restricting the applications to filter banks, the

software complexity was reduced with a development time of one man-month.

-19-

Tablel

RAH length (words)
data path word width
ROM length
Decimation ratio
number of processors 1

circuit 5a circuit 5b circuit 5c circuit 5d
1 channel 8 channel 16 channel 16 channel
B 64 64 64
10 16 16 20

32 128 128 192

Table 2

datapath
word width

size

power dissipation
SNR

number of poles
sample rate

8

single
4 pole

10

2.6mm x 2.5 mm
260 ml

46 dB

4

84 KHz (max)

8

16 channel

speech recognition

20

7.2mm x 3.7mm
570 mW

80 dB

112

14 KHz

B

16 channel

consumer hi-fi

20

6.7mm x 3.6mm
570 mW-

60 dB

60

20 KHz

-20-

References

[1] Rabiner L.. Gold B.,Theory andApplications of Digital Sgnal
Processing, Prentice Hall, 1975.

[2] Schmidt L., "Designing programmable Digital Filters for
121 implementation". Hewlett Packard Journal. Vol 29.
no 13. p. 15-23.

[3] Keller K. Newton A.. "KIC 2: A low-Cost. Interactive Editor
for Integrated Circuit Design". Proc. 24th COHPCON. Feb 1982.

[4] Mead C, Conway H.. Introduction to VLSI Systems,
Addison-Wesley, 1960.

[5] Lowy H.. et al, "AnArchitecture for a SpeechRecognition System".
ISSCC DIGEST OFTECHNICAL PAPERS, p. 118-119. Feb 1983.

[6] Agarwal R., Burns C. "New Recursive Filter Structures
Having very low Sensitivity and Roundoff Noise". TF!EE J. Circuits
and SysL. vol CA&22. pp. 921-927, Dec 1975.

[7] Ruetz P.. et al. "Computer Generation of Digital FQter Banks",
ISSCC DIGESTOFTECHNICAL PAPERS, p. 20-21. Feb 1984.

-21-

ACKNOWLEDGEMENTS

This research was sponsored by DARPA under contract number N00034-K-
0251.

Steve Pope and Bjorn Solberg deserve credit for a large portion of the cir
cuit design and layout of the macrocells.

Filter

Specification

Real Time

Testing
i»

Filter

Compilation

> i

'i

Layout . /
Generation * \

figure 1. Filter Bank Design Procedure

Filter
Library

Macrocells

Control
ALU

CONTROL

ROM Siqnol I/O
i »

I
PC

Control Address
Index

Reg.

figure 2. Hardware Architecture

RAM

b it bit

X

figure 4. 4 transistor RAM cell

se!

Data

Memory

Memory
Output
Register

Barrel

Shifter

Complementer
(+,-,orH)

Memory
Input
Register

t t t

3:1

BUS
~i—

p] (ZERO) (ZERO)

Q!
Adder

Accumulator

figured. DataPath Block Diagram

To
I/O

Ports

(a)

(b)

; W

figure 5. layout Generator Output (see table l)

INPUT-

ZEROES FOR
DIRECT-FORM

BPF's

4-POLE STATE
VARIABLE

BPF

4-POLE STATE
VARIABLE

BPF

4-POLE

BPF

FULL
WAVE
RECT

I-POLE

LPF

FULL
WAVE
RECT

FULL
•(WAVE

RECT

I-POLE

LPF

I-POLE

LPF

A POLE

BPF
—•

FULL
WAVE
RECT

—•
1 POLE

LPF

DECIMATE

8: I

DECIMATE

8:1

DECIMATE

8: I

DECIMATE

8 1

2-POLE

LPF

CHANNEL 0

OUTPUT

-(I)

"(2)

•(3)

*(4)
2-POLE

LPF

2-POLE

LPF

CHANNEL 5

OUTPUT

- (6)

- (7)

- (8)

- (9)

- (10)

- (ID

- (12)

- (13)

- (14)

2 POLE

LPF
—05)

figure 8. Speech Recognition System Filter Bank Organization

yn BAND PASS

yn LOW PASS

(a) 2nd Order State Variable Low Pass Filter. Band Pass Filter

(b) 2nd Order Direct Form Poles

figure 7. filter Structures used in the Speech Recognition Chip

n

(c) Single Pole Low Pass filter

2"' z-' z-'

(d) 4th Order Zeroes for Direct Form Band Pass Filters

figure 7. filter Structures used in the Speech Recognition Chip

PASS I

PASS 2

Compression Typicolly
Reduces code 25%

Error Check
Assign RAM

i
Generote

Symbolic
Micro-code

i
Micro-code

Compression

i
Assemble To

Binory Tester
or ROM code

figure B. Filter Compiler Operation

VAX

1 t

PATTERN

GENERATOR

i

CONTROL

t

ALU a

RAM

CHIP
A/D D/A

SIGNAL SIGNAL

SPECTRUM

A NALYZE R

figures. Teal System for Verifying Algorithms

nnnnnnn^--^

hWMV

fc& ?»»<?• •* S
11 • 11. • i • 11111 •

... -mm*. . Wi, «-. -•

Figure 10a. 4 pole single BPF chip Die Photo

aoaa3sa•a9Uu*

I£a

o5

figure 11a. 4 pole singleBPF Frequency Response

dB

figure 1lb. 18 channel Speech Recognition chip Frequency Responses

dB

8

0

-8

-16

"Wife

wmmmw:<

'4TJ
i#Afi

i^

—T r r

0.1 1.0 10

kHz

figure lie. 18 channel 1/2octave spectrum analyzer Frequency Responses

-22-

APFENDDCA USDiG THE ULTER OOHPOZR

Before the filter compiler can be used to generate the hardware descrip

tions, the user must do several things. The filter descriptions must be written

into an input file ('filterdata') according to the format described later. If sec

tions are used that are not currently in the filter library, the library must be

expanded. Also the file 'filtparm' must be set up with the appropriate informa

tion. Example 'filtparm' file:

128 desired instructions

1 processor
18 bit wide data path
false column decoded

The desired number of instructions parameter tells the compiler how many

instruction the user wants per sample. This can be used to achieve a desired

clock rate or to force both banks to be the same length. The column decode flag

tells the compiler whether binary data should be generated for column decoded

or non-column decoded ROM designs. The other two parameters are simply

passed on to the layout generator.

Finally, the compiler (ctrl, for coefficient to rom) can be run. The output is

written to a file (romout) for use by the layout generator or the tester program.

The filter sections must be divided manually among the two processors if

•two are required. This is probably best done by trial and error. The amount

each processor can do is determined by the sample rate, the maximum system

clock rate (see App E) and limitations on the sizes of various circuit blocks (see

App B). The compiler can be used to determine the total number of cycles

required for the entire bank and if this is too many for one processor, the job

can be split in two parts.

If the bank has been split into two parts, the program is simply run twice.

As the program doesn't interact between the two runs, it is up to the user to

— 3 3 3

-23-

ensure that both processors do not try to output at the same time. If it is

desired that both processors operate on the same off chip input data, then both

processors should input at the same time. This is easily accomplished by mak

ing the input channels for both banks the same. The compiler displays the cycle

number that the processor is inputing data, outputting data and causing the

index register to count. From this data, the user can assure that inputs and the

counting of the index register for both processors occur at the same time, while

outputs for the two processors occur at different times. This is usually not a

problem for few outputs but may be a problem for many outputs. The user can

adjust coefficients to add cycles and hence move the output.

The compiler outputs many messages when running, most of which just indi

cate what it is doing. If an error is found, it is printed and execution continues.

Hardware parameters such as RAM length and decimation ratio are printed

which the user needs to input into the layout generator.

-24-

INPUTflLE FORMAT

A FILTER BANK FORMAT

1. (Input Channelsj
These are channels that fetch input data from
outside the chip. Either the raw input or
the channel output can be accessed by standard
channels.

2. (Standard Channels)
These are channels that process in parallel.

3. [Decimation Channel]
This channel operates on the outputs of all standard
channels above after decimation by m.

4. <Standard Channels>

Standard channels that are not decimated.

5. E - end of file marker

B. CHANNEL FORMAT

1. Channel type identifier
S -standard
I-Input
D - Decimation

2. (section)

a SECTION FORMAT

(2 letter section identifier) [options] coefficients
options:

0 - send section output off chip
R - rectify section input
o - take input from channel output (channel 1 default)
n - take input from channel n

coefficients:
are separated by commas and enclosed
In parenthesis

D. COEFFICIENT FORMAT

Canonical signed digit format
[-]<binary <hgit>.<CSD>

a binary digit is either 0.1
a CSD is 0,1,-

The optional minus sign at the beginning negates
the remainder of the coefficient unlike the CSD value '-.

-25-

Example: -1.0010-= -(1+1/8-1/32)

Notation:
quantities in (j must be inserted at least once and can be repeated
quantities in [] are optional
quantities in <> are optional and can be repeated

Notes:
1. Comment lines with 'C* in the first column can be put anywhere

except where coefficients are expected.

2. Spaces are ignored.

3. The letters *E\ 'S\ T, 'D1 should be treated as reserved and
may cause trouble if used as part of a section identifier.

oji

-26-

INPUT FILE EXAMPLE EVEN CHANNELS OF SPEECH RECOGNITION CHTP

C
C filter bankl — even channels
C
C Gains corrected 10/7/83

C
I
ID
S
C channel 0
BS (.100-,-.00001000-,.000011)
BS (1.-0001001..00100-)
LI R (1.000000-..001)
S
C channel 2
BS (.0100-.-.00001101..1001)
BS (10.,-.0001..1101)
U R (1.000000-..001)
S
C channel 4
BS (.00100,-.000100-. 10.01)
BS (10..-.0001.10.11)
LI R (1.000000-..0100)
S
C channel 6
BD o (-1.000-000-.1.10101..0001)
BD (-1.000-00-.1.100101,.0001)
L1R(1.000000-..0001)
S
C channel B
BD o (-1.00-0001.1.001..001)
BD (-1.00-001,1.011..001)
LI R (1.000000-..0001)
S
C channel 10
BD o (-1.00O01..101..00011)
BD(-1.00-001.1.00-..001)
LI R (1.000000-..0001)
S
C channel 12
BDo (-1.00-.-.00101..001)
BD(-1.00-..001..001)
UR(l.OOOOOOvOOOl)
s
Cchannel 14
BD o (-1.00-.-1.001..001)
BD(-1.(MK)1.-.11,.01)
L1R (1.000000-..000101)
D
L2 0(-l.-.00011..0001l)
E

• -27-

Notes:

0Zt7

-28-

Notes:

Ufr

-29

FILTER LIBRARY

The filter library describes the the way that the compiler should implement

each section and the requirements for each section. Diagrams for the sections

that are currently implemented are given in figure Al. The order that the

coefficients must follow in the input file is given in table A2.

The filter library consists of the file 'filttypes' which contains data on the

valid filter sections and a macro file for each filter section. Each macro file has

the name which begins with its associated two letter identifier and ends with

(2 character section identifier) (' ') (number of coefficients used)
('') (number of memory locations used) ('') [comments]

Table Al - Current 'filttypes*

BD

BS

LI

12
ID

IS

IT

II

iz

pz

dz

3

3

2

3

0

0

0

0

3

2

0

Direct

State

Direct

State

6 Direct

1

1

4

4

3

5

Input
Input
Direct

Direct

Direct

Direct

2nd order

2nd order

1st order

2nd order

4th order

0 order

0 order

2nd order

2nd order

1st order

4th order

section (poles only)
BPF

LPF

LPF

BPF zeros (input section)

output abs value for test
zeros for DBPF (input section)
arbitrary zeros (input section)
pole zero combination (input)
BPFzeros (no input)

Table A2 - coefficient ordering

Section coeffl

BD

BS

LI
L2

ID

IS

IT

II

iz

pz
dz

b

G

a

G

a

a

coefl2

a

-a2

G

-a2

c

b

coefl3

G

al

al

yn BAND PASS

Qi>-«4 +>-f-yn LOW PASS

* ReveAseo for Lfc

BS 2nd order state BPF (no zero at z =-1) HRP(z) =
-Ga,z-i(l-z-»)

BP} z-2(l-a2)-z-' (2-a2-a2a() + l

L2

Xn —

- 6a,a2zH
2nd order state LPF (no zero at z =-I) HLP(z) = —— : -7- r—

Lr z~2(l -a2)-z",(2-a2-a2a,) + |

0
-Jn

BD 2nd order direct form poles

6
H(z) =

l-az-1-bz-2

FIGURKAt. FILTKR SECTIONS

®

n k>-i z-'
0

z-'
®

z-'
<D

z-'
©

XnT— *"' - r—yn

FIGURE Al. HLTER SECTIONS

LI 1st order LPF

G
H(z) =

I - az-'

2D 4th order zeros for DBPF

H(z) = (l-z-2)2/4

LX 2nd order zeros

H(z) =a+bz-'+cz-2

XI 2nd order zeros for DBP!

H(z) = 0-z-2)/2

px pole zero pair

i+az-'
H(z) =

1-bz-i

-30-

Hacros

The macro files include the micro code for the section and indicate where

coefficients and options from the input file should be inserted. The symbolic

micro code specifies the state of the control lines for that cycle according to the

format:

-31

Micro code format:

Col 1: Memory operation (r.w.x)
r=read

w=write

x=dont care (read)

Col 3.4: Relative memory address (0-99.**,xx)
00-99: add to offset to get true address
**: section input, use address of input source
xx: dont care (00)

The section output must be given the highest address.
Address should be sequential starting from 0.
Sections which read inputs from off chip should store
the input in add 0.

Col6: Write latch operation (l,h,x)
- l=latch data on membus

h=hold data in latch
x=dont care (hold)

Col 8: Barrel shifter input source (m,s.x)
m^memory

s=shifter output
x=dont care (shifter)

Col 10: Number of shifts for barrel shifter (0-5.X,*)
0,1.2,3,4,5: shift designated number
*: set from coefficient value

x: dont care (shift 0)

Col 12: Adder a input operation (a.+.-,z,x,*)
a: absolute value

+: true

-: negate
z: zero

z: dont care (zero)
* absolute value if rectify is specified

Col 14: Adder b input source (a.m,c,z,x)
a: accumulator

m: memory

c: 1*3 complementer output
z: zero

x dont care (zero)

Col 18: I/O operation (i.O,a,x,*)
i: enable parallel input, set input strobe
O: enable parallel output, put ace on membus,

set output strobe
a: put ace on membus, no output
z dont care (ace on membus, no output)
*t parallel output if output option set

-32-

TIMING CONSIDERATIONS IN WRITING MICRO CODE

Several points must be kept in mindwhen writing the code:

1. Micro code is written in the order in which it comes out of
the ROM. The order of actual operations may be different.

2. The results of the adder operation described in one cycle is
valid the next (at the accumulator output).

3. The write latch and barrel shifter input controls are
delayed one cycle and should be initiated one cycle
before the desired operation.

4. Data from a memory read appears at the barrel shifter input mux the
cycle after the read operation. Similarly, data stored in the write latch
appears at the barrel shifter input mux the cycle after the write operation
is performed.

5. Parallel input data is latched the phase 1 before vmiting goes low
and is gated onto the membus when xmitin2 is low.

EXAMPLE:

1 r 00 X m X X X X

2 r ** X m * + z X

3 x XX 1 X
* «

a X

4 w 00 X X X X X
*

cycle 1: read data from mem(0), set barrel shifter
mux for memory.

cycle 2: read output of last section, acc=mem(0)*coeff

cycle 3: set write latch to get results of computation (l cycle early),
acc=acc+coeff*abs(input) (if rectification option is set)
acc=acc+coeff*input (if rectification option not set)

cycle 4: membus=acc, (write latch operation takes place),
mem(0)=data in write latch (ace),
turn on I/O buffers if output option is set

-33-

LLstings of macros in library

BD num coeff: 3 numloc: 2
Direct 2nd order section (poles only)

r 01 X

r 00 1

w 00 h

r **
X

X XX 1

w 01 X

E

m x x x x

m 0 + z x
m * + Z a
m * + a x
x • • a x
x x x x •

BS num coeff: 3 numloc:
State 2nd order BPF

r **
X m X X X X

r 01 X m
• •

z X

r 00 h m 0 + a a

r 01 1 m 0 + a X

w 01 X m 0 + z a

r 00 1 m
« •f a X

w 01 X m 0 + z
*

X XX 1 X • + a X

w 00 X X X X X a

E

LI num coeff: 2 numloc:
Direct 1st order LPF

r 00 X m X X X X

r »*
X m * + z X

X XX i X * *
a X

w 00 X X X X X *

E

L2 num coeff: 3 numloc:
State 2nd order LPF

00

m

m

r 01 h m 0
r 00 1 m 0 + a X

w 00 X m 0 + z a

r 01 1 m * + a X

w 00 X m 0 + z a

X XX 1 X • + a X

w 01 X X X X X *

ees

-34-

ID num coeff: 0 numloc: 6
Direct 4th order BPF zeros (input section)

r 02 1 m x x
r 04 h m 1 -
w 00 h m 2 +

x

r 03 1 m 2 + a x

w 05 1 X 0 + z *

r 02 h m X X x a

w 04 I X 0 + z X

r 01 h m X X x a

w 03 1 X 0 + z X

r 00 h m X X x a

w 02 1 X 0 + z X

w 01 X m X X x a

E

IS num coeff: 0 numloc:

Input 0 order

X XX 1 X X X x i

r 00 h X X X x i

w 00 h X X X X X

E

IT num coeff: 0 numloc: 1
Input 0 order output abs value for test

X XX 1 X X X X i
r 00 h X X X X i
w 00 h m X X X X

X XX X X 0 a z X

X XX X X X X X *

E

II num coeff: 0 numloc: 4
Direct 2nd order zeros for DBPF (input section)

r 01 1 m X X X i

w .00 1 m 0 + z i

r 02 h m 1 + z X

w 02 X m 1 - a X

r 00 1 m X z a X

w 03 I X 0 + z *

w 01 X X X X X a

E

-35

iz num coeff: 3 numloc: 4

Direct 2nd order arbitrary zeros (input section)

r 01 I m x x x i

w 00 1 m 0 + z i

T 02 h m
* + z X

W 02 X m
* + a X

r 00 1 m
« + a X

w 03 1 X 0 + z
*

w 01 X X X X X a

E

pz num coeff: 2 numloc: 3
Direct 1st order pole zero combination (input)

r 01 I m X X X i

r 02 h m
* + z i

w 00 h rn * + a X

w 01 1 X 0 + a X

w 02 X X X X X
*

E

dz num coeff: 0 numloc: 5
Direct 4th order BPF zeros (no input)

r Olxmxxxx
r03xml- zx
r

**
X m 2 + a X

r 02 1 m 2 + a X

w 04 1 X 0 + z
*

r 01 h m X X X a

w 03 1 X 0 + z X

r 00 h m X X X a

w 02 1 X 0 + z X

r
** h m X X X a

w 01 I X 0 + z X

w 00 X m X X X a

E

-3G

Notes:

0 :•.

-37-

APPENDDCB USING THE 1AYUUT GENERATOR

The files 'bank1rom* and 'bank2rom' must contain the ROM data for the

respective processors. The format (Bee below) of these rom files is the same as

that of 'rornouf created by the filter compiler.

The layout generator writes four files, all in KIC format The file 'filter' con

tains the complete filter description, while 'controller' and 'procram' contain

the controller and data path descriptions respectively. The file, 'indexreg', con

tains the index register.

To simplify the development of the layout generator, several restrictions

have been placed on the range over which the hardware parameters can vary.

Restrictions:

L The RAM size must be a multiple of 4 between 8 and 128 words.
Max RAM size with decimation is 92 words.

2. The data path width must be a multiple of 2 greater than 6.
3. The ROM must contain a multiple of 32 words not greater than 256.
4. For two processor designs:

The two data paths must be identical
The two ROMs must have the same length.
The decimation ratio (<=8) must be the same for each processor.

The format of the rom file is:

line 1. number of words of ROM
line 2. ROM width
line 3. number of desired instructions
line 4. RAM length
line 5. decimation ratio
line 6. number of data paths
line 7. data path width
line 8. column decoded (true/false)
line 9. micro instruction executed first
line 10. 2nd micro instruction

•••

line n. last micro instruction

There must be a multiple of 32 micro instructions (18 for non-column

decoded layouts).

-38-

Format for each line of the rom file starting with column 1:

L RAM address/ index register control
(without decimation: n bits, msb first)
(with decimation: always 7 bits)
format with decimation:
110 a a a a select index register for xnsb'B, ROM for lsb's
111 x x x x increment index register
Oaaaxxx 3 bit address from ROM
Oaaaaxx 4 bit address from ROM
Oaaaaax 5 bit address from ROM
Oaaaaaa 8 bit address from ROM
aaaaaaa 7 bit address from ROM (can not start 11)

a= RAM address bits, msb first
x= unused

2. memwrite
memory write control l=write, 0=read

3. wrlatch
controls loading of write latch l=latch, O=hold
delayed 1 cycle

4. shiftsrc
controls barrel shifter input mux l=shifter, O=memory
delayed 1 cycle

5. 5-shiftnum (3 bits msb first)
number of barrel shifter shifts (subtracted from 5)

6. invl

7. inv2
controls complementer
invl=0, ihv2=0 true
invl=x, inv2=l invert
invl=l, inv2=0 absolute value

8. bsell

9. bsel2
controls adder b input mux
bsell=0, bsel2=0 zero b
bsell=0, bsel2=l l's complementor output
bsell=l, bsel2=0 memory
bsell=l, bse!2=l floating (to select ace)

10. zeroa*
Zero adder A input if zeroa*=0

11. unitace*
transmit ace to membus if xmitacc*=0

12. accb*
enable ace onto b input if accb*=0

13. xmitin2*
transmit parallel input to membus if xmitin2*=0

14. iobusen
enable parallel output when lobusen=l

The order of binary data in the ROM file is the same as that of the control

lines entering the data path starting from the RAM end. Exceptions are the bar-

-39-

rel shifter shift number which is reversed on the data path (i.e. Isb first) and the

RAM address lines which consist only of the necessary data (no unused lines in

the case of decimation). Several signals have been tied high or low at the data

path and need not be specified.

t'S

40

Notes:

-41-

APPENDDCC USING THE TESTER

The pattern generator part of the tester set up was developed at UCB by

3im Beck. In order to use this, the 64 pin test head must be connected to the

main tester unit. A special patch connector is used which contains the circuit

shown in figure CI. As the tester has no capabilities to handle the decimation

and the index register is not included on the data path chip, a switch bank is

used to simulate the decimation. The user can then check each channel by set

ting the switches appropriately.

After the hardware is set up, the filter specifications should be compiled

with the filter compiler. The ROM data is converted to tester format in the file

'testout* by running 'romtotesf. Then the programs 'tas' and 'tdown* (see the

tester manual) can be used to start the tester. If two data paths are being used,

the filters of each data path are tested separately.

This shell script will test the filters specified in 'filterdata':

Ctrl

romtotest

tas testout

tdown

-42-

The data path circuits which should be used are proc.july, procfast.july

(M37YPH1. M37YPG3). The circuits have the following pin out and connection to

the tester:

IC tester function IC tester function

pin connection pin connection

1 GND substrate 33 2C mem4

2 11 dl7 34 2B mem3

3 10 dl6 35 2A mem2

4 F dl5 36

5 E dl4 37 *

6 38
7 39

8 40

9 41 29 meml
10 D dl3 42 28 memO

11 C dl2 43 27 memwrite

12 B dll 44 23 wrlatch

13 A dlO 45 22 shiftscr

14 9 d9 46 26 sh2

15 8 d8 47 25 shl
16 7 d8 48 24 shO
17 6 d6 49 21 invl
18 5 d5 50 20 inv2
19 4 d4 51 IF bseil
20 3 d3 52 IE bsel2
21 ' 2 d2 53 ID * zeroa*
22 1 dl 54 IB xmitacc*
23 0 dO 55 1A accb*
24 56
25 57
26 58
27 59 16 xmitin2*
28 60 15 iobusen

29 61 ciockl phi
30 GND GND 62 . ciockO ph2
31 2E mem6 63 Vdd Vdd
32 2D mem5 64 14 Daden

*
0

OS?
0

-
0

-
O

-
o

-

0
-

-

O
O

O
O

n
-

-
A

\
n

<
-

c<
^

s
6

S
5

£
2

£
?

Q
•

"
3O

r
C

T
©

«
xU
l

c?cqco
CQ

<
<

e
8̂S3

-£o

*
i

S
e-
*

-
^5

^
>

Q<
c

•41c§U

3

E

-43

Notes:

u i

r .

(' l> \ (-••: \ i.

! i

-44-

APPENDKD1. SPEECH RECOGNITION FILTER BANK

1. Filter compiler input files
2. Chip pinouts
3. Timing

?b"9

-45-

C
C filter bankl — even channels
C
C Gains corrected 10/7/83
C
I
ID
S
C channel 0
BS (.100-.-.00001000-..000011)
BS (1.-.0001001..00100-)
LI R (1.00000O-..001)
S
C channel 2
BS (.0100-.-.00O01101..1001)
BS(10..-.0001..1101)
LI R (1.000000-..001)
S
C channel 4
bs r.ooioo-.-.oooioo-.io.oi)
BS (10.,-.0001.10.11)
LI R (1.Q00000-..0100)
S
C channel 6
BD o (-1.000-000-.1.10101..0001)
BD (-1.000-00-.1.100101..0001)
LI R (1.000Q00-..0001)
s

C channel 8

BD o (-1.00-0001.1.001..001)
BD (-1,00-001,1.011..001)
L1R(1.000000-,.0001)
S

C channel 10
BD o (-1.00-001,. 10l,.0001l)
BD (-1.00-001.1.00-..001)
L1R(1.000000-,.0001)
S

C channel 12
BD o (-1.00-.-.00101..001)
BD (-1.00-..001..001)
Ll R (l.000000-,.0001)
S

C channel 14
BD o (-1.00~.-1.001,.001)
BD (-1.0-001.-.11..01)
L1R (l.OOOOOOvOOOlOl)
D
I3Q(-1,-.00011..00011)
E

-46-

C

C Fdter Bank2 - odd channels
C
C

C Gains corrected 10/7/83
C
Input
ID
Standard
C channel 1
BS(.100-,-.00001011,.00101)
BS (1.-.0001001..01001)
Ll R (1.000000-..001)
S
C channel 3

BS (.0010-,-.00010001,1.1001)
BS (10..-.000100-, 1.01)
Ll R (1.000000-..01)
S
C channel 5

BD o (-1.000-001.10.0-..000011)
BD (-1.000-.1.1011..0001)
L1R(1.000000-,.0001)
S
C channel 7

BD o (-1.00-001.1.011..0001)
BD(-1.000-.l.l,.00l)
L1R(1.000000-,.0001)
S
C channel 9
BD o (-1.00-0001.1.00-..00100-)
BD (-1.00-001.1.001..001)
Ll R (1.000000-..0001)
S
C channel 11
BD o (-1.00-..01..00100-)
BD(-1.00-,.1..001)
Ll R (1.000000-..0001)
S
C channel 13

BD o (-1.00-0-.-. 101..00100-)
BD (-1.00-0-.-.01..01)
L1R(1.000000-,.0001)
S
C channel 15
BDo(-1.00~.-l.l,.01)
BD (-1.0-.-1.01..001)
L1R(1.000000-..0001)
D
L2 0(-l,-.00011..00011)
E

fllter bank chip pin-out.

1 gnd 21

2 dl2 22

3 dll 23

4 dlO 24

6 d9 25

& dB 26

7 d7 27

B d6 28

0 dS 29

10 d4 30 GND

11 datain* 31 Vdd

12 evenout 32 phase 2 elk
13 oddout 33 phase 1 elk
14 laatch 34

IS GND 35 paden
16 36 dl7 (msb)
17 37 dl6

IB 36 dl5

19 39 dl4

20 40 d!3

47-

Fbr non column decoded versions, the output strobes are
inverted and pin 15 is clear.

(Sqoiplej 3-? Same)

FILTER BANK TIMING (see appendix E for details)

fashA

cytk numb***

Sample number

-48-

APPENDDC D2 Consumer stereo spectrum analyzer

1. 3 dB frequency files (datain) for both banks
2. filter compiler input files for both banks
3. Chip pinout

Bankl 'datain'

20000 12
4880 6550

2340 3260

1170 1640

690 630

292 410

146 207

70 100

36 50

0 0

Bank 2 -datain*

20000 15

6550 9000

3260 4660

1640 2340

630 1170

420 560

207 292

100 146

50 70

0 0

-49-

C
C Hi-Fi spectrum analyzer filter input file
C
I
II
S
c
C filter number 1 f 1= 4880 f2= 6550
C
BDo (-.1.-.10-..01)
Ll R (1.000000-..00001)
S

c
C filter number 2 f 1= 2340 f2= 3280
C
BDo (-1.0-.1.001..001)
Ll R (1.000000-..00001)
S
C
C filter number 3 f 1= 1170 f2= 1640
C
BDo (-1.00-00-.1.110-..0001)
Ll R (1.000000-..00001)
S

C
C filter number 4 f 1= 590 f2= 830

C
BDo (-1.000-00-.10.00-..00001)
L1R(1.000000-,.00001)
S
c
C filter number 5 fl= 292 f2= 410
C
BS (.1.-.00001001..0101)
L1R(1.000000-..00001)
S
C
C filter number 6 f 1= 146 f2= 207
C
BS (.1.-.00000101..00101)
Ll R (1.000000-..00001)
S
C
C filter number 7fl= 70 f2= 100
C
BS (.1.-.0000001..000101)
Ll R (1.000000-..00001)
S
c
C filter number 8 f 1= 36 f2= 50

C
BS (.1.-.00000001..0000101)
L1R(1.000000-,.00001)
D

L2 0 (-1.-.00011..00011)
E

50-

-51-

C
C Hi-Fi spectrum analyzer filter input file
C
I
II
S
c
C filter number 1 f 1= 8550 f2= 9000
C
BDo (-.1001.-1.10-..01)
Ll R (1.000000-..00001)
S
c
C filter number 2 f 1= 3280 f2= 4680
C
BD o (-.1..1..01)
Ll R (1.000000-..00001)
S
C
C filter number 3 f1= 1640 f2= 2340
C
BDo (-1.0-.1.100-..001)
Ll R (1.00000O-..00001)
S
c
C filter number 4 f 1= 830 f2= 1170
C
BDo (-1.00-01.10.0-01..00010-).
L1R(1.000000-..00001)
S
c
C filter number 5 f 1= 420 f2= 590
C
BDo (-1.000-001.10.000-0-..000010-)
Ll R (1.000000-..00001)
S
c
C filter number 8 f 1= 207 f2= 292
C
BS (.1.-.0000100-..01)
Ll R (1.000000-..00001)
S
C
C filter number 7 f 1= 100 f2= 146
C
BS (.1.-.000001..0010-)
Ll R (1.000000-..00001)
S
c
C filter number 8 fl= 50 f2= 70
C
BS (.1.-.00000010-..0001)
Ll R (1.00000O-..00001)
D

L2 0 (-l,-.00011,.0001l)
E

52-

Chippinout

1
2 dl2

21

22
3 dll 23

4 dlO 24
5 d9 25

6 dB 26

7 €i 27

B dB 28

9 dS 29

10 d4 30 GND

11 datain* 31 Vdd
12
13
14

evenout

oddout

lastch

32

33
34

phase 2 elk
phase lclk

15

16
17

(GND) 35

36
S7

paden
dl7 (msb)
dl6

IB SB dl5
19 39 dl4
20 40 d!3

-53-

Fbr non-column decoded versions, the output strobes
are inverted and pin 15 is clear.

APPENDDCD3 - Unfile filter chip

filter compiler input file

I
n>

s
BDo(-1.00-..01
HDO(-1.00-. 1,.

..001)
01)

E

pinout

1 GND 21 d2

2 22 dl

3 23 dO

4 24 datain*

5 25 dataout*

6 paden 26

7 d9(msb) 27

B dB 28

9 d7 29

10 dB 30

11 d5 31

12 32

13 33

14 34

15 35

16 36

17 37 GND

IB SB Vdd

19 d4 39 ph2
20 d3 40 phi

-54-

-55-

Notes:

289

-56-

Notes:

£89

-58-

APPENDDCB Chip I/O timing

docks

The chips require a 2 phase non-overlapping clock. The clock separation

should be at least 30 nS. To ensure proper operation, the clocks should pull up

to VdcL Tbe simple 2/8 duty cycle clock generator in figure El can be used but

restricts the maximum clock rate of the circuits to 87% that obtained with a 3/8

duty cycle clock

The circuit clock rate is equal to the sample rate (the rate at which the

inputs are sampled) multiplied by the number of cycles per sample. For exam

ple, the speech recognition chip has 192 cycles per sample and a 14 KHz sample

rate. Therefore, a 2.688 MHz clock is required.

The circuits operate with a single +5 V supply and all inputs and outputs are

TTL compatible (except the clocks). However, it can be seen that a significant

reduction is supply current occurs when for Vbb < 0. This does limit the max

imum clock rate that the circuits can be run at.

parallel i/o

The input and output data is in twos complement format and passes

through the chip's parallel buss. The data is inverted once when input and again

when output. Figure E2 shows the timing for data output. The data on the i/o

lines and the output strobe(s) change after the rising edge of clock phase 2. The

data is valid after the rising edge of the phase 1 clock when the output strobe is

true.

The timing for data input is shown in figure E3. In the normal input mode,

the input strobe (datain*) goes low for two cycles each sample. The data is

latched during the first phase 1 after the strobe goes low. The strobe also gates

the signal onto the internal membus during the second phase 2. In this mode,

6£6

-59-

the input strobe can be used to enable theA/D converter tri-state outputs.

The I/O pads are controUed by the •paden* (pad enable) signal When this

signal is high, the pads are in the output mode. When it is low, the pads are in

the input mode. Therefore, paden should be high when either output strobe is

true and low when the input strobe is true. Usually, paden is connected to the

output strobe (or the OR of theoutput strobes ifthere are two).

synchronization with decimation

When decimation is used and the post decimation filter sends its output off

chip, a reference is required. The lastchsignal indicates when the index counter

counts down to its minimum value (ie the post decimation filter just output the

value for the first channel that is decimated). When the counter is at its

minimum value, lastch will go high for the first cycle of the sample and changes

on phase 2. When two processors are used with decimation both counters are

synchronized so that only a single lastch signal is needed. This timing is illus
trated in figure E4.

0 t7 6

<SooSL \SOOJL.
•>

\S>27

r->

4* CLOCK

D Q

US74
r->

t> Q

LS74
r->

D Q

i-57?

<#>, *!

figure El Simple Clock Circuit

A *

dcrfoiq*

VilW

FIGURE E3. Parallel Input Timing

A^
It-A-

i i

4>z

*i

output
5+fobt,

Ooipui
Valid '// doiq va/J

FIGURE £2. Parallel Output Timing

/osM,

Counter

FIGURE E4. Lastch Timing

-60-

Notes:

t.V-'AA"!

-61-

APPENDKF THE CIRCUIT CELl^

The primary circuit cells of interest have their schematics and plots shown
in the figures. The hierarchy listed below indicates how the cells are made of
sub-cells.

There are currently two sets of circuit cells. They both follow Mead and
Conway layout rules (also rules for MOSIS 4u NMOS) but follow different ratio
rules. The cells in the directory 'chip.jan' were designed with the more conser
vative K=4 (K refers to the ratio of enhancement W/L to depletion W/L) rules,
while the cells in 'chipfast.jan' were designed with K=3 rules in critical places.
This was done because the processing from various MOSIS vendors varies
significantly.

To generate a K=4 design after the generating the layout, the *.KIC' file
should include chip.jan in its path before chipfastjan. For K=3 chips,
chipfast.jan should be first in the path. Running 'kictocif* will then generate a
CIF file with the desired cells.

Hierarchy of KIC files:

filter (complete filter)
procram (data path) (see below)
controller (controller) (see below)
datacon.l (.2)
vddcon.l (.2,.il,.i2,.3) (Vdd, clock connection)
PadlOData (I/O pad)

PadBlank
PadDriver

Padln (non buffered pad)
PadlnBuffered (buffered input pad)
PadOut (Buffered output pad)
PadClk.2 (clock pad)
PadVdd (Vdd pad)
PadGND (GND pad)
PadI05 (5 data pads always included)
padsupply (Vdd, GNd, clock pads)
padstr.l (.2,.il) (strobe pads for 1 or 2 processor)
rout.3 (.4,.5,.6,.7) (routing cells between controller and data path

no indexing)
routi3 (.i4,.i5,.i6,.i7) (routing cells for indexing)

controller

pc.B (.7,.6,.5,.4) (program counter with n bits)
pcend (control logic for pc)
pcprog.O (cell to program counter to load 0)
pcprog.l (cell to program counter to load 1)
Counterslice (counter cell)
bufferslice (output drivers of pc)

decceilO (ROM decoder cell '0')
deccelll (ROM decoder cell T)
decceil2 (ROM decoder cell that passes column address)
decoder.5 (ROM decoder gnd connection)
romcO (ROM cell '0')
romcl (ROM cell'1')
romc2 (ROM array ground connection)

-62

romreg.2 (ROM output register, latches data on phi)
romreg. 1 (ROM output register, latches data on ph2)
romreg.3 (.4,.5,.6,.8)
romregtop.i (routing from ROM registers to index reg and data path

for decimation)
romregtop.7 (.6,.5,.4..3) (routing from ROM register to data

path for n RAM address lines)
pullup.l (.2,.3,.4)
Tomedge.2 (.3..5..6..B..9..10)
indextop.m (wiring to connect left and right index regs)
indextop.r (.1) (index registers and routing for right and left)

indexreg (complete index register)
indexreg.5 (index register with only 1 counter and other circuits)

indexreg. 1 (.2) (muxs, and misc control)
counterslice (counter)
pcprog.O (.1) (counter load program cells)

procram

dec41 (RAM decoder cell '1')
dec40 (RAM decoder cell '0')
ram4c2 (4t RAM cell mirrored)

ram4c (RAM ceil)
ramdecl (.2..3(.4,.5) (connects address drivers to decoder rows)
ramdriver (address bit drivers)
ramdecgnd (gnd return line for RAM decoder)
ramgnd.l (.2)
ramedge.l
mem4endrc (RAM select control)
auslicegnd (ground connections for data path)
Auslice.msb (msb slice of complete arithmetic unit)

auslice.msb (l/2 au slice for msb)
naddce (even adder cell)
naddco.msb (odd adder cell)
nsataccum.msb (saturaing accumulator)
nioblockmsb (parallel and serial I/O)

nioportcmsb (parallel 1/0)
ninportcmsb (serial input)
noutportc.msb (serial output)

bshSlice6.msb (1/2 au slice for msb)
nauinput.msb (A.6 adder input muxs)
bshtopinput (barrel shifter input mux)
senselatchbs (sense amp)
senselatdriv (control for sense amp)
dec3to6 (barell shifter decoder)

bshdeccellO (1.2,3) (decoder cells)
bshdecload

bshdecend

bshdecloadend
hshdecinv

bshdriv3to6 (control for 6 shift b.s.)
bshslice6 (6 bit barrel shifter slice) (see below)
bshtopsl6 (msb barrel shifter- just straight through)

bshtopcelll (basic cell)
bshendtopl (end cell)

63T

63

Auslice (slice of arithmetic unit)
auslice (1/2 au passed barrel shifter)

nmultc (adder, accumulator)
naddce (even adder cell)
naddco (odd adder cell)
nsataccum (saturaing accumulator)

nioblock (parallel and serial I/O)
nioportc (parallel I/O)
ninportc (serial input)
noutportc (serial output)

bshSlice6 (1/2 au including 6 shift barrel shifter)
senselatchbs (sense amp)
bshslice6 (6 bit barrel shifter, input mux, adder muxs)

bshinput (input mux circuits)
nauinput (A.B adder input muxs)
bshsl6 (6 bit barrel shifter)
bshcelll (2 bit barrel shifter cell)
bshendl (end cell)

7*
>

o
th

er
c»

w
»J

»e
^

^<
3h

p3
<}

^/T
S

u
c
fi

V

11
I
f
'

n
o

r

0
£

u
>

0
£

&

C
o

u
u

r

UA
D

Co
um

t£«
££

*
o.

Su
c£

$
t

ao
w

ne
©

!.
<

?u
r

J
~

R
o

m

RO
M

*

A<
W

W
(n

dr
)

<b
2

4>
,

n
PR

O
G

RA
M

to
vw

T
E

R
J

C
O

N
T

K
O

IJ
.K

R
W

IT
H

IN
D

E
X

R
K

U
IS

T
K

R

COLUMN
ADDRESS

DECODER

V CELL

"0" CELLS

WORD
SELECT
LINE

BIT -jh
LINE r*

OMITTED
FOR SOME
OUTPUTS

F4l

MEMORY
ARRAY

OUTPUT REGISTER
> WITH PRECHARGE

TRANSISTOR

h 1

^

Ii

d <

h

•i

NOR ADDRESS

DECODER

ROM AND OUTPUT REGISTERS

£

HALF AOOER

9UT OUT

COUNTER CELL (counterslice)

EXOR CIRCUIT

iI1

EVENADDER CELL (naddce)

A—r
1 -r-*co

to
V II JTl? MOT FOR MSB

ODD ADDER CELL (naddco)

z
(XFOR MSI)

ACCM2

m mtHl jHun
•2

->o » INVERTED SUM

OUTFUT

C, TO MSB

C0 FROM
MSB

ACC«02 TO ALL SUCCS

AIF (ACCUMULATE-IF-POSITIVE)

MSt ONLY

SATURATION LOGIC

MAGN

SAT2

SAT1

a
.

C
O

-
"
tj

r—
i>

o5

J
l

•a^n

<
*

11
O

0
4

-
V

J

sh
Z

S
k

)
11

ShO
1

H
eroa*

C
OVo0
1

5§zwzII

DAiATN*

Tft»«v«t%\€ \ j W\

Col ADt>

PARALLEL INPUT

FROM M BUS

PARALLEL OUTPUT CIRCUIT

CONTROL SECTION

PARALLEL

INPUT

BUS

PARALLEL INPUT CIRCUIT

3-STATE PARALLEL
OUTPUT BUS

PARALLEL

OUTPUT

TO M BUS

PARALLEL INPUT IUS

XMIT-PARIN

PARALLEL I/O PLOT

out

mv**

%s? %4sssm>

inO inl

(romreg.l)

Vdd

GND

ph2

Vdd

GND

phi

AD

AD*

ph2

Vdd

out

mm

m

mmm

(romreg.2)

ROM OUTPUT REGISTER

Co'

OUT

m w\

m ; c":Y:-x5Z?£i

I pjpn^^<£i^ ::^-.:-:: p
B; tV- vM-i

GND

Vdd

j^ i IP Si Z ^p7~R CUC2
* - 'l T ^^l ' •••I* ' ' * - - • •CCs^vV^'v* f*Y•"

m n twm-
jfm LOAD

wmmmYf ?<• -••;-- U CLK1

ioiJ
; °!:ount

7^—feg ;i':" -. fos—;•••• ••••; rr-

. :.;••; i GND

Ci*

^ PllJv-r1 Rj |»£f£-':

1 & Hi S i#
&&..

t& giaai

K3 f?;1
P .-?_

J;: i '•' i

*.. ?-,:••;: Vdd
ES frri 'a&Z&iil—. •-: ir<::\;.; u l_j—^
r,;* ;.,-.jjfg£: •. :• •• --' :- :••• -..- : ;

GND

IN

COUNTER CELL (coiiDterslicc)

r 8
B

B

shirto

shiftl

shift2

shift3

shift4

shift5

selO

GND

sell

9

I

u
Q

B

OS,

Ep63E?p
.*

55z55

(30SL
y
-
x
^
P

^
-
^
^
^

e
g

g
::^

y
^

:^
.>

g
g

^
t^

;-^
g

rj
..-

•.;
m

r
^

(l
!

:-
,

I
:

m
m

^
^

^
B

g
B

B
H

B
S

g
S

tS
E

tt-
^

;

tW
.s:*;---J

fc
£

a<I5sB<—1

*o\? ramO lutch
COfr

•- 1

•ftfc^ga GMD

•romZ2»" •rom21»" rocnaO

INDEX REGISTER (indexreg)

-64

Noties:

-65-

APPENDKG UFO BUFFER

In order to ease testing and interfacing the filter bank chips to the outside

world, a fifo chip was designed. This circuit is really a circular buffer, as writing

is not inhibited when the buffer fills. See figure Gl for schematics.

The circuit is a 3 transistor memory with separate read and write ports.

Writing and reading are totally independent and are controlled by shift registers

that point to current row being written or read. Timing is shown in figure G2.

When the wclear signal goes high, a '0' is entered into the write shift regis

ter (reseting the write pointer). Every time wshift goes high, the data at the

input lines is written into the row pointed at by the write pointer and the write

pointer is advanced. The wclear line should go low only after the write pointer is

shifted past the last row or multiple rows will be written.

When reading, the read pointer is automatically reset after the entire

memory has been read. The pointer needs, however, to be reset upon power up

by holding rclear* low for at least one cycle. Each time the rshift* line goes low,

the read pointer advances and new data appears at the output lines. This data

will remain until the rshift* line goes high and low again or new data is written

into the row being read. The outputs are tristate and float if paden is low.

The write control circuitry was designed specifically for the filter bank. The

lastch signal provides the requirements for the wclear signal. Wshift can be

obtained from the exclusive-or of the two output strobes. If it is desired to inhi

bit writing, wclear can be pulled to ground.

For testing, two reading modes are useful. In the first all channels are read

in sequence and the rshift* line is connected to datain* on the filter bank. Figure

G3 shows the connection between the fifo and the filter bank chip used in this

test mode. The sync* signal goes low after the last row has been read and can

be used to synchronize an oscilloscope if the outputs are converted to analog for

- 66 -

display. To look at a single channel, rshift* can be connected to a debounced

switch and controlled manually.

As with any dynamic circuits, certain timing constraints must be met. "The

shift registers are self refreshing so that for normal clock rates (>1 KHz) there

are no -constraints on the rshift* timing. If the circuit is used in a fifo mode with

writing inhibited care must be taken not to exceed the refresh time before the

data is read. At room temperature, tests have shown that the refresh time is

greater than four seconds. The maximum clock rate for a 16 word, 12 bit

memory is greater than 7.5 MKz as this is as fast as they could be tested.

HTOPINOUT

1

2

3
4

5

6

7

8

9

10

GND

o2

ol

o3

o2

o0[ol]
[oO]

paden
rclear*
rshift*

sync*
11 10 (lsb)
12 il
13 12

14 13

15 i4

16

17 15

18 i6

19 17
20 18

21 19
22 ilO

23 111 (msb)
24 wclear
25

28 GND
27 Vdd
28 ph2
29 phi
30 wshift

31 oil (msb)
32 olO

33 09

34 08

35 o7
36

37 08

38 o5

39 o4

40 o3

o5

o4]

-87-

[] Differences for fifos with FAB ID's before M43AJQ1

FTFDCELIS

bufferchip (complete chip 16 word. 12 bit)
{padsJ
bufferblock (the fifo itself)

readriv (read pointer control)
readend (control for shift registers)
ahiftcelll (the actual shift register;
readtop (other control)

writedriv (write pointer control)
writeend (control for shift reg)
shiftcelll (shift register)
shiftcell (write select gating logic)

outputreg (output register)
3tgnd (gnd connection)
memarray (the array of memory cells)

3tcell4 (4 cells mirrored both directions)
Stcell (single cell)

8*6

-68

FIFO SIMULATIONS

P

P Simulation of Filter Bank FIFO 10/3/63
P

Kph2 0100 phi0001
wOll 0100908070605040302 01 00 Sync
YWclear 1000000000000000001O00O)0000^a)000W00CK)CH3000000000
VWshift 001111111111111111001010101010101010101010101010100
VI11 111111111111111111110000000000000000000000000000000
VI10 OOOOQOOOOQOOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
VI9 111111111111111111110000000000000000000000000000000
VIB 000
YI7 111111111111111111110000000000000000000000000000000
YI6 QQOO00000O0O000O00O0OO0O000000Q00X)00t}OO0O0O0000OQO0
YI5 ocwoo
YI4 000
YI3 000000000001111111100000000000000000000000000000000
YI2 000000011110000111100000000000000000000000000000000
YI1 00000110011^011001100000000000000000000000000000000
YIO 000010101010101010100000000000000000000000000000000
VRclear lOllllllllllllllllllllllllllllllllllllliiiiiiiiiiii

VRshift 111111111111111111101010101010101010101010101010101
p

P write and read

P

R

SIMULATION OUTPUT

905 transistors, 657 nodes (130 pulledup)

Simulation of FilterBank FIFO 10/3/83

write and read

>XXD111111111111111111101010101010101010101010101010:OH
>XXDQOO00000O0O000000O0O0000OQ00O0000000000000O0Q000:O10
>XXD1111111111111111111010101010101010101Q1010101010:O9
>»(D000O0000000000000O000O00O00000000000000000000000:OB

>XXD111111111111111111101O10101010101010101010101010:O7
>X0}00000O00O0O000000O0O0OQ0OO0OO0O00000000000000000:O6
>XXDOOOO(X)00:05
>XCD0QQOOQOtt)QO000(X)0O0O0OutX}OOOO0OQ0Ott)0Oro
>XQD0000000000000000000000uXX}000O00Q0010101010101010:O3
>XXDOOOOOOOOOOOOOOOOOOOOOOuXX301010101000000000101010:02
>X0)000000000000600000Q000101QO000101000001010000010:Ol
>XXD000000000000000000001060100010001000100010001000:00
>XD11001:Sync

WH+* read.

Stcell (3 transistor RAH cell)

bit I'Hc.

Voo

>•< k~tt outputreg (output register)

1 x
CU

jet
J~L

shiftcelll (shift register)

Hgure Gl FIFO Circuits

J.
<t>,

r>
tsML

'2&L \\

reaA^o read, sel i reoisfil^

**» *fc*l
iyh£

-c

readriv (clkl=ph2, clk2=phl)

figure Gl FIFOCircuits

V
I

ifT
X

i*
^
oM?

III

S3tII

I

_n n__n n

G-^V-A-^V
\ • i

/ r^

£2.

i/////////////7m;////}///,njff$m •gfj-ta
\ j i __ rshifi*

W0K0 n. « WO/^O /)f| ot/fpui adil

Figure G2 FIFO Tuning

/\/D shobf^

A/P c^put
»2-

<k

*,

ii.

cM7-dJ>
drittt*
pader
oddoot
everx*{ 1586

'•*-

—nprd—'
rshJl* jpader\

Will* ft-

wcUar

<V4

Syr
f\fO

rcbor"

<tu &

Figure G3 FIFO. Filter Bank Interface

Vob

Jaiaout
it

^ope sync*

in2

&:•

IES35 y

Vdd phi ph2 GND

outputreg

datain GND datain

3t«lM atc*rr

vm-.i*

rsel ^^ksssssss^s^^k^^

wse

wsel

u
dataout. dataout

3tceU4

?3S
SSIW^ out2

mx'-tim outl

Vdd'

hold

shiftcelll

w

o

5

C

-69-

Notes:

-70-

APFENDDCH. SPICE SIMULATIONS

The following SPICE level 2 parameters were derived from measured curve

tracer data. Simulations using these parameters gave very good estimates of the

actual propagation delays. It should be noted that for the MOSIS 4 micron NMOS

runs, different vendors provided circuits with vastly different characteristics.

Propagation delays varied by almost a factor of two betweendifferent processes.

parameter SPICE II SPICE II SPICE II SPICE II units
slow slow fast fast
ENHANC DEPL ENHANC DEP

vto 0.6 -2.5 0.48 -2.9 V
cjo 1.3e-4 1.6e-4 1.5e-4 1.5e-4 F/m~2
gamma 0.4 0.5 0.5 0.56 V~5
lambda 0.01 0.015 0.02 0.025 1/V
vmax 4.0e4 3.0e4 4.4e4 3.3e4 m/sec
ucrit 2.6e5 2.5e5 ** mm V/cm
uexp 0.23 0.23 ** mm

uo 350 366 550 590 cm~2/V/sec
kp 17.2 18.0 25 27 uAA~2

** not measured because it has such a small effect

Other parameters used:
gate tox: 750 A
poly tox: 7000 A
metal tox: 14000 A

Id: .5 u

cjsw: 3.5e-10 F/m

It was found that using only the level 1 parameters still gave good results

with a decrease in simulation time.

The main circuits simulated were those that were added for the filter bank.

This includes the critical path through the data path up to the adder, the

column decoded ROM and the fifo. The half of the data path passed the adder

input multiplexors was already designed and simulated. The RAM array and

-71-

sense amplifiers were also simulated previously.

All spice simulations used parameters between the fast and slow values.

COLUMN DECODED ROM SIMULATIONS

198 word by 22 bit by 2 processor ROM

delay from PC change to decoder line low (2:5 V): 50 nSec
delay from PC change to bit line low (2.5 V):93 nSec
delay from PC change to bit line low (0.5 V): 112 nSec

delay from PC to row deselect (2.5 V) : 23 nSec
delay from PC to row deselect (0.5 V) : 43 nSec

CRITICAL PATH SIMULATION OF DATA PATH FROM MEMORY OUTPUT TO ADDER
INPUT

22 bit wide data path. 6 bit barrel shifter. K=4
delay from ROM to A input pulldown (2.5 V) : 165 nSec
delay from ROM to A input pullup (2.5 V) : 130 nSec
delay from ROM to barrel shifter select pullup (2.5 V) : 110 nSec
delay froM ROM to barrel shifter select pulldown (2.5 "V) : 30 nSec

22 bit wide data path. 6 bit barrel shifter. K=3
delay from ROM to A input pulldown (2.5 V) : 142 nSec
delay from ROM to A input pullup (2.5 V) : 1ID nSec
delay from ROM to barrel shifter select pullup (2.5 V) : 75 nSec
delay from ROM to barrel shifter select pulldown (2.5 V) : 30 nSec

UFO SIMULATION 16 word by 12 bit

read select pullup time from phi (2.5 V): 34 nSec
output pullup time from ph2 (2.5 V): 19 nSec
bit line pulldown time from phi (2.5 V): 31 nSec
storage node pullup time from phi (2.5 V): IB nSec

-72-

SMULAT10N OF INVERTER AND SUPER BUFFER PERFORMANCE

It is often possible to obtain quick estimates of the performance of simple
circuits using only a few benchmarks. Many paths in the circuit can be reduced
to a buffer driving a load capacitance, so that several different kinds of buffers
driving a capacitive load have been simulated. Although each buffer is simulated
with a single W/L ratio, load capacitance and Kp, changes in these parameters
will result in a simple scaling of the delay time. This is because:

td= (Cload)*(dV)/(Icharge)
= Cload*dV/(Kp*W/L*f(Vds,Vgs.Vt))

Therefore, one can use the value in the table and scale it for the appropri
ate circuit.

All simulations were done with:

Cload=2 pF
Kp= 25 uA/V~2 (enhancement and depletion)
W/L= 4u/4u (super-buffer output depletion device)
W/L= 4u/8u (super-buffer driver depletion device)
W/L= 4u/8u (inverter depletion device)
Kratio= 4 for no pass xter (npx), 8 with pass xster (wpx)

Delays for various buffer types

circuit Tplh(2.5V) Tphl (2.5 V) T>lh(4.0V) Tphl (0.5V)
non-inv S.B. npx 22 nS 10 nS 42 nS 15 nS
non-inv S.B. wpx 25 nS 10 nS 60 nS 17 nS
invS.B. npx 23 nS 8nS 45nS 12hS
invS.B. wpx 23nS 9nS 45nS 12nS
inverter npx 150nS BnS 200 nS (3.0V) 12 nS

- Or

-73-

APPENDDCI Emulations from the layout

In order to check that the layout generatorwas generating correct circuits,

a switch level simulator (MOSSIM) was employed. Before simulation, the circuit

must be extracted with MEXTRA.

The circuit was checked in blocks. The controller was simulated to check

that the ROM output the correct data each cycle. The index register action was

verified separately. Each data path was checked for proper arithmetic opera

tion and connection to the controller and pads. The RAM can not be simulated

because is uses ratioed enhancement devices.

Due to strange things in MOSSIM, all enhancement devices with gates tied to

either supply must be changed so that the gates are tied to user defined signals.

The signals are then set high or low in the input file.

Simulation files for the controller and the even channel processor are

included. These simulations were done on the speech recognition filter bank.

-74-

CONTROLLER SIMULATION INPUT FILE

P

P niter bank controller simulation (pc. decoder, rom. index regs)
P filtercdl6.oct 10/7/83 with column decode.no clear, correct indexreg

ht2

ltl

w omem5 omem4omem3 omem2 omeml omemO

w omemwrite owrlatch oshiftsrc osh2 oshl oshO oinvl oinv2
w obsell obse!2 ozeroa oxmitacc oaccb oxmitin2 oiobusen
w ememS emem4emem3 emem2 ememl ememO

w ememwrite ewrlatch eshiftsrc esh2 eshl eshO einvl einv2
w ebsell ebsel2 ezeroa exmitacc eaccb exmitin2 eiobusen
w lastch evenout oddout datain
Kph2 0100 phi 0001
lcout coutl

p

P clear counter

P

R6

xcout

p

P clear pc, index registers
P

Rl

P

P let pc run
P

R 64
P

x coutl

R 64

P

R 64

P
Rl

P
P test index reg
P

lcout

RIO

-75

CONTROLLER SIMULATION OUTPUT

20460 transistors. 8438 nodes (1844 pulled up)

filter bank controller simulation (pc, decoder, rom, index regs)
filtercdl6.oct 10/7/83 with column decode.no clear, correct index reg

clear counter

>XXXXXX:omem5
>XXXXXXomem4
>XXXXXX:omem3
>XXXDG0:omem2
>XXXD00:omeml
>XXXD00:omem0
>XXXD00:omernwrite

>XXXD00:owrlatch
>XXXlll:oshiftsrc
>XXXlll:osh2

>XXXD00:oshl
>XXXlll:oshO
>XXXDQO:oinvl
>XXXD00:oinv2
>XXXD00:obsell

>XXXD00:obsel2
>XXXD00:ozeroa
>XXXD00:oxmitacc
>XXXlll:oaccb
>XXXlll:oxmitin2
>XXXD00:oiobusen
>XXXX1 1:emem5
>XXXX11:emem.4
>XXXX1 l:emem3

>XXXDQ0:emem2
>XXXD00:ememl
>XXXD00:emem0

>XXXD00:ememwrite
>XXXD0O:ewrlatch

>XXXlll:eshiftsrc
>XXXlll:esh2
>XXXD00:eshl
>XXXlll:eshO
>XXXD0O:einvl
>XXXD00:einv2
>XXXD00:ebsell
>XXXD00:ebsel2
>XXXDQO:ezeroa
>XXXDQ0:exmitacc
>XXXlll:eaccb
>XXX111:exmitin2
>XXXDGO:eiobusen

>Xlllll:lastch

>XXXDOO:evenout

>XXXD00:oddout

>XXXlll:datain

clear pc, index registers

>Xomem5

>Xomem4
>Xomem3

>0:omem2

Xhomeml
XhomemO

>0:omemwrite

>0:owrlatch
>1:oshiftsrc

>l:osh2

>0:oshl

>l:oshO

>0:oinvl
>0:oinv2

>0:obsell

>0:obsel2
>0:ozeroa

>0:oxmitacc

>l:oaccb

>l:oxmitin2

>0:oiobusen .
>l:emem5

>l:emem4

>l:emem3

>0:emem2
Xhememl

>Chemem0

>0:ememwrite
>0:ewrlatch

>l:eshiftsrc

>l:esh2

>0:eshl

>l:eshO

>0:einvl

>0:einv2

>0:ebsell

>0:ebsel2

>0:ezeroa

>0:exmitacc

>l:eaccb

>l:exmitin2

>0:eiobusen

>l:lastch

>Q:evenout

>0:oddout

>l:datain

let pc run

-78-

-77-

>XDQOOOOO(X)O0O0O0OOOO0O0O0OQ000O00OO0Q0OO0(HX)0OO0O000O0OO000Ora
>XD00000000000000000000000000000000000001111011001111110110011101:omem4
>X3000100Q00Q0001111001101111110110011000Q0Q0Q0000000000000100110:omem3
>0110101111011001111001101111110110011001011001001011110110011001:omem2
>0011110101100100000000000011110110011100100010000110110010001101:omeml
>01110lll00110101011000101010110010001100100010000101000100010101:omem0
>0001010101011000001000100100010010010010001001000100010010010010:omemwrite
>QlQ0110101010000010001001000100l0010010Q010010001000100100100101:owrlatch
>l(XMX)1010101001000011001010000100101001Q00010011010^001001010010:oshiftsrc
>1110011111111110111001100111110010000000111001110111110011000011:osh2
>0001100000000001000010011000000101101111000000001000000100101100:oshl
>1101111111111100111010101111111011001001111111100111111011101111:osh0
>(XX)0000(X}OQOQOOOCX)0000000000(X)00000001000DQOOOOOOOOOOOOOOOOOO
>0010000000(X)0001000111000000Q0110000100i00011000000O001(X)Q001Q00:oinv2
>0001100000000001110111011001101101111101110110111011101101111100:obsell
>0001100000000001110111011001101101101101110110111011101101101100:obsel2
>00111101010100111111111110111111111011111111111111111H111101101:ozeroa
>011000000000000000000000000000000000000QOOOOOOOQQOOOOOOTO
>111001111111111000100010011001001001001Q001Q01000100010010010011:oaccb
>1001111111111111111llllllllllllliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:oxmitin2
>00000000000Q00Q000:oiobusen
>1000:emem5
> 100000000000000000000000000000000000001111001101111111100011001l:emem4
>100Q01000000000111101101111110110011000QOOOOOOOOOOOOb00001000110:emem3
>0110101111011001111011011111101100110010110001010111111000110001:emem2
>0011110101100100000000000111101100111001000010001101101000011011:ememl
>0111011100ll0101011001010101100100011001000010001010010000101011:emem0
>0001010101011000001001001000100100100100010001001000101000100100:ememwrite
>0100110101010000010010010001001001001000l0001001000101000100100ChewrIatch
>100(X}10101010010000100101000010010100100001100101000000110100100:eshiftsrc
>1110011111111110111001011111100100000001110101101111101110000001:esh2
>0001100000000001000000000000001011011110006010010000000001011110:eshl
>1101111111111100111011001111110100010101110011001111111001010001:esh0
>00OOO0OQCKXX}0O0O0CHXW0O0000O(W000O001QO000Oro
>0010000000000001000100000000011001010010001110000000010000010010:einv2
>000110000000000111011011001101101111101110111011011101011111l011:ebsell
>0001J00000000001110110110011011011011011101110110111010111011011:ebsel2
>0011110101010011111111110111111111011111111111111111111111011111:ezeroa
>01100(X)(X)OOOOOOOOW

>1110011111111110001Q01001100100100100100010001001000101000100100:eaccb
>100111111111111111111111111111111111llllllllllllllliiiiiiiiiiiii:exmitin2
>00000Q00000000Q0000(X}000000000000000000Q000000000000000000000000:eiobusen
>ll:lastch
>O0OOOQO0O(XX)0O0O000O00OQO0OQQO0O0O0OO0O00lX}0O0000O000O00O0000ra
>0000O0OO0000OOOQ0OOOO0O0O0OQ0O0OQOGO0()000QO0O0ra

>100111:datain

>0000000000(X)0000Q00000000101001001110l00lb0lll001111111101001110:omem5
>0010001110100111111100100010000110001000000000000000000000000000:omem4
>000010111010010111010010ldl000011000lQ0001010d000001110101101110:omem3
>0010001010100001110100100110000101110100lb0011001100010101001110:omem2
>0010100100000100010100101011001100010000010111001101100000101010:omeml
>001010110000010111000000ldll001100000100110101001001110000101100:omem0
>00100001001000010010001000100010010010d01000lb001001001001000100:omemwrite

-78-

>O)00001010(X)001001010(XX)0101000010010l0{X)00101000010010100001010:cmriatch
>1101010101011001001011010010110001001011001010110001001010010101:oshiftsrc
>10010011110l0100O)1110001011101100001110000011100000001110()(X)lll:osh2
>0010100000001000100001110000000010100001011100011110100001111000:oshl
>1101100111101010111110010111110000111110100011100000111110100111:oshO
>00000000O(X)000CX)010000O(X)0O0000000010000O000000O000O010000000t»
>101010000100000010Q010100000101X)00100010110100101000100010001001oinv2
>1111111001111111110011111100111111110011111100111111110001111000:obsell
>11111110011111101100111111t}0111110110011111100111110110001111000:obsel2
>1111111011111110110111111101111110110111111101111110110111111011:ozeroa
>000000000000000000000000000(X)OOOOOOCHXX)0000000(X)OOOOOOOOOM
>«X)0IX)00110(»0()01001100000011000001001100000011000001(X)llld000111:oaccb
>lllXiiiiiiiiiiiin:oxmitin2
>0000000000000OO00O00000(Xi0O000Q000000O00O000000000QO^
>0000000000000(}00(X)0(X)0000000001010010000111010010111001011
>1101100111111110001111110010000100000011000100000000000000000000:emem4
>1100100101111110000111010010010100000011000100001100000000111010:emem3
>0001000011111110000111010010Q01100000010111010010011001010001010:emem2
>1101100110000000000001010010010110010010001XX)0001111001010110000:ememl
>110ll00111011010000011000000010110010010000010011101001000111000:emem0
>0100100010001010000100100010000100010000100100010010001000100100:ememwrite
>1001000100010100001001010000001010000001001010000101000001001010:ewrlatch
>0010011010000001110100101101100101101100100101100010110100100101:eshiftsrc
>1100111011111011111000111001000111001000000111000011100010000111:esh2
>0001000100000000000011000000110000010110010000101100011101010000:eshl
>1110111111111111l00011111110111111100011011111010011100100011111:eshO
>0000000000(X>OOOOQOQ00100000QOOQO(X)000000001000CK)OOOOOOOOT
>00100000000001000000i00010000000010(H)000010001010000l6l000010001einv2
>1011011101110101111111001111111001111111111001111100111111111000:ebsell
>1011011101110101111011001111111001111111011001111100111111011000:ebsel2
>1111111111111111111011011111111011111111011011111101111111011011:ezeroa
>0000000000(X)00000000000000()0(X)0000000000000000000000000^
>0100100010001010000100110000000110000000100110000011000000100111:eaccb
>lllllllllllllllllllllllllllllllllllll111111111111111111111111111:exmitm2
>a00QOQO0O00O0O000O00O0O0OOQ00O0O0Q0O0000O0OO000OQOro
>1000000000(X)000000000000000(XX)0000000(X)0000000000000000000000000:las^
>tXM00Q0Q0Q0000000QQ000000Q00000Q00000000000000Q0G00O00000ro
>000000000000000000(X)00000000(X)0000000(X)OOCK)OOOOOOOOOOOOOOM
>lllllllllllllllllllllllllllllllllll11l11111111111111111111111111:datain

•>11111111001000111001111111l00l0011101011111111110110010000000000:omem5
>000001010010001110011111111Q0100111010llllllllll0110010000000000:omem4
>1111101000001000000000001000000111101011111111110110010000000000:omem3
>110111000000001110011011001001001D1010001100d0000000000000000000:omem2
>lCX)11001001010100000()0111010010101000010d(X)0010001000100()0000000:omeml
>0101100100101000100100001010010111000010110010110010000000000000:omemO
>1001001000100001000100100100010001001000100100010010010000000000:omemwrite
>0010010100000010100(X>100101000001010QQ01d010b010010010QOT^
>O0010010110101010110001001O1101001010100l00100001001111111111111:oshiftsrc
>0100001110010001110000000111011101110100000111110110111111111111:osh2
^lOlOlOOOOllOlllOOOllllOlOOOOlOOOlOOOlOllDlOObOOOOOOOOOOOOOOOOOOO^oshl
>0(X)0111110101()01110111011111001011111110()1111111101101111111111l:oshO
>000001000000000dOOO(X)00010000000000000000dlObOOOOOOOOOOOOTO
>00001000100110ld0100100100010011000101100100100011000000000(X)000oinv2

-79-

>1111110001111110001111111000111110001111111001101101100000000000:obsell
>1110110001111110001111011000111110001111011001101101100000000000:obsel2
>1110ll0111111110111111011011111110111111011011111111100000000000:ozeroa
>0OO0OQO(X)(MO0OOO0O00OO(>OOOOO000OOO0O0OO0O00ro
>00010011100000011100001(X)lll(»00011100001001100100100illllllllll:oaccb
MlllUlHHlinHnnlting
>00000(X)000(X)0000000(X)00000000000000000000000000000000100000^
>0l00011100111111110100111011111111001001110010111101111110110010:emem5
>rj00000000000000101010011101111111100l001110010111101111110110010:emem4
>0101011100111110100001000000000lQ0000011110010111101111110ll0010:emem3
>0l00011100110111000000111011011001001001010010001100000000000000:emem2
>00010101001001100101011000000111010010101000001000Q0001000100010:ememl
>0001011000010110010101001010000101001011100000101100010110010000:emem0
>0l00001000100100100100010010010010001000100010001000100010010010:ememwrite
>(X)0001010000100101000010100010010l000001010000010001000100100100:ewrlatch
>1010101011000100101010010100010010110100101101001010100001001111:eshiftsrc
>0010011110000000111000011100Q00011101100111001100000111110110111:esh2
>110100000llll010000111100011101000010011000110010101000000000000:eshl
>0001101110000011111001011100001111100100111100010111111111011011:esh0
>0000000000000001000CX)0000000000100000000000000000011000OT
>0100000010110010001011000100001000100110001011100100010001100000:einv2
>1111110011111111000111100011111100011111000111111111001101101100:ebsell
>1111110011111011000111100011101100011111000111110111001101101100:ebsel2
>1111110111111011011111101111101101111111011111110111011111111100:ezeroa
>000000000000000000000000000(»0000000000000000000000000
>0000001100000100111000011100010011100000111000001000110010010011:eaccb
>ll11llllllllullllllllllll:exmitm2
>OOOOOOOQOOOOOOQOQOOOOOOOOO(>(X)00000000000000000<X)QOQQOO
>(XX)OOOOOOOOOOOaOOOOOOOOOOOOOOO(X)00000000000000(K)(X)OOOOOOOTO
>(XX)0O0OO0OOO0O0O000OO000O0O00OO0(X)0O0OO0O0OOO0OO0O00OO
>0(X)0000000000000000000000000000000000(H)0000000(K)0000010000000M^^
>lllllllllllllllllllllllllllllllllllllll1111111111111111111111111:datain

>l:omem5

>l:omem4
>l:omem3

>0:omem2

>0:omeml
>0:omemO
>0:omemwrite
>0:owrlatch
>1:oshiftsrc
>l:osh2

>0:oshl
>l:osh0
>0:oinvl

>0:oinv2

>0:obsell
>0:obsel2
>0:ozeroa
>0:oxmitacc
>l:oaccb

>l:oxmitin2

>0:oiobusen

>l:emem5

>l:emem4

>l:emem3

>0:emem2

Xhememl

XhememO

>0:ememwrite

>0:ewriatch

>l:eshiftsrc

>l:esh2

>0:eshl

>l:esh0

>0:einvl
>0:einv2

>0:ebsell

>0:ebsel2

>0:ezeroa

>0:exmitacc

>l:eaccb

>l:exmitin2

>0:eiobusen

>0:lastch

>0:evenout
>0:oddout

>1:datain

test index reg

>0011100001:omem5

>001Q011001:omem4
>0001010101:omem3
> 1100000000:omem2
> 0100000000:omeml
> 1100000000:omemO
>0000000000:omemwrite

>1000000000:owrlatch
>0011111111:oshiftsrc
>llllllllll:osh2
>0000000000:oshl
>1011111111:osh0
> 0000000000:oinvl

>0100000000:oinv2
>00000Q0000:obsell
>0000000000:obsel2
>0100000000:ozeroa
> 1100000000:oxmitacc

>llllllllll:oaccb
>0011111111:oxmitin2
> 0000000000:oiobusen
>0011100001:emem5
> 0010011001:emem4
>0001010101:emem3
> 1100000000:emem2

> 0100000000:ememl

-80-

> 1100000000:ememO
> 0000000000:ememwrite
> lOOOOOOOOOrewriatch
>001111111l:eshiftsrc
>llllllllll:esh2
>0000000000:eshl
>10llllllll:esh0
>0000000000:einvl
>010Q000000:einv2
>0000000000:ebsell
> 0000000000:ebse!2
>0100000000:ezeroa
> 110Q0Q0Q00:exmitacc
>llllllllll:eaccb

>Q011111111:exmitin2
> 0000000000:eiobusen

>Q0000Q0010:lastch
> 0000000000:evenout
>000Q000000:oddout
>Q011111111:datain

-81

-82-

DATA PATH SIMULATION INPUT FILE

P

P filter.July proc mossim simulation 6/29/83
P filternew.july proc simulation 7/8/83
P filternew.july proc simulation 9/11/83
P Simulation of processor for even channels
P

ltl

ht2

wdl7 dl6 dl5dl4 dl3 dl2 dll dlO d9 dB d7 d6 d5 d4 d3 d2
1ememO ememl emem2 emem3 emem4 emem5 emem6 eaccb eshO eshl esh2
1 eshiftsrc ezeroa ebsell ebsel2 oiobusen
h dl7 dl5 dl3dll d9 d7 d5 d3 einvl einv2 exmitacc ewrlatch
1dl6 dl4 d!2 dlO dB d6 d4 d2 exmitin2 eiobusen paden ememwrite
Kph2 0100 phi 0001
R3

P

P output zero
P

h paden eiobusen ememwrite exmitin2
1 exmitacc eshiftsrc ewrlatch einvl einv2
x dl7 dl6 dl5 dl4 dl3 dl2 dll dlO d9 dB d7 d6 d5 d4 d3 d2
R3
P

P output data
h eshO esh2 ezeroa eaccb
I eshl

R3

P

P output data shif11 *
P

leshO
R3

P

P output datashif12
lesh2

heshO eshl
R3

P

P output data shift3
leshO

R3

P

P output data shift 4
heshO
leshl

R3

P

P output datashift 5
P

leshO

S3

P "
P recirculate shift by 1
P

hesh2

h eshiftsrc

1 eshl eshO
R3
P

P output inverted data
P

1 eshiftsrc
h einv2
R3

P

P zero a, ace b
P

h ebsell ebsel2
1 ezeroa eaccb
K3

-83-

-84

DATA PATH SIMULATION OUTPUT

20460 transistors. 843B nodes (1844 pulled up)

filter.July proc mossim simulation 6/29/83
filternew.july proc simulation 7/8/83
filtergenl6.sep proc simulation 9/11/83
Simulation of processor for even channels

>lll:dl7

>000:dl6

>lll:dl5

>000:dl4

>lll:dl3

>000:dl2

>lll:dll

>000:dl0

>lll:d9

>0Q0:d4

>lll:d3

>000:d2

>lll:dl

>0Q0:d0

output zero

>lll:dl7

>lll:dl6

>lll:dl5

>lll:dl4

>lll:dl3

>lll:dl2

>lll:dll

>lll:dl0

>Ul:d9

>lll:d4

>lll:d3

>lll:d2

>lll:dl

>lll:dQ

output data
>lll:dl7

>100:dl6

>lll:dl5

>100:dl4

>lll:dl3

>100:dl2

>lll:dll

>100:dl0

>lll:d9

>100:d4

>lll:d3

>100:d2

>lll:dl

>100:dO

output data shift 1

>lll:dl7

>011:dl6
>100:dl5

>011:dl4
>100:dl3

>011:dl2

>100:dll

>011:dl0

>100:d9

>011:44
>100:d3

>011:d2

>100:dl

>011:d0

output data shift 2
>lll:dl7

>lll:dl6

>011:dl5

>100:dl4

>011:dl3

>100:dl2

>011:dll

>100:dl0

>011:d9

>100:d4

>011:d3

>100:d2

>011:dl
>100:d0

output data shift3
>lll:dl7
>lll:dl6

>lll:dl5

>011:dl4

>100:dl3

>011:dl2
>100:dll
>011:dl0

>100:d9

>011:d4
>100:d3

>011:d2
>100:dl

>011:d0

output data shift 4

-85-

>lll:dl7

>lll:dl6

>lll:dl5

>lll:dl4

>011:dl3

>100:dl2

>011:dll

>100:dlO

>011:d9

>100:d4

>011:d3

>100:d2

>011:dl
>100:d0

output data shift 5

>lll:dl7

>lll:dl6
>lll:dl5

>lll:dl4

>lll:dl3

>011:dl2

>100:dll

>011:dl0

>100:d9

>011:d4

>100:d3

>011:d2

>100:dl

>011:d0

recirculate shift by 1

>lll:dl7

>lll:dl6

>101:dl5

>110:dl4

>101:dl3

>110:dl2

>001:dll

>110:dl0

>Q01:d9

>110:d4

>001:d3

>110:d2

>001:dl

>110:d0

output inverted data

>100:dl7

>100:dl6

>101:dl5

-86-

>100:dl4

>001:dl3

>110:dl2

>Q01:dll

>110:dlO

>Q01:d9

>110:d4
>001:d3

>110:d2

>001:dl

>110:d0

zero a. ace b

>0Q0:dl7

>000:dl6

>lll:dl5
>000:dl4

>lll:dl3
>000:dl2

>lll:dll
>000:dlO

>Hl:d9

>000:d4

>lll:d3

>000:d2

>lll:dl
>000:d0

-87-

-88-

Notes:

,.:-.f.,,v. r,-:0.--; ;j _•?,-,._, .c,-:._: ^..{j grnt,j(-i0-;;-f up if-:;; T.-jvfjf; :vjij 'iijj? 1:

-89-

APFENDKJ. KNOWN PROBLEMS AND POSSIBLE UPGRADES

The currently known 'problems* include:

Layout Generator:

The compiler will put a 'ground' line through the I/O pads if a wide data

path is specified with a small memory. This problem is easily detected by

checking the cifplot. Then the ground line can be corrected.

Layout Generator:

When indexing is implemented it is possible that RAM will be wasted. This

occurs because the index register is very simple and RAM addresses are always

sequential By changing the layout generator to create a RAM and decoder with

only used locations, RAM could be saved.

Rlter Compiler.

Handles each half of the filter bank separately (when two data paths are

used). This forces the user to make sure that the two programs have the same

length (the programs are always made a multiple of 32 so that the address

lengths must be in the same 32 word block) and that the two data paths dont try

to output at the same time. The compiler could be modified fairly easily to per

form these functions.

Layout Generator (non-column decoded ROM):

This report assumes that only circuits with column decoded ROMs will be

used. However, there is a version of the layout generator that creates circuits

with out column decoded ROMs. It however, has not been upgraded all the way.

The index register still has slight timing problems that prevent it from working

b a v

-90-

as fast as that in the column decoded circuit. The index register for non-column

decoded circuits also requires a clear signal (active high) to synchronize the two

index registers (for two data paths) once on power up. The index register for

column decoded circuits could be used in the non-column decoded ones. The

strobes for non-column decoded designs are active low, whereas they are active

high in column decoded designs.

9917

	Copyright notice 1984 - Copy
	ERL-84-94 (1 of 2)
	ERL-84-94 (2 of 2)

