
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



FADING MEMORY AND THE PROBLEM OF APPROXIMATING

NONLINEAR OPERATORS WITH VOLTERRA SERIES

by

S. Boyd and L. 0. Chua

Memorandum No. UCB/ERL M84/96

29 November 1984

x.



FADING MEMORY AND THE PROBLEM OF APPROXIMATING

NONLINEAR OPERATORS WITH VOLTERRA SERIES

by

Stephen Boyd and L. 0. Chua

Memorandum No. UCB/ERL M84/96

29 November 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Fading Memory and the Problem of Approximating
Nonlinear Operators with Volterra Series*

Stephen Boyd and L. O. Chua

BECS Department, University of California at Berkeley

ABSTRACT

Using the notion of fading memory we prove very strong versions of two
folk theorems. The first is that any time-invariant (TI) continuous nonlinear
operator can be approximated by a Volterra series operator, and the second is
that the approximating operator can be realized as a finite-dimensional linear
dynamical system with a nonlinear readout map. While previous approximation
results are valid over finite time intervals and for signals in compact sets, the
approximations presented here hold for all time and for signals in useful (non-
compact) sets. The discrete-time analog of the second theorem asserts that any
TI operator with fading memory can be approximated (in our strong sense) by a
nonlinear moving-average operator.

Some further discussion of the notion of fading memory is given.

1. Introduction

A Volterra Series Operator is one of the form

Nu(t) » h0+ £ J "• ' Jhn(Tl,...,Tn)u{t-Tl)...u{t-Tn)dTl...dTn

and is a generalization of the convolution description of linear time-invariant (LTI) operators to

time-invariant (TI) nonlinear operators. The usefulness of Volterra series hinges on their ability

to model a very wide class of nonlinear operators. Two general approaches can be taken to estab

lish this.

First, one can demonstrate that many explicitly described systems have input/output (I/O)

operators given by Volterra series. Sandberg[l] has established that a wide class of systems have

I/O operators which are given by Volterra series, the requirement being, roughly speaking, that

the nonlinearities are analytic. Thus an op-amp (with transistors modeled by the Ebers-Moll equa

tions, which are analytic) has an I/O operator expressible, at least for small inputs, as a Volterra

series.

•This work supported in part by the Office of Naval Research under contract N00014-76-C-0572, the National
Science Foundation under grant ECS 80-20-640, and the Fannie and John Herts Foundation.
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But many common nonlinear systems are modeled with non-analytic nonlinearities. For

example the I/O operator of a control system containing an ideal saturator, that is, a memoryless

nonlinearity with characteristic

SAT(fl)£{siSnW a\>l

(which of course is not analytic) can easily be shown not to have a Volterra series representation

valid for any inputs for which the saturator threshold is exceeded.f One could reasonably argue

that even though the I/O operator of such a control system does not have an exact representation

as a Volterra series operator, it could be approximated by one, for example by replacing the

saturator with a polynomial approximation. But exactly what do we mean by approximate here,

that is, over what set of signals and in what sense can the I/O operator be approximated by a

Volterra series operator? This is one of the questions addressed in this paper.

The second approach to establishing the generality of Volterra series is axiomatic in style,

and conceptually more satisfying. Here one demonstrates that under only a few physically reason

able assumptions about an operator N (such as causality, time-invariance, and some form of con

tinuity) there is a Volterra series operator Jv which approximates, in some sense, N. No assump

tion whatever is made concerning the internal structure or realization of N.

The idea of such an approximation is not new, and in fact is discussed in the original work

of Volterra[3], who cites Frechet[4]. Even in this early work one can find the basic idea (clouded

by archaic mathematics): there is an analogy between ordinary polynomials and finite Volterra

series, and hence some analog of the Weierstrass approximation theorem should apply to approxi

mating general nonlinear operators with finite Volterra series.

Wiener rekindled interest in this problem at MIT in the forties and fifties, 5'6»7 and since

then various researchers have considered the problem.8' ^ 10,11 a clear discussion of a typical

approximation result can be found on pages 34-37 of Rugh's book[l2|. The result presented there

is:

Rugh's Theorem: Let A" be a compact subset of L2[0, T] and suppose N.K-+ C[0, T\ is a TI
causal continuous operator. Let e > 0.

Then there is a Volterra series operator iv' such that for all u € K and 0 < I < T

\Nu(t)-tiu{t)\<e (1.1)

(the notation will be precisely defined soon).

t A Volterra series operator which is linear for small inputs is in fact linear for all inputs; see Boyd et al[2).
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Roughly speaking, all of this work has the following problems:

(1) The input signals are nonzero only on a finite time interval [0,T],

(2) The approximation is always on a compact subset of the input space,

(3) The approximation only holds over a finite time interval [0,T\.

While demonstrating that Volterra series operators can, at least in a very weak sense,

approximate a general TI causal continuous operator, these results are not really satisfying. (1),

(2) and (3) are severe restrictions: we would really like an approximation which allows input sig

nals defined on infinite time intervals and which approximates the operator N over an infinite

time interval. (l)-(3) preclude, for example, periodic forcing signals which start at t =0. Rugh

concludes his discussion with the following comments concerning (2): "...I should point out that

the main drawback is in the restrictive input space K. The compactness requirement rules out

many of the more natural choices for K.n

The compactness requirement (2) and the finite time interval requirements (1) and (3) come

from the use of the Stone-Weierstrass theorem, which underlies all of these approximation results,

and so might seem unavoidable. Indeed we will see an example which demonstrates that without

additional assumptions we cannot find an approximation for which (1.1) holds for all t €R. But

we will demonstrate that all of these drawbacks can be overcome if the usual continuity assump

tion on iV.is strengthened slightly to ensure that N has fading memory. In particular, our

approximation results (I) will hold over useful (noncompact) sets of signals, possibly nonzero for

all t € R, and (II) will hold for all time, not just on an interval \0,T\.

The structure of this paper is as follows: §2 contains the preliminaries, §3 introduces the fad

ing memory concept, and §4 and §5 contain the main approximation theorems. In §6 we give

discrete-time approximation results, one of which concerns approximation by nonlinear moving-

average (NLMA) operators. In §7 we consider a simple illustrative example, and in §8 we give

two other applications of the notion of fading memory.

2. Notatlont Definitions and Preliminary Discussion

2.1. Notation and Definitions

C(R) will denote the space of bounded continuous functions :R-»-IR, with the usual norm

||u||Asup|u(f)|. R_ will denote {111 <0}, and C(IR_) will denote the space of bounded con

tinuous functions on IR_, with the usual norm ||u||^sup|u(<)|- A function F from C(R_) into R

is called a functional on C(R_), and a function N from C(R) into C(R) is called an operator.

We will usually drop the parentheses around the arguments of functional and operators, writing

e.g. Fu for F(u) and Nu{t) for N(u)(0-
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UT will denote the r-second delay operator defined by

(Uru)(t)&u(t-T)

We say an operator N is time-invariant (TI) if UTN = NUr for all rGR.

N is causal if a(r)= v(r) for r< <implies Mj(*) = M/(<).

N is continuous if it is a continuous function :C(R)-*C(R).

With each TI causal operator N we associate a functional F on C(R_) defined by

Fu k Nue(0) (2.1.1)

for a 6 C(R_), where

«.«>£($) \i
is just a continuous extension of u to C(R) (any other would do). In words, F maps the past

input to N (which is an element of C(R_)) into the present output of N (which is in R). N can

be recovered from its associated functional F via:

Nu{t) = FPU_tu (2.1.2)

where P:C(R)-*C(R_) truncates an element u €C(R) into an element of C(R_):

Pu(t)£u(t) for *<0 (2.1.3)

It's easy to see that N is continuous if and only if F is, so equations (2.1.1) and (2.1.2)

establish a one-to-one correspondence between TI causal continuous operators N and continuous

functional F on C(R_). For this reason we often see nonlinear functional studied, where we are

really interested in their associated TI operators. This has caused some confusion; some authors

have mistakenly used the word functional to refer to what are really operators.

We can reexpress causality and continuity as follows:

A TI operator N is causal and continuous iff for each u £C(R) and e>0 there is a 8>Q such

that for all v

sup|u(0-v(OI < s -+ \Nu{0)-Nv(0)\ < £ (2.1.4)

That is, a TI operator N satisfying (2.1.4) is causal and continuous, and a TI causal continuous

operator satisfies (2.1.4).
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2.2. Finite Volterra Series

Definition: A (finite) Volterra Series Operator N:C(R)-+C(1R) is one of the form

tr 00 00

Nu(t) = h0+ S / **' jK(T»...,Tn)u(t-Tl)-'At-Tn)dT1...dTn (2.2.1)
nsslO 0

where hn €L1(R+W), that is,t

00 00

0 0

(Sometimes a finite Volterra series operator is called a polynomial operator.) That such an TV is a

TI causal continuous operator is easily verified; a proofcan be found in Boyd et al.[2|.

3. The Fading Memory Concept

Roughly speaking, an operator is continuous if input signals which are close (meaning, the

peak deviation of the signals over all past time is small) have present outputs which are close. We

will see that a slight strengthening of continuity is much more useful. Intuitively, an operator has

fading memory if two input signals which are close in the recent past, but not necessarily close in

the remote past yield present outputs which are close. For dynamical systems, fading memory is

related to the notion of a unique steady-state (see §8.2).

The concept of fading memory has a history at least as long as Volterra series themselves.

Indeed we find it in Volterra[3, pl88|:

A first extremely natural postulate is to suppose that the influence of the (input) a long

time before the given moment graduallyfades out.

and in Wiener[5, p89|:

We are assuming (the output) of the network does not depend on the infinite past. If the

response of this apparatus depends on the remote past, then the Brownian motion is not

a good approximation because we shall always have to consider the remote past. So we

are considering networks in which the output is asymptotically independent of the

remote past input...

and in various other work over the years.13'6 In [14] Root mentions operators with finite memory.

The fading memory assumption, then, is by no means a new stronger restriction on the operators

to be approximated. It is simply an old assumption whose full power has not, until now, been

f Volterra series with integrable kernels might be called stable Volterra series; there is another interpretation
of (2.2.1) which coald be called finite-time Volterra series. For finite-time Volterra series the kernels are re
quired to be locally integrable, bat the inputs are restricted to be sero for negative time. Roughly speaking,
this allows unstable systems to be considered.
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used.

How should we define fading memory? The problem is that in (2.1.4) we want Nu(0) to

depend less and less on the input when elapsed time -t is large. To do this we simply introduce a

weight in (2.1.4).

Definition: N has Fading Memory (FM) on a subset K of C(R) if there is a decreasing function

u;:R+ -*• (0,1], lim u/(<) = 0, such that for each u&K and e> 0 there is a 6> 0 such that for all
*-»00

v£K

sup|«(0-v(f)|vM) < * —• |M(0)-M(0)| < e (3.1)
t<o

(This should be compared to (2.1.4)).

w will be called the weighting function; we will say that N has a w-fading memory, for

example if jy(f) = e~x* then we might say N has a X-exponentially fading memory on K. Note

that since w(t)< 1, an operator with FM is continuous, so FM is indeed stronger than con

tinuity .f

The FM property can be clearly expressed in terms of the functional F associated with N as

follows: On C(R_) define the weighted norm

||«||. A||«(«M-<)II =s^|«(()t»(-()l (3.2)

Then N has FM on K if and only if F is continuous with respect to the weighted norm ||-||„ on

PK^{Pu | ueK}.

Remark 1: As in (2.1.4) above, if a TI N has fading memory, then N is causal.

Remark 2: It is interesting to note that this is very close to Volterra's "definition" of fading

memory given on p.188 of [3] (which unfortunately is not clear enough to be a real definition).

Remark 8: For LTI operators, having a fading memory is equivalent to having a convolution

representation; see §8.1.

Remark 4- It can be shown that all finite Volterra series operators have fading memory on all of

C(R).

Perhaps the best way to appreciate the notion of fading memory is to consider an example

of a continuous operator which does not have fading memory.

Example (Peak-Hold Operator): Define A^:C(R)-*C(IR) by

Npiu(0^supu(r)

t Our requirements on the weighting function w are more stringent than necessary. All we really need is
» >0 and lim »(t)=0; our additional assumptions simplify some of the proofs in the sequel.

t—oo
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that is, Npt is a peak-hold operator. Npt is continuous, since for all u, v 6C(R)

\\Npku-Npkv\\<\\u-v\\

Nevertheless Npt does not have a fading memory .f

Let us consider the problem of approximating Npk by a Volterra series operator Jv*. Con

sider the signal

.JO A(71
Then

*<«>-(!'.lo1
Now for any Volterra series operator iv we have

ftUo{t)=h0 tort<-l

and

Kmftuo(t)= h0
f-»oo

(This is a consequence of the Steady-state theorem[2|). Hence for any Volterra series operator N

||tf,*«o- *«dl >m«{|U|l-*ol> >7

Thus we may conclude no Volterra series operator can approximate iV0 within 0.1 over all time,

even for the single input u0. In fact the same argument holds for any operator N with fading

memory, if we substitute m) (which must be a constant) for ho. In particular, N?k itself does not

have fading memory.

This example suggests that approximation results which rely only on the continuity of the

operator, and no fading memory assumption, will be very weak. In particular, the approxima

tions need not hold for all time, even on compact sets of signals (in this example, the signal set

has only one element, u0, and so is compact). And yet a very strong approximation is possible for

operators with fading memory.

<1
>1

f There are also continuous LTI operators which don't have fading memory, but they are quite pathological;
see §A3.
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4. Approximation by Volterra Series

Theorem 1 (Approximation by Volterra Series): Let e> 0 and

A:^{u€C(R)|||u||<M1,||t/ru-a||<A/2rforr>oJ (4.1)

Suppose that N is any TI operator with fading memory on K. Then there is a finite Volterra

series operator Jv" such that for all u € K

\\Nu-ftu\\ < e (4.2)

Remark 1: The assumption on N is extremely weak. As mentioned earlier, it does not in any

way concern the internal structure or realization of JV. For example N could arise from a non

linear PDE, but even this is not necessary.

Remark 2: We can reexpress K as

K= iu €C(R) J\u(t)\ <Mlt \u(s)-u{t)\ <M^s-t) for *<s}

Thus K can be described as those signals bounded by Mx and having Lipschitz constant M& that

is, slew-limited by Af2.f

Remark $: The signals in K are not "time-limited" (i.e. zero outside of some interval such as

|0,r]), and the approximation \Nu(t)-$lu{t)\ < e holds for all I6R, not just in some interval
[0,r] (cfRugh's theorem, (1.1)).

Remark 4- K is not a compact subset of C(R)!

Before starting the proof of theorem 1, we state the Stone-Weierstrass theorem in a con

venient form (see, e.g. Dieudonne[15|):

Suppose E is a compact metric space and G a set of continuous functional on E which

separate points, that is, for any distinct u, v£E there is a G€G such that Guj^Gv. Let F be

any continuous functional on E and e>0. Then there is a polynomial p:Rtf-»R and

Gv . . . ,GMeG such that for all u 6 E

iFu-piG^,. ..,GMu)\ < c

Proof of Theorem 1; Suppose K is given by (4.1) and N has fading memory on K, with

weighting function w. Let F be the functional associated with N, given by (2.1.1), and define

K.kPK, that is

t In fact K can be any bounded equicontinuous set in C(R). The K defined in (4.1), while far from the most
general, has a nice engineering description.
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K.= hu |«€tf}

(P is the projection (2.1.3)).

Lemma It Consider the weighted norm ||*||v on C(R_) defined above in equation (3.2). K. is

compact with the weighted norm ||||0.

The proof uses the Arzela-Ascoli theorem and a diagonal argument and is in the appendix,

§A1. Since lemma 1 is the key to obtaining approximations valid for all time and on noncompact

sets, some discussion is in order. Note that AT. is not compact with the standard norm ||-||. To

see this, let

u0{t)£ max^A/j-M^I}

and consider the sequence vn & PU.n u0 in K_ (see figure 1). With the standard norm, this

sequence has no convergent subsequence, and hence K_ is not compact in C(R_). Yet intuitively,

to a device with fading memory the sequence vn should appear to be converging to zero, and this

is indeed true: ||t/R||o-»0 as n —• co. The idea of lemma 1 is that the fading memory makes K_

"appear" compact to our functional F.

Continuing our proof, we define a set of functional G on K_ which are continuous with

respect to the weighted norm ||'||v.

! * 00 00 v

G Gu=Jg{T)u{-T)dT, J\g(T)\w{r)-ldT< oo 1 (4.3)
• 0 0 '

Note that since 0<w(t)<l, the condition g/w €L^R+J implies ^GL^R+J. The fact that

any G € G is continuous with respect to the weighted norm ||-||„ follows from

\Gu - Gv\ < /(|j(«)|«'((r1)(l<'(-0-<'(-')l«'('))<«
o

00 00

< sup\u(-t)-v^t)\w(t)S\g(t)\w(t)-ldt - ||« - v\\v}\g(t)\w(t)-idt
^° 0 0

Lemma 2: The functional G separate points in /C

Prooft Let u, t; €#-, u j& v. Define

Then

/looker1'" < ii«ii + ii'ii <«>
o

so let G0 be the functional in G associated with go as in (4.3). Then
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G0u - G0v = /(uHJ-^-OM*)*"1* > °
o

since u and v are continuous and u^v. This proves lemma 2. %

Now by lemmas 1 and 2 and the Stone-Weierstrass theorem, we conclude that there is a

polynomial p:RM-* R and Gx, . . ., Gm € G such that for all u € K.

\Fu-p{Glu Guu)\<e (4.4)

Explicitly writing out p:

K

p(Glu,...,GMu) = cto+ S E a,r ..^...^ti
not «i.—,», <M

= A0+ S/ ***J*in{Tl,...,Tn)u{-T1)...u(-Tn)dTl...dTn
ttsal

where hQtka0 and

and the & are the kernels of the functional G, as in (4.3).

We mentioned above that the <7/'s are in L*(R+), so hn 6L1(R+"), and thus they are the

kernels of a finite Volterra series operator which we call N. We finally show that ft is the desired

finite Volterra series approximator of N. Let u €K and t 6R. Then PU_tu €K_, hence by (4.4)

\FPU^u - p(G1PU.tu,...,GMPU.tu)\ = \Nu(t) - ftu(t)\ < e (4.5)

Since (4.5) is true for all f € R, we conclude for all u 6 K

||JVtt-#u|| < €

which proves theorem l.\

5. Approximation by Dynamical Systems

5.1. Linear-Dynamic Polynomial Readout Approximators

The block diagram of ft is shown in figure 2. Note that it consists of a single-input multi-
output linear time-invariant operator followed by a multi-input single-output memoryless non-

linearity. One question arises immediately: can the LTI block be realized as a finite dimensional

linear dynamical system? We will now show that it can.

In the proof of the approximation theorem we used only two properties of the set G of func-

tionals: first, that each G € G has a w-fading memory, and second, that G separates points in K_.
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Let's examine the first property. For a functional G on C(R_) given by

00

Gu = Jg{T)u{-T)dT (5.1.1)
0

(where g EL^R^.)) the necessary and sufficient condition that it have uz-fading memory, that is,

be continuous with respect to the the u/-weighted norm, is

oo

JlflMMr)"1^ < oo (5.1.2)
o

Now we make the observation that if a TI operator N has a w-fading memory, then it has a w~

fading memory for any weighting function w which dominates w (i.e. w(t)> w(t)). By using the

weight

w{t)kmzK{w{t),(l+t)-1}

(and relabeling it w) we may simply assume that the weight satisfies ">(0-1< 1+ '• Under this

assumption it follows that every G which comes from a finite dimensional (exponentially stable)

linear dynamical system has a w-fading memory, since the integrand on left hand side of (5.1.2) is

exponentially decaying, that is

00 00

J\g(T)\w{T)-ldT < JMe-"(l+ t)dt < 00
0 0

if |ff(OI ^ A/e~x*. In the next subsection we will show that the <7's which come from finite-

dimensional linear dynamical systems separate points in C(R_). -From this discussion we con

clude:

Theorem 2 (Approximation by Dynamical Systems): Let e> 0 and K be given by (4.1).

Suppose that N is any TI operator with fading memory on K. Then there is a finite Volterra

series operator ft such that for all u€ K

||iVu-.ftu|| < 6

where ft is the I/O operator of the dynamical system

i = Ax + bu y — p(x) (5.1.3)

where A is an exponentially stable MxM matrix and p:JRM -+IR is a polynomial.

We have shown that under one extremely weak condition on a TI operator, namely that it

have fading memory, it can be approximated in the strong sense of (4.2) by the I/O operator of a

finite-dimensional linear dynamical system with a nonlinear (indeed, polynomial) readout map, as

shown in figure 3. In principle, then, a dynamical system of the form (5.1.3) can always be used

as a macro-model16 of a complicated or large-scale nonlinear system, as long as the system has a
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fading memory. Whether an acceptable approximation is possible with M reasonably small is, of

course, a harder question.

5.2. Wiener's Laguerre System

The idea that a system of the form (5.1.3), shown in figure 3, could be used to approximate

a very wide class of TI operators is not new. Wiener considered the case where the LTI block in

figure 3 consists of a set of Laguerre filters, that is,

{si -A)"1* = y/2
M-\1 1-a (1-g)

1+*' (1+*)2''"' {l+s)M

which Lee realized with the lattice filter shown in figure 4 (see Wiener[5,p92|). f

To see that Wiener's Laguerre system can approximate any TI causal operator with fading

memory in the strong sense of theorem 1 or 2 (a result evidently unknown to Wiener and his

coworkers), we need to establish that the Laguerre functionals {L1,L2,...} given by

00

Lkukjlk(t)u(-t)dt
0

where lk{s) = */2(l-s)k~l(l+ s)~k, separate points in C(R_). Let u be any element of C(R_) such

that Lku = 0 for all k. We will show that u = 0, which will prove that the Laguerre functionals

separate points in C(R_). Note that lk(t)et/26L2(R+) and u(-t)e't/2eL*(R+) and

£*« =]{lk(t)e^){u(-t)e^}dt =0
o

for all k. But the functions lk(t)e^2 are dense in L2(R+), so we conclude u(-t)e~^2 = 0 and
hence u = 0. This proves that the Laguerre functional separate points in C(R_); since they are

a subset of the functionals which come from finite-dimensional linear dynamical systems, a for

tiori these functionals separate points, a fact used in the previous subsection. Of course there are

many other sequences of functionals which separate points in C(R_).

5.3* A Note on Approximation by Bilinear Systems

The dynamical system approximator (5.1.3) can be realized as a bilinear system, that is, one

of the form

z ~Ez + Fzu + Gu (5.3.1)

y = Hz (5.3.2)

*ir

t The only real difference between (5.1.4) and (5.1.3) is that in (5.1.4) we require the minimal polynomial of
A to be(t-f-1)**, since a change of coordinates canchange the numerator polynomials. See e.g. §7.2.
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where z €Rf (usually r is much larger than M) and 2(0)= 0. In fact this is a special case of an

exercize in Rugh's book[12,pl30|; here is a simple way to see it: Suppose the polynomial p in

(5.1.3) is of degree n.

Let z be a vector consisting of all r = E ( . ~ ) monomials ofdegree <n formed from

*\, • • • , *w- Clearly we can write y = p(x) in the form (5.3.2), where H contains the coefficients

of p.

We will now verify that z satisfies an equation of the form (5.3.1). Consider the /th com

ponent of z, say zi^xi • • • x$, where 1*1+...+ iu < n. Then

ii = E im*m*i '•'&' '-xti (5.3.3)
m=l

= E *»<»«**,» *lx *' •*» _1 •••*a?s* + (5.3.4)

+ E ^m^m^l1 •' *a4m_1 ' ••xijfbmu (5.3.5)

using (5.1.3). Since each monomial in (5.3.4) and (5.3.5) has degree (in x) <n, we can reexpress

this as:

h - E^/p^p + E*Vp« + ^«
P=4 P=l

which is of the form (5.3.1).

In (5.3.1) the readout map is linear, but the vector field contains the product term Fzu (cf

(5.1.3)).

Approximation by bilinear systems has received much attention, but in a context different

from that considered here. Usually (but not always) the systems to be approximated are dynami

cal systems with analytic vector fields. The approximation is generally not in an I/O sense, but

rather in the sense of a perturbational expansion of x in u, meaning the input-to-state maps agree

to order r in u. See, for example, Fliess[17|, Sussman[18|, or Brockett[19|.

The discrete-time analog of bilinear systems are state-affine systems, which have been used

to model complicated processes, e.g. in [20].

6. Discrete Time Theorems
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0.1. Approximation by Discrete-Time Volterra Series

In this section we present analogous results for discrete-time systems. TL will denote the

integers, 2Z+ (Z_) the nonnegative (nonpositive) integers. Our signal space C(R) is replaced by

1°°, the space of bounded sequences (i.e. functions \TL -*R) with norm

||a||4sap|a(t)|

The definitions of time-invariance, causality, and fading memory for discrete-time systems require

only notational changes. For example a TI operator NX* -* \°° has fading memory on a subset K

of I00 if there is a decreasing sequence w:7L+-+(0,l\, lim w(k) = 0, such that for each u EK and
k-*oo

£ > 0 there is a 6 > 0 such that for all v 6 K

sup|u(Jfc)-t/(*)|u>(-*) < 5 —• |JVti(0)-/V»(0)| < c
k<0

(cf. (3.1)).

A (finite) discrete-time Volterra series operator NiY30-*-\°° is one of the form

JV«(*) « A0+ E E *.(ix,»Mi.)«(*-»,i)...«(*-«.)
n«=a i^.,1, >0

where hn 6l1(Z +B), that is,

E |*.(»i,...,t.)| <°°
•!,-.«, >0

(cf. (2.2.1)).

Theorem 3 (Discrete-Time Approximation Theorem): Let e> 0 and

/c4{«€l00[||u||<M1J

Suppose that N is any TI operator il00-*!00 with fading memory on K. Then there is a finite

Volterra series operator ft such that for all u€ K

||iVtt-Jv*tt|| < €

Remark: In the discrete-time theorem there is no "slew-limit" requirement on the signals in K; K

here is just the ball of radius Mx in l00.

In the next subsection we will see a stronger form of theorem 3, so we omit the proof.
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0.2. Approximation by Nonlinear Moving-Average Operators

As in §5, the Volterra series approximator ft can be realized as a finite-dimensional LTI

dynamical system with a polynomial readout map. But for discrete-time systems we can choose

the LTI dynamical system to have a particularly simple form: its transfer function can be simply

ir/u*)=[i,*-1 '-u+l\
(This should be compared to the Laguerre system described in §5.2) The approximator has the

block diagram shown in figure 5; ft is simply a nonlinear moving-average operator. To summar

ize:

Theorem 4 (NLMA Approximation Theorem): Let e> 0, K be any ball in 1°°, and suppose

N is any TI operator :1°° -• 1°° with fading memory on K.

Then there is a polynomial p :RW-^R such that for all u 6 K

||iVu-#u|| < t

where ft is the NLMA operator given by

ftu(k) &p{u{k),u(k-l), . . . ,u(k-M+ 1))

The proof is in §A2. Note that this theorem implies theorem 3, since every NLMA operator

with polynomial nonlinearity is also a finite Volterra series operator.

7. A Simple Example

In this section we consider a simple example, one which illustrates some of the previous

ideas and results. We consider the simple RMS detector N shown in figure 6a, and show how a

Volterra series approximation and a Laguerre system approximation can be found. More pre

cisely, N is given by

2 1/2(OO .00 v* v1

O.lJe-o-W^Ue<T-')u(s)ds] dr\

We chose this example for several reasons. First, N has no Volterra series representation.

To see this, suppose N were a Volterra series operator with kernels hn. Let u(t) = a, a. constant.

For any Volterra series operator N, Na is also a constant, in fact an analytic function of a (see

Boyd et al.[2]). But in this case iVa=|a|, which is not even differentiate at a = 0, let alone

analytic. So our RMS detector N is not given (exactly) by a Volterra series. Yet it can be shown

to have a fading memory on any set K of the form (4.1), and hence our approximation theorems

hold for this N.
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Another reason for choosing this example is that it is typical of the operators for which the

Laguerre system approximation requires very many terms, that is, N is hard to approximate with

a Laguerre system. Roughly speaking, this is because N has its nonlinearity near the input, and

we seek to approximate N with a system with nonlinearity at the output.

7.1. Finding a Volterra Series Approximation

To find a Volterra series approximation of N on the set K given by (4.1), we find a polyno

mial q(x) such that | g(x)->/[z[| < €for | x | < M2.f

The mean-square operator Nx shown in figure 6b is a Volterra series operator, its only

nonzero kernel

(7.1.1)

It follows that the operator ftvit shown in figure 6c is a Volterra series operator, whose kernels

could be computed, if desired, from (7.1.1) and the composition formula[2]. For u 6 K we have

0<Nxu<M2 and hence:

\\Nu-ftvuuW < c foru€A"

7.2. Finding a Laguerre System Approximation

We will now show how a Laguerre approximation to N can be found. It will suffice to find

a Laguerre system approximation to the mean-square operator N1 shown in figure 6b, since pass

ing its output through a polynomial ?(•) which approximates the squareroot operator will yield a

Laguerre system approximation of the overall operator N, as in the previous subsection.

Consider the system fttag shown in figure 7, where the readout polynomial p is homogeneous
of degree two, that is

M

p(xlt...,XM) =s J] PijXiXj
»,;=i

This ftiag can be transformed to a Laguerre system via the change of coordinates x= Tx,
where T is the (constant, invertible) matrix such that

(1+ •)-l

= v/2
(!+•»1-1

-v(M-l)!(l+*) ,-u(l-*)w"1(l+ s)

t For example, let qM be the even polynomial of degree 221/ which agrees with V\z\ at the points
0,Mi/M, . . ., M*. Then for M large enough, q^ will work.
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ftiag is a Volterra series operator whose only nonzero kernel is

Un,n) = E /Vi-W-1e"<'1+'s)

We will now show that by proper choice of p (that is, Mand the /3,/s) ftiag approximates N on
K. Define

*(r!,r2) - ir'U1'^^ - l)e*l+f2)/*

so that h2{T1,T2)SSi ?(7*i,r2)exp-(r1+r2)/2. Since g€L2(R+2) and the functions rir2,exp-(r1+ r2)/2

are dense in L2(R+2), we can find M and /?,; 's such that

s«(r„r2)- £ A/i-V'^* *ir

Now we claim that for u€K we have \\Nxu - ftlagu \\ < e. To see this:
0000

NlU[t) - fttagu{t) = SS^T^-t^To^uit-T^U^-^d^dTz
00

= J/lffo.*)- S /J,)ri-1rr,e"",+'s>/!!l(«"('1","s,/2«(<-n)«('-'-2))<'r1rfr2
0 0 I ija* )

so by (7.2.1) and the Cauchy-Schwarz inequality:

since

|iVI«(0-/>h|«(«)| <^•||e"(',+',l)/S«((-r1)u((-r2)

|̂ '+'')/2a«-r1)««-r2)

Thus for u€K we have HiV^u -fttagu\\ < e.

2<Mi

k^£

(7.2.1)

8. Further Discussion of Fading Memory

We have seen that the notion of fading memory is quite useful in establishing various

approximation theorems. In this section we discuss briefly two other topics which involve fading

memory.

8.1. Linear Time-Invariant Operators and Fading Memory

There is a folk theorem that every LTI causal continuous operator has a convolution

representation. Unfortunately this folk theorem is false, since there are LTI causal continuous

operators which have no convolution representation. But in fact these operators are unlikely to
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occur in engineering; for example they do not have fading memory (see §A3 for an example of

such an operator).

However if "continuous" is strengthened to "FM", our folk theorem becomes true.

Theorem 5 (Convolution theorem)!

(I) A :C(R) -• C(R) is LTI FM iff A has a convolution representation

00

Au(t) = fu(t-T)h{dr) (8.1.1)
o

where h is a bounded measure on R+.

(II) A :1°° —*>1°° is LTI FM iff A has a convolution representation

Au(n) = f]h(k)u{n-k) (8.1.2)
o

where hei\Z5+).

Remark: (8.1.1) may be more familiar to the reader in the form

00

Au(t)=* fh(T)u(t-T)dr
o

where in this equation h is to be interpreted as a measure, e.g. may contain 5-functions.

The proof of theorem 5 is in §A4. Theorem 5 shows that for LTI causal systems, having a

fading memory is equivalent to having a convolution representation.

8.2. Fading Memory and Unique Steady-State in Dynamical Systems

The notion of fading memory is strictly an input/output property, that is, it refers only to

the operator N which maps inputs into outputs; the realization of N (there need not even be one)

is irrelevant. But if N does have a realization as a dynamical system, then the fading memory

property is related to the untrue steady state property for dynamical systems[2lj. In this section

we elaborate this point.

Consider the system

x = /(*,u) (8.2.1)

x(0) = 0 (8.2.2)

where x(t)elRn, u€C(R+), and /:RBXR-»>RB. Suppose / is such that (8.2.1) and (8.2.2)

define an operator W:C(R+)-»-C(R+)" given by x = Nu.

Theorem 6: Suppose N has FM on C(R+), and / is such that all of R" is reachable from the

origin.
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Then the system (8.2.1), (8.2.2) has a unique steady-state.

More precisely, let z0, i0€R", and let x and x denote the solutions of (8.2.1), but with initial

conditions x0 and Xq, respectively. Then

lim ||s(l)-7(0!| « 0
<-»00

Thus the fading memory assumption implies that the state will be "asymptotically indepen

dent" of the initial condition, to use Wiener's phrase.

The proof of theorem 6 is in §A5. We have presented theorem 6 only to demonstrate that

there is a connection between the ideas of fading memory and unique steady state; far stronger

theorems can be proved.

The conditions under which a dynamical system has a fading memory is a very important

topic itself. To mention perhaps the simplest condition, if an equilibrium point is well-behaved

(meaning, the vector field is continuously differentiate there and the linearized system is

exponentially stable and controllable) then for inputs small enough the input-to-state map will

have a fading memory.

0. Conclusion

We have shown that any operator with fading memory can be approximated in a strong

sense by a (finite) Volterra series operator which can be realized as a finite dimensional linear

dynamical system with a polynomial readout map. For discrete-time systems, the approximating

operator can simply be a nonlinear moving-average operator. The approximation holds over any

bounded set of signals K; in the continuous-time case we must add a slew-rate limitation as well.

The approximation is in the sense of peak error, worst case for all signals in K.

Since the original work of Volterra there has been much research on this topic, but none has

yielded the strong approximations presented here. The reason is related to a remark in §2.1 con

cerning the difference between TI causal operators and functionals on C(R_). Intuitively it would

seem that this correspondence implies that an approximation of a functional (perhaps, via the

Stone-Weierstrass theorem) should also yield an approximation of the corresponding TI causal

operator. This is true, if the set of signals K C C(R_) over which the approximation holds is also

time-invariant, i.e. UtK = K for all t > 0. But here's the catch: TI subsets of C(R_) are gen

erally not compact,f and hence the Stone-Weierstrass theorem can't be used to approximate the

functional. Our solution to this problem was to observe that while a set such as K_, while not

compact, should "appear" compact to an operator whose memory fades with elapsed time.

t For example if K contains at least one compactly supported element, then it is not compact. There are TI
compact subsets of C(IR_), for example {Utf \ t >0}, where / is almost periodic.
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We close with some remarks concerning the practical application of the material presented

here. While the approximations are certainly strong enough to be useful in applications like

macro-modeling of complicated systems or in universal nonlinear system identifiers, we know of

no general procedure, based only on input/output measurements, by which an approximation can

be found. Perhaps an adaptive scheme can be made to work in practice.
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Appendix

Al. Proof of Lemma 1

We must show that

AL= lueC(lR.)\\u(t)\<M1,\u{s)-u(t)\<M2{8-t)toTt<s<o\

is compact with the weighted norm ||-||v in C(R_). Let un, n=l,2,... be any sequence in K_.

We will find a u0£K_ and a subsequence of {u„} converging in the ||*||0 norm to u0, which will

establish Lemma 1.

Let /C[-n,0| denote /C restricted to [-n,0], that is

/C[-n,0| ^ ju €C[-n,0| ||u(f)| <Mlt \u(s)-u(t)\ <M^s-t) for-n< t<s<o]

For each n, /f_[-n,0) is uniformly bounded (by Mi) and equicontinuous (by the slew-limit Af2),

hence compact in C[-n,0| by the Arzela-Ascoli theorem (see e.g. Dieudonne[l5|). Since if_J-l,0j is

compact in C[-1,0|, we can find a u^ 6 /C|-1>°l and an infinite subset INx C IN such that

sup |u„(0- uilHt)\ -* 0 as n -* oo, ne^i
-l<f<0

Viewing {un | n€lNi}. as a sequence in AT_|-2,0], we conclude that there is a ujfi 6 AT_[-2,0|

and an infinite subset IN2C INj such that

sup \uM)- uji2){t)\ -*Q as n -»• oo, n 6IN2
-2<f<Q

Clearly uj2) extends uj1*, that is, «01)(0="o2>(0 for -1< t <0.

Continuing in this way we find a u0GK_ and a sequence of decreasing infinite subsets

IN D IN! D • • • such that for each k

sup \un(t)~ Uo(t)\ -^0 as n -* oo, n€lN* (Al.l)

We now choose any increasing subsequence nk such that ri^EN*. Then from (Al.l) we

have for each k0

sup |u„L(t) - u0(/)| -* 0 as * -♦ oo
-*o<*<o

that is, the sequence u^ converges to u0 unformly on compact subsets.

Now we claim that u- converges to u0 in the weighted norm, that is, lim ||u„-u0||,j, =0.

To prove our claim, let e>0. Since w(t)-+0 as <-+oo, we can find Jfe0€lN such that

w(k0) < e/2A/i; since u^, u0€iC we have
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sup |a„t(0 - Uo{t)\w{-t) < 2M1w(k0) < e (A1.2)
t ^~*o

Now find ki such that

sup \unlt) - u0(t)\ < c for k> kx (A1.3)
-*o^*^°

From (A1.2), (A1.3) and w(t) < 1 we conclude

H^-uolU < € for *>*!

which concludes the proofof Lemma 1.%

A2. Proof of NLMA Approximation Theorem

We start with the analog of Lemma 1:

Lemma Al:

ir.A|«€iOD(zj|||o||<M1J

is compact with the weighted norm ||*||w given by

\\u\\v±sgQ\u(k)\w(-k)

Proof: We give an abbreviated proof since it is similar to, and in fact simpler than, the proof of

lemma 1 given in §A1.

Let {u^} be a sequence in #f_ Since |u^^(0)| < Mlt find a subsequence along which uM(O)
converges; let us call the limit ti(°)(0). Now find a subsequence of this subsequence along which

uM(-l) converges; call this limit u^(-l).

Just as in the proof of lemma 1 we continue this process, defining the element u^G/C as

we go. Take a diagonal subsequence nk; u * converges pointwise to u^ as k-*• oo, and exactly

as in lemma 1 we can show

Utt^-tt^l.-^O as*-oo

which proves that AT_ is compact.%

Now consider the set of functionals

{Go»<?i»— I

where Gkusu(-k), that is, Gk is the functional associated with the fc-delay operator Uk (transfer

function z~k).
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It is easy to verify that the Gk's are continuous with respect to the weighted norm ||-||v and

that G separates points in 1°°(Z_). Applying the Stone-Weierstrass theorem as in theorem 1

yields an approximation by a NLMA operator.

A3. Causal Continuous LTI Operator with no Convolution Representation

Here is a brief description of one such operator (see Kantorov4ch[22,p58| for details). It is

possible to find a linear functional ZJA/:1°°-*IR such that

\LIMu\ < ||u||

and if lim u(k) exists, then LIMu = lim u(k). Thus LIM assigns a "pseudo-limit" LIMu to
k-+-ao *-»-oo

every element of l00 (the vast majority of which do not converge as k —•-oo). Consider the opera

tor A :i°° -• \°° given by

Au(n) = LIMu

Thus for every u € I00, Au is the constant sequence LIMu.

A is LTI causal continuous, but has no convolution representation since its response to a

unit sample is zero, and yet it is not the zero operator. Note that A is a LTI causal operator

which does not have fading memory. Of course, an operator like A is not likely to occur in

engineering.

A4. Proof of Theorem 5 (Convolution Theorem)

We will prove (II), and then indicate some of the changes necessary to prove the

continuous-time version (I).

First suppose Au = h*u where hEl1(7L+). We will show that A has fading memory (that

it is LTI causal is clear). Consider the weighting function

in)k\\h\\^t\h(k)\^ (A4.1)w\

We claim that A has a w-fading memory. As in (5.1.2) we need only establish

S&f,\h(n)\w(n)-1 < 00
n=0

In fact S < 2, which we now prove. Define

«(n)££|A(*)|

so that
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= 1+ ^O)-1/2!] 0(n+ l)(*(n+ lJ-^-^nf^j (A4.2)

Since 0 < 0(n+ 1)< 0(n) we have

9{n+ l)(6{n+ l)-1'2-^)'1'2) < 6(n)-ll2 - 6{n+ l)"1/2 (A4.3)

(the ratio of the two is y/0(n+ l)/0(n) < 1). From (A4.2) and (A4.3)

5 <1+^(O^f; {6(n)-lt2-8(n+ l)"1'2) = 2

which proves that A has a tu-fading memory.

Remark: If h happens to be exponentially decaying then we may use the weight w(n)=s(l+ n)~l,

but of course not all h €ll(ZI_) are exponentially decaying, and then the more complicated weight

(A4.1) is necessary.

Now we prove the converse. Let A be any LTI operator with, say, a w-fading memory.f

Let h be the response of A to a unit sample, i.e. h(n)sAe(n) where e(n) = 8n0.

We will show (1) h 6l1(2Z+) (at the moment we know only h€I°°(Z&+)), and (2) Au= h*u

for all u6l°°.

Let F be the functional associated with A via (2.1.1). Using linearity and FM we conclude

there is an M < oo such that for all u €l°°(Z_)

\Fu\ < M\\u\\v (A4.4)

Now for any «:Z5_-+R define

M*)-( b k<_N 0

We now use a standard argument. From time-invariance and linearity we have

FuN = £ M*)M-*) = E*(*)«(-*) (A4.5)

Consider u(£)i^r u/(jfc)~1signA(Jb); from (A4.4) and (A4.5) we conclude

S «>(*)iM*)l < ^

for all N and thus hw~lGll(K+), which implies hel1(2Z_h).

f This v has nothing to do with the » defined in (A4.1).
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Now (2): for any u €l°°(Z-) we have from (A4.4)

\Fu -FuN\ < M\\u-uN\\v < Mw(N+l)->0 as JV-h-oo

Thus(noting that h{)u(-)e\1{K+))

Fu = UmFuN=* f)h(k)u(-k)
Ar-oo M

which finishes our proof.%

To show that a LTI operator A:C(R)-*C(R) which has a convolution representation

(8.1.1) has a fading memory, we use the weight

«,(«)4J/|A(rfr)|) j/|A(rfr)|j

Then by a change of variables we have

]\h(dt)\w(tF =2
0

so that A has a tu-fading memory.

To prove that a LTI FM operator has a convolution representation is technically more

involved since we cannot directly apply an impulse input b\t). But the idea is the same.

A5. Proof of Theorem 6

Assume the hypotheses of theorem 6. Since xQ and xq are reachable from the origin, let

T 6 R and us, us € K be such that

Nus(T) = x0 Nus(T) = x0

Thus, u, and ua steer x from 0 to x0 and xq, respectively, over the interval [0,T|.

Define

^^=\u(«+r) t>i

and similarly

VV>°* \u{t+T) t>T

_ T
T

T
T

In fact x(t)=Nv(t+ T) and x(t)=Nv(t+ T), so it will suffice to prove v(t)-*v[t) as t -•oo.

Let £> 0. Using our fading memory assumption, there is a 6 > 0 such that for all t € R

sup \v(t)-v(t)\w(t-T) < 6 —• \\Nv(t)-Nv(t)\\ < e (A5.1)
0<r<t
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Smcev{t)=v(t)toTt>T,

sup \vlt)-v{t)\w(t-T) < 2Miw{t-T)
0<T<t

Using w(t)-+0 as <-+oo, find T0>T such that w{T0)< b*l$M^. Then for *> T0 the right

hand side of (A5.1) is satisfied and hence

ll*(0 - *(0II < « tort > T0

which proves theorem 6.%
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11. Figure Captions

Figure 1: A sequence of signals in /C which contains no (C(R_), i.e. uniformly) convergent subse

quence. But in the weighted norm, vn -* 0.

Figure 2: Structure of the Volterra series approximator.

Figure 3: Approximator consisting of linear dynamical system with polynomial readout map.

Figure 4: Wiener and Lee's Laguerre lattice filter. All components have value 1.

Figure 5: Block diagram of the nonlinear moving-average (NLMA) operator.

Figure 6: (a) RMS operator N. (b) Mean-square operator JVlf given by a Volterra series, (c)

Approximating Volterra series operator ft^f

Figure 7: Laguerre system approximator fttag.
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