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Computer Generation of Digital Filter Banks

Peter A Ruetz

University of California, Berkeley
Electronics Research Lab

Berkeley, California 94720

1 INTRODUCTION

Fully automated design of complex integrated circuits has often resulted in
limited usefulness because of poor performance or inefficient silicon space utili-
zation. If few restrictions are placed on the function of the ICs to be generated,
then the optimization problem becomes difficult, yielding circuits far inferior to
custom designs. Another important aspect of using automated design systems
is the time required to develop the software and its reliability. There is no
advantage in redpcing hardware design time if the resultant software develop-

ment effort becomes equally time consuming and error prone.

It has become apparent that tradeoffs between development time, general-
. ity and final circuit performance must be made. The design system described
here was based on an emphasis on high performance with minimal software
effort. Instead of treating the software and hardware designs as distinct prob-
lems, the hardware architecture and layouts were designed in a way that made

automation simpler while maintaining performance.
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Some automated design systems have been developed which allow the user
to interact only at the highest level. If this is incompatible with the require-
ments of the user, then the entire design system is of no use. If however, the
software is designed to allow the user to operate at a lower level, more jobs can
be accomplished. Our design system has been developed in a hierarchical
manner. For those wishing to generate filter banks, the task can be accom-
plished from the highest level, ie. totally automated. The user can also use the
lower levels of the system (i.e only partially automated) for other applications.
Further, the system can be extended at the highest level for the specific needs

of the user.

The scope of applications that has been chosen is digital filter banks which
are a parallel and/or cascade connection of filter sections. Digital filter banks
are found in applications as diverse as MODEMs ‘and spectmn; analyzers for
speech recognition, channel voc.oders. consumer stereo and EEG analysis. Deci-
mation and rectification are required in addition to digital filtering in the spec-

trum analysis applications.

II THE HIERARCHY

Currently, the hierarchy is four levels deep. At the lowest level are the cir-
cuit 'cells’. These cells consist of basic building blocks such as éount.ers.
agiders, RAM cells, ROM cells, etc. The cells can be used wit.ﬁout any automation
for a totally manual design. At the next level, the layout generator assembles
‘these cells into more complex blocks such as data paths and controllers from
bhardware descriptions. This would be useful for users that desire a signal proces-
sor, but need a few additional circuits that have not been designed or are not
bhandled by the layout generat.or. The user would only have to spécify the
bardware specifications including the RAM size and ROM contents and add the

new circuit blocks to form a completed chip. At the third level, the layout
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generator assembles the data path and the controller into a completed chip. For
" those that have a non-filter digital signal processing application, a chip could be
generated completely from this hardware description. Finally, at the highest
level, the filter compiler generates the hardware description from a digital filter
description. At this level, digital filter banks can be generated completely

automatically.

To generate filter bank chips, the design procedure shown in figure 1 is fol-
lowed. The digital filter bank structure and coeflicients are specified in a input
file. The filter compiler converts the input file to the hardware description. To
check the algorithms before the circuit is fabricated, the hardware description
can be used as an input to a real-time tester. When the designer is satisfled, the

layout generator is used to create a layout file.

II THE CELLS

The basic architecture of the hardware is shown in figure 2. There are two
main blocks: the controller consisting of the program counter, the ROM and the

address index register and the data path consisting of the ALU and RAM.

There are several reasons for having few large circuit blocks. The block
division was chosen to minimize assembly difficulty while retaining adequate
generality. With few blocks, the automatic assembly is simplified. Routing
difficulty is reduced by having fewer blocks that need to be routed together.
The blocks are also made up primarily of abutting circuit cells which are very

simple to assemble.

The large blocks were chosen to be functionally complete. That is, the
blocks can be easily used to perform some complex function. The blocks would
be complicated to use, except at the lowest level of cells, in a partially assem-

bled form. The prbgram counter may be useful without the ROM but it is easily
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assembled from counter cells so that it need not be a separate block.

There is also a scmewhat natural division. As all cells in the data path could
be designed with the same bit slice pitch, the data path could be made a single
block requiring no data bus routing. The ROM was designed to minimize area
that determined tize pitch of ROM cells. The ROM cell pitch is, however, vastly
different from the pitch of the control lines entering the data path. That makes
it more eﬂiciex:xt to optimize each as separate blocks with routing between the

two than to stretch the ROM to the pitch of data path control lines.

INI-1 The Controller

The controller was designed to be small with high performance. To achieve
these goals it was made very simple with a minimumn number of features. For
example, there is no branching capability or micro coded instructions. Adding
complexity can result in vastly increased area as the extra registers and routing
are a significant fraction of the controller. ROM bits are very small, regularly
spaced and hence very eflicient. Instead of putting the convenience of micro
coded instructions in hardware, it is put in the software (at the highest level)

where it does not add to the silicon area.

Every cycle the controller outputs a valid horizontal control word. This hor-
izontal control word specifies the value of every data path control line. Each
controller output comes directly from the ROM with the exception of some of the
RAM address lines when decimation is used. With decimation, the index register

.modiﬁes the RAM address. Although this increases controller complexity, it
saves ROM space and averts the need to perform address computations in the
data path. The data path is never used for any control operation, allowing con-
tinuous signal processing. The circuit is also more compact since busses are not

needed to connect the control and data pafh.



-2 The Data Path

Figure 3 is a block diagram of the data path. As in most signal processors
there is a RAM, adder, accurnulator, some form of negation/absolute value logic

and i/o. However, no array multiplier is included.

Again, only a minimumn of features are provide.d. In this way the size can be
kept small making room for additional data paths on a single chip for greater
throughput. The cell circuit design problem is also reduced, while programming
the data path is more complicated. This is nc;t a problem when automation is

used, as the filter compiler generates and optimizes the micro code. -

Since there is no array multiplier, fixed coefficient multiplies are imple-
mented in a serial-parallel manner [1]. This is accomplished with the use of the
barrel shifter, adder and accumulator. Since a restriction of fixed coefficient
multiplies is placed on the system, less that N cycles are required for an MxN
.multiply. where M is the sigﬁal width and N is the multiply coefﬁgient length, by
programming the ROM properly. Because a barrel shifter can shift several (0 to
5 in this case) places in a single cycle, multiplies require only a number of

cycles equal to the number of '1’s in the coeflicient.

By using coeflicients encoded in canonical signed digit format [2], it is pos-
sible to save more cycles in a serial-parallel multipl); when there are more than
two consecutive ones in the coeflicient. This arises because in hardware it is

just as easy to subtract as it is to add a partial product. For example:

‘toperform: (0.01111)Yn

rewrite: =((0.1)-(0.00001))Yn
=(0.1000(-1))Yn
=(0.1)Yn - (0.000001)Yn
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Therefore, only two cycles.are necessary to perform the muitiplication, whereas

four cycles would be required for the direct implementation.

The adder is a ripple-carry type. To ensure high speéd'. different even and
odd cells are used which minimizes the delay through the carry chain. This
results in very compact circuits which can operate at rates over 4 MHz. The rip-
ple carry adder is also particularly well suited for a bit slice design which makes
the automatic layout very straight forward. The output of the adder saturates
instead of simply overflowing to prevent limit cycles. This is easily incorporated
in the hardware but would require several cycles per computation to implement

in software.

Pipelining in the data path increases the performance of the circuit by
making higher clock rates feasible. The pipeline registers are at the output of
the RAM, the input of the RAM and at output of the adder (the accumulator).
With pipelining, the RAM and the barrel shifter, adder combination both get a full
cycle for operation. Although pipelining makes micro coding more difficult, it is

transparent to the user when the filter compiler is used.

The memory input register is the only register of the three which can be
selecﬁvely written. In some cases, the result of a computation can be held in
this register until the RAM is inactive during a serial-parallel muitiply. At this
point, tpe result .can be written into the RAM without requiring an extra cycle.
Proper use of this register reduces thé length of the micro code by preventing

- the data path from becoming memory bound.

The RAM is a four transistor dynamic type with a schematic shown in figure
4. A dynamic memory was chosen over static designs because the dynamic RAM
is smaller with lower power consumption. The RAM is automatically refreshed as
long as the sample rate is kept over 1 KHz because every location is both written

and read each sample.
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Three possibie choices for the RAM design were the one, three of four
" transistor cells. The four transistor cell was chosen over one transistor designs
to minimize process sensitivity. To avoid running busses between the RAM and
ALU, it was desired to have the same pitch for both so they could be attached
directly, simplifying automatic layout. To use space efficiently, this required
that the RAM have a single column decode as the optimized cell pitch was
approximately half that of the ALU bit slice. The three transistor design is more

difficult to column decode so the four transistor design was chosen.

IV LAYOUT GENERATOR

The layout generator assembles the cells into a data path and a controller
block from hardware descriptions. If desired these blocks are then assembled
into a complete chip. The hardware is described by several parameters includ-

ing: data path word width, RAM 'size, decimation ratio and ROM contents.

IV-1 Layout Generation Issues

Before starting development of the layout generator, several aspects of
automated layout were identified as difficult problems. General placement of
the major circuit blocks requires sophisticated optimization algorithms to gen-
erate space efficient designs. A two level router would be needed to rout
between thése blocks. An extensive data base would be needed to store the
necessa.ry data for the router and placer. The data base would contain the ter-

.minal locations on each block and the available routing area.

Other aspects of the automated layout were found to be easily handled
problems. It is not difficult to assemble blocks (ie the ROM, ALU and RAM) from
abutting cells since the relationships involved are all well determined by the
hardware parameters speciﬁed by the user and the cell characteristics. The

way the cells go together is determined by the cell designer so that proper cell



design can help the automated layout. For example, by including the signal
" routing within the cells, the need for inter-block routing by the program is
avoided. Fixed routing, where the routing terminals have a constant relation-
ship throughout all changes in hardware parameters, can be accomplished by
inserting a cell with the appropriate wires in it. That is, no algorithm for 4routing
is required at all. Regular routing, where the routing terminals are evenly
spaced throughout changes in the hardware parameters, is implemented by a

simple program loop.

IV=2 The Floor Plan

In c;rder to avoid the more difficult problems, two major restrictions were
made. The first was to use a fixed floor plan, the relative placement of circuit
blocks, pads and routing areas on the chip. The floor plan was chosen to reduce
the complexity of the algorithms used and the number of layout decisions that
must be made by the program. With the choéen floor plan all routing is either

fixed or regular.

The decision was also made to have the program 'know all'. That is, all infor-
mation regarding the cells and their connection was coded directly into the
algorithms. Using specific information of the application avoids having to solve
the general problem and reduces the software design time. Sofl:waz;e reliability
. i3 enhanced when the simplest algorithms are used instead of complex general
algorithms with obscure failure modes. This approach obviously makes the pro-
‘grams very specific to the particular cells which are used so that changes in the
cells may require changes in the software. Therefore, one should not expect to
make major upgrades without significant software changes with a system such
as this. However, because the software development time is relai:ively small,

new software can be written when significant changes are made.



IV-8 Examples of Generated Circuits

The circuit remains easy to assemble over the large changes in hardware
parameters shown in figure 5a-d. The hardware parameters for each is listed in
table 1. From the figure the fixed floor plan can be seen. The controller, data
path, pads and routing areas are always in the same relative position. The 1/0
parallel buss at the top of the chip is an example of regular routing. The routing
- area does not change shape or relative position as the parameters change. The
routing between the controller and the data path is a function only of the RAM
size and whether decimation is used. As there are only a few cases, each is
treated as ﬁxt_ed routing and a cell with the appropriate wires is simply inserted.
Wiring from the PC to the ROM is handled similarly. The wiring of supplies and
clocks requires little jumping {except in the fixed routing cells) and a minimal

amount of decision making.

The silicon area is also used efliciently over the range of parameter
changes. Virtually the only wasted area is near the pads or due to differences in
length of the controller and data path (see figures 5b,5¢c). Tbe RAM gets
longer as the number of states in the filter bank increases. The controller
increases in length with the program length. Since adding states requires a
longer program to process these states, the ROM and RAM tend to get larger
together. In figures 5a-c the ROM is not column decoded and the waste area is
not too. large. In flgure 5d the ROM length increased significantly so that a

_column decoded ROM was used to minimize the unused space.

Some waste of space is allowed if the waste is not large while the savings in
effort is. For example, when decimation is used, the ROM width is constant
regardless of the RAM size. Up to 3 bits of RAM are unused but the routing’is
simplified. The data buss routing area between the data path and pads on the

right side of the chip is of constant size. These simplifications reduce the
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number of cases to be handled with some space wasted for the very small chips.
However, the designs would likely not be used anyway, due to the large overhead

involved.

IV4 Output File Format

The output of the layout generator are KIC format [3] files. This format was
chosen because layout stations are being used which read this format making
visual checks convenient. The KIC format also supports the hierarchical organi-
zation of the hardware. The CIF format [4] is used for actual fabrication but

-

does not allow arrays as the KIC format.

IV-5 Block Assembly

As mentioned previously, the assembly of blocks from cells is a straight-
forward task. An output file is written that lists the cells with the appropriate
offsets and orientation. This information is calculated from the hardware

parameters and cell parameters (eg size).

The controller is a connection of many cells that makes its manual layout
difficult. Most variations in the controller are functions of the ROM width and
length (found from the binary listing), and the decimation ratio all of which the
‘user specifies explicitly. The RdM length determines how many bits will be used
in the I?C and decoder and how the decoder is programmed. Since there are
only 5 different PC sizes, each is a cell with appropriate routing wires. The deci-

- mation ratio determines which type of ROM output register will be used and how
the index register itself is configured. If there is no decimation, all output regis-
ters are the same and no index register is used. If there is decimation the out-
put registers that feed the index register input are of a different type and an

index register must be included and programmed to decimate properly.
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The data path assembly is quite simple due to the bit sliced nature and the
- small number of blocks. The entire ALU only requires one line in a KIC file speci-
fying an array of bif. slices. The entire RAM array is similarly specified. The RAM
decoder can be generated in the same way as the ROM decoder with each cell

being described by one line in the KIC file.

V THE FILTER COMPILER

The filter compiler generates hardware descriptions from digital filter
descriptions. This allows the automatic generation of filter banks with virtually

-

no knowledge of the final hardware.

V-1 Fllter Specification

The compiler reads an input file specifying the filter bank organization in
terms of a parallel connection of channels. Each channel is a cascade connec-
tion of sections. Variations on this format are allowed that have been found use-
ful in some applications. A section can be factored out and used by different
channels. An example of this is the direct form band pass filter. The zeros are
the same for all channels and can be factored out and computed only once. Fig-
ure 6 shows an example of a filter bank organization. In this example there are
16 parallel channels, each consisting of a 4th order BPF section, rectifier, 1 pole

LPF section, decimation by B and a 2nd order LPF section.

Each section is a single input, single output structure with delays, multipli-

. cations and additions. Diagrams of some of the currently programmed sections
are shown in figure 7. .

All multiplies defined in the sections use fixed coefficients of canonical

signed digit format. Use oé this format, which was described earlier, optimizes

the usage of the adder by minimizing the number of cycles required to perform

multiplication.
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There are several options allowed in each section in the bank. The user can
- full wave rectify the input of any section. This is useful in spectrum analyzer
applications. Decimation is also handled but in a somewhat restricted way. A
number of channels can have their outputs decimated and modified by some
specified filter. The post decimation filter is the same for all channels being
decimated and the decimation ratio is always the same as the number of chan-
nels being decimated. These restrictions were applied simply to reduce the
development time and could be relaxed in future systems. The user can also
specify that the output of any section be sent off chip through the parallel buss
while setting an output strobe. To implement multiple inputs, the input of any
section can be taken from any channel output or any channel input. Being able
to specify a channel output, allows the use of a filter by many other channels
(described above) and really allows very arbitrary filter organizations. Nor-
mally, the default (no speciﬁcation) results in the parallel channels operating on

the same input data.

The format of the input file is tailored to filter banks and was chosen to sim-

plify the compiler. The format is as follows:

1. Input channels {(one or more)
These sections receive data from off chip and may perform
some flltering (eg zeros of direct BPF).

2. Standard channels {(one or more)
These are just the regular channels, ie some cascade
connection of sections. These channels will be decimated
if a decimation channel is specified.

3. Decimation channel (optional)
This is the channel that operates on the output of all
standard sections above after decimation.

4. Non-decimated Standard channels (optional)
More regular channels that are not to be decimated.

The format for the the sections is as follows:

1. Section identifier (2 letters), <options, if any>, N coefficients
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The format spéciﬂes the order that rhicro code is generated and stored in the
ROM and hence the order that it is executed. This save the compiler from having

to determine this information.

V2 The Filter Library

The compiler references a filter library which contains pertinent informa-
tion about the allowed sections. A file contains a list of valid section identifiers
along with the number of memory locations and coefficients required for each

section.

For each section there is also a file containing the macro for that section.
The macro file contains the symbolic micro code that irnple'rnents a section
without the coefficients or options inserted. Symbolic micro code is just a
description of data path control lines that have been grouped functionally. The

-symbolic micro code has fields to describe the following:

memory operation (read or write)

relative memory address (actual address computed by compiler)
barrel shifter input mux selection {memory or BS output)
number of shifts (constant or taken from input file)

adder a input mux select

adder b input mux select

i/o operation

Currently, this micro code must be writtén by hand for each section. This
involves a detailed knowledge of the timing and architecture that the average
user wc:;uld not have. Although software could generate the micro code from
difference equal;,ions. this was not chosen because higher performance code
could be generated by hand. For a secor;d order section the length of the micro

code is typically only 8 words.

V-3 Compiler Operation

The operation of the filter compiler is shown in figure 8. On the first pass,

m—
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the input file is checked for errors and hardware requirements such as RAM size
- and decimation ratio are determined. On the second pass, symbolic micro code
for the entire bank is generated. The symbolic micro code is then compressed.

Finally, the symbolic micro code is assembled to binary micro code.

During the first pass, several errors are checked for, theiamount of RAM is
determined and each state is assigned a RAM location. The error check will
locate syntax errors, undefined sections, filter library errors or the use of the
wrong number of coeflicients. If decimation is used, the decimation ratio is
determined by couniing the number of standard sections before the decimation
section. The RAM requirements can then be determined. Without decimation,
the amount of RAM required can be found by simply adding up the memory
requirements for each section. With decimation, things are not as simple. The
index register supplies the high order RAM address lines when tﬁe decimation is

'performed so that some RAM may not be used.

Amount of RAM accessed A= (RAM needed for input and standard sections)
+(RAM needed for decimation channel)
*(number of decimated channels)

Amount of RAM included on chip B= 2-(int(logz(A-1))+ 1)

Each state is then assigned to a, RAM location. The states are assigned to
sequential RAM locations as they are encountered in the input file if there is no
decimation. That is, the first state of the first filter is stored in the first RAM
location while the last state of the last section is stored in the last location. With

decimation, the states accessed by the decimation filter are assigned first at

fixed increments. The remaining states are then filled in sequentially.

The symbolic micro code for the entire bank is generated during the second
pass. To accomplish this the input file is scanned until a section declaration is
found. The macro for that section is read from the library and expanded into

complete micro code by inserting the coefficients and options from the input
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file. This process is repeated until the end of the input file is found.

The symbolic code generated in the second pass is compressed by looking
for sequences of code that can be shortened. There are three cases that are
optimized. First, .and most important, is the performing of the first memory
access during the final computation of the previous section. This appears at
nearly every section boundary and utilizes the pipelining of the data path.
Another case is the utilization of both adder inputs when the accumulator is
empty. Normally the B input is zeroed and data is brought in through the A
input. If a coefficient has certain properties, additional data can be bx;ought in
through the B input, saving one cycle. One cycle can be save if data needed for
the next operation is found to be left in the adder during the previous calcula-

tion. This occurs for certain filter structures with some coefficients.

These optimizations help produce code with essentially the same efficiency
as that done by hand. For a speech recognition ﬁiter bank, the number of micro
instructions was reduced from 480 to 384 words. The optimization is performed
on the symbolic code bet_:ause the cases are easier to identify than when the

code has been assembled to binary.

VWith the symbolic code optimized, it is converted to binary for use by the
layout generator. This is a simple operation because for each symbolic field
value there is exactly one binary pattern for one or more control lines. This
data is written directly to a file for the l;yout generator or tester control data is

included for use by a real time tester.

VI THE TESTER

The tester set-up in shown in figure 9 is quite valuable in producing designs
which work the first time fabricated. The filter compiler running on the VAX 11-

780 generates tester code that is down loaded to a pattern generator. The pat-
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tern generator performs exactly the same function as the controller block
included in the complete chip. It sends the horizontal control words in real time
to a data path that is the same as that used in a final chip. The spectrum
analyzer generates digital input data and examines the filter outputs. In this
way, the ﬁiter designer can check the input file for errors and the effects of
ﬁx_:lite data word with and coefficient truncation on the filter responses. If there
isa prc;blem. it is found before fabrication. Further, this set up will verifj that

the compiler is working properly and that the filter library data is correct.

VII FABRICATED CIRCUITS

Several circuits have been fabricated using this system. A single band pass
filter chip was fabricated to determine the efficiency of a small chip. A 16 chan-
nel filter bank for the front end of a speech recognition system and a 16 channel
consumer stereo spectrum analyzer have been generated and fabricated. Table

2 gives a surnmary of the performance of these chips.

All circuits have been fabricated with a four micron NMOS depletion load
process and are designed to work with a single 5 V supply. Although a 3 MHz
non-overlapping clock is sufficient for the chips to operate at the designed sam-

ple rates, they can be run reliably with clocks up to 4 MHz.

VII-1 A Small Chip

The 4 pole band pass filter chip die photo is shown in figure 10a and meas-
ured frequency response in figure 11a. Although the area per pole for this chip
is quite high it might be useful when data is in digital form so that a switched
capacitor or other analog filter would not be appropriate because of the high
overhead in including the A/D and D/A. The circuit shown has a word width of 10
bits and a dynamic range of 48 dB. Since each additional bit increases the

dynamic range 8 dB, a chip with 100 dB of dynamic range would only be 30 %
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larger.

| VII-2 A Spectrum Analyzer for a Speech Recognition System
A block diagram of 112 pole speech recognition system [5] chip is shown in
figure 8. Each channel consists of a 4 pole Butterworth band pass filter, followed
by a full wave rectifier and the first pole of a 3 pole Butterworth low pass filter.
The output of the 1 pole anti-aliasing filter is decimated and low pass filtered
with the rest .of the Butterworth filter. A photo of the die is shown in figure 10b.

The frequency response of all 16 channels is shown in figure 11b.

-

The number of cycles available to perform all filtering is given by:
number of micro instr= (number of processors)*(max clock rate)/(sample rate)
To ensure that this maximum number of operations was not exceeded, several
steps were taken. Filter structures were carefully chosen. The state variable
form shown in figure 7a has a relatively complex structure compared to the
direct form (figure 7b). However, the state form is less sensitive to coefficient
truncation than the direct form when there is a large ratio of sample frequency
to filter band edge frequency. For low frequency filters, tl_ae insensitivity to .
coefficient truncation makes the state form filter more efficient than the direct
form. At high frequencies, the direct form becomes more efficient due to its
simpler structure. Therefore, the five lowest frequency filters are state form
while the upper eleven are direct form. To save more cycles, the zeros of the
direct form were factored out of each channel and computed only once. In the
state form, at low frequency the zero at 1/2 the sample frequency has little

effect and was left out.

VII-3 A Spectrum Analyzer for Consumer Stereo

The structure of the 16 channel consumer stereo spectrum analyzer is very

similar to that of the speech recognition chip. The sample rate was increased to
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20 KHz to allow higher frequency filters and the band pass filters were limited to
2 poles. The 1/2 octave filters range in center frequency from 45 Hz to 8 KHz.
The ratio of the lowest frequencies of interest to the sample rate is extremely
small (much worse than the speech recognition chip) indicating that the state
form will be better at lower frequencies. The photo of the die is shown in figure

10c with the log-log frequency response shown in figure 11lc.

The design of this chip was automated one more level than the others.
Instead of specifying the digital fllters, a program was written to generate the
digital filter specifications from desired 3 dB frequencies. The program picked

the most suitable structure and determined and truncated all coefficients.

Yl CONCLUSIONS

The tools discussed here have been extremely valuable in the development
of the circuits that have been fabricated. These tools not only shortened the
hardware design time, but provided testing that found all errors before fabrica-
tion. Minor changes, such as increasing the width of the data patﬁ and fine tun-
ing the gains of the channels, were made by simply editing the filter description
. ﬁle.. Normally this would be a tedious task prone to 6areless mistakes. By care-
ful design of the circuit cells and restricting the applications to filter banks, the

software complexity was reduced with a development time of one man-month.
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Table 1
circuit 5a circuit 5b circuit 5¢  circuit 5d
1 channel 8channel 18channel 16 channel
RAM length (words) 8 684 84 64
data path word width 10 16 16 20
ROM length 32 128 128 192
Decimation ratio = - 8 8 8
number of processors 1 2 2 2
Table 2
gingle 16 channel 16 channel
4 pole speech recognition = consumer hi-fi
data path
word width 10 20 20
size 2.8mm x2.5mm 7.2mm x3.7mm 6.7mm x 3.6mm
power dissipation 260 mW 570 mW 570 mW-
SNR 48 dB 80dB B0 dB
number of poles 4 112 . 80

sample rate 84 KHz (max) 14 KHz 20 KHz
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Figure 11b. 18 channel Speech Recognition chip Frequency Responses
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APPENDIXA USING THE FILTER COMPILER

Before the filter compiler can be used to generate the hardware descrip-
tions, the user must do several things. The filter descriptions must be written
into an input file ("filterdata’) according to the format described later. If sec-
tions are used that are not currently in the filter library, the library must be
expanded. Also the file ‘filtparm’ must be set up with the appropriate informa-
tion. Example 'flitparm’ file:

128  desired instructions
1 processor

18 bit wide data path
false column decoded

The desired number of instructions parameter tells the compiler how many
instruction the user wants per sample. This can be used to achieve a desired
clock rate or to force both banks to be the same length. The éolumn decode flag
tells the compiler whether binary data should be generated for column decoded
or non-column decoded ROM designs. The other two parameters are simply

passed on to the layout generator.

Finally, the compiler (ctr1, for coefficient to rom) can be run. The output is

written to a file (romout) for use by the layout generator or the tester program.

The fliter sections must be divided manually among the two processors if
two are required. This is probably best done by trial and error. The amount
each processor can cio is determined by the sample rate, the maximum system
clock rate (see App E) and limitations on the sizes of various circuit blocks (see
App B). The campiler can be used to determine the total number of cycles
required for the entire bank and if this is too many for one processor, the job

can be split in two parts.

It the bank has been split into two parts, the program is simply run twice.

As the program doesn't interact between the two runs, it is up to the user to

223
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ensure that both processors do not try to output at the same time. If it is
desired that both processors operate on the same off chip input data, then both
processors should input at the same time. This is easily accomplished by mak-
ing the inpqt channels for both banks the same. The compiler displays the cycle
number that the processor is inputing data, outputting data and causing the
index register to count. From this data, the user can assure that inputs and the
counting of the index register for both processors occur at the same time, while
outputs for the two processors occur at different times. This is usually not a
problem for few outputs but may be a problem for many outputs. The user can

adjust coefficients to add cycles and hence move the output.

The compiler outputs many messages when running, most of which just indi-
cate what it is doing. If an error is found, it is printed and execution continues.
Hardware parameters such as RAM length and decimation ratio are printed

which the user needs to input into the layout generator.
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INPUT FILE FORMAT
A FILTER BANK FORMAT

1. {lnput Channels;
These are channels that fetch input data from
outside the chip. Either the raw input or

the channel output can be accessed by standard
channels.

2. {Standard Channelsj
'lhesearechannelsthnt.procossmparauel

8. [Decimation Channel]
This channel operates on the outputs of all standard
channels above after decimation by m.

4. <Standard Channels>
Standard chennels that are not decimated.

5. B -end of file marker
B. CHANNEL FORMAT

1. Channel type identifier
S -standard
1-Input
D - Decimation

2. {section}

C. SECTION FORMAT

(2 letter section identifier) [options] coefficients
options:
O - send section output off chip
R -rectify gection input

o - take input from channel output (channel 1 default)
n - take input from channel n

coeflicients:

are separated by commas and enclosed
in parenthesis

D. COEFFICIENT FORMAT

Canonical signed digit format
[-J<binary digit>.<CSD>

a binary digit is either 0,1
aCDis0,1,-

The optional minus sign at the beginning negates
the remainder of the coefficient unlike the CSD value -
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Example: -1.0010- = (1+1/8-1/32)

Notation:

quantities ip {] must be inserted at least once and can be repeated
quantities in [] are optional
quantities in <> are optional and can be repeated

Notes:

1. Comment lines with ‘C’ in the first column can be put anywhere
except where coefficients are expected

2. Spaces are ignored.

3. Theletters 'E’, 'S, 'T’, 'D’ should be treated as reserved and
may cause trouble if used as part of a section identifier.

©0J3
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C

C filter bank1 — even channels
C

C Gains corrected 10/7/83

C

1

D

S

C channel 0

BS (. 100-,-.00001000-,.000011)
BS (1,-.0001001,.00100-)

L1 R (1.000000-,.001)

S

C channel 2

BS (.0100-,-~.00001101,.1001)
BS (10., -.0001,.1101)

L1 R (1.000000-,.001)

S

C channel 4

BS i.oomo-.—.ooomo—. 10.01)
BS(10., -.0001,10.11)

L1 R (1.000000-,.0100)

S

C channel 8 .

BD o (-1.000-000-,1.10101,.0001)
BD (-1.000-00-,1.100101,.0001)
L1 R (1.000000-,.0001)

S

Cchannel 8

BD o (-1.00-0001,1.001,.001)
BD (-1.00-001,1.011,.001)

_ L1 R (1.000000-,.0001)

S

C channel 10

BD o (-1.00-001,.101,.00011)
BD (-1.00-001,1.00-,.001)

L1 R (1.000000-,.0001)

S

C channel 12

BD o (-1.00-,-.00101,.001)

m ('l.w..wl..ml)

gl R (1.000000-..0001)

C channel 14

m [ ] ('1.00‘.’1.&1..(”1)
BD (-1.0-001,-.11,.01) -
L1 R (1.000000-,.000101)
D

12 0 (-1,-.00011,.00011)
B
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FILTER LIBRARY

The fllter library describes the the way that the compiler should implement
each section and the requirements for each section. Diagrams for the sections
that are currently implemented are given in figure Al. The order that the

coeflicients must follow in the input file is given in table A2,

The filter library consists of the file 'filttypes’ which contains data on the
valid filter sections and a macro file for each filter section. Each macro file has

the name which begins with its associated two letter identifier and ends with

(2 character section identifier) (" ') (number of coefficients used)
(’ *) (number of memory locations used) (' ') [comments]

Table Al - Current ‘filttypes’

BD 3 2 Direct 2ndorder section (poles only)

BS 8 2 State 2ndorder BPF

L1 2 1 Direct 1storder LPF

12 3 2 State 2ndorder LPF :

ID 0 6 Direct 4thorder BPF zeros (input section)

IS 0 1 Input Oorder

IT 0 1 Input Oorder output abs value for test

I1 0 4 Direct 2ndorder zeros for DBPF (input section)
iz 8 4 Direct 2ndorder arbitrary zeros (input section)
pz 2 3 Direct Istorder pole zero combination (input)
dz 0 5 Direct 4thorder BPF zeros (no input)

Table A2 - coefficient ordering
Section coeffl coeff2 coeff3

BD b a G
BS G -a2 al
L1 a G
2 G -a2 al
D

- IS
1T
11
iz a c b
Pz a b
daz
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ID 4th order zeros for DBPF
H(z) = (1 -2-2)2/4

f.'i‘. 2nd order zeros
H(z) =a +bz"' +cz-2

I1 2nd order zeros for DBP
H(z) = (1-2-2)/2

Yn pP% pole zero pair
_ l+az"!
H(2) =<5

FIGURE A1. FILTER SECTIONS
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Macros

The macro files include the micro code for the section and indicate where
coefficients and options from the input file should be inserted. The symbolic
micro code specifies the state of the control lines for that cycle according to the

format:
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Micro code format:

Col 1: Memory operation (r,w,x)
r=read
w=write
x=dont care (read)

Col 3,4: Relative memory address (0-99,**,xx)
00-99 : add to offset to get true address
** . section input, use address of input source
xx : dont care (00)

The section output must be given the highest address.

Address should be sequential starting from 0.

Sections which read inputs from off chip should store

the input in add 0.

Col 6: Write latch operation (1,h,x)
- I=latch data on membus
h=hold data in latch
x=dont care (hold)

Col B: Barrel shifter input source (m,s,x)
m=memory
s=shifter output
x=dont care (shifter)

Col 10: Number of shifts for barrel shifter (0-5,x,%)
0,1,2,3,4,5 : shift designated number
¢ : set from coefficient value
x : dont care (shift 0)

Col 12: Adder a input operation (a, +,-,2,x,*)
a: absolute value
+: true
- negate
Z: Zero
x dont care (zero)
* absolute value if rectify is specified

Col 14: Adder b input source (a,m,c,z,x)
a accumulator
m: memory
¢: 1's complementor output
Z: zero
x dont care (zero)

Col 18: 1/0 operation (i,0,a,x,%)
i: enable parallel input, set input strobe
O: enable parallel output, put acc on membus,
set output strobe
& put acc on membus, no output
x dont care (acc on membus, no output)
*. parallel output if output option set



-32 -

TIMING CONSIDERATIONS IN WRITING MICRO CODE
~ Several points must be kept in mind when writing the code:

1. Micro code is written in the order in which it comes out of
the ROM. The order of actual operations may be different.

2. The results of the adder operation described in one cycle is
valid the next (at the accumulator output).

3. The write latch and barrel shifter input controls are
delayed one cycle and should be initiated one cycle
before the desired operation.

4, Data from a memory read appears at the barrel shifter input mux the
cycle after the read operation. Similarly, data stored in the write latch
appears at the barrel shifter input mux the cycle after the write operation
is performed.

5. Parallel input data is latched the phase 1 before xmitin2 goes low
and is gated onto the membus when xmitin2 is low.

EXAMPLE:

1 r 00 x m X X X X
2 r * x m * + 2z X
3 x xx ! x * * a x
4 w 00 x x X X x *

cycle 1: read data from mem(0), set barrel shifter
mux for memory.

cycle 2: read output of last section, acc=mem(0)*coeff

cycle 3: set write latch to get results of computation (1 cycle early),
acc=acc+coeff*abs(input) (if rectification option is set)
acc=acc+coefl*input (if rectification option not set)

cycle 4: membus=acc, (write latch operation takes place)
mem(0)=data in write latch (acc),
turn on 1/0 buffers if output option is set
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2

3 numloc:
Direct 2nd order section (poles only)

Listings of macros in library
BD num coeff:
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6

0 numloc:
Direct 4th order BPF zeros (input section)

ID num coeff:
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4

3 numloc:

Direct 2nd order arbitrary zeros (input section)

eff:
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APPENDIXB USING THE LAYOUT GENERATOR

The files ‘bankirom’ and 'bank2rom’ must contain the ROM data for the
respective processors. The format (see below) of these rom flles is the same as

that of ‘romout’ created by the filter compiler.

The layout generator writes four flles, all in KIC format. The file 'fliter’ con-
tains the complete filter description, while ‘controller’ and ‘procram’ contain
the controller and data path descriptions respectively. -The file, 'indexreg’, con-

tains the index register.

To simplify the development of the layout generator, several restrictions

have been placed on the range over which the hardware parameters can vary.

Restrictions:

1. The RAM size must be a multiple of 4 between 8 and 128 words.
Maxz RAM size with decimation is 82 words.

2. The data path width must be a multiple of 2 greater than 6.
3. The ROM must contain a rultiple of 32 words not greater than 256.
4. For two procsssor designs:

The two data paths must be identical

The two ROMs must have the same length.

The decimation ratio (<=8) must be the same for each processor.

The format of the rom flle is:

line 1. number of words of ROM

line 2. ROM width

line 3. number of desired instructions
line 4. RAM length

line 5. decimation ratio

line 6. number of data paths

line 7. data path width

line 8. column decoded (true/false)
line . micro instruction executed first
line 10. 2nd micro instruction

li.ne n. last micro instruction
There must be a multiple of 32 micro instructions (18 for non-column

decoded layouts).
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" Format for each line of the rom file starting with column 1:

1. RAM address/ index register control

(without decimation: n bits, msb first)

(with decimation: always 7 bits)
format with decimation:
110aaaa select index register for msb’s, ROM for Isb’s
111 xxxx increment index register
0O aaaxxx 3bit address from ROM
Oaaaaxx 4bit address from ROM
Oaaaaax 5bit address from ROM
Oaaaaaa 8bit address from ROM
aaaaaaa 7bit address from ROM (can not start 11)

a= RAM address bits, msb first
x= unused
‘2. memwrite
memory write control 1=write, O=read
3. wrlatch
controls loading of write latch 1=latch, O=hold
delayed 1 cycle
4. shiftsre
controls barrel shifter input mux 1=shifter, 0=memory
delayed 1 cycle
5. 5~shiftnum (3 bits msb first)
number of barrel shifter shifts (subtracted from 5)
8. invl :
7. inv2
controls complementor
invi=0, inv2=0 true
invl=x, inv2=1 invert
invi=1, inv2=0 ebsolute value
8. bsell
9. bsel2
controls adder b input mux
bsell=0, bsel2=0 zerob
bsel1=0, bsel2=1 1's complementor output
bsell=1, bsel2=0 memory
bsell=1, bsel2=1 floating (to select acc)
10. zeroa*
Zero adder A input if zeroa®=0
11. xmitacc®*
transmit acc to membus if xmitace®*=0
12. accb*
enable acc onto b input if aceb®=0
13. xmitin2*
transmit parallel input to membus if xmitin2*=0
14. iobusen
enablie parallel output when jobusen=1

The order of binary data in the ROM flle is the same as that of the control
lines entering the data path starting from the RAM end. Exceptions are the bar-
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rel shifter shift number which is reversed on the data path (i.e. Isb first) and the

.RAM address lines which consist only of the necessary data (no unused lines in
the case of decimation). Several signals have been tied high or low at the data
path and need not be specified.

«
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APPENDIXC USING THE TESTER

The pattern generator part of the tester set up was developed at UCB by
Jim Beck. In order to use this, the B4 pin test head must be connected to the
~ main tester unit. A special patch connector is used which contains the circuit
sﬁown in figure C1. As the tester has no capabilities to handle the decimation
and the index register is not included on the data path chip, a switch bank is
-used to simulate the decimation. The user can then check each channel by set-
ting the switches appropriately.

After the hardware is set up, the filter specifications should be compiled
with the filter compiler. The ROM data is converted to tester format in the file
‘testout’ by running 'romtotest’. Then the programs ’tas’ and 'tdown’ (see the
tester manual) can be used to start the tester. If two data paths are being used,

the filters of each data path are tested separately.

This shell script will test the filters specified in 'filterdata’:

ctrl
romtotest
tas testout
tdown
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The data path circuits which should be used are proc.july, procfast.july
(M37YPH1, M37YPG3). The circuits have the following pin out and connection to

the tester:

IC tester function 1C tester function
pin connection pin connection

1 GND substrate 33 2C " mem4
2 11 di7 34 2B mem3
3 10 di6 35 2A mem?2
4 F did 36

5 E di4 37

86’ 38

7 39

8 40

9 41 29 mem1
10 D di3 42 28 mem0
11 C di2 43 27 memvrite
12 B dii 4 23 wrlatch
13 A d10 45 22 shiftser
14 9 do 46 28 sh2

15 8 ds 47 25 shil

16 7 ds 48 24 sh0

17 6 de 49 21 invi

8 5 ds5 5 20 inv2

19 4 d4 51 iF bsell
2 3 d3 52 1E bsel2
21 2 d2 53 1D ) zeroa*
22 1 di 54 1B xmitacc*
23 0 do 55 1A accb*
24 56 )

25 57 '

26 58

27 59 186 xmitin2*
28 60 15 iobusen
29 61 clockl phl

30 GND GND 62 . clockO ph2

31 2E mem6 83 Vdd Vdd

32 2D mem5 B4 14 paden
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APPENDIXD1. SPEECH RECOGNITION FILTER BANK

1. Fliter compiler input files
2. Chip pinouts
3. Timing

Vs3



(o]

C fliter bank1 — even channels
Cc

C Gains corrected 10/7/83

wg=a

C channel 0

BS g 100-,-.00001000-,.00001 1)
BS (1,-.0001001,.00100-)

L1 R (1.000000-,.001)

S

C channel 2

BS é.OlOO-.-.OOOOllOl..lOOl)
BS (10., -.0001,.1101)

IS..I R (1.000000-..001)

C channel 4

BS §.00100—,-.000100-.10.01)
BS(10., -.0001,10.11)

Is..l R (1.000000-,.0100)

C channel 8

BD o (-1.000-000-,1.10101,.0001)
BD (-1.000-00-, 1. 100101,.0001)
L1R (1.000000-..0001)

S

C channel 8

BD o (-1.00-0001,1.001,.001)
BD (-1.00-001,1.011,.001)

ls..l R (1.000000-,.0001)

C channel 10

BD o (-1.00-001,.101,.00011)
BD (-1.00-001,1.00-,.001)
L1 R (1.000000-,.0001)

S

C channel 12

BD o (-1.00-,-.00101,.001)
BD (-1.00-,.001,.001)
L1R (1.000000-,.0001)

S

C channel 14

BD o {(-1.00--,-1.001,.001)
BD (-1.0-001,-.11,.01)
L1R (1.000000—..000101)
D

1E2 0 (’13--0001 1,-0001 1)



ol

g Filter Bank2 — odd channels
C

gGe.m' s corrected 10/7/83
Input

D

Standard

C channel 1

BS §.100-.-.0000101 1,.00101)
BS (1,-.0001001,.01001)

gl R (1.000000-,.001)

C channel 3

BS §.0010-.-.00010001.1. 1001)
BS (10., -.000100-,1.01)

L1 R (1.000000-,.01)

S

C channel 5

BD o (-1.000-001,10.0-,.000011)
BD (-1.000-,1.1011,.0001)

L1 R (1.000000-,.0001)

S

C channel 7

BDo (-1.00-001.1.011..0001)
BD (-1.000--,1.1,.001)

L1 R (1.000000-,.0001)

S

C channel 9

BD o (-1.00-0001, 1.00-,.00100-)
BD (-1.00-001,1.001,.001)

L1R (1.000000-..0001)

S

C channel 11

BD o (-1.00-,.01,.00100-)

BD (-1.00-,.1,.001)

L1 R (1.000000-,.0001)

S

C channel 13

BDo (-1.00-0-.-.101..00100-)
BD (-1.00-0-.-.01..01)

L1 R (1.000000-,.0001)

S

C channel 15

BD o (-1.00--,-1.1,.01)

BD (-1.0-,-1.01,.001)

L1 R (1.000000-,.0001)

D.
%2 0 (-1.-.0001 1,.00011)

-48 -
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Riter bank chip pin-out.

1 gnd 21

2 d2 2

3 au 23

4 410 24

5 @ 25

g a8 28

7T a7 14

8 ds 28

p & 29

10 44 S0 GND

11 datain* 81 Vdd

12 evenout R phase2clk
13 oddout 33 phaseleclk
14 lastch 34

15 GND 35

16 98 417 (msb)
17 S7 48

18 38 diI5

19 38 di4

20 40 418

For non column decoded versions, the output strobes are
inverted and pin 15 is clear.



lastch

|
‘ |
i ’ \J—'f - datam?
| |
'
| ! y._/—\ | ﬂ ! oddout
T " ; 1 ,
' |
. ﬂ " ﬂ | evenout
|
I | o $ 7| |
[ | *
11! IS 9 ES 12 Channel oulpat
(! | N (
N £ gEl-on 2 iél . cyele number
< 1 >4 z > Sample mwmber

(Samples 3-8 same)

/Sam,(e = 14 KH2 7{';,_,5.- 2.688 Miz

FILTER BANK TIMING (see appendix E for details)



- APPENDIX D2 Consumer stereo spectrum analyzer

1. 8 dB frequency files (datain) for both banks
2. Filter compiler input files for both banks
8. Chip pinout

Bank 1 ‘datain’ flle

20000 12
4680 6550
2340 38280
1170 1640
6560 830
292 410
148 207
70 100
38 60

0 0

20000 15
8550 9000
3280 4680
1640 2340
830 1170
420 560
207 202
100 148
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c
C Hi-Fi spectrumn analyzer filter input file

-

I

Q0w
B
g
-
:
o
3

1f1= 4880 f2=

(--1,-.10-,.01)
(1.000000-,.00001)

t.-'g‘o
do

1

filter number 2 fl= 2340 f2=

HgOOOUJ
do

(-1.0-,1.001,.001)
(1.000000-,.00001)

t

filter number 3f1= 1170 f2=

o (-1.00-00-,1.110-,.0001)
R (1.000000-,.00001)

filter number 4 f1= 580 f2=

QOOUJE'%IOOOUJ

BD o (-1.000-00-,10.00-,.00001)
L1 R (1.000000-,.00001)

C filter pumber 5 fi= 292 f2=

filter number 8 f1= 148 2=

(-1,-.00000101,.00101)
R (1.000000-,.00001)

twaaQwm
=W

filter number 7 fl= 70 f2=

(.1,-.0000001,.000101)
R (1.000000-,.00001)

OOWS‘&’OOOU)

filter number 8 f1= 38 f2=

.1,-.00000001,.0000101)
(1.000000~,.00001)

A

1

Ut“gO

8550

3280

1640

830

410

207

100



12 0 (.1..00001 1..0001 1)
B

-50-
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C
C Hi-Fi spectrum enalyzer filter input file

fliter number 1fl= 8550 f2= 8000

aaauz—a

BD o (-.1001,-1.10-,.01)
L1 R (1.000000-,.00001)

S

C

C fllter number 2 fi= 3280f2= 4880
C

BDo (-.1,.1,.01)

L1 R (1.000000-,.00001)

S

C

C fliter number 3fl= 1640f2= 2340
c .

BDo (-1.0-1.100-,.001)

L1 R (1.000000-,.00001)

S

C

C filter number 4 f1= 830 f2= 1170
C

BDo (-1.00-01.10.0-01..00010-).

L1 R (1.000000-,.00001)

S

c .

C filter number 5fl1= 420 2= 590
C

BD o (-1.000-001,10.000-0-,.000010-)

L1 R (1.000000-,.00001)

S .

C

C filter number 8 f1= 207 f2= 292
C

BS (.1,-.0000100-,.01)

L1 R (1.000000-,.00001)

filter number 7 fl= 100 f2= 148

(.1,-.000001,.0010-)
R (1.000000-,.00001)

S‘l‘lm’OOOm

fiiter number 8 f1= 50 f2= 70

(.1.~.00000010-,.0001)
R (1.000000-,.00001)

oo Qwm
=
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g_a 0 (-1,-.00011,.00011)
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g
1

1 21

e d2 2

3 au

4 d10 24

5§ & 3

¢ da8 28

7 &7 27

8 ds8 28

9 d5 29

10 d4 30 GND

11 datain®* 31 Vdd

12 evenout 32 phase2clk
13 oddout S3 phase 1clk
14 lastch A

15 (GND) S )

16 38 di17 (msb)
17 37 ase

18 S8 di5

19 N d4

0 40 d13

For non-column decoded verszions, the output strobes
are inverted and pin 15 is clear.



.00-,.01,.001)

-1
HDO &-1.00—.. 1,.01)

APPENDIX DS - Single filter chip
Fliter compiler input file

(¥ ,m. “antnoroaanNBNASER

1
D
S

emmmm mmmm
GNRIRBRBRESBRIBBERAR

g
5 B 35594 3
@

-]
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APPENDIXE Chip1/0 timing

cloch

The chips require a 2 phase non-overlapping clock. The clock separation
should be at least 30 nS. To ensure proper operation, the clocks should pull up
to Vdd. The simple 2/8 duty cycle clock generator in figure E1 can be used but
restricts the maximum clock rate of the circuits to 87% that obtained with a 3/8

duty cycle clock

The circuit clock rate is equal to the sample rate (the rate at which the
inputs are sampled) multiplied by the number of cycles per sample. For exam-
ple, the speech recognition chip has 182 cycles per sample and a 14 KHz sample

rate. Therefore, a 2.688 MHz clock is required.

The circuits operate with a single +5 V supply and all inputs and outputs are

TTL compatible (except the clocks). However, it can be seen that a significant
reduction is supply current occurs when for Vbb < 0. This does limit the max-

immum clock rate that the circuits can be run at.

perallel i/o

The input and output data is in twos complemen‘t format and passes
through the chip's parallei buss. The data is inverted once when input and again
when output. Figure E2 shows the timing for data output. The data on the i/o
lines and the output strobe(s) change after the rising edge of clock phase 2. The
data is valid after the rising edge of the phase 1 clock when the output strobe is
true.

_The timing for data input is shown in flgure E3. In the normal input mode,
the input strobe (datain*) goes low for two cycles each sample. The data is
latched during the first phase 1 after the strobe goes low. The strobe also gates

the signal onto the internal membus during the second phase 2. In this mode,

6t
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the input strobe can be used to enable the A/D converter tri-state outputs.

The 1/0 pads are controlled by the ‘paden’ (pad-enable) signal. When this
signal is high, the pads are in the output mode. When it is low, the pads are in
the 'mpqt mode. Therefore, paden should be high when either output strobe is
true and low when the input strobe is true. Usuelly, paden is connected to the

output strobe (or the OR of the output strobes if there are two).

synchronization with decimation

When decimation is used and the post decimation filter sends its output off
chip, a reference is required. The lastch signal indicates when the index counter
counts down to its minimum value (ie the post decimation fliter just output the
value for the first channel that is decimated). When the counter is at its
minimum value, lastch will go high for the first cycle of the sample and changes
on phase 2. When two processors are used with decimation both counters are

synchronized so that only a single lastch signal is needed. This timing is illus-
trated in figure E4. .

0v6
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Figure E1 Simple Clock Circuit
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FIGURE E3. Parallel Input Timing
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APPENDIXF THE CIRCUIT CELLS

The primary circuit cells of interest have their schematics and plots shown
" in the figures. The hierarchy listed below indicates how the cells are made of
sub-cells.

There are currently two sets of circuit cells. They both follow Mead and
Conway layout rules (also rules for MOSIS 4u NMOS) but follow different ratio
rules. The cells in the directory 'chip.jan' were designed with the more conser-
vative K=4 (K refers to the ratio of enhancement W/L to depletion W/L) rules,
while the cells in 'chipfast.jan’ were designed with K=3 rules in critical places.
This was done because the processing from various MOSIS vendors varies
significantly.

To generate a K=4 design after the generating the layout, the '.KIC' file
should include chip.jan in its path before chipfast.jan. For K=3 chips,
chipfast.jan should be first in the path. Running ‘kictocif’ will then generate a
CIF file with the desired cells.

Hierarchy of KIC files:

filter (complete filter) :
procram (data path) (see below)
controller {controller) (see below)
datacon.1 (.2)
vddcon.1 (.2,.i1,.i2,.3) (Vdd, clock connection)
PadlOData (1/0 pad)
PadBlank
PadDriver )
Padln {non buffered pad)
PadInBuffered (buffered input pad)
PadOut (Buffered output pad)
PadClk.2 (clock pad)
PadVdd (Vdd pad)
PadGND (GND pad)
Padl05 (5 data pads always included)
- padsupply (Vdd, GNd, clock pads)
padstr.1 (.2,.i1) (strobe pads for 1 or 2 processor)
rout.3 (.4,.5,.6,.7) (routing cells between controller and data path
' no indexing) '
rout.i3 (.i4,.i5..i6,.i7) (routing cells for indexing)

controller

pc.B (.7..6..5,.4) (program counter with n bits)
pc.end (control logic for pc)
peprog.0 (cell to program counter to load 0)
peprog.1 (cell to program counter to load 1)
counterslice (counter cell)
bufferslice (output drivers of pc)

deccell0 (ROM decoder cell '0*)

deccelll (ROM decoder cell '1')

deccell2 (ROM decoder cell that passes column address)

decoder.5 (ROM decoder gnd connection)

romcO (ROM cell '0’)

romcl (ROM cell '1°)

romc2 (ROM array ground connection)
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romreg.2 (ROM output register, latches data on ph1)
romreg.1 (ROM output register, latches data on ph2)
romreg.3 (.4,.5,.8,.8)
romregtop.i (routing from ROM registers to index reg and data path
for decimation)
romregtop.7 (.8,.5,.4,.3) (routing from ROM register to data
path for n RAM address lines)
pullup.1 (.2,.3,.4)
romedge.2 (.3,.5,.8,.8,.9,.10)
indextop.m (wiring to connect left and right index regs)
indextop.r (.1) (index registers and routing for right and left)
indexreg (complete index register)
indexreg.5 (index register with only 1 counter and other circuits)
indexreg.1 (.2) (muxs, and misc control)
counterslice {counter)
peprog.0 (.1) {counter load program cells)

procram
dec41 éRAM decoder cell '1')
dec40 (RAM decoder cell '0*)
ram4c?2 (4t RAM cell mirrored)
ram4c (RAM cell)
ramdec.1 (.2,.3,.4,.5) (connects address drivers to decoder rows)
ramdriver (address bit drivers)
ramdecgnd (gnd return line for RAM decoder)
ramgnd.1 (.2) o
ramedge.1 .
mem4endre (RAM select control)
auslicegnd (ground connections for data path)
Auslice.msb {msb slice of complete arithmetic unit)
auslice.msb (1/2 au slice for msb)
naddce (even adder cell)
naddco.msb (cdd adder cell)
nsataccum.msb (saturaing accurnulator)
nioblock.msb (parallel and serial 1/0)
nioportc.msb (parallel 1/0)
ninportc.msb (serial input)
noutportc.msb (serial output)
bshSlice6.msb (1/2 au slice for msb )
nauinput.msb (A,B adder input muxs)
bshtopinput (barre! shifter input mux)
senselatchbs (sense amp)
senselatdriv (control for sense amp)
dec3toB (barell shifter decoder)
bshdeccell0 (1,2,3) (decoder cells)
bshdecload
bshdecend
bshdecloadend
bshdecinv
bshdriv3to8 (control for 8 shift b.s.)
bshslice8 (8 bit barrel shifter slice) (see below) :
bshtopsl8 (msb barrel shifter- just straight through)
bshtopcelll 2basic cell)
bshendtop1 (end cell)
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Auslice (slice of arithmetic unit)
auslice (1/2 au passed barrel shifter)
nmulte (adder, accumulator)
naddce (even adder cell)
naddco (odd adder cell)
nsataccum (saturaing accumulator)
nioblock (parallel and serial 1/0)
nioportc (parallel 1/0)
ninportc (serial input)
noutporte (serial output)
bshSliced (1/2 au including 8 shift barrel shifter)
senselatchbs (sense amp)
bshslice6 (6 bit barrel shifter, input mux, adder muxs)
bshinput (input mux circuits)
nauinput (A,B adder input muxs)
bshsl8 (6 bit barrel shifter)
bshcelll (2 bit barrel shifter cell)
bshend1 (end cell)
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IOMITTED
| FOR SOME
| OUTPUTS -
-l
COLUMN OUTPUT REGISTER
ADDRESS } WITH PRECHARGE
DECODER TRANSISTOR
e &
{
: —|ﬁ ¢,
T 1
.__l'\_wd i
i ]
“I" CELL—=| :
b e e J
+
.'r----'-.-'; =
! T e
| l |
" ' ! i * 1
0" CELLS —! =) e H
I | . -
X |
Yo
WORD : +— ,L—_L_ : +
SELECT I . =] 1
LINE i -
BiT - | 1
LINE f A, A,
Vad
MEMORY NOR ADDRESS
ARRAY DECODER

ROM AND OUTPUT REGISTERS
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APPENDIXG FIFO BUFFER

In order to ease testing and interfacing the fllter bank chips to the outside
‘world, a fifo chip was designed. This circuit is really a circular buffer, as writing

is not inhibited when the bufler fills. See figure G1 for schematics.

The circuit is a 3 transistor memory with separate read and write ports.
Writing and reading are totally independent and are controlled by shift registers

that point to current row being written or read. Timing is shown in figure G2.

When the wclear signal goes high, a ‘0’ is entered into the write shift regis-
ter (reseting the write pointer). Every time wshift goes high, the data at the
input lines is written into the row pointed at by the write pointer and the write
pointer is advanced. The wcleér line should go low only after the write pointer is

shifted past the last row or multiple rows will be written.

When reading, the read pointer is automatically reset after the entire
memory has been read. The pointer needs, h.owever. to be reset upoﬁ power u§
by holding rclear® low for at least one cycle. Each time the rshift* line goes low,
the read pointer advances and new data appears at the output lines. This data
will remain until the rshift* line goes high and low again or new data is written

into the row being read. The outputs are tristate and float if paden is low.

The write control circuitry was designed specifically for the filter bank. The
lastch signal provides the requirements for the wclear signal. Wshift can be
obtained from the exclusive-or of the two output strobes. If it is desired to inhi-

bit writing, wclear can be pulled to ground.

For testing, two reading modes are useful. In the first all channels are read
in sequence and the rshift*® line is connected to datain®* on the filter bank. Figure
'G3 shows the connection between the fifo and the filter bank chip used in this
test mode. The sync® signal goes low after the last row has bee_n read and can

be used to synchronize an oscilloscope if the outputs are converted to analog for



-

display. To look at a single channel, rshift®* can be connected to a debounced
switch and controlled manually.

s with any dynamic circuits, certain timing constraints must be met. The
shift registers are self refreshing so that for normal clock rates (>1 KHz) there
are no constraints on the rshift* timing. If the circuit is used in a fifo mode with
writing inhibited, care must be taken not to exceed the refresh time before the
data is read. At room tem;;erature. tests have shown that the refresh time is
greater than four seconds. The maximum clock rate for a 16 word, 12 bit

memory is greater than 7.5 MHz as this is as fast as they could be tested.
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FIFO PINOUT

1 GND 21 19

2 o2 03} 2 i10

8 olfo2] 23 {11 (msb)
4 o0[ol] 24 wclear
5 [o0] 25

8 28 GND
7 peaden 27 Vdd

8 rclear* 28 ph2

9 rshift* 29 phl
10 c* 30 wshift
11 i0(1sb) S1 o1l (msb)
12 i1 32 o010
13 i2 3 oB

14 i3 34 o8

15 i4 35 o7

16 38

1?7 i5 37 o8

18 i8 38 o5[o8
19 17 39 o4|cd
20 i8 40 o304

(] Differences for fifos with FAB ID's before M43AJQ1
FIFO CELLS

b;lﬂerc;hip (complete chip 18 word, 12 bit)
pads
bufferblock (the fifo itself)
readriv (read pointer control)
readend (control for shift registers}
shiftcelll (the actual shift register
readtop (other control)
writedriv (write pointer contraol
writeend (control for shift re
shiftcell1 (shift register)
shiftcell {write select gating logic)
outputreg (output register)
3tegnd (gnd connection)
memarray (the array of memory cells)
Stcell4 54 cells mirrored both directions)
Scell (single cell)

BrE
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FIFO SIMULATIONS

P
P Simulation of Filter Bank FIFO 10/3/83
P
Kph2 0100 ph1 0001
w011 01009 08 07 06 05 04 03 02 01 00 Sync
V ¥Wclear 100000000000000000100000000000000000000000000000000
V Wshift 001111111111111111001010101010101010101010101010100
VIl 1131111111111111111110000000000000000000000000000000
VIi0 000000000000000000000000000000000000000000000000000
VI9 111111111111111111110000000000000000000000000000000
VI8 (00000000000000000000000000000000000000000C0000C0000
VIi7? 111111111111111111110000000000000000000000000000000
Yié 000000000000000000000000000000000000000000000000000
VI5 000000000000000000000000000000000000000000000000000
VIi4 000000000000000000000000000000000000000000000000000
VI3 000000000001111111100000000000000000000000000000000
Vi2 000000011110000111100000000000000000000000000000000
Vi1 000001100110011001100000000000000000000C000C0000000
VI0o 0000101010101010101000000000C000000000000000C000000
VRclear 1011111111111111111111211112112111111111111111111111
VRshift 111111111111111111101010101010101010101010101010101
P .
P write and read
P
R

SIMULATION OUTPUT

905 transistors, 657 nodes (130 pulled up)
Simulation of Filter Bank FIFO 10/3/83

write and read

>XXD111111111111111111101010101010101010101010101010:011
>XXD0000000000000000000000000C0000000000000000000000:010
>XXD111111111111111111101010101010101010101010101010:09
>XXD000000000000000000000000000000000000000000000000:08
>XXD111111111111111111101010101010101010101010101010:07

" >XXD000000000000000000000000000000000000000000000000: 06
>XXD00000000000000000000000060000000000000600000000000: 05
>XXD00000000000000000000000000000000000000C000000000: 04
>XXD000000000000000000000000000000000010101010101010:03
>XXD000000000000000000000000001010101000000000101010:02
>XXD000000000000000000000010100000101000001010000010:01
>XXD0000000000000000000010001 0001 0001000100010001000:00
>XD11111111111111131111111111111111111111111111111001:Sync
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APPENDIXH. SPICE SIMULATIONS

The following SPICE level 2 parameters were derived from measured curve
tracer data. Simulations using these parameters gave very good estimates of the
actual propagation delays. It-should be noted that for the MOSIS 4 micron NMOS
runs, different vendors provided circuits with vastly different characteristics.

Propagation delays varied by almost a factor of two between different processes.

parameter SPICEIl SPICEIl SPICEN SPICEIl units

slow slow fast fast

A ENHANC DEPL ENHANC DEP
vto 0.6 - ~R.5 0.48 2.9 \'
cjo 1.3e-4 1.8e-4 1.5e-4 1.5e-4 F/m~2
gamma 0.4 - 0.5 0.5 0.56 V~.5
lambda 0.01 0.015 0.02 0.025 1/v
vmax 4.0e4 3.0e4 4.4e4 3.3e4 m/sec
ucrit 2.6e5 2.5e5 ** b V/em
uexp 0.23 0.23 b e
uo 350 366 550 590 cm~2/V/sec

kp 17.2 18.0 25 27 ud/v-~2

** not measured because it has such a small effect
Other parameters used:

gate tox: 750 A

poly tox: 7000 A

metal tox: 14000 A

ld: .5u
cjsw: 3.5e-10 F/m

It was found that using only the level 1 parameters still gave good results

with a decrease in simulation time.

The main circuits simulated were those that were added for the filter bank.
This includes the critical path through the data path up to the adder, the
column decoded ROM and the fifo. The half of the data path passed the adder

input multiplexors was already designed and simulated. The RAM array and
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sense amplifiers were also simulated previously.

All spice simulations used parameters between the fast and slow values.

COLUMN DECODED ROM SIMULATIONS
192 word by 22 bit by 2 processor ROM

delay from PC change to decoder line low (25 V): 50 nSec
delay from PC change to bit line low (2.5 V): 93 nSec
delay from PC change to bit line low {0.5V): 112 nSec

delay from PC to row deselect (2.5 V) : 23 nSec
delay from PC to row deselect (0.5V) : 43 nSec

CRITICAL PATH SIMULATION OF DATA PATH FROM MEMORY OUTPUT TO ADDER
INPUT

22 bit wide data path, 6 bit barrel shifter, K=4

delay from ROM to A input pulldown (2.5V) : 185 nSec

delay from ROM to A input pullup (2.5V) : 130 nSec

delay from ROM to barrel shifter select pullup (2.5V) : 110 nSec
delay froM ROM to barrel shifter select pulldown (2.5V) : 30 nSec

22 bit wide data path, 6 bit barrel shifter, K=3

delay from ROM to A input pulldown (2.5 V) : 142 nSec

delay from ROM to A input pullup (2.5 V) : 110 nSec

delay from ROM to barrel shifter select pullup (2.5 V) : 75 nSec
delay from ROM to barrel shifter select pulldown (2.5 V) : 30 nSec

FIFO SIMULATION 16 word by 12 bit

read select pullup time from ph1 (2.5V): 34 nSec
output pullup time from ph2 (2.5V): 19 nSec

bit line pulldown time from ph1 (2.5 V): 31 nSec
storage node pullup time from phi (2.5V): 18 nSec



-72-

SIMULATION OF INVERTER AND SUPER BUFFER PERFORMANCE

It is often possible to obtain quick estimates of the performance of simple
circuits using only a few benchmarks. Many paths in the circuit can be reduced
to a buffer driving a load capacitance, so that several different kinds of buffers
driving a capacitive load have been simulated. Although each buffer is simulated
with a single W/L ratio, load capacitance and Kp, changes in these parameters
will result in a simple scaling of the delay time. This is because:

td= (Cload)*(dV)/(Icharge)
= Cload*dV/(Kp*W/L*f(Vds,Vgs,Vt))

Therefore, one can use the value in the table and scale it for the appropri-
ate circuit.

All simulations were done with:

Cload=2 pF

Kp= 25 uA/V~2 (enhancement and depletion)

W/L= 4u/4u ésuper-buﬁ'er output depletion device)
W/L= 4u/8u (super-bufifer driver depletion device)
W/L= 4u/8u (inverter depletion device)

K ratio= 4 for no pass xter (npx), 8 with pass xster (wpx)

Delays for various buffer types :

circuit Tplh (2.5V) Tphl (25V) Tplh (4.0V) Tphl (0.5V)
non-inv S.B. npx 22nS 10 nS 42 nS 15 nS
non-invS.B. wpx 25nS 10nS 60 nS 17 nS

inv S.B. npx 23 nS 8 nS 45nS 12 oS

inv S.B. wpx 23S 9 nS 45 nS 12 nS

inverter npx © 150 nS 8nS 200 nS(3.0V) 12nS
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APPENDIX1 Simulations from the layout

In order to check that the layout generator was generating correct circuits,
a switch level simulator (MOSSIM) was employed. Before simulation, the circuit

must be extracted with MEXTRA.

The circuit was checked in blocks. The controller was simulated to check
that the ROM .output the correct data each cycle. The index register action was
verified separately. Each data path was checked for proper arithmetic opera-
tion and connection to the controller and pads. The RAM can not be simulated

because is uses ratioed enhancement devices.

Due to strange things in MOSSIM, all enhancement devices with gates tied to
either supply must be changed so that the gates are tied to user defined signals.

The signals are then set high or low in the input file.

Simulation files for the controller and the even channel processor are

included. These simulations were done on the speech recognition filter bank.
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~ CONTROLLER SIMULATION INPUT FILE

P

P filter bank controller simulation (pc, decoder, rom, index regs)

P filtercd16.oct 10/7/83 with column decode,no clear, correct index reg
P .

ht2

1t1

womemb omem4 omem3 omem2 omem]1 omem0

" womemvwrite owrlatch oshiftsrc osh2 osh1 o0shO ocinv1 oinv2

'w absell obsel2 ozeroa oxmitace oaccb oxmitin2 ciobusen
wememS emem4 emem3 emem2 emem] emem0
wememvwrite ewrlatch eshiftsre esh2 esh1 esh0 einvl einv2
w ebsell ebsel2 ezeroa exmitacc eaccb exmitin2 eiobusen
w lastch evenout oddout datain

Kph2 0180 ph1 0001

1cout coutl

P

P clear counter

P

R6

X cout

P

P clear pc, index registers

R1

P

P let pc run
P

R 64

P

X coutl
R 64

P

R 64

P

R1

P

P test index reg
P

1 cout
R10
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CONTROLLER SIMULATION OUTPUT

20460 transistors, 8438 nodes (1844 pulled up)

filter bank controller simulation (pc, decoder, rom, index regs)
filtercd16.oct 10/7/83 with column decode,no clear, correct index reg

clear counter

SXXXXX:omem5
>XOXXX:omem4
>X0XX-omem3
>XXXD00:omem2
>XXXD00:omem1
>XXXD00:omem0
>XXXD00:omemwrite
>XXXD00:owrlatch
>XXX111:oshiftsrc
>XXX111:0sh2
>XXXD00:0sh1
>XXX111:0sh0
>XXXD00:0inv1
>XXX000:0inv2
>XXX000:0bsel 1
>XXXD00:0bsel2
>XXXD00:0zeroa
>XXX0D00:oxmitace
>XXX111:0acch
>XXX111:o0xmitin2
>XXXD00:oiobusen
>XXXX1 1:emem5
>XXXX11:emem4
>XXXX11:emem3
>XXX000:emem?2
>XXXD00:emem 1
>XXX000:emem0
>XXX000:ememwrite
>XXXD00:ewrlatch
>XXX111:eshiftsrc
>XXX111:esh2
>XXXD00:esh1
>XXX111:esh0
>XXXD00:einvl
>XXXD00:einv2
>XXXD00:ebsel 1
>XXXD00:ebsel2
>XXXD0O0:ezeroa
>XXXD00:exmitace
>XXX111:eaccb
>XXX111:exmitin2
>XXXDC0:eiocbusen
>X11111:lastch



>XXX000:evenout
>XXX000:0ddout

- >XXX111:datain

clear pe, index registers

>X:omemb
>Xomem4
>X:omem3
>0:omem?2
>0:omem1
>0:omem0
>0:omemwrite
>0:awrlatch
>1:oshiftsrc
>1:0sh2
>0:0sh1
>1:0sh0
>0:0invl
>0:0inv2
>0:0bsell
>0:0bsel2
>0:0zeroa
>0:oxmitace
>1:0acch
>1:oxmitin2
>0:0icbusen .
>1l:emem5
>l:emem4
>1:emem3
>0:emem?2
>C:emem1
>0:emem0
>0:ememwrite
>0:ewrlatch
>1:eshiftsre
>1:esh2
>0:eshl
>1:esh0
>0:einvi
>Q.einve
>0:ebsell
>0:ebsel2
>0:ezeroa
>0:exmitace
>1:eacch
>l:exmitin2
>0:eiobusen
>1l:lastch
>0:evenout
>0:oddout
>1:datain

let pc run

-8 -
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>XD00000000000000000000000000000000000000000000000000000000000000:omemS
>XD00000000000000000000000000000000000001111011001111110110011101:0omem4

* >XD00010000000001111001101111110110011000000000000000000000100110:omem3
>0110101111011001111001101111110110011001011001001011110110011001:0mem2
>0011110101100100000000000011110110011100100010000110110010001101:0mem1
>0111011100110101011000101010110010001100100010000101000100010101:0mem0
>000101010101100000100010010001 0010010010001 00100010001 0010010010:omemwrite
>0100110101010000010001001000100100100100010010001000100100100101:owrlatch
>1000010101010010000110010100001001010010000100110100001001010010:oshiftsrc
>1110011111111110111001100111110010000000111001110111110011000011:0sh2
>0001100000000001000010011000000101101111000000001000000100101100:0sh1
>1101111111111100111010101111111011001001111111100111111011101111:03h0
>0000000000000000000000600000000000000100000000C00000000000000100: cinvl
>0010000000000001000111000000001 1000010010001 10000000001000001000: 0inv2
>0001100000000001110111011001101101111101110110111011101101111100:0bsel1
>0001100000000001110111011001101101101101110110111011101101101100:obsel2
>0011110101010011111111111011111111101111111111111111111111101101:0zeroa
>0110000000000000000000000000000000000000000000000000000000000000: oxmitace
>1110011111111110001000100110010010010010001001000100010010010011:0accb
>100111111111111111111111111112111112111111311111111111111111111111:0xmitin2
>0000000000000000000000000000000000000000000000C00000000000000000: cicbusen
>1000000000000000000000000000000000000000000000000000000000000000:ememS5
>10000000000000000000000C0000C0000000001111001101111111100011001 1:emem4
>1000010000000001111011011111101100110000000000000000000001000110:emem3
>0110101111011001111011011111101100110010110001010111111000110001:emem2
>001111010110010000000000011110110011100100001000110110100001101 1:emem1
>0111011100110101011001010101100100011001000010001010010000101011:emem0
>0001010101011000001001001000100100100100010001001000101000100100:ememwrite
>0100110101010000010010010001001001 00100010001 0010001010001001000: ewrlatch
>100001010101001000010010100001 0010100100001 100101000000110100100:eshiftsrc
>1110011111111110111001011111100100000001110101101111101110000001:esh2
>0001100000000001000000000000001011011110000010010000000001011110:esh1
>1101111111111100111011001111110100010101110011001111111001010001:esh0
>0000000000000000000000000000000000001000000000000000000000001000:einv 1
>001000000000000100010000000001 1001010010001 11000000001 000001001 0:einv2
>0001100000000001110110110011011011111011101110110111010111111011:ebsell
>0001100000000001110110110011011031011011101110110111010111011011:ebsel2
>0011110101010011111111110111111111011111111111111111111111011111:ezeroa
>01100000000000:00000000000000000000000000000000000000000000000000: exmitace
>1110011111111110001001001100100100100100010001001000101000100100: eacchb
>100111111111111111111211131112111211111111111111111111111111111111:exmitin2
>0000000000000000000000000000000000000000000000000000000000000000: eiobusen
>11111111111111111111111311111111111331111111111111111111111111111:1astch
>0000000000000000000000000000000000000000000000000000000000000000: evenout

" >0000000000000000000000000000000000000000000000000000000000000000: oddout
>10011111111111111111111111111111113111133111113111131111111111111111:datain

>0000000000000000000000000101001001110100100111001111111101001110:0omem5
>00100011101001111111001000100001100010000000000000000006000000000: 0m em+4
>0000101110100101110100101010000110001000010100000001110101101110:0mem3
>0010001010100001110100100110000101110100100011001100010101001110:omem2
>0010100100000100010100101011001100010000010111001101100000101010:0mem1
>0010101100000101110000001011001100000100110101001001110000101 100:0omem0
>oo1oooomo1uooowomoomoomoommoomoomoomoomomomomomoo omemwrite
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>0000001010000010010100000101000010010100000101000010010100001010:cwrlatch
. >1101010101011001001011010010110001001011001010110001001010010101:oshiftsrc
>1001001111010100001110001011101100001110000011100000001110000111:0sh2
>0010100000001000100001110000000010100001011100011110100001111000:08h 1
>1101100111101010111110010111110000111110100011100000111110100111:08h0
>000000000000000001000000000000000001 0000000000000000010000000000: cinv1
>1010100001000000100010100000100000100010110100101000100010001001:0inv2
>1111111001111111110011111100111111110011111100111111110001111000:0bsel1
>1111111001111110110011111100111110110011111100111110110001111000:0bsel2
>1111111011111110110111111101111110110111111101111110110111111011:0zeroa
>0000000000000000000000000000000000000000000000000000000000000000; oxmitace
>0000000110000001001100000011000001001100000011000001001116000111:0acch
>11111111111111111111111111121211121231111111111111111111111111111;0xmitin2
>0000000000000600000000000000000000000000000000000000000000000000: ciobusen
>00000000000000000000060000000001010010000111010010111001011111110:emem5
>1101100111111110001111110010000100000011000100000000000000000000; emem4
>1100100101111110000111010010010100000011000100001100600000111010:emem3
>0001000011111110000111010010001100000010111010010011001010001010:emem2
>11011001100000000000010100100101 10010010001000001 1110010101 10000;:emem1
>110110011101101000001 10000000101 1001001000001001 11010010001 11000:emem0
>0100100010001010000100100010000100010000100100010010001000100100:ememwrite
>1001000100010100001001010000001010000001001010000101000001001010: ewrlatch
>0010011010000001110100101101100101101100100101100010110100100101:eshiftsre
>1100111011111011111000111001000111001000000111000011100010000111:esh2
>0001000100000000000011000000110000010110010000101100011101010000;esh 1
>1110111111111111100011111110111111100011011111010011100100011111:esh0
>000000000000000000000100000000C000000000001000000000000000001 000:einv1
>001000000000010000001 0001000000001 000000010001010000101000010001: einv2
>1011011101110101111111001111111001111111111001111100111111111000:ebsel1
>1011011101110101111011001111111001111111011001111100111111011000:ebsel2
>1111111111111111111011011111111011111111011011111101111111011011:ezeroa
>0000000000000000000000000000000000000000000000600000000000000000; exmitacc
>01001000100010100001001 100000001 1000000010011000001 100000010011 1:eacch
>111111111111131111111111112131311111111111111111111111111111111111:exmitin2
>(0000000000000000000000000000000000000000000000000000000000000000:; eiobusen
>1000000000000000000000000000000000000000000000000000000000000000: 1astch
>00000000000000000000000000000000000C0000000000C0C000000000000000: evenout
>0000000000000000000000000000000000000000000C00000000000000000000: oddout
>1111111111111111111111121111111111111111111111111111111111111111:datain

>111111110010001110011111111001001110101111111111011001 0000000000 omem5
>0000010100100011100111111110010011101011111111110110010000000000: omem4
>1111101000001000000000001000000111101011111111110110010000000000: omem3
>11011100000000111001101100100100101010001 10000000000000000000000: omnem2
>10011001001010100000001 110100101010000103000010001 0001 0000000000: omem 1
>01011001001010001001000010100101 110000101 100101 10010000000000000: omem0
>1001001000100001000100100100010001001000100100010010010000000000: omemwrite
>0010010100000010100001001010000010100001001000100100100000000000: owrlatch
>000100101101010101100010010110100101010010010000100111111111111 1:0shiftsre
‘>0100001110010001110000000111011101110100'0001.11110110111111111111:osh2
>101010000110111000111101000010001000101 1010000000000000000000000: osh 1
>0000111110101001110111011111001011111110011111111011011111111111:08h0
>0000010000000000000000001000C00000000000001 C0CC0C000000000000000: 0inv1 -
>000010001001 10100100100100010011000101 10010010001 100000000000000: 0inv2
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>1111110001111110001111111000111110001111111001101101100000000000: obsel1
>1110110001111110001111011000111110001111011001101101100000000000: obsel2

- >1110110111111110111111011011111110111111011011111111160000000000: 0zeroa
>oooooooooooooooooooouoooooooooouoooomomoonoooouooooqomooooooo: oxmitace
>0001001110000001110000100111000001110000100110010010011111111111:0acch
>11111111111111111211111111111111111111111111111111111111111111111; oxmitin2
>0000000000000000000000000000000000000C00000000000000010000000000: ciobusen
>0100011100111111110100111011111111001001110010111101111110110010:emem5
>0000000000000001010100111011111111001001110010111101111110110010:emem4
>0101011100111110100001000000000100000011116010111101111110110010:emem3
>0100011100110111000000111011011001001001010010001100000000000000:emem?2
>0001010100100110010101100000011101001010100000100000001000100010:emem 1
>0001011000010110010101001010000101001011100000101100010110010000:emem0
>01000010001001m100100010010010010001000100010001000100010010010:ememwrite
>0000010100001001010000101000100101000001010000010001000100100100: ewrlatch
>101010101100010010101001010001001011010010110100101010000100111 1:eshiftsrc
>0010011110000000111000011100000011101100111001100000111110110111:esh2
>1101000001111010000111100011101000010011000110010101000000000000:esh 1
>0001101110000011111001011100001111100100111100010111111111011011:esh0
>0000000000000001 00000C000C0C00010000000000000000001 1000000000000: einv 1
>010000001011001000101100010000100010011000101 1100100010001 100000: einv2
>1111110011111111000111100011111100011111000111111111001101101100:ebsel1
>1111110011111011000111100011101100011111000111110111001101101100:ebsel2
>1111110111111011011111101111101101111111011111110111011111111100:ezeroa
>0000000000000000000000000000000000000C00000000000000000000000000: exmitace
>0000001100000100111000011 100010011100000111000001000110010010011:eaccb
>11111111111111111111111111131312131111111111111111111111111111111:exmitin2
>(00000000000000000000000000000000000000000000000000000000000001 0: ciobusen
>0000000000000000000000000000000000000000000000000000000000000000:lqstch
>000000000000000000000C000C0000000000000000000000000000000000001 0: evenout
>0000000000000000000000000000000000000C00000000000000010000000000: oddout
>11111111111111311111111111311111111111111111111111111111111111111:datain

>1l:omem5
>l:omem4
>1:omem3
>0:omem?2
>0:omem1
>0:omem0
>0:omemwrite
>0:owrlatch
>1:oshiftsre
>1:0sh2

. >0:08h1
>1:08h0
>0:0invl
>0:0inv2
>0:0bsel1
>0:0bsel2
>0:0zeroa
>0:oxmitacc
>1l.cacch
>1:oxmitin2
>0:0iobusen
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>l:ememb
>l:emem4
>l:emem3
>0:emmem?2
>0:emem1
>0:emem0
>0:ememwrite
>0:ewrlatch
>1:eshiftsrc
>1l:esh2
>0:eshl
>1:esh0
>0:einvl
>0:einv2
>0:ebsell
>0:ebsel2
>0:ezerca
>0:exmitace
>1:eacch
>1l:exmitin2
>0:eiobusen
>0:lastch
>0:evenout
>0:0ddout
>1:datain

test index reg

>0011100001:omem5
>0010011001:omem4
>0001010101:omem3
>1100000000:0omem2
>0100000000:omem1
>1100000000:0omem0
>0000000000:omemwrite
>1000000000:owrlatch
>0011111111:0shiftsre
>1111111111:0sh2
>0000000000:0sh.1
>1011111111:08h0
>0000000000:0cinv1
>0100000000: 0inv2
>0000000000: obsel 1

- >0000000000:obsel2
>0100000000:0zeroa
>1100000000: oxmitacc
>1111111111:0acchb
>0011111111:0xmitin2
>0000000000: oiobusen
>0011100001:emem5
>0010011001:emem4
>0001010101:emem3
>1100000000:emem?2
>0100000000:emem1



>1100000000:emem0
>0000000000:ememywrite

- >1000000000:ewrlatch

>0011111111:eshiftsre
>1111111111:esh2
>0000000000:esh1
>1011111111:esh0
>0000000000: einv1
>0100000000: einv2
>0000000000:ebsel 1
>0000000000: ebsel2
>0100000000:ezeroa
>1100000000:exmitace
>1111111111:eacch
>0011111111:exmitin2
>0000000000: eiobusen
>0000000010:1astch
>0000000000; evenout
>0000000000: oddout
>0011111111:datain
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DATA PATH SIMULATION INPUT FILE

P ,

P filter.july proc mossim simulation 6/29/83

P filternew.july proc simulation 7/8/83

P filternew.july proc simulation 9/11/83

P Simulation of processor for even channels

P

1t1

ht2

wdl7d16 d15d14 d13 d12 d11 d10 d9 dB d7 d6 d5 d4 d3 d2

1 emem0 emem1 emem?2 emem3 emem4 emem5 emem86 eaccb eshQ esh1 esh2
1 eshiftsrc ezeroa ebsell ebsel2 oicbusen

h d17 d15 d13d11 d9 d7 d5 d3 einv1 einv2 exmitace ewrlatch

1416 d14 d12 d10 dB d6 d4 d2 exmitin2 eiobusen paden ememwrite
K ph2 0100 ph1 0001

R3

P

P output zero

P

h paden eiobusen ememwrite exmitin2

1 exmitacc eshiftsre ewrlatch einvi einv2
xd17d16 d15d14 d13d12d11 d10 d9 dB d7 d6 d5 d4 d3 d2
R3

P

P output data

h eshO esh2 ezeroa eaccb

l eshi

R3

P _
P output datashift 1 g
P

1 eshO

R3

P

P output datashift 2 .
1l esh2

h eshO esh1l

R3

P

P output datashift3
1eshO

"R3

P

P cutput datashift 4
h esh0

leshl

R3

P

P output data=shift 5
P

1 eshO

R3



P

. Precirculate shift by 1
P

h esh2

h eshiftsre

1eshi eshO

R3

P :

P output inverted da!

P

1l eshiftsre
heinv

R3

P

" Pzeroa,acch
P

h ebsell ebsel2
1 ezeroa eaccb
R3

-B3-
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 DATA PATH SIMULATION OUTPUT

20480 transistors, 8438 nodes (1844 pulled up)

filter.july proc mossim simulation 6/29/83
filternew.july proc simulation 7/8/83
filtergen16.sep proc simulation 9/11/83
Simulation of processor for even channels

>111:417
>000:d16
>111:415
>000:d14
>111:413
>000:412
>111:411
>000:410
>111:49
>000:d4
>111:d3
>000:42
>111:d1
>000:d0

-output zero

>111:417
>111:4d16
>111:415
>111:d14
>111:413
>111:412
>111:d11
>111:410
>111:49
>111:d4
>111:d3
>111:42
>111:d1
>111:d0

output data
S >111:d17
>100:d16
>111:415
>100:d14
>111:413
>100:d12
>111:d11
>100:410
>111:49
>100:d4
>111:43
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>100:42
>111:41
- 2100:d0

output data shift 1

>111:417
>011:d416
>100:d415
>011:414
>100:d13
>011:412
>100:d411
>011:410
>100:49
>011:d4
>100:d3
>011:42
>100:d1
>011:d0

output data shift 2
>111:417
>111:416
>011:415
>100:d14
>011:d413
>100:d12
>011:d11
>100:d10
>011:49
>100:d4
>011:d3
>100:d42
>011:d1
>100:d0

output data shift3
>111:417
>111:416
>111:415
>011:d14
>100:d13
->011:d412
>100:d11
>011:410
>100:d49
>011:d4
>100:43
>011:d42
>100:41
>011:d0

output data shift 4
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>111:417
>111:416
" >111:415
>111:d414
>011:d13
>100:d12
>011:411
>100:d10
>011:49
>100:d4
>011:d43
>100:d2
>011:d1
>100:40

output data shift 5

>111:417
>111:416
>111:415
>111:d14
>111:413
>011:d12
>100:d11
>011:d410
>100:49
>011:d4
>100:43
>011:42
>100:d1
>011:d0

recirculate shift by 1

>111:417
>111:418
>101:d415
>110:d14
>101:413
>110:412
>001:d11
>110:4d10
>001:49
>110:d44
>001:43
>110:d42
>001:d1
>110:d0

output inverted data
>100:d417

>100:418
>101:d15



>100:d14
. >001:413
>110:d12
>001:411
>110:410
>001:49
>110:d4
>001:d43
>110:42
>001:41
>110:d0

zeroa, accb

>000:417
>000:416
>111:d415
>000:d14
>111:413
>000:d12
>111:411
>000:410
>111:49
>000:d4
>111:d3
>000:42
>111:d1
>000:d40
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APPENDIX J. KNOWN PROBLEMS AND POSSIBLE UPGRADES

The currently known ‘problems’ include:

Layout Generator:

The compiler will put a ‘ground’ line through the 1/0 pads if a wide data
path is specified with a small memory. This problem is easily detected by

checking the cifplot. Then the ground line can be corrected.

| 'Layout Generator:

When indexing is implemented it is possible that RAM will be wasted. This
occurs because the index register is very simple and RAM addresses are always
sequential. By changing the layout generator to create a RAM and decoder with

only used locations, RAM could be saved.

Filter Compiler:

Handles each half of the fliter bank separately (when two data paths are

used). This forces the user to make sure that the two programs have the same

length (the programs are always made a multiple of 32 so that the address
lengths must be in the same 32 word block) and that the two data paths dont try
to output at the same time. The compiler could be modified fairly easily to per-

form these functions.

Layout Generator (non-column decoded ROM):

This report assumes that only circuits with column decoded ROMs will be
used. However, there is a version of the layout generator that creates circuits
with out column decoded ROMs. It however, has not been upgraded all the way.

The index register still has slight timing problems that prevent it from working

.
>
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as fast as that in the column decoded ;:ircuit. The index register for non-column
decoded circuits also requires a clear signal (active high) to synchronize tﬁe two
index registers (for two data paths) once on power up. The index register for
column decoded circuits could be used in the non-column decoded ones. The
strobes for non-column decoded designs are active low, whereas they are active

high in column decoded designs.

L
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