1985 VLSI Tools:
More Works by the Original Artists

Includes these smash hits:

Cifplot
Crystal
Egntott

Esim
Espresso
Magic

Mpack

Mpanda

Mpla

Mquilt

Multibus Design Frame
Peg

Pleasure
Spice2summary

Vlisifont

by Dan Fitzpatrick

by John Ousterhout

by Bob Cmelik

by Chris Terman (MIT)

by Richard Rudell

by Gordon Hamachi, Robert Mayo,
John Ousterhout, Walter Scott,
and George Taylor

by Robert Mayo and Fred Obermeier
by Grace Mah

by Robert Mayo

by Robert Mayo

by Gaetano Borriello

by Gordon Hamachi

by G. D. Micheli and Duksoon Kay
by Fred Obermeier

by Robert Mayo

Plus many more of your old favorites...

Marech 1985

Walter S. Scott, Gordon Hamacht, Robert N. Mayo,
and John K. Ousterhout, editors

Computer Science Division
EECS Department
University of California at Berkeley

-~
¥

3

TABLE OF CONTENTS

Manual Pages, Section L.....ccooerienieecnninininiiniiinnnn Manual pages for programs
Manual Pages, Section 3........cooerennvenirisiinniniiniinienaens Manual pages for libraries
Manual Pages, Section 5.......cooeeveeiveencecnnennns Manual pages that describe file formats
Manual Pages, Section 8........cooevvieiieennincenees Manual pages for system maintainers
Magic Tutorial #1: Getting Started ..o Magic
Magic Tutorial #2: Painting.....coeeeveienenniiiniii e Magic
Magic Tutorial #3: Cell Hierarchies.......ccoceiviiiniiiiniinnnicniniencene Magic
Magic Tutorial #4: Multiple Windowsccoocrieiiiininininiiniiecncnee Magic
Magic Tutorial #5: Design-Rule Checkingccccovevenmiinninniiiiiniicnee Magic
Magic Tutorial #6: Netlists and Routingcccoovviviiimniineniiiniiiiceeees Magic
Magic Tutorial #7: Circuit Extractioncccoevniinninniiiiiniiiinne Magic
Magic Tutorial #8: Reading and Writing CIFcccccocovviinininninniinnne Magic
Magic Maintainer’s Manual #1: Hints for System Maintainerscccc...ce... Magic
Magic Maintainer’s Manual #2: The Technology File........cccocovvvinnriiniinnn. Magic
Magic Maintainer’s Manual #3: The Display Style and Glyph Files............... Magic
Magic Technology Manual #1: NMOS ..., Magic
Magic Technology Manual #2: CMOScooiiiiiiiie, Magic
Using Crystal for Timing Analysis.......ccoccoeeerennencnciniiiniiniinnenne. Crystal Tutorial
Designing Finite State Machines with Pegc.ccccovviinmniiininnnnnnas Peg Tutorial

About this distribution.....

This manual describes the programs in the 1985 VLSI Tools Distribution put
together by the CS Division of the Department of EECS, UC Berkeley. The
distribution consists of about twenty programs for designing and analyzing VLSI
circuits. The programs were designed to run on both VAXes and Suns under the
Berkeley 4.2 distribution of Unix. The Magic VLSI layout editor also runs on a
Pyramid under their version of Berkeley 4.2 Unix. The tools are not known to
run under any other systems. They are available to the public on an internal-
use-only basis. To find out how to obtain them, write to

John Ousterhout
CS Division, Dept. of EECS
University of California
Berkeley, CA 94720.

Several other design packages are available from other groups within the
department. Inquiries about these programs may be addressed to

Industrial Liaison Program - ERL
Dept. of EECS
University of California
Berkeley, CA 94720.

Highlights
We have several new tools on this distribution, as well as enhancements to
old tools. Here's an overview of the major tools:

Cifplot Plots CIF files. It can work with nMOS, CMOS, and other
technologies.

Crystal A timing analyzer that helps the designer find performance
problems in his design. This latest version of Crystal (Version 2)
supports technologies other than nMOS, and allows the use of a
slope model for more accurate estimation of signal delays.

Eqntott Converts a set of logic equations into a truth table format for
input to our PLA optimization and layout tools.

Esim An event driven logic-level simulator developed at MIT and
distributed with their permission. The version on this tape
handles CMOS as well as nMOS.

Espresso A fast new boolean equation minimizer.

Ext2sim Part of the Magic suite of programs. Used for converting the
output of Magic’s hierarchical extractor into a form usable by
other tools on this tape, such as Esim and Crystal.

Magic The first release of our new graphical layout editor. Magic has an
incremental and hierarchical circuit extractor, an incremental
design-rule checker, and a router for wiring up your chip.

Mpack A new release of the tpack library for generating semi-regular
modules. This version is compatible with Magic layout files.

-1-

1985 VLSI Tools - Introduction March 3, 1985

These routines allow module generators to generate layouts by
assembling tiles (which are small chunks of layout designed with
Magic). The end result is a module generator that can generate
different styles of modules depending upon what set of tiles is
used.

Mpanda A technology-independent generator of split and folded PLAs
built using Mpack. Used in conjunction with Pleasure.

Mpla A technology-independent generator of ordinary PLAs built using
Mpack.

Mgquilt A generator of personalized arrays built using Mpack.

Peg A tool that compiles a high-level description of a finite state
machine into logic equations. These logic equations can be fed

into the PLA tools for automatic layout and optimization of the
FSM.

Pleasure Minimizes the area of a PLA by splitting and folding its and and
or planes. Used in conjunction with Panda.

Several of the programs on this tape were developed by authors outside of
the Computer Science Division. We wish to thank Prof. Alberte Sangiovanni-
Vincentelli of Electrical Engineering and his students for allowing us to distribute
their PLA optimization tools Espresso and Pleasure. Panda and Eqntott were
developed by Prof. Richard Newton and his students, also in Electrical
Engineering. Esim, the switch-level simulator, was developed by Chris Terman of
MIT. We are grateful for the authors’ permission to distribute these tools.

Installation Instructions

The tape 1s written in Unix “‘tar’” program format, 1600 BPI, 20 blocks per
record. There are about 16000 kbytes of stuff on the tape. Installing the tools on
a YAX or Sun running Berkeley 4.2 Unix is relatively easy. First, create a new
user, cad. Then change your current directory to ~vcad, and load all the
information from the tape into the ~cad area with the command tar x. To
install the tools on a VAX| next type INSTALL VAX. To install the tools on a
Sun workstation, type INSTALL SUN2 instead.

The above instructions may be inconvenient if you already have ~-cad
directories that you've been using. One alternative is to save all the current
~cad information (mv the subdirectories to other names), then load the tools,
then mv any programs that you want back from the old subdirectories. Another
alternative is to tar the tape into another area, ‘“‘cad85” for example, then move
individual programs over to try them. Be careful if you use this approach, since
many of the programs (like Magie, Cifplot, Mpack, Mquilt, and Mpla) use library
information in ~cad/lib.

There is very little machine-specific configuration. Most is done by the
INSTALL script. If the normal troff -man macros are not in the standard place
(/usr/lib/tmac), the cadman macros in ~cad/man/tmac/tmac.anc will need to be
modified to reflect the location of these standard macros. Also, visifont expects
the Berkeley fonts to be present in the standard place (/usr/lib/viont). Finally, if

-92.-

£

1985 VLSI Tools - Introduction March 3, 1985

yoi are installing the tools on a VAX, you should set up the file
~cad/lib/displays to reflect the locations and types of graphics terminals in your
system.

If you're interested in playing around with any of the other programs, most
of their source directories have files called README or ReadMe or something
similar. See these files for information on installation and maintenance.

Using the Tools

To use the various tools, have each would-be user add “‘~cad/bin” to the
path in his or her .login or .cshre file. To get information about the programs, use
“cadman’: it works just like “man” except that it deals with VLSI CAD tools.
In addition to manual pages, many of the tools have longer tutorial-style user
manuals in ~cad/doc and its subdirectories. These manuals can be printed with
ditroff and/or degn and/or dtbl. Some of them contain gremlin files, however,
and so require grn to print them. Along with the tape you should get a printed
copy of the manuals, in order to save you time running them off.

While ~cad/bin is the only directory that contains binaries, there are several
other directories in the ~cad area:

lib Contains library files used by the various programs.

man Contains manual pages.

src Contains the sources for all of the programs.

doc Contains tutorial-style user manuals for a few of the more

complicated programs.

At Berkeley we create a ~cad/new area that is just like ~cad/bin except that it
holds the latest experimental binaries of programs. If you also follow this
convention then be sure to include ~cad/new in your search path before
~cad/bin.

Support

These tools work fine for us at Berkeley, but they almost certainly have bugs.
The programs are distributed on an as-is basis. We are busy building the next
generation of tools, so we can't provide installation assistance, tutorial help, or
other support. We continue to welcome comments from our test sites, and we will
listen to reports of major bugs discovered by other sites.

Acknowledgements

In order to turn our programs from academic exercises into useful tools, we
depend on designers to use the systems, explain to us their problems, and be
patient while we fix them. For Magic, we've been fortunate to have a large and
unusually cooperative group of early users. Without them the system would
never have reached a usable state. Some of the pioneering users at Berkeley and
at our beta sites are listed below. Apologies to anyone that we’ve missed.

Joan Pendleton, Shing Kong (SOAR project, UCB)
Randy Katz and the CS250 classes of Fall 1983 and Fall 1984 (UCB)

-3-

1985 VLSI Tools - Introduction March 3, 1985 ‘

Norman Jouppi (Digital Equipment Corporation)

Peng Ang, Jonathan Greene (LSI Logic)

Mark Horowitz and the 1985 VLSI Design Class (Stanford University)
MITRE Integrated Electronics Group (MITRE-Bedford)

W. Worth Kirkman, Brian Beattie (MITRE-Washington)

The Computer Sciences Division of Bolt, Beranek, and Newman
Larry McMurchie, Bill Beckett (University of Washington)

Ellen Szeto (Bell Communications Research)

CADMAN(1) Berkeley CAD Tools User’s Manual CADMAN(1)

NAME

cadman — run off section of UNIX manual
SYNOPSIS

cadman | - | [-t] [section] title ...
DESCRIPTION

FILES

Cadman is a program which prints sections of the cad manual. Section is an optional arabic
gsection number, i.e. 3, which may be followed by a single letter classifier, i.e. 1m indicating a
maintenance type program in section 1. If a section specifier is given cadman looks in the that
section of the cad manual for the given titles. If section is omitted, cadman searches all sections
of the cad manual, giving preference to commands over subroutines in system libraries, and
printing the first section it finds, if any.

If the standard output is a teletype, or if the flag — is given, then cadman pipes its output
through ul(1) to create proper underlines for different terminals, and through more(1) to crush out
peedless blank lines and to stop after each page on the screen. Hit space to continue, or a
control-D to scroll 12 more lines when the output stops.

The -t flag causes cadman to arrange for the specified section to be troff'ed to the default
typsetting output device.

~cad/man/man?/*

1985 VLSI Tools Distribution 2/29/80 1

CHKSUM(1) Berkeley CAD Tools User’s Manual CHKSUM(1)

NAME
chksum - checksum a file

SYNOPSIS
chksum

DESCRIPTION
Chksum reads from standard input and prints the character count and checksum on standard
output. This checksum and character count matches that of the program used by MOSIS and is
useful for checking large CIF files transmitted from on site to ancther.

AUTHOR
John Foderaro

1985 VLSI Tools Distribution 4/18/82 1

CIFPLOT(1) Berkeley CAD Tools User's Manual CIFPLOT(1)

NAME
cifplot — CIF interpreter and plotter

SYNOPSIS
cifplot | options | filel.cif | file2.cif ...]

DESCRIPTION

Cifplot takes a description in CalTech Intermediate Form (CIF) and produces a plot. CIF is a
b low-level graphics language suitable for describing integrated circuit layouts. Although CIF can

be used for other graphics applications, for ease of discussion it will be assumed that CIF is used

to describe integrated circuit designs. Cifplot interprets any legal CIF 2.0 description including

symbol renaming and Delete Definition commands. In addition, a number of local extensions have

been added to CIF, including text on plots and include files. These are discussed later. Care has

been taken to avoid any arbitrary restrictions on the CIF files that can be plotted.

To get a plot call cifplot with the name of the CIF file to be plotted. If the CIF description is
divided among several files call cifplot with the names of all files to be used. Cifplot reads the
CIF description from the files in the order that they appear on the command line. Therefore the
CIF End command should be only in the last file since cifplot ignores everything after the End
command. After reading the CIF description but before plotting, cifplot will print a estimate of
the size of the plot and then ask if it should continue to produce a plot. Type y to proceed and n
to abort. A typical run might look as follows:

% cifplot lib.cif sorter.cif
Window -5700 174000 -76500 168900
Scale: 1 micron is 0.004075 inches
The plot will be 0.610833 feet

- Do you want a plot? y

After typing y cifplot will produce a plot on the Benson-Varian plotter. '

Cifplot recognizes several command line options. These can be used to change the size and scale
of the plot, change default plot options, and to select the output device. Several options may be
selected. A dash(-) must precede each option specifier. The following is a list of options that may
be included on the command line:

—-w zmin rmaz ymin ymaez
(window) The -w options specifies the window; by default the window is set to be large
enough to contain the entire plot. The windowing commands lets you plot just a small
section of your chip, enabling you to see it in better detail. Xmin, zmaz, ymin, and
ymaz should be specified in CIF coordinates.

—s float
(scale) The -s option sets the scale of the plot. By default the scale is set so that the
window will fill the whole page. Float is a floating point number specifying the number of
inches which represents 1 micron. A recommended size is 0.02.

=1 layer_list

- (layer) Normally all layers are plotted. The -I option specifies which layers NOT to plot.
The layer_list consists of the layer names separated by commas, no spaces. There are
some reserved names: allText, bbox, outline, text, pointName, and symbolName.
Including the layer name allText in the list suppresses the plotting of text; bbox
suppresses the bounding box around symbols. outline suppresses the thin outline that
borders each layer. The keywords text, pointName, and symbolName suppress the

N plotting of certain text created by local extemsion commands. text eliminates text
created by user extension 2. pointName eliminates text created by user extension 94.
symbolName eliminates text created by user extension 9. allText, pointName, and
symbolName may be abbreviated by at, pn, and sn repectively.

1985 VLSI Tools Distribution 2/28/85 1

CIFPLOT(1)

Berkeley CAD Tools User’s Manual CIFPLOT (1)

— n (copies) Makes n copies of the plot. Works only for the Varian and Versatec. Default is
1 copy.

—d n {depth) This option lets you limit the amount of detail plotted in a hierarchically
designed chip. It will only instanciate the plot down n levels of calls. Sometimes too
much detail can hide important features in a circuit.

-g n (grid) Draw a grid over the plot with spacing every n CIF units.

-h (half) Plot at half normal resolution. (Not yet implemented.)

—e (extensions} Accept only standard CIF. User extensions produce warnings.

-1 (non-Interactive) Do not ask for confirmation. Always plot.

-L {List) Produce a listing of the CIF file on standard output as it is parsed. Not
recommended unless debugging hand-coded CIF since CIF code can be rather long.

~a n (approximate) Approximate a roundflash with an n-sided polygon. By default n equals
8. (Le. roundflashes are approximated by octagons.) if n equals O then output circles for
roundflashes. (It is best not to use full circles since they significantly slow down plotting.)
(Full circles not yet implemented.)

~b "text”

{banner) Print the text at the top of the plot.

-C {Comments) Treat comments as though they were spaces. Sometimes CIF files created
at other universities will have several errors due to syntactically incorrect comments. (Le.
the comments may appear in the middle of a CIF command or the comment does not end
with a semi-colon.}) Of course, CIF files should not have any errors and these comment
related errors must be fixed before transmitting the file for fabrication. But many times
fixing these errors seems to be more trouble than it is worth, especially if you just want to
get a plot. This option is useful in getting rid of many of these comment related syntax
errors.

- {rotate) Rotate the plot 90 degrees.

-V (Varian) Send output to the varian. (This is the default option.)

-W (Wide) Send output directly to the versatec.

-8 (Spool) Store the output in a temporary file then dump the output quickly onto the
Versatec. Makes nice crisp plots; also takes up a lot of disk space.

-T (Terminal} Send output to the terminal. {Not yet fully implemented.)

-Gh

-Ga (Graphies terminal) Send output to terminal using it's graphics capablities. —Gh

indicates that the terminal is an HP2648. —Ga indicates that the terminal is an AED
512,

~X basename

{eXtractor) From the CIF file create a circuit description suitable for switch level
simulation. It creates two files: basename.sim which contains the circuit description, and
basename.node which contains the node numbers and their location used in the circuit
description.

When this option is invoked no plot is made. Therefore it is advisable not to use any of
the other options that deal only with plotting. However, the window, layer, and
approzirnate options are still appropriate. To get a plot of the circuit with the node
pumbers call cifplot again, without the —X option, and include basename.nodes in the
list of CIF files to be plotted. {This file must appesar in the list of files before the file with

1985 VLSI Tools Distribution 2/28/85 2

»

CIFPLOT(1) Berkeley CAD Tools User’s Manual CIFPLOT(1)

the CIF End command.)

" —e n (coples) The —c specifies the number of copies of the plot you would like. This allows you
to get many copies of a plot with no extra computation.

~P pattern_file

(Pattern) The -P option lets you specify your own layers and stipple patterns.
Pattern_file may contain an arbitrary number of layer descriptors. A layer descriptor is
the layer name in double quotes, followed by 8 integers. Each integer specifies 32 bits
where ones are black and zeroes are white. Thus the 8 integers specify a 32 by 8 bit
stipple pattern. The integers may be in decimal, octal, or hex. Hex numbers start with
'0x’; octal numbers start with '0’. The CIF syntax requires that layer names be made up
of only uppercase letters and digits, and not longer than four characters. The following is
example of a layer description for poly-silicon:

"NP” 0x08080808 0x04040404 0x02020202 0x01010101
0x80808080 0x40404040 0x20202020 0x10101010

-F font_file
(Font) The -F option indicates which font you want for your text. The file must be in
the directory 'fusr/lib/vfont’. The default font is Roman 6 point. Obviously, this option
is only useful if you have text on your plot.

-0 filename
(Output) After parsing the CIF files, store an equivalent but easy to parse CIF
description in the specified file. This option removes the include and array commands (see
next section) and replaces them with equivalent standard CIF statements. The resulting
file is suitable for transmission to other facilities for fabrication.

In the definition of CIF provisions were made for local extensions. All extension commands begin
with a number. Part of the purpose of these extensions is to test what features would be suitable
to include as part of the standard language. But it is important to realize that these extensions
are not standard CIF and that many programs interpreting CIF do not recognize them. If you
use these extensions it is advisable to create another CIF file using the -O options described above
before submitting your circuit for fabrication. The following is a list of extensions recognized by
cifplot.

01 filenames
(Include) Read from the specified file as though it appeared in place of this command.
Include files can be nested up to 6 deep.

0A smndzdy;
(Array) Repeat symbol s m times with dz spacing in the x-direction and n times with dy
spacing in the y-direction. s, m, and n are unsigned integers. dz and dy are signed
integers in CIF units.

1 message;
(Print) Print out the message on standard output when it is read.

2 "ext" transform

2C "text" transform 3
(Text on Plot) Tezt is placed on the plot at the position specified by the transformation.
The allowed transformations are the same as the those allowed for the Call command.
The transformation affects only the point at which the beginning of the text is to appear.
The text is always plotted horizontally, thus the mirror and rotate transformations are
not really of much use. Normally text is placed above and to the right of the reference
point. The 2C command centers the text about the reference point.

8 names

1985 VLSI Tools Distribution 2/28/85 3

CIFPLOT(1) Berkeley CAD Tools User's Manual CIFPLOT(1)

" FILES

. (Name symbol) name is associated with the current symbol.
84 namez y;

94 name z y layer;
{Name point) name is associated with the point {z, ¥). Any mask geometry crossing
this point is also associated with name. If layer is present then just geometry crossing
the point on that layer is associated with neme. For plotting this command is similar to
text on plot. When doing circuit extraction this command is used to give am explicit
name to a node. Name must not have any spaces in it, and it should not be a number.

~cad/.cadre

~ [.cadre
~cad/lib/fix.6
~cad/lib/pat.*
Just/tmp/[#cif*

SEE ALSO

cadre(5)
A Guide to LSI Implementation by Hon and Sequin, Second Edition (Xerox PARC, 1980) for a
description of CIF.

AUTHOR

BUGS

Dag Fitzpatrick

The -# is somewhat kludgy and does not work well with the other options. Space before semi-
colons in local extensions can cause syntax errors.

The —QO option produces simple cif with no scale factors in the DS commands. Because of this
you must supply a scale factor to some programs, such as the -1 optior to cif2ca.

The -X option is no longer supported.

1985 VLSI Tools Distribution 2/28/85 4

CRYSTAL(1) Berkeley CAD Tools User’s Manual CRYSTAL(1)

NAME
Crystal — VLSI timing analyzer

SYNOPSIS
crystal [file]

DESCRIPTION

Crystal is a semi-interactive program for analyzing the timing characteristics of large integrated
circuits. It estimates the speed of a circuit and prints out information about the critical paths. If
file is specified, it is read in as though the bulld command (see below) had been invoked. Crystal
processes commands from the standard input, one per line. Lines beginning with exclamation
points are ignored. Unique abbreviations for commands are acceptable. The order of commands
in the input is important. Commands are divided into seven groups, which should appear in the
following order:

Model commands
These commands modify the circuit and timing models used by Crystal, and should
appear before the circuit is read in. The model commands are model, parameter, and
transistor.

Circuit commands
Used to input and describe the circuit being analyzed. The circuit commands are bulld,
bus, capacitance, inputs, outputs, and resistance.

Dynamic node command
This group includes the single command markdynamiec, used to find and mark the
dynamic memory nodes in the circuit.

Check commands
Includes two commands, check, and ratlo. These commands examine the circuit’s
structure for suspicious-looking electrical features.

Setup commands
There are three commands in this group, flow, precharged, predischarged, and set.
These commands are used to restrict the analysis performed for a given clock phase.

Delay command
The delay command invokes the actual delay analysis.

Miscellaneous commands
These commands may be invoked at any time: alias, critical, dump, fillin, help,
options, quit, prcapacitance, prfets, prresistance, source, statistics, undump,
and watch.

The only command outside these groups is the clear command, which resets information that was
set by setup and delay commands. After clear, input may resume with anything except model
commands.

NODE NAMES
Where node names are called for in commands, they can appear in any of several forms:

(1] A simple node name.

(2] A name of the form “a<x:yy>b". Crystal tries all names of the form *“acb” where c
ranges from x to y. To get a “<’’ character in the name, precede it with a backslash.

3] A name of the form “*a”. Crystal searches the entire node table for names containing
the string “a”. Note: this kind of name specification is slow on large chips, since the
entire table has to be searched. For example, on a sample 45000 tranmsistor chip, 20
seconds of CPU time were used for each search.

1985 VLSI Tools Distribution 1

CRYSTAL(1) Berkeley CAD Tools User's Manual CRYSTAL(1}

GRAPHICAL COMMAND FILES

Several of the commands can be used with the -g argument to generate output for graphical
display of information. At present, Crystal will generate command files for either Caesar, Magic,
or 5quid. To use Caesar command files, run Caesar on the chip and pick a view large enough to
hold the whole chip (e.g. with the ‘v short command). Then use the “:source” long command
to read in the command file. The command files place labels and paint on the error layer to mark
places, and also push boxes onto the stack so that you can step from one label to the next using
the “:popbox” long command. To use Magic command files, run Magic on the layout, place the
cursor in the window containing the layout, and use the *:source” long command to read in the
command file. A collection of feedback areas will be generated. These can be examined using
Magic’s ‘*:feedback” command.

COMMANDS
alias file
Read in aliases from the information in flle. Each line of the alias file is of the form “=
name name name ..."” where the first name is a node name that appears in the .sim file
and each additional name is another name for the same node. After the allas command,
any of the names may be used to refer to a node. An alias file shouldn’t be read in until
after the .sim file has been read.

build file
Build a circuit description from the information in fille, which must be in .sim format.
This command is unnecessary if a file is specified on the shell command line, but is
necessary if non-standard models are used. :

bus node node ...
This command should only rarely be needed. Each of the nodes gets marked as a bus.
When a node is a bus, Crystal assumes that delays through the node can be treated as
separate stages to the node and from the node. Nodes with large capacitances are
automatically considered to be busses: see the bus option below.

capacitance pfs node node ...
The parasitic capacitance value for each node is set to the given value. This overrides
the capacitance estimate made from the mask layout.

check Make a series of static electrical checks on the circuit. This command prints out
information about nodes with no transistors connected to them, nodes that are not driven,
nodes that don’t drive anything, transistors that are permanently forced off, transistors
connecting Vdd and GND, and transistors that are bidirectional but haven’t been marked
with a flow attribute.

clear All information set by setup and delay commands is cleared, in preparation for an
additional timing analysis. Information set by circuit commands isn’t affected. After the
clear command, input may contine with any commands except those in the model group.
Information from the watch command is also cleared.

critical [file] [-g graphicsfile] [-s spicefile] [pathrumber][m][w]
Print out information about the critical paths. If pathnumber isn't specified, then the
slowest path is printed. If it is specified, the pathnumber’th slowest path is printed. If
pathnumber is followed by an m, then the pathnumber’th slowest path leading to a
memory node is printed. If pathnumber is followed by a w then the pathnumber'th
slowest path leading to a watched node is printed (see the watch command). Only the
‘very slowest paths are recorded by Crystal, controlled by the paths, mempaths, and
watchpaths options (see the options command below). Furthermore, Crystal does not
record a path if its total delay is within .1% of another path already recorded on the list
(this is to alleviate the problem of the lists getting fAooded by essentially equivalent

CRYSTAL(1)

Berkeley CAD Tools User’s Manual CRYSTAL(1)

paths). If the file argument is given, then output goes to that file instead of standard
output. If the -g argument is given, a graphics command file is generated in
graphicsfile. If the -s argument is given, a SPICE deck is created in spicefile describing
the transistors and parasitics along the path (no model parameters or body bias voltages
are output).

delay node risetime falltime

Propagate delay information through the circuit. Assume that the worst-case time for
node to become 1 is risetime, and the worst-case time for it to become 0 is falltime.
Propagate timing information through nodes that node can impact, until the the worst-
case settling times for the entire network have been found. A -1 value for risetime or
falltime means that there is no transition to that level.

dump file

This is a special wizards-only command for saving critical path information in a way that
Crystal can read it back later using the undump command, without having to reprocess
the whole .sim file. Don’t use this command unless you really know what you are doing.

fillin time/edgeSpeed inFile outFile keyword path path ...

This command is useful in order to interface Crystal to other programs that process
Crystal’s output. InFile is read by the command, and its contents are copied to
outFile. Along the way, each occurrence of keyword is replaced by a number from one
of the critical paths (each path is specified as for the critical command). If time is
specified, then the time at the end of each stage along the critical path is used to replace
occurrences of keyword, with smaller times replacing earlier occurrences. If edgeSpeed is
specified, then the edge speeds from the stages of the path are used to replace keywords.
If more than one path is specified, the paths are processed in order of their occurrence on
the command line. If there are more stages in the paths than occurrences of keyword,
then the last stages are ignored. If there are more occurrences of keyword than stages,
only the first few keywords will be replaced. If no path is specified, it defaults to “1”.

flow direction attribute attribute ...

help

For each source/drain attribute given, mark the attribute so that information will only
be permitted to flow in the given direction. Direction may be either in, out, off,
ignore, or normal. In and out require information to flow only in the specified
direction. Off does not permit any flow through the tagged transistors. If ignore is
specified then no restrictions are enforced whatsoever. Normal returns the flow to its
normal operation.

Print a short listing of the valid commands.

inputs node node ...

Mark each of the nodes as an input. This has two effects. First, it indicates that the
node can take on values of either 0 or 1 (otherwise, Crystal may conclude that the node
can’t ever reach one or both values). Second, if the node isn’t also an output node, then
Crystal assumes that the timing of the node is fixed by the outside world and is not
affected by anything in the circuit: if no delay command is given for the node, Crystal
assumes the value never changes.

markdynamic node value node value ...

This statement causes Crystal to examine all nodes and mark dynamic memory nodes. A
node is considered to be a dynamic memory node if it is electrically isolated when each
node takes its corresponding value. Normally the command is invoked with all of the
clock phases turned off, e.g. ‘‘markdynamic Phil 0 Phi2 0 Phi3 0 Phi4 0".

model name

Use name as the model for delay calculations. Currently, two models, rc and slope, are

1985 VLSI Tools Distribution 3

CRYSTAL(1) Berkeley CAD Tools User's Manual CRYSTAL(1}

available. The re model approximates each transistor with a fixed resistance value. The
slope model uses the gate rise and fall speeds to modify the effective resistance.

options [name [value]] [name [value]] ...
This command is used to see and set a variety of internal! options used by Crystal.
Optlons with no arguments prints out the current setting of all options. Each option
consists of an option npame and perhaps a value for the option. Some options do not have
values. See the section “OPTIONS" below for the available options.

outputs node node ...
Marks each of the given nodes as an output. Crystal assumes that information (0’s and
1’s) flows from sources (supply rails and inputs) to targets (gates and outputs). If a piece
of circuit doesn’t drive any gates; Crystal won't compute delays through it unless the
result nodes are labelled as outputs.

parameter [name] [value]
This statement is used to see or change several overall model parameters. Name is the
name of a parameter, and value is a new value for that parameter. If both name and
value are specified, then the value of the parameter is changed, If only name is
specified, then the current value is printed. If neither name or value is specified, then
the values of all parameters are printed. The valid parameter names are listed in the
section “MODEL PARAMETERS" below.

preapacitance [-g file] [-t threshold] node node ...
Print out information for each of the indicated nodes whose total capacitance is at least
threshold pf (the default is 0 if the argument isn’t present). If no node names are given,
then all nedes in the the circuit are checked. The -g argument can be used to generate a
graphical command file,

precharged node node ...
Mark each of the given nodes as precharged. This means that only falling transitions are
considered during timing analysis. Each of the nodes is also treated as a bus.

predischarged node node ...
Mark each of the given nodes as precharged to 0. This means that only rising transitions
are considered during timing analysis. Each of the nodes is also treated as a bus.

prfets node node ...
For each node that is given, information is printed about all transistors whose gates

attach to the node. If no node is specified, then information is printed about all
transistors in the circuit.

prresistance {-g file] [-t threshold] node node ...
Print out information for each of the indicated nodes whose internal resistance exceeds
threshold ohms. If no threshold is given, 0 is used by default. If no node names are
given, then check all nodes in the circuit. The -g argument is used to generate a graphics
command file.

quit Exit Crystal and return to the shell. End-of-file or the input stream will also cause
Crystal to exit,

ratio [limit value] {limit value] ...
Examine the circuit for nMOS ratio violations. Normal circuits are expected to have
pullup/pulldown ratios between 3.8 and 4.2. Pass transistor driven circuits must have
ratios between 7.8 and 8.2. Ratios outside this range are printed out. I the same illegal
pullup/pulldown ratio is duplicated more than 20 times, only the first 20 are printed. The
limits of acceptability may be changed by providing arguments to the ratio command.
Limit must be one of normallow, normalhi, passlow, or passhi (unique abbreviations

1985 VLSI Tools Distribution 4

CRYSTAL(1) Berkeley CAD Tools User’s Manual CRYSTAL(1)

are acceptable).

reslstance ohms node node ...
The internal node resistance associated with each node is set to ohms. This overrides
the value computed from the mask layout.

set value node node ...
Force each node always to have the given value (0 or 1). Furthermore, do a static logic
simulation to propagate this information as far as possible throughout the network.
Thus, if the input to an inverter or NAND gate is forced to 0, the output is forced to 1,

and so on.

source file
Read commands from file. On end-of-file, go back to reading commands from the

previous source. Source files may be nested.

statistics
Prints a variety of statistics gathered internally by Crystal. Probably not useful except

to a system maintainer.

transistor [name [fleld value] [fleld value] ...]

The transistor command is used to define new transistor types, or see or modify existing
types. Name is the name of a transistor type, fleld is the name of a field associated
with the transistor, and value is a new value for that field. The valid field names are
listed in the section “TRANSISTOR FIELDS" below. If name matches the name of an
existing transistor type (see below for the predefined types), then the fleld and value
arguments are used to change some of its fields. If name is not an existing transistor
type, a new type is created. If there are no arguments to the transistor command, then
all fields for all defined types are printed out. If name is supplied with no field values,
then all the fields for that transistor are printed out. To use a user-defined type for a
transistor, place an attribute on the gate of the transistor. The the attribute contains the
name of the transistor type to use for it.

undump flle
This is another wizards-only command. Don’t use it unless you really know what you are
doing. The undump command is provided to read back the output of the dump
command, so that Crystal can get critical paths without having to re-extract them.

watch node node ...
Mark each of the given nodes so that delays to them will be recorded on the list of
slowest watched nodes (these nodes will still be recorded on the lists of arbitrary and
memory nodes too, if they are among the slowest in those categories). The watch flags
are cleared by the clear command.

OPTIONS
The options defined below are used in various and sundry places inside Crystal to control
calculations and printout. They can be changed with the options command.

bus value
Gives the amount of capacitance a node must have to automatically be considered a bus

by Crystal (default is 2 pfs).

graphics style
Sets the style for graphical output. Currently, three styles are understood: caesar,
magle, and squid (default is caesar).

limit value
Gives the maximum of stage delays Crystal will calculate before giving up in despair

1985 VLSI Tools Distribution 5

CRYSTAL(1) Berkeley CAD Tools User's Manual CRYSTAL(1)

(default is 200000).

mempaths value
- Gives the number of worst-case paths Crystal will record for delays to memory nodes
(default is 5, maximum is 100).

noprintedgespeeds
When printing critical paths, print only the delay to each node, without the edge rise or
fall speeds (default).

noseedelays :
Tells Crystal not to print out information about delays as they are calculated in delay
commands (default).

noseedynamic
Tells Crystal not to print out the dynamic memory nodes as they are found in the
markdynamic command (default).

noseesettings .
Tells Crystal not to print out nodes when they are set to values during the set command
(default).

paths value
Gives the number of worst-case paths Crystal will record on the list of slowest nodes
overall {memory nodes and watched nodes will also be recorded on lists for each of those
categories; mempaths and watchpaths options are used to control the lengths of those
lists). The default is 5 and the maximum is 100. .

printedgespeeds
When printing critical paths, in addition to printing the delay to each node, also print the
speed at which the edge rises or falls at that node. This only makes sense when uging the
slope model.

ratiodups value
When printing out ratio errors in the ratlo command, if a number of errors occur with
exactly the same erroneous ratio, only the first ratlodups of these duplicate errors will
be printed. The default is 20,

ratiolimit value
Controls the maximum number of ratio errors that will be printed ir any one ratio
command. The default is 1000.

seealldelays
Causes Crystal to print out each new delay as it is calculated during the delay command.
seeallsettings
Causes Crystal to print out each node setting as it is found during the set command.
seedelays
Causes Crystal to print out new delays as they are found during the the delay command,
but only for nodes whose names have alphabetic first characters.
geedynamic
Causes Crystal to print out the name of every dynamic node as it is found in
markdynamiec.
seesettings
Causes Crystal to print out new node settings during the set command, but only for
nodes whose names have alphabetic first characters.

units value

1985 VLSI Tools Distribution 6

CRYSTAL(1) Berkeley CAD Tools User’s Manual CRYSTAL(1)

Tells Crystal what units to use when printing out information. If units is 2.0 (default)
then a printed value of 1 corresponds to 2 microns.

watchpaths value
Gives the number of paths to record on the list of slowest watched nodes (default is 5,

maximum is 100).

TRANSISTOR FIELDS
Each transistor type is parameterized by the following fields. They can be changed using the

transistor command.

cperarea
Gate-channel capacitance of the transistor, in pfs per square micron.

cperwidth
Gate-source and gate-drain overlap capacitance, in pfs per micron of transistor width.

histrength
An integer value giving the logical strength of the transistor when it is pulling to Vdd.
This is used in simulation to determine which transistor wins when different transistors
drive a node in different directions (e.g. histrength for pullup loads is less than
lostrength for enhancement pulldowns).

lostrength
An integer value giving the logical strength of the transistor when it is pulling to ground.

on This field has one of three values: gate0, gatel, or always. Gate0 means that the
transistor is turned on only when the gate is zero (in other words, it is a p-channel
enhancement device). Gatel means that the transistor is turned on only when the gate
is one (it is an n-channel enhancement device). Always means the device is always
turned on (it is a depletion device). :

rdown The resistance per square of the transistor when it is pulling down. Used to calculate
delays in the rc model.

rup The resistance per square of the transistor when it is pulling up. Used to calculate delays
in the rc model.

slopeparmsdown
Gives table values used for interpolation in the slope delay model. The value consists of
any number of triplets. Each triplet contains an edge speed ratio, an effective resistance,
and an output edge speed. The table is used when the transistor is driving to ground.
The mkcp program is useful for generating these parameters from SPICE model
parameters.

slopeparmsup
Gives table values used for interpolation in the slope delay model. The value consists of
any number of triplets. Each triplet contains an edge speed ratio, an eflective resistance,
and an output edge speed. The table is used when the transistor is driving to Vdd. The
mkcp program is useful for generating these parameters from SPICE model parameters.

splicebody
Spicebody is the node number to use for the body when outputting this type of
transistor in SPICE decks. The body node number must be 0-3. 0 is GND, 1 is Vdd, and
2 and 3 are user-controlled body bias voltages.

splcetype
A single letter identifier used as the type of this transistor in SPICE decks.

1985 VLSI Tools Distribution 7

CRYSTAL(1) Berkeley CAD Tools User’s Manual CRYSTAL{1)

PREDEFINED TRANSISTOR TYPES
The following types of transistors are predefined by Crystal. When Crystal reads in files, it selects
one of the following transistor types for each tramsistor, unless overriden by an attribute giving a
type not listed below. Their fields can be changed using the transistor command.

nenh Enhancement transistors in eMOS.

nenhp Enhancement transistors in nMOS whose gates are driven by pass transistors (i.e. any
transistor whose gate is not a circuit input and does not attach to an nload or nsuper
transistor). Transistor types are switched between nenmh and nenhp during flow
marking.

ndep Depletion devices in nMOS (most depletion devices are turned into either type nload or
nsuper by Crystal).

- nload nMOS depletion devices where the gate connects to either source or drain and the other
terminal connects to Vdd.

nsuper
nMOS depletion devices where either the source or drain connects to Vdd but the other
terminal doesn’t connect to the gate.

nchan N.channel enhancement devices in CMOS. This is provided separately from type nenh
as a convenience to accomodate different delay characteristics in nMOS and CMOS.

pchan P-channel enhancement devices in CMOS.

MODEL PARAMETERS
The following are the model parameters that aren't associated with particular tranmsistor types.
They are used in the parameter command.

diffcperarea
Capacitance between diffusion and substrate, in pfs per square micron.

diffcperperim
Sidewall capacitance of diffusion, in pfs per micron of perimeter.

diffresistance
Resistance of diffusion, in ohms per square.

metalcperarea
Capacitance between metal and substrate, in pfs per square micron.

metalresistance
Resistance of metal, in ochms per square.

polycperarea
Capacitance between polysilicon and substrate, in pfs per square micron.

polyresistance _
Resistance of polysilicon, in chms per square.

vdd The supply (logic 1) voltage. Used in the slope model, and also in outputting SPICE
decks.

vinv The logic threshold voltage (usually Vdd/2). Used in the slope model to compute edge
speeds for resistors.

SEE ALSO

1985 VLSI Tools Distribution 8

CRYSTAL(1) Berkeley CAD Tools User’s Manual CRYSTAL(1)

mkep(1)

AUTHOR
John QOusterhout

1985 VLSI Tools Distribution 9

EQNTOTT(1) Berkeley CAD Tools User’s Manual EQNTOTT(1)

NAME.

eqntott — generate truth table from Boolean equations

SYNOPSIS

eqntott { -1 [-f][-s])[-r][-R]][-key]| cc options | files]

DESCRIPTION

Egntott generates a truth table suitable for PLA programming from a set of Boolean eguations
which define the PLA outputs in terms of its inputs. When neither -f nor -8 is specified, input and
output variables must be mutually exclusive. If the -5 option is given, an output variable may be
used in an expression defining another output variable: the expression for the first output is
substituted for the the name of that output when it is encountered. The -f option allows outputs
to be defined in terms of their previous values in a synchronous system (e.g. an FSM): the same
name appearing as both an input and an output may be thought of as referring to two distinct
variables, or the same variable at two distinct times. (The -f and -s options are mutually
exclusive.)

If the -r option is specified, egntoft will attempt to reduce the size of the truth table by merging
minterms. The -R option (implies -t} forces egntott to produce a truth table with no redundant
minterms. The truth table generated does not represent a minimal covering of the truth
functions, but does preserve some “‘don’t care’’ information for some other program to use.

If the -1 option is specified, eqntott will output a truth table which includes the name of the pla
and its inputs and outputs as specified in PLA(5).

The form that the output takes is controlled by the siring key, described below. Input is taken

‘from files (standard input default) and run through the C macro preprocessor of cc{1), to permit

comments, file inclusion, macros, and conditional processing. The cc options -D, -1, and -U are
recognized and passed on to the preprocessor.

Equation Syntax:

name == exXpression;
Associates a truth function defined by expression with the output name, both of which
are defined below. If an output name is assigned more than one expression, the effect is
identical to a single assignment to the output of the logical disjunction of all the original
expressions.

NAME = name ;
Defines the name of the pla to be “pame”. If not specified, the name of the pla is the
name of the input file with any postfixes removed.

INORDER = name [name]... ;
Defines the order in which inputs appear in the truth table. If not specified, the order is
that in which the inputs appear in the source,

OUTORDER = name [name]... ;

Defines the order in which outputs appear in the truth table. If not specified, the order is
that in which the outputs appear in the source.

Expresslon Syntax:

name
A name is used to specify an input or output. The name must begin with a letter or
underscore; subsequent characters may be letters, digits, underscores, asterisks, periods,
square brackets, or angle brackets.

1985 VLSI Tools Distribution 1

EQNTOTT(1) Berkeley CAD Tools User’s Manual EQNTOTT(1)

ZERO (or 0)
Builtin input that always has the value zero (false).

ONE (or 1)
Builtin input that always has the value one (true).

Builtin input that always has the value “don’t care’.

(expression)
Parenthesis may be used to change the order of evaluation.

! expression
Gives the complement of expression.

expression & expression
Gives the logical conjunction of the two expressions. The & operator associates left to
right, and has the same precedence as !.

expression | expression :
Gives the logical disjunction of the two expressions. The | operator also associates left to
right, and has a lower precedence than £.

Output Format

The output format may be controlled to a small extent using the character string key. The string
is scanned left to right, and at each character code, a piece of output is generated corresponding
to the character encountered. If -.key is not specified, the string “‘iopte” is used, or “iopfte” with
the -f option.

code output generated

e .2

f £ output-number input-number
(one line for each feedback path, numbers refer to Or- and And-plane truth table column
numbers)

h a human readable version of the truth table (q.v.)

i J number-of-inputs

1 J input-name

(one line for each input, in order)
| a truth table with the name of the pla, its inputs and its outputs
P .p number-of-product-terms
n .n number-of-product-terms
o .0 number-of-outputs
(o] .O output-name

(one line for each output, in order)
S PLA connectivity summary
t PLA personality matrix (q.v.)
v eqntott version information

The truth table (personality matrix) consists of a line for each minterm, beginning with that
minterm and followed by the values of the various outputs. The minterm is composed of a single
character (0, 1, or -) for each input in the conventional fashion. The output values are
represented by one of the three characters (0, 1, or x). Some white space is added for readability’s
sake.

1985 VLSI Tools Distribution 2

EQNTOTT(1) Berkeley CAD Tools User’s Manual EQNTOTT (1)

In the human readable format, each line of output represents one term in the sum-of-products
expression for an output. The line begins with the name of the output, which is enclosed in
parentheses for the value ‘“don’t care”. Then follow the names of the inputs in the produet;
complemented inputs are preceded by a !.

SEE ALSO
ee(1).
DIAGNOSTICS
Syntax errors are written to the standard error output and should be self-explanatory.

BUGS -
-1 should be the default, but some pla tools can’t handle the full format. Eqntott likes its options
separately; i.e. «f -1 works but -fl doesn’t.

AUTHOR
Bob Cmelik.
-1 option added by Jefl Deutsch,

1985 VL.5I Tools Distribution 3

ESIM(1) Berkeley CAD Tools User’s Manual ESIM(1).

NAME

esim — event driven switch level simulator
SYNOPSIS

esim [filel [file2 ..]]
DESCRIPTION

Esim is an event-driven switch level simulator for nsMOS or CMOS transistor circuits. Esim
accepts commands from the user, executing each command before reading the next. Commands
come in two flavors: those which manipulate the electrical network, and those to direct the
simulation. Commands have the following simple syntax:

c argl arg? ... argn
where c is a single letter specifying the command to be performed and arg!l through argn are
arguments to that command. The arguments are separated by spaces or tabs, and the command
is terminated by a newline.

To run esim type

esim filel file2 ...
Esim will read and execute commands, first from filel, then file2, etc. If one of the file names is
preceded by a -, then that file becomes the new output file (the default output is stdout). For
example,

esim f.sim -f.out g.sim
This would cause esim to read commands from f.sim, sending output to the default output.
When f.3im was exhausted, f.out would become the new output file, and the commands in g.sim
executed.

After all the files have been processed, and if the q command has not terminated the simulation
run, esim will accept further commands from the user, prompting for each one like so:
sim>
The user can type individual commands or direct esim to another file using the @ command:
sim> @ patchfile.sim
This command would cause esim to read commands from patchfile.sim, returning to interactive
input when the file was exhausted.

It is common to have an initial network file prepared by a node extractor with perhaps a patch
file or two prepared by hand. After reading these files into the simulator, the user would then
interactively direct esim. This could be accomplished as follows:

esim file.sim patch.1 patch.2
After reading the files, esim would prompt for the first command. Or we could have typed:

% esim file.sim

sim> @ patch.l

sim> @ patch.2

Network Manipulation Commands

The electrical network to be simulated is made up of enhancement and depletion mode transistors
interconnected by nodes. Components can be added to the network with the following commands:
e gate source drain
e gate source drain length width key xpos ypos area
Adds enhancement mode transistor to metwork with the specified gate, source,
and drain nodes. The longer form includes size and location information as
provided by the node extractor — when making patches the short form is usually
used.
d gate source drain
d gate source drain length width key xpos ypos area
Like e except for depletion mode devices.
p gate source drain

1985 VLSI Tools Distribution 4/18/82 1

ESIM(1) Berkeley CAD Tools User’s Manual ESIM(1)

p gate source drain length width key xpos ypos area
Like e except for pMOS devices in CMOS.
n gate source drain
n gate source drain length width key xpos ypos area
Like e except for tMOS devices in CMOS.
C nodel node2 cap
Increase the capictance between nodel and node2 by cap. Esim ignores this
unless either nodel or node2 is GND.
== node namel name?2 name3
Allows the user to specify synonyms for a given node. Used by the node
extractor to relate user-provided node names to the node's internal name (usually
just a pumber).
| comment...
Lines beginning with vertical bar are treated as comments and ignored -- useful
for deleting pieces of network in node extractor output files.
I node
Input record — output by node extractor and not used by esim.
Currently, there is no way to remove components from the network once they have been added.
You must go back the input files and modify them (using the comment character) to exclude those
components you wished removed. N records need not be included for new nodes the user wishes
to patch into the network. '

Simulator Commands

The user can specify which nodes are to have there values displayed after each simulation step:
w nodel -node? node3 ...
Watch nodel and node3, stop watching node2. At the end of a simulation step,
each watched node will displayed like so:
nodel==0 pode3=X ...
To remove a node from the watched list, preface its name with a2 -’ in a w
command.
‘W label nodel node2 ... noden
Watch bit vector. The values of nodes nodel, ..., noden will displayed as a bit
vector:
label=010100 20
where the first O is the value of nodel, the first 1 the value of node2, etc. The
number displayed to right is the value of the bit vector interpreted as a binary
number; this is omitted if the vector contains an X value. There is no way to
unwatch a bit vector.
Before each simulation step the user can force nodes to be either high (1) or low (0) inputs (an
input’s value cannot be changed by the simulator!):
h nodel rode? ..
Force each node on the argument list to be a high input. overrides previous input
commands if necessary.
1 nodel node? ...
Like h except forces nodes to be a low input.
x nodel node2 ...
Removes nodes from whatever input list they happen to be on. The next
simulation step will determine their correct value in the circuit. This is the
default state of most nodes. Note that this does not force nodes to have an X
value — it simply removes them from the input lists.
The current value of a node can be determined in several ways:
v .
View. prints the values of all watched nodes and nodes on the high and low input

ESIM(1)

Berkeley CAD Tools User’s Manual ESIM(1)

lists.

? nodel node2 ...
Prints a synopsis of the named nodes including their current values and the state
of all transistors that affect the value of these nodes. This is the most common
way of wondering through the network in search of what went wrong...

! nodel node2 ...
For each node in the argument list, prints a list of transistors controlled by that
node.

? and ! allow the user to go both backwards and forwards through the network in search of that
piece causing all the problems.

The simulator is invoked with the following commands:

8
Simulation step. Propogates new values for the inputs through the network,
returns when the network has settled. If things don’t settle, command will never
terminate — try the w and D commands to narrow down the problem.

Cycle once through the clock, as define by the K command.

Initialize. Circuits with state are often hard to initialize because the initial value
of each node is X. To cure this problem, the I command finds each node whose
value is charged-X and changes it to charged-0, then runs a simulation step. If
one iterates the I command a couple times, this often leads to a stable initialized
condition (indicated when an I command takes O events, i.e., the circuit is stable).

Try it — if circuit does not become stable in 3 or 4 tries, this command is
probably of no use.

Miscellaneous Commands

D
toggle debug switch. useful for debugging simulator and/or circuit. If debug
switch is on, then during simulation step each time a watched node is encounted
in some event, that fact is indicated to the user along with some event info. If a
node keeps appearing in this prinout, chances are that its value is oscillating.
Vice versa, if your circuit never settles (ie., it oscillates) , you can use the D and
w commands to find the node(s) that are causing the problem.

> filename
write current state of each node into specified file. useful for make a break point
in your simulation run. Only stores values so isn't really useful to dump a run
for later use - see < command.

< filename
read from specified file, reinitializing the value of each node as directed. Note
that network must already exist and be identical to the network used to create
the dump file with the > command. These state saving commands are really
provided so that complicated initializing sequences need only be simulated once.

L
invokes network processor that finds all subnets corresponding to simple logic
gates and converts them into form that allows faster simulation. Often it does
the right thing, leading to a 25% to 50% reduction in the time for a single step.
[We know of one case where the transformation was not transparent, so caveat
simulee...]

X..
call extension command - provides for user extensions to simulator.

q

1985 VLSI Tools Distribution ’ 4/18/82 3

ESIM(1) Berkeley CAD Tools User's Manual ESIM(1)

exit to system.
Local Extenslons

V node vector
Define a vector of inputs for the node. The first element is initially set as the
input for node. Set the next element of the vector as the input after a cycle.

Ro
Run the simulator through n cycles. If n is not present make the run as long as
the longest vector. All watch nodes are reported back as vectors.

N
Clear all previously defined input vectors.

K nodel vectorl node2 vector2 ... nodeN vectorN
Define the clock. Each cycle, nodes 1 through N must run through their
respective vectors,

SEE ALSO
mextra(1}, sim(5)

AUTHOR
Chris Terman
CMOS enhancements by Mike Klein and Joan Pendelton

1985 VLSI Tools Distribution : 4/18/82 4

ESPRESSO(1) Berkeley CAD Tools User’s Manual ESPRESSO(1)

NAME

espresso — Boolean Minimization
SYNOPSIS

espresso [type| [file] [options]
DESCRIPTION

Espresso takes as input a two-level representation of a two-valued (or a multiple-valued) Boolean
function, and produces a minimal equivalent representation. The algorithms used are new and
represent an advance in both speed and optimality of solution in heuristic Boolean minimization.

Espresso reads the file provided (or standard input if no files are specified), performs the
minimization, and writes the minimized result to standard output. Espresso automatically
verifies that the minimized function is equivalent to the original function.

The default input and output file formats are compatible with the Berkeley standard format for
the physical description of a PLA. The input format is described in detail in espresso(5). Note
that the input file is a logical representation of a set of Boolean equations, and hence the input
format differs slightly from that described in pla(5) (which provides for the physical representation
of a PLA). The input and output formats have been expanded to allow for multiple-valued logic
functions, and to allow for the specification of the don’t care set which will be used in the
minimization.

Type specifies the logical format for the function. The allowed types are -f, -r, -fr, -fd, -dr, and
-fdr which have the same meanings assigned in espresso(5).

The command line options described below can be specified anywhere cn the command line and
must be separated by spaces:

-d Verbose detail describing the progress of the minimization is written to standard output.
Useful only for those familiar with the algorithms used.

-do [s] This option executes subprogram [s|. Some of the more useful ones are:
check - checks that the function is a partition of the entire space (i.e., that the ON-set,
OFF-set and DC-set are pairwise disjoint, and that their union is the Universe)
echo - implies "-out fdr” and echoes the function to standard output. This can be used
to compute the complement of a function.
opo - choose a good assignment of output function phases, and minimize the function
qm - generate all prime implicants of a function, compute the "reduced prime implicant
table” and perform a simple greedy covering of this table. Will also provide a bound on
the size of the minimum solution if option -d is used.
stats — provide simple statistics on the size of the function
The remaining subprograms (contain, compact, essen, expand, intersect, irred, lexsort,
mincov, miniexpord, miniredord, pop, primes, reduce, sharp, taut, union, unravel, verify
+ surely others by now) are intended for those heavily into manipulating Boolean
functions.

-fast Stop after the first EXPAND and IRREDUNDANT operations (i.e., do not iterate over
the solution).

-kiss Sets up a kiss-style minimization problem.

-ness Essential primes will not be detected and removed from the minimization.
-nirr The final result will not necessarily be forced irredundant.

-help Provides a quick summary of the available command line options.

-out [s] Selects the output format. By default, only the ON-set (i.e., type f) is output after the
minimization. [s] can be one of f, d, r, fd, dr, fr, or fdr to select any combination of the
ON-set (f), the OFF-set (r) or the DC-set {d).

1985 VLSI Tools Distribution 12/28/84 1

ESPRESSO(1) Berkeley CAD Tools User's Manual ESPRESSO(1)

-pos Swaps the ON-set and OFF-set of the function after reading the function. (This can be
used to minimize the OFF-set of a function.)

-8 Will provide a short summary of the execution of the program including the initial cost
of the function, the final cost, and the computer resources used.

-t Will produce a trace showing the execution of the program. After each main step of the
algorithm, a single line is printed which reports the processor time used, and the current
cost of the function.

-x Suppress printing of the solution.

DIAGNOSTICS
espresso will issue a warning message if a product term spans more than one line. Usually this is
an indication that the number of inputs or outputs of the function is specified incorrectly.

SEE ALSO
pla{5), espresso(5)
Logic Minimization Algorithms for VLSI Synthesis, R. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli, Kluwer Academic Publishers, 1984.

AUTHOR
Richard Rudell

BUGS
Always passes comments from the input file, and passes unrecognized options straight from the
input file to standard output (sometimes this isn't what you want).

There are a lot of options, but the most typical use is the following:

eqntott -r file.eqn | espresso >file.pla
The -R option of eqntott should not be used (it is much too expensive).

1985 VLSI Tools Distribution 12/28/84 2

EXT2SIM(1) Berkeley CAD Tools User’s Manual EXT2SIM(1)

NAME
ext2sim - convert hierarchical .ext extracted-circuit files to flat .sim files

SYNOPSIS
ext2sim | -a alissfile | [—e cthresh | [-1 labelsfile | | —o simfile| | —p path | [—r rthresh | | -A
J[-C]{-L][-R]|[-T tech | root

DESCRIPTION

Ext2sim will convert an extracted circuit from the hierarchical representation (.ext) produced by
Magic to the flat representation (.sim) currently required for simulation. The root of the tree to
be extracted is the file root.ext; it and all the files it references are recursively flattened. The
result is a single, flat representation of the circuit that is written to the file root.sim, a list of node
aliases written to the file root.al, and a list of the locations of all nodenames in CIF format,
suitable for plotting, to the file root.nodes. The file root.sim is suitable for use with programs
such as crystal(1), essm(1), or ssim2spice(1).

The following options are recognized:

—a aliasfile
Instead of leaving node aliases in the file root.al, leave it in aliasfile.

—c cap Set the capacitance threshold to cap femtofarads. Only capacitances greater than or
equal to cap will appear in the .sim file as C lines. This includes both capacitance to
substrate (GND) and internodal capacitances. The default value for cap is 100
femtofarads.

-1 labelfile

Instead of leaving a CIF file with the locations of all node names in the file root.nodes,
, leave it in labelfile.

—o outfile
Instead of leaving output in the file root.slm, leave it in outfile.

—-p path
Normally, the path to search for .ext files is determined by looking for path commands
in first ~cad/lib/magic/sys/.magic, then ~/.magic, then .magic in the current directory.
If —p is specified, the colon-separated list of directories specified by path is used instead.
Each of these directories is searched in turn for the .ext files in a design.

—r res Set the resistance threshold to res ohms. Only nodes with resistances greater than or
equal to res will appear in the .slm file as R lines. The default value for res is 10 ohms.

-A Don't produce the aliases file.

-C Don’t output capacitances (no C lines will appear in the .sim file). Because this avoids
any internodal capacitance processing, ezt23im will run faster when this flag is given.

-L Don’t produce the label file.

-R Don’t output resistances (no R lines will appear in the .sim file). This is required if the
.slm file is to be read by programs that don’t understand about explicit resistances in
.sim files.

-T tech

Set the technology in the output .sim file to tech. This overrides any technology
specified in the root .ext file.

SCALING AND UNITS
If all of the .ext files in the tree read by ert2sim have the same geometrical scale (specified in the

1985 VLSI Tools Distribution 1

EXT25IM(1) Berkeley CAD Tools User's Manual EXT25IM (1)

scale line in each .ext file), this scale is reflected through to the output, resulting in substantially
smaller .slm files. Otherwise, the geometrical unit in the output .sim file is a centimicron.

Resistance and capacitance are always output in ohms and picofarads, respectively.

SEE ALSO :
magic (1}, ext(5}, sim(5)

AUTHOR
Walter Scott

1985 VLSI Tools Distribution 2

FSLEEPER(1) Berkeley CAD Tools User’s Manual FSLEEPER(1)

NAME

Fsleeper ~ run sleeper remotely
SYNOPSIS

tsleeper | —t tty | | -1 user | | remotemachine |
DESCRIPTION

Fsleeper is used if you wish to run a program such as magic(l) on a different machine
(remotemachine) than the one to which a graphics terminal is attached, and the local graphics
terminal has no login process.

Normally, fsjeeper will start a remote sleeper on the companion graphics terminal for your
terminal. This graphics terminal is found by looking in the file ~cad /lib/displays, as described in
displays(5). If a different graphics terminal is desired, it may be specified by the -t flag. Note
that this is the terminal on the local machine, not the remote machine. (The remote terminal will
be printed by sieeper(1) when it starts up on the remote machine).

Also, normally fsleeper will attempt to log in as the user sleeper on the remote machine. If 2
different user name is desired, it may be specified with the -1 flag. This user name must exist on
remotemachine.

FILES
~cad/lib/displays

SEE ALSO
magic(1), rsleeper(1), sleeper(1), displays(5)

AUTHOR
Walter Scott

BUGS
If no remotemachine is specified, it defaults to ucbkim. This is fine for Berkeley, but useless

elsewhere.

1985 VLSI Tools Distribution 1

GRSUNPROG(1} Berkeley CAD Tools User's Manual GRSUNPROG(1}

NAME .
grSunProg - internal process for Magic’s Sun display driver
SYNOPSIS
grSunProg colorWindowName teztWindowName notifyPID
DESCRIPTION
GrSunProg is an internal program used by Magic when using the Sun workstation’s display. This
manual page is intended only for Magic maintainers.
GrSunProg collects button pushes from the color window and sends them over a pipe to Magic.
The program also responds to requests from Magic for the mouse position. In addition, this
program tells Suntools to forward characters typed in the color window directly to Magic’s text
window.
ARGUMENTS
All three arguments are required:
colorWindowName
This is the name of the color window that magic is running under (such as
/dev/win3). Magic normally opens up the color monitor with a single, large,
window on it.
tertWindowName
This is the name of the text window that contains Magic's commmand log.
Keyboard events are forwarded to this window.
notifyPID
If this processlD is not 0, then SIGIO signals are sent to this process when there is
data for it.
INTERFACE
Button pushes are sent out over file descriptor 2 (stderr). A button push is encoded as two
characters followed by two integers giving the location of the button push. The first character is
either 'L’, 'M’, or 'R’ depending on the button pushed: Left, Middle, or Right. The next character
. is either 'D’ or 'U’ depending on the action: Up or Down. The two numbers are the X and Y
coordinates of the buiton push. This string is followed by a newline. Example: LD 123 342
means that the left button was pushed down at location (123, 342).
GrSunProg sometimes receives a character from Magic over file descriptor 0 (stdin). If this
character is an EOF, then the program terminates. If this character is an ’'A’, then grSunProg
responds with a 'P’ and the current mouse coordinates over file descriptor 1 (stdout). This string is
followed by a newline. Example: P 101 23 means that the mouse is currently at location (101,
23).
SEE ALSO
magic(1)
AUTHOR

Robert N. Mayo

1985 VLSI Tools Distribution 1

MAGIC(1)

NAME

Berkeley CAD Tools User’s Manual MAGIC(1)

magic — VLSI layout editor

SYNOPSIS

maglc | -g graphics_port | | -4 device_type | [-m monitor_type | [-1 tablet_port | [-T
technology | [-F object_file save_file | [file]

DESCRIPTION
Magic is an interactive editor for VLSI layouts. It uses two displays: one for text (usually black-
and-white) and the other for displaying layouts in color. A mouse is used to point to things on
the color display. Run Magic from the text terminal. Normally, Magic gets information about
the color display from ~cad/lib/displays. However, the following command line switches can be
used when running Magic from a patchboard port:

—8

-d

The next argument is the name of the port to use for communication with the graphics
display. This is usually of the form /dev/ttyzz.

The next argument is the type of graphics terminal being used. Magic currently works
with these types:

UCB512
An AED512 with the Berkeley microcode roms, with attached bitpad
(SummaGraphics Bitpad-One).

AED1024
An AED1024 with a SummaGraphics Mouse and rev. D roms. Because of a lack
of features in this device, programable cursors do not work. Many thanks to
Peng Ang and LSI Logic Corp for porting Magic to this device.

NULL A null device for running Magic without using a graphics display.

SUN120
A Sun Microsystems workstation, model Sun2/120 with the SunColor option
(/dev/cgone0) and the Sun optical mouse. Also works on some old Sunls with
the ’Sun2 brain transplant’. You must be running Suntools on the black and
white display.

On VAXes, UCB512 is the default . On Sun workstations, SUN120 is the default type.
Types listed in ~cad/lib/displays override the default type.

The next argument is the type of color monitor being used, and is used to select the right
color map for the monitor’s phosphors. ‘‘Std” works well for most monitors, some sites
(not Berkeley) have a type “pale”” for monitors with especially pale blue phosphor.

The next argument is the name of the port to use for input from the tablet. This defaults
to whatever port is being used for the graphics output, and thus only needs to be specified
under unusual circumstances.

In addition, Magic accepts the following command line switches:

-T

~F

The next argument is the name of a technology. The tile types, display information, and
design rules for this technology are read by Magic from a technology file when it starts
up. The technology defaults to “‘nmos” if not specified.

The next two arguments are two filenames. The first, object_file, is the name of the file
that was executed to run this version of Magic. The second, save_file, is the name of a
new file. After performing all initializations (reading in the technology file, loading the
style information and colormap, etc), an executable image of Magic is stored in save_file.
This executable image may then be run as a normal Magic, except that it starts up much

. more quickly. The symbol table from object_file is copied to save_file so the new version

1985 VLSI Tools Distribution 1

MAGIC (1) Berkeley CAD Tools User’s Manual MAGIC(1})

can be debugged. The ~F feature only wotrks on VAXes right now.

When Magic starts up it looks for a command file in ~cad/flib/magic/sys/.magic and processes it
if it exists. Then Magic looks for a file with the name “.magic” in the home directory and
processes it if it exists. Finally, Magic looks for a .magic file in the current directory and reads it
as a command file if it exists. The .magic file format is described under the source command.

COMMANDS -~ GENERAL INFORMATION
Magics uses three sorts of commands. Pressing a mouse button is one sort of command. You can
also enter commands by typing a : character followed by the text of the command. Multiple
commands may be specified on one line by separating them with a semicolon. “Macros” are
single-letter abbreviations for commands; macros are invoked by pressing keys without typeing a
: first. The next sections describe the Magic commands.

Many commands deal with the window underneath the cursor, so if a command is not doing what
you would expect make sure that you are pointing to the correct place on the screen. There are
several different kinds of windows in Magic (layout, color, and netlist); each window has a different
command set.

MOUSE BUTTONS FOR LAYOUT :
On four-butten cursors, the top button is not used by Magic. The remaining three cause the
following actions if pressed in the interior of a window that contains VLSI layout:

left This button is used to move the box by one of its corners. Normally, the lower.left
corner is used for this button. To use a different corner, click the right button while the
left button is down. This switches the corner to the one nearest the cursor. When the
button is released, the box is moved to position the corner at the cursor location.

right Change the size of the box by moving one corner. Normally, the upper-right corner is
used for this button. To use a different corner, click the left button while the right button
is down. This switches the corner to the one nearest the cursor. When you release the
button, three corners of the box move in order to place the selected corner at the cursor
location (the corner opposite the ore you picked up remains fixed).

middle (bottom)
Used to paint or erase. If the crosshair is over paint, then the area of the box is painted
with the layer(s) underneath the crosshair. If the crosshair is over white space, then the
area of the box is erased.

LONG COMMANDS FOR LAYOUT
These commands work if you are pointing to the interior of a layout window. Commands are
invoked by typing a colon (*:”), followed by a line containing a command name and zero or more
parameters. In addition, macros may be used to invoke commands with single keystrokes. See
the macro section below for a list of default macros. Unique abbreviations are acceptable for all

keywords in commands. The commands are:

Array rsize yaize
Make the current cell into an array with zsize instances in the x-direction and ysize
instances in the y-direction. The array is numbered from 0 to zsize-1 in the x-direction,
and from O to ysize-1 in the y-direction. The spacing between elements is determined by
the box x- and y-dimensions.

array zlo ylo thi yhi _
Make the current cell into an array, numbered left-to-right from zlo to zhs and bottom-
to-top from ylo to yhi. The spacing between array elements is determined by the box x-

1985 VLSI Tools Distribution 2

MAGIC(1) Berkeley CAD Tools User’'s Manual MAGIC(1)

and y-dimensions.

box [args|
Used to change the size of the box or to find out its size. There are several sorts of
arguments that may be given to this command:

(No arguments.)
Show the box size and its location in the edit cell or root cell of its window, if the

edit cell isn’t in that window.

direction [distance]
Move the box distance units in direction, which may be one of left, right, up,
or down. Distance defaults to the width of the box if direction is right or left,
and to the height of the box if direction is up or down.

width [size]

height [siz¢]
Set the box to the width or height indicated. If size is not specified the the width
or height is reported.

zlyl z2y2
Move the box to the coordinates specified (these are in edit cell coordinates if the
edit cell is in the window under the cursor; otherwise these are in the root
coordinates of the window). z1 and yI are the coordinates of the lower left corner
of the box, while z2 and y2 are the upper right corner.

channels
This command will run just the channel decomposition part of the router, deriving
channels for the area under the box. The channels will be displayed as outlined feedback
areas over the edit cell.

cif [option| [args
This command is used to read and write files in Caltech Intermediate Form (CIF). If no
arguments are given, it generates a CIF file for the root cell in the window beneath the
cursor in file.clf, where file is the name of the root cell. The CIF file describes the entire
cell hierarchy in the window. Option and args may be used to invoke one of several
additional CIF operations:

cif help
Print a short synopsis of all of the cif command options.

cif istyle [style]
Select the style to be used for CIF input. If no style argument is provided, then
Magic prints the names of all CIF input styles defined in the technology file and
identifies the current style. If style is provided, it is made the current style.

cif ostyle [style]
Select the style to be used for CIF output. If no style argument is provided, then
Magic prints the names of all CIF output styles defined in the technology file and
identifies the current style. If style is provided, it is made the current style.

cif read file
The file file.clf is read in CIF format and converted to a collection of Magic cells.
The current input style determines how the CIF layers are converted to Magic
tiles. The new cells are marked for design-rule checking.

cif see layer
In this command layer must be the CIF name for a layer in the current output
style. Magic will display on the screen all the CIF for that layer that falls under

1985 VLSI Tools Distribution . 3

MAGIC (1) Berkeley CAD Tools User's Manual MAGIC(1)

the box, using stippled f{eedback areas. It’s a bad idea to look at CIF over a large
area, since this command requires the area under the box to be fattened.

clf statistics
Prints out statistics gathered by the CIF generator as it operates. This is
probably not useful to anyone except system maintainers.

cif write fileName
Writes out CIF just as if no arguments had been entered, except that the CIF is
written into fileName.clf instead of using the root cell name for the file name.
The current ouptut style controls how CIF layers are generated from Magic tiles.

clockwise {degrees [yb]] '
Rotate the current cell by the largest multiple of 90 degrees less than or equal to degrees.

Degrees defaults to 90. If a single-character, lower-case yank bufler name yb is specified,
this yank buffer is rotated instead of the current cell.

copycell
Make a copy of the current cell, and position it so that its lower-left corner coincides with
the lower-left corner of the box. If the current cell is an array, the whole array is copied.

deletecell
Delete the current cell. This only removes the current cell, other uses of this cell remain
intact, as does the disk file containing the cell. If the current cell is an element of an
array, the whole array is deleted.

dre optlon {arge]
This command is used to interact with the design rule checker. Option and args are used
to specify a specific dre option and its arguments (if needed):

dre catchup
Let the checker process all the areas that need rechecking. This command wiil
not return until the design-rule checking is completed (unless break is typed).
The checker will run even if the background checker has been disabled with dre
off.

dre check
Completely recheck the area under the box, in all cells that intersect the box.
This command is not normally necessary, since Magic automatically remembers
which areas need to be rechecked. It should only be needed if the design rules are
changed.

drc count
Find all the cells (expanded or unexpanded) that intersect the area of the box.
For each cell, count the number of error tiles, and print out the counts for all
cells with any error tiles.

dre find [nth]
Place the box over the nth error area in the current cell, and print out
information about the error (just as if dre why had been typed). If nth isn’t
given {or is less than 1), the command will move to the next error area.
Successive invocations of dre find will cycle through all the error tiles in the
current cell. Note: this command only considers errors in the current cell.

dre help
Print a short synopsis of all the dre¢ command options.
dre off Tura off the background checker. From now on, Magic will not recheck design

rales immediately after each cormmand (but it will record the areas that need to
be rechecked; the commands dre on and dre check can be used to run the

MAGIC(1)

edit

Berkeley CAD Tools User’s Manual MAGIC(1)

checker).

drc on Turn on the background checker. From now onm, after every command, Magic
will reverify design rules in any areas modified by the command.

dre printrules |[file]
Print out the compiled rule set in file, or on the text terminal if file isn’t given.
For system maintenance only.

dre statistics
Print out statistics kept by the design-rule checker. For each statistic, two values
are printed: the count since the last time dre statistics was invoked, and the
total count in this editing session. This command is intended primarily for
system maintenance purposes.

dre why
Recheck the area underneath the box and print out the reason for each violation
found. Since this command causes a recheck, the box should normally be placed
around a small area (such as an error area).

Make the current cell the edit cell, and edit it in context. The edit cell is normally
displayed in brighter colors than other cells (see the see command to change this).

erase [layers|

For the area enclosed by the box, erase all paint in layers. If layers is omitted it defaults
to *,labels. See the layer table below for layer names.

expand [all]

If the keyword all is supplied, all of the cells underneath the box are expanded recursively
until there is nothing but paint under the box. If all isn't specified, then only the current
cell is expanded, without regard to the box location.

extract option [args

This command is used to extract a layout, producing one or more hierarchical .ext files
that describe the electrical circuit implemented by the layout. The extract command,
when given with no option or args, causes the timestamps in the root cell in the window
beneath the crosshair, and in all cells beneath it, to be compared with the timestamps in
their corresponding .ext files. (A cell’s .ext file is stored in the same directory as its
.mag file). If a cell has been modified since it was extracted, it and all its parents are
marked for re-extraction. If a cell has no .ext file, it also is marked for re-extraction.
Magic will display any errors encountered during circuit extraction using stippled
feedback areas over the area of the error, along with a message describing the type of
error. Option and args are used in the following ways:

extract all
The root cell in the window beneath the cursor, and all the cells beneath it are
extracted regardless of whether they have changed since last being extracted.

extract cell name
Extract only the currently selected cell, placing the output in the file name.

extract help
Prints a short synopsis of all the extract command options.

extract parents
Extract the currently selected cell and all of its parents. All of its parents must
be loaded in order for this to work correctly.

extract showparents
Like sextract parents, but only print the cells that would be extracted; don't

1985 VLSI Tools Distribution 5

MAGIC(1) Berkeley CAD Tools User’s Manual . MAGIC(1)

actually extract them.

extract warnings [on | oﬂ'|
Normally the extractor only reports fatal errors (warnings off). To see any
warning messages produced by the extractor, warnings may be enabled with
warnings on.

feedback option [args]
This command is used to examine feedback information that is created by several of the
Magic commands to report problems or highlight certain things for users. Option and
args are used in the following ways:

feedback add tezt [style]
Used to manually create a feedback area at the location of the box. This is
probably most useful as a way for other programs like Crystal to highlight things
on 3 layout. Such programs can do that by generating a command file consisting
of a feedback clear command, and a sequence of box and feedback add
commaands. Tert is associated with the feedback (it will be printed by feedback
why and feedback find). Style tells how to display the feedback, and is one of
dotted, medium, outline, pale, and solid (if unspecified, style defaults to
pale).

feedback clear
Clears all existing feedback information from the screen.

feedback count
Prints out a count of the current number of feedback areas.

feedback find [nth]
Used to locate a particular feedback area. If nth is specified, the box is moved to
the location of the nth feedback area. If nth isn’t specified, then the hox is
moved to the next sequential feedback area after the last onme located with
feedback flnd. In either event, the explanation asscciated with the feedback
area is printed.

feedback help

Prints a short synopsis of all the feedback command options.

feedback save file
This option will save information about all existing feedback areas in file. The
information is stored as a collection of Magic commands, so that it can be
recovered with the command :sourece file.

feedback why

Prints out the explanations associated with all feedback areas underneath the
box.

fill direction [layers|
Direction is one of up, down, left, or right. The paint visible under one edge of the
box (respectively, the bottom, top, right, or left edge) is sampled. Everywhere that the
edge touches paint, the paint is extended in the given direction to the opposite side of the
box. If layers is specified, then only the given layers are considered; if leyers isn't
specified, then all layers are considered. North, south, east, or west may also be used
as directions.

findbox [toom| ‘
Center the view on the box. If the optional goom argument is present, zoom into the
area specified by the box. This command will complain if the box is not in the window
you are pointing to,

1985 VLSI Tools Distribution 6

MAGIC(1) Berkeley CAD Tools User’s Manual MAGIC(1)

flush [cellname]
Cell cellname is reloaded from disk. All changes made to the cell since it was last saved
are discarded. If cellname is not given, the edit cell is flushed.

getcell cellname
This command adds a child cell instance to the edit cell. The child is taken from
cellname and is positioned at the box location. The child cell cellname must not be the
edit cell or one of its ancestors.

grid [spacing]
If spacing isn't given, a one-unit grid is toggled on or off in the window underneath the
cursor. If spacing is given, the grid is turned on, and grid lines will be spaced spacing
units apart. The spacing will be retained for that window until explicitly changed by
another grid command. When the grid is displayed, a solid box is drawn to show the
origin of the edit cell.

identify instance_id
Set the instance identifier of the selected cell use to instance_id. Instance_id must be
unique among all instance identifiers in the parent of the selected cell. Initially, Magic
guarantees uniqueness of identifiers by giving each cell an initial identifier consisting of
the cell definition name followed by an underscore and a small integer.

label string [pos |[layer|]

A label is positioned at the box location and the text string is displayed with the label (if
string contains spaces, be sure to enclose it in double quotes). Normally the box is
collapsed to either a point or to a line (when labeling terminals on the edges of cells).
Normally also, the area under the box is occupied by a single layer. If the pos and layer
arguments are omitted, then the label is attached to the layer under the box, or space if
no layer covers the entire area of the box. If layer is specified but layer doesn’t cover the
entire area of the box, the label will be moved to another layer or space. Labels attached
to space will be considered by CIF processing programs to be attached to all layers
overlapping the area of the label. Pos is optional, and specifies where the label is to be
displayed relative to the box. If pos isn't given, Magic will pick a position to ensure that
the label text doesn’t stick out past the edge of the cell.

layers Prints out the names of all the layers defined for the current technology.

linformation
Prints out the names, containing cells, and layers for each of the labels that is visible
inside the box.

load [file]
Load the cell hierarchy rooted at file.mag into the window underneath the cursor. If no
file is supplied, a new unnamed cell is created. In either event, the root cell of the
hierarchy is made the edit cell if there isn’t already an edit cell in a different window.

movecell [direction [amount]]
If no arguments are given, the current cell is moved so that its lower left corner is at the
lower-left corner of the box. If direction is given, it must be a Manhattan direction (e.g.
north). The cell is moved in the given direction by the height or width of the box. If
amount is given, then the cell is moved by that number of units rather than the size of
the box.

palnt layers
The area underneath the box is painted in layers.

path [searchpath]
This command tells Magic where to look for cells. Searchpath conmtains a list of

1985 VLSI Tools Distribution 7

MAGIC (1)

Berkeley CAD Tools User's Manual MAGIC(1)

directories separated by colons or spaces {if spaces are used, then searchpath must be
surrounded by quotes). When looking for a cell, Magic will check each directory in the
path in order, until the cell is found. If the cell is not found anywhere in the path, Magic
will look in the system library for it. If the path command is invoked with no arguments,
the current search path is printed.

plow direction [layers]

redraw

This command is not currently available in Magic. This command invokes the plowing
operation to stretch andfor compact a cell. Direction is a Manhattan direction. Layers
is a collection of mask layers, which defaults to ®*. One of the edges of the box is treated
as a plow and dragged to the opposite edge of the box (e.g. the left edge is used as the
plow when plow right is invoked). All edges on layers that lie in the plow’s path are
pushed ahead of it, and they push other edges ahead of them to maintain design rules,
connectivity, and transistor and contact sizes. Subcells are pushed as subcells without
being modified internally.

Redraw the graphics screen.

reset Reset the graphics controller and redraw the graphics screen. You should usually reset

the graphics hardware manually before invoking this command.

save [name]

Save the edit cell on disk. If the edit cell is currently the “(UNNAMED)” cell, name
must be specified; in this case the edit cell is renamed to name as well as being saved in
the file name.mag. Otherwise, name is optional. If specified, the edit cell is saved in the
file name.mag; otherwise, it is saved im the file from which it was originally read.

see options

This command is used to control what is displayed in the window under the carsor. It has
several forms:

see no layers
Do not display the given layers in the window under the cursor. If labels is
given as a layer name, don’t display labels in that window either.

see layers
Reenable the given layers to be displayed.

see no Don't dispiay any mask layers or labels. Only subcell bounding boxes will be
displayed.

see Reenable display of all mask layers and labels.

see allSame
Display all cells the same way. This disables the facility where the edit cell is

displayed in bright colors and non-edit cells are in paler colors. After see
allSame, all mask information will be displayed in bright colors.

see no allSame
Reenable the facility where nop-edit cells are drawn in paler colors.

select [name|

If no name is specified then the cell underneath the cursor is selected as the current cell.
When there are multiple cells under the cursor (and this is usually the case), select selects
the smallest visible one. If select is invoked repeatedly without moving the cursor, it will
step through all the cells under the cursor in order from smallest to largest. If name is
given, select selects the subcell of the current cell whose use identifier is name,

sideways |yb]

1985 VLSI Tools Distribution 8

MAGIC(1) Berkeley CAD Tools User’s Manual MAGIC(1)

Flip the current cell sideways (i.e. about a vertical axis). If the name of a yank buffer, yb,
is specified, that yank buffer is flipped instead of the current cell.

stuff [layers [yb]]
The yank buffer information is copied back at the box location. If layers is specified, it
indicates which layers are to be copied back. If it isn’t specified, all layers are copied
back (*,subcells,labels). If yb is specified, it is a single-letter, lower-case yank buffer
name. If not specified, yb defaults to y.

unexpand [all|
It the all keyword is specified, then unexpand all cells that touch the box but don’t
completely contain it. If all isn't specified, just unexpand the current cell.

upsidedown [yb]
Flip the current cell upside down. If a yank buffer, yb, is specified, it is flipped upside
down instead of the current cell.

writeall
This command steps through all the cells that have been modified in this edit session and

gives you a chance to write them out.

yank [yb]
Save in the yank buffer all information underneath the box. Y is the single-character
name of the yank buffer in which the yanked material is to be placed. It defaults to y.

ysave file [yb]
Save a yank buffer as a cell in file. Yb is a single character that selects a yank buffer to
use; it defaults to y.

MOUSE BUTTONS FOR WINDOWS
When pressed in the border area of a window, the left and right mouse buttons resize the window
instead of resizing the box. The buttons behave in the same way that they do for the box. For
example, the left button moves the whole window by the lower left corner while the right button
moves just the upper right corner. The use of scroll bars and the middle button is explained in
- “Magic Tutorial #4: Multiple Windows”".

COMMANDS FOR ALL WINDOWS
These commands are not used for layout, but are instead used for overall, housekeeping sorts of
functions. They are valid in all windows.

center Adjust the view in the window under the cursor so that the point underneath the cursor is
at the center of the window.

closewindow
The window under the cursor is closed. That area of the screen will now show other
windows or the background.

echo [-n] str1 str2 ... strN :
Prints strl str2 ... strN on the text terminal, separated by spaces and followed by a
newline. If the -n switch is given, no newline is output after the command.

grow Grows a window up to full-screen size. Typing the command again causes the window to
shrink down to its former size and position.

help [pattern]
Displays a synopsis of commands that apply to the window that you are pointing to. If
pattern is given then only command descriptions containing the pattern are printed.
Pattern may contain '*' and '?' characters, which match a string of non-blank characters

1985 VLSI Tools Distribution 9

MAGIC (1) ~ Berkeley CAD Tools User’s Manual MAGIC(1)

or a single non-blank character (respectively).

logecommands [file [update| [times]]
If file is given, all further commands are logged to that file. If no arguments are given,
command logging is terminated. If the keyword update is present, commands are output
to the file to cause the screen to be updated after each command when the command file
is read back in. Hf the keyword times is specified, cominands are outpui to the file that
cause Magic to simulate crudely the pauses between commands.

macro [cher [command])
Command is associated with char such that typing char on the keyboard is equivalent to
typing ‘" followed by commaeand. It command is omitted, the current macro for char is
printed. If char is also omitted, then all current macros are printed. If command
contains spaces, tabs, or semicolons then it must be placed in quotes. The semicolon acts
as a command separator allowing multiple commands to be placed in a single macro.

openwindow

Open a new, empty window at the cursor position. It will be of a standard size, but may
be resized with the cursor buttons.

over Move the window under the cursor so that it appears above all other windows.

pushbutton button action
Simulates a button push. Button should be left, middle, or right. Action is one of up,
down, or abort. This command is normally only invoked from command secripts
produced by the logecommands command.

redo [n]
Redo the last n commands that were undone using undo (see below). The number of
commands to redo defaults to 1 if n is not specified.

scroll direction [amount]
The window under the cursor is moved by amount screenfulls in direction relative to the
circuit. If amount is omitted, it defaults to 0.5.

send type command

Send a given command to the window client named by type. See the entry for
specialopen, below, for the allowable types of windows.

setpoint z y
Fakes the location of the cursor {point) up until the next interactive command. This
command is normally only invoked from command scripts produced by the
logeommands command.

sleep n
Causes Magic to go to sleep for n seconds. This command is normally only invoked from
command scripts produced by the logeommands command.

source filename
The given command file is read, and each line is processed as one command (no colons are
necessary). Any line whose last character is backslash is joined to the following line. The

commands setpoint, pushbutton, echo, sleep, and updatedisplay are useful in
command files, and seldom used elsewhere.

specialopen [z1 y1 z2 y4 type [args]
Open a window of type type. If the optional z1 y! z2 y2 coordinates are given, then the
new window will have its lower left corner at screen coordinates (z1, yI) and its upper
right corner at screen coordinates (z2, y2). The args arguments are interpreted differently
depending upon the type of the window. Currently these types are known:

1985 VLSI Tools Distribution 10

MAGIC(1)

quit

Berkeley CAD Tools User’s Manual MAGIC(1)

layout This type of window is used to edit a VLSI cell. The command takes a single
argument which is used as the name of a cell to be loaded. The command
open filename
is a shorthand for the command
speclalopen layout filename.

color (For system maintainers only.) This sort of window allows the color map to be
edited. Displayed in the window are two sets of colored bars. The first set is
labeled Red, Green, and Blue; these correspond directly to the proportion of red,
green, and blue in the color being edited. The second set of bars is labelled Hue,
Saturation, and Value; these correspond to the same color but in a color space
whose axes are hue (spectral color), saturation (spectral purity), and value
(intensity). The large rectangle at the top of the window shows the color
currently being edited. See the section COMMANDS FOR COLORMAP
EDITING below.

netlist This sort of window presents a menu that can be used to place labels, and to
generate and edit net-lists. See the section COMMANDS FOR NETLIST
EDITING below.

Exit Magic and return to the shell. If any cells, colormaps, or netlists have changed since
they were last saved on disk, you are given a chance to abort the command and continue
in Magic.

underneath

Move the window pointed at so that it lies underneath the rest of the windows.

undo [count]

Undoes the last count commands. Commands that do not modify user-visible data, such
as changing the view, moving the box tool, toggling of the grid, etc, are not considered as -
part of count. If count is unspecified, it defaults to 1. In the current implementation,
only the last ten modifications are recorded for undoing.

updatedisplay

view

Update the display. This command is normally only invoked from command scripts
produced by the logcommands command. Command scripts that do not contain this
command update the screen only at the end of the script.

Choose a view for the window underneath the cursor so that everything in the window is
visible.

zoom [factor]

Zoom the view in the window underneath the cursor by factor. If factor is less than 1,
we zoom in; if it is greater than one, we zoom out.

windscrollbars [on | off]

Set the flag which determines if new windows will have scroll bars.

windowpositions [file]

Write out the positions of the windows in a format suitable for the :source command. If
file is specified, then write it out to that file instead of to the terminal.

MOUSE BUTTONS FOR NETLIST EDITING
When the netlist menu is opened using the command :special netlist, 2 menu appears on the
screen. The colored areas on the menu can be clicked with various mouse buttons to perform
various actions, such as placing labels and editing netlists. For details on how to use the menuy,
see “Magic Tutorial #6: Netlists and Routing’.

1985 VLSI Tools Distribution 11

MAGIC(1) Berkeley CAD Tools User’s Manual MAGIC(1)

COMMANDS FOR NETLIST EDITING
The commands described below work if you are pointing to the interior of the netlist menu. They
may alsc be invoked when you are pointing at another window by using the send netlist
command. Terminal names in ali of the commands below are hierarchical names consisting of
zero or more cell use ids separated by slashes, followed by the label name, e.g.
toplatch/shiftcell_1/in. When processing the terminal paths, the search always staris in the
edit cell. .

add terml term?2 _
Add the terminal named termi to the net containing terminal term2. If term2isn’t in a
net yet, make a new net containing just terml! and term?2:

cleanup
Check the netlist to make sure that for every terminal named in the list there is at least
one label in the design. Also check to make sure that every net contains at least two
distinct terminals, or one terminal with several labels by the same name. When ertors are
found, give the user an opportunity to delete offending terminals and nets. This
command can also be invoked by clicking the “Cleapup’ menu button.

dnet name name ..,
For each name given, delete the net containing that terminal. If no name is given, delete
the currently-selected net, just as happens when the “No Net' menu button were clicked.

dterm name name ...
For each name given, delete that terminal from its net,

extract
Pick a piece of paint in the edit cell that lies under the box. Starting from this, trace out
all the electrically-connected material in the edit cell. Where this material touches
subcells, find any terminals in the subcells and make a new net containing those terminals.
Note: this is a different command from the extract command in layout windows.

Joln term! term2 _
Join together the nets containing terminals term! and term2 The result is a single net
containing all the terminals from both the old nets.

netlist [neme]
Select a netlist to work on. If name is provided, read name.net (if it hasn't already been
read before} and make it the current netlist. I name isn’t provided, use the name of the
edit cell instead.

print [name]|
Print the names of all the terminals in the net containing name. If name isn’t provided,
print the terminals in the current net. This command has the same effect as clicking on
the “Print" menu button.

ripup [netlist] .
This command has two forms. If netlist isn’t typed as an argument, then find a piece of
paint in the edit cell under the box. Trace out all paint in the edit cell that is electrically
connected to the starting piece, and delete all of this paint. If netlist is typed, find all
paint in the edit cell that is electrically connected to any of the terminals in the current
netlist, and delete all of this paint.

savenetlist |file]
Save the current netlist on disk. If file is given, write the netlist in file.net. Otherwise,
write the netlist back to the place from whick it was read.

shownet
Find a piece of paint in any cell underneath the box. Starting from this paint, trace out

1985 VLSI Tools Distribution 19

MAGIC(1) Berkeley CAD Tools User’s Manual MAGIC(1)

all paint in all cells that is electrically connected to the starting piece and highlight this

. paint on the screen. To make the highlights go away, invoke the command with the box
over empty space. This command has the same effect as clicking on the “Show” menu
button.

showterms

Find the labels corresponding to each of the terminals in the current netlist, and generate
a feedback area over eiach. This command has the same effect as clicking on the “Terms”
menu button.

switchtools
This command has the same effect as clicking the terminal tool button in the netlist
menu: it switches the cursor from terminal tool to box tool or vice versa.

trace [name]
This command is similar to shownet except that instead of starting from a piece of paint
under the box, it starts from each of the terminals in the net containing name (or the
current net if no name is given). All connected paint in all cells is highlighted.

verify Compare the current netlist against the wiring in the edit cell to make sure that the nets
are implemented exactly as specified in the netlist. If there are discrepancies, feedback
areas are created to describe them. This command can also be invoked by clicking the
“Verify” menu button.

writeall
Scan through all the netlists that have been read during this editing session. If any have
been modified, ask the user whether or not to write them out.

b MOUSE BUTTONS FOR COLORMAP EDITING

The value of a color is changed by pointing somewhere inside the region spanned by one of the
color bars and clicking any mouse button. The color bar will change so that it extends to the
point selected by the crosshair when the button was pressed. The color can also be changed by
clicking a button over one of the “pumps” next to a color bar. A left click makes a 1% increment
or decrement, and a right click makes a 5% change. The color being edited can be changed by
pressing the left button over the current color box in the editing window, then moving the mouse
and releasing the button over a point on the screen that contains the color to be edited. A color
value can be copied from an existing color to the current color by pressing the right mouse button
over the current color box, then releasing the button when the cursor is over the color whose
value is to be copied into the current color.

COMMANDS FOR COLORMAP EDITING
These commands work if you are pointing to the interior of a colormap window. The commands
are:

color [number]
Load number as the color being edited in the window. Number must be an octal number
between 0 and 377; it corresponds to the entry in the color map that is to be edited. If no
number is given, this command prints out the value of the color currently being edited.

load [file]
Load a new color map. If file is specified, the color map is loaded from file.monitor_type,
where monitor_type is the type of monitor currently being used (usually “std”). If file is
not specified, it defaults to the name of the current technology.

save [file]
Save the current color map. If file is specified, the color map is saved in

1985 VLSI Tools Distribution 13

MAGIC(1)

Berkeley CAD Tools User's Manual MAGIC(1)

file.monitor_type, where monitor_type is the type of monitor currently being used. If file
is not specified, it defaults to the name of the current technology,

SHORT COMMANDS (MACROS)
The maecro command may be used to associate single keystrokes with particular commands.
When Magic begins execution it sets up several default macros for you (the file
~cad/lib/magic/sys/.magic contains commands to set up these macros). These may be changed
if you wish by using maero commands. The default macros are intended to make Magic look as
much like Caesar as possible:

Noe NN NN g <O E ™ T 0RO QAN P

S

DIRECTIONS

:yank
:unexpand
:expand
:erase $§

sbox up 1
:select

:grid

‘box left 1
:box down 1
stuff

:undo

redo

view

:box right 1
:unexpand all
:expand all
findbox zoom
:zoom 2
findbox
:center

:redraw

Many of the commands take a direction as an argument. The valid direction names are north,
south, east, west, top, bottom, up, down, left, right, northeast, ne, southeast, se,
northwest, nw, southwest, sw, and center. In some cases, only Manhattan directions are
permitted, which means ne and other such directions are disallowed.

LAYERS

The mask layers are different for each technology, and are described in the technology
documentation. The layers below are defined in all technologies:

All mask layers.

1985 VLSI Tools Distribution

14

MAGIC(1) Berkeley CAD Tools User’s Manual MAGIC(1)

$ All layers underneath the cursor.
labels Label layer.

subcell
Subcell layer.

Layer masks may be formed by constructing comma-separated lists

of individual layer names. The individual layer names may be abbreviated, as long as the
abbreviations are unique. For example, to indicate polysilicon and diffusion, use poly,diff
or diff,poly. The special character — causes all subsequent layers to be subtracted from
the layer mask. For example, *~p means “all layers but polysilicon”. The special
character + reverses the effect of a previous —; all subsequent layers are once again added
to the layer mask.

ALSO SEE
magicusage(1), ext2sim(1), sleeper(1), fsleeper(1), rsleeper(1), ext(5), magic(5), displays(5), net(5)
“Magic Tutorial #1: Getting Started”
“Magic Tutorial #2: Painting and Plowing”’
“Magic Tutorial #3: Cell Hierarchies”

etc.
FILES
~cad/lib/magic/sys/.magic startup file to create default macros
~cad/lib/magic/nmos/* some standard nmos cells
~cad/lib/magic/cmos/* some standard cmos cells
~cad/lib/magic/sys/* Magic technology files, colormaps, etc.
~cad/lib/displays configuration file for Magic stations
AUTHORS

Gordon Hamachi, Bob Mayo, John Ousterhout, Walter Scott, George Taylor

BUGS
Let’s just pretend there aren't any. If you discover one please mail a description of it to
magic@uebkim.

1985 VLSI Tools Distribution 15

MAGICUSAGE(1) Berkeley CAD Tools User's Manual MAGICUSAGE(1)

NAME

magicusage — print the names of all cells and files used in a Magic design
SYNOPSIS

magicusage | —T technology | [—-p path | rootcell
DESCRIPTION

Magicusage will print the names of ali cells and files used in the design whose root cell is rootcell.
Each line of the output is of the form

cellname 31 filename

where cellname is the name of the cell as it is used, and filename is the .mag file containing the
cell. If a cell is not found, a line of the form

celiname 111 < < not found > >

is output instead.

If —p path is specified, the search path used to find .mag files will be path. Otherwise, the search
path is initialized by first reading the system-wide .magic file in ~cad/lib/magic/sys, then the
.magic file in the user’s home directory, and finally the .magic file in the current directory. The
most recent path command read from the three files determines the search path used to find celis.

In addition, a library path of ~cad/lib/magic/techname is used when searching for cells. By
default, techname is the technology of the first cell read, but it may be overridden by specifying
an explicit technology with the —T techname flag.

FILES
~cad/lib/magictech
~~cad/lib/magic/sys/.magic
~ [.magie

SEE ALSO
magic (1), magic{5)

AUTHOR
Walter Scott

1985 VLSI Tools Distribution 1

MKCP(1) Berkeley CAD Tools User’s Manual ' MKCP(1)

NAME
Mkcp - Make Crystal parameters

SYNOPSIS
mkep [vlow vinv vhigh]

DESCRIPTION
Mkep is a program that generates the model parameters used by Crystal’s slope model. It reads a
SPICE deck from its standard input, runs SPICE several times using modified versions of that
SPICE deck, extracts Crystal parameter information from the SPICE output, and writes the
parameters to standard output. A single run of Mkep will generate all of the slope parameters for
a single transistor type driving its output either high or low (but not both in the same Mkcp run).

The SPICE input deck describes a simple circuit to test the characteristics of a single transistor
type. See the files in ~cad/lib/mkcp for examples of input decks. Each deck must contain two
particular capacitor cards: one with “c1” in the first columns, and one with “c2" in the first
columns. The “c1” card must describe the capacitance on the gate of the tranmsistor being
modelled. It has the standard format for a SPICE capacitor card, except that there may be any
number of capacitance values, separated by spaces (each of the capacitances must be specified in
pfs). Mkep makes one SPICE run with each of the given values and expects that changing the
capacitance will change the edge speed of the signal on the transistor gate. The first capacitance
value should generate an edge that rises or falls as quickly as possible. The “c2” card describes
the capacitance being driven by the transistor, and is used to compute the effective resistance of
the device. This card is not modified by Mkcp.

The deck must also have a ‘“.print”’ card that generates three columns of output. The first
column must be time, the second column must be the voltage on the gate of the transistor being
modelled, and the third column must be the output being driven by the transistor. There must be
a “.tran” card in the deck that allows enough simulation time for the the output to stabilize when
using the first value of c1. Mkep will modify the ‘“.tran” card before each run after the first one
so that the simulation time will be long enough for signals to settle in that run.

Mkep makes one SPICE run for each cl value that is given. After each run it outputs four
values: the edge speed on the gate of the transistor, the ratio of that edge speed to the edge
speed on the output of the transistor during the first SPICE run, the effective resistance of the
transistor (delay from input to output divided by c2), and the edge speed on the output being
driven by the transistor, divided by c2. If the driving transistor is a minimum-size device, then
the last three of these values are exactly the slope parameters needed by Crystal. If the transistor
isn’t minimum-size, then you must divide each of the last two parameters by the length/width
ratio of the driving transistor.

Three voltages are used by Mkcp to compute edge speeds and resistances. They can be specified
on the command line as viow, vinv, and vhigh. If any of these voltages is given, then all must be
given. The defaults are 2.0 volts for viow, 2.2 volts for vinv, and 2.4 volts for vhigh; these are
about right for the standard MOSIS nMOS process. Vinv is the logic threshold voltage; the delay
from input to output is the time from when the input reaches vinv to when the output reaches
vinv. Viow and vhigh are used to compute edge speeds: the speed of an edge is the time it takes
its voltage to pass from viow to vhigh (or vice versa) divided by the voltage difference between
viow and vhigh.

HINTS FOR USING MKCP
You should choose the ¢2 value and the cl values so that the range of edge speed ratios is about
what you expect to encounter when running Crystal. The fewer data points you use for each
transistor, the faster Crystal will run. However, Crystal uses linear interpolation between points,
80 use enough points to keep the interpolation error low.

1985 VLSI Tools Distribution 1

MKCP (1) Berkeley CAD Tools User’s Manual MKCP{1)

Make sure that you use a relatively large value for ¢2. If you use a small value for ¢2, then the
delay of the circuit will be determined primarily by the internal capacitance of the driving
transistor (which Mkcp ignores). To get accurate results, use a ¢2 value that’s larger than the

" internal capacitance of the circuit, If you're not sure whether you've chosen a good ¢2 value, try
doubling it; if you get a different eflective resistance for the same edge speed ratio, then your
initial ¢2 value was probably too small.

It’s not at all unusual for a resistance value to come out negative. This happens if the vinv value
you're using isn't exactly the logic threshold of the circuit; under some conditions the cutput may
reach viny before the input. This is nothing to worry about: negative values can be entered into
Crystal and will produce correct results,

SEE ALSO
crystal{1)
J. Ousterhout, Using Cryatal for Timing Analysia

FILES
~scad/lib/mkep/*

AUTHOR
John Qusterhout

1985 VLSI Tools Distribution 2

MPANDA (1) Berkeley CAD Tools User’s Manual MPANDA (1)

NAME
mpanda — technology independent PLA generator for multiply-folded PLAs

SYNOPSIS
mpanda [-acpvV] |-s style] [-G num| [-S numR] [l num] |-t template_name| [-M num| [-D

numl num® [-o output_file] input_file

DESCRIPTION
mpanda is a PLA generator that generates multiply-folded, simply-folded, and non-folded PLAs.
MPanda is a program written with the mpack(3) system.

The input format for mpanda is compatible with the .machine output of pleasure(1). Including
the .machine control line in the pleasure input file results in the proper output format for
mpanda.

Input files to mpanda contain control lines and a personality matrix of the PLA to be made.
Each control line must begin with a ‘'’ (dot or period). The following control lines are
understood by mpanda:

.[and | or] num! num2 [nums..]

This line must be in the input file. It describes the structure of the PLA, with the and or
or specifying that the leftmost plane is an AND or OR plane. The AND plane is the
input plane and the OR plane is the output plane. The numbers following the first plane
designator are the numbers of inputs/outputs (depending on which plane is first) in each
successive plane. For instance, the control line: *“ .or 9 8 4 5" means that this PLA has
an OR-AND-OR-AND structure with 9 outputs in the first OR plane, 3 inputs in the next
AND plane, 4 outputs in the next OR plane, and 5 inputs in the last AND plane. Note
that at least two numbers must follow the first plane designator since a PLA must have
at least one AND and OR plane.

.row [number of rows]
This line describes the height of the input personality matrix.

stop [l1 12 18..]

.bottom [l1 12 [3..]

Jdeft 11 12 19..]

.right [I1 12 13 ..]
These control lines list the labels for inputs and outputs along the top, bottom, left, and
right respectively, of the PLA. The label “0” is not allowed. Note that these labels are

not designated as being either inputs or outputs. The AND-OR-AND... structure of the
PLA is determined by the .and|or control line.

.product [l1 12 13..]
This control line lists the labels for product rows within the PLA. These labels are used
for debugging within the PLA and can be automatically numbered if no labels are put in.
The label “0” is not allowed.

.end

This line signals the end of the input file.

1985 VLSI Tools Distribution 2/22/85 1

MPANDA(1) Berkeley CAD Tools User’s Manual MPANDA({1)

The personality matrix format is compatible with pleasure, see PLA(5) for details. The table
below summarizes the symbois mpanda accepts.

Symbols for AND Plane

Contact

Signal -No Contact Explanation
1 - Normal contact, no splits or folds
! - Split below
; , Fold to the right
: Split below and fold to the right

Symbols for OR Plane
Contact to
Qutput Signal | No Contact Explanation
1 ~ Normal contact, no splits or folds
i = Split below
} ? Fold to the right
i ” Split below and fold to the right
Additional Symbols

Symbol Explanation
* Input buffer
+ QOutput buffer
X No buffer
c Contact within AND or OR plane

> < Routing lines to contacts for multiple folds
That is,

An example of an input fle is shown below.

.and 2 4 3 1

.Tow ¥

* X ++X+ X * X +
X1--- m~im] “-el=-- ~X
X-w-- I~~i , 3 1l-1- iX
X_1+- ~|~1 1-_!t-- ~X
X1--1 | sl e ama 1 ~X
X--1- i -==l-- ~X
*c X
X>ec ’ X
X1.1- ~l~I le:ff-- ~X
Xe-ee Immms 1----- 1X
X---1 --1--- IX
* o ++++ * ¥ +
.end

Note that the AND plane is expanded such that each input is represented as two columns, one for
the signal, the other for its complement. Note also, that only one conrtact row can occur between
seuccesive product rows,

- 1985 VLSI Tools Distribution 2/22/85 2

MPANDA (1)

Berkeley CAD Tools User’s Manual MPANDA(1)

STYLES OF PLAs AVAILABLE
As of 2/28/85, there are no templates for mpanda. A Caesar format template for panda is
provided as a starting point for template designers. Here is the description of that template:

CS3 CMOS static version with p-channel pull-ups as resistive loads. 3 micron MOSIS
rules. Micron-based rules, not lambda-based. The pull-ups are placed in the
between the AND and OR planes.

It is easy to create a template for a new style of PLA, and mpanda(5) has information on how to

do it.

OPTIONS
-a

-c
-p
-v

4

-G

-8

produce Magic(1) format (this is the default)

produce CIF format

(pipe mode) Send the output to stdout.

Be verbose, and show {in the magic output) how the PLA was constructed from its basic
components.

Be verbose, and print out information about what mpanda is doing. This option implies
-v.

The next argument specifies the style of PLA to generate. (This causes mpanda to use
the file ~cad/lib/mpanda/pa-style.mag as its template).

Insert an extra ground line every num rows in the AND plane and every num columns in
the OR plane. This defaults to what is appropriate for the static 3 micron CMOS PLA,
approximately every 10 rows. Note that for styles other than CS83, this option should be
used for specifying extra ground lines.

Stretch power and ground lines by num lambda. This defaults to whatever is appropriate
for the corresponding CMOS PLA. Note that for styles other than CS83, this option
should be used for specifying stretching power and ground lines.

Set cif output style, where style is a Magic cif output style. (See mpack(3) for details.)

The next argument specifies the template to use, this normally defaults to the standard
library. This option is useful for generating styles of PLAs that are not included in the
standard library.

-D numl num?2

The Demo or Debug option. This option will cause mpack to place only the first num1
tiles, and the last num2 of those will be outlined with rectangular labels. In addition, if a
tile called bloteh is defined then a copy of it will be placed in the output tile upon each
call to the align function during the placing of the last num2 tiles. The blotch tile will be
centered on the first point passed to align, and usually consists of a small blotch of
brightly colored paint. This has the effect of marking the alignment points of tiles. The
last tile painted into is assumed to be the output tile.

-0 The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed. If the input comes from the standard input
and the -o option is not specified then the output will go to the standard output.

input_file

The file containing the control lines and personality matrix. See PLA(5) for a description
of the personality matrix symbols. If this filename is omitted then the input is taken from
the standard input.

1985 VLSI Tools Distribution 2/22/85 3

MPANDA(1) Berkeley. CAD Tools User's Manual MPANDA.{1})

FILES
~cad/lib/mpanda/pa-*.mag - standard templates for PLAs

SEE ALSO :
eqntott(1), espresso(1), pleasure(1), pla(5}, mpla(5}, mpack(3)

AUTHOR
Grace H. Mah

HISTORY
This program is panda converted from tpack to mpack. Conversion by Bob Mayo.

BUGS
The -G and -S options have no way of knowing what the grounding requirements are for the style
of PLA actually being generated.
This program inherits any bugs that may exist in mpack(3).

This program isn’t very useful until someone designs templates for it!

1985 VLSI Tools Distribution 2f22/85 4

MPLA(1) Berkeley CAD Tools User’s Manual MPLA(1)

NAME

mpla - technology independent PLA generator
SYNOPSIS

mpla [-acv] [-s style] [-o output_file] input_file
DESCRIPTION

mpla is a PLA generator that generates PLAs in several different styles and technologies. The
input format is compatible with eqntott, see PLA(5) for details. Mpla does not handle split and
folded PLAs.

Mpla is a program written with the Mpack system.

STYLES OF PLAs AVAILABLE
The following styles of PLAs are currently supported:

Beis Buried contacts, aMOS, cis version (inputs and outputs on same side of the PLA).
Clocked inputs and outputs are supported. Berkeley design rules.

Btrans
Buried contacts, nMOS, trans version (inputs and outputs on opposite sides of the
PLA). Clocked inputs and outputs are supported. Berkeley design rules.

CD3cls
CMOS cis version, MOSIS 1.25/3.0 micron CMOS process, dynamic PLAs with
two separate precharge lines for the AND and OR planes, no inverting buffers
between planes, cis version. Since the default for extra grounds lines is based on
an nMOS PLA, use “-G 10” for this style. Clocked inputs and outputs are not
supported.

CD3trans

Same as CD3cis except trans version (input and outputs on opposite sides of the
PLA).

CS3cls
CMOS cis version, MOSIS 1.25/3.0 micron CMOS process, static PLA with p-
channel pullups (pullup/pulldown = 1/2). Since the default for extra grounds
lines is based on an nMOS PLA, use “-G 10” for this style. Clocked inputs and
outputs are not supported.

CS3trans
Same as CS3cis except trans version.

It is easy to create a template for a new style of PLA, and mpla(5) has information on how to do

it.
OPTIONS

Y | Clock the inputs to the PLA, if this feature is supported for this style.

-0 Clock the outputs to the PLA, if this feature is supported for this style.

-G Insert an extra ground line every num rows in the AND plane and every num columns in
the OR plane. This defaults to whatever is appropriate for the corresponding nMOS
PLA.

-8 Stretch power and ground lines by num lambda. This defaults to whatever is appropriate
for the corresponding nMOS PLA.

-v Be verbose, and show (in the Magic output) how the PLA was constructed from its basic
components.

-V Be verbose, and print out information about what mpla is doing. This option implies -v.

1985 VLSI Tools Distribution 2/21/85 1

MPLA(1)

Berkeley CAD Tools User’'s Manual MPLA(1}

-a produce Magic format (this is the default)

- produce CIF format (see mpack(3) for details)

-0 The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed. If the input comes from the standard input
and the -0 option is not specified then the output will go to the standard output.

-8 The next argument specifies the style of PLA to generate. (This causes mpla to use the
file ~cad/lib/mpla/p-siyle.mag as its template).

-1 Set the cif output style to style. Style is a cif output style as found in the Magic
technology file.

-t The pext argument specifies the template to use, thizs normally defaults to the standard
library. This option is useful for generating styles of PLAs that are not included in the
standard library.

input_ file
The file containing the truth_table. If this filename is omitted then the input is taken
from the standard input (such as a pipe).

FILES

~cad/lib/mplafp*.mag -- standard templates for FLAs
SEE ALSO

eqntott(1), espresso{l), pla(5), mpla(5), mpack(3)
HISTORY .

This is a port of the program 'tpla’ to the Mpack system.
AUTHOR

Program by Robert N, Mayo.

Robert Mayo and Fred W. Obermeier: Beis, Btrans, templates.

CD3cis, CD3trans, CS3cis, and CS3trans templates by Fred W. Obermeier.

BUGS

The -G and -$ options have no way of knowing what the grounding requirements are for the style
of PLA actually being generated.

This program inherits any bugs that may exist in mpack(3}.

1985 VLSI Tools Distribution 2/21/85 2

MQUILT(1) Berkeley CAD Tools User’s Manual MQUILT(1)

NAME

mquilt — assemble tiles into a rectangular array
SYNOPSIS

mquilt [-acv] |-s standardTemplate] [-t template] [-o output_file] tezt_file
DESCRIPTION

The user of MQuilt first creates a Magic file, called the template, containing a circuit layout over
which single-character rectangular labels have been placed. These labels define blocks of the
circuit called tiles. Using a text editor, the user then creates an array of characters (each line
defines one row in the array). MQuilt reads in the array of characters and produces a layout
where each character is replaced by the tile of the same name. Spaces and blank lines in the text
file are ignored.

For example, we can produce a 3X3 checkerboard with this input file:

ABA
BAB
ABA

The template file would contain rectangular labels called A and B. The paint and subcells
underneath these labels would be placed in the output file in a checkerboard fashion.

Tiles are normally placed so that they abut with each other in the following fashion: the lower
edges of all tiles in a row are aligned, tiles are packed together horizontally as closely as possible
within a row, and the first tile in a row touches the first tile in the row above it and the first tile
in the row below it.

If we wish tiles to be spaced a certain distance apart, instead of what was described previously, we
can use spacing tiles. Spacing tiles are tiles which indicate, by their size, how far apart two tiles
should be spaced. For horizontal spacing, the single-character name of a spacing tile should be
placed in parentheses between the names of the two tiles on either side of it. The left edges of the
two tiles will be spaced apart by the width of the spacing tile. For example, the form “AB”
places tiles A and B next to each other while “A(C)B” places them apart by a distance
determined by C. If C is of zero width, A and B will be placed on top of each other. If C is the
same width as A, A and B will abut (note that “A(A)B” is the same as “AB”). If the width of C is
less than the width of A the tiles will overlap, and if C has a width greater than A they will be
separated.

Spacing tiles may also be used to control the vertical spacing. A spacing tile at the beginning of a
row (such as “(C)AB”) will cause the bottom of the first tile in this row (in this case tile A) to be
separated from from the bottom of the first tile in the row above by a distance equal to the height
of the spacing tile.

MQuilt is a small program written with the Mpack system.

OPTIONS
-a produce Magic format (this is the default)

-c produce CIF format (see -1 under mpack(1) for details).
-V be verbose (sequentially label the tiles in the output, for debugging purposes)

-0 The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed.

-t _The next argument specifies the template to use.
-8 style Use the template with the name g-style located in ~cad/lib/mquilt.
tezt_file '

1985 VLSI Tools Distribution 2/22/85 1

MQUILT (1) Berkeley CAD Teols User’'s Manual MQUILT {1}

The name of mquilt’s text file. If this filename is omitted then the input is taken from the
standard input (such as a pipe). If the input comes from the standard input and the -o
option is not specified then the output will go to the standard output.

other options
Several other options are inherited from mpack(1).

FILES _
~cad/lib/mquilt/q-* — location of standard templates

SEE ALSO
mpack(1), visifont{1), quilt{1)

HISTORY
This program is a port of quilt set up to generate Magic files instead of Caesar files.

AUTHOR
Robert N. Mayo

BUGS
This program inherits any bugs that may exist in mpack(3).

1985 VLSI Tools Distribution 2/22/85

PEG(1) Berkeley CAD Tools User’s Manual PEG(1)

NAME
peg - finite state machine compiler

SYNOPSIS
peg [-s] [-t] [file]

DESCRIPTION
Peg (PLA Equation Generator) is a finite state machine compiler. It translates a high
level language description of a finite state machine into the logic equations needed to
implement the state machine design. Peg uses the Moore model for finite state machines,
in which outputs are strictly a function of the current state. Input is read from the
named file or from stdin if no file is specified.

A set of equations is generated on standard output. The equations are in the egn format
used by egqntott. Output from peg may be piped directly to PLA generators such as mpla
thus:

peg infile | eqntott | mpla —c —s Beis —I ~O —o outfile

This command generates a PLA implementation of the finite state machine in the file
outfile.cif.

The PLA will have clocked, dynamic latches on all inputs and outputs. From left to
right, the PLA inputs and outputs are the fsm inputs, fsm state inputs, fsm state outputs,
and fsm outputs. The feedback lines connecting the next-state outputs to the curent-
state inputs must be manually added to the resulting circuit.

Peg options have the following meanings.
-t Generate a truth table for the fsm in the file peg.summary.
- Print summary information in the file peg.summary.

PROGRAM STRUCTURE
A peg program is composed of a list of input signal names, a list of output signal names,
and a list of state descriptions, in that order. The input and output lists are optional.

Inputs

An input signal list consists of the keyword INPUTS and a list of fsm input signal
names, terminated with a semicolon. Every input list must have at least one input. If
the fsm has no inputs, this statement is omitted. PLA inputs will have the left-to-right
ordering specified in the INPUTS list.

Outputs
A list of output signal names begins with the keyword OUTPUTS and is terminated
with a semicolon. PLA outputs will have the ordering specified in the OUTPUTS list.

State List
The remainder of a peg program consists of a list of state definitions. A state definition

has the form
[state-name | : [ASSERT signal-list 3| [control ;|

There is at most one ASSERT statement per state definition. Asserted output signals
are set to 1. Signals that are not asserted have value 0.

There is at most one control statement per state definition. Control may be one of

IF [NOT | input THEN state-name [ELSE state-name |
GOTO state-name

1985 VLSI Tools Distribution 2/25/85 1

PEG(1) . Berkeley CAD Tools User’s Maaual PEG(1)

CASE (input-signal-list) selectors ENDCASE [default|

Each case selector specifies the next-state for a particular set of values of the CASE
input signals. Case selectors are lines of the form

{01 1] ?}+=> state-name

Case selectors are applied one at a time from top to bottom until one is found that
applies to the particular set of inputs. Because of this, one must be particularly careful
when using don’t-cares in case selectors,

If no control is specified - by omitting the ELSE clause from an IF, by specifying a
CASE with no default, or by omitting control information entirely — nezt stete defaults
to the next sequential state on the state list. The default next state is undefined for the
last state in the program. Therefore, the nexrt-state must be explicitly specified for this
state. The special state pame LOOP may be used to specify that the next state is the
same as the current state. .

Comments

Comments may appear at any location in a peg program. They begin with a double dash,
‘=", and terminate at the end of the line on which they appear.

Reset Logle

There are two ways of handling fsm initialization. If the keyword RESET appears as
one of the input signals, then the fsm will jump to the first state on the state list when
the signal RESET is asserted high. Alternatively, the user may force a jump to the first
state on the state list by adding logic to the PLA state outputs to pull all of the state
output lines low when a reset is desired.

Example
The following peg program illustrates a variety of features:

--Decode inputs a, b, and ¢ into
=0, 1, 2, 3, or “other”.

INPUTS: RESET Select a b ¢;

OUTPUTS:
Found0 Foundl Found2 Found3 FoundOther;

Start: --This is the reset state
IF NOT Select THEN LOOP;

CASE (a b ¢) —Second state

000 => Zero;
001 => One;
010 => Two;

011 => Three;
ENDCASE==>Other;

Zero: ASSERT Found0; GOTO Start;
One: ASSERT Foundl; GOTO Start;
Two: ASSERT Found2; GOTO Start;

Three: ASSERT Found3; GOTO Start;
Other: ASSERT FoundOther; GOTO Start;

1025 VT QT Tanle Dictrihntinn DY DI-¥1+14 a2

PEG(1) Berkeley CAD Tools User’s Manual PEG(1)

SEE ALSO
mpla(l), eqntott(1)
Gordon Hamachi, Designing Finite State Machines with Peg

FILES

peg.summary: Summary information file
AUTHOR

Gordon Hamachi
BUGS

The parser quits after the first error is found.

The interpretation of ambiguous case statements has been redefined. Existing peg
programs may exhibit new behavior.

1985 VLSI Tools Distribution 2/25/85 ‘ 3

PLEASURE(1} Berkeley CAD Tools User’s Manual PLEASURE(1)

NAME

pleasure — A PLA Folding Program
SYNOPSIS

pleasure [< input] [> output |
DESCRIPTION

Pleasure is a program that performs topological optimization of PLA's using folding technique,
and optimizes the silicon area occupied by the PLA. Two different heuristic algorithms are used
to achieve the best area mirimization.

Pleasure can be run in a batch mode or in an interactive mode. In batch mode, the input file
should begin with the keyword pleasure. In interactive mode, you can invoke pleasure by typing
pleasure without the input and output file option. The following cammands are understood by
pleasure in the interactive mode :

help
This command provides the menu of the commands in the interactive mode.

read
Reads the input file; Pleasure will ask for the input file name.

show best | heul | heu2
Shows the folded/unfolded PLAs on the standard output. The options heul and heu2
are related to the two different heuristic algorithms. The option best will choose the
better result between heuristic scheme 1 and 2.

showpan best | heul | heu?
Shows the folded/unfolded PLA for penda on the standard output. The options are same
as in show,

save
Saves the output file. Pleasure will ask for the filename.

savepan
Saves the output file for panda. Pleasure will ask for the filename.

run
Runs the folding algorithm.

step
Runs one step of the folding algorithm. Folding instruction .option should be set to only
one of heul or heu2.

select
Runs one step of the folding algorithm or user selected row or column folding candidates,
Folding instruction '.option’ should be set to only one of ’heul’ or 'heu?’.

clear

Clears the program before restart.
ays

Returns control to the shell.
quit

Stops the execution.

. {any folding instructions)
Sets the folding instructions in the interactive mode. This instructions are identical to the
ones tc be inserted in the input file under running the program in batch mode. Folding
instructions are as follows:

.cofold [and[=muit]] [or[=mult]|
-rofold [aoa | oao | mult |
.Jlabel inl in2 ... outl out2 ..
ofirst |row | column |

1985 VLSI Tools Distribution 8 October 1984 1

PLEASURE(1) Berkeley CAD Tools User’s Manual PLEASURE(1)

stop |[cl,c2,...cn]

.bottom [cl,¢c2,..,cn]

Jeft [r1,r2,..,m]

.right [r1,r2, .., m]

order left | right

.window row | column | contact [nl,ll,ul,...,nn,ln,un]
.array left | right [c1,¢c2, ¢3, ..., cn]
.group vt | hr [(c1,c2) (c5,c6,¢7,c8) (...)...
.side

.machine

.option prtall | heul | heu2

The above folding instructions are explained in detail in pleasure(5).

reset options
It resets the folding instructions in the interactive mode. Options are all, cofold, rowfold,
window, first, group,

status
Shows the status of the folding instructions already set.

The input file consists of the folding instructions and the PLA symbolic table, which are described
in detail in pleasure(5). Logic minimizer Espresso(l) output file can be fed into pleasure with
additional folding instructions if necessary. Folding instructions begin with a period. Comment
line begins with “#”.

Pleasure reads the input file, performs the folding and shows the folded PLA on the standard
output (if no files are specified). Pleasure can have different output format depending on the
folding instructions the user specifies. The default output format is human readable. The special
output format for panda(1) can be obtained by setting the folding instruction (.machine).

Simply-folded PLAs can be assembled by program plaid(1) provided that the pleasure output file
is processed by program pain(1) first, to convert the symbolic table to the format described in
pla(5). Both simply-folded and multiply-folded PLAs can be assembled by program panda(1).

FILES
/cad/new [pleasure — executable
[cad/src/pleasure/* — source files

SEE ALSO
eqntott(1), espresso(1), espresso(5), panda(l), mpanda(l), plain(1), pla(5), pleasure(5), pop(1),
plaid(1)

DIAGNOSTICS ‘
The input routine gives out warning and/or error messages in case of incompatible or wrong
folding instructions. The self-checking routine compares the folded PLA with the original urfolded
PLA automatically after folding and reports the result.

AUTHOR
Giovanni De Micheli
modifications by Duksoon Kay
For inquiries, contact Duksoon Kay, 321 Cory Hall, University of California, Berkeley, CA 94720.
Arpanet mail address is duksoon@ucbcad.

1985 VLSI Tools Distribution 8 October 1984 . 2

PLEASURE(1) Berkeley CAD Tools User’s Manual PLEASURE(1)

BUGS
In batch mode, the heading will appear in the output file. As a present limitation for the input
PLA, the maximum columns(rows} are 300 and the maximum cares are 10,000.

1985 VLSI Tools Distribution 8 October 1984 3

RSLEEPER(1) Berkeley CAD Tools User’s Manual RSLEEPER(1)

NAME

Rsleeper — run sleeper remotely
SYNOPSIS

rsleeper remotemachine
DESCRIPTION

Rsleeper is used if you wish to run a program such as magic(l) on a different machine
(remotemachine) than the one to which a graphics terminal is attached, and the local graphics
terminal has a login process.

To use it, log in on the graphics terminal and run rsleeper. The tty printed will be on the remote
machine, and can be used as the graphics display device for programs such as magic(1).

For rsleeper to work, there must be an account sleeper on the remote machine. Its login shell
should be the program sleeper(1). Users must be able to rlogin to the sleeper account without
supplying a password.

SEE ALSO
fsleeper (1), magic (1), sleeper(1), displays(5)

1985 VLSI Tools Distribution 1

SIM2SPICE(1) Berkeley CAD Tools User’s Manual SIM2SPICE(1)

NAME

sim2spice — convert from .sim foermat to spice format

SYNOPSIS

sim2spice |4 defs] file.sim

DESCRIPTION

Sim8spice reads a file in .sim format and creates a new file in spice format. The file contains jusi
a list of transistors and capacitors, the user must add the transistor models and simulation
information. The new file is appended with the tag .splce. One other file is created, which is a
list of .alm node names and their corresponding spice node numbers. This file is tagged .names.

Defs is a file of definitions. A definition can be used to set up equivelences between .sim node
names and spice node numbers. The form of this type of definition is:

set sim_name spice_number [tech]

The tech field is optional. In NMOS, a special node, ‘BULK’, is used to represent the substrate
node. For CMOS, two special nodes, 'NMOS’ and 'PMOS’, represent the substrate nodes for the
'n’ and 'p’ tramsistors, repectively. For example, for NMOS the .sim node ‘GND’ corresponds to
spice node 0, ‘'Vdd’ corresponds to spice node 1, and ‘BULK’ corresponds to spice node 2. The
defs file for this set up would look like this:

set GND 0 nmos

set Vdd 2 nmos
get BULK 3 nmos

A definition also allows you to set a correspondence between .sim transistor types and and spice
transistor types. The form of this definition is:

def sim_trans spice_trans [tech]
Again, the tech field is optional. For NMOS these definitions would look as follows:

def e ENMOS nmos
def d DNMOS nmos

Definitions may also be placed in the ‘.cadre’ file, but the definitions in the defs file overrides those
in the ‘.cadrc’ file.

SEE ALSO

ext2sim(1), magic(1), spice(1}, cadre(5), ext(5), sim(5)

AUTHOR

BUGS

Dan Fitzpatrick CMOS fixes by Neil Soiffer

The only pre-defined technologies are nmos, emos-pw, and emos (the same as CmMos-pw}.
Only one definition file is allowed.

1985 VLSI Tools Distribution 11/17/82 1

SLEEPER(1) Berkeley CAD Tools User’s Manual SLEEPER(1)
NAME
Sleeper — acquire a graphics terminal and hang around
SYNOPSIS
sleeper
DESCRIPTION

Certain programs such as magic(1) can require the use of a graphics terminal separate from the
terminal used to run the program. If the graphics terminal has an ordinary login process running
on it, it is necessary to run sleeper to acquire ownership of the terminal, set up its modes
appropriately, and prevent the login process from eating input destined for the CAD tool.

When sleeper is run, it will print a message of the form:

tty is:
[dev/ttyname

Here, /dev/ttyname is the device name of the graphics terminal. This is particularly useful
when sleeper is run over the network, or when using fsleeper(1) or rsleeper(1).

Sleeper may be killed by sending it two QUIT signals within ten seconds of each other. This is
most easily done by typing two quit characters (usually CTRL-\ or CTRL-SHIFT-L) in a row on
the graphics terminal.

For sleeper to work best, there should be an account named sleeper, whose login shell is
~cad/bin/sleeper and with no password. This enables users to log in as the user sleeper, and is
also necessary for the programs fsleeper(1) and rsleeper(1) to work. (Note that you will have to
include the full pathname of ~cad/bin/sleeper in [etc/passwd; the initial ~cad does not get
expanded).

SEE ALSO
fsleeper(1), magic(1), rsleeper(1)

1985 VLSI Tools Distribution 1

SPICE2SUMMARY (1) Berkeley CAD Tools User's Manual SPICE2SUMMARY (1)

NAME .

spiceZsummary - suminarize numerical spice output
SYNOPSIS

spice2summary options namesfile < spice_output

or

spice ... | spice2summary options namesfile
DESCRIPTION '

Spice2summary can quickly provide information on a circuit’s operating speed and power.
Spice2summary reads spice output and determines critical signal information from the tabular
numeric portion. The spice lines for the numeric format must be set up so that the first column
gives the time values, and the second contains the voltage for a reference input node. The rest of
the columns can contain any combination of voltages and currents of interest. (See FORMAT for
suggested spice format.) The analysis for each column of numbers depends on its type: voltage or
current.

For voltage signals, the stable values in response to applied low {Gnd) and high (Vdd) voltages on
the reference input are determined (which indicates its logic relationship to the input signal).
Also, the time over which this signal is stable is indicated. This is the period that the signal stays
within each logic threshold (as set by —vsl and —vsh}.

Signal transitions are measured by the time it takes to pass between the low and high logic
thresholds (as set by —vtl and —vth). Four points are naturally defined by the rising and falling
transients for each waveform. Rise time is determined by the time spent moving from the low to
the high logic thresholds (2 points). Fall time is determined by the time spent moving from the
high logic threshold to the low logic threshold {2 points).

Propagation times from the rising and falling portions of the input reference signal (second
column) to the other nodes are also printed. For generality, propagation times are determined by
another set of logic thresholds as defined by —vpl and ~vph. Which of these points are used to
determine the propagation delay from the input signal and the output signal are controlled by
eight flags.

The total delay can be broken down into three distinct time portions which are defined by the
logic levels: input change time, intersignal propagation delay, and output change time. First is
the rise time (or fail time) of the input reference signal. It is measured from the last time that the
reference signal is within the low logic level to the first time that it is within the high logic level
(high to low for the input fall time). Next, the intersignal propagation delay is taken from last
point where the input has stabilized to the time when the output starts to change. More
precisely, the intersignal propagation time is calculated from the point the input reaches the high
logic level (low for falling edge) to the time that the output begins to leave the appropriate logic
level. The logical relationship of the reference signal to the output signal is determined by
checking the output value at the point when the input signal is about to leave each logic
threshold. Finally, the transition time for the output signal between the other logic level is
defined to be the output change time (i.e. rise time for rising signals and fall time for falling
signals).

Each set of four flags is associated with the input rising or input falling portion of the signal. The
four possible options for the delay time for the rising portion of the input signal are: —ripo, —rlp,
~rpo and -rp. The delay time from the rising input is calculated by totaling the times
associated with each letter given: input change time, intersignal propagation time and output
change time. (Similarly f stands for the falling input signal for similar opticns: —fipo, —flp, -fpo
and —fp). Note that the propagation delay may be a negative number for a slow input and a fast
switching output. The default settings are —rip and -fip. For pessimistic analysis, use the -ripo
and —fipo options since these give the total time the input and output signals are in transition
along with the intersignal propagation delay.

SPICE2SUMMARY (1) Berkeley CAD Tools User’s Manual SPICE2SUMMARY (1)

For current signals, the stable values in response to applied low and high input are determined
(which indicates the DC current draw under both input conditions). By default, the DC current is
calculated by averaging the stable low and high currents. This measure assumes a 50% duty
cycle for the current. The duty cycle can be taken into account by using either the —a or —ab
option. The —a option causes the DC value of the current to be averaged over the first complete
input pulse (reference input’s first low and high portions). Care must be taken to avoid averaging
current spikes at the beginning part of the analysis due to incorrectly specified initial voltage
values. The —ab option specifies the current to be averaged over the first high and second low
portion of the input reference. The user should avoid terminating the analysis too soon. Both DC
averaging methods reject current peaks by using the corresponding stable current values when the
current is outside the corresponding limits. (The output text indicates this difference).

The three remaining measures for current examine the transient (AC) effects. The first two
provide the average current for each transient (rising and falling). The frequency at which the DC
and total current (AC and DC) differ by a percentage (specified by —it option) is reported. This
figure estimates when DC power (and DC current) will no longer approximate the total power
(and total current) for the circuit or circuit portion.

The last lines in the summary list the slowest node (ignoring mon-converging nodes) by name,
slowest transition direction and time. If I(VDD) appears in the table, the total circuit power
dissipation will be printed as well as average power and critical frequency.

Signals that do not reach the user defined limits (such as a node not pulling up to 50% of Vdd
before returning to ground) will be flagged with an error message.

If namesfile is specified (i.e, the .names file output by sim2spice(1)), the textual node names are
substituted for the node numbers. The other arguments modify the analysis method or redefine
signal parameters as defined in the OPTIONS section.

OPTIONS '

Valid optional options and their default settings (v below is any real number, pct is any real
percentage from 0.0 to 100.0, and periods is an integer. The sum of the percentages for each pair
of low and high settings should not exceed 100.0):

Level specifying options:

-vdd v
Set Vdd (power supply - the higher supply value) to v volts. Default is 5.0V.

—gnd v Set Gnd (the lower supply value) to v volts. Default is 0.0V.

-vsl pct
Set the highest voltage considered Gnd (low logic threshold). This point is set as
a percentage pct within Vdd and Gnd from Vdd. This value is used to determine
the stable period for signals. Default value is 10%.

~vsh pct
Set the lowest voltage considered Vdd (high logic threshold). This point is set as
a percentage pct within Vdd and Gnd from Gnd. This value is used to determine
the stable period for signals. Default value is 10%.

-vtl pct .
Set the highest voltage considered Gnd (low logic threshold). This point is set as
a percentage pct within Vdd and Gnd from Vdd. This value is used to determine
the transition time for signals (i.e. rise time and fall time). Default value is 10%.
(Default measures a 10% to 90% rise time or 90% to 10% fall times.)

-vth pct
Set the lowest voltage considered Vdd (high logic threshold). This point is set as
a percentage pct within Vdd and Gnd from Gnd. This value is used to determine

1985 VLSI Tools Distribution 11/5/84 2

SPICE2SUMMARY (1)

Berkeley CAD Tools User’s Manual SPICEZSUMMARY (1)

the transition time for signals (i.e. rise time and fall time). Default value is 10%.
{Default measures a 10% to 909 rise time or 90% to 10% fall times.)

—vpl pet

Set the highest voltage considered Gnd (low switching threshold) for determining
the propagation delay with respect to the reference signal. It is set as a
percentage pet within Vdd and Gnd (from Gnd). Default value is 50%. (Default
measures from 50% point to 50% point. Rise and fall flags options have little

effect for this setting. However, 109 /90% times can be found by setting this to
10%.)

-vph pct

11 pct

Set the lowest voltage considered Vdd (high switching threshold) for determining
the propagation delay with respect to the reference signal. It is set as a
percentage pct within Vdd and Gnd (from Vdd). Default value is 50%. (Default
measures from 50% point to 50% point. Rise and fall flags options have little
effect for this setting. However, 10%/90% times can be found by setting this to
10%.)

Set the range of current acceptable as DC for the lowest (absolute) stable current,
The lowest stable current is lowest of the currents corresponding to the point
where the reference input crosses the stable low logic threshold om a rising
transient or its dual (stable high logic threshold on falling transient). If both
currents are negative, the absolute values (lowest) are used. This point is set as a
percentage pct of the lowest stable current. Default value is 10%.

~lh pect Set the range of current acceptable as DC for the highest (absolute) stable

=it pct

current. The bhighest stable current is highest of the currents corresponding to
the point where the reference input crosses the stable low logic threshold on a
rising transient or its dual (stable high logic threshold on falling transient). If
both currents are negative, the absolute values (highest) are used. This point is
set as a percentage pct of the highest stable current. Default value is 10%.

Used to determine the critical frequency. The critical frequency is the frequency
at which total power (and total current) (AC and DC) is above or below DC
power {and DC cuarrent) by pct percent. Default value is 5%.

Propagation delay flags:

Calculate the propagation delay from the rising input reference signal to all the changing
voltage signals using one of the following options:

-ripo
~rip
~rpo

Include the Input rise time, intersignal propagation delay time and output
change time (rise time or fall time) in the propagation delay.

Include the Input rise time and intersignal propagation delay time in the
propagation delay. Default.

Include the intersignal propagation delay time and output change time {rise time
or fall time) in the propagation delay.

Report the intersignal propagation delay time as the propagation delay.

Calculate the propagation delay for the falling input reference signal to all the changing
voltage signals using one of the following options:

-fipo

~fip

Include the fnput fall time, intersignal propagation delay time and output change
time (rise time or fall time) in the propagation delay.

Include the Input fali time and intersignal propagation delay time in the
propagation delay. Default.

1985 VL.5T Tools Distribution 11/5/84 3

SPICE2SUMMARY (1) Berkeley CAD Tools User’'s Manual SPICE2SUMMARY (1)

—fpo Include the intersignal propagation delay time and output change time (rise time
or fall time) in the propagation delay.

—fp Report the intersignal propagation delay time as the propagation delay.
Current flags:

-8 Flag to average over the stable high and low portions of the current signal
corresponding to the first input low and first input high portions of the input
reference signal. One should make sure that the initial conditions on the voltages
are provided to avoid unrealistic initial transients. (Rather use the —ab option.)
This DC averaging method rejects current peaks by using the corresponding
stable current values when the current is outside the corresponding limits. The
duty cycle is inherently set by the input reference signal. If this option or the
—ab option is not specified, the two discrete stable high and low values for the
current will be averaged. Therefore, the default assumes a 50% duty cycle.

—ab Average over the stable low and high portions of the current signal corresponding
to the first input high and second input low portions of the input reference signal.
One should make sure that the analysis is inappropriately terminated. This DC
averaging method rejects current peaks by using the corresponding stable current
values when the current is outside the corresponding limits. The duty cycle is
inherently set by the input reference signal. If this option or the —ab option is
not specified, the two discrete stable high and low values for the current will be
averaged.

- Misecellaneous:

—8 pertods
Skip past periods of the input reference signal to start the analysis in a stablized
region. Default is 0 which means take the first gnd, Vdd, gnd pulse. Negative
values denote start the search backwards from the end of the spice input.
Nonzero values are used to skip past the initial transients due to incorrect initial
conditions and to skip possible incomplete periods.

-v Request verbose output. Print the critical points found in the reference signal
which indicate which portion of the spice output is used for analysis. (etc.)

FORMAT
Suggested spice input format for meaningful analysis:
... (skipping some lines)
WIDTH out=133

* pulse of: init. value=0v, pulsed value=5v, delay=—10ns
* rise time=0ns, fall time=0ns, pulse width=120ns

vin 7 0 pulse (0 5 10ns Ons Ons 120ns)

.tran ...

.print tran V(7) V(8) ... (VDD) (0,5)

where node 7 is the pulse applied input.

NOTES
Spice2summary automatically determines power levels and propagation times with respect to a
reference signal. These figures give a designer quick indication of circuit performance by
extracting critical information. (Also eliminates much of the tedium of examining volumes of
numbers.) If a given node does not reach a particular level, it is reported by a descriptive

1985 VLSI Tools Distribution 11/5/84 : 4

SPICE2SUMMARY (1) Berkeiey CAD Tools User's Manual SPICE2SUMMARY (1)

message.

This program can also be used to verify the slowest nodes thus providing another check for
erystal{l).

SEE ALSO
crystal (1), sim2spice(1), spice(1)

AUTHOR
Fred W. Cbermeier

1985 VLSI Tools Distribution 11/5/84 5

VLSIFONT(1) Berkeley CAD Tools User’s Manual VLSIFONT (1)

NAME

visifont - create text logos for VLSI chips

SYNOPSIS

visifont [-k key] [-f font] word | mquilt -s visifont

DESCRIPTION

The word on the command line is rasterized into a matrix of characters suitable for input to
mquilt or viewing on a text terminal. word may be surrounded by quotes to allow embedded
spaces. The background characters in the rasterized image will be the same as the first character
of key, while the foreground characters will be the same as the second character of key. Key
defaults to ‘‘em”.

It the output is piped to mquilt, the wuser should use the standard template
~cad/1ib/mquilt/visifont.mag by specifying the -s vlsifont switch, or else supply his own
(see mquilt(1) for how to do this using Magic). The standard template recognizes these
foreground and background characters:

e — a small empty square
P - a small poly square
d — a small diffusion square
m — a small metal square
E,P,D,or M — larger versions of the above
FILES
~cad/lib/mquilt/q-visifont.mag - standard template for quilt
Just/lib/vfont/* — standard place for fonts
SEE ALSO

maquilt(1), magic(1), vfont(5), vfontinfo(1)
The Berkeley Font Catalogue

AUTHOR

BUGS

Robert N. Mayo

If the font does not specify the width of a space character then the width of the letter 'e’ is used
instead.

NOTES

MOSIS will not fabricate chips that contain logos or text over 50 microns high, unless permission
is obtained first. (As of January 1983.)

HISTORY

This program is a modified version of the tool ‘vfontinfo' from Berkeley.

1985 VLSI Tools Distribution - 2/9/83 1

MDF(3) Berkeley CAD Tools User’s Manual MDF(3)

NAME

MDF - an nMOS frame for the integration of custom VLSI into Multibus-based systems

SYNOPSIS

maglc -T nmos ~cad/lib/mdf/MDF
— starts magic with the entire Multibus Design Frame loaded.

magic -T nmos ~cad/lib/mdf/MDFCONNECTIONS
— starts magic with the cell containing the outline of the user circuit cavity.

DESCRIPTION

FILES

The Multibus Design Frame is an nMOS frame for the integration of custom VLSI into
Multibus-based computer systems. The design frame provides a simplified interface to the
backplane of the computer system. A circuit designed within the context of a design frame can be
quickly integrated into a computer system upon fabrication. In many ways, a design frame is
much like a hardware operating system. It can be used to rapidly prototype custom VLSI circuits
and for the evaluation of the design in a real system context.

The Multibus Design Frame consists of elements at the chip and board levels. The nMOS
circuitry within which the user circuit is placed and then sent to fabrication is provided in
magic(5) format. The top-level cell is MDF.mag. It contains all the circuitry of the Multibus
Design Frame. For the convenience of the designer a cell containing a 3 lambda wide outline of
the user circuit cavity is also available (MDFCONNECTIONS.mag). All the connections
points are labeled with the name of the signal. This cell is called by MDF.mag. If a circuit is
designed within MDFCONNECTIONS.mag, CIF for the entire design can be generated by
simply loading MDF.mag.

Designers may also find the need to have inputs and outputs other than those to the frame
interface. Pads are available in PADINUSER.mag and PADOUTUSER.mag. The pads
used by the design frame can also be used by the user, however, these pads invert their inputs and
outputs.

When the fabricated chips are returned they can be placed on the Multibus Design Frame
board and placed in a Multibus card-cage. The file MDFPCB.cif is the CIF used to fabricate the
Multibus Design Frame printed circuit board through the PCBIS service of MOSIS. This file is
provided as an example of what a printed circuit board description looks like, users are not
expected to fabricate their own boards.

~cad/lib/mdf/MDF .mag
— The top level cell of the Multibus Design Frame

~cad/lib/mdf/MDFCONNECTIONS.mag
— Cell containing the outline of the user circuit cavity and labels on
all the connection points.

~cad/lib/mdf/*.mag
— Magic files for all the cells in the Multibus Design Frame

~cad/lib/mdf/MDFPCB.cif :
~ CIF description of the Multibus Design Frame printed circuit board.

1985 VLSI Tools Distribution 2/15/85 1

MDF(3) Berkeley CAD Tools User's Manual MDF(3)

NOTES
Complete documentation, users’ guide, and a detailed specification of the
Multibus Design Frame chip and board level frames
is available by writing:

Gaetano Borriello

Computer Science Division

573 Evans Hall

University of California at Berkeley
Berkeley, California 94720

gaetano%ucbkim@Berkeley ARPA

SEE ALSO
magic (1), magic(5)

AUTHOR
Gaetano Borriello

1985 VLSI Tools Distribution 2/15/85 2

MPACK(3) Berkeley CAD Tools User’s Manual MPACK(3)

NAME
mpack — routines for generating semi-regular modules

DESCRIPTION
Mpack is a library of ‘C’ routines that aid the process of generating semi-regular modules.
Decoder planes, barrel shifters, and PLAs are common examples of semi-regular modules.

Using Magic, an mpack user will draw an example of a finished module and then break it into
tiles. These tiles represent the building blocks for more complicated instances of the module. The
mpack library provides routines to aid in assembling tiles into a finished module.

MAKING AN EXAMPLE MODULE
The first step in using mpack is to create an example instance of the module, called a template.
The basic building blocks of the structure, or tiles, are then chosen. Each tile should be given 2
name by means of a rectangular label which defines its contents. If the tiles in the module do not
abut (e.g. they overlap) it is useful to define another tile whose size indicates how far apart the
tiles should be placed.

Templates should be in Magic format and, by convention, end with a .mag suffix. With some
programs, it is possible to generate the same structure in a different technology or style by
changing just the template. If this is the case, each template should have a filename of the

form basename-style.mag. The style part of the filename interacts with the -s option (see later
part of this manual).

WRITING AN MPACK PROGRAM
An mpack program is the ‘C’ code which assembles tiles into the desired module. Typically this
program reads a file (such as a truth table) and then calls the tile placement routines in the
mpack library.

The mpack program must first include the file ~cad/lib/mpack.h which defines the interface to
the mpack system. Next the TPinitialize procedure is called. This procedure processes
command line arguments, opens an input file as the standard input (stdin), and loads in 2
template.

The program should now read from the standard input and compute where to place the next tile.
Tiles may be aligned with previously placed tiles or placed at absolute coordinates. If a tile is to
overlap an existing tile the program must space over the distance of the overlap before placing the
tile.

When all tiles are placed the program should call the routine TPwrite_tile to create the output
file that was specified on the command line. :

To use the mpack library be sure to include it with your compile or load command (e.g. ce
your_file ~cad/1ib/mpack.lib).

ROUTINES
Initialization and Output Routines

TPinitialise(argc, argv, base_name)
The mpack system is initialized, command line arguments are processed, and a
template is loaded. The file descriptor stdin is attached to the input file specified
on the command line. The template’s filename is formed by taking the
base_name, adding any extension indicated by the -s option, and then adding the
.mag suffix. The -t option allows the user to override base_name from the
command line.

Argc and argv should contain the command line arguments. Argc is a count of
the number of arguments, while argv is an array of pointers to strings. Strings of
length zero are ignored (as is the flag consisting of a single spa.ce),’ in order to

1985 VLSI Tools Distribution 2/20/85 1

MPACK(3)} Berkeley CAD Tools Uset’s Manual MPACK(3)

make it easy for the calling program to intercept its own arguments. Arge and
argv are of the same structure as the two parameters passed to the main
program. A later section of this manual summarizes the command line opticns,

TPload_tiles{ file_name)
The given file_name is read, and each rectangular label fouad in the file becomes
a tile accessible via TPname_to_tile. No extensions are added to file_name.

TILE TPread_tlle{file_name)
A tile is created and file_naeme is read into it. The tile is returned as the value of
the function.

TPwrite_tlle(tile, filename)
The tile tile is written to the file specified by filename, with .ca or .c}f extensions
added. See the description of the -o option for information on what file name is
chosen if filename is the null string. The choice between Magic or CIF format is
chosen with the -a or -e command line options.

Tile creation, deletion, and access

TPdelete_tlle(tilc)
The tile tile is deleted from the database and the space occupied by it is reused,

TILE TPcreate_tile(name)
A new, empty tile is created and given the name name. This name is used by the
routine TPname_to_tlle and in error messages. The type TILE returned is a
unique ID for the tile, not the tile itself. Currently this is implemented by
defining the type TILE to be a pointer to the internal database representation of
the tile.

int TPtile_exists(name)

TRUE (1) is returned if a tile with the given name exists {such as in the template
or from a call to TPcreate_tile).

TILE TPname_to_tile{name)
A value of type TILE is returned. This value is a unique ID for the tile that has
the name ngme. This name comes from a call to TPcreate_tile{), or from the
rectangular label that defined it in a template that was read in by TPread_tiles()
or TPinitialize(). If the tile does not exist then a value of NULL is returned and
an error message is printed.

RECTANGLE TPsize_of_tlle{tile)
A rectangle is returned that is the same size as the tile tile. The rectangle’s lower

left corner is located at the coordinate (0, 0). All coordinates in mpack are
specified in half-lambda.

Painting and Placement Routines

RECTANGLE TPpaint_tile(from_tile, to_tile, li_corner) ‘
The tile from_tile is painted into the tile to_fsle such that its lower left corner is
placed at the point [_corner in the tile fo_tile . The location of the newly
painted area in the output tile is returned as a value of type RECTANGLE. The

MPACK(3) Berkeley CAD Tools User’s Manual MPACK(3)

tile to_tile is often an empty tile made by TPcreate_tile(). The point li_corner
is almost never provided directly, it is usually generated by routines such as

align().

TPdisp_tile(from_tile, ll_corner)
A rectangle the size of from_tile with the lower left corner located at ll_corner is
returned. Note that this routine behaves exactly like the routine TPpaint_tile
except that no output tile is modified. This routine, in conjunction with the
align routine, is useful for controlling the overlap of tiles.

RECTANGLE TPpalnt_cell(from_tile, to_tile, ll_corner)
This routine behaves like TPpaint_tile() except that the from_tile is placed as
a subcell rather than painted into place. The tile from_tile must exist in the file
system (i.e. it must have been read in from disk or have been written out to disk).

Label Manipulation Routines

TPplace_label(tile, rect, label_name)
A label named label_name is place in the tile tile. The size and location of the
label is the given by the RECTANGLE rect.

int TPfind_label(tile, Srect1, str, Brect?)
The tile tile is searched for a label of name str. The location of the first such
label found is returned in the rectangle rect2. The function returns 1 if such a
label was found, and O otherwise. The rectangle pointer &recti, if non-NULL,
restricts the search to an area of the tile.

TPstrip_labels(tile, ch)
All 1abels in the tile tile that begin with the character ch are deleted.

TPstretch_tlle(tile, str, num)
The string str is the name of one or more labels within the tile tile. Each of
these labels must be of zero width or zerc height, i.e. they must be lines. Each of
these lines define a line across which the tile will be stretched. The amount of the
stretch is specified by num in units of half-lambda. Stretching such a line turns
it into a rectangle. Note that if the tile contains 2 lines that are co-linear, the
stretching of one of them will turn both into rectangles.

Point-Valued Routines

POINT tLL(tile)

POINT tLR(tile)

POINT tUL(tile)

POINT tUR(tile)
The location of the specified corner of tile tile, relative to the tile’s lower left
corner, is returned as a point. LL stands for lower-left, LR for lower-right, UL for
upper-left, and UR for upper-right. Note that tLL() returns (0, 0).

POINT rLL(rect)
POINT rLR(rect)
POINT rUL(rect)
POINT rUR(rect)

1985 VLSI Tools Distribution 2/20/85 3

MPACK(3) Berkeley CAD Tools User's Manual MPACK(3)

The location of the specified corner of the rectangle rect is returned as a point. LL
stands for lower-left, LR for lower-right, UL for upper-left, and UR for upper-
right.

POINT align(p1, p2)
A point is computed such that when added to the point p2 gives the point pI. pi
is normally a corner of a rectangle within a tile and p2 is normally a corner of a
tile. In this case the point computed can be treated as the location for the
placement of the tile.

For example, TPpaint_tile(outtile, fromtile, align(rUL(rect}, tLL{fromtile})) will
paint the tile fromtile into outtile such that the lower left corner of fromtile is
aligned with the upper-left corner of rect. In this example rect would probably be
something returned from a previous TPpaint_tile() call.

FPoint and Rectangle Addition Routines

POINT TPadd_pp(p!, p2)

POINT TPsub_pp(p1, p%)
The points pI and p2 are added or subtracted, and the result is returned as a
point. In the subtract case p2 is subtracted from p1.

RECTANGLE TPadd_rp(ri, p1)

RECTANGLE TPsub_rp(ri, pi)
The rectangle r! has the point pI added or subtracted from it. This has the effect
of displacing the rectangle in the X and/or Y dimensions.

Miscellaneous Functions

int TPget_lambda()
This function returns the current value of lambda in centi-microns.

INTERFACE DATA STRUCTURES

In those cases where tiles must be p!acéd using absolute, (half-lambda) coordinates, it is useful to
know that RECTANGLEs and POINTS are defined as:

typedef struet {
int x_left, x_right, y_top, y_bot;
} RECTANGLE;

typedef struct {
int x, y;
} POINT;

The variable ORIGIN_ POINTER is predefined to be (0, 0}, ORIGIN_RECT is defined to be
a zero-sized rectangle located at the origin.

OPTIONS ACCEPTED BY TPinltlalise()
Typical command line: program_name |-t template] |-s style] [-o output_file] input_file

-a produce Magic format (this is the default)

-c produce CIF format

1985 VLSI Tools Distribution 2/20/85 4

MPACK(3) Berkeley CAD Tools User’s Manual MPACK(3)

-y be verbose (sequentially label the tiles in the output for debugging purposes; also print out
information about the number of rectangles processed by mpack)

-8 style generate output using the template for this style (see TPinitialize for details)

-0 The next argument is taken to be the base name of the output file. The default is the
input file name with any extensions removed. If there is not input file specified and no -o
option specified, the output will go to stdout.

-p (pipe mode) Send the output to stdout.

-t The next argument specifies the template base name to use. This overrides the default
supplied by the program. (see TPinitialize)

-1 name
Set the cif output style to name. name is the name of a cif output style as defined in
Magic’s technology file. If this option is not specified then the first output style in the
technology file is used. (Note: In the old tpack system this option set the size of
lambda.)

input_file
The name of the file that the program should read from (such as a truth table file). If
this filename is omitted then the input is taken from the standard input (such as a pipe).

M num
This option is accepted by mpack, but ignored. It is a leftover from the tpack system.

-D numl num?2

The Demo or Debug option. This option will cause mpack to place only the first numi
tiles, and the last num2 of those will be outlined with rectangular labels. In addition, if a
tile called "blotch” is defined then a copy of it will be placed in the output tile upon each
call to the align function during the placing of the last num2 tiles. The blotch tile will be
centered on the first point passed to align, and usually conmsists of a small blotch of
brightly colored paint. This has the effect of marking the alignment points of tiles. The
last tile painted into is assumed to be the output tile.

EXAMPLE
It is highly recommended that the example in ~cad/src/mquilt be examined. Look at both the
template and the ‘C’ code. A more complex example is in ~cad/sre/mpla.

FILES
~cad/lib/mpack.h (definition of the mpack interface)
~cad/lib/mpack.lib (linkable mpack library)
~cad/sre/mquilt/* (an example of an mpack program)
~cad/lib/magic/sys/* tech* (technology description files)
ALSO SEE

magic(CAD), mquilt{CAD), mpla(CAD)

Robert N. Mayo Pictures with Parentheses: Combining Graphics and Procedures in a VLSI
Layout Tool, Proceedings of the 20th Design Automation Conference, June, 1983.

*C’ Manual

HISTORY
This is a port of the tpack(1) system which generated Caesar files.

AUTHOR
Robert N. Mayo

BUGS
When a tile contains part of a subcell, or touches a subcell, then the whole subcell is considered to
be part of the tile. The same goes for arrays of subcells.

1985 VLSI Tools Distribution 2/20/85 5

.CADRC(5) Berkeley CAD Tools User’s Manual .CADRC(5)

NAME
.cadrc - Initialization file

DESCRIPTION
The .cadre file is an ASCII text file which is used to initialize several CAD programs. Each user
may place a .cadre file in his home directory. Several CAD programs read this file as part of
their initialization routine to set up various default settings. In addtion to the .cadre file in the
user’s home directory there is a .cadre file in ~cad. This file is read before the one in the user’s
directory and is used to tell the program where it can find various files and library programs.
This allows program binaries to be transported between systems without recompiling.

The .cadre file contains several lines, each line is a seperate command. The first word on the line
is called the keyword. The keyword tells the program how to interpret the line. When a program
reads a keyword it doesn’t understand it ignores the line. The case of the keyword is ignored.
This allows several program to share .cadre files. What follows is a list of .cadrec command
lines.

AreaToCap layer value
This command is read by the cifplot circuit extractor and mextra. It is used to set up the
default capacitance per unit area. layer can be 'metal’, 'poly’, 'diff’, or 'poly /diff". value
is in atto-farads (10**-18 farads) per square micron. Also see the command
'perimetertocap’.

CapThreshold value
This command is read by mextra. Mextra will not report any node capacitance below
value. value is in femto-farads.

Cifplot options
This line allows you to select default command line options for cifplot. Call this
command just as you would call cifplot from the shell but without any CIF file.

Device devch zmazr ymaz resolution DumpProg

This command sets up information about a particular plotting device. This command is
used by cifplot. DevCh is a single character which indicates which output device. The
characters 'U’, 'V’, and 'W’ are black and white raster scan type devices. Lower case
letters are for output in trapezoid format and is generally used for driving random access
displays. The letter 'P’ is for pen plotters. DumpProg is the program to actually display
the plot on the device. For raster scan output the program is called with the the name of
the dump file. For other type of devices the program is called so that information is
piped into standard input. zmaz and ymaz indicated the range in device co-ordinates in
the x and y direction. resolution is the resolution of the device in dots per inch.

FontDir dirname
dirname is the name of the directory in which to find font files. This keyword is
recognized by cifplot. dirname must end with a backslash.

MachineName name
name is the net address of the machine. (E.g. on Ernie the the command would be
“machinename ernie”.)

MaxLength length
length specifies the maximum length in feet that can be plotted. This command is
recognized by cifplot.

PatFlle file
file is a file of stipple patterns to be used as the default stipple. This command is
recognized by cifplot.

PerimeterToCap layer value

1985 VLSI Tools Distribution 5/12/81 1

.CADRC(5) Berkeley CAD Tools User’s Manual .CADRC(5)

This command is read by the cifplot circuit extractor and mextra. It is used to set up the
default capacitance per unit length. layer can be 'metal’, 'poly’, 'difl’, or ’poly/diff".
value is in atto-farads (10**-18 farads) per micron. Also see the command ’areatocap’.

Sim2Spl TronsType parameter value
This command is read by sim2spl. It is used to set default parameters to give to splice.
TransType is a 'sim’ transistor type, either 'e’ or ‘d’. parameter is one of the splice
parameters: 'vt’, 'kp’, ‘gam’, 'phi’, or 'lam’. value is the value given to that parameter.

TmpDir dirname ,
dirname is the name of a directory with a lot of free space. This directory is used to set
up dump files by cifplot. dirneme must end with a backslash.

SEE ALSO
cifplot(1}, mextra(1), sim2spl(1)

BUGS
Not yet completely implemented, and yet mostly obsolete.

1985 VLSI Tools Distribution 5/12/81 2

DISPLAYS(5) Berkeley CAD Tools User’s Manual DISPLAYS(5)

NAME

displays — Display Configuration File

DESCRIPTION ,

FILES

The interactive graphics programs Caesar, Magic, and Gremlin use two separate terminals: a text
terminal from which commands are issued, and a color graphics terminal on which graphical
output is displayed. These programs use a displays file to associate their text terminal with its
corresponding display device.

The displays file is an ASCII text file with one line for each text terminal/graphics terminal pair.
Each line contains 4 items separated by spaces: the name of the port attached to a text terminal,
the name of the port attached to the associated graphics terminal, the phosphor type of the
graphics terminal’s monitor, and the type of graphics terminal.

An applications program may use the phosphor type to select a color map tuned to the monitor’s
characteristics. Only the std phosphor type is supported at UC Berkeley.

The graphics terminal type specifies the device driver a program should use when communicating
with its graphics terminal. Magic supports types UCB512, AED1024, and SUN120. Other
programs may recognize different display types. See the manual entry for your specific
application for more information.

A sample displays file is:

/dev/ttyll /dev/ttyl0 std UCB512
/dev /ttyjO /dev/ttyjl std UCB512
[dev/ttyjf [dev/ttyhf std UCB512
/dev [ttyhb /dev/ttyhe std UCB512
/dev/ttyhe [dev/ttyhb std UCB512

In this example, /dev/ttyil connects to a text terminal. An associated UCBS512 graphics
terminal with standard phosphor is connected to /dev/ttyi0.

Magic uses the displays file ~cad/lib/displays. Gremlin looks in [usr/local/displays.

SEE ALSO

magic(1)

1985 VLSI Tools Distribution 2/19/85 1

ESPRESSO(5) Berkeley CAD Tools User’s Manual ESPRESSO(5)

NAME
espresso — input file formax for espresso(1)

DESCRIPTION

Espresso accepts as input a two-level description of a Boolean switching function. This is
described as a character matrix with keywords imbedded in the input to specify the size of the
matrix and the logical format of the input function. Comments are allowed within the inpui by
placing a pound sign (#) as the first character on a line. Comments and unrecognized keywords
are passed directly from the input file to standard output. Any white-space (blanks, tabs, etc.),
except when used as a delimiter in an imbedded command, is ignored. It is generally assumed
that the PLA is specified such that each row of the PLA fits on a single line in the input file.

KEYWORDS
The following keywords are recognized by espresso. The list shows the probable order of the
keywords in a PLA description. [d] denotes a decimal number and [s] denotes a text string.

4 [d] Specifies the number of input variables.
.0 [d] Specifies the number of output functions.

type [s] Sets the logical interpretation of the character matrix as described below under
"Logical Description of a PLA”. This keyword must come before any product
terms. [s] is one of f, r, fd, fr, dr, or fdr.

.phase [s] [s]| is a string of as many 0's or 1's as there are output functions. It specifies which
polarity of each output function should be used for the minimization (a 1 specifies
that the ON-set of the corresponding output function should be used, and a 0
specifies that the OFF-set of the corresponding output function should be
minimized).

.pair [d] Specifies the number of pairs of variables which will be paired together using two-bit
decoders. The rest of the line contains pairs of numbers which specify the binary
variables of the PLA which will be paired together. The binary variables are
numbered starting with 1. The PLA will be reshaped so that any unpaired binary

variables occupy the leftmost part of the array, then the paired multiple-valued
columns, and finally any multiple-valued variables.

kisa ~ Sets up for a kise-style minimization.

-p [d] Specifies the number of product terms. The product terms (one per line} follow
immediately after this keyword. Actually, this line is ignored, and the ".e”, ”.end”,
or the end of the file indicate the end of the input description.

.e (.end) Marks the end of the PLA description.

LOGICAL DESCRIPTION OF A PLA
When we speak of the ON-set of a Boolean function, we mean those minterms which imply the
function value is a 1. Likewise, the OFF-set are those terms which imply the function is a 0, and
the DC-set (don’t care set) are those terms for which the function is unspecified. A function is
completely described by providing its ON-set, OFF-set and DC-set. Note that all minterms lie in
the union of the ON-zet, OFF-set and DC-set, and that the ON-set, OFF-set and DC-get share no
minterms.

The purpose of the espresso minimization program is to find a logically equivalent set of product-
terms to represent the CN-set and optionally minterms which lie in the DC-set, without
containing any minterms of the OFF-set.

1985 VLSI Tools Distribution 12/28/84 1

ESPRESSO(5) Berkeley CAD Tools User’s Manual ESPRESSO(5)

A Boolean function can be described in one of the following ways:

1) By providing the ON-set. In this case, espresso computes the OFF-set as the complement
of the ON-set and the DC-set is empty. This is indicated with the keyword ”.type f” in
the input file, or ”-f” on the command line.

2) By providing the ON-set and DC-set. In this case, espresso computes the OFF-set as the
complement of the union of the ON-set and the DC-set. If any minterm belongs to both
the ON-set and DC-set, then it is considered a don't care and may be removed from the
ON-set during the minimization process. This is indicated with the keyword ”.type fd” in
the input file, or ”-fd” on the command line.

3) By providing the ON-set and OFF-set. In this case, espresso computes the DC-set as the
complement of the union of the ON-set and the OFF-set. It is an error for any minterm
to belong to both the ON-set and OFF-set. This error may not be detected during the
minimization, but it can be checked with the subprogram ”-do check” which will check
the consistency of a function. This is indicated with the keyword ”.type fr” in the input
file, or ”-fr” on the command line.

4) By providing the ON-set, OFF-set and DC-set. This is indicated with the keyword ”.type
fdr” in the input file, or "-fdr” on the command line.

If at all possible, espresso should be given the DC-set (either implicitly or explicitly) in order to
improve the results of the minimization.

A term is represented by a "cube” which can be considered either a compact representation of an
algebraic product term which implies the function value is a 1, or as a representation of a row in a
PLA which implements the term. A cube has an input part which corresponds to the input plane
of a PLA, and an output part which corresponds to the output plane of a PLA (for the multiple-
valued case, see below).

SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRETATION
Each position in the input plane corresponds to an input variable where a 0 implies the
corresponding input literal appears complemented in the product term, a 1 implies the input
“literal appears uncomplemented in the product term, and - implies the input literal does not
appear in the product term.

With logical type f, for each output, a 1 means this product term belongs to the ON-set, and a 0
or - means this product term has no meaning for the value of this function. This logical type
corresponds to an actual PLA where only the ON-set is actually implemented.

With logical type fd (the default), for each output, a 1 means this product term belongs to the
ON-set, a 0 means this product term has no meaning for the value of this function, and a -
implies this product term belongs to the DC-set.

With logical type fr, for each output, a 1 means this product term belongs to the ON-get, a 0
means this product term belongs to the OFF-set, and a - means this product term has no meaning
for the value of this function.

With logical type fdr, for each output, a 1 means this product term belongs to the ON-set, a 0
means this product term belongs to the OFF-set, a - means this product term belongs to the DC-
set, and a ~ implies this product term has no meaning for the value of this function.

Note that regardless of the logical type of PLA, a ~ implies the product term has no meaning for
the value of this function. 2 is allowed as a synonym for -, 4 is allowed for 1, and 3 is allowed for
~. Also, the logical PLA type can also be specified on the command line.

1985 VLSI Tools Distribution 12/28/84 2

ESPRESSO(5) Berkeley CAD Tools User's Manual ESPRESSO(5)

MULTIPLE-VALUED FUNCTIONS
Espresso will also minimize multiple-valued Boolean functions. There can be an arbitrary number
of multiple-valued variables, and each can be of a diflerent size. If there are also binary-valued
variables, they should be given as the first variables on the line {for ease of description). Of
course, it is always possible to place them anywhere on the line as a two-valued multiple-valued
variable. The function size is described by the imbedded option *.mv” rather than ".i” and ".0".

.mv [num_var] [num_binary_var] [s1} . .. [sn]
Specifies the number of variables (num_var), the number of binary variables
(num_binary_var), and the size of each of the multiple-valued variables (s1 through
sn). A multiple-output binary function with ni inputs and no outputs would be
specified as ".mv ni{+I ni no.” ".mv” cannot be used with either ".i” or ".0” - use
one or the other to specify the function size.

The binary variables are given as described above. Each of the multiple-valued variables are
given as a bit-vector of 0 and 1 which have their usual meaning for multiple-valued functions.
The last multiple-valued variable (also called the output) is interpreted as described above for the
output (to split the function into an ON-set, OFF-set and DC-set). A vertical bar " |” may be
used to separate the multiple-valued fields in the input file.

If the size of the multiple-valued field is less than zero, than a symbolic field is interpreted from
the input file. The absolute value of the size specifies the maximum number of unique symbolic
labels which are expected in this column. The symbolic labels are white-space delimited strings of
characters.

To perform a kiss-style encoding problem, either the keyword .kiss must be in the file, or the
-kiss option must be used on the command line. Further, the third to last variable on the input
file must be the symbolic "present state”, and the second to last variable must be the "next
state”. As always, the last variable is the output. The symbolic "next state” will be hacked to be
actually part of the output.

1985 VLSI Tools Distribution 12/28/84 3

ESPRESSO(5)

EXAMPLE #1

Berkeley CAD Tools User’s Manual

ESPRESSO(5)

A two-bit adder which takes in two 2-bit operands and produces a 3-bit result can be described

completely in minterms as:

2-bit by 2-bit binary adder (with no carry input)

i 4

.0 3

.type fr
.pair 2 (1 3) (2 4)
.phase 011

00 00 000
00 01 001
00 10 010
00 11 011
01 00 001
01 o1 010
01 10 011
01 11 100
10 00 010
10 01 011
10 10 100
10 11 101
11 00 011
11 01 100
11 10 101
11 11 110
.end

The logical format for this input file (i.e., type fr) is given to indicate that the file contains both
the ON-set and the OFF-set. Note that in this case, the zeros in the output plane are really

specifying "value must be zero” rather than ”no information”.

The imbedded option .pair indicates that the first binary-valued variable should be paired with
the third binary-valued variable, and that the second variable should be paired with the fourth
variable. The function will then be mapped into an equivalent multiple-valued minimization

problem.

The imbedded option .phase indicates that the positive-phase should be used for the second and

third outputs, and that the negative phase should be used for the first output.

1985 VLSI Tools Distribution

12/28/84

ESPRESSO(5) Berkeley CAD Tools User’s Manual ESPRESSO(5)

EXAMPLE #2
This example shows a description of a multiple-valued function with 5 binary variables and 3
multiple-valued variables (8 variables total) where the maltiple-valued variables have sizes of 4 27
and 10 (note that the last multiple-valued variable is the "output” and also encodes the ON-set,
DC-set and OFF-set information).

.mv 8. 5 4 27 10

0-010]/1000!100000000000000000000000000[0010000000
10-1011000{010000000000000000000000000!11000000000
G-111/100010010000000000000000000600600]0001000000
0-10-11000/000100000000000000000000000}0001000000
00000110001000010000000000000000000000[1000000000
00010/1000100000100G0000000000000000000[0010000000
01001110001000000100000000000000000000]|0000000010
0101-11000]000000010000000000000000000|/0000000000
0-0-011000}000000001000000600000000000|1000000000
1060011000/00000000010000000G000000000|0000000000
11100/1000100000000001000000000000000010010000000
10-1011000/000000000001000000000000006010000000000
11111710006[/00000000000010000000000G000{0010000000

1111110001/000000000000000000000000001}0000000C00

1985 VLSI Tools Distribution 12/28/84 5

ESPRESSO(5) Berkeley CAD Tools User’s Manual ESPRESSO(5)

EXAMPLE #3
This example shows a description of a multiple-valued function setup for kiss-style minimization.
There are 5 binary variables, 2 symbolic variables (the present-state and the next-state of the
FSM) and the output (8 variables total).

.mv 8 5 -10 -10 6

.type fr

.kiss

This is a translation of IOFSM from OoPUS
inputs are 101 100 INIT SWR MACK
outputs are WAIT MINIT MRD SACK MAR DLI
reset logic

-=1-- - init0 110000

wait for INIT to go away

--1-- init0 init0 110000
--0-- inito0 initl 110000

wait for SWR

--00- initl initl 110000
--01- initl init2 110001

Latch address

~-0-- init2 init4 110100

wait for SWR to go away

--01- init4 init4 110100
--00- init4 iowait 000000

wait for command from MFSM

0000- iowait iowait 000000
1000- iowait initl 110000
01000 iowait read0 101000
11000 iowait writeO 100010
01001 iowait rmack 100000
11001 iowait wmack 100000
--01- iowait init?2 110001

wait for MACK to fall (read operation)
--0-0 rmack rmack 100000
--0-1 rmack read0 101000

wait for MACK to fall (write operation)
--0-0 wmac k wmack 100000
--0-1 wmack writeO 100010

perform read operation

--0-- reado readl 101001
«-0-- readl iowait 000000

perform write operation

--0-- writeO iowait 000000

.end

1985 VLSI Tools Distribution 12/28/84 6

EXT(5) Betkeley CAD Tools User's Manuaj EXT(5)

NAME
ext - format of .ext files produced by Magic’s hierarchical extractor

DESCRIPTION
Magic’s extractor produces a .ext file for each cell in a hierarchical design. The .ext file for cell
name i8 name.ext. This file contains three kinds of information: environmental information
(scaling, timestamps, etc), the extracted circuit corresponding to the mask geometry of cell name,
and the connections between this mask geometry and the subcells of name.

A .ext file consists of a series of lines, each of which begins with a keyword. The keyword
beginning a line determines how the remainder of the line iz interpreted. The following set of
keywords define the environmental information:

tech techname
Identifies the technology of cell name as techname, e.g, nmos, emos.

timestamp time
Identifies the time when cell name was last modified. The value {ime is the time stored
by Unix, i.e, seconds since 00:00 GMT January 1, 1970. Note that this is not the time
cell was extracted, but rather the timestamp value stored in the .mag file. The
incremental extractor compares the timestamp in each .ext file with the timestamp in
each .mag file in a design; if they differ, that cell is re-extracted.

verslon version -
Identifies the version of the extractor used to write name.ext. This information is

currently unused, but may be used by future versions to allow compatibility with old
format .ext files.

acale rscale cscale [2cale

Sets the scale to be used in interpreting resistance, capacitance, and linear dimension
values in the remainder of the .ext file. Each resistance value must be multiplied by
recale to give the real resistance in milliochms. Each capacitance value must be multiplied
by cscale to give the real capacitance in attofarads. Each linear dimeasion (e.g, width,
height, transform coordinates) must be multiplied by lscale to give the real linear
dimension in centimicrons. At most one scale line may appear in a .ext file. If none
appears, all of rscale, cscale, and lscale default to 1.

The following keywords define the circuit formed by the mask information in cell name. This
circuit is extracted independently of any subcells; its connections to subcells are handled by the
keywords in the section after this one.

node neme R C z y [atirsf

Defines an electrical node in neme. This node is referred to by the name name in
subsequent equlv lines, conmections to the terminals of transistors in fet lines, and
hierarchical connections or adjustments using merge or adjust. The node has a total
capacitance to ground of C attofarads, and a lumped resistance of R millichms. For
purposes of going back from the node name to the geometry defining the node, (z,y) is
the coordinate of a point inside the node. If there were any attribute labels attached to
geometry in this node, they appear in the comma-separated list attra.

equlv nodel nodef
Defines two node names in cell name as being equivalent: nodel and node? In a
collection of node names related by equiv lines, exactly one must be defined by a node
line described above.

fet type zl yl ch yh ares perim sub GATET1 T?2 ...
Defines a transistor in neme. The kind of transistor is fype, a string that comes from the

1985 VLSI Tools Distribution 1

EXT(5)

Berkeley CAD Tools User’s Manual EXT(5)

technology file and is intended to have meaning to simulation programs. The coordinates
of a square entirely contained in the gate region of the transistor are (z!, yl) for its lower-
left and (zh, yh) for its upper-right. All four coordinates are in the name’s coordinate
space, and are subject to scaling as described in scale below. The gate region of the
transistor has area ares square centimicrons and perimeter perim centimicrons. The
substrate of the transistor is connected to node sub, which is defined in the technology file
for this type of transistor.

The remainder of a fet line consists of a series of triples: GATE, T1, Each describes
one of the terminals of the transistor; the first describes the gate, and the remainder
describe the transistor’s non-gate terminals (e.g, source and drain). Each triple consists of
the name of a node connecting to that terminal, a terminal length, and an attribute list.
The terminal length is in centimicrons; it is the length of that segment of the channel
perimeter connecting to adjacent material, such as polysilicon for the gate or diffusion for
a source or drain.

The attribute list is either the single tokem *“0”, meaning no attributes, or a comma-
separated list of strings. The strings in the attribute list come from labels attached to the
transistor. Any label ending in the character “*" is comsidered a gate attribute and
appears on the gate’s attribute list. Gate attributes may lie either along the border of a
channel or in its interior. Any label ending in the character “$” is considered a non-gate
attribute, and appears on the list of the terminal along which it lies. Non-gate attributes
may only lie on the border of the channel.

The keywords in this last section describe the subcells used by name, and how it makes
connections to and between them.

use def use-id TRANSFORM

Specifies that cell def with instance identifier use-id is a subcell of cell name. If cell def is
arrayed, then use-id will be followed by two bracketed subscript ranges of the form:
[lo,hiysep]. The first range is for x, and the second for y. The subscripts for a given
dimension are lo through hi inclusive, and the separation between adjacent array
elements is sep centimicrons.

TRANSFORM is a set of six integers that describe how coordinates in def are to be
transformed to coordinates in the parent name. It is used by ezt2sim(1) in transforming
transistor locations to coordinates in the root of a design. The six integers of .
TRANSFORM (ta, tb, tc, td, te, tf) are interpreted as components in the following
transformation matrix, by which all coordinates in def are post-multiplied to get
coordinates in name:

ta td
th te 0
te tf 1

o

merge pathl path2 R C

Used to specify a connmection between two subcells, or between a subcell and mask
information of name. Both path! and path? are hierarchical node names. To refer to a
node in cell name itself, its pathname is just its node name. To refer to a node in a
subcell of name, its pathname consists of the use-id of the subcell (as it appeared in a use
line above), followed by a slash (/), followed by the node name in the subcell. For
example, if name contains subcell sub with use identifier sub-id, and sub contains node n,
the full pathname of node n relative to name will be sub-id/n.

1985 VLSI Tools Distribution 2

EXT(5) Berkeley CAD Tools User’s Manual EXT(5)

Connections between adjacent elements of an array are represented using a special syntax that
takes advantage of the regularity of arrays. A use-id in a path may optionally be followed by a
range of the form [loshi] (before the following slash}). Such a use-id is interpreted as the elements
lo through k¢ inclusive of a one-dimensional array. An element of a two-dimensional array may
be subscripted with two such ranges: first the y range, then the x range.

Whenever one path in 3 merge line contains such a subscript range, the other must contain one
of comparable size. For example,

connect sub-id[1:4,2:8}/a sub-id[2:5,1:7]/b

is acceptable because the range 1:4 is the same size as 2:5, and the range 2:8 is the same size as
1:7.

When a connection occurs between nodes in different cells, it may be that some resistance and
capacitance has been recorded redundantly. For example, polysilicon in one cell may overlap
polysilicon in another, so the capacitance to substrate will have been recorded twice. The values
R and C in a merge line provide a way of compensating for such overlap. The value R milliohms
(usually negative) is added to the sum of the resistances of nodes path! and path? to give the
resistance of the aggregate node. The value C' attofarads (also usually negative) is added to the
sum of the capacitances (to substrate) of nodes path! and path? to give the capacitance of the
aggregate node.

adjust path R C
Provides a way of adjusting the resistance of the node named by the hierarchical path,
without specifying a coanection. R millichms and € attofarads are added to the
resistance and capacitance respectively of node path.

cap nodel nodef C

Defines a capacitor between the nodes node! and nodef, with capacitance C. This

construct is used to specify both internodal capacitance within a single cell and between
cells,

AUTHOR
Walter Scott

SEE ALSO
ext2sim (1), magic (1)

1985 VLSI Tools Distribution 3

MAGIC(5) Berkeley CAD Tools User’s Manual MAGIC(5)

NAME
magic — format of .mag files read/written by Magic

DESCRIPTION
Magic uses its own internal ASCII format for storing cells in disk files. Each cell name is stored in

its own file, named name.mag.

The first line in a .mag file is the string
magic

to identify this as a Magic file.

The next line is optional and is used to identify the technology in which a cell was designed. If
present, it should be of the form

tech techname

If absent, the technology defaults to a system-wide standard, currently nmos.

The next line is also optional and gives a timestamp for the cell. The line is of the format
timestamp stamp

where stamp is a number of seconds since 00:00 GMT January 1, 1970 (i.e, the Unix time
returned by the library function time()). It should be the last time this cell or any of its children
changed. The timestamp is used to detect when a child is edited outside the context of its parent
(the parent stores the last timestamp it saw for each of its children; see below). When this occurs,
the design-rule checker must recheck the entire area of the child for subcell interaction errors. If
this field is omitted in a cell, Magic supplies a default value that forces the rechecks.

Next come groups of lines describing rectangles of the mask layers. These rectangles should be
non-overlapping, although this is not essential. They should also already have been merged into
maximal horizontal strips (the neighbor to the right or left of a rectangle should not be of the
same type), but this is also not essential.

Each group of rectangles is headed with a line of the format
< <L layer >>

where layer is a layername known in the current technology (see the tech line above). Each line
after this header has the format

rect zbot ybot ztop ytop

where (zbot, ybot) is the lower-left corner of the rectangle in Magic (lambda) coordinates, and
(ztop, ytop) is the upper-right corner. Degenerate rectangles are not allowed; zbot must be strictly
less than ztop, and ybot strictly less than ytop. The smallest legal value of zbot or ybot is
—67108858, and the largest legal value for ztop or ytop is 67108858. Values that approach
these limits (within a factor of 100 or 1000) may cause numerical overflows in Magic even though
they are not strictly illegal. We recommend using coordinates around zero as much as possible.

After all the groups of lines describing rectangles are zero or more groups of lines describing cell
uses. Each group is of the following form:

use filename use-id

1985 VLSI Tools Distribution 1

MAGIC(5) Berkeley CAD Tools User's Manual MAGIC(5)

array zlo zhi zsep ylo yhi ysep
timestamp stamp

transform s bcde f

box zbot ybot ztop ytop

Each group may be preceded by one or more blank lines. A group specifies a single instance of
the cell named filename, with instance-identifier use-id, The instance-identifier use-id must be

unique among 3ll celis used by this .mag file. If use-id is not specified, a unique one is generated
automatically.

The array line need only be present if the cell is an array. If so, the X indices run from zio to
zhi inclusive, with elements being separated from each other in the X dimension by zsep lambda.
The Y indices run from ylo to yhs inclusive, with elements being separated from each other in the
Y dimension by ysep lambda. If zlo and zAs are equal, zsep is ignored; similarly if ylo and yhi are
equal, ysep is ignored.

The t!mestamp line is optional; if present, it gives the last time this cell was aware that the
child filename changed. If there is no timestamp line, a timestamp of 0 is assumed. When the
subcell is read in, this value is compared to the actual value at the beginning of the child cell. If
there is a difference, the “timestamp mismatch” message is printed, and Magic rechecks design-
rules around the child.

The transform line gives the geometric transform from coordinates of the child filename into
coordinates of the cell being read. The six iategers a, b, ¢, d, ¢, and f are part of the following
transformation matrix, which is used to postmultiply all coordinates in the child filename
whenever their coordinates in the parent are required:

a d 0
b € 0
¢ I 1

Finally, box gives an estimate of the bounding box of cell filename (covering all the elements of
the array if an array line was present), in coordinates of the cell being read.

The last part of a .mag file is a list of the labels present in the cell. If bresent, this section begins
with the line

< < labels > >
and is {ollowed by zero or more lines of the following form:
label layer zbot ybot ztop ytop position tert

Here layer is the name of one of the layers specified in the technology file for this cell. The label

is attached to material of this type. Layer may be space, in which case the label is not
considered to be attached to any layer.

Labels are rectangular. The lower-left corner of the label (the part attached to any geometry if
layer is non-space) is at (zbot, ybot), and the upper-right corner at (ztop, ytop). The width of the
rectangle or its height may be zero. In fact, most labels in Magic have a lower-left equal to their
upper right.

The text of the label, tezt, may be any sequence of characters not including a newline. This text
is located at one of nine possible orientations relative to the center of the label's rectangie.
Position is an integer between 0 and 8, each of which corresponds to a different orientation:

0 center

MAGIC(5)

00 =3 O O b 030D

Berkeley CAD Tools User's Manual

north
northeast
east
southeast
south
southwest
west
northwest

A .mag file is terminated by the line

<< end >>

Everything following this line is ignored.

NOTE FOR PROGRAMS THAT GENERATE MAGIC FILES
Magic’s incremental design rule checker expects that every cell is either completely checked, or
contains information to tell the checker which areas of the cell have yet to be examined for
design-rule violations. To make sure that the design-rule checker verifies all the material that has
been generated for a cell, programs that generate .mag files should place the following rectangle

in each file:

<& < checkpaint > >
rect zbot ybot ztop ytop

MAGIC(5)

This rectangle may appear anywhere a list of rectangles is allowed; immediately following the
timestamp line at the beginning of a .mag file is a good place. The coordinates zbot etc. should
be large enough to completely cover anything in the cell, and must surround all this material by
at least one lambda. Be careful, however, not to make this area too ridiculously large. For
example, if you use the maximum and minimum legal tile coordinates, it will take the design-rule
checker an extremely long time to recheck the area.

SEE ALSO
magic (1)

1985 VLSI Tools Distribution

MPANDA(5) Berkeley CAD Tools User's Manual MPANDA(5)

NAME

Template format for mpanda(1)

DESCRIPTION

Making a template for mpanda consists of first designing a sample multiply-folded PLA in the
desired style, and then labeling ¢iles using the Magic{1) graphics editor. A file is a rectanguiar
area of paint, and is defined by a named label outlining the area. MPands assembles these tiles,
row by row, to form a multiply-folded PLA.

There are 11 groups of tiles in 2 mpanda template:

1) the core of the AND plane
2) the core of the OR plane
3} the sides of the AND plane
4} the sides of the OR plane
5) the top and bottom of the AND plane
6} the top and bottom of the OR plane
7} the tiles between planes
8} the horizontal spacing tiles in the AND plane
9) the vertical spacing tiles in both planes
10} the horizontal ground tiles
11) the vertical ground tiles

Any of the tiles not in the core areas may contain linear labels with the name [GND] or [Vdd].
Linear labels are lines with a name attached. Labels with the names {GND] and [Vdd] will be
stretched to allow increased current through the PLA. That is, the tile would be figuratively
“cut” along the line label and then the two "pieces” would be stretched apart by a designated
amount. A given tile may contain many occurrences of these linear labels, but none of them can
be colinear. If 2 labels within a tile are colinear, the stretching of one of them will turn the other
one into a rectangle, and it is not possible to stretch zlong a rectangle,

Point labels may occur anywhere in a tile. Global point labels GND! and Vdd! may be put in
corner tiles, to be placed in all mpanda-generated PLAs. The point label $input$ may occur in
tiles on the top or bottom of the AND plane, and the $output$ label may occur in tiles on the
top or bottom of the OR plane. These labels will be replaced with the name of the corresponding
input or output. There should be no more than one $input$ label on each input, and no more
than one $output$ label on each output. Tiles between the AND and OR cores may contain
point labels, $product$, which are placed when a product term bridges between AND and OR
planes. These $product$ labels are useful for debugging purposes within a PLA.

MPanda builds PLAs by rows of tiles. All of the tiles in a row (except the bottom row) have
their bottom edges aligned. The top row of tiles would be made up of edge tiles arranged from
the left to the right of the PLA, all stacked together along a line, A product row of the PLA
would have a left edge tile, core tiles for the AND and OR plane(s), and a right edge tile, all
aligned. Each row of tiles is placed one beneath the next according to the alignment of the first
tile on the left side of each row. The alignment of the first tile in each row will be discussed
below. In the last row of tiles (bottom tiles), all of the tiles are aligned with each other by their
top edges. The whole row is aligned to the previous string above it by aligning to the bottom
edge of that previous row (the last product row).

THE CORE OF THE AND PLANE:

Required: sp-and, 10-and, 11-and, l!-and, l;-and, l:i-and, r0-and, rl-and, ri-and, r;-and,
r:-and, le-and, re-and

1985 VLSI Tools Distribution 12/12/83 1

MPANDA(5) Berkeley CAD Tools User’s Manual MPANDA(5)

Optional: lu-and, lh-and, 1b-and, ru-and, rh-and, rb-and

These tiies contain transistors that implement the PLA function. The vertical and horizontal
pitch of the core of the AND plane is set by the tile sp-and. The first character of the tile name
indicates whether it is a left tile or a right tile. Left tiles are placed in every other column in the
AND plane core, starting with the first column. Right tiles are placed in every other column
starting with the second column. The tile sp-and determines the amount of overlap between
columns.

The second character of the name represents the function of the tile according to the format for
folded PLAs (see PLA(5)). For instance, a I stands for for tiles that contain a transistor and a 0
for tiles that pass the input line up to the next tile but have no tranmsistor. For folded PLAs,
additional tiles have, for the second character of the name, an for tiles that contain a transistor
and are split below, a for tiles that contain a transistor and are folded to the right, and an for
tiles that contain a transistor and are folded below and to the right. For multiply-folded PLAs, a
represents a contact tile that will make a contact between a vertical and horizontal signal line, as
is the case when an input or output is brought into the core from the sides of the PLA.

Optional tiles that minimize excess interconnect in the length and width of the PLA begin with
for tiles that do mot pass the vertical signal up to the mext row, for tiles that do not pass the
horizontal signal across to the next column, and for tiles that do not pass both the vertical and
the horizontal signals. These tiles are not necessary for the functionality of PLAs, but they help
reduce capacitances and therefore delay times throughout the PLA.

Columns in the PLA AND plane are grouped into (left, right) pairs, according to (signal,
complement) pairs. The selection of the core tiles in these column pairs is determined by the
symbols occuring in a personality matrix as is described in PLA(5). If the symbol is a ”0”, then
the tiles 10-and and r1-and are placed in the column as a pair. If the symbol is 2 17, then the
tiles 11-and and rO-and are placed. If the symbol is a ”!”, then the tiles l!-and and r0-and are
placed. If the symbol is a "0”, then the tiles 10-and and r!-and are placed. Similar pairings of
tiles are done for the symbols @”, »;”, "#”, and ":”.

The optimizing tiles are used to replace 10-and and r0-and tiles when signal lines do not need to
extend the full length and width of the PLA. For example, all 10-and tiles above the topmost
11-and (I*-and, l;-and, and l:-and) tile are replaced with lu-and tiles in order to allow
shortened vertical poly lines. A similar substitution is done with ru-and tiles in the alternating
right columns.

In a similar fashion, all 10-and and rO-and tiles that extend horizontally to the edge of the PLA
are replaced with lh-and and rh-and, respectively. If a horizontal and vertical line can be
minimized, the 1b-and and rb-and tiles automatically replace the 10-and and r0-and tiles.

All of the tiles in this group are assumed to be of the same height. (However, creative designers
may design otherwise.) When mpanda aligns a row of core tiles in the AND plane, the sp-and
tile is used to control the overlap between column pair tiles. When the core of the AND plane is
made, the lower left corner of a left (or right) tile is aligned to the lower left corner of the sp-and
tile. The next right (or left) tile is then aligned such that its lower left corner is aligned to the
sp-and tile’s lower right corner. This pattern of placing a core tile (left or right), spacing a
distance of sp-and, and then placing the next tile (left or right), is done throughout the core of
the AND plane. It is highly recommended that the user look at the pa-CS3.mag template
before trying to define a new one.

THE CORE OF THE OR PLANE:
Required: sp-or, u0-or, ul-or, ui-or, ul-or, uj-or, rg-or, d1-or, di-or, dl-or, d}-or

Optional: uu-or, uh-or, ub-or, du-or, dh-or, db-or

1985 VLSI Tools Distribution 12/12/83 2

MPANDA(5) Berkeley CAD Tools User's Manual MPANDA(5)

These tiles are similar to the ones in the AND plane. A u as the first character indicates that the
tile occurs in every other row, starting with the first (the up rows). A d indicates that the tile will
be placed ir the other down rows. All of the tiles in this group are assumed to be of the same
width. The tile sp-or sets the horizontal spacing for the OR plane. Since mpanda builds PLAs
row by row, all tiles defined in the OR plane for one row are aligned in a line by their bottom
edges.

‘THE SIDES OF THE AND PLANE:;
Required: ul-and, ll-and, ur-and, lr-and, right-and, left-and, left-in, right-in

Optional: hul-and, hur-and, nul-and, nur-and, vul-and, vll-and, vur-and, vir-and,
nright-and, nleft-and

These tiles align to the left and right sides of the AND plane, when the AND plane is an exterior
plane, as in an AND-OR-AND structure. The tile ul-and is placed in the upper left corner of the
AND plane, while the tile ll-and goes in the lower left corner. Along the left side of the AND
plane, each product row has a left-and tile. For AND planes on the outer right edge of the PLA,
the tile ur-and is placed ie the upper right corner of the AND plane, while the tile lr-and goes in
the lower right corner. The rows in between the top and bottom contain right-and tiles along
the right side of the AND plane.

AND plares which are interior to a PLA, such as in an OR-AND-OR PLA, do not have side tiles.
When a multiply-folded PLA is made, the tiles left-in and right-in replace the left-and and
right-and tiles, respectively. These side input buffers are twice as tall as the left-and and
right-and tiles because connections must be made to the input signal and its complement in the
multiply-folded column.

Optional corner tiles provide for PLAs that do not have folding. The exira overhead is in either
the height {those tiles that begin with) or the width (those tiles that begin with } of the tile.
Tiles that begin with are used in PLAs that are not folded and thus, do not have the extra
overhead in the horizontal and vertical direction.

The tiles along the top of the PLA are placed in a row with their bottom edges aligned. The tiles
along the bottom of the PLA are placed in a row with their top edges aligned. The side tiles of
the AND plane are assumed to match the height of the core tiles of the AND plane and to be
aligned along the same edge as the core tiles for each row.

Since the first tile in a row determines the alignment for the whole row, the left«and or left-in
tiles (for PLA structures which begin with an AND plane) are assumed to be stacked exactly
below succeeding rows, That is, there is no overlapping of left side tiles for AND-first PLAs.

THE SIDES OF THE OR PLANE:a
Required: ul-or, ll-or, ur-or, lr-or, rightu-or, rightd-or, leftu-or, leftd-or, leftu-out,
leftd-out, rightu-out, rightd-ocut

Optional: bhul-or, hur-or, nul-or, nur-or, vul-or, vll-or, vur-or, vir-or nrightu-or,
nrightd-or, nleftu-or, nleftd-or

These tiles function in a manner analogous to the tiles on the sides of the AND plane. Note that
the rightu-or tile is placed in the up rows, while the rightd-or tile is placed in the down rows.
The output buffer tiles, leftu-out, leftd-out, rightu-out, and rightd-out, are the same height
as tiles in the core of the OR piane.

When creating rows of tiles (for PLAs that begin with an OR plane), there is some overlapping of
these first “left” tiles. The leftu-or (or leftu-out or leftu-out or leftd-out) tiles, for PLA
structures which begin with an OR plane, are assumed to be stacked below succeeding rows such
that they overlap an amount controled by sp-or. That is, when aligning a new "left-or” tile for a
new row, the sequence of alignments is as follows: align the lower left corner of the previous row
with the upper left corner of the sp-or tile, align the lower left corner of the sp-or tile with the

1985 VLSI Tools Distribution 12 12 83 3

MPANDA (5) Berkeley CAD Tools User’s Manual MPANDA(5)

lower left corner of the "left-or” tile. Thus, there is overlapping of left edge tiles for OR-first
PLAs.

THE TOPS AND BOTTOMS OF AND PLANES:
Required: top-in, bot-in, top-and, bots-and, tops-and

Optional: ntop-and

These tiles function in 2 manner analogous to the tiles on the left and right sides of the AND and
OR planes. The top-In and bot-In tiles contain input buffers coming into the PLA from the top
and bottom, respectively. All of these tiles are only placed in every other column, starting with
the first because connections must be made with signal and complement lines. The tiles bots-
and and tops-and control the amount of horizontal spacing and overlap between adjacent tiles
in the same way that the sp-and tile controls horizontal spacing in the AND plane. The ntop-
and tile is used for PLAs that do not have column folds.

The top tiles are aligned by their bottom edges in a row. The bottom tiles are aligned by their
top edges.

THE TOPS AND BOTTOMS OF OR PLANES:
Required: topl-out, topr-out, botl-out, botr-out, topl-or, topl-or

Optional: ntopl-or, ntopr-or, nbotl-or, nbotr-or

These tiles function in a manner analogous to the tiles on the top and bottom sides of the AND
plane, except that the topl-or tile is placed in every other column starting with the first (the left
columns) while topr-or is placed in the alternating columns. These tiles are also aligned along
the top edges (unlike the top tiles in the AND plane which are aligned along the bottom edges).

THE TILES BETWEEN PLANES:
Required: topmid-ao, botmid-ao, topmid-os, botmid-oa, midu-ao, midd-ao, midu-oa, -
midd-os, nmidu-ao, nmidd-ao, nmidu-os, nmidd-oa, cmidd-ao, cmidu-ao, emidd-oa,
cmodu-oa

Optional: ntopmid-ao, ntopmid-oa

These tiles are between the AND and OR planes. When an AND plane is followed by an OR
plane, the ao tiles are used, and when an OR plane is followed by an AND plane, the og tiles are
used. The tiles that connect product rows between the AND and OR cores, midd_ao, midu_ao,
midd_oa, and midu_osa, usually contain some type of circuit element that pulls up each product
row. Tiles that begin with a n do not contain these circuit elements and are placed when the
product row does not need to be connected between two planes. The tiles that begin with a c are
for middle tiles in contact rows.

In the top row of tiles, the topmid-ao tile matches the AND tiles in the top rows by its lower left
corner. The topmid-oa tile matches the OR tiles in the top rows by its upper left corner. In the
bottom row of tiles, the botmid-ao and botmid-oa tiles match the other tiles in the bottom
rows by their top edges. The midd” and "midu” tiles are assumed to be the same height as the
core tiles in the AND plane. Their bottom edges are aligned along the same edge as the other
tiles in their row.

THE HORIZONTAL SPACING TILES IN THE AND PLANE
Required: sh-and, both-and, toph-and
Optional: shx-and
These tiles handle the extra horizontal spacing that is needed in the AND plane for folding rows in
the AND plane. When two logical rows must share one physical row, the structure of the AND
plane (pairings of left and right core tiles) is such that they may need extra spacing in the

horizontal direction. This occurs when a right tile (containing a transistor) of one logic row is
adjacent to the left tile (containing a transistor) of another logic row. Usually, one contact is used

1985 VLSI Tools Distribution 12/12/83 4

MPANDA(5) Berkeley CAD Tools User’s Manual : MPANDA (5)

between these transistors to comnect them to the product term. However, when a logical fold
must be made between these transistors, the comtact can not be split, so the duplication of the
contact and the extra space needed for physical correctness is contained in the shx-and {for no
connection between right and left tiles) and sh-and tiles {for connecting between right and left
tiles, when the logical rows are not folded but horizontal spacing was required on another row).
The both-and and toph-and tiles provide the same amount of horizontal spacing in the top and
bottom tiles in the AND plane,

THE VERTICAL SPACING TILES IN BOTH PLANES
Required: sv-or, lv-and, rv-and, midv-ao, midv-oa, shv-and, leftv-and, leftv-or,
rightv-and, rightv-or '

Optional: svx-or, lvx-and, rvx-and

These tiles function in a manner analogous to the horizontal space tiles in the AND plane. In the
OR plane, the up and down tiles require the sv-or (for connecting) and svx-or (for non-
connecting) tiles for vertical splits along columns in the OR plane. The consequences of spacing
out the OR plane vertically, require the tiles, leftv-and, rightv-and, leftv-or, and rightv-or
along the sides of the PLA. In the AND plane, the tiles Iv-and and rv-and, allow for vertical
spacing and connect the vertical signals. The tile Ivx-and ard rvx-and provide vertical spacing
and donot connecting (the in the name) vertical signals. The shv-and tile is placed when vertical
and horizontal spacing intersect in the core of the AND plane. The midv-ao and mldv-osa tiles
contain the vertical spacing in the middle tiles between planes.

These tiles are assumed to be the same height as the core tiles in the AND plane. Their bottom
edges are aligned along the same edge as the other tiles in their row.

THE HORIZONTAL GROUND TILES
Required: HGleft-and, HGright-and, HGl-and, HGr-and, HGright-or, HGleft-or,
HGmid-ao, HGmid-oa, HG-or, HGshv-and

Optional: nHGleft-and, nHGright-and, nHGright-or, nHGleft-or, HGIlx-and, HGrx-and

For the extra ground lines that are needed for large PLAs, these horizontal ground tiles contain
metal lines that run the width of the PLA from one side to the other. These tiles are aligned in
the PLA in a manner similar to the horizontal spacing tiles.

THE VERTICAL GROUND TILES
Required: VGtop-or, VG-or, VGd-or, HVG-or, ¢HVG-or, VGbot-or

Optional: nVGtop-or, VGux-or, VGdx-or

These tiles are aligned in the PLA in a manner aralogous to the horizontal ground tiles and
vertical spacing tiles.

SEE ALSO
mpanda(1), mpack(3), PLA(5), mpla(1), mpla(5)

AUTHOR
Grace H. Mah

1985 VLSI Tools Distribution 12/12/83 5

MPLA(5) Berkeley CAD Tools User’s Manual MPLA(5)

NAME
Template format for Mpla(1)

DESCRIPTION
Making a template for mpla(1) consists of first drawing a sample PLA in the desired style, and

then labeling tiles using the Magic(1) graphics editor. A tile is a rectangular area of paint, and is
defined by a named label outlining the area. Mpls assembles these tiles to form a finished PLA.

GETTING STARTED
Before reading this manual page, it would be helpful to get a plot of one of the MPLA templates
located in ~cad/llb/mpla and a copy of the two gremlin figures located in ~cad/src/mpla.
If this man page is hardcopy, then the two gremlin figures may already be attached.

OVERVIEW OF THE TILES
There are 11 groups of tiles in a mpla template:

1) the core of the AND plane

2) the core of the OR plane

3) the left side of the AND plane
4) the top of the AND plane

5) the bottom of the AND plane
6) the top of the OR plane

7) the bottom of the OR plane
8) the right of the OR plane

9) the tiles between the two planes
10) horizontal ground grid tiles
11) vertical ground grid tiles

There are also 2 optional groups of tiles which are used for clocked inputs and outputs:

12) clocking (if any) for the AND plane
13) clocking (if any) for the OR plane

Any of the tiles not in the core areas may contain linear labels with the name <GND>,
<Vdd>. A linear label is just a rectangle label in which has either zero width or zero height.
Labels with the names <GND> and <Vdd> will be stretched to allow increased current
through the PLA. A given tile may contain many occurances of these 2 labels, but none of them
can be colinear.

The <input> label may occur in tiles on the top or bottom of the AND plane, and the
<output> label may occur in tiles on the top or bottom of the OR plane. The labels will be
replaced with the name of the corresponding input or output. There should no more than one
<input> label on each input, and no more than one <output> label on each output.

THE CORE OF THE AND PLANE;: sp-and, 10-and, 11-and, L.-and, r0-and, r1-and, r~and
These tiles contain transistors that implement the PLA function. The vertical pitch of the whole
PLA is set by the tile sp-and, as is the horizontal pitch of the AND plane.

The first character of the tile name indicates whether it is a left tile or a right tile. Left tiles are
placed in every other column in the AND plane core, starting with the first column. Right tiles,
on the other hand, are placed every other column starting with the second column. The second
character of the name is a 1 for tiles that contain a transistor, a O for tiles that pass the input
line up to the next tile but have no transistor, and . for tiles that do not pass the input line up to
the next row and have no transistor.

1985 VLSI Tools Distribution 2/20/85 1

MPLA(5) Berkeley CAD Tools User’s Manual MPLA(5)

Columns in the PLA AND plane are grouped into {left, right) pairs, and the selection of the core
tiles in these column pairs is determined by the input bit in the truth table row for the current
minterm. If that bit is a 0, then the tiles 10-and and rl-and are placed in the column pair. If
the bit is a 1, then the tiles 11-and and rO-and are placed. All 10-and tiles above the topmost
11-and tile are replaced with l.-and tiles in order to allow shortened poly lines, as in the standard
sMOS PLA. A similar substitution is done with the r.-and tile in the right columns.

The AND plane core will be surrounded by tiles on its perimeter. It is possible for these tiles to
overlap the core, this is decribed in the section that deals with these surrounding tiles.

THE CORE OF THE OR PLANE: sp-or, u0-or, ul-or, n.~or, d0-or, dl-or, dwor
These tiles are similar to the ones in the AND plane. A ’u’ as the first character indicates that
the tile occurs in every other row, starting with the first (the up rows). A ’d’ indicates that the
tile will be placed in the other down rows. The tile sp-or sets the horizontal spacing for the OR
plane.

THE LEFT SIDE OF THE AND PLANE: Oleft-and, ul-and, leftu-and, leftd-and, l-and
The tile ul-and is placed in the Upper Left corner of the AND plane, while the tile 11-and goes in
the Lower Left corner. The rows in between contain leftu-and and leftd-and tiles, with the
former going in odd numbered rows (up rows) and the latter in the even numbered rows {(down
rows). The tile Oleft-and controls the amount of overlap between the other 3 tiles and the core
of the AND piane. In particular, the right sides of the ul-and, left-and, and Il-and tiles are
lined up such that they overlap the AND plane core by the width of the tile Oleft-and.

THE TOP OF THE AND PLANE: Otop-and, ul-and, top-and
These tiles function in a manner analogous to the tiles on the left side of the AND plane, except
that the tile top-and is only placed in every other column, starting with the first. Note that the
tile ul-and occurs in two groups of tiles. It is included in this group since its overlap with the top
of the AND plane is controlled by the tile Otop-and, even though its overlap with the left side
of the plane is controlled by the tile Oleft-and in the left-and-plane group.

THE BOTTOM OF THE AND PLANE: Obot-and, ll-and, bot-and
These tiles function in a manner analogous to the tiles on the top side of the AND plane.

THE TOP OR THE OR PLANE: Otop-or, topl-or, topr-or, ur-or
These iiles function in a manner analogous to the tiles on the top side of the AND plane, except
that the topl-or tile is placed in every other column starting with the first (the left columns)
while topr-or’is placed in the other columns.

THE BOTTOM OF THE OR PLANE:s Obot-or, botl-or, botr-or, le-or
These tiles function in a manner analogous to the tiles on the top side of the OR plane.

THE RIGHT SIDE OF THE OR PLANE: Oright-or, rightu-or, rightd-or, ur-or, Ir-or
These tiles function in a manner analogous to the tiles on the left side of the and plane. Note
that the rightu-or tile is placed in the up rows, while the rightd-or is placed in the down rows.

THE AREA BETWEEN PLANES: top-mid, Otop-mid, bot-mid, Obot-mid, midu, midd
Similar to the right side of the OR plane.

HORIZONTAL GROUND LINES: HGleft-and, HGl-and, HGlL-and, HGr-and, HGr.-and, HG-m!d, HG~-
ory, HGright-or
Horizontal ground lines may be inserted in the PLA. They always are placed such that there is an
even (and nonzero) number of rows above and a nonzero (but odd or even) number of rows below.
Gl.-and has a vertical input poly line in it, while HGl-and does not.

VERTICAL GROUND LINES: VGtop-or, VGd-or, VGd.-or, VGu-or, VGu.-or, HVG-or
These lines are placed in the OR plane. They always have an even number of OR columns to the
left, and either an even or an odd number to the right. Central tiles without a dot in the name
contain an extension of the minterm to the right, while tiles with the dot don’t. The tile HVG-or

1985 VLSI Tools Distribution 2f/20/85 2

MPLA(5) Berkeley CAD Tools User’s Manual MPLA(5)

is placed at the intersection of a horizontal and vertical ground line.

CLOCKED INPUTS: Culand, Ctop-and, Cll-and, Cbot-and
If any of these tiles exist and the user has asked for clocked inputs, they will be used in preference
to the tiles which do not start with the letter 'C’.

CLOCKED OUTPUTS: Cur-or, Ctoplor, Ctopr-or, Clr-or, Cbotl-or, Cbotr-or
Similar to clocked inputs.

SEE ALSO

mpla(1), mpack(1)
HISTORY

Mpla is a port of the program 'tpla’.
AUTHOR

Robert N. Mayo

BUGS
There really should be a way for template designers to specify what they want aligned with what.
Currently this is fixed in the mpla code, but you can think of ways to specify this graphically in
the templates instead.

1985 VLSI Tools Distribution 2/20/85 3

MPLA(5)

Berkeley CAD Tools Uéer’s Manual

Exploded View of AND Plane
RO
+»
ukand top-and sop=mid
{1-and r1-and
leftu-and 10-and r0-and midd
L~-and r-and
leftd-and midu
ofeem) & HGland | [HGr-and
o= B
HGlefvand | | uaiand | | HGrand HGmia
0 (zera)
Yepiteh
-0t
Il-and bot-and bot-mid
—>
X-pitch
Obot-and I BO
Y-pitch r-and Oleft-and Oright-and
Otop-and [TO
—> R r——p
X-piteh Lo RO
NOTES: Obot-mid [MBO
1) Thin lines indicate corners that line up.
2) Topmost row in the PLA is a "u’ (UP) row, and
last row may be either a "u’ or 'd’ (DOWN) row. Otop-mid 1 Mo

3) Extra ground rows are inserted only in places
where there is a 'd’ row above and a 'u’ row below.
4) Overlap amounts MTO and MBO apply

only to the tiles in the 'mid’ section.

MPLA(5) -

$ -amo

MPLA(5) Berkeley CAD Tools User’s Manual
Exploded View of OR Plane
-LO -RO
> >
topl-or topr-or \LGtopcr ur-or
03
ul
el VGu-ot rightaror
uror VGu.-of
m VGd-of rightd-or
deor VGd.~of
0 (zr0) ¥
HG-or r HVG-of HGright-or
0 (zero)
Y-pitch
-Bo%
both-or botr-or | YGbot-dr Iror
—>
X-pitch
Obot-or I BO
por Oleft-or Oright-on
Otopror I TO
——)p t—> t—>
X-pitch o RO
NOTES:

1) Thin lines indicate corners that line up.
2) Left most column in the plane is a 'I' (LEFT) row, and
last column may be either a 'I’ or ’r’ (RIGHT) column.

3) Extra ground columns are inserted only in places

where there is a't’ column to the left and a 'I’ row to the right.

4) Tiles on the left side of the figure are the tiles

from the right side of the AND plane
5) Y-pitch of the OR plane is set by the Y-pitch of the AND plane.

1985 VLSI Tools Distribution

2/28/85

MPLA(5)

NET(5) Berkeley CAD Tools User’s Manual NET(5)

NAME
net — format of .net files read/written by Magic’s netlist editor

DESCRIPTION
Netlist files are read and written by Magic's netlist editor in a very simple ASCII format. The
first line contains the characters * Netlist File” (the leading blank is important). After that
comes a blank line and then the descriptions of one or more nets. Each net contains one or more
lines, where each line contains a single terminal name. The nets are separated by blank lines.
Any line that is blank or whose first character is blank is considered to be a separator line and the
rest of its contents are ignored.

Each terminal name is a path, much like a file path name in Unix. It consists of one or more
fields separated by siashes. The last field in the path is the name of a label in a cell. The other
fields (if any), are cell instance identifiers that form a path from the edit cell down to the label.
The first instance identifier must name a subcell of the edit cell, the second must be a subcell of
the first, and so on.

Instance identifiers are unique within their parent cells, so a terminal path selects a unique cell to
contain the label. However, the same label may appear multiple times within its cell. When this
occurs, Magic assumes that each of the labels is a terminal in the net, and it will attempt to wire
them all together.

An example netlist file follows below. It contains three distinct nets.

Netlist File

alu/bit_1/cout
alufbit_2/cin

regcell[21,2] /output

latch[2]/input

This line starts with a blank, so it’s a separator.
opcode_plafoutf -

shifter/drivers/shift2

SEE ALSO
magic (1)

1985 VLSI Tools Distribution 1

PLA(5) Berkeley CAD Tools User’s Manual PLA(5)

NAME
pla — Format for physical description of Programmable Logic Arrays.

SYNOPSIS
pla

DESCRIPTION

This format is used by programs which manipulate plas to describe the physical implementation.
Lines beginning with a ‘#’ are comments and are ignored. Lines beginning with a ‘.’ contain
control information about the pla. Currently, the control information is given in the following
order:

.1 <number of inputs>

.0 <number of outputs>

.p <number of product terms (pterms)>

and optionally,

.na<name> (the name to be used for the pla)

What follows then is a description of the AND and OR planes of the pla with one line per product
term. Connections in the AND plane are represented with a ‘1’ for connection to the non-inverted
input line and a ‘0’ for connection to the inverted input line. No connection to an input line is
indicated with 'x’, 'X’, or '-’ with -’ being preferred. Connections in the OR plane are indicated
by a ’'1’ with no comnection being indicated with 'x’, X', '0’, or -' with '=’ being preferred.
Spaces or tabs may be used freely and are ignored.

The end of the pla description is indicated with:
.2

Programs capable of handling split and folded arrays employ the following format:

AND PLANE

Column (1) Contact to input (2) No contact to input

1 (@
1 - Normal contacts, no splits or folds
! - Split below

;) Fold to right
: Split below and fold to right

OR PLANE

Column (1) Contact to output (2) No contact to output

1 @
I ~ Normal contacts, no splits or folds
i = Split below
| ! Fold to right
j ” Split below and fold to right

ADDITIONAL ELEMENTS

. Input buffer
+ Output buffer
D Depletion load associated with product term

1985 VLSI Tools Distribution 8/23/81 1

PLA(5) Berkeley CAD Tocls User's Manual

N No depletion load associated with product term

PLA(5)

Note that the decoding function of the AND plane is separated from the specification of its

connectivity, This makes the AND and OR plane specifications identical.

These programs handle the following more general set of .parameters:

il <number of left-AND plane inputs >
Jdr <number of right-AND plane inputs>
.0l <number of left-OR plane inputs>
or <number of right-OR plane inputs>
.p <number of product terms>

dlt <labels left-top-AND plane>

JAlb <labels left-bottom-AND plane>
Jdrt <labels right-top-AND plane>
JAdrb <labels right-bottom-AND plane>
olb <labels left-bottom-OR plane>
.olt <labels left-top-OR plane>>

.orb <labels right-bottom-Or plane>>
ort <labels right-top-Or plane>

pl <labels left product terms>

.pr <labels right product terms>

The first group of parameters must precede the second group. If there is orly one AND or OR
plane it is assumed to be the left one and the companion .parameters may be shortened by

dropping their (left,right) designation character.

In order to better deal with folded and split PLAs, the following .parameters are proposed:

ig <input group>

O <output group>

Jns <inputs excluded from splitting>
JAnf <inputs excluded from folding >
ons <outputs excluded from splitting >
.onf <outputs excluded from folding >

In order to huild finite state machines, the following .parameters are proposed:

Al <left-top-AND feedback terms>

Adlbf <left-bottom-AND feedback terms>>
 JArtf <right-top-AND feedback terms>

JAdrbf <right-bottom-AND feedback terms>

©ltf <left-top-OR feedback terms>

olbf <left-bottom-OR feedback terms>

ortf <right-top-OR feedback terms>

orbf <right-bottom-OR feedback terms>

Jdlr <left re-ordered inputs>

drr <right re-ordered inputs>
olrf <left re-ordered outputs>
orrf <right re-ordered outputs>

1985 VLSI Tools Distribution 8/23/81

PLA(S5) Berkeley CAD Tools User’s Manual PLA(5)

The XXXf parameters must occur in pairs, with the .oXXf line first. Input and output terms
must occur on the same side (top, bottom) of the PLA. Feedback terms must be given in
ascending order. The re-order .parameters simplify feedback routing.

SEE ALSO
equtott(1), espresso(1), espresso(5), panda(l), mpanda(l), tpla(l), mpla(l), pop(1), blam(1),
pleasure(1), plaid(1)

1985 VLSI Tools Distribution 8/23/81 3

PLEASURE(5} Berkeley CAD Tools User’s Manual PLEASURE(5)

NAME
pleasure — file formats for pleasure(1)

INPUT FILE FORMAT
Input file consists of two parts: the folding instruction part and the PLA symbolic description

part. Comment lines must begin with a "#7.

{a) Folding instructions.

Folding instructions begin with a period. The period should be placed in the first column of the
input file. The instructions can be placed anywhere between ”.list” and the PLA table. If
symbolic names are assigned to inputs and outputs of the PLA, the instruction “label” can be
used to let this assignment be known to pleasure. Once a label is assigned to any one column,
then all the columns have to have labels as well. In other folding instructions, the same symbolic
name has to be used.

The following instructions are understood by pleasure:

Jist
Input file records following ”.list” are displayed on the standard output during the read

phase.

.cofold | and [=mult]] | or [=mult]]
Column folding requested in the AND and/or OR plane. Multiple folding is specified by
the string "=mult”.

.rofold [aoa | oao | mult]
Row folding: the trailing character string specifies AND-OR-AND , OR-AND-OR , or

multiple folded architecture.

Jabel inl in2 ... outl out2 ...
Each label should be in one-tc-one correspodence to each column. Once every column has
been labelled, the assigned name should be used for other folding instructions which refer
to the columns such as "top”, "bottom”, "group”, "order” and "window”. If this label
instruction is not given, the user can use an integer number to match the columns.

Afirat [row | column]
Specifies if rows or columns are to be folded first. If omitted, the fold sequence will be

chosen by the program.

stop el ,c2, ..., cn)
The columns in the list are folded on the top only.

.bottom [cl,¢c2,..,cn]
The columns in the list are folded on the bottom only.

Jeft [r1,r2,..,m]
The rows in the list are folded on the left only.

oright [r1,r2,..,m]
The rows in the list are folded on the right only.

order left | right

PLEASURE(S) Berkeley CAD Tools User’s Manual PLEASURE(5)

Column folding in the leftmost (rightmost) array is constrained so that each column can
be contacted to a connection row and connection rows are in the same sequence as
columns in the original PLA. (See references)

.window row | column | contact |nl,l1,ul, ... ,nn,ln,un]
Folding is constrained so that rows , columns , and contacts to connection rows are kept
inside a window. The lower and upper bounds for row (column or contact) nj is specified
by lj and uj respectively. Note that row and contact (column) windows are compatible
only with column {row) folding.

.array left [cl,c2,..,cn]
.array right [cl,c2,..,cn]
The PLA is segmented and specified columns are placed in the left (right) array.

.group vt | hr [(c1 c2) (c4 7 c9 c10) (c34 ¢35)..]

Folding is constrained so that the signals grouped together can be placed contiguously in
the output PLA. The constraints are meant to handle the physical positions of the signal
carrying the outputs of 1-input and 2-input decoder. For the time being, this instruction
is compatible with multiple folding and it requires expanded PLA input. Option "vt”
means; multiple column folding with group constraints on the connection rows. Option
"hr” means: multiple row folding with group constraints on the columns. At present, the
output format for Panda cannot be processed directly in case of group constraints.

.machine
Output format of batch mode will be set for Panda input format

side
Folding is constrained so that the signals are connected by the connection rows from the

left or right side.

.option prtall | heul | heu2

prtall : prints row, column and contact positions on output file.

heul : a fast heuristic selection is used based on the degree of the nodes corresponding to the
columns or rows to be folded in the node graph of the problem. (See references) Good for
large arrays.

heu2 : another heuristic selection based on the number of ascendant and descendant.
If you don't specify anything for heul or heu2, or if you specify both of them, the
program will be executed twice and the best result will be selected.

.end
End of file.

(%) The PLA symbolic description.

PLA’s are described as two-level sum-of-products logical implicants. The PLA input format is
compatible with the output format of Espresso. In the AND-PLANE, a 1 means a connection to
the input variable, a 0 means a connection to the complemented input variable, and any other
character (except 0, 1 or /) means no connection. Likewise, in the OR-plane, a 1 means a
connection to the output function, and any other character (except 1 or /) means no connection.

1985 VLSI Tools Distribution 10/9/84 : 2

PLEASURE(S) Berkeley CAD Tools User's Manual PLEASURE(5)

Each input file record is up to 80 characters long. A ”/” in the last position means that the
implicant continues on the next record. Blanks separate the AND PLANE from the OR PLANE,
No other character is allowed between the two planes. No blank is allowed inside a plane.

OUTPUT FILE FORMAT
{a) Format for General Usage

This output format is provided for the user so that he can look at the folding results. It consists of
the folding lists, the report of the percentage for the optimal area over the original area and the
folded PLA personality matrix. The character set used to represent the folded array is reported in
the following table:

AND PLANE

(1) Contact to input
{2) Contact to complement
(3) No contact

v 2 @

0 - Normal contacts, no splits or folds
0 Split below

; a , Fold to right

: # Split below and fold to right

OR PLANE
(1) Contact to output
(2) No contact to output
(S b
I ~ Normal contacts, no splits or folds
i = Split below
i ? Fold to right
j 7 Split below and fold to right

{t) Format for the Panda Input

This output format is meant to be processed by a ”silicon assembler” program, which generates
the folded PLA mask layout in CIF 2.0 standard format. Panda is the program which is
connected to Pleasure. Pleasure provides a special cutput format for Fande. For more
information on input format, please refer to the manual Panda.

The output file consists of the contol lines and a personality matrix of the folded PLA. The
symblic name 'B' or 'BLANK’ means no signal which corresponds to "X'(No buffer). However,

1985 VLSI Tools Distribution 10/9/84 3

PLEASURE(5)

Berkeley CAD Tools User’s Manual

PLEASURE(5)

they are not necessarily in one-to-one correspondence. The personality matrix of the folded PLA
has the same character set as the general-usage output format except for the contact symbol for
the complement signal in the AND plane. There is no difference between contact symbol of the
signal and that of its complement any more since the AND plane has been expanded. The column
which is connected to "*’(input buffer) is the signal and the next column which is located just right
side of the signal is the complemented signal. Therefore the characters for the contact of the
complemented signal are not used here. The additional symbol characters are as follows:

Symbols
* Input buffer
+ Output buffer
X No buffer
c
>

Contact within AND or OR plane
< Routing lines to contact for multiple folds

INTERACTIVE MODE

Example of a typical pleasure session:

pleasure
pleasure => (dot)zzz
pleasure => read
filename
pleasure =>> slatus
pleasure =>> reset rzz
pleasure => run
pleasure => show
pleasure => run
pleasure => show best
pleasure => showpan best
pleasure => clear
pleasure => read
filename
pleasure =>> .option heul
pleasure => step
pleasure => show heul
pleasure =>> step
pleasure => show heul
pleasure => run
pleasure => show best
pleasure => save
filename
pleasure =>> showpan
pleasure =>> savepan
filename
pleasure => quil

1985 VLSI Tools Distribution

(set the folding instruction)
(read input file)

(look at the status of the instructions set)

(reset unnecessary folding instructions)

(run the folding algorithm)

(see folded PLA)

(run the folding algorithm)

(see folded PLA as a general output format)

(see folded PLA as a output format for PANDA)
(clear program before restart)

(read input file)

(switch to heuristic sheme 1)
(run one step)

(save folded PLA for general use)

(save folded PLA for PANDA)

10/9/84

PLEASURE(S5) Berkeley CAD Tools User’s Manual PLEASURE(5)

REFERENCES

‘ © {a) G. De Micheli and A. Sangiovanni-Vincentelli, "Multiple folding of programmable logic
arrays.” Pro. Int. Symp. on Circ. and Syst., Newport Beach (CA), pp. 1026-1029, May
1983.

(b} G. De Micheli and A. Sangiovanni-Vincentelli, "PLEASURE: A computer program for
simple/mauitiple constrained/unconstrained folding of programmable logic arrays.” Proc.
20th Design Automation Conference, Miami Beach (FL), pp. 530-537, June 1983.

{c) G. De Micheli and A. Sangiovanni-Vincentelli "MUltiple constrained folding of
programmable logic arrays: theory and applications.” IEEE Trans. on CAD of Int. Circ.
and Syst., Vol. CAD-2, No. 3, pp. 167-180, July 1983.

1985 VLSI Tools Distribution 10/9/84 : 5

PLEASURE(5)

Berkeley CAD Tools User’s Manual

Example #1: Input file ex1

list

.label in! in2 in3 in4 ind in6 outl out2 out3 out4
.cofold and=mult or
.bottom 3

.option prtall
xx1xx0 1000

x1x0xx 0100

1xxxx0 0001

1xxxlx 0100

Oxxxxx 0010

xxxxx1 0001

.end

Example #2: Input file ex2

pleasure

TEST PLA #2

list

.cofold and=mult or=mult

.label inl in2 in3 in4 ind5 in6 outl out2 out3 out4

.window contact inl1 1 1 in21 3 in6 4 6 outl 1 1

.side

.option prtall
xx1xx0 1000
x1x0xx 0100
1xxxx0 0001
1xxx1x 0100
Oxxxxx 0010
xxxxx1 0001
.end

1985 VLSI Tools Distribution 10/9/84

PLEASURE(5)

out3 4 6

PLEASURE(5) Berkeley CAD Tools Uset's Maaual PLEASURE(S5)

Example #3: General use output from exl

pleasure2 version 3 on 08/15/84 9:00
Type "help” for help.
#OLDING REQUESTED:
SIMPLE COLUMN FOLDING IN THE CR PLANE
MULTIPLE OOLUMN FOLDING IN THE AND PLANE
#OLDING REQUESTED:
SIMPLE COLUMN FOLDING IN THE OR PLANE
MULTIPLE COLUMN FOLDING IN THE AND PLANE
*** Folded pia has no comparison error ***
OUTPUT BASED ON THE HEURISTIC SCHEME 2
OOLUMN FOLDINGS :

ORDERED COLUMN FOLDING LIST # 1
outl outl

CRDERED COLIUMN FOLDING LIST # 2
in6 in5 in2

ORDERED OOLUMN FOLDING LIST # 3

inl ind

ORDERED OOLUMN FOLDING LIST # 4
out4 out2

COLUMNS FROM THE TOP
inl in3 in6 outl outd

ROAS FROM THE LEFT

1 3 5 6 4 2
In this heuristic scheme 2, new PLA takes 50% of the original area
The heuristic scheme 1 takes 60%

PERSONALITY MATRIX
-10 i~
1-0 ~1
0-- I~
aal i
el ~1
0-1 ~I

1985 VLSI Tools Distribution 10/9/84 7

% PLEASURE(5) Berkeley CAD Tools User's Manual PLEASURE(5)

Example #4: General use output from ex2

. pleasure2 version 3 on 08/15/84 9:00

Type "help” for help.

#FOLDING REQUESTED:
MJLTIPLE OCOLUMN FOLDING IN THE AND PLANE
MJLTIPLE OOLUMN FOLDING IN THE OR PLANE
OOLUMN FOLDING WITH CONSTRAINED OCONTACT POSITIONS
OUTPUT FORMAT IS SET FOR PANDA
1/0 BUFFERS ARE ALL SET FRCM SIDES

*** Folded pla has no comparison error ***

OUTPUT BASED ON THE HEURISTIC SCHEME 1

COLUMN FOLDINGS:

ORDERED COOLUMN FOLDING LIST # 1
outl out4 out2 out3

ORDERED COLUMN FOLDING LIST # 2
in3 in2

ORDERED OOLUMN FOLDING LIST # 3
in6 in4

COLIMNS FROM THE TOP
inl in3 ind5 in6 outl

ROANS FROM THE LEFT
1 3 6 4 2 5

CONTACTS ON THE LEFT PLANE :
inl in3 in2 in6 in4 ind

CONTACTS ON THE RIGHT PLANE :

outl out4 BLANK out2 BLANK out3

In this heuristic scheme 1, new PLA takes 50% of the original area
The heuristic scheme 2 takes 50%

PERSONALITY MATRIX
-1-0 i

1_-0
---1
1-1_
-1-0
0---

P ety b e e e

1985 VLSI Tools Distribution 10/9/84 8

SIM(5) Berkeley CAD Tools User’s Manual SIM(5)

NAME
sim — format of .sim files read by esim, crystal, ete.

DESCRIPTION
The simulation tools crystal(1) and esim(1) accept a circuit description in .sim format. There is
a single .sim file for the entire circuit, unlike Magic's ext(5) format in which there is a .ext file
for every cell in a hierarchical design.

A .sim file consists of a series of lines, each of which begins with a key letter. The key letter
beginning a line determines how the remainder of the line is interpreted. The following are the
list of key letters understood.

| units: s tech: tech
If present, this must be the first line in the .sim file. It identifies the technology of this
circuit as techk and gives a scale factor for units of linear dimension as s. Al linear
dimensions appearing in the .sim file are multiplied by ¢ to give centimicrons.

type g 8 d | w z y g=gatirs s==satirs d=datirs
Defines a transistor of type type. Currently, {ype may be e or d for NMOS, or p or n for
CMOS. The name of the node to which the gate, source, and drain of the transistor are
connected are given by g, 2, and d respectively. The length and width of the tramsistor
are ! and w. The next two tokens, z and y, are optional. If present, they give the
location of a point inside the gate region of the transistor. The last three tokens are the
attribute lists for the transistor gate, source, and drain. If no attributes are present for a
particular terminal, the corresponding attribute list may be absent {i.e, there may be no
g= field at all). The attribute lists gattrs, etc. are comma-separated lists of labels. The
label names should oot include any spaces, although some tools can accept label pames
with spaces if they are enclosed in double quotes,

C nl nfcap
Defines a capacitor between nodes n! and n2 The value of the capacitor is cap
femtofarads.

R node res

Defines the lumped resistance of node node to be res ohms. This construct is only
interpreted by a few programs.

N node darea dperim parea pperim marea mperim
As an alternative to computed capacitances, some tools expect the total perimeter and
area of the polysilicon, diffusion, and metal in each node to be reported in the .sim file.
The N construct associates diffusion area darea (in square centimicrons) and diffusion
perimeter dperim {in centimicrons} with node node, polysilicon area pares and perimeter
pperim, and metal area mares and perimeter mperim. This construct s technology
dependent and obsolete.

A node attr)
Associates attribute attr for node node. The string attr should contain no blanks.

== nodel node? .
Each node in a .slm file is named implicitly by having it appear in a transistor definition.
All node names appearing in a .slm file are assumed to be distinct. Some tools, such as
esim (1), recognize aliases for node names. The == construct allows the name node? to be
defined as an alias for the name nodel. Aliases defired by means of this construct may
not appear anywhere else in the .sim file.

1985 VLSI Tools Distribution 1

SIM(5) Berkeley CAD Tools User’s Manual SIM(5)

SEE ALSO
crystal(1), esim (1), ext2sim (1), sim2spice (1), ext(5)

1985 VLSI Tools Distribution 2

PRLEAK (8) Berkeley CAD Tools User’s Manual PRLEAK(8)

prleak - aid for debugging programs using malloc/free

SYNOPSIS

prieak [-a] [—d]| -1] [obifile [tracefile]]

DESCRIPTION

Prleak is a tool for use in debugging programs that make use of Magic’s versions of malloc and
free. It examines the trace file produced by special versions of malloc and free produced when
they are compiled with the -DMALLOCTRACE flag. The output of prleak is the average
allocation size, a list of ‘leaky’ allocations (blocks still allocated at program exit) if -1 is specified,
a list of duplicate frees (blocks that the program attempted to free after they had already been
deallocated) if —d is specified, and a list of all calls to malloc and free if —a is specified. If no
switches are given, the default action is as though -1 and —d were in effect.

For each entry output, both the address of the allocated block and a stack backtrace at the time
of the call to malloc or free are printed. Prleak attempts to use the namelist from objfile (a.out
if no file is given) to produce a symbolic backtrace. If no namelist can be found, the backtrace is
printed in hex. If tracefile is specified, the malloc trace is read from it; otherwise, it is read from
the file malloc.out in the current directory.

An example output might be as follows:

Average allocation size = 12 bytes

Leaks:

0x11540 [11 bytes]
at _foo+4-0x14
called from ~main+028

0x11550 [14 bytes]
at _bar4-0x50
called from _foo+40x38
called from ~main+0x26

Duplicate frees:

0x11556
at _bar4-0x40
called from _foo-+0x38
called from ~main+40x20

malloc.out

SEE ALSO

ACM SIGPLAN Notices, Vol 17, No 5 (May 1982), the article by Barach and Taenzer.

1985 VLSI Tools Distribution 1

PRLEAK(8) Berkeley CAD Tools User’s Manual PRLEAK(8)

AUTHOR
Walter Scott

BUGS

Local symbols (beginning with ““~"'} in the backtrace output should be tagged with the source file
to which they refer.

1985 VLSI Tools Distribution 2

Magic Tutorial #1: Getting Started
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

1. What is Magic?

Magic is an interactive system for creating and modifying VLSI circuit
layouts. With Magic, you use a color graphics display and a mouse or graphics
tablet to design basic cells and to combine them hierarchically into large
structures. Magic is different from other layout editors you may have used. The
most important difference is that Magic is more than just a color painting tool: it
understands quite a bit about the nature of circuits and uses this information to
provide you with several additional operations. For example, Magic has built-in
knowledge of layout rules; as you are editing, it continuously checks for rule
violations. Magic also knows about connectivity and transistors, and contains a
built-in hierarchical circuit extractor. Magic will eventually have a plow
operation that you'll be able to use to stretch or compact cells. Lastly, Magic has
routing tools that you can use to make the global interconnections in your
circuits.

Magic is based on the Mead-Conway style of design. This means that it uses
simplified design rules and circuit structures. The simplifications make it easier
for you to design circuits and permit Magic to provide powerful assistance that
would not be possible otherwise. However, they result in slightly less dense
circuits than you could get with more complex rules and structures. For example,
Magic permits only Manhattan designs (those whose edges are vertical or
horizontal). Circuit designers tell us that our conservative design rules cost 5-10%
in density. We believe that the density sacrifice is more than compensated by
reduced design time, and many circuit designers agree with us.

‘Magic Tutorial #1: Getting Started February 28, 1985

Magic Tutorial #1: Getting Started

Magie Tutorial #2: Painting

Magic Tutorial #3: Cell Hierarchies

Magic Tutorial #4: Multiple Windows

Magic Tutorial #5: Design-Rule Checking

Magic Tutorial #6: Netlists and Routing

Magic Tutorial #7: Circuit Extraction

Magic Tutorial #8: Reading and Writing CIF

Magic Maintainer’s Manual #1: Hints for System Maintainers
Magic Maintainer’s Manual #2: The Technology File

Magic Maintainer's Manual #3: The Display Style and Glyph Files
Magic Technology Manual #1: NMOS '
Magic Technology Manual #2: CMOS

Table I. The Magic tutorials, maintenance manuals, and technology manuals.

2. How to Get Help and Report Problems

There are several ways you can get help about Magic. If you are trying to
learn about the system, you should start off with the Magic tutorials, of which this
is the first. Each tutorial introduces a particular set of facilities in Magic. There
is also a set of manuals intended for system maintainers. These describe things
like how to create new technologies. Finally, there is a set of technology manuals.
Each one of the technology manuals describes the features peculiar to a particular
technology, such as layer names and design rules. Table I lists all of the Magic
manuals. The tutorials are designed to be read while you are running Magic, so
that you can try out the new commands as they are explained. You needn’t read
all the tutorials at once; each tutorial lists the other tutorials that you should
read first.

The tutorials are not necessarily complete. Each one is designed to introduce
a set of facilities, but it doesn’t necessarily cover every possibility. The ultimate
authority on how Magic works i3 the reference manual, which is a standard Unix
man page. The man page gives concise and complete descriptions of all the
Magic commands. Once you have a general idea how a command works, the man
page is probably easier to consult than the tutorial. However, the man page may
not make much sense until after you've read the tutorial.

A third way of getting help is available on-line through Magic itself. The
shelp command will print out one line for each Magic command, giving the
command’s syntax and an extremely brief description of the command. This
facility is useful if you've forgotten the name or exact syntax of a command. If
interested in information about a particular subject, you can type

shelp subject

This command will print out each command description that contains the subject
string.

If you have a question or problem that can’'t be answered with any of the
above approaches, don't hesitate to contact a member of the Magic team. We

-9.

Magic Tutorial #1: Getting Started February 28, 1985

are: Gordon Hamachi, Bob Mayo, John Ousterhout, and Walter Scott. Magic is
a relatively young program, so you will probably run across bugs and unpleasant
features. When this happens, please let us know by sending mail to
magic@ucbkim. This will reach everyone in the group and will also log the
message in a system file so we can’t forget about the problem. Please tell us
about problems with the manuals too.

3. Hardware Configuration

Magic runs in two configurations right now. One configuration uses VAX
processors: each workstation consists of a standard video terminal, called the text
display, and a color display. You use the keyboard on the text display to type in
commands, and Magic uses its screen to log the commands and their results. The
color display is used to display one or more portions of the circuit you are
designing. You will use a graphics tablet or mouse to point to things on the color
display and to invoke some commands. If there is a keyboard attached to the
color display (as, for example, with AED512 displays) it is not used except to reset
the display. The current version of Magic supports UCB512 displays, and
AED1024 displays. (UCB512’s are AED512 displays with special Berkeley
microcode; virtually all of the AED512's at Berkeley are UCB512's). More
displays are being added, so check the Unix man page for the most up-to-date
information.

The second configuration supported by Magic is a Sun model 120 with the
SunColor option. Magic uses the black-and-white display to log commands (we'll
refer to it as the “text display”), and the color screen to display layouts. The
optical mouse is used to point on the color screen. If you run with the Sun
configuration, we recommend that you get as much memory as you possibly can
(e.g. 4 Mbytes).

4. Running Magic

From this point on, you should be sitting at a Magic workstation as you read
the manual so you can experiment with the program. Starting up Magic is
usually pretty simple. If you are using a UCB512 workstation, log yourself in on
the text display next to the color display. Reset the color display (hit the left
button in the top row twice; the display should beep, and two lines should appear
in red at the upper left corner of the screen, the first line should read “UC-
Berkeley” and the second line “AED V92.B1”; if something else appears, then the
display isn’t a UCB512). If you are on a Sun, run suntools and open up a shell
window. Then type the shell command

magic tutoriall

Tutoriall is the name of a library cell that you will play with in this tutorial.
At this point, several colored rectangles should appear on the color display along
with a white box and a blinking cursor (if you're running on a Sun workstation,
the cursor will still be over a window on the black-and-white screen; slide it off
the right edge of the black-and-white screen to get it onto the color screen). A

-3-

Magic Tutorial #1: Getting Started February 28, 1985

message will be printed on the text display to tell you that tutoriall is
unwritable (it's in a read-only library), and a ““>"" prompt should appear. If this
has happened, then you can skip the rest of this section (except for the note
below) and go directly to Section 5. "

Note: in the tutorials, when you see things printed in boldface, for example,
magic tutoriall from above, they refer to things you type exactly, such as
command names and file names. These are usually case sensitive (A is different
from a). When you see things printed in italics, they refer to classes of things you
might type. For example, a more complete description of the shell command for
Magic is

magic file

You could type any file name for file, and Magic would start editing that file. It
turns out that tutoriall is just a file in Magic’s tutorial library.

If things didn’t happen as they should have when you tried to run Magic, any
of several things could be wrong. If a message of the form “magic: Command not
found” appears on your screen it is because the shell couldn’t find the Magic
program. The most stable version of Magic is the directory “cad/bin, and the
newest public version is in “cad/new. You should make sure that both these
directories are in your shell path. Normally, “cad/new should appear before
“cad/bin. If this sounds like gibberish, find a Unix hacker and have him or her
explain to you about paths. If worst comes to worst, you can invoke Magic by
typing its full name:

“ead/bin/magiec tutoriall

Another possible problem is that Magic might not know which color display
to use. This happens when you run Magic from a video terminal that isn’t
hardwired to a VAX. On VAXes, Magic reads the file “ead/lib/displays to find
out which color display to use for each hardwired terminal, but if you connect via
a patchboard, port selector, or Ethernet then Magic might not know what to use.
In this case, you must tell Magic which port to use for the color display using the
-g {(graphics port) switch:

magic -g port tutoriall

Port is the device name for a port, e.g. /dev/ttyjl. If you use the -g switch,
Magic will assume that a standard monitor is attached to the display. It is
possible to use the -m switech to chose a colormap for a different sort of monitor,
such as a colormap designed for especially pale blue phosphor. At Berkeley all
our monitors work fine with the standard colormap, so we haven't designed any
special colormaps.

If you were running with an AED display and got a message of the form
“Unable to open mouse...” when you tried to run Magic, it is because there was a
login process on the color display, and it prevented Magic from opening the port
for reading. In this case, you must login a special job called ‘‘sleeper” on the
color display. Sleeper will reset the port so that Magic can use it. Type breaks
on the color display if necessary to get a login prompt, then login a user named
“sleeper’’. No password should be necessary. After this, Magic should work

-4-

Magic Tutorial #1: Getting Started February 28, 1985

correctly. Most of the displays at Berkeley are configured without login processes,
so sleeper is not usually needed. By the way, there are special versions of sleeper
called rsleeper and fsleeper, which can be used to run Magic remotely over the
Ethernet. Consult your local wizard for details.

5. Tools: the Box and the Cursor

Two tools, called the boz and the cursor, are used to select things on the
color display. As you move the mouse, the cursor moves on the screen. The left
and right mouse buttons are used to position the box. If you press the left mouse
button and then release it, the box will move so that its lower left corner is at the
cursor position. If you press and release the right mouse button, the upper right
corner of the box will move to the cursor position, but the lower left corner will
not change. These two buttons are enough to position the box anywhere on the
screen. Try using the buttons to place the box around each of the colored
rectangles on the screen.

Sometimes it is convenient to move the box by a corner other than the lower
left. To do this, press the left mouse button and hold ¢t down. The cursor shape
changes to show you that you are moving the box by its lower left corner:

[

(some displays, like the AED1024, don’t support programmable cursers, so the
cursor will never change shape). While holding the button down, move the cursor
near the lower right corner of the box, and now click the right mouse button (i.e.
press and release it, all the while holding down the left button). The cursor’s
shape will change to indicate that now you are moving the box by its lower right
corner. Move the cursor to a different place on the screen and release the left
button. The box should move so that its lower right corner is at the cursor
position. Try using this feature to move the box so that it is almost entirely off-
screen to the left. Try moving the box by each of its corners.

You can also reshape the box by corners other than the upper right. To do
this, press the right mouse button and hold it down. The cursor shape shows you
that you are reshaping the box by its upper right corner:

=

Now move the cursor near some other corner of the box and click the left button,
all the while holding the right button down. The cursor shape will change to
show you that now you are reshaping the box by a different corner. When you
release the right button, the box will reshape so that the selected corner is at the
cursor position but the diagonally opposite corner is unchanged. Try reshaping
the box by each of its corners.

Magic Tutorial #1: Getting Started February 28, 1985

8. Invoking Commands

Commands can be invoked in Magic in three ways: by pushing buttons on
the puck or mouse; by typing single keystrokes on the text keyboard (these are
called macros); or by typing longer commands on the text keyboard (these are
called long commands). Many of the commands use the box and crosshair tools
to help guide the command.

To see how commands can be invoked from the buttons, first position the
box over a small blank area in the middle of the screen. Then move the cursor
over the red rectangle and press the middle mouse button (if you're using a four-
button puck, use the bottom button wherever the Magic documentation says
“middle”). At this point, the area of the box should get painted red. Now move
the cursor over empty space and press the middle button again. The red paint
should go away. Note how this command uses both the cursor and box locations
to control what happens.

As an example of a macro, type the g key on the text keyboard. A grid will
appear on the color display, along with a small black box marking the origin of
the cell. If you type g again, the grid will go away. You may have noticed
earlier that the box corners didn't move to the exact cursor position: you can see
now that the box is forced to fall on grid points.

Long commands are invoked by typing a colon (*“:”). After you type the
colon, the “>"" prompt on the text screen will be replaced by a ““:” prompt. This
indicates that Magic is waiting for a long command. At this point you should
type a line of text, followed by a return. When Magic is waiting for a long
command, it removes the cursor from the color display. When the long command
has been processed, the cursor reappears on the color display and a *“>" prompt
reappears on the text display. Try typing colon followed by return to see how
this works. Occasionally a “|” prompt will appear. This means that the design-
rule checker is reverifying part of your design. For now you can just ignore this
and treat “‘}" like >,

Each long command comsists of the name of the command followed by
arguments, if any are needed by that command. The command name can be
abbreviated, just as long as you type enough characters to distinguish it from all
other long commands. For example, th and :he may be used as abbreviations for
shelp. On the other hand, :a may not be used as an abbreviation for :undo
because there is another command :upsidedown that has the same abbreviation.
Try typing :u.

As an example of a long command, put the box over empty space on the
color display, then invoke the long command

:paint red

The box should fill with the red color, just as if you had used the middle mouse
button to paint it. Everything you can do in Magic can be invoked with a long
command. It turns out that the macros are just conveniences that are expanded
into long commands and executed. For example, the long command equivalent to
the g macro is

Magic Tutorial #1: Getting Started February 28, 1985

:grid
Magic permits you to define new macros if you wish. See the magic(1) man page
under the command :macro.
One more long command is of immediate use to you. It is
:quit
Invoke this command. Note that before exiting, Magic will give you one last

chance to save the information that you've modified. Type y to exit without
saving anything.

Magic Tutorial #2: Painting
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:
Magic Tutorial #1: Getting Started

Commands covered in this tutorial:
-clockwise, :erase, :fill, :findbox :grid, :label, :layers, :paint, :plow, :redo, :save,
:sideways, :stuff, :undo, :upsidedown, :writeall, :yank, :ysave, :zoom

Macros covered in this tutorial:
a,d gsuUzZ

1. Cells and Paint

In Magic, a circuit layout is a hierarchical collection of cells. Each cell
contains three things: colored shapes, called paint, that define the circuit’s
structure; textual labels attached to the paint; and subcells, which are just
pointers to other cells. The paint is what determines the eventual function of the
VLSI circuit. Labels and subcells are a convenience for you in managing the
layout and provide a way of communicating information between various
synthesis and analysis tools. This tutorial explains how to create and edit paint
and labels in simple single-cell designs. For information on how to build up cell
hierarchies, see ‘“‘Magic Tutorial #3: Cell Hierarchies”.

2. Basic Painting Commands

Enter Magic to edit the cell tutorial2a (type magic tutorial2a to the Unix
shell; follow the directions in ‘“Tutorial #1: Getting Started” if you have any
problems with thi's). The tutorial2a cell is a sort of palette: it shows a splotch

-1-

Magic Tutorial #2: Painting February 28, 1985

of each of the paint layers and gives the names that Magic uses for the layers.

There are six commands for manipulating paint: :paint, :erase, :yank,
:stuff, :fill, and :plow. To paint, position the box over the area you'd like to
paint, then move the cursor over a color and click the middle mouse button. To
erase everything in an area, place the box over the area, move the cursor over a
blank spot, and click the middle mouse button. Try painting and erasing various
colors. If the screen gets totally messed up, you can always exit Magic and restart
it. While you're painting, white dots may occasionally appear and disappear.
These are design rule violations detected by Magie, and will be explained in
“Magic Tutorial #5: Design Rule Checking”’. You can ignore them for now.

It's completely legal to paint one layer on top of another. When this
happens, one of three things may occur. In some cases, the layers are
independent, so what you'll see is a combination of the two, as if each were a
transparent colored foil. This happens, for example, if you paint metal (blue) on
top of polysilicon (red}). In other cases, the new layer replaces the old ones: this
happens, for example, if you paint a transistor on top of poly-metal contact. The
third possibility is that when you paint one layer on top of another you'll get
something different from either of the two original layers. For example, painting
poly on top of diff produces enhancement transistor. Try painting different layers
on top of each other to see what happens. The meaning of the various layers is
discussed in more detail in Section 7 below.

There is a second way of erasing paint that allows you to erase some layers
without affecting others. This is the macro d (for ‘“delete paint”). To use it,
position the box over the area to be erased, them move the crosshair over a
splotch of paint containing the layer(s) you'd like to erase. Press the d key on the
text keyboard: the colors underneath the cursor will be erased from the area
underneath the box, but no other layers will be affected. Experiment around with
the d macro to try different combinations of paints and erases. If the cursor is
over empty space then the d macro is equivalent to the middle mouse button: it
erases everything.

The third and fourth painting commands, :yank and :stuff, are used to pick
up and move arcund larger pieces of the design. These pieces are stored
temporartly in a place called the yank buffer. {Actually, there are several yank
buffers. You'll use only the default one here. See Section 8 for details on how to
use the others.) To pick up a piece of the design, place the box over the area to
be copied and press the a key on the text keyboard. This key is a macro for the
:yank command; it causes all of the paint underneath the box to be copied into
the yank buffer. Now move the box to an empty area of the screen and press the
s key, which is a macro for :stuff. Paint will be copied from the yank buffer back
into the cell at the location of the box. Once you have yanked information, you
can stuff it many times. Experiment with the yank and stuff operations. Try
both the short forms a and s and also the long forms :yank and :stuff. You can
yank and stuff subcells as well as paint; this is explained in ‘‘Magic Tutorial #3:
Cell Hierarchies'.

The fifth painting command has the syntax

Magic Tutorial #2: Painting February 28, 1985

ill direction [layers]

and is used to extend a whole bunch of paint in a given direction. The direction
parameter is one of up, down, right, left, north, south, east, or west, and
indicates the direction in which the :fill will operate. The :ill command will find
all paint touching one side of the box and will extend that paint to the opposite
side of the box. For example, :fill up will look underneath the bottom edge of
the box for paint, and will extend that paint to the top of the box. The effect is
just as if all the colors visible underneath that edge of the box constituted a paint
brush; Magic sweeps the brush across the box in the given direction. If layers
isn't specified, then all layers are filled; if layers is given, then only those layers
are filled. In this command, as in all other commands with a layers parameter,
layers may be either a single layer name or a list of layers separated by commas
(no spaces!). For example, :811 up poly,diff will affect only the poly and diff
layers; metal will not be affected. Try filling in various directions. You can use
:fill to stretch a cell in the middle by deleting one half of the cell (which puts the
deleted paint into the yank buffer), then :stuff it back in an offset position, then
:811 in the gap.

(Plowing is currently disabled pending a major revision, so the following
paragraph can be skipped) The last painting command is called plowing, and is
used to stretch and compact cells. It has the syntax

:plow direction [layers]

where direction is a direction as in :fill and layers is a collection of mask layers.
The plow command treats one side of the box as if it were a plow, and shoves the
plow over to the other side of the box. For example, :plow up treats the bottom
side of the box as a plow, and moves the plow to the top of the box. As the plow
moves, every edge in its path is pushed ahead of it (if layers is specified, then only
edges on those layers are moved). Each edge that is pushed by the plow pushes
other edges ahead of it in a way that preserves design rules, connectivity, and
transistor and contact sizes. This means that material ahead of the plow gets
compacted down to the minimum size permitted by the design rules, and material
that crossed the plow’s original position gets stretched behind the plow. You can
compact a cell by placing a large plow off to one side of the cell and plowing
across the whole cell. You can open up space in the middle of a cell by dragging
a small plow across the area where you want more space. To try out plowing,
edit the cell tutorial2b, place the box over the rectangle that's labelled “Plow
here”, and try plowing in various directions.

3. Labels

Labels are pieces of text attached to the paint of a cell. Labels are used to
provide information to other tools that will process the circuit. Most labels are
node names; they provide an easy way of referring to nodes in tools such as
routers, simulators, and timing analyzers. Labels may also be used for other
purposes: for example, some labels are treated as attributes that give Crystal, the
timing analyzer, information about the direction of signal flow through transistors.

Magic Tutorial #2: Painting February 28, 1985

To create a label, make the box into a cross at the point where you’d like the
label attached (put the upper-right corner on top of the lower-left). Then invoke
the command

:1abel text position layer

Text must be supplied, but the other arguments can be defaulted. If fext has any
spaces in it, then it must be enclosed in double quotes. Position tells where the
text will be displayed, relative to the point of the label. It may be any of north,
south, east, west, top, bottom, left, right, up, down, center, northeast,
ne, southeast, se, southwest, sw, northwest, nw. For example, if ne is
given, the text will be displayed above and to the right of the label point. If no
position is given, Magic will pick a position for you. Layer tells which paint layer
to attach the label to. If layer covers the entire area of the label, then the Iabel
will be associated with the particular layer. If layer is omitted, or if it doesn’t
cover the label’s area, Magic initially associates the label with the ‘‘space’” layer,
then checks to see if there's a layer that covers the whole area. If there is, Magic
moves the label to that layer. It is generally a bad idea to place labels at points
where there are several paint layers, since it will be hard to tell which layer the
label is attached to. As you edit, Magic will ensure that labels are only attached
to layers that exist everywhere under the layer. To see how this works, go back
to cell tutorial2a (if you're not currently editing that cell, type the command
:sload tutorial2a). Place a label on one of the red areas. Don’t supply a layer
name; Magic will pick polysilicon. Now paint the layer pme over the same
area: the label will switch layers. Finally, erase poly over the area, and the label
will move again.

Labels can be yanked, stuffed, and erased just like paint by specifying the
labels “layer””. There are three ways of erasing labels. The first way is to make
the box into a cross on top of the label, then click the middle button with the
cursor over empty space. Technically, this will erase all paint layers and labels
too. However, since the box has zero area, erasing paint has no effect: only the
labels are erased. The second way is to position the box so it covers one or more
labels to be erased. Then invoke the command

:erase labels

This will erase all labels that lie under or touch the box. The third way to erase a
label is to erase the paint that contains it. If the paint is erased all around the
label, then the label will be deleted automatically.

Try painting a red area, attach a label to the red area, then paint blue over
the red. Note that if you erase blue the label stays (since it's attached to red},
but if you erase the red then the label is deleted. Labels can be yanked and
stuffed just like paint. '

Although many labels are point labels, this need not be the case. You can
label any rectangular area by setting the box to that area before invoking the
label command. This feature is used for labelling terminals for the router (see
below), and for labelling tiles used by Mpack, the tile packing program.

Magic Tutorial #2: Painting February 28, 1985

4. Labelling Conventions

When creating labels, Magic will permit you to use absolutely any text
whatsoever. However, many other tools, and even parts of Magic, expect label
names to observe certain conventions. Except for the special cases described
below, labels shouldn’t contain any of the letters *“1""". Most labels are node
names: each one gives a unique identification to a set of things that are
electrically connected. There are two kinds of node names, local and global. Any
label that ends in “!"" is treated as a global node name; it will be assumed that all
nodes by this name, anywere in any cell in a layout, are electrically connected.
The most common global names are Vdd! and GND!, the power rails. You
should always use these names exactly, since many other tools require them.
Nobody knows why “GND!"” is all in capital letters and “Vdd!” isn't.

Any label that does not end in “!’ or any of the other special characters
discussed below is a local node name. It refers to a node within that particular
cell. Local node names must be unique within the cell: there shouldn't be two
electrically distinct nodes with the same name. On the other hand, it is perfectly
legal, and sometimes advantageous, to give more than one name to the same
node. It is also legal to use the same local node name in different cells: the tools
will be able to distinguish between them and will not assume that they are
electrically connected.

The only other labels currently understood by the tools are atfributes.
Attributes are pieces of text associated with a particular piece of the circuit: they
are not node names, and need not be unique. For example, an attribute might
identify a node as a chip input, or a transistor terminal as the source of
information for that transistor. Any label whose last character is “@”, “$”, or
“"" is an attribute. There are three different kinds of attributes. Node
attributes are those ending with “@’’; they are associated with particular nodes.
Transistor source/drain attributes are those ending in *““$"; they are associated
with particular terminals of a transistor. A source or drain attribute must be
attached to the channel region of the transistor and must fall exactly on the
source or drain edge of the transistor. The third kind of attribute is a transistor
gate attribute. It ends in “*"’ and is attached to the chanmel region of the
transistor. To see examples of attributes and node names, edit the cell
tutorial2e¢ in Magic.

There is one last convention about label usage. The routing tools ignore all
labels except for those on the edges of cells. If you expect to use the router to
connect to a particular node, you should place the label for that node on its
outermost edge. The label should not be a point label, but should instead be a
horizontal or vertical line covering the entire edge of the wire. The router will
choose a connection point somewhere along the label. A good rule of thumb is to
label all nodes that enter or leave the cell in this way. For more details on how
labels are used in routing, see ‘“Magic Tutorial #6: Netlists and Routing”.

Magic Tutorial #2: Painting February 28, 1985

5. Files and Formats

Magic provides a variety of ways to save your cells on disk. Normally, things
are saved in a special Magic format. Each cell is a separate file, and the name of
the file is just the name of the cell with .mag appended. For example, the cell
tutorial2a is saved in file tutorial2a.mag. To save cells on disk, invoke the
command

swriteall

This command will run through each of the cells that you have modified in this
editing session, and ask you what to do with the cell. Normally, you’ll type
write, or just hit the return key, in which case the cell will be written back to the
disk file from which it was read (if this is a new cell, then you'll be asked for a
name for the cell). If you type autowrite, then Magic will write out all the cells
that have changed without asking you what to do on a cell-by-cell basis. Flush
will cause Magic to delete its internal copy of the cell and reload the cell from the
disk copy, thereby expunging all edits that you've made. Skip will pass on to the
next cell without writing this cell (but Magic still remembers that it has changed,
so the next time you invoke :writeall Magic will ask about this cell again).
Abort will stop the command immediately without writing or checking any more
cells.

IMPORTANT NOTE: Unlike vi and other text editors, Magic doesn’t
keep checkpoint files. This means that if the system should crash in the middle of
a session, you'll lose all changes since the last time you wrote out cells. It's a good
idea to save your cells frequently during long editing sessions.

You can also save the cell you're currently editing with the command
:save name

This command will append ‘*.mag” to name and save the cell you are editing in
that location. If you don’t provide a name, Magic will use the cell's name {plus
the ‘“.mag’ extension) as the file name, and it will prompt you for a name if the
cell hasn’t yet been named.

Once a cell has been saved on disk you can edit it by invoking Magic with
the command

magic name

where name is the same name you used to save the cell (no “.mag” extension).

Magic can also read and write files in CIF format (CIF stands for Caltech
Intermediate Form, and is the representation that is sent off to fabricate chips).
CIF is also used to communicate with programs like Cifplot that only understand
CIF. Magic's CIF facilities are described in ‘‘Magic Tutorial #8: Reading and
Writing CIF”. That tutorial also tells how to port Caesar files to Magic, using
CIF.

Magic Tutorial #2: Painting February 28, 1985

6. Utility Commands

There are several commands that you will probably find useful once you start
working on real cells. The command

:grid spacing

will toggle a one-lambda reference grid on and off if no spacing is given. If
spacing is given, the grid will be turned on, and the grid lines will be spacing
units apart. The macro g provides a short form for :grid. When the grid is on a
small black box is displayed to mark the origin of the cell you're editing.

There are probably going to be times when you’ll do things that you'll later
wish you hadn’t. Fortunately, Magic has an undo facility that you can use to
restore things after you've made mistakes. The command

sundo

(or, alternatively, the macro u} will undo the effects of the last operation you
invoked that changed the database. If you made a mistake several operations
ago, you can type sundo several times to undo successive operations. However,
there 1s a imit to all this: Magic only remembers how to undo the last half-dozen
or so modifications. If you undo something and then decide you wanted it after
all, you can undo the undo with the command

tredo

(U is a macro for this command). Try making a few paints and erases, then use
:undo and :redo to work backwards and forwards through the changes you
made.

If you want to create a cell that doesn’t fit on the screen, you'll need to know
how to change the screen view. This can be done with two commands:

izoom factor
:findbox [zoom)]

If factor 1s given to the zoom command, it is a zoom-out factor. For example, the
command :zoom 2 will change the view so that there are twice as many units
across the screen as there used to be. The new view will have the same center as
the old one. The command :zoom .5 will increase the magnification so that only
half as much of the circuit is visible.

The findbox command is used to change the view according to the box. The
command alone just moves the view (without changing the scale factor) so that
the box is in the center of the screen. If the zoom argument is given then the
magnification is changed too, so that the area of the box nearly fills the screen.

The macro Z corresponds to :zoom 2, which shows more on the screen. The
macro z corresponds to :findbox zoom, which zooms in on the box. Experiment
around with the zoom commands to see how they work.

Magic Tutorial #2: Painting February 28, 1985

7. What the Layers Mean

The paint layers available in Magic are different from those that you may be
used to in Caesar and other systems because they don’t correspond exactly to the
masks used in fabrication. We call them abstract layers because they correspond
to constructs such as wires and contacts, rather than mask layers. We also call
them logs because they look like sticks except that the geometry is drawn fully
fleshed instead of as lines. In Magic there is one paint layer for each kind of
conducting material (polysilicon, diffusion, metal, etc.), plus one additional paint
layer for each kind of transistor (enhancement, depletion, etc.), and, finally, one
further paint layer for each kind of contact (buried contact, poly-metal contact,
diffusion-metal contact, etc.). Each layer has one or more names that are used to
refer to that layer in commands. To find out the layers available in the current
technology, type the command

tlayers

In addition to the mask layers, there are a few pseudo-layers that are valid in all
technologies; these are listed in Table I. Each Magic technology also has a
technology manual describing the features of that technology, such as design
rules, routing layers, CIF styles, etc. If you haven’t seen the technology manual
for NMOS, this is a good time to take a look at it.

labels

subcells

* (all mask layers)

$ (all mask layers visible under cursor)

Table 1. Pseudo-layers available in all technologies.

If you're used to designing with mask layers (e.g. you've been reading the
Mead-Conway book), Magic’s log style will take some getting used to. One of the
reasons for logs is to save you work. In Magic you don’t draw implants, wells,
buried windows, or contact via holes. Instead, you draw the primary conducting
layers and paint some of their overlaps with special types such as depletion
transistor or polysilicon contact. For depletion transistors, you draw only the
actual area of the transistor channel. Magic will generate the polysilicon and
diffusion, plus any necessary implants, when it creates a CIF file. For contacts,
you paint the contact layer in the area of overlap between the conduecting layers.
Magic will generate each of the constituent mask layers plus vias and buried
windows when it writes the CIF file. Figure 1 shows a simple cell drawn with
both mask layers (as in Caesar) and with logs {as in Magic).

"If you paint a fancy layer such as poly-metal contact over a poly or metal
region, Magic will delete the poly or metal paint and replace it with contact. If
you paint poly over buried contact, the buried contact won’t change since it
contains poly anyway. As a convenience, if you paint poly over diffusion, Magic
automatically turns the overlap area into enhancement transistor. As a general
rule of thumb, you can assume that if it looks right, it is right. Experiment with
painting and erasing until you feel comfortable with the abstract layers.

Magie Tutorial #2: Painting February 28, 1985

Palysilicon

Metal

Diffusion
A t-FET
Enhancement-FE

g Uiff-Metal-Centact

Figure 1. An example of how the logs are used. The figure on the left shows
actual mask layers for a shift register cell, and the figure on the right shows the
layers used to represent the cell in Magic.

Another advantage of the logs used in Magic is that they simplify the design
rules. Most of the formation rules (e.g. contact structure) go away, since Magic
automatically generates correctly-formed structures when it writes CIF. All that
are left are minimum size and spacing rules, and Magic’s abstract layers result in
fewer of these than there would be otherwise. This helps to make Magic’s built-in
design rule checker very fast (see ‘‘Magic Tutorial #5: Design Rule Checking”),
and is one of the reasons plowing is possible.

8. Additional Commands

Now that you know about paint layers, you're ready for a complete
description of the painting commands. The command

:paint layers

is used to paint. Layers is one or more layer names, separated by commas (you
can also use spaces, but only if you enclose the entire list of layers in double-
quotes). Any layer can be abbreviated, as long as the abbreviation is
unambiguous. For example, paint poly,met will paint polysilicon and metal.
The erase command is

terase layers

and d is a macro for :erase $. If layers isn’t given in :erase then it defaults to
¢ labels.

There are actually several yank buffers in Magic, one for each lower-case
letter of the alphabet. The full syntax for the yank and stuff commands is

syank buf
sstuff layers buf

In each of the commands, buf is a single letter buffer name, which defaults to y

-9.

Magic Tutorial #2: Painting February 28, 1985

{for “‘yank buffer”). The :stuff command takes a layers parameter (with default
* labels), and will only put back those layers. The :yank command always
operates on *,labels. The a macro is equivalent to :yank, and the s macro is
equivalent to :stuff.

The yank buffers can also be flipped and rotated using the commands
supsidedown buf

:sideways buf
:clockwise degrees buf

In each of these commands, buf is the name of a yank buffer, and cannot be
defaulted. If no buffer is given, the commands operate on the current cell instead
(this is explained in ‘“‘Magic Tutorial #3: Cell Hierarchies”). Use y for the default
vank buffer. In the :elockwise command, degrees is the number of degrees to
rotate the yank buffer. It must be an integer multiple of 80 degrees.

The last command that deals with yank buffers is
sysave file buf

This command will save the contents of the yank buffer buf in the file named
filemag as a new cell. H buf is omitted, it defaults to y.

-10 -

Magic Tuatorial #3: Cell Hierarchies
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 84720

This tutorial corresponds to Magic version 3.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Painting

Commands covered in this tutorial:
:array, :clockwise, :copycell, :deletecell, :edit, :erase, :expand, :flush, :getcell,
:identify, :load, :movecell, :path, :save, :select, :sideways, :stuff, :unexpand,
:upsidedown, :writeall, :yank

Macros covered in this tutorial:
¢, C, f,x, X

1. Introduection

In Magic, a layout is a hierarchical collection of cells. Each cell contains
three things: paint, labels, and subcells. “Magic Tutorial #2: Painting” showed
you how to create and edit paint and labels. This tutorial describes Magic’s
facilities for building up cell hierarchies. Strictly speaking, hierarchical structure
isn’t necessary: any design that can be represented hierarchically can also be
represented ‘‘flat” (with all the paint and labels in a single cell). However, many
things are greatly improved if you use a hierarchical structure, including the
efficiency of the design tools, the speed with which you will enter the design, and
the ease with which you can modify it later.

Magic Tutorial #3: Cell Hierarchies February 28, 1985

2. Viewing Hierarchical Designs

Hierarchical structure merely means that each cell can contain other cells as
components. To look at an example of a hierarchical layout, enter Magic with the
shell command magic tutorial3. The cell tutorial3 contains two instances of
the subcell shiftrow, plus some paint. Initially, each instance is displayed in
unezxpanded form. This means that no details of the subcell are displayed; all
you see is the cell’'s bounding box, plus two character strings inside the bounding
box. The top string is the name of the subcell (the name you would type when
invoking Magic to edit the cell; the cell’s contents are stored in a file with this
name plus a .mag extension). All instances of a subcell have the same name.
The bottom string is called an ¢nstance ideniifier, and is used to distinguish
subcells of the same parent, particularly different instances of the same subcell.
Instapce id's are used for routing and circuit extraction, and are discussed in
Section 6.

To see what’s inside a cell instance, you must erpand it. First, move the
cursor over the upper left corner of the top shiftrow instance, then type the
command

:select

This selects the instance underneath the cursor as the current cell and sets the
box to coincide with the instance’s bounding box. The name of the selected cell
will be printed on the text terminal. Most of the Magic commands described in
this tutorial operate on the current cell. The macro f (“find”’) is equivalent to
:select. Once you have selected the top shiftrow cell, expand it with the

sexpand
command, or with the macro C (“expand Cell”), which is equivalent.

As you can see now, the shiftrow cell contains nothing but an array of
shiftcell cells. In Magic, an array is a special kind of instance containing
multiple copies of the same subcell spaced at fixed intervals. Arrays can be one-
dimensional or two-dimensional. It’s important to remember that the whole array
is a single instance, and that most of the cell commands operate simultaneously on
all elements of the array. The instance identifiers for the elements of the array
are the same except for an index. Now select one of the elements of the array and
expand it. Notice that the entire array is expanded at the same time.

When you have expanded the array, you’ll see that the paint in tutorial3 is
displayed more brightly than the paint in the shiftcell instances. Tutorial3 is
called the edit cell, because its contents are currently editable. The paint in the
edit cell is displayed more brightly than other paint to make it clear that you can
change it. As long as tutorial3 is the edit cell, you cannot modify the paint in
shiftcell. Try erasing paint from the area of one of the shiftcell instances:
nothing will be changed. Section 4 tells how to switch the edit cell.

Place the cursor over one of the shiftcell instances again. At this point, the
cursor is actually over three different cell instances: shifteell (an element of an
array instance within shiftrow), shiftrow (an instance within tutorial3), and
tutorial3. Note that even the topmost cell in the hierarchy is treated as an

Magic Tutorial #3: Cell Hierarchies February 28, 1985

instance by Magic. When you press the f key to select a cell, Magic initially
chooses the smallest cell visible underneath the cursor, shiftcell in this case.
However, if you invoke the f macro again (or type :select) without moving the
cursor, Magic will step through all of the cells under the cursor in order. Select
the shiftrow instance and unexpand it by typing the command

sunexpand

or by typing the macro ¢ (‘“‘unexpand ecell”). This causes the selected cell to be
displayed in bounding box form again.

Experiment with the :expand and :ﬁnexpa.nd commands. Two additional
commands,

texpand all
:unexpand all

may also be useful. The :expand all command will recursively expand every cell
that intersects the box until there are no unexpanded cells left under the box.
The sunexpand all command will unexpand every cell whose area intersects the
box but doesn't completely contain it. The macro X is equivalent to :expand
all, and x is equivalent to :unexpand all.

3. Rearranging Subcells

There are several commands in Magic for adding subcells to an existing cell,
and for rearranging the subcells. The command

igetcell name

will incorporate an instance of cell name within the edit cell, with its lower left
corner aligned with the lower left corner of the box. Use the getcell command to
get an instance of the cell tutorial3b. After the geteell command, the new
instance is made the current cell. If you want to make a second copy of an
instance, you can either use :getcell again, or select an existing instance of the
subcell and invoke the

:copycell

command. The new copy will be placed with its lower left corner at the lower left
corner of the box (be careful: it's easy to place two copies of the same cell on top
of each other). To get rid of an instance, select it and then invoke the

:deletecell

command. When you delete a subcell, it doesn’t affect the disk file containing
that subeell; it merely deletes the instance from the edit cell. If you copy or
delete one element of the array, the entire array is copied or deleted. Try out
these commands on the subcells of tutorial3.

Remember that you are currently editing tutorial3. This means that you
cannot invoke :deletecell on any of the shiftcell instances: they are children of
shiftrow, so deleting them requires shiftrow tc be modified. This cannot
happen without making it the edit cell first. Try to delete one of the shifteell

Magic Tutorial #3: Cell Hierarchies ‘ February 28, 1985

instances to see what happens.
There are four Magic commands for rearranging subcells:

ielockwise degrees
:movecell direction distance
:sideways
supsidedown

Each of these commands operates on the current cell, and in each case the current
celi must be a child of the edit cell. The :clockwise command rotates the
current cell clockwise by the given number of degrees (degrees must be a multiple
of 90). The :sideways command flips the current cell sideways, and
supsidedown flips it upside down. As mentioned in “Tutorial #2: Painting”,
these three commands can be followed by a single lower-case letter to operate on
one of the yank buffers instead of the current cell.

The :movecell command is used to reposition the current cell. It has three
forms. If it is typed with no arguments, it moves the current cell so that its lower
left corner coincides with the lower-left corner of the box. If direction and
distance are specified, then the current cell is moved diséance units in direction.
If no distance is used, then the height or width of the box is used as the distance
to move the cell (the box’s height is used for up or down; its width is used for
left or right).

To turn a normal instance into an array, select the instance and then invoke
the :array command. It has two forms:

:APray rsize ysize
sarray zlo zht ylo yhi

In the first form, zsize indicates how many elements the array should have in the
x-direction, and ysize indicates how many elements it should have in the y-
direction. The spacing between elements is controlled by the box's width (for the
x-direction) and height (for the y-direction). By changing the box size, you can
space elements so that they overlap, abut, or have gaps between them. The
elements are given indices from 0 to zsize-1 in the x-direction and from 0 to
ysize-1 in the y-direction. The second form of the command is identical to the
first except that the elements are given indices from zlo to zh{ in the x-direction
and from ylo to yhi in the y-direction. You can also invoke the :array command
on an existing array to change the number of elements or spacing. Use a size of 1
for zsize or ysize in order to get a one-dimensional array.

If any element of an array is moved or flipped or rotated, the entire array is
modified in the same way. Make an array of tutorial3b cells, and try out the
re-arranging commands on the array and on other cells. It will be easier to see
the effects of the command if you expand the instances you are re-arranging,.

4. Using the Painting Commands on Subcells

The painting commands :yank, :stuff, and serase all operate on subcells as
well as paint. When yanking, all unexpanded subcells that are visible underneath

Magic Tutorial #3: Cell Hierarchies February 28, 1985

the box are yanked (as cells, not paint), and the :stuff command will put this
information back in subcell form also. If the “layer” subeells is specified in
:erase, then all subcells under the box will be erased (regardless of whether or not
they are expanded}. The serase command can be used to delete a large number
of subcells at once, or to ' move many subecells at once. To move all the subecells in
an area, delete them with :erase, move the box, and :stuff them back again.

5. Switching the Edit Cell

At any given time, you are editing the definition of a single cell. This
definition is called the edit cell. You can modify paint and Iabels in the edit cell,
and you can re-arrange its subcells. You may not re-arrange or delete the subcells
of any cells other than the edit cell, nor may you modify the paint or labels of any
cells except the edit cell. You may, however, copy information from other cells
into the edit cell, using :yank, :put, and :copyeell. To help clarify what is and
isn't modifiable, Magic displays the paint of the edit cell in brighter colors than
other paint (you can use the :see command to arrange for all cells to be displayed
brightly, or to cause some layers not to be displayed at all; see the man page for
details).

Besides the edit cell, there are two other special cells in Magic. The current
cell has already been introduced: it selects the instance to be used in cell
commands. The third special cell is called the roof cell. It is the topmost cell in
the hierarchy, the one you named when you ran Magic (tutorial3). As you will
see in ‘“Magic Tutorial #4: Multiple Windows, there can actually be several root
cells at any given time, one in each window. For now, there is only a single
window on the screen, and thus only a single root cell.

Up until now, the root cell and the edit cell have always been the same.
However, this need not always be the case. You can switch the edit cell to any
cell in the hierarchy by selecting an instance of the definition you'd like to
modify, and then typing the command

tedit

Use this command to switch the edit cell to one of the shiftcell instances in
tutorial3. Its paint brightens, while the paint in tutorial3 becomes dim.

When you edit a cell, you are editing the master definition of that cell. This
means that if the cell is used in several places in your design, the edits will be
reflected in all those places. Try painting and erasing in the shiftcell that you
Just made the edit cell: the modifications will appear in all instances of the cell.

There is a second way to change the edit cell. This is the command
sload name

The :load command loads a new hierarchy into the window underneath the
cursor. The cursor must be on the screen for this command to work. Name is
the name of the root cell in the hierarchy. If no name is given, a new unnamed
cell is loaded and you start editing from scratch.

Magic Tutorial #3: Cell Hierarchies February 28, 1985

8. Subcell Usage Conventions

At present, Magic doesn’t place any restrictions on how you arrange subcells:
they may overlap in arbitrary ways. However, the design-rule checker flags
certain kinds of overlaps as errors, and in addition the tools will run much more
efficiently if you are careful about how you use overlap. This section gives some
conventions that you should {ollow.

Overlaps between cells are occasionally useful to share busses and control
lines running along the edges. However, overlaps cause the analysis tools to work
much harder than they would if there were no overlaps: wherever cells overlap,
the tools have to combine the information from the two separate cells. Thus, you
shouldn’t use overlaps any more than necessary. For example, suppose you want
to create a one-dimensional array of cells that alternates between two cell types,
A and B: “ABABABABABAB”. One way to do this is first to make an array of
A instances with large gaps between them (“A A A A A A"), then make an
array of B instances with large gaps between them (“B B B B B B”), and
finally place one array on top of the other so that the B’s nestle in between the
A’s. The problem with this approach is that the two arrays overlap almost
completely. so Magic will have to go to a lot of extra work to handle the ovelaps
(in this case, there isn’t much overlap of actual paint, but Magic won’t know this
so it will spend a lot of time worrying about it). A better solution is to create a
new cell that contains one instance of A and one instance of B, side by side. Then
make an array of the new cell. This approach makes it clear to Magic that there
isn’t any real overlap between the A’s and B’s.

If you do create overlaps, you should use the overlaps only to connect the
two cells together, and not to change their structure. This means that the overlap
should not cause transistors to appear, disappear, or change size. The result of
overlapping the two subcells should be the same electrically as if you placed the
two cells apart and then ran wires to hook parts of one cell to parts of the other.
The convention is necessary in order to be able to do hierarchical circuit
extraction easily (it makes it possible for each subcell to be circuit-extracted
independently).

Three kinds of overlaps are flagged as errors by the design-rule checker.
First, you may not overlap polysilicon in one subcell with diffusion in another cell
in order to create transistors. Second, you may not overlap transistors or contacts
in one cell with different kinds of tranistors or contacts in another cell (there are a
few exceptions to this rule in some technologies). Third, if contacts from different
cells overlap, they must be the same type of contact and must coincide exactly:
you may not have partial overlaps. This rule is necessary in order to guarantee
that Magic can generate CIF for fabrication.

You will make life a lot easier on yourself if you spend a bit of time and
choose a clean hierarchical structure. It's tempting to slap down cells willy-nilly
on top of each other in totally confused organizations without thinking about
what you're doing. But if you do this, you'll find it’s very hard to modify the
design, and you’ll also find that the tools run slowly. VLSI circuits are complex
even with the most carefully-chosen organization; they can become completely
unmanageable if you aren't careful.

Magic Tutorial #3: Cell Hierarchies February 28, 1985

7. Instance Identifiers

Instance identifiers are used to distinguish the different subcells within a
single parent. The cell definition names cannot be used for this purpose because
there could be many instances of a single definition. Magic will create default
instance id's for you when you create new instances with the :get or :copy
commands. The default id for an instance will be the name of the definition with
a unique integer added on. You can change an id by selecting an instance (which
must be a child of the edit cell) and invoking the command

sidentify newid

where newid is the identifier you would like the instance to have. Newid must
not already be used as an instance identifier of any subcell within the edit cell. It
is acceptable to re-use the same identifier for instances with different parents.

Any node or instance can be described uniquely by listing a path of instance
identifiers, starting from the root cell. The standard form of such names is similar
to Unix file names. For example, if ¢d! is the name of an instance within the root
cell, id2 is an instance within idl, and node is a node name within id2, then
id1/id2/node can be used unambiguously to refer to the node.

8. Writing and Flushing Cells

When vou make changes to your circuit in Magie, there is no immediate
effect on the disk files that hold the cells. You must explicitly save each cell that
has changed, using either the :save command or the :writeall command. Magic
keeps track of the cells that have changed since the last time they were saved on
disk. If you try to leave Magic without saving all the cells that have changed, the
system will warn you and give you a chance to return to Magic to save them.
Magic never flushes cells behind your back, and never throws away definitions
that it has read in. Thus, if you edit a cell and then use :load to edit another
cell, the first cell is still saved in Magic even though it doesn’t appear anywhere
on the screen. If you then invoke :load a second time to go back to the first cell,
you'll get the edited copy.

If you decide that you'd really like to discard the edits you've made to a cell
and recover the old version, there are two ways you can do it. The first way is
using the flush option in :writeall. The second way is to use the command

:flush cellname

If no cellname is given, then the edit cell is flushed. Otherwise, the cell named
cellname is flushed. The :flush command will expunge Magic’s internal copy of
the cell and replace it with the disk copy.

When you are editing large chips, Magic may claim that cells have changed
even though you haven't modified them. Whenever you modify a cell, Magic
makes changes in the parents of the cell, and their parents, and so on up to the
root of the hierarchy. These changes record new design-rule violations, as well as
timestamp and bounding box information used by Magic to keep track of design
changes and enable fast cell read-in. Thus, whenever you change one cell you'll

Magic ‘Tutorial #3: Cell Hierarchies February 28, 1985

generally need to write out new copies of its parents and grandparents. If you
don't write out the parents, or if you edit a child “out of context” (by itself,
without the parents loaded), then you'll incur extra overhead the next time you
try to edit the parents. ‘‘Timestamp mismatch’ error messages are printed when
you've edited cells out of context and then later go back and read in the cell as
part of its parent. These aren’t serious problems; they just mean that Magic is
doing extra work to update information in the parent to reflect the child’s new
state. :

9. Search Paths

When many people are working on a large design, the design will probably be
more manageable if different pieces of it can be located in different directories of
the file system. Magic provides a simple mechanism for managing designs spread
over several directories. The system maintains a search path that tells which
directories to search when trying to read in cells. By default, the search path is

', which means that Magic looks only in the working directory. You can
change the path using the command

:path searchpath

where searchpath is the new path that Magic should use. Searchpath consists of a
list of directories separated by colons. For example, the path ‘‘.:~ouster/x:a/b"
means that if Magic is trying to read in a cell named ‘‘foo”, it will first look for a
file named *‘foo.mag’’ in the current directory. If it doesn’t find the file there, it
will look for a file named ‘“~ouster/x/foo.mag”, and if that doesn’t exist, then it
will try “‘a/b/foo.mag” last. To find out what the current path is, type :path
with no arguments. In addition to your path, this command will print out the
system cell library path (where Magic looks for cells if it can’t find them anywhere
in your path), and the system search path {where Magic looks for files like
colormaps and technology files if it can’t find them in your current directory).

Because there is only a single search path that is used everywhere in Magic,
you must be careful not to re-use the same cell pame in different portions of the
chip. A standard problem with large designs is that different designers use the
same name for different cells. This works fine as long as the designers are
working separately, but when the two pieces of the design are put together using
a search path, a single copy of the cell (the one that is found first in the search
path) gets used everywhere.

Magic Tutorial #4: Multiple Windows
Robert N. Mayo

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Painting (not a critical prerequisite)

Commands covered in this tutorial:

:closewindow, :openwindow, :over, :specialopen, :under, :windowpositions
Macros covered in this tutorial:

(none)

1. Introduction

A window is a rectangular viewport. You can think of it as a magnifying
glass that may be moved around on your chip. Magic initially displays a single
window on the sereen. This tutorial will show you how to create new windows and
how to move old ones around. Multiple windows allow you to view several
portions of a circuit at the same time, or even portions of different circuits.

Some operations are easier with muitiple windows. For example, let’s say
that you want to paint a very long line, say 3 lambda by 800 lambda. With a
single window it is hard to align the box accurately since the magnification is not
great enough. With multiple windows, one window can show the big picture
while other windows show magnified views of the areas where the box needs to be
aligned. The box can then be positioned accurately in these magnified windows.

Magic Tutorial #4: Multiple Windows February 28, 1985

2. Manipulating Windows

2.1. Opening and Closing Windows
Initially Magic displays one large window. The
“:openwindow cellname”

command opens another window and loads the giver cell. To give this a try, start
up Magic, point at the center of the screen and type: :openwindow palette. A
new window will appear where you are pointing. Move the cursor over a bit and
type: :openwindow shiftcell. Another window will appear. Both of these
windows contain cells. Magic has other sorts of windows, and they are described
in Section 4 below.

To get rid of a window, point to it and type:
iclosewindow

Point to a portion of the original, large window and close it. You will notice that
some parts of the screen are not covered by any window — these areas are a light
green background color. Magic doesn’t care how many windows you have (within
reason) nor how they overlap.

2.2. Resizing and Moving Windows

If you have been experimenting with Magic while reading this you will have
noticed that windows opened by :openwindow are all the same size. This is done
so that windows may be opened quickly, but many times you may want them to
be a different size. Magic allows you to move and resize windows using the same
techniques used for moving the box for painting operations (see “Magic Tutorial
#2: Painting”). Point somewhere in the border area of a window, except for the
lower left corner, and press and hold the right button. The cursor will change to
a shape like this:

This indicates that you have hold of the upper right corner of the window. Point
to a new.location for this corner and release the button. The window will change
shape so that the corner moves. Now point to the border area and press and hold
the left button. The cursor will now look like:

This indicates that you have hold of the entire window by its lower left window.
Move the cursor and release the button. The window will move so that its lower

-9.

Magie Tutorial #4: Multiple Windows February 28, 1985

left corner is where you pointed.

The other button commands for positioning the box by any of its corners also
work for windows. Just remember to point to the border of a window before
pushing the buttons.

The middle button can be used to grow a window up to full-screen size. To
try this, click the middle button over the caption of the window. The window
will now fill the entire screen. Click in the caption again and the window will
shrink back to its former size.

After setting up a bunch of windows you may want to save the configuration
(for example, yon may be partial to a set of 3 non-overlapping windows). To do
this, type:
:windowpositions filename

A set of commands will be written to the file. This file can be used with the
ssource command to recreate the window configuration later. (However, this only
works well if you stay on the same kind of display; if you create a file on a Sun
and then :source it on a VAX, you won't get very satisfactory results)

2.3. Shuffling Windows

By now you know how to open, close, and resize windows. This is sufficient
for most purposes, but sometimes you want to look at a window that is covered
up by another window. The :underneath and :over commands help with this.

The :underneath command moves the window that you are pointing at
underneath all of the other windows. The :over command moves the window on
top of the rest. Create a few windows that overlap and then use these commands
to move them around. You'll see that overlapping windows behave just like
sheets of paper: the ones on top obscure portions of the ones underneath.

2.4. Scrolling Windows

Some of the windows have thick bars on the left and bottom borders. These
are called scroll bars, and the light blue slugs within them are called elevators.
The size and position of an elevator indicates how much of the layout {or
whatever is in the window) is currently visible. If an elevator filis its scroll bar,
then all of the layout is visible in that window. If an elevator fills only a portion
of the scroll bar, then only that portion of the layout is visible. The position of
the elevator indicates which part is visible — if it is near the bottom, you are
viewing the bottom part of the layout; if it is near the top, you are viewing the
top part of the layout. There are scroll bars for both the vertical direction (the
left scroll bar) and the horizontal direction (the bottom scroll bar).

Besides indicating how much is visible, the scroll bars can be used to change
the view of the window. Clicking the middle mouse button in a scroll bar moves
the elevator to that position. For example, if you are viewing the lower half of a
chip (elevator near the bottom) and you click the middle button near the top of
the seroll bar, the elevator will move up to that position and you will be viewing
the top part of your chip. The little squares with arrows in them at the ends of
the scroll bars will scroll the view by one screenful when the middle button is

Magic Tutorial #4: Multiple Windows February 28, 1985

clicked on them. They are useful when you want to move exactly one screenful.
The :scroll command can also be used to scroll the view {though we don't think
it's as easy to use as the scroll bars). See the man page for information on it.

The bull's-eye in the lower lefi corner of a window is used to zoom the view
in and out. Clicking the left mouse button zooms the view out by a factor of 2,
and clicking the right mouse button zooms in by a factor of 2. Clicking the
middle button here makes everything in the window visible and is equivalent to
the :view command.

3. How Commands Work Inside of Windows
Each window has a caption at the top. Here is an example:
mychip EDITING shiftcell

This indicates that the window contains the cell mychip, and that a subcell of it
called shifteell is being edited. You may remember from the tutorial on cells and
hierarchy that at any given time Magic is editing exactly one cell. If the cell
being edited is in another window then the caption on this window would read:

mychip [NOT BEING EDITED)]

Let’s do an example to see how commands are executed within windows.
Close any windows that you may have on the screen and open two new windows,
each containing the cell shifteell. (Use the :closewindow and :openwindow
shiftcell commands to do this.) Try moving the box around in one of the
windows. Notice that the box also moves in the other window. This illustrates
one example of a more general rule:

The box can only be tn one cell at a time, but if that cell is loaded into
several windows it may be manipulated in all of them.

If you change shiftcell by painting or erasing portions of it you will see the
changes in both windows. This is because both windows are looking at the same
thing: the cell shiftcell. Go ahead and try some painting and erasing until you
feel comfortable with it. Try positioning one corner of the box in one window and
another corner in another window. You'll ind it doesn't matter which window
you point to, all Magic knows is that you are pointing to the shiftcell.

These windows are independent in some respects, however. For example, you
may scroll one window around without affecting the other window. Use the
:zoom and :seroll commands to give this a try.

We have seen how Magic behaves when both windows view a single cell.
What happens when windows view different cells? To try this out load palette
into one of the windows (point to a window and type :load palette). You will
see the captions on the windows change — only one window contains the cell
currently being edited. The box cannot be positioned by placing one corner in
one window and another corner in the other window because that doesn’t really
make sense. Many commands work between windows. For example, it is possible
to syank information from one window and :stuff it into another window. To
try this, position the box over part of the shiftcell window and type the :yank
command. Now move the box over part of the palette window and type the
tstuff command. Material yanked from shiftcell will be painted into the palette

-4-

Magic Tutorial #4: Multiple Windows February 28, 1985

cell. Remember that if palette was not being edited you would not be able to
sstuff paint into it — in that case you would have to use the :edit command first.

The operation of many Magic commands is dependent upon which window
you are pointing at. If you are used to using Magic with only one window you
may, at first, forget to point to the window that you want the operation
performed upon. For instance, if there are several windows on the screen you will
have to point to one before executing a command like :grid — otherwise you
may not affect the window that you intended!

4. Special Windows

In addition to providing multiple windows on different areas of a layout,
Magic provides several special types of windows that display things other than
layouts. For example, menus are implemented using a special window type, and
there is a special window type that may be used to adjust the colors displayed on
the screen. Some of the special window types are described in the sections below;
others are described in the other tutorials. The

:specialopen {ype [args]
command is used to create these sorts of windows. The {ype argument tells what
sort of window you want, and args describe what we want loaded into that

window. The ‘:openwindow cellname’” command is really just short for the
command ‘‘:specialopen layout cellname’.

5. Color Editing

Special windows of type color are used to edit the red, green, and bilue
intensities of the colors displayed on the screen. To create a color editing
window, invoke the command

:specialopen color [number]

Number is optional; if present, it gives the octal value of the color number whose
intensities are to be edited. If number isn’t given, 0 is used. Try opening a color
window on color 0.

A color editing window contains 6 “‘color bars”, 12 “‘color pumps” (one on
each side of each bar), plus a large rectangle at the top of the window that
displays a swatch of the color being edited (called the “‘current color” from now
on). The color bars display the components of the current color in two different
ways. The three bars on the left display the current color in terms of its red,
green, and blue intensities (these intensities are the values actually sent to the
monitor). The three bars on the right display the current color in terms of hue,
saturation, and value. Hue selects a color of the spectrum. Saturation indicates
how diluted the color is (high saturation corresponds to a pure color, low
saturation corresponds to a color that is diluted with gray, and a saturation of 0
results in gray regardless of hue). Value indicates the overall brightness (a value
of 0 corresponds to black, regardless of hue or saturation).

There are several ways to modify the current color. First, try pressing any
mouse button while the cursor is over one of the color bars. The length of the
bar, and the current color, will be modified to reflect the mouse position. The

-5-

Magic Tutorial #4: Multiple Windows February 28, 1985

color map in the display is also changed, so the colors will change everywhere on
the screen that the current color is displayed. Color 0, which you should
currently be editing, is the background color. You can also modify the current
color by pressing a button while the cursor is over one of the “color pumps” next
to the bars. If you button a pump with “+" in it, the value of the bar next to it
will be incremented slightly, and if you button the “-” pump, the bar will be
decremented slightly. The left button causes a change of about 1% in the value
of the bar, and the right button will pump the bar up or down by about 5%. Try
adjusting the bars by buttoning the bars and the pumps.

If you press a button while the cursor is over the current color box at the top
of the window, one of two things will happen. In either case, nothing happens
until you release the button. Before releasing the button, move the cursor so it is
over a different color somewhere on the screen. If you pressed the left button,
then when the button is released the color underneath the cursor becomes the new
current color, and all future editing operations will affect this color. Try using
this feature to modify the color used for window borders. If you pressed the right
button, then when the button is released the value of the current color is copied
from whatever color is present underneath the cursor.

There are only a few commands you can type in color windows, aside from
those that are valid in all windows. The command

reolor [number]

will change the current color to number. If no number is given, this command
will print out the current color and its red, green, and blue intensities. The
command

isave [file]

will save the current color map in a file named file.mon, where mon is the type of
the current monitor (usually std). If file isn’t given, the name of the current
technology is used as the file name. The command

tload [file|

will load the color map from the named file (with the monitor type added as
extension). If file isn’t given, the name of the current technology is used as the
file name. When loading color maps, Magic looks first in the current directory,
then in the system library.

Magic Tutorial #5: Design-Rule Checking
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magie Tutorial #2: Painting
Magic Tutortal #3: Cell Hierarchies

Commands covered in this tutorial:
:dre

Macros covered in this tutorial:
none

1. Continuous Design-Rule Checking

When you are editing a layout with Magic, the system automatically checks
design rules on your behalf. Every time you paint or erase, and every time you
move a cell or change an array structure, Magic rechecks the area you changed to
be sure you haven't violated any of the layout rules. If you do violate rules,
Magic will display little white dots in the vicinity of the violation. This error
paint will stay around until you fix the problem; when the violation is corrected,
the error paint will go away automatieally., Error paint is written to disk with
your cells and will re-appear the next time the cell is read in. There is no way to
get rid of it except to fix the violation.

Continuous design-rule checking means that you always have an up-to-date
picture of design-rule errors in your layout. There is never any need to run a
massive check over the whole design. When you make small changes to an
existing layout, you will find out immediately if you've introduced errors, without

Magic Tutorial #5: Design-Rule Checking February 28, 1985

having to completely recheck the entire layout.

To see how the checker works, run Magic on the cell tutorial5a. This cell
contains several areas of metal (blue), some of which are too close to each other.
Try painting and erasing metal to make the error paint go away and re-appear
again.

2. Getting Information about Errors

In many cases, the reason for a design-rule violation will be obvious to you as
soon as you see the error paint. However, Magic provides several commands for
you to use to find viclations and figure what’s wrong in case it isn’t obvious. All
of the design-rule checking commands have the form

:dre option

where oplion selects one of several commands understood by the design-rule
checker. If you're not sure why error paint has suddenly appeared, place the box
around the error paint and invoke the command

:dre why

This command will recheck the area underneath the box, and print out the
reasons for any violations that were found. Try this on some of the errors in
tutorialSa. It’s a good idea to place the box right around the area of the error
paint: :dre why rechecks the entire area under the box, so it may take a long
time if the box is very large.

If you're working in a large cell, it may be hard to see the error paint. To
help locate the errors, select a cell and then use the command

:dre find [nth]

If you don’t provide the nth argument, the command will place the box around
one of the errors in the current cell, and print out the reason for the error, just as
if you had typed :drc why. If you invoke the command repeatedly, it will step
through all of the errors in the current cell. {remember, the “.”’ macro can be
used to repeat the last long command; this will save you from having to retype
:dre find over and over again). Try this out on the errors in tutorialsa. If you
type a number for nth, the command will go to the nth error in the current cell,
instead of the next one.

A third drc command is provided to give you summary information about
errors in hierarchical designs. The command is

:dre count

This command will search every cell (visible or not) that lies underneath the box
to see if any have errors in them. For each cell with errors, :dre count will print
out a count of the number of error areas. This count corresponds to the number
of different locations where :dre find will place the box.

Magic Tutorial #5: Design-Rule Checking February 28, 1985

3. Errors in Hierarchical Layouts

The design-rule checker works on hierarchical layouts as well as single cells.
There are three overall rules that describe the way that Magic checks hierarchical
designs:

[1] The paint in each cell must obey all the design rules by itself, without
considering the paint in any other cells, including its children.

[2] The combined paint of each cell and all of its descendants (subcells, sub-
subcells, etc.) must be consistent. If a subcell interacts with paint or with
other subcells in a way that introduces a design-rule violation, an error will
appear in the parent. In designs with many levels of hierarchy, this rule is
applied separately to each cell and its descendants.

[3] Each array must be consistent by itself, without considering any other
subcells or paint in its parent. If the neighboring elements of an array
interact to produce a design-rule violation, the violation will appear in the
parent.

To see some examples of interaction errors, edit the cell tutorialsb. This
cell doesn’t make sense electrically, but illustrates the features of the hierarchical
checker. On the left are two subcells that are too close together. In addition, the
subcells are too close to the red paint in the top-level cell. Move the subcells
and/or modify the paint to make the errors go away and reappear. On the right
side of tutorialbb is an array whose elements interact to produce a design-rule
violation. Edit an element of the array to make the violation go away. When
there are interaction errors between the elements of an array, the errors always
appear near one of the four corner elements of the array (since the array spacing
is uniform, Magic only checks interactions near the corners; if these elements are
correct, all the ones in the middle must be correct too).

It's important to remember that each of the three overall rules must be
satisfied independently. This may sometimes result in errors where it doesn’t
seem like there should be any. Edit the cell tutorial5Se for some examples of this.
On the left side of the cell there is a sliver of paint in the parent that extends
paint in a subcell. Although the overall design is correct, the sliver of paint in the
parent is not correct by itself, as required by the first overall rule above. On the
right side of tutorial5e is an array with bad spacing between the array elements.
Even though the paint in the parent masks some of the problems if the entire
design is considered, the array is not consistent by itself so an error is flagged.
The three overall rules are more conservative than is strictly necessary, but they
reduce the amount of rechecking Magic must do. For example, the array rule
allows Magic to deduce the correctness of an array by looking only at the corner
elements; if paint from the parent had to be considered in checking arrays, it
would be necessary to check the entire array since there might be parent paint
masking some errors but not all (as, for example, in tutorial5e).

Error paint appears in different cells in the hierarchy, depending on what
kind of error was found. Errors resulting from paint in 2 single cell cause error
paint to appear in that cell. Errors resulting from interactions and arrays appear
in the parent of the interacting cells or array. Because of the way Magic makes
interaction checks, errors can sometimes ‘“bubble up” through the hierarchy and

-3-

Magic Tutorial #5: Design-Rule Checking February 28, 1985

appear in multiple cells. When two cells overlap, Magic checks this area by
copying all the paint in that area from both cells (and their descendants) into a
buffer and then checking the buffer. Magic is unable to tell the difference between
an error from one of the subcells and an error that comes about because the two
subcells overlap incorrectly. This means that errors in an interaction area of a
cell may also appear in the cell’'s parent. Fixing the error in the subcell will cause
the error in the parent to go away also.

4. Turning the Checker Off

We hope that in most cases the checker will run so quickly that you'll hardly
know it’s there. However, there are some times when it can take quite a while to
recheck things you've changed. For example, if a large subcell is moved to
overlap another large subcell, the entire overlap area will have to be rechecked,
and this could take several minutes. If the prompt on the text screen is a *|”
character, it means that the command has completed but the checker hasn't
caught up yet. You can invoke new commands while the checker is running, and
the checker will suspend itself long enough to process the new commands.

If you get tired of waiting for the checker, you have several options. First,
you can hit the break key on the keyboard. This will stop the checker
immediately and wait for your next command. As scon as you issue a command
or push a mouse button, the checker will start up again. To turn the checker off
altogether, type the command

:dre off

From this point on, the checker will not run. Magic will record the areas that
need rechecking but won’t do the rechecks. If you save your file and quit Magic,
the information about areas to recheck will be saved on disk. The next time you
read in the cell, Magic will recheck those areas, unless you've still got the checker
turned off. There is nothing you can do to make Magic forget about areas to
recheck; :dre off merely postpones the recheck operation to a later time.

Once you've turned the checker off, you have two ways to make sure
everything has been rechecked. The first is to type the command

idre catchup

This command will run the checker and wait until everything has been rechecked
and errors are completely up to date. When the command completes, the checker
will still be enabled or disabled just as it was before the command. If you get
tired of waiting for :dre catchup, you can always hit the break key to abort the
command; the recheck areas will be remembered for later. To turn the checker
back on permanently, invoke the command

:dre on

Magic Tutorial #5: Design-Rule Checking February 28, 1985

6. Porting Layouts from Other Systems

You should not need to read this section if you've created your layout from
scratch using Magic or have read it from CIF using Magic’s CIF reader. However,
if you are bringing into Magic a layout that was created using a different editor or
an old version of Magie that didn’t have continuous checking, read on. You may
also need to read this section if you've changed the design rules in the technology
file.

In order to find out about errors in a design that wasn’t created with Magie,
you must force Magic to recheck everything in the design. Once this global
recheck has been done, Magic will use its continuous checker to deal with any
changes you make to the design; you should only need to do the global recheck
once. To make the global recheck, load your design, place the box around the
entire design, and type

tdre check

This will cause Magic to act as if the entire area under the box had just been
modified: it will recheck that entire area. Furthermore, it will work its way
down through the hierarchy; for every subcell found underneath the box, it will
recheck that subcell over the area of the box.

If you get nmervous that a design-rule violation might somehow have been
missed, you can use :drc check to force any area to be rechecked at any time,
even for cells that were created with Magic. However, this should never be
necessary unless you've changed the design rules. If the number of errors in the
layout ever changes because of a :drc check, it is a bug in Magie and you should
notify us immediately.

Magic Tutorial #6: Netlists and Routing
John Qusterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first: :
Magic Tutorial #1: Getting Started
Magic Tutorial #2: Painting
Magic Tutorial #3: Cell Hierarchies
Magic Tutorial #4: Multiple Windows

Netlist commands covered in this tutorial:
rextract, :ripup, :savenetlist, :trace, :verify, :writeall

I.ayout commands covered in this tutorial:
:channel, :route

Macros covered in this tutorial:
{none)

1. Introduction

This tutorial describes how to use Magic’s automatic routing tools to make
interconnections between subcells in a design. The tools are unusual because they
provide an obstacle-avoidance capability: if there is mask material in the routing
areas, the Magic router can work under, over, or around that material to
complete the connections. This means that you can pre-route key signals by hand
and have Magic route the less important signals automatically. In addition, you
can route power and ground by hand (right now we don’t have any power-ground
routing tools, so you have to route them by hand). ‘

The first step in routing is to tell Magic what should be connected to what.
This information is contained in a file called a netlist. Sections 2, 3, 4, and 5

-1-

Magic Tutorial #86: Netlists and Routing February 28, 1985

describe how to create and modify netlists. Once you've created a netlist, the
next step is to invoke the router. Section 6 shows how to do this, and gives a
brief summary of what goes on inside the routing tools. Unless your design is very
simple and has lots of free space, the routing probably won’t succeed the first
time. Section 7 describes the feedback provided by the routing tools and discusses
how you can modify your design to improve its routability. You'll probably need
to iterate a few times until the routing is successful.

2. Terminals and Netlists

A netlist is a file that describes a set of desired connections. It contains one
or more nefs. A net is a list of terminals that should all be wired together. Each
terminal is the name of a label attached to a piece of mask material at the edge of
a subcell. The first step in building a netlist is to label the terminals in your
design. Figure 1 shows an example. Each label should be a horizontal or vertical
line along the edge of the cell. The router will bring routing material up to the
edge of the cell somewhere along the length of the label. The label must be at
least as wide as the minimum width of the routing material; the wider you make
the label, the more flexibility you give the router.

Cell Boundary

Inpus

Figure 1. An example of a terminal label. Each terminal should be labeiled with a
horizontal or vertical line along the edge of the cell.

Terminal labels must be attached to mask material that connects directly to
a routing layer. For example, in a CMOS process where the routing layers are
metall and metal2, diffusion may not be used as a terminal since neither of the
routing layers will connect directly to it. On the other hand, a terminal may be
attached to diffusion-metall contact, since the metall routing layer will connect
properly to 1. Terminals can have arbitrary names, except that they should not
contain slashes (“‘/""), and should not end in “@", “$", or “ . See “Tutorial #2:
Painting'’ for a complete description of labelling conventions.

For an example of good and bad terminals, edit the cell tutorial8a (it’s a
CMOS cell, so type magic -T cmos tutorial8a to the shell). The cell doesn’t
make any electrical sense, but contains several good and bad terminals. All the
terminals with names like badl are incorrect for one of the reasons given above,
and those with names like good4 are acceptable.

Magic Tutorial #6: Netlists and Routing February 28, 1985

NETLIST MENU

Label
{ BusBit13 K Current Tezt

| 13 " rl’ Pumpa
+
Flacer r—-——lFind

Netlist

I

{ Verify || Print

[Terms] | Cleanup |
{ No Net ” Show I

Current Netlist

- = TR

D < Terminal Tool

Figure 2. The netlist menu.

3. Menu for Label Editing

Magic provides a special menu facility to assist you in placing labels and
editing netlists. To make the menu appear, invoke the Magic command

:specialopen netlist

A new window will appear in the lower-left corner of the screen, containing
several rectangular areas on a purple background. Each of the rectangular areas
1s called a button. Clicking mouse buttons inside the menu buttons will invoke
various commands to edit labels and netlists. Figure 2 shows a diagram of the
netlist menu and Table I summarizes the meaning of button clicks in various
menu items. The netlist menu can be grown, shrunk, and moved just like any
other window; see ‘“Magic Tutorial #4: Multiple Windows” for details. It also
has its own private set of commands. To see what commands you can type in the
netlist menu, move the cursor over the menu and type

shelp

You shouldn't need to type commands in the netlist menu very often, since almost
everything you’ll need to do can be done using them menu. See Section 9 for a
description of a few of the commands you can type; the complete set is deseribed
in the manual page magief1). The top balf of the menu is for placing labels and
the bottom half is for editing netlists. This section describes the label facilities,
and Section 4 describes the netlist facilities.

The label menu makes it easy for you to enter lots of labels, particularly
when there are many labels that are the same except for a number, e.g. busl,
bus2, bus3, etc. There are four sections to the label menu: the current text, the
placer, two pumps, and the Find button. To place labels, first click the left
mouse button over the current text rectangle. Then type one or more labels on
the keyboard, one per line. You can use this mechanism to enter several labels at

-3-

Magic Tutorial #86: Netlists and Routing

Button

Action

Current Text

Left-click: prompt for more labels
Right-click: advance to next label

Left-click: place label

February 28, 1985

Placer Right-click: change label text position

Pumps Lt.aft-clic.k: d{f:crement number
Right-click: increment number

Find Search under box, highlight labels

matching current text

Left-click: prompt for new netlist name
Right-click: use edit cell name as netlist name

Check that wiring matches netlist (same as

Current Netlist

Verify typing :verify command)
. Print names of all terminals in selected net
Print . .
(same as typing :print command)
T Place feedback areas on screen to identify all terminals
erms . .
in current netlist (same as :showterms command)
Check current netlist for missing labels and nets
Cleanup with less than two terminals (same as typing
seleanup command)
No Net Delete selected net (same as :dnet command)
Show Highlight paint connected to material under box

(same as typing :shownet command)

Exchange normal cursor for terminal tool
(same as typing :switchtools command)

Terminal Tool

Table]. A summary of all the netlist menu button actions.

once. Type return twice to signal the end of the list. At this point, the first of
the labels you typed will appear in the current text rectangle.

To place a label, position the box over the area you want to label, then click
the left mouse button inside one of the squares of the placer area. A label will be
created with the current text. Where you click in the placer determines where
the label text will appear relative to the label box: for example, clicking the left-
center square causes the text to be centered just to the left of the box. You can
place many copies of the same label by moving the box and clicking the placer
area again. You can re-orient the text of a label by clicking the right mouse
button inside the placer area. For example, if you would like to move a label’s
text so that it appears centered above the label, place the box over the label and
right-click the top-center placer square.

If you entered several labels at once, only the first appears in the current text
area. However, you can advance to the next label by right-clicking inside the
current text area. In this way you can place a long series of labels entirely with
the mouse. Try using this mechanism to add labels to tutorial8a.

Magic Tutorial #6: Netlists and Routing February 28, 1985

The two small buttons underneath the right side of the current text area are
called pumps. To see how these work, enter a label name containing a number
into the current text area, for example, busl. When you do this, the 1" appears
in the left pump. Right-clicking the pump causes the number to increment, and
left-clicking the pump causes the number to decrement. This makes it easy for
you to enter a series of numbered signal names. If a name has two numbers in it,
the second number will appear in the second pump, and it can be incremented or
decremented too. Try using the pumps to place a series of numbered names.

The last entry in the label portion of the menu is the Find button. This can
be used to locate a label by searching for a given pattern. If you click the Find
button, Magic will use the current text as a pattern and search the area
underneath the box for a label whose name contains the pattern. Pattern-
matching is done in the same way as in csh, using the special characters ok epn
“\" ¢[" and “]”. Try this on tutoriala: enter “good*” into the current text
area, place the box around the whole cell, then click on the “Find” button. For
each of the good labels, a feedback area will be created with white stripes to
highlight the area. The :feedback find command can be used to step through
the areas, and :feedback clear will erase the feedback information from the
screen. The :feedback command has many of the same options as :dre for
getting information about feedback areas; see the Magic manual page for details,
or type :feedback help for a synopsis of the options.

4. Netlist Editing

The bottom half of the netlist menu is used for editing netlists. The first
thing you must do is to specify the netlist you want to edit. Do this by clicking in
the current netlist box. If you left-click, Magic will prompt you for the netlist
name and you can type it at the keyboard. If you right-click, Magic will use the
name of the edit cell as the current netlist name. In either case, Magic will read
the netlist from disk if it exists and will create a new netlist if there isn't currently
a netlist file with the given name. Netlist files are stored on disk with a “.net”
extension, which is added by Magic when it reads and writes files, You can
change the current netlist by clicking the current netlist button again. Startup
Magic on the cell tutorialéb {magic -T cmos tutorial8b), open the netlist
menu, and set the current netlist to tutorialfb. Then expand the subcells in
tutorial8b so that you can see their terminals.

Button | Action
Left Select net, using nearest terminal to cursor.

Right Toggle nearest terminal into or out of
current net.

Middle Find nearest terminal, join its net with the
current net.

Table I. The actions of the mouse buttons when the terminal tool is in use.

Magic Tutorial #6: Netlists and Routing February 28, 1985

To edit the netlist, you must first pick up the terminal tool. To do this,
move the cursor over the small square at the bottom of the netlist menu (it'’s
labelled “Terminal Tool” in Figure 2) and elick any mouse button. This changes
the cursor shape to a small square instead of a crosshair, and causes a crosshair to
appear instead of a square at the bottom of the netlist menu. From now on, when
you click mouse buttons in a layout window, the button meanings are totally
different. Instead of moving the box and painting, the buttons invoke netlist
editing actions. To get back the old cursor and button meanings, move the cursor
back over the crosshair at the bottom of the netlist window and click a mouse
button. Try this a few times until you are comfortable with the idea of changing
tools.

When the terminal tool is in use the left, right, and middle buttons invoke
select, toggle, and join operations respectively (see Table II}. To see how they
work, pick up the terminal tool, move the cursor over the terminal right4 in the
top subcell of tutorial6b and click the left mouse button. This causes the net
containing that terminal to be selected. Three hollow white squares will appear
over the layout, marking the terminals that are supposed to be wired together
into right4’s net. Left-click over the left3 terminal in the same subcell to select
its net, then select the right4 net again.

The right button is used to toggle terminals into or out of the current net. If
you right-click over a terminal that is in the current net, then it is removed from
the current net. If you right-click over a terminal that isn’t in the current net, it
is added to the current net. A single terminal can only be in one net at a time, so
if a terminal is already in a net when you toggle it into another net then Magic
will remove it from the old net.

The middle button is used to merge two nets together. If you middle-click
over a terminal, all the terminals in its net are added to the current net. Play
around with the three buttons to edit the netlist tutorial8b.

Note: the netlist editor permits you to select terminals that are in the top-
level cell, for example foo in tutorialéb. However, the router will not be able to
make connections to such terminals. The router ¢an only work with terminals in
subcells, or sub-subcells, ete,

If you left-click over a terminal that is not currently in a net, Magic creates a
new net automatically. If you didn't really want to make a new net, you have
several choices. Either you can toggle the terminal out of its own net, you can
undo the select operation, or you can click the No Net button in the netlist
menu (you can do this even while the cursor is in the square shape). The No Net
button removes all terminals from the current net and destroys the net. It’s a bad
idea to leave single-net terminals in the netlist: the router will treat them as
eITOrIS.

There are two ways to save netlists on disk; these are similar to the ways
you can save layout cells. If you type

:savenetlist [name]

with the cursor over the netlist menu, the current netlist will be saved on disk in
the file name.net. If no name is typed, the name of the current netlist is used. If

-6-

Magic Tutorial #6: Netlists and Routing F'ebruary 28, 1985

you type the command
:writeall

then Magic will step through all the netlists that have been modified since they
were last written, asking you if you'd like them to be written out. If you try to
leave Magic without saving all the modified netlists, Magic will warn you and give
you a chance to write them out.

The Print button in the netlist menu will print out on the text screen the
names of all the terminals in the current net. Try this for some of the nets in
tutoriai8b. The official name of a terminal looks a lot like a Unix file name,
consisting of a bunch of fields separated by slashes. Each field except the last is
the id of a subcell, and the last field is the name of the terminal. These
hierarchical names provide unique names for each terminal, even if the same
terminal name is re-used in different cells or if there are multiple copies of the
same cell.

The Verify button will check the paint of the edit cell to be sure it
implements the connections specified in the current netlist. Feedback areas are
created to show nets that are incomplete or nets that are shorted together.

The Terms button will cause Magic to generate a feedback area over each
of the terminals in the current netlist, so that you can see which terminals are
included in the netlist. If you type the command :feedback clear in a laycut
window then the feedback will be erased.

The Cleanup button is there as a convenience to help you cleanup your
netlists. If you click on it, Magic will scan through the current netlist to make
sure it is reasonable. Cleanup looks for two error conditions: terminal names
that don't correspond to any labels in the design, and nets that don’t have at least
two terminals. When it finds either of these conditions it prints a message and
gives you the chance to either delete the offending terminal (if you type dterm),
delete the offending net (dnet), skip the current problem without modifying the
netlist and continue looking for other problems (skip), or abort the Cleanup
command without making any more changes (abort).

The last button is Show. It will highlight everything electrically connected
to material underneath the box. If there are several electrically-distincet nets
under the box, Show will just highlight one of them. All material in all cells will
be considered, so this command can be used to see everything in the entire circuit
that is connected to material under the box. If you click Show with the box over
Vdd or GND, the command may take a very long time to finish (you can always
abort it by typing control-C or break). You can use Show to locate power-
ground shorts by placing the box over Vdd, letting the command run a while, and
then aborting it. If both Vdd and GND have been highlighted, the short is in
that area. If not, try again in a different area until you find the problem.

Magic Tutorial #6: Netlists and Routing February 28, 1985

5. Netlist Files

Netlists are stored on disk in ordinary text files. You are welcome to edit
those files by hand or to write programs that generate the netlists automatically.
For example, a netlist might be generated by a schematic editor or by a high-level
simulator. See the manual page net(5) for a description of netlist file format.

8. Running the Router

Once you've created a netlist, it is relatively easy to invoke the router, First,
place the box around the area you'd like Magic to consider for routing (no
terminals outside this area will be considered, and Magic will not generate any
paint outside this area). Then invoke the command

s:route

When this command completes, the netlist will (hopefully) be routed. Try the
router out on tutorial8b with netlist tutorial8b and routing area equal to the
entire size of the circuit (you'll probably need to re-run Magic to undo the
changes you made while learning how to edit netlists). When the router
completes, click the Verify netlist button to make sure the connections were
made correctly. Try deleting a piece from one of the wires and verify again.
Feedback areas should appear to indicate where the routing was incorrect. Use
the :feedback command to step through the areas and, eventually, to delete the
feedback (:feedback help gives a synopsis of the command options).

All of the wires placed by the router are of the same width, so the router
won't be very useful for power and ground wiring. Instead, you should wire
power and ground by hand before running the router. The router will be able to
work around your hand-placed connections to make the connections in the netlist.
If there are certain key signals that you want to wire carefully by hand, you can
do this too; the router will work around them. Signals that you route by hand
should not be in the netlist. Tutorial8b has an example of ‘“hand routing” in
the form of a piece of metal in the middle of the circuit. Undo the routing, and
try modifying the metal and/or adding more hand routing of your own to see how
it affects the routing.

If the router is unable to complete the connections, it will report errors to
you (you can make this happen in tutorial8b by hand-routing on both routing
layers to block some of the terminals. Errors may be reported in several ways.
For some errors, such as non-existent terminal names, messages will be printed.
For other errors, cross-hatched feedback areas will be created. Most of the
feedback areas have messages of the form ‘“Net shifter/bit[0]/phil: Can’t make
bottom connection.” To see the message associated with a feedback area, place
the box over the feedback area and type :feedback why. In this case the
message means that for some reason the router was unable to connect the
specified net (named by one of its terminals} within one of the routing channel.
The terms ‘‘bottom”, “top”, etc. may be misnomers because Magic sometimes
rotates channels before routing: the names refer to the direction at the time the
channel was routed, not the direction in the circuit. However, the location of the
feedback area indicates where the connection was supposed to have been made.

-8-

Magic Tutorial #6: Netlists and Routing February 28, 1985

7. How the Router Works

The router runs in three stages, called channel definition, global routing, and
channel routing. In the channel definition phase, Magic divides the area of the
edit cell into rectangular routing areas called channels. The channels cover all the
space under the box except the areas occupied by subcells. To see the channel
structure that Magic chose, place the box as if you were going to route, then type
the command

:channel

in the layout window. Magic will compute the channel structure and display it on
the screen as a collection of feedback areas. In this case, each feedback area is
displayed as a white rectangle. The feedback areas make it hard to see where the
box is, so type :feedback clear when you're through looking at them. All of
Magic’s routing goes in the channel areas. It will not run wires over subcells.

The second phase of routing is global routing. In the global routing phase,
Magic considers each net in turn and chooses the sequence of channels the net
must pass through in order to connect its terminals. The crossing points (places
where the net crosses from one channel to another) are chosen at this point, but
not the exact path through each channel.

In the third phase, each channel is considered separately. All the nets
passing through that channel are examined at once, and the exact path of each
net is decided. Once the routing paths have been determined, paint is added to
the edit cell to implement the routing.

The Magic router is grid-based: it places all its wires on a uniform grid. For
the standard nMOS process the grid spacing is 7 units, and for the standard
CMOS process it is 8 units. H you type :grid 8 after routing tutorialéb, you'll
see that all of the routing lines up with its lower and left sides on grid lines.
Fortunately, you don’t have to make your cell terminals line up on even grid
boundaries. During the routing Magic generates stems that connect your
terminals up to grid lines at the edges of channels. Notice that there’s space left
by Magic between the subcells and the channels; this space is used by the stem
generator.

8. What to do When the Router Fails

Don’t be surprised if the router is unable to make all the connections the first
time you try it on a large circuit. Unless you have lots of extra routing space in
your chip, you'll probably have to make slight re-arrangements to help the router
out. The paragraphs below describe things you can do to make life easier for the
router. This section is not very well developed, so we'd be delighted to hear
about techniques you use to improve routability. If you find new things to do to
make the router succeed, send us mail and we'll add them to this section.

Magic Tutorial #6: Netlists and Routing February 28, 1985

8.1. Channel Structure

One of the first things to check when the router fails is the channel structure.
Use the :channel command to look at the channels. One common mistake is to
have some of the desired routing area covered by subcells; Magic only runs wires
where there are no subcells. Check to be sure that there are channels next to all
your terminals. If you place cells too close together, there may not be enough
room to have a channel between the cells; when this happens Magic won't be
able to make connections to any terminals along the channel-less sides of the cells.
To solve the problem, move the cells farther apart. If there are many skinny
channels, it will be difficult for the router to produce good routing. Try to re-
arrange the cell structure to line up edges of nearby cells so that there are as few
channels as possible and they are as large as possible (before doing this you'll
probably want to get rid of the existing routing by undo-ing or by flushing the
edit cell).

8.2. Stems

Another problem has to do with the stem generator. The current stem
generation code is pretty stupid. It simply finds the nearest routing grid point
and wires out to that point, without considering any other terminals. If two
terminals are too close together, Magic may decide to route them both to the
same grid point. When this happens, you have two choices. Either you can move
the cell so that the terminals have different nearest grid points, or if this doesn’t
work you'll have to modify the cell to make the terminals farther apart.

8.3. Obstacles

The router tends to have special difficulties with obstacles running along the
edges of channels. When you've placed a power wire or other hand-routing along
the edge of a channel, the channel router will often run material under your
wiring in the other routing layer, thereby blocking both routing layers and
making it impossible to complete the routing. Where this occurs, you can
increase the chances of successful routing by moving the hand-routing away from
the channel edges. It's especially important to keep hand-routing away from
terminals. The stem generator will not pay any attention to hand-routing when it
generates stems (it just makes a bee-line for the nearest grid point), so it may
accidentally short a terminal to nearby hand-routing.

When placing hand-routing, you can get better routing results by following
the advice illustrated in Figure 3. First, display the routing grid. For example, if
the router is using a 8unit grid (which is true for the standard CMOS
technology), type :grid 8. Then place all your hand routing with its left and
bottom edges along the grid lines. Because of the way the routing tools work, this
approach results in the least possible amount of lost routing space.

- 10 -

Magic Tutorial #6: Netlists and Routing February 28, 1085

..

,,,,,,,,,,,,,,,,,,,,,,,,,

..

Figure 3. When placing hand routing, it is best to place all features with their left
and bottom edges along grid lines. In this fashion, the hand routing will block as
few routing grid lines as possible,

9. More Netlist Commands

In addition to the netlist menu buttons and commands described in Section 4,
there are a number of other netlist commands you can invoke by typing in the
netlist window. Many of these commands are textual equivalents of the menu
buttons. However, they allow you to deal with terminals by typing the
hierarchical name of the terminal rather than by pointing to it. If you don’t
know where a terminal is, or if you have deleted a label from your design so that
there’s nothing to point to, you'll have to use the textual commands. Commands
that don’t just duplicate menu buttons are described below; see the magic(1)
manual page for details on the others.

The netlist command
textract

will generate a net from existing wiring. It looks under the box for paint, then
traces out all the material in the edit cell that is connected electrically to that
paint. - Wherever the material touches subecells it looks for terminals in the
subcells, and all the terminals it finds are placed into a new net. Warning: there
is also an extract command for layout windows, and it is totally different from
the extract command in netlist windows. Make sure you've got the cursor over
the netlist window when you invoke this command!

The netlist editor provides two commands for ripping up existing routing (or
other material). They are

rripup
:rripup netlist

~11-

Magic Tutorial #6: Netlists and Routing February 28, 1985

The first command starts by finding any paint in the edit cell that lies underneath
the box. It then works outward from that paint to find all paint in the edit cell
that is electrically connected to the starting paint. All of this paint is erased.
The second form of the command, :ripup netlist, is similar to the first except
that it starts from each of the terminals in the current netlist instead of the box.
Any paint in the edit cell that is electrically connected to a terminal is erased.
The :ripup netlist command may be useful to ripup existing routing before
rerouting.

The command
strace [name|

provides an additional facility for examining router feedback. It highlights all
paint connected to each terminal in the net containing neme, much as the Show
menu button does for paint connected to anything under the box. The net to be
highlighted may be specified by naming one of its terminals, for example, :trace
shifter/bit[0]/phil. Use the trace command in conjunction with the nets
specified in router feedback to see the partially completed wiring for a net.
Where no net is specified, the :trace command highlights the currently selected
net.

-12-

Magic Tutorial #7: Circuit Extraction
Walter S. Scott 7

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:
Magic Tutorial #1: Getting Started
Magic Tutorial #2: Painting
Magic Tutorial #3: Cell Hierarchies

Commands covered in this tutorial:
:extract

Macros covered in this tutorial:
none

Programs covered in this tutorial:
ext2sim

1. Introduction

This tutorial covers the use of Magic's incremental and hierarchical circuit
extractor. The extractor is incremental: only part of the entire layout must be
re-extracted after each change. Because it is hierarchical, the structure .of the
extracted circuit parallels the structure of the layout being extracted. The
extractor produces a separate .ext file for each .mag file in a hierarchical design.
This is in contrast to previous extractors, such as Mextra, which produces a single
.sim file that represents the flattened (fully-instantiated) layout.

Sections 2 and 3 introduce Magic’s sextract command. Section 4 describes
what information actually gets extracted, and discusses limitations and
inaccuracies. Although the hierarchical .ext format fully describes the cireuit
implemented by a layout, none of our tools yet accept it. Instead, it is necessary

-1-

Magic Tutorial #7: Circuit Extraction February 28, 1985

to convert it to the flat .sim format using the ext2sim program described in
Section 3.

2. Basic Extraction

You can use Magic’s extractor in one of several ways. Normally it is not
necessary to extract all cells in a layout. To extract only those cells that have
changed since they were extracted, use:

sload root
rextract

It looks for a .ext file for every cell in the tree that descends from the cell root.
The .ext file is searched for in the same directory as the one containing the cell’s
.mag file. Any cells that have been modified since they were last extracted, and
all of their parents, are re-extracted. If a cell has no .ext file, this also causes it
to be re-extracted.

To force all cells in the subtree rooted at cell root to be re-extracted, use
textract all:

tload root
textract all

You can also use the textract command to extract a single cell as follows:
textract cell name

will extract just the selected {current) cell, and place the output in the file name.
You should be careful about using this form of the :extract command, since even
though you may only make a change to a child cell, all of its parents may have to
be re-extracted. To re-extract all of the parents of the selected cell, you may use

textract parents

Finally, to see what cells would be extracted by :extract parents without
actually extracting them, use

sextract showparents

3. Feedback: Errors and Warnings

When the extractor encounters problems, it leaves feedback in the form of
stippled white rectangular areas on the screen. Each area covers the portion of
the layout that caused the error. Each area also has an error message associated
with it, which you can see by using the :feedback command. (Type :feedback
help while in Magic for assistance in using the :feedback command.)

The extractor will always report extraction errors. These are problems in the
layout that may cause the output of the extractor to be incorrect. The layout

should be fixed to eliminate extraction errors before attempting to simulate the
circuit.

Magic Tutorial #7: Circuit Extraction February 28, 1985

Extraction errors can come from violations of transistor rules. There are two
rules about the formation of transistors: no transistor can be formed, and none
can be destroyed, as a result of cell overlaps. For example, it is illegal to have
poly in one cell overlap diffusion in another cell, as that would form a transistor in
the parent where none was present in either child. It is also illegal to have a
buried contact in one cell overlap a transistor in another, as this would destroy
the transistor. Violating these transistor rules will cause design-rule violations as
well as extraction errors.

In general, it is an error for material of two types on the same plane to
overlap or abut if they don’t connect to each other. For example, in CMOS it is
illegal for p-diffusion and n-diffusion to overlap or abut.

It is also an error for a transistor to have fewer diffusion terminals than the
minimum for its type. For example, a dfet in nMOS must have two diffusion
terminals: a source and a drain. If a capacitor with only one diffusion terminal is
desired, deap should be used instead.

In addition to errors, the extractor can give warnings. If only warnings are
present, the extracted circuit is simulatable. Normally, warnings are not reported
or displayed as feedback. To cause them to be displayed, use :extract warnings
on. To revert to the default of not displaying warnings, use :extract warnings
off.

Currently, warnings are only generated if you violate the following guideline
for placement of labels. Whenever geometry from two subeells abuts or overlaps,
you should make sure that there is a label attached to the geometry in each
subcell, in the area of the overlap, or along the line of abutment. I you do not
follow this guideline, the extractor will still work correctly, but will run slower,

4. What Gets Extracted; Limitations

Magic's extractor computes from the layout the information needed to run
simulation tools such as erystal(l) and esim(1). This information includes the
sizes and shapes of tramsistors, and the connectivity, resistance, and parasitic
capacitance of nodes. Both capacitance to substrate and several kinds of
internodal coupling capacitances are extracted.

The details of the .ext files output by Magic may be found in the manual
page ext(5). ‘“‘Magic Maintainer’s Manual #2: The Technology File” describes
how extraction parameters are specified for the extractor. The remainder of this
section is intended as a description of the information that gets extracted, and the
limitations of the extractor.

4.1. Resistance

Magic extracts a lumped resistance for each node, rather than a point-to-
point resistance between each pair of devices connected to that node. The result
is that all such point-to-point resistances are approximated by the worst-case
resistance between any two points in that node.

Magic Tutorial #7: Circuit Extraction February 28, 1985

(a) (b)

Figure 1. Magic approximates the resistance of a node by assuming that it is a
simple rectangular region. The perimeter and area of such a region are used to
compute its length and width. (a} For non-branching nodes, this approximation is 2
good one. (b) The computed resistance for this node is the same as for (a) because
the side branches are counted, yet the actual resistance between points 1 and 2 is
significantly less than in (a).

Node resistances are approximated rather than computed exactly. For a
node comprised entirely of a single type of material, Magic will compute the
node’s total perimeter and area. It then solves a quadratic equation to find the
width and height of a simple rectangle with this same perimeter and area, and
approximates the resistance of the node as the resistance of this “equivalent”
rectangle. The resistance is always taken in the longer dimension of the rectangle.
When & node contains more than a single type of material, Magic computes an
equivalent rectangle for each type, and then sums the resistances as though the
rectangles were laid end-to-end.

This approximation for resistance does not take into account any branching,
so it can be significantly in error for nodes that have side branches. Figure 1
gives an example. For global signal trees such as clocks or power, Magic’s
estimate of resistance will likely be several times higher than the actual resistance
between two points.

...........................

diffl-buried perim

.......... - R S

difl-space perim

Figure 2. Each type of edge has capacitance to substrate per unit length. Here,
the diffusion-space perimeter of 13 lambda has one value per unit length, and the
diffusion-buried perimeter of 3 lambda another. In addition, each type of material
has capacitance per unit area.

Magic Tutorial #7: Circuit Extraction February 28, 1985

4.2, Capacitance

Capcitance to substrate comes from two different sources. Each type of
material has a capacitance to substrate per unit area. Each type of edge (i.e, each
pair of types) has a capacitance to substrate per unit length. See Figure 2.
Internodal capacitance comes from three sources, as shown in Figure 3. When
materials of two different types overlap, the capacitance to substrate of the one on
top (as determined by the technology) is replaced by an internodal capacitance to
the one on the bottom.

Filgure 3. Magic extracts three kinds of internodal coupling capacitance. This
figure is a cross-section (side view, not a top view) of a set of masks that shows all
three kinds of capacitance. Overlap capacitance is parallel-plate capacitance
between two different kinds of material when they overlap. Sidewall capacitance is
parallel-plate capacitance between the vertical edges of two pieces of the same kind
of material. Sidewall overlap capacitance is orthogonal-plate capacitance between
the vertical edge of one piece of material and the horizontal surface of another piece
of material that overlaps the first edge.

Magic makes several simplifications when extracting capacitance. Overlap
coupling capacitance ignores what other material might happen to be present
between two overlapping pieces of material. For example, if metal-2 overlapped
poly, with metal-1 in the middle, Magic still records capacitance between metal-2
and poly. No adjustment to internodal capacitance is currently made between
subcells, so if material in one cell overlaps material of a different type in another
cell, no overlap coupling capacitance gets recorded between the two.

4.3. Transistors

Like the resistances of nodes, the lengths and widths of transistors are
approximated. Magic computes the contribution to the total perimeter by each of
the terminals of the transistor. See Figure 4. For rectangular transistors, this
vields an exact L/W. For non-branching, non-rectangular transistors, it is still
possible to approximate L/W fairly well, but substantial inaccuracies can be
introduced if the channel of a transistor contains branches. Since most transistors
are rectangular, however, Magic’s approximation works well in practice.

Magic Tutorial #7: Circuit Extraction February 28, 1985

— poly

* 6

Figure 4.

{a) When transistors are rectangular, it is possible to compute L /W exactly. Here
gateperim = 4, sourceperim == 6, drainperim = 6, and L/W = 2/6. (b) The
LW of non-branching transistors can be approximated. Here gateperim = 4,
sourceperim == 6, drainperim = 10. By averaging sourceperim and drainperim
we get L/W =2/8. (c) The L/W of branching transistors is not well
approximated. Here gateperim = 16, sourceperim = 2, drainperim = 2. Magic’s
estimate of L/W is 8/2, whereas in fact because of current spreading, W is
effectively larger than 2 and L eflectively smaller than 8, so L /W is overestimated.

5. Ext2sim

Unfortunately, none of our tools yet take advantage of the .ext files
produced by Magic’s extractor. To use these files for simulation or timing
analysis, you need to create a .sim file. You can do this by running the program
ext2sim, which is described in a separate manual page, ext2sim(1). Note that
this is not a Magic command, but a separate program. Writers of tools that read
.ext format will probably find the code for ext2sim a good starting point.

Magic Tutorial #8: Reading and Writing CIF
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:
Magic Tutorial #1: Getting Started
Magic Tutorial #2: Painting
Magic Tutorial #3: Cell Hierarchies

Commands covered in this tutorial:
weif

Macros covered in this tutorial:
None.

1. Basics

CIF (Caltech Intermediate Form) is the primary file format used in our
community to transfertransfer layouts between unrelated organizations and
design aids. In addition, designs must be placed into CIF format before they can
be fabricated by MOSIS. This document describes how Magic can be used to read
and write CIF files.

To write out a CIF file, place the cursor over a layout window and type the
command

seif

This will generate a CIF file called name.cif, where name is the name of the root
cell in the window. The CIF file will contain a description of the entire cell
hierarchy in that window. If you wish to use a name different from the root cell,
type the command :

Magic Tutorial #8: Reading and Writing CIF February 28, 1985

scif write file

This will store the CIF in file.cif. Start Magic up to edit tutorial8a {it's a
CMOS cell: use the command magie -Temos tutorial8a) and generate CIF for
that cell. The CIF file will be in ASCH format, so you can use Unix commands
like more and vi to see what it contains.

To read a CIF file, place the cursor over a layout window and type the
command

:cif read file

This will read the file file.eif {(which must be in CIF format), generate Magic cells
for the hierarchy described in the file, make the entire hierarchy a subcell of the
edit cell, and run the design-rule checker to verify everything read from the file.
Start Magic up afresh and read in tutorial8a.cif, which you created above. It
will be easier if you always read CIF when Magic has just been started up: if
some of the cells already exist, the CIF reader will not overwrite them, but will
instead use numbers for cell names.

You shouldn’t need to know much more than what’s above in order to read
and write CIF. The sections below describe the different styles of CIF that Magic
can generate and the limitations of the CIF facilities (you may have noticed that
when you wrote and read CIF above you didn't quite get back what you started
with; Section 3 discusses this).

2. CIF Styles

Magic usually knows several different ways to generate CIF from a given
layout. FEach of these ways is called a style. Different styles can be used to
handle different fabrication facilities, which may differ in the names they use for
layers or in the exact mask set required for fabrication. Different styles can be
also used to write out CIF with slightly different feature sizes or design rules. CIF
styles are described in the technology file that Magic reads when it starts up; the
exact number and nature of CIF styles is determined by whoever wrote your
technology file. There are separate CIF styles for reading and writing CIF; at
any given time, there is one current input style and one current output style.

The standard CMOS technology file provides an example of how different
CIF styles can be used. Start up Magic with the CMOS technology (magic
-Temos). Then type the commands

:cif ostyle
seif istyle

The first command will print out a list of all the styles in which Magic can write
CIF (in this technology) and the second command prints out the styles in which
Magic can read CIF. The CMOS technology file provides two output styles. The
initial (default) style for writing CIF is lambda=1.5. This style generates CIF
layers for the MOSIS 3.0/1.5 micron CMOS process, where each Magic unit
corresponds to 1.5 microns. The second style is plot. In this style, Magic
generates CIF layers that are exact reflections of the Magic layers. Although this

-9.

Magic Tutorial #8&8: Reading and Writing CIF February 28, 1985

form of CIF is useless for fabrication or exchange with other tools, we use it along
with the cifplot program to produce plots that look like what’s on the sereen.
To output files in the plot style, type the command

:cif ostyle plot
and then generate CIF.

The standard CMOS technology file has two input styles. The first is
lambda==1.5, which corresponds exactly to the lambda==1.5 output style and
can be used to read in CIF that was written in that style. The second style is
caesar_lambda=2. This style is provided for reading in files generated in
Caesar using the cmos-pw technology. To transfer CMOS files from Caesar,
write out CIF files with a scale factor of 200 then read them into Magic using the
caesar_lambda==2 style. To transfer nMOS files from Caesar, write out CIF
files with a CIF scale factor of 200, then read them in using Magic’s standard
nMOS technology and the lambda=2 input style.

Each CIF style has a specific scalefactor; you can’t use a particular style
with a different scalefactor. To change the scalefactor, you'll have to edit the
appropriate style in the cifinput or cifoutput section of the technology file.
This process is described in ‘“Magic Maintainer's Manual #2: The Technology
File.”

3. Problems with Reading and Writing CIF

You may have noticed that when you wrote out CIF for tutorial8a and
read it back in again, you didn't get back quite what you started with. Although
the differences shouldn’t cause any serious problems, this section describes what
they are so you'll know what to expect. There are three areas where there may
be discrepancies: labels, arrays, and contacts. These are illustrated in
tutorial8b. Load this cell (it's in CMOS), then generate CIF, then read the CIF
back in again. When the CIF is read in, you'll get a couple of warning messages
because Magic won't allow the CIF to overwrite existing cells: it uses new
numbered cells instead. The information from the CIF cell appears as a subcell
named 1 right on top of the old contents of tutorial8b; select 1, move it below
tutoriai8b, and expand it so you can compare its contents to tutorial8b.

The first problem area is that CIF cannot handle labels unless they are
points. Where you have line or box labels in Magic, CIF labels are generated at
the center of the Magic labels. The label in in _tut8x is an example of a line
label that gets smashed in the CIF processing.

The second problem is with arrays. CIF has no standard array construct, so
when Magic outputs arrays it does it as a collection of cell instances. When the
CIF file is read back in, each array element comes back as a separate subcell.
The array of _tut8x cells is an example of this. Most designs only have a few
arrays that are large enough to matter; where this is the case, you should go back
after reading the CIF and replace the multiple instances with a single array.

The third discrepancy is that where there are large contact areas, when CIF
is read and written the area of the contact may be reduced slightly. This doesn’t

-3-

Magic Tutorial #8: Reading and Writing CIF February 28, 1985

reduce the effective area of the contact; it just reduces the area drawn in Magic.
To see what’s happening here, place the box around tutorial8b and 1, expand
everything, then type

scif see CC

This causes feedback to be displayed showing CIF layer “CC” (contact hole).
Magic generates lots of small contact vias over the area of the contact, and if
contacts aren’t exact multiples of the hole size and spacing then extra space is left
around the edges. When the CIF is read back in, this extra space isn't turned
back into contact. The circuit that is read in is functionally identical to the
original circuit, even though the Magic contact appears slightly smaller.

There is an additional problem with generating CIF having to do with the
cell hierarchy. When Magic generates CIF, it performs geometric operations such
as ‘“grow” and ‘‘shrink”’on the mask layers. Some of these operations are not
guaranteed to work perfectly on hierarchical designs. Magic detects when there
are problems and creates feedback areas to mark the trouble spots. When you
write CIF, Magic will warn you that there were troubles. These should almost
never happen if you generate CIF from designs that don’t have any design-rule
errors. If they do occur, you'll have to either get a Magic wizard to help you, or
read the document on technology files: it describes the problem and its solutions.

Magic Maintainer’s Manual #1: Hints for System Maintainers
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:
All of them.

Commands covered in this tutorial:
*profile, :*runstats, :*seeflags, :*watch
Macros covered in this tutorial:
None.

1. Introduction

This document provides some information to help would-be Magic
maintainers learn about the system. It is not at all complete, and like most
infrequently-used documentation, will probably become less and less correct over
time as the system evolves but this tutorial doesn’t. So, take what you read here
with a grain of salt. We believe that everything in this tutorial was up-to-date as
of the March 1985 Magic release. Before doing anything to the internals of Magic,
you should read at least the first, and perhaps all four, of the papers on Magic
that appeared together in the 1984 Design Automation Conference.

2. Installing Magic

If you've received Magic from Berkeley on the 1985 VLSI Tools tape, then it
shouldn’t take much work to get Magic running. The tools tape should be read
into ~cad, which means that there will be a binary version of Magic in ~cad/bin
and a set of library subdirectories in ~cad/lib/magic. If this isn’t so, then at the
very least you'll need to get a Magic system library set up in ~cad/lib/magic/sys:

-1-

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

this directory contains information like technology files and colormaps and Magic
can’t run at all without it.

If you’re running on a Sun you shouldn’t need to do anything besides what's
mentioned above. Just run Suntools and then run Magie.

If you're running on a VAX with an attached color display, you'll probably
need to do some additional setup. If the display is an AED512 or similar display,
it will be attached to the VAX via an RS232 port. Magic needs to be able to read
from this port, and there are two ways to do this. The first is simply to have no
login process for that port and have your system administrator change the
protection to allow all processes to read from the port and write to it. The second
way is to have users log in on the display and run a process that changes the
protection of the display. There is a program called Sleeper that we distribute
with Magic; if it’s run from an AED port it will set everything up so Magic can
use the port. Sleeper is clumsy to use, so we strongly recommend that you use
the first solution (no login process}.

When you're running on VAXes, Magic will need to know which color display
port to use from each terminal port. Users can type this information as
command-line switches but it’s clumsy. To simplify things, Magic checks the file
~cad/lib/displays when it starts up. The displays file tells which color display
port to use for which text terminal port and also tells what kind of display is
attached. Once this file is set up, users can run Magic without worrying about
the system configuration. See the manual page for displays(5).

One last note: if you're running on an AED display, you'll need to set
communication switches 3-4-5 to up-down-up.

3. Source Directory Structure; Making Magic

If you are working on ucbkim at Berkeley, the Magic sources are rooted in
the directory ~magic/sre. At most other sites, the root for the Magic sources
should be ~cad/sre/magic. All pathnames given in this manual will assume
that your current working directory is the root of the Magic sources.

There are approximately 30 source subdirectories in Magic. Most of these
consist of modules of source code for the system, for example database, main,
and utils. See Section 4 of this document for brief descriptions of what's in each
source directory. Besides the source code, the other subdirectories are:

doc Contains sources for all the documentation, including man
pages, tutorials, and maintenance manuals. Subdirectories
of doe, e.g. doc/emos, contain the technology manuals.
The Makefile in each directory can be used to run off the
documentation. The tutorials, maintenance manuals, and
technology manuals all use the Berkeley Grn/Ditroff
package, which means that you can’t run them off w1thout
Grn/Ditroff unless you change the sources.

include Contains installed (i.e. “safe”) versions of all the header
files (*.h) from all the modules.

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

lib Contains installed (i.e. “safe’’) versions of each of the
compiled and linked modules (*.o0).
installed Contains a copy of each source file, include file, and

Makefile from each of the modules. These files correspond
to the installed .o files in lib.

magic ' This directory is where the modules of Magic are combined
together to form an executable version of the system.

cadlib This is a symbolic link to the directory where Magic stores
cell libraries and official installed versions of technology
files and color maps. Normally, ecadlib is a symbolic link
to ~cad/lib/magic. :

Magic is a relatively large system: there are around 250 source files, 100000
lines of C code, and as many as four maintainers working on the system at one
time at Berkeley. In order to make all of this manageable, we've organized the
sources in a two-level structure. Each module has its own subdirectory, and you
can make changes to the module and recompile it by working within that
subdirectory. In addition to the information in the subdirectory, there is an
“installed” version of each module, which consists of the files in the 1ib, include,
and installed subdirectories. The installed version of each module is supposed to
be stable and reliable. At Berkeley, when a module is changed it is tested
carefully without re-installing it, and is only re-installed when it is in good
condition. Note that ‘‘installed” doesn’t mean that Magic users see the module;
it only means that other Magic maintainers will see it.

By keeping modules separate, it's possible for several maintainers to work at
once as long as they are modifying different source subdirectories. Each
maintainer works with the uninstalled version of a module, and links that with
the installed versions of all other modules. Thus, for example, one maintainer can
modify database/DBecell.c and another can modify dbwind/DBWundo.c at
the same time.

Putting together a runnable Magic system proceeds in two steps after a
source file has been modified. First, the source file is compiled, and all the files in
its module are linked together into a single file zyz.0, where zyz is the name of
the module. Then all of the modules are linked together to form an executable
version of Magic. The command make in each source directory will compile and
link the module locally; make install will compile and link it, and also install it
in the include, lib, and installed directories. The command make in the
subdirectory magic will produce a runnable version of Magic in that directory,
using the installed versions of all modules. To work with the uninstalled version
of a module, create another subdirectory identical to magie, and modify the
Makefile so that it uses uninstalled versions of the relevant modules. For example,
at Berkeley, there are subdirectories hamachitest, mayotest, oustertest, and
wsstest that we use to test new versions of modules before installing them. If
you want to remake the entire system, type ‘““make magic” in the top-level
directory (~cad/src/magic).

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

4. Summary of Magic Modules

This section contains brief summaries of what is in each of the Magic source

subdirectories.
cif

cmwind

commands

database
dbwind

debug

dre

ext2sim

extract

fsleeper

ger

graphics

Contains code to process the CIF sections of technology
files, and to generate CIF files from Magic.

Contains code to implement special windows for editing
color maps.

The procedures in this module contain the top-level
command handling routines for layout commands
(commands that are valid in all windows are handled in the
windows module). These routines generally just parse the
commands, check for errors, and call other routines to
carry out the actions.

This is the largest and most important Magic module. It
implements the hierarchical corner-stitched database, and
reads and writes Magic files.

Provides display functions specific to layout windows,
including managing the box, redisplaying layout, and
displaying highlights and feedback.

There’s not much in this module, just a few routines used
for debugging purposes.

This module contains the incremental design-rule checker.
It contains code to read the dre sections of technology
files, record areas to be rechecked, and recheck those areas
in a hierarchical fashion.

The ext2sim directory isn't part of Magic itsell. It’s a
self-contained program that flattens the hierarchical .ext
files generated by Magic's extractor into a single file in
.sim format.

Contains code to read the extract sections of technology
files, and to generate hierarchical circuit descriptions (.ext
files) from Magic layouts.

Like ext2sim, this directory is a self-contained program
that allows a graphics terminal attached to one machine to
be used with Magic running on a different machine. See
the manual page fsleeper(1).

Contains the channel router, which is an extension of
Rivest's greedy router that can handle switchboxes and
obstacles in the channels.

This is the lowest-level graphics module. It contains driver
routines for AED and SunColor displays. The code here
does basic clipping and drawing, but knows nothing about
windows. If you want to make Magic run on a new kind of
display, this is the only module that should have to change.

- 4-

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

grouter

macros

magicusage

misc
mpack

netmenu
parser

prleak

router

signals

tech

textio

tiles

undo

The files in this module implement the global router, which
computes the sequence of channels that each net is to pass
through.

Implements simple keyboard macros.

Like ext2sim, this is also a self-contained program. It
searches through a layout to find all the files that are used
in it. See magicusage(1).

This module contains the main program for Magic, which
parses command-line parameters, initializes the world, and
then transfers control to textio.

A few small things that didn’t belong anyplace else.

Contains routines that implement the Tpack tile-packing
interface using the Magic database.

Implements netlists and the special netlist-editing windows.

Contains the code that parses command lines into
arguments.

Also not part of Magic itself. Prleak is a self-contained
program intended for use in debugging Magic's memory
allocator. It analyzes a trace of malloes/frees to look for
memory leaks. See the manual page prleak(8) for
information on what the program does.

Contains the top-level routing code, including procedures
to read the router sections of technology files, chop free
space up into channels, analyze obstacles, and paint back
the results produced by the channel router.

Handles signals such as the break key and control-Z.

This module contains the top-level technology file reading
code, and the current technology files. The code does little
except to read technology file lines, parse them into
arguments, and pass them off to clients in other modules
(such as dre or database).

The top-level command interpreter. This module grabs
commands from the keyboard or mouse and sends them to
the window module for processing. Also provides routines
for message and error printout, and to manage the prompt
on the screen.

Implements basic corner-stitched tile planes, This module
was separated from database in order to allow other
clients to use tile planes without using the other database
facilities too. '

The undo module provides the overall framework for undo
and redo operations, in that it stores lists of actions.
However, all the specific actions are managed by clients
such as database or netmenu.

-5-

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

utils This module implements a whole bunch of utility
procedures, including a geometry package for dealing with
rectangles and points and transformations, a heap package,
a hash table package, a stack package, a revised memory
allocator, and lots of other stuff.

windows This is the overall window manager. It keeps track of
windows and calls clients (like dbwind and emwind) to
process window-specific operations such as redisplaying or
processing commands. Commands that are valid in all
windows, such as resizing or moving windows, are
implemented here.

5. Technology and Other Support Files

Besides the source code files, there are a number of other files that must be
managed by Magic maintainers, including color maps, technology files, and other
stuff. Below is a listing of those files and where they are located.

5.1. Technology Files

See “‘Magic Maintainer’s Manual #2: The Technology File” for information
on the contents of technology files. The sources for technology files are contained
in the subdirectory tech, in files like emos.tech and nmos.tech. The
technology files that Magic actually uses at runtime are kept in the directory
cadlib/sys; make install in tech will copy the sources to cadlib/sys.
Technology file formats have evolved rapidly during Magic’s life, so we use
version numbers to allow multiple formats of technology files to exist at once.
The installed versions of technology files have names like nmos.techl5, where
15 is a version number. The current version is defined in the Makefile for tech,
and should be incremented if you ever change the format of technology files; if
you install a new format without changing the version number, pre-existing
versions of Magic won’t be able to read the files. After incrementing the version
number, you'll also have to re-make the teeh module since the version number is
contained in the code that reads the files.

5.2. Display Styles
The display style file sources are contained in the source directory graphies.
See “Magic Maintainer's Manual #3: The Display Style and Glyph Files” for a

description of their contents. Make install in graphics will copy the files to
cadlib/sys, which is where Magic looks for them when it executes.

5.3. Glyph Files

Glyph files are also described in Maintainer’'s Manual #3; they define
patterns that appear in the cursor. The sources for glyph files appear in two
places: some of them are in graphies, in files like UCBS512.glyphs, and some
others are defined in windows/window.glyphs. When you make install in
those directories, the glyphs are copied to eadlib/sys, which is where Magic

-6-

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28 1985

looks for them when it executes.

5.4. Color Maps

The color map sources are also contained in the source directory graphiecs.
Color maps have names like nmos.std. nmos is the name of the technology to
which the color map applies, and std is a type of monitor. If monitors have
radically different phosphors, they may require different color maps to achieve the
same affects. Right now we only support the std kind of monitor. However,
some other sites have monitors with an especially pale blue phosphor — those sites
often have a pale colormap. When Magic executes, it looks for color maps in
cadlib/sys; make install in graphics will copy them there. Although color
map files are textual, you shouldn’t edit them by hand; use Magic’s color map
editing window instead.

8. New Display Drivers

The most common kind of change that will be made to Magic is probably to
adapt it for new kinds of color displays. Each display driver contains a standard
collection of procedures to perform basic functions such as placing text, drawing
filled rectangles, or changing the shape of the cursor. A table (defined in
graphics/grMain.c) holds the addresses of the routines for the current display
driver. At initialization time this table is filled in with the addresses of the
routines for the particular display being used. All graphics calls pass through the
table.

If you need to build a new display driver, we recommend starting with the
routines for either the AED (all the files in graphies with names like grAedl.c),
or the Sun (names like grSunl.c). For stand-alone displays, the AED routines
are probably the easiest to work from; for integrated workstations, I'm not sure
which will be easiest. Copy the files into a new set for your display, change the
names of the routines, and modify them to perform the equivalent functions on
your display. Write an initialization routine like aedSetDisplay, and add
information to the display type tables in graphies/grMain.c. At this point you
should be all set. There shouldn’t be any need to modify anything outside of the
graphics module.

7. Debugging and Wizard Commands

At Berkeley, we use sdb to debug Magic on VAXes and dbz on the Suns
(there's no sdb for the Suns). The Makefiles are set up to compile all files with the
-gold switch, which creates debugging information in sdb’s format. If you want
to use dbz you'll have to change this to a -g switch and recompile the world.

Because of the size of Magic and the way Unix handles debugging symbols,
it's extremely slow to compile a complete version of Magic with debugging
information for everything, and the executable file ends up being enormous. To
solve this problem the Makefiles are set up to strip off debugging information
before installing. Thus, you have to link with uninstalled versions to get

-7-

Magic Maintainer’s Manual #1: Hints for System Maintainers February 28, 1985

debugging information. In most cases, debugging information is only needed for a
few modules at a time, namely the modules you’re currently modifying. The
database module is set up to install with debugging symbols, since it seems to be
involved in almost all debugging.

If you try to use dbz, you'll discover that Magic has too many procedures for
the default table sizes; dbz runs out of space and dies. The solution is either to
recompile dbr with larger tables or throw away pieces of Magic to reduce the
number of procedures (we recommend the first alternative).

There are a number of commands that we implemented in Magie to assist in
debugging. These commands are called wizard commands, and aren't visible to
normal Magic users. They all start with “*”. To get terse online help for the
wizard commands, type :help wizard to Magic. The wizard commands aren’t
documented very well. Some of the more useful ones are:

*watch plane
This causes Magic to display on the scréen the corner-stitched tile structure
for one of the planes of the edit cell. For example, *watch subcell will
display the structure of the subcell tile plane, including the address of the
record for each tile and the values of its corner stitches. Without this
command it would have been virtually impossible to debug the database
module.

*profile on|off
If you're using the Unix profiling tools to figure out where the cycles are
going, this command can be used to turn profiling off for everything except
the particular operation you want to measure.

*runstats
This command prints out the CPU time usage since the last invocation of
this command, and also the total since starting Magie.

*seeflags flag
If you're working on the router, this command allows you to see the various
channel router flags by displaying them as feedback areas. The cursor should
first be placed over the channel whose flags you want to see.

Magic Maintainer’s Manual #2: The Technology File

Walter S. Scott
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Painting

Magic Tutorial #5: Design-Rule Checking

You should also read at least the first, and probably all four, of the papers on
Magic that appeared in the ACM IEEE 21st Design Automalion
Conference, and the paper “Magic’s Circuit Extractor”, which will appear in
the ACM IEEE 22nd Design Automation Conference. The overview paper

from the DAC was also reprinted in IEEFE Design and Test magazine in the
February 1985 issue.

Commands covered in this tutorial:
*watch

Macros covered in this tutorial:
none

1. Introduection

Magic is a technology independent layout editor. All technology-specific
information—mask layers, design rules, etc.—comes from a technology file. There
is a different technology file for each technology supported by Magic. You can
run Magic with a different technology by specifying the -Ttechfile flag on the
command line you use to start Magic, where techfile is the name of a file of the
form fechname.techn in either the current directory, or the library directory

Magic Maintainer’'s Manual #2: The Technology File February 28, 1985

~cad/lib/magic/sys. (The n is a numeric suffix to identify the version of the
technology file, which is currently 15).

This tutorial describes the contents of a technology file, and gives hints for
building a new one. It assumes that your current working directory is the Magic
source directory, ~magie/sre on ucbkim, or ~ecad/sr¢/magic on other
machines.

A technology file is organized into sections, each of which begins with a single
keyword and ends with the single word end. If you examine one of the Magic
technology files in the directory ~cad/src/magic/tech, e.g, nmos.tech, you
can see that it contains the following sections: tech, planes, types, styles,
contact, compose, connect, cifoutput, cifinput, dre, extract, and router.
These sections must appear in this order in all technology files.

A technology file can contain comments, blocks of text beginning with the
characters “/*” and ending with the characters “*/”. Comments are ignored
when processing a technology file. In nmos.tech you can see several lines just
before the dre section (near the end of the technology file) that are of the form
“#define ...”. These lines are definitions of macros that may be used in
subsequent lines in the technology file.

The form of comments and macro definitions should look familiar to “C”
programmers, for good reason: the ‘‘C” macro preprocessor is used to expand
macros and eliminate comments. Technology files cannot be read directly by
Magic in their “raw’’ form; the "C” preprocessor is run to produce a Magic-
readable version of the technology file. The last section in this tutorial describes
more about installing technology files.

Each section in a technology file consists of a series of lines. Each line
consists of a series of words, separated by spaces or tabs. If a line ends with the
character “‘\”’, the ’\"" and the following newline are ignored. For example,

width allDiff 2\
“Diffusion width must be at least 2

is treated as though it had all appeared on 2 single line with no intervening ““\".
The rest of this part of the tutorial will describe each of the technology file
sectlons in turn.

2. Tech section

Magic stores the technology of a cell in the cell’s file on disk. When reading
a cell back in to Magic from disk, the cell’s technology must match the name of
the current technology, which appears as a single word in the tech section of the
technology file. See Table 1 for an example.

It may seem that storing the technology name as part of the technology file is
redundant. The name of the technology file itself is often the name of a
technology, e.g., “nmos.techl5” for technology nmos, or ‘“‘cmos.techl5” for
technology cmos. However, because the technology name is stored explicitly,
several different files can implement the same technology. This has the advantage
that cells designed with one technology file can be edited with any of the other

-92.

" Magic Maintainer’s Manual #2: The Technology File February 28, 1685

tech
nmos

end

Table 1. Tech section

files implementing the same technology. Users who wish to extend standard
technologies by writing their own technology files can still use cells designed with
the standard technology, as long as the old cells are still design-rule correct in the
new technology.

3. Planes, types, and contact sections

The planes, types, and contact sections are used to define the layers used
in the technology. Magic uses a new data structure, called corner-stitching, to
represent layouts. Corner-stitching represents mask information as a collection of
non-overlapping rectangular tiles. Each tile has a type that corresponds to a
single Magic layer. An individual corner-stitched data structure is referred to as a
plane.

Magic allows you to see the corner-stitched planes it uses to store a layout.
We'll use this facility to see how several corner-stitched planes are used to store
the layers of a layout. Enter Magic to edit the cell tutorial2m. Type the
command :*watch poly-diff demo. You are now looking at the poly-diff
plane. Each of the boxes outlined in black is a tile. (The arrows are stitches, but
are unimportant to this discussion.) You can see that some tiles contain layers
(polysilicon, diffusion, poly-metal-contact, diff-metal-contact, and enhancement-
fet), while others contain empty space. Corner-stitching is unusual in that it
represents empty space explicitly. Each tile contains exactly one type of material,
or space.

You have probably noticed that metal does not seem to have a tile associated
with it, but instead appears right in the middle of a space tile. This is because
metal is stored on a different plane, the metal plane. Type the command
:*watch metal demo. Now you can see that there are metal tiles, but the
polysilicon, diffusion, and transistor tiles have disappeared. The two contacts,
poly-metal-contact and diff-metal-contact, still appear to be tiles.

The reason Magic uses several planes to store mask information is that
corner-stitching can only represent non-overlapping rectangles. If a layout were
to consist of only a single layer, such as polysilicon, then only two types of tiles
would be necessary: polysilicon, and space. As more layers are added, overlaps
can be represented by creating a special tile type for each kind of overlap area.
For example, when polysilicon overlaps diffusion, the overlap area is marked with
the tile type enhancement-fet.

Magic Maintainer's Manual #2: The Technology File February 28, 1985

Although some overlaps correspond to actual electrical constructs (e.g.,
transistors), other overlaps have little electrical significance. For example, metal
can overlap polysilicon without changing the connectivity of the circuit or
creating any new devices. To create new tile types for all possible overlapping
combinations of metal with polysilicon, diffusion, transistors, etc. would be
wasteful, since these new overlapping combinations would have no electrical
significance.

Instead, Magic partitions the layers into separate planes. Layers whose
overlaps have electrical significance must be stored in a single plane. For
example, polysilicon, diffusion, and their overlaps {enhancement-fet, depletion-fet,
and buried-contact) are all stored in the poly-diff plane. Metal does not interact
with any of these tile types, so it is stored in its own plane, the metal plane.

Contacts between layers in one plane and layers in another are a special case
and are represented on both planes. This explains why the poly-metal-contact and
diff-metal-contact tiles appeared on both the poly-diff plane and on the metal
plane.

The planes section of the technology file specifies how many planes will be
used to store tiles in a given technology, and gives each plane a name. Each line
in this section defines a plane by giving a comma-separated list of the names by
which it is known. The first name in the list is the canonical name of the plane.
Any name may be used in referring to the plane in later sections, or in commands
like the :*watch command you used earlier. Table 2 gives the planes section
from the nMOS technology file.

planes
poly-diff,poly ,diff
metal

end

Table 2. Planes section

Magic uses three other planes internally. The subecell plane is used for
storing cell instances rather than storing abstract layers. The designRuleCheck
and designRuleError planes are used by the design rule checker to store areas
to be reverified, and areas containing design rule violations, respectively.

There is a limit on the maximum number of planes in a technology, including
the internal planes. This limit is currently 8. To increase the limit, it is necessary
to change MAXPLANES in the file database/database.h and then recompile
all of Magic as described in ‘““Maintainer’s Manual #1"".

The types section identifies the technology-specific tile types used by Magie.
Table 3 gives this section for the nMOS technology file. Each line in this section
is of the following form:)

Magic Maintainer’'s Manual #2: The Technology File February 28, 1985

types

p polysilicon,poly red

p diffusion,difl,green

P poly-metal-contact, pme
P diff-metal-contact,dme
P enhancement-fet efet

P depietion-fet dfet

p depletion-capacitor,dcap
p buried-contact,be

m metal blue

m glass-contact

end

Table 3. Types section

plane names

Each type defined in this section is allowed to appear on exactly one of the
planes defined in the planes section, namely that given by the plane field above.
For contacts types such as poly-metal-contact, the plane will be the contact’s
home plane; there will be other tile types used to represent the contact on the
other planes it connects (this is described later in this section).

The next field is a comma-separated list of names. The first name in the list
is the ““long’’ name for the type; it appears in the .mag file and whenever error
messages involving that type are printed. The user can name a type, e.g. in the
:paint or terase commands, by giving a unique abbreviation for any of its names.

Tile type Plane

space all

error_p designRuleError
error._s designRuleError
error_ps designRuleError

checkpaint designRuleCheck
checksubcell | designRuleCheck

Table 4. Built-in Magic types.

Magic has certain built-in types as shown in Table 4. Empty space (space) is
special in that it can appear on any plane. The types error_p, error_s, and
error_ps record design rule violations. The types checkpaint and
checksubeell record areas still to be design-rule checked.

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

There is a limit on the maximum number of types in a technology, including
all the built-in types. Currently, the limit is 40 tile types. To increase the limit,
you'll have to change TT_MAXTYPES in the file database/database.h and
then recompile all of Magic as described in ‘“‘Maintainer’s Manual #1”. A number
of macros in database.h also depend on the value of TT_MAXTYPES/32.
They are currently set up assuming that TT_MAXTYPES is between 33 and
64; if TT_MAXTYPES is changed to lie outside this region they should be
changed. See the comments in database.h for more information. Because there
are a number of tables whose size is determined by the square of
TT_MAXTYPES, it is very expensive to increase TT_MAXTYPES much
beyond 64.

contact

pmc poly metal
dme diff metal
end

Table 5. Contact section

~ As mentioned before, contacts in Magic are represented on each plane
containing material connected by the contact. Also mentioned before, though,
each tile type defined in the types section appears on exactly one plane. This
seeming conflict is resolved by having Magic automatically generate new tile types
for each of the planes on which a contact appears. The contact section lets
Magic know which types are contacts, and the planes that they connect.

Each line in the contaet section begins with a tile type that is to be
considered as a contact. This tile type is referred to as the base type of the
contact. In Table 5, for example, the type poly-metal-contact is the base type
of a contact. The remainder of each line is a list of tile types that are not
contacts, each of which must have a different home plane. These tile types are
referred to as the component types of the contact, and are the layers that would
be present if there were no electrical connection. In the example, the component
layers are polysilicon and metal.

New types get generated for all planes of a contact except for the home plane
of its base type. In the example, this means that a new tile type will be generated
to represent the contact on the metal plane. These generated types are called
tmages of the contact. The type used to represent the contact on the poly-diff
plane is poly-metal-contact itself. Figure 1 depicts the situation graphically.
In later sections of the technology file, it is sometimes useful to refer separately to
the various images of contact. A special notation using a “‘/"" is used for this. If a
tile type aaea/bbb is specified in the technology file, this refers to the image of
contact aaa on plane bbb. For example, pmc/metal refers to the image of the
poly-metal contact that lies on the metal plane, and pme/poly-diff refers to the
image on the poly plane, which is the same as pme.

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

I‘_ automatically generated (pme/metal)
M metal plane

M poly-diff plane

pme

Figure 1. A different tile type is used to represent a contact on each plane that it
connects. Here, a contact between poly on the poly-diff plane and metal on the
metal plane is stored as two tile types. One, pmue, is specified in the technology file
as residing on the poly-diff plane; the other is automatically generated for the
metal plane. ;

4. Styles section

~ Magic can be run on several different types of graphical displays. Although it
would have been possible to incorporate display-specific information into the
technology file, a different technology file would have been required for each
display type. Instead, the technology file gives one or more display-independent
styles for each type that is to be displayed, and uses a per-display-type styles file
to map info the colors and stipplings specifie to the display being used. The styles
file is described in Magic Maintainer’s Manual #3: "*Styles and Colors”, so we will
not describe it further here.

Table 6 shows the styles section from the nMOS technology file. Each line
consists of a tile type and a style number {an integer between 1 and 63). The
style number is nothing more than a reference between the technology file and the
styles file. Notice that a given tile type can have several styles (e.g., poly-metal-
contact uses styles #1, #33, and #3), and that a given style may be used to
display several different tiles (e.g., style #4 is used in enhancement-fet, depletion-
fet, and buried-contact). If a tile type should not be displayed, it has no entry in
the styles section.

5. Compose section

The semantics of Magic's paint operation are defined by a collection of rules
of the form, “given material X on plane P, if we paint Y, then we get 27’, plus a
similar set of rules for the erase operation. The default paint and erase rules are
simple. Assume that we are given material X on plane P, and are painting or
erasing material Y.

Magic Maintainer's Manual #2: The Technology File

styles

polysilicon
diffusion

metal
enshancement-fet
enhancement-fet
depletion-fet
depletion-fet
depletion-capacitor
depletion-capacitor
buried-contact
buried-contact
poly-metal-contact
poly-metal-contact
poly-metal-contact
diff-metal-contact
diff-metal-contact
diff-metal-contact
glass-contact
glass-contact
error_p

etror_s

error_ps

end

F N~ I e

Table 6. Styles section

compose

compose efet poly diff
decompose dfet poly diff
decompose dcap poly diff
decompose be poly diff
paint glass metal
erase glass metal
end

glass
space

Table 7. Compose section

February 28, 1985

(1) You get what you paint. If the home plane of Y'is P, or Y is space, you get Y;
otherwise, nothing changes and you get X.

Magic Maintainer’s Manual #2: The Technology File "~ February 28, 1885

(2) You can erase all or nothing. Erasing space or Y from Y will give space;
erasing anything else has no effect.

These rules apply for contacts as well. Painting the base type of a contact
paints the base type on its home plane, and each automatically generated type on
its home plane. Erasing the base type of a contact erases both the base type and
the automatically generated types.

It is sometimes desirable for certain tile types to behave as though they were
“‘composed” of other, more fundamental ones. For example, in Tutorial #2 you
saw that painting poly over diffusion produced enhancement-fet, instead of
diffusion. Also, painting either poly or diffusion over enhancement-fet leaves
enhancement-fet, erasing poly from enhancement-fet leaves diffusion, and erasing
diffusion leaves poly. The semantics for enhancement-fet are a result of the
following rule in the compose section of the nMOS technology file:

compose efet poly diff

Sometimes, not all of the ‘“‘component’ layers of a type are layers known to
magic. For example, although both enhancement-fet and depletion-fet contain
poly and diffusion, depletion-fet can be thought of as also containing implant
(which is not a tile type). So while we can’t construct depletion-fet by painting
poly and then diffusion, we'd still like it to behave as though it contained both
materials. Painting poly or diffusion over a depletion-fet should not change it,
and erasing either poly or diffusion should give the other. These semantics are the
result of the following rule:

decompose dfet poly diff

The general syntax of both types of composition rules, compose and
decompose, is:

compose type albl a2b2 ..
decompose type al bl a2b2 ...

The idea is that each of the pairs al b1, a2 b2, etc comprise type. In the case of a
compose rule, painting any a atop its corresponding b should give type, as well as
vice-versa. In both compose and decompose rules, erasing a from type gives b,
erasing b from {ype gives a4, and painting either a or b over fype leaves fype
unchanged.

Contacts are implicitly composed of their component types, so the result
obtained when painting a type Y over a contact type C will by default depend
only on the component types of C. If painting Y doesn’t affect the component
types of the contact, then it is considered not to affect the contact itself either. If
painting Y does affect any of the component types, then the result is as though the
contact had been replaced by its component types in the layout before type Y was
painted. Similar rules hold for erasing.

A poly-metal-contact has component types poly and metal. Since painting
poly doesn’t affect either poly or metal, it doesn’t affect a poly-metal-contact
either. Painting diffusion does affect poly—it turns it into an enhancement-fet—
so painting diffusion over a poly-metal-contact breaks up the contact, leaving

Magic Maintainer's Manual #2: The Technology File February 28, 1985

enhancement-fet on the poly-diff plane and metal on the metal plane.

The compose and decompose rules are normally sufficient to specify the
desired semantics of painting or erasing. In unusual cases, however, it may be
necessary to provide Magic with explicit paint or erase rules. For example, to
specify that erasing metal from a glass contact causes the contact to disappear,
the technology file contains the rule:

erase glass metal space

This rule could not have been written as a decompose rule because it is
asymmetric; erasing space from a glass contact does not yield metal. The general
syntax for these explicit rules is: '

paint have ¢t result [p|
erase have ¢ result [p|

Here, have is the type already present, on plane p if it is specified; otherwise, on
the home plane of have. Type t is being painted or erased, and the result is type
result.

It's easiest to think of the paint and erase rules as being built up in four
passes. The first pass generates the default rules for all non-contact types, and
the second pass replaces these as specified by the compose, decompose, etc.
rules, also for non-contact types. At this point, the behavior of the component
types of contacts has been completely determined, so the third pass can generate
the default rules for all contact types, and the fourth pass can modify these as per
any compose, etc. rules for contacts.

connect

poly pmec,efet dfet,deap,be
diff be,dme

efet, dfet, dcap pmc,be

metal glass pme,dme

glass pme,dme

end

Table 7. Connect section

8. Connect section

For circuit extraction, routing, and some of the net-list operations, Magic
needs to know what types are electrically connected. Magic’s model of electrical
connectivity used is based on signal propagation. Two types should be marked as
connected if a signal will always pass between the two types, in either direction.
For the most part, this will mean that all non-space types within a plane should
be marked as connected. The exceptions to this rule are devices (transistors). A
transistor should be considered electrically connected to adjacent polysilicon, but

-10 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

not to adjacent diffusion. This models the fact that polysilicon connects to the
gate of the transistor, but that the transistor acts as a switch between the
diffusion areas on either side of the channel of the transistor.

The lines in the eonneet section of a technology file, as shown in Table 8,
each contain a pair of comma-separated lists of connecting types. Each type in
the first list connects to each type in the second list. This does not imply that the
types in the first list are themselves connected to each other, or that the types in
the second list are connected to each other.

Because connectivity is a symmetric relationship, only one of the two possible
orders of two tile types need be specified. Tiles of the same type are always
considered to be connected. Contacts are treated specially; they should be
specified as connecting to material in all planes spanned by the contact. For
example, poly-metal-contact is shown as connecting to several types in the poly-
diff plane, as well as several types in the metal plane. The connectivity of a
contact should usually be that of its component types, so poly-metal-contact
should connect to everything connected to poly, and to everything connected to
metal.

7. Cifoutput section

The layers stored by Magic do not always correspond to physical mask
layers. For example, there is no physical layer corresponding to depletion-fet;
instead, the actual circuit must be built up by overlapping poly and diffusion,
then covering the entire transistor area with a depletion implant. When writing
CIF (Caltech Intermediate Form) files, Magic generates the actual geometries
that will appear on the masks used to fabricate the circuit. The cifoutput
section of the technology file describes how to generate mask layers from Magic’s
abstract layers.

7.1. CIF styles

The technology file can contain several different specifications of how to
generate CIF. Each of these is called a CIF style. Different styles may be used
for fabrication at different feature sizes, or for totally different purposes. For
example, some of the Magic technology files contain a style “plot™ that generates
CIF pseudo-layers that have exactly the same shapes as the Magic layers. This
style is used for generating plots that look just like what appears on the color
display; it makes no sense for fabrication. Lines of the form

-11 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

cifoutput

style fab4.0

scalefactor 200 200

layer NP poly,pme,efet,dfet,dcap,be
fabels poly efet dfet,dcap,be

layer ND diff,dmc,efet,dfet,dcap,be
labeis diff

layer NM metal,pme,dme,glass
Jabels metal,pme,dme,glass

layer NI
bloat-or dfet,dcap * 200 diff,bc 400
grow 100
shrink 100

layer NC dme
squares 400

fayer NC pme
squares 400

layer NG glass

fayer NB
bloat-or be * 200 diff,dmc 400 dfet O
grow 100
shrink 100

end

Table 9. Cifoutput section

style name

are used to end the description of the previous style and start the description of a
new style. The Magic command :eif ostyle name is typed by users to change the
current style used for output. The first style in the technology file is used by
default for CIF output if the designer doesn’t issue a :eif style command. If the
first line of the cifoutput section isn’t a style line, then Magic uses an initial
style name of default.

7.2. Séaling
Each style must contain a line of the form
scalefactor scale [reducer]

that tells how to scale Magic coordinates into CIF coordinates. The argument
scale indicates how many hundredths of a micron correspond to one Magic unit.
Because of certain numerical problems with the CIF representation, scale must
always be an even number. The second parameter, reducer, is optional. If it is

-12-

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

specified, it is used to increase the readability and decrease the size of CIF files.
Each CIF coordinate is divided by reducer before being written to the CIF file,
then a uniform upward scalefactor of reducer is specified once for the whole file.
This has no effect on the CIF except to make the individual CIF numbers smaller
and thereby reduce the sizes of CIF files. Reducer must be a positive integer, and
must evenly divide into every other dimension specified in any statement for this
style. Reducer must also divide one-half of scale. If this sounds confusing, the
easiest thing is to leave reducer unspecified, in which case the value 1 is used.

7.3. Layer descriptions

The main body of information for each CIF style is a set of layer
descriptions. Each layer description consists of one or more lines describing how
to generate the CIF for a single layer. The first line of each description is one of

layer name [layers)
or
templayer name [layers]

These statements are identical, except that templayers are not output in the CIF
file. They are used only to build up intermediate results used in generating the
“real” layers. In each case, name is the CIF name to be used for the layer. If
layers is specified, it consists of a collection of Magic layers and previously-defined
CIF layers in this style; these layers form the initial contents of the new CIF
layer. "If layers is not specified, then the new CIF layer is initially empty. The
following statements are used to modify the contents of a CIF layer before it is
output.

After the layer or templayer statement come several statements specifying
geometrical operations to apply in building the CIF layer. Each statement takes
the current contents of the layer, applies some operation to it, and produces the
new contents of the layer. The last geometrical operation for the layer determines
what is actually output in the CIF file. The geometrical operations are:

or layers
and layers
grow amounl
shrink amount
bloat-or layers layers2 amount layers2 amount ...
bloat-max layers layers2 amount layers2 amount ...
bloat-min layers layers? amount layers2 amount ...
squares size
squares border size separation

The operation or takes all the layers (which may be either Magic layers or
previously-defined CIF layers), and or's them with the material already in the CIF
layer. The operation and is similar to or, except that it and’s the layers with the
material in the CIF layer {in other words, any CIF material that doesn't lie under
material in layers is removed from the CIF layer). Grow and shrink will
uniformly grow or shrink the current CIF layer by amount units, where amount
is specified in CIF units, not Magic units.

- 13 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

E e B E B - B.
B A C B A C H A C
D 1)) D

bloat-or * 100 C,E 200 bloat-max * 160 C,E 200 bleat-min * 100 C,E 200

Figure 2. The three diflerent forms of bloat behave slightly differently when two
different bloat distances apply along the same side of a tile. In each of the above
examples, the CIF that would be generated is shown in bold outline. If bloat-or is
specified, a jagged edge may be generated, as on the left. If bloat-max is used, the
largest bloat distance for each side is applied uniformly to the side, as in the center.
If bloat-min is used, the smallest bloat distance for each side is applied uniformly
to the side, as on the right.

The three bloat operations provide selective forms of growing. In these
statements, all the layers must be Magic layers. Each operation examines all the
tiles in layers, and grows the tiles by a different distance on each side, depending
on the rest of the line. Each pair layers2 amount specifies some tile types and a
distance (in CIF units). Where a tile of type layers abuts a tile of type layers2,
the first tile is grown on that side by amount. The result is or’ed with the current
contents of the CIF plane. The layer “*” may be used as layers2 to indicate all
tile types. Where tiles only have a single type of neighbor on each side, all three
forms of bloat are identical. Where the neighbors are different, the three forms
are slightly different, as illustrated in Figure 2. Note: all the layers specified in
any given bloat operation must lie on a single Magic plane. For bloat-or all
distances must be positive. In bloat-max and bloat-min the distances may be
negative to provide a selective form of shrinking.

separation
— —

|

border

—_— —
size

Figure 3. The squares operator chops each tile up into squares, as determined by
the border, size, and separation parameters. In the example, the bold lines show the
CIF that would be generated by a squares operation. The squares of material are
always centered so that the borders on opposite sides are the same.

The last geometric operation is called squares. It examines each tile on the
CIF plane, and replaces that tile with one or more squares of material. Each
square is size CIF units across, and squares are separated by separation units. A
border of at least border units is left around the edge of the original tile, if

-14-

Magic Maintainer's Manual #2: The Technology File February 28, 1985

possible. This operation is used to generate contact vias, as in Figure 3. If only
one argument is given in the squares statement, then separation defaults to size
and border defaults to size/2. If a tile doesn’t hold an integral number of squares,
extra space is left around the edges of the tile and the squares are centered in the
tile. If the tile is so small that not even a single square can fit and still leave
enough border, then the border is reduced. If a square won’t fit in the tile, even
with no border, then no material is generated. The squares operation must be
used with some care, in conjunction with the design rules. For example, if there
are several adjacent skinny tiles, there may not be enough room in any of the tiles
for a square, so no material will be generated at all. Whenever you use the
squares operator, you should use design rules to prohibit adjacent contact tiles,
and you should always use the no_overlap rule to prevent unpleasant
hierarchical interactions. The problems with hierarchy are discussed in Section
7.5 below, and design rules are discussed in Section 9.

7.4. Labels

There is one additional statement permitted in the cifoutput section as part
of a layer description:

labels Magiclayers

This statement tells Magic that labels attached to Magic layers Magiclayers are
to be associated with the current CII layer. Each Magic layer should only appear
in one such statement for any given CIF style. If a Magic layer doesn’t appear in

any labels statement, then it is not attached to a specific layer when output in
CIF.

(a) (b) (c)

Figure 4. If the operator grow 100 is applied to the shapes in (a), the merged
shape in (b) results. If the operator shrink 100 is applied to {b), the result is (c).
However, if the two original shapes in (a) belong to different cells, and if CIF is
generated separately in each cell, the result will be the same as in (a). Magic
handles this by outputting additional information in the parent of the subcells to fill
in the gap between the shapes,

7.5. Hierarchy

Hierarchical designs make life especially difficult for the CIF generator. The
CIF corresponding to a collection of subcells may not necessarily be the same as
the sum of the CIF's of the individual cells. For example, if a layer is generated
by growing and then shrinking, nearby features from different cells may merge
together so that they don’t shrink back to their original shapes (see Figure 4). If

- 15 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

Magic generates CIF separately for each cell, the interactions between cells will
not be reflected properly. The CIF generator attempts to avoid these problems.
Although it generates CIF in a hierarchical representation that matches the Magic
cell structure, it tries to ensure that the resulting CIF patterns are exactly the
same as if the entire Magic design had been flattened into a single cell and then
CIF were generated from the flattened design. It does this by looking in each cell
for places where subcells are close enough to interact with each other or with
paint in the parent. Where this happens, Magic flattens the interaction area and
generates CIF for it; then Magic flattens each of the subcells separately and
generates CIF for them. Finally, it compares the CIF from the subcells with the
CIF from the flattened parent. Where there is a difference, Magic outputs extra
CIF in the parent to compensate.

Magic’s hierarchical approach only works if the overall CIF for the parent
ends up covering at least as much area as the CIFs for the individual components,
so all compensation can be done by adding extra CIF to the parent. In
mathematical terms, this requires each geometric operation to obey the rule

Op(A U B) 2 Op(A) U Op(B)

The operations and, or, grow, and shrink all obey this rule. Unfortunately, the
bloat and squares operations do not. For example, if there are two partially-
overlapping tiles in different cells, the squares generated from one of the cells may
fall in the separations between squares in the other cell, resulting in much larger
areas of material than expected. There are two ways around this problem. One
way i8 to use the design rules to prohibit problem situations from arising. This
applies mainly to the squares operator. Tiles from which squares are made
should never be allowed to overlap other such tiles in different cells unless the
overlap is exact, so each cell will generate squares in the same place. You can use
the exact_overlap design rule for this.

The second approach is to leave things up to the designer. When generating
CIF, Magic issues warnings where there is less material in the children than the
parent. The designer can locate these problems and eliminate the interactions
that cause the trouble. Warning: Magic does not check the squares operations
for hierarchical consistency, so you absolutely must use exact_overlap design
rule checks! Right now, the eifoutput section of the technology is one of the
trickiest things in the whole file, particularly since errors here may not show up
until your chip comes back and doesn’t work. Be extremely careful when writing
this part!

8. Cifinput Section

In addition to writing CIF, Magic can also read in CIF files using the :cif
read file command. The cifinput section of the technology file describes how to
convert from CIF mask layers to Magic tile types. The section is very similar to
the cifoutput section. It can contain several styles, with a line of the form

style name

used to end the description of the previous style (if any), and start a new CIF

-16 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

input style called name. If no initial style name is given, the name default is
assigned. Each style must have a statement of the form

scalefactor centimicrons

to indicate how many hundredths of a micron correspond to one unit in Magic.

clfinput
style lambda=2microns
scalefactor 200
layer poly NP
labels NP
layer diff ND
labels ND
layer metal NM
labels NM
layer efet NP
and ND
layer dfet NI
and NP
and ND
layer pmec NC
grow 200
and NM
and NP
layer dmec NC
grow 200
and NM
and ND
layer be NB
and NP
and ND
layer glass NG
end

Table 10. Cifinput section. The order of the layers is important, since each
Magic layer overrides the previous ones just as if they were painted by hand.

Like the cifoutput section, each style consists of a number of layer
descriptions. A layer description contains one or more lines describing a series of
geometric operations to be performed on CIF layers. The result of all these
operations is painted on a particular Magic layer just as if the user had painted
that information by hand. A layer description begins with a statement of the
form

layer magicLayer [layers]

- 17 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

In the layer statement, magicLayer is the Magic layer that will be painted after
performing the geometric operations, and layers is an optional list of CIF layers.
If layers is specified, it is the initial value for the layer being built up. If layers
isn't specified, the layer starts off empty. As in the cifoutput section, ach line
after the layer statement gives a geometric operation that is applied to the
previous contents of the layer being built in order to generate new contents for
the layer. The result of the last geometric operation is painted into the Magic
database.

The geometric operations that are allowed in the cifinput section are a
subset of those permitted in the cifoutput section:

or layers

and layers
grow amount
shrink amount

In these commands the layers must all be CIF layers, and the emounts are all
CIF distances {centimicrons).

Wher CIF files are read, all the mask information is read for a cell before
performing any of the geometric processing. After the cell has been completely
read in, the Magic layers are produced and painted in the order they appear in
the technology file. In general, the order that the layers are processed is
important since each layer will usually override the previous ones. For example,
in the nMOS tech file shown in Table 10 the commands for efet will result in the
efet layer being generated not only where there are enhancement transistors but
also where there are depletion transistors and buried contacts. The descriptions
for dfet and be appear later in the section, so those layers will replace the efet
material that was originally painted.

Labels are handled in the eifinput section just like in the cifoutput section.
A line of the form

labels layers

means that the current Magic layer is to receive all CIF labels on layers. This is
actually just an initial layer assignment for the labels. Once a CIF cell has been
read In, Magic scans the label list and re-assigns labels if necessary. In the
example of Table 10, if a label is attached to the CIF layer NP then it will be
assigned to the Magic layer poly. However, the polysilicon may actually be part
of _.a poly-metal contact, which is Magic layer pme. After all the mask
information has been processed, Magic checks the material underneath the layer,
and adjusts the label’s layer to match that material (pme in this case). This is
the same as what would happen if a designer painted poly over an area, attached
a label to the material, then painted pme over the area.

No hierarchical mask processing is done for CIF input. Each cell is read in
and its layers are processed independently from all other cells; Magic assumes
that there will not be any unpleasant interactions between cells as happens in CIF
output (and so far, at least, this seems to be a valid assumption).

- 18 -

‘Magic Maintainer’s Manual #2: The Technology File February 28, 1985

#deflne- allDiff diff,dme be efet,dfet,deap

#define allPoly poly pme,be,efet dfet,deap

#define tran efet,dfet

#define contact pme,dme

#define allMetal metal pme,dme,glass

fdefine allButEfet 8,diff,poly dmec,pme,be,dfet,dcap
#define allpdTypes s.diff,poly,dme,pme,be,dfet,deap,efet

Table 11a. Abbreviations for sets of tile types.

width allDiff “Diffusion width must be at legat 27

2
width dme 4 “Metal-diff contact width must be at least 4"
width allPoly 2 “Polysilicon width must be at least 27
width pme 4 “Metal-poly contact width must be at least 4"
width be 2 “Buried contact width must be at legst 27
width efet 2 “Enhancement FET width must be at leaat 2"
width dfet 2 “Depletson FET width must be at least 27
width dcap 2 “Depletion capacitor width must be at legst 27
3

width allMetal “Metal width must be at least 8"

Table 11b. Width rules in the dre section.

9. Dre section

The design rules used by Magic's design rule checker come entirely from the
technology file. We'll look first at two simple kinds of rules, width and and
spacing. Most of the rules in the dre section are one or the other of these kinds
of rules.

9.1. Width rules

The minimum width of a collection of types, taken together, is expressed by
a width rule. Such a rule has the form:

width {ypes w error

where fypes is a set of tile types (a comma-separated list), w is an integer, and
error is a string, enclosed in double quotes, that can be printed by the command
:dre why if the rule is violated. A width rule requires that all regions containing
any types in the set {ypes must be wider than w in both dimensions. For
example, in Table 11b, the rule

width dfet 2 “Depletion FET width must be at least 2”

means that depletion-mode devices must be at least 2 units wide whenever they

- 19 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

appear. The types field may contain more than a single type, as in the following
rule:

width allMetal 3 “Metal width must be at least 3’

which means that all regions consisting of the types metal, poly-metal-contact,
diff-metal-contact, or glass must be at least 3 units wide. Because many of the
rules in the dre section refer to the same sets of layers, the #define facility of
the C preprocessor is used to define a number of macros for these sets of layers.
Table 11a gives a complete list.

All of the layers named in any one width rule must lie on the same plane.
However, if some of the layers are contacts, Magic will substitute a different
contact image if the named image isn’t on the same plane as the other layers.

spacing allDiff allDiff 3 touching_ok \
“Diff-diff aeparation must be at least 8”7

spacing allPoly allPoly 2 touching_ok \
“Poly-poly separation muast be at least 2"

spacing tran contact 1 touching_lllegal \
‘“Tranasistor-contact separation muast be af least 1"

spacing efet dfet,dcap 3 touching_illegal \
“Enhancement-depletion transistor separation must be at least §”

spacing allMetal allMetal 3 touching_ok \
“Metal-metal separation must be at least 8”7

spacing be efet 3 touching_illegal \
“Buried contact-transistor separation must be at least 3"

Table 11¢c. Spacing rules in the dre section.

Fuclidean distance Manhattan distance

Figure 5. For design rule checking, the Manhattan distance between two
horizontally or vertically aligned points is just the normal Euclidean distance. If
they are not so aligned, then the Manhattan distance is the length of the longest
side of the right triangle forming the diagonal line between the points.

- 920 -

Magic Maintainer's Manual #2: The Technology File February 28, 1985

9.2. Spacing rules

The second simple kind of design rule is a spacing rule. It comes in two
flavors: touching_ok, and touching_illegal, both with the following syntax:

spacing typesl types? distance flavor error

The first flavor, touching_ok, does not prohibit {ypes! and fypes?2 from being
immediately adjacent. It merely requires that any type in the set types! must be
separated by a ‘““Manhattan’’ distance of at least distance units from any type in
the set types2 that is not immediately adjacent to the first type. See Figure 5 for
an explanation of Manhattan distance for design rules. As an example, consider
the metal separation rule:

spacing allMetal allMetal 3 touching_ok \
“Metal-metal separation must be at least 3"’

This rule is symmetric (types! is equal to fypes?), and requires, for example, that
a poly-metal-contact be separated by at least 3 units from a piece of metal
However, this rule does not prevent the poly-metal-contact from touching a piece
of metal. In touching_ok rules, all of the layers in both typesi and types2 must
be stored on the same plane {Magic will substitute different contact images if
necessary).

Figure 8. Design rules are applied at the edges between tiles in the same plane. A
rule is specified in terms of type t1 and type {2, the materials on either side of the
edge. Each rule may be applied in any of four directions, 23 shown by the arrows.
The simplest rules require that only certain mask types can appear within distance 4
on t2's side of the edge.

The second flavor of spacing rule, touching_illegal, disallows adjacency. It
is used for rules where types! and types?2 can never touch, as in the following:

spacing bc efet 3 touching_illegal \
“Buried contact-transistor separation must be at least 3"

Buried contacts and enhancement mode transistors must be 3 units apart; they
cannot touch. It is only with the touching_illegal rules that {ypes! and types?2
are not the same. In touching_illegal rules, the layers in types? and types?2 may
be on different planes; Magic will find violations between material on different
planes.

-921-

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

' poly
OKTypes = not poly ORRUS S / //

poly | space poly

(2) (b)

Figure 7. If only the simple rules from Figure 6 are used, errors may go unnoticed
in corner regions. For example, the polysilicon spacing rule in (a) will fail to detect
the error in (b).

9.3. Edge rules

The width and spacing rules just described are actually translated by Magic
into an underlying, edge-based rule format. This underlying format can handle
rules more general than simple widths and spacings, and is accessible to the writer
of a technology file via edge rules. These rules are applied at boundaries between
material of two different types, in any of four directions as shown in Figure 8.
The design rule table contains a separate list of rules for each possible
combination of materials on the two sides of an edge.

In its simplest form, a rule specifies a distance and a set of mask types: only
the given types are permitted within that distance on typeZ's side of the edge.
This area is referred to as the constraint region. Unfortunately, this simple
scheme will miss errors in corner regions, such as the case shown in Figure 7. To
eliminate these problems, the full rule format allows the constraint region to be
extended past the ends of the edge under some circumstances. See Figure 8 for an
illustration of the corner rules and how they work. Table 12 gives a complete
summary of the information in each design rule.

Edge rules are specified in the technology file using the following syntax:

-99 .

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

I cornerTypes

cornerTypes not poly

poly
poly
—4— .
< not poly : € not poly
() (d)

Figure 8. The complete design rule format is iHustrated in (a). Whenever an edge
has fypel on its left side and type? on its right side, the area A is checked to be sure
that only OKTypes are present. If the material just above and to the left of the
edge is one of cornerTypes, then area B is also checked to be sure that it contains
only OKTypes. A similar corner check is made at the bottom of the edge. Figure
(b) shows a polysilicon spacing rule, (c) shows a situation where corner extension is
performed on both ends of the edge, and {d) shows a sitmation where corner
extension is made only at the bottom of the edge. If the rule described in (d) were
to be written as an edge rule, it would look like:

edge poly space 2 allButPoly allButPoly 2\
"Poly-poly separation muast be at least 27

edge typesl types? d OKTypes cornerTypes cornerDist error [plane|

Both types! and types?2 may be comma-separated lists of types; an edge rule is
generated for each pair consisting of a type from types? and a type from fypes2.
All the types in typesl, types?, and cornerTypes must lie on a single plane. See
Figure 8 for an example edge rule.

Many of the edge rules in Magic have the property that if a rule is violated
between two pieces of geometry, the violation can be discovered looking from
either piece of geometry toward the other. Because this property is so common,
Magic normally applies an edge rule only in two of the four possible directions:
bottom-to-top and left-to-right, reducing the work it has to do by a factor of two.
Also, the corner extension is only performed to one side of the edge: to the top for
a left-to-right rule, and to the left for a bottom-to-top rule.

To allow for exceptions, an edge rule may be written as an edged4way rule
instead of an edge rule, indicating that it must be checked in all four directions:

-93-

Magic Maintainer's Manual #2: The Technology File February 28, 1985

Parameter Meaning

typel Material on first side of edge.

type2 Material on second side of edge.

d Distance to check on second side of edge.
OKTypes List of layers that are permitted within

d units on second side of edge.
cornerTypes | List of layers that cause corner extension.

cornerDist Amount to extend constraint area when
cornerTypes matches.

plane Plane on which to check constraint region {defaults
to same plane as typel and ¢ype2 and

cornerTypes).

Table 12. The parts of an edge-based rule.

edge diff s,poly,pme 1 8 s,poly,pmc 1\
“Diff-poly 2eparation must be at least 17

edge poly s,diff,dme 1 5 s,diff, dmec 1\
“Diff-poly separation must be at least 17

edge dme s,poly 1 8 s,poly 1\
“Diff-poly separation must be at least 1"

edge pme s,diff 1 8 s, diff 1\
“Diff-poly separation must be at least 1"

edge tran s 1 0 0 0\
‘Transistor overhang is misaing”’

edge 8 tran 1 0 0 0\
“Transistor overhang ia misaing”’

edgedway be diff, dme 4 aliButEfet allpdTypes 3\
“Buried contact-transistor separation must be at least { on diff side”

edgedway dfet be 3 be 0 0\
“‘Buried contact next to depletion transistor must be at least Sz 2"

edgedway tran poly 2 poly pme poly 2\
“Polyasilicon must overhang transistor by at least 2"’

edgedway tran diff 2 diff, dme diff 2\
‘Diffusion musat overhang transistor by at least 2

Table 11d. Edge rules in the dre section.

edge4way tran diff 2 diff,dme diff 2 \
“Di ffusion must overhang transistor by at least 2"

Not only are edge4way rules checked in all four directions, but the corner
extension is performed to both sides of the edge. For example, when checking a

-924 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

rule from left-to-right, the corner extension is performed both to the top and to
the bottom.

Normally, an edge rule is checked completely within a single plane: both the
edge that triggers the rule and the constraint area to check fall in the same plane.
However, the plane argument can be specified in an edge rule to force Magic to
perform the constraint check on a plane different from the one containing the
triggering edge. In this case, OKTypes must all be tile types in plane. This
feature is used, for example, in our CMOS process to ensure that polysilicon and
diffusion edges don't lie underneath metal2 contacts:

edge4way allPoly notPoly 1 m2 glass,space 00\
“Polysilicon edges must not appear under m2contact” metal2

9.4. Overlap Rules

In order for CIF generation and circuit extraction to work properly, certain
kinds of overlaps between subcells must be prohibited. The design-rule checker
provides two kinds of rules for restricting overlaps. They are

exact_overlap layers
no_overlap layersl layers?2

In the exact_overlap rule, layers is a list of layers. If a cell contains a tile of one
of these types and that tile is overlapped by another tile of the same type from a
different cell, then the overlap must be exact: the tile in each cell must cover
exactly the same area. Abutment between tiles from different cells is considered
to be a partial overlap, so it is prohibited too. This rule is used to ensure that the
CIF squares operator will work correctly, as described in Section 7.6. See Table
11e for the exact_overlap rule from the standard nmos technology file.

exact_overlap dme,pme
no_overlap efet, dfet efet dfet

Table 11le. Exact_overlap rule in the dre section.

The no_overlap rule makes illegal any overlap between 2 tile in layers? and
a tile in layers2. You should rarely, if ever, need to specify no_overlap rules,
since Magic automatically prohibits many kinds of overlaps between subcells.
After reading the technology file, Magic examines the paint table and applies the
following rule: if two tile types A and B are such that the result of painting A
over B is neither A nor B, or the result of painting B over A isn’t the same as the
result of painting A over B, then A and B are not allowed to overlap. Such
overlaps are prohibited because they change the structure of the circuit. Overlaps
are supposed only to connect things without making structural changes. Thus, for
-example, poly can overlap poly-metal-contact without violating the above rules,
but poly may not overlap diffusion because the result is efet, which is neither poly
nor diffusion. The only no_overlap rules you should need to specify are rules to

- 925

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

keep transistors from overlapping other transistors of the same type.

10. Router Section

The router section of a technology file provides information used to guide
the automatic routing tools. The section contains four lines. See Table 13 for an
example router section.

router

layerl metal 3 metalpmc/metal,dmc/metal,glass 3

layer2 poly 2 poly efet,dfet,dcap,pme, be 2 diff, dme 1
contacts pme 4

gridspacing 7

end

Table 13. Router section

The first two lines have the keywords layerl and layer2 and the following
format:

layersl wireType wireWidth types distance types distance ...

They define the two layers used for routing. After the layerl or layer2 keyword
are two fields giving the name of the material to be used for routing that layer
and the width to use for its wires. The remaining fields are used by Magic to
avoid routing over existing material in the channels. Each pair of fields contains a
list of types and a distance. The distance indicates how far away the given types
must be from routing on that layer. Layerl and layer2 are not symmetrical:
wherever possible, Magic will try to route on layerl in preference to layer2. Thus,
in a single-metal process, metal should always be used for layerl.

The third line provides information about contacts. It has the format
contacts contactType size

The tile type contactType will be used to make contacts between layerl and
layer2. Contacts will be size units square. In order to avoid placing contacts too
close to hand-routed material, Magic assumes that both the layerl and layer2
rules will apply to contacts.

The last line of the routing section indicates the size of the grid on which to
route. It has the format

gridspacing distance

The distance must be chosen large enough that contacts and/or wires on adjacent
grid lines will not generate any design rule violations.

- 926 -

Magic Maintainer’s Manual #2: The Technology File

February 28, 1985

11.

Extract Section

extract
lambda 200
step 100
sidehalo 4
reslst poly,pme,efet dfet,be 30000
resist diff,dme 10000
reslst metal glass 30
areacap poly efet,dfet 200
areacap metal,glass 120
arescap diff 400
areacap be 600
areacap dme 520
areacsp pmc 320
perime diff,dme,be space,dfet efet 200
overlap metal diff 100
overiap metal poly 120
#deflne extPoly poly,pme
#define extMet metal,pme/m,dmc/m
sidewall extPoly space space extPoly 50
sidewall extMet space space extMet 60
sideoverlap extMet space ndiff,pdiff 80
sideoverlap extMet space poly 70
Tet efet diff 2 efet GND! 0 0
fet dfet diff,be 2 dfet GND! 0 o0
fet deap diff, be 1 deap GND! 0 o0
end
Table 14. Extract section

The extract section of a technology file contains the parameters used by
Magic’s circuit extractor. Each line in this section begins with a keyword that
determines the interpretation of the remainder of the line. Table 14 gives an
example extract section.

The keywords

areacap,

perimcap,

overlap, and resist define the

capacitance to substrate and the sheet resistivity of each of the Magic layers in a

- 927 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

layout. All capacitances that appear in the extract section are specified as an
integral number of attofarads {per unit area or perimeter), and all resistances as
an integral number of millichms per square.

The areacap keyword is followed by a comma-separated list of types and a
capacitance to substrate, as follows:

areacap types C

Each of the types listed in types has a capacitance to substrate of C attofarads per
square lambda. Each type can appear in at most one areacap line. If a type
does not appear in any areacap line, it is considered to have zero capacitance to
substrate per unit area.

The perimecap keyword is followed by two comma-separated lists of types
and a capacitance to substrate, as follows:

perimcap inlypes outtypes C

Each edge that has one of the types in intypes on its inside, and one of the types
in outtypes on its outside, has a capacitance to substrate of C attofarads per
lambda. This can also be used as an approximation of the effects due to the
sidewalls of diffused areas. As for areacap, each unique combination of an iniype
and an outlype may appear at most once in a perimeap line. Also as for
areacap, if a combination of tnifype and outtype does not appear in any
perimeap line, its perimeter capacitance is zero per unit length.

The resist keyword is followed by a comma-separated list of types and a
resistance as follows:

resist {ypes R

The sheet resistivity of each of the types in fypes is R milliohms per square.

Magic also extracts internodal coupling capacitances, as illustrated in Figufe
9. The keywords overlap, sidewall, sideoverlap, and sidehalo provide the
parameters needed to do this.

Overlap capacitance is between pairs of tile types, and is described by the
overlap keyword as follows:

overlap toptypes bottomtypes cap

where toptypes and bottomiypes are comma-separated lists of tile types, and cap is
a capacitance in attofarads per square lambda. The extractor searches for tiles
whose types are in {optypes that overlap tiles whose types are in bottomtypes, and
that belong to different electrical nodes. When such an overlap is found, the
capacitance to substrate of the node of the tile in foptypes is deducted (for the
area of the overlap), and replaced by a capacitance to the node of the tile in
bottomtypes.

Sidewall capacitance is between pairs of edges, and is deseribed by the
sidewall keyword:

- 98 -

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

o

overlap sidewall overlap (oxide)

Figure 9. Magic extracts three kinds of internodal coupling capacitance. This
figure is a cross-section of a set of masks that shows all three kinds of capacitance.
Overlep capacitance is parallel-plate capacitance between two different kinds of
material when they overlap. Sidewall capacitance is parallel-plate capacitance
between the vertical edges of two pieces of the same kind of material. Sidewalil
overlap capacitance is orthogonal-plate capacitance between the vertical edge of one
piece of material and the horizontal surface of another piece of material that
overlaps the first edge.

neartypes

outtypes

Figure 10. Sidewzll capacitance is between pairs of edges. The capacitance
applies between the tiles tinside and tfar above, where finside’s type is one of
intypes, and tfar's type is one of fartypea.

sidewall intypes outtypes neartypes fartypes cap

where intypes, outtypes, neartypes, and fartypes are all comma-separated lists of
tile types, described in Figure 10. Cap is a capacitance in attofarads per lambda
when the edges are 2 lambda apart. Sidewall coupling capacitance is inversely
proportional to the distance between two edges: at 1 lambda separation, it is
twice the value cap; at 4 lambda separation, it is half of cap.

To reduce the amount of searching done by Magie, it is possible to set a
threshold distance beyond which the effects of sidewall coupling capacitance are
ignored. This is done as follows:

sidehalo distance

where distance is the maximum distance between two edges at which Magic
considers them to have sidewall coupling capacitance.

-99 .

Magic Maintainer’s Manual #2: The Technology File February 28, 1985

Sidewall overlap capacitance is between material on the inside of an edge and
overlapping material of a different type. It is described by the sideoverlap
keyword:

sideoverlap intypes outtypes oviypes cap

where tniypes, outtypes, and ovtypes are comma-separated lists of types, and cap
is capacitance in attofarads per lambda. This is the capacitance associated with
an edge with a type in tnfypes on its inside and a type in ouflypes on its outside,
that overlaps a tile whose type is in ovtypes. See Figure 9.

Transistors are represented in Magic by explicit tiletypes. The extraction of
a fet (with gate, sources, and drains) from a collection of transistor tiles is
governed by the information in a fet line. This line has the following format:

fet types ngtypes min-nterms name snode gscap gecap

Types is a comma-separated list of those tiletypes that make up this type of
transistor. Normally, there will be only one type in this list, since Magic usually
represents each type of transistor with a different tiletype.

Ngtypes is a comma-separated list of those tiletypes that connect to the non-
gate terminals of the fet. Each transistor of this type must have at least min-
nierms distinct non-gate terminals; otherwise, the extractor will generate an error
message. For example, an efet in the nMOS technology must have a source and
drain in addition to its gate; min-nlerms for this type of fet is 2. The tiletypes
connecting to the gate of the fet are the same as those specified in the connect
section as connecting to the fet tiletype itself.

Name is a string used to identify this type of tramsistor to simulation
programs. Snede is the name of the node to which the substrate of this transistor
is connected. Gscap is the capacitance between the transistor's gate and its non-
gate terminals, in attofarads per lambda. Finally, gecap is the capacitance
between the gate and the channmel, in attofarads per square lambda. Currently,
gscap and gccap are unuged by the extractor.

Often the units in the extracted circuit for a cell will always be multiples of
certain basic units larger than centimicrons for distance, attofarads for
capacitance, or milliochms for resistance. To allow larger units to be used in the
.ext file for this technology, thereby reducing the file’s size, the extract section
may specify a scale for any of the three units, as follows:

escale ¢
lambda [
rscale r

In the above, ¢ is the number of attofarads per unit capacitance appearing in the
.ext files, ! is the number of centimicrons per unit length, and r is the number of
millichms per unit resistance. All three must be integers. r should divide evenly
all the resistance-per-square values specified as part of resist lines. ¢ should
divide evenly all the capacitance-per-unit values specified as part of areacap or
perimcap lines.

- 30 -

Magic Maintainer's Manual #2: The Technology File February 28, 1985

12. Installing a Technology File

As mentioned earlier, ‘‘raw’”’ technology files cannot be read directly by
Magic. The C preprocessor must first be used to eliminate comments and expand
macros in a technology file before it gets installed. As a consequence, the full
power of the C preprocessor is available to the writer of a technology file. Not
only may macro definitions be made with #define, but “‘conditional compilation”
using #ifdef and the ability to use other files via the #include mechanism are
possible.

Technology files are installed as a file of the name fechname.techn. The
numeric version suffix n (currently 15) is added to the final .tech when the file is
installed, and allows multiple versions of the technology file to coexist in the same
directory. There is a shell script, tech/:techinstall, to do all the necessary
processing to install a new technology file.

Technology files can be installed in any directory. When Magic is run, it
searches for a technology file first in the current directory and next in the system
library directory, ~cad/lib/magic/sys. To install a new technology file whose
source is techname.tech, run:

tech/:techinstall techname.tech vers dir

where dir is the directory in which the technology file is to be installed, and vers
is the proper version suffix to insure that this technology file is readable by the
latest version of Magic. See the Makefile in tech for the string VERSION,
which defines the current version number.

- 31 -

Magic Maintainer’s Manual #3:
The Display Style and Glyph Files

Robert N. Mayo

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 3.

This tutorial corresponds to display style format version 4 {.dstyle4 extension).
This tutorial corresponds to glyph format version 0 {.glyph extension).

Tutorials to read first:
Magic Tutorial #1: Getting Started

Commands covered in this tutorial:
none

Macros covered in this tutorial:
none

1. Introduction

This document describes the display style (.dstyle) files and the glyph
{-glyph) files. There can be one display style file for each display-technology
combination, and there is one glyph file for each display type. The display style
file fechnology.device.dstyle describes how the bitmap for display type device
should be used for technology technology. The glyph file device.glyphs contains
the cursors to be used for that particular display. If the technology file for a
particular device is not found, then Magic uses the file
technology. DEFAULT.dstyle. In a similar fashion, Magic uses the file
DEFAULT.glyphs if the device-specific glyphs file is not present.

Magic Maintainer’s Manual #3 February 28, 1985

2. Display Style Files
There are 2 sections to a display style file.
section, and the other is the stipples section.

The first is the display_styles

2.1. display_styles section

This section contains many lines. Each line describes one type of color that
the display can draw, and how to draw it. For example, one line might specify
how to draw red (for polysilicon) or how to draw the window borders.

Style | Write | Color | Outline Fill Stipple | Short Long
Mask Name Name
18 177 107 000 stipple 3 E example

Each line consists of fields separated by white space. The first field is the
style pumber in decimal, as defined in styles.h. Siyle numbers 1 through 64 are
for layout geometries, as referenced in the technology file. Styles 65-128 are for
layout geometries when they are not being edited. Add 64 to the style number
for normal layout geometry to get the style number of that style in non-edit celis.
Styles 129 through 254 are for technology-independent colors such as window
borders, the color of the box tool, colors used for debugging, etc. (see styles.h for
details). They are not normally changed for new technologies, but they can be.
Styles 0 and 255 are reserved for internal Magic use and should not be defined.

The next two fields of a style line are the write-mask and color, both
specified in octal. For each pixel in the area to be drawn, only those bits that are
in the write-mask will be changed, and they will be changed to match the bits in
the color. The function is:

newPixel = (oldPixel & “write-mask) | (color & write-mask).

The fourth field is the outline field, specified in octal. A 000 for this field
specifies no outline, while 377 specifies a solid outline. Other values specify some
sort of dashed outline, according to the bit-pattern of the number.

The fifth field specifies how the area being drawn should be ﬁlled The
choices are solid, stipple, cross, outline, and grid. Solid areas are completely
written with the specified write-mask and color, while stippled areas only have
some pixels written, as specified by the next field. A cross fill style is drawn as 2
diagonal lines between opposite corners of the area to be drawn. The outline fill
style only draws the outline and not the inside of the area. The grid style is a
special style that draws lines on the lambda grid using the pattern specified by the
outline field.

The next field is the stipple number. It orly has significance if the fill style is
stipple. It refers to a stipple pattern which is explained later on in this tutorial.

The next field is a one-character name for this style. This name is used in
the specification of glyphs {such as cursors) and is referred to in some of the Magic
code. If there is no name a dash is put in this field.

Magic Maintainer’s Manual #3 Fébruary 28, 1985

The last field is the long name of the style. Currently this is just a comment,
but in the future it might have other uses.

When redisplay is done, the styles are drawn in ascending order. This fact is
used when designing the colors. Some colors ‘or’ together, these are called
transparent colors. The later colors overwrite all bits in the pixel, these are called
opaque colors. This is the same scheme used in Caesar. For more information,
see John K. Ousterhout, “The User Interface and Implementation of Caesar”,
Report No. UCB/CSD 83/131, University of California, Berkeley, California,
August, 1983.

2.2. stipples section

This section describes the pattern of bits for stipple patterns. There may be
up to 16 stipples patterns, numbered 0 through 15. The pattern consists of eight
eight-bit fields specified in octal. This is interpreted as an 8 by 8 array of bits. A
one in a position indicates that that position should be written, while a zero
indicates that that position should be left alone.

Example Stipple Definition
Stipple Number Pattern . Name

2 314 104 104 000 063 021 021 0600 | knight's_move

3. Glyph Files

Glyph files describe sets of icons. Currently Magic uses these only for
cursors. The first non-blank, non-comment line in the file begins with the
keyword size, followed by the number of glyphs in the file, the width in pixels of
a glyph, and the height in pixels of a glyph. All glyphs in a file must have the
same width and height.

After the first line are lines describing the pixels in the glyphs, one line for
each row of each glyph. Blank lines are ignored, as are lines with a ‘4" in column
1. Each line consists of 2 characters for each pixel. The first character is the
short name of a display style, as listed in the display styles file. The short name
‘.’ indicates a transparent pixel. The second character is normally a blank. If the
second character is an ‘*’ instead of a blank, then the origin of the glyph (for
pointing purposes) is set to this pixel. Something unspecified will occur if the
second character is something other than a blank or an '*’, or if more than 1 pixel
in a glyph has an ‘*’. In general, glyphs may contain lots of colors. SUN ecursors,

Magic Maintainer’s Manual #3 ' February 28, 1985

however, must be black and white only.

Glyph files that are cursors for Magic (ie. file name device.glyphs) must
have 19 cursors. The first cursor is the default pointer or crosshair. The second
cursor is an alternate cursor that is not used by Magic in the current release. The
pext 4 cursors are for grabbing the corners of the hox, and the mnext 4 are for
grabbing the whole box. The following 8 cursors are sumla.r to the 8 for the box
except that they are for the window borders. The 18th cursor is a box cursor for
the net-list editor.

example glyph file with orly one glyph

size 1 16 16

KKK.

KKK.

KKK.

KKK.

K.
K KKK. K . ..KKKK
KKKKKKK.*KKKKKKK.
K KK K. K . K KKK.

K

. K. .

KKK.

K K K .

K K K .

K K K .

Magic Technology Manual #1: NMOS
John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

1. Introduction

This document describes Magic’'s NMOS technology. It includes information
about the layers, design rules, routing, CIF generation, and extraction. This
technology is the default one in Magic, and is also available by the name nmos
(run Magic with the shell command magie -T nmos). The design rules
described here are for the standard Mead and Conway NMOS process with
butting contacts omitted and buried contacts added. There is a single layer each
of metal and polysilicon. If you've been reading the Mead and Conway text, or if
you've already done circuit layout with a different editing system, don’t forget
that these are not the layers that actually end up on masks. Contacts and
transistors are drawn in a stylized form that omits implants, vias, and buried
windows.

2. Layers and Design Rules

2.1. Metal

There is only one layer of metal, and it is drawn in blue. Magic accepts the
names metal or blue for this layer. Metal must always be at least 3 units wide
and must be separated from other metal by at least 3 units.

-1-

Magic Technology Manual #1: NMOS February 28, 1985

2.2. Polysilicon

LI
\ .

pd

Polysilicon is drawn in red, and can be referred to in Magic as either

polysilicon or red. It has a minimum width of 2 units and a minimum spacing
of 2 units.

2.3. Diffusion

\\ \\12

N N

Diffusion is drawn in green, and can be referred to in Magic as either
diffusion or green. It has a minimum width of 2 units and a minimum spacing
of 3 units.

2.4. Contacts to Metal

lysilicon

v

‘ 4
diffusion

1 4
AN

—
4

Contacts between metal and polysilicon, and between metal and diffusion,
have similar forms. Poly-metal contacts can be referred to as pme or poly-
metal-contact; they are drawn to look like metal running on top of poly, with
an X" over the area of the contact. Diffusion-metal contacts are similar, except
that they look like metal running on top of diffusion, and have names dme and
diff-metal-contact. Contacts are drawn differently in Magic than they will
appear in the CIF: you do not draw the via hole. Instead, you draw the outer

-9-

Magic Technology Manual #1: NMOS ‘ February 28, 1985

area of the metal pad around the contact, which must be at least 4 units on each
side. Magic will fill in the appropriate via when CIF is generated. If you draw
contacts larger than 4 units on a side, Magic will fill in as many 2-by-2 CIF via
holes (with 2-unit spacings) as it can. Contacts areas must be rectangular in
shape: contacts of the same type may not abut.

An additional kind of contact, called glass-contaet, is used to generate holes
in the overglass layer for use in bonding to pads. This layer is drawn as gray
stripes over blue, and includes both metal and the overglass hole.

2.56. Transistors

Dfet or Deap
Polysilicon \4

13 _ A /] / Efet or Dfet // I
NN NNRE N ’

Diffusion / 2 / /
yd pd pd
2 2 / \
Efet \

There are three transistor structures in the NMOS technology. Enhancement
transistors are known by the names efet and enhancement-fet, and are drawn
to look like red over green, with green stripes. You get efet automatically when
you paint poly over diffusion or vice versa. Depletion transistors are known by
the names dfet and depletion-fet, and are drawn the same way, except with
yellow stripes. A third type of material is called depletion-capacitor or deap.
It is displayed with yellow crosses over the transistor area, and is identical to dfet
except that there are no overhang design rules for it since it is assumed to be used
only as a capacitor. You do not drawn any implants in Magie, but just use a
different material for the transistor. Magic will generate the implants
automatically. All transistors must be at least 2 units on each side, and there
must be a poly or diffusion overhang for 2 units on each side of efet or dfet (this is
not required for deap). Poly must be separated from diffusion by at least one unit
except where it is forming a transistor. Dfet and dcap must be at least 3 units
from efet in order to keep the implant from contaminating the enhancement
transistor.

Magic Technology Manual #1: NMOS ' February 28, 1985

2.6. Buried Contacts

Dfet
Diffusion

o

Jo 0 e //Is

Polysicon —> Z
2

Buried contacts go by the names be and buried-contaet. They are drawn
in a brownish color (the same as transistors}, except with solid black squares over
their area. As with other contacts, you draw just the area where the two
connecting materials (poly and diffusion) overlap; Magic will generate the CIF
buried window, which is actually larger than the overlap area. Buried contacts
come in two forms. The normal form is 2 units on a side, and no poly or diffusion
overhang is required. The second form is used only next to depletion transistors,
and is a 3-by-2 structure abutting the depletion transistor. This form is a little
controversial, since it results in larger-than-normal variations in the size of the
depletion transistor. As a consequence, you shouldn’t use this structure next to
short dfets. In the butting be-dfet structure, measure the transistor length from
the be-dfet boundary.

2.7. Transistor Spacings
Diffusion

N
N

R

Efet

L/

Efet / \

Dfet - /

Dcap 1

0

Transistors must be spaced at least 1 unit from any contact to metal, in
order to keep the contact from shorting the tramsistor. In addition, buried
contacts must be at least 4 units from enhancement transistors in the diffusion
direction. This rule applies only to the side of buried contact where diffusion
leaves the contact.

Magic Technology Manual #1: NMOS February 28, 1985

2.8. Hierarchical Consfra.ints

The design-rule checker enforces several constraints on how subcells may
overlap. The general rule is that overlaps may be used to connect portions of
ceils, but the overlaps must not change the structure of the circuit. Thus, for
example, it is acceptable for poly in one cell to overlap poly-metal contact in
another cell, but it is not acceptable for poly in one cell to overlap diffusior in
another (thereby forming a transistor).

For contacts, there are additional restrictions. A contact in one cell may not
overlap a contact in any other cell unless the two contacts have same type and
they occupy exactly the same area. Partial overlaps are not permitted, nor are
abutting contacts of the same type (contacts of different types may abut, as long
as the abutment doesn’t violate any other design rules). The contact restrictions
are necessary to guarantee that CIF can be generated correctly in a hierarchical
fashion.

3. Routing

If you use Magic’s automatic routing tools on an NMOS design, the routing
will be run in metal and polysilicon, with metal as the primary layer. The routing
will be placed on a 7-unit grid.

4. Reading and Writing CIF

There is only one CIF output style available in the NMOS technology:
lambda=2. The CIF layers in this style, and their meanings, are:

Name Meaning

NP polysilicon

NI diffusion

NM metal

NI deple_tion implant: ger.lerated around depletion
transistors and depletion contacts

NC contact via: generated as small squares inside
poly-metal contacts and diffusion-metal contacts

NB buried window: generated around buried contacts

NG overglass via: generated for overglass contacts

To see exactly where each CIF layer is generated for a particular design, use the
:ieif see command. There is also just one CIF input style. It is called
lambda=2 and can be used to read files written by Magic in the lambda==2
style, or files written by Caesar using the standard NMOS technology with a scale
factor of 200.

Magic Technology Manual #1: NMOS February 28, 1985

5. Extraction

Transistors of type efet or dfet in the NMOS technology must have at least
two diffusion terminals. A diffusion terminal is a comtiguous region along the
perimeter of the transistor channel that connects to diffusion, as shown below:

terminal 1

poly

terminal 2 — —1— fet

2 diff terminals

terminal 2

i

terminal 1 — —— terminal 8
3 diff terminals

A transistor may have more than two diffusion terminals, in which case it is
modelled as a collection of two-terminal transistors. If only one diffusion terminal
is present, the the extractor flags this as an error and outputs a transistor with
the source and drain shorted together.

Transistors of the special type deap may have as few as one diffusion
terminal. Although their normal use is as capacitors, the extractor will output
them as though they were a dfet. It is up to simulation programs to compute the
capacitance of a deap from the area and perimeter of its channel.

The NMOS technology file currently contains no information on parasitic

coupling capacitances. As a result, overlap capacitance, sidewall coupling
capacitance, and sidewall overlap capacitance will always be zero.

Magic Technology Manual #2: CMOS
John QOusterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

1. Introduction

This document describes Magic’s CMOS technology. It includes information
about the layers, design rules, routing, CIF generation, and extraction. Use the
-T switch when running Magic to get this technology: type the shell command
magie -T ecmos. This technology is a preliminary version of the scalable 1.2/3.0
micron CMOS technology that will be supported by the MOSIS fabrication
service. The final technology will probably be slightly different from what
appears here. The technology provides two levels of metal. The layout rules are
valid for both p-well and n-well. This means that you must place well contacts
for both pdiffusion and ndiffusion.

Remember that the layers you'll draw in Magic are ‘‘abstract layers” or
“logs”, and do not correspond exactly to the mask patterns that will be used to
fabricate your circuit. In general, the interconnect layers (metal2, metall, poly,
diffusions) will come out as you draw them here, but Magic will generate implants
and wells automatically, and these may be bloated or shrunk versions of the
various contacts and diffusions. You generally draw contacts in terms of the total
overlap area between the layers being connected, not in terms of the via holes.

Magic Technology Manual #2: CMOS February 28, 1985

2. Layers and Design Rules

2.1. Second-level Metal

The top level of metal is drawn in a purple color, and has the names metal2
or m2 or purple. It must always be at least 2 units wide, and metal2 areas must
be separated from each other by at least 4 units.

2.2. First-level Metal

The lower level of metal is drawn in blue and has the names metall or m1
or blue. It has a minimum width of 2 units and a minimum spacing of 3 units.

Magic Technology Manual #2: CMOS February 28, 1985

[z}
77777

Polysilicon is drawn in red, and can be referred to in Magic as either
polysilicon or red. It has a minimum width of 2 units and a minimum spacing
of 2 units.

2.3. Polysilicon

2.4. Diﬂ'usi&n

N I

NN

Pdiffusion is drawn with a light brown color; Magic accepts the names
pdiffusion and brown for this layer. Ndiffusion is drawn in green, and can be
referred to as ndiffusion, or green. In Magic you do not have to draw wells or
implants; Magic will generate the appropriate wells and implants needed to
produce each type of diffusion. The basic design rules for the two kinds of
diffusion are the same: they must be at least 2 units wide and have a spacing (to
the same kind of diffusion) of at least 3 units. Spacing between pdiffusion and
ndiffusion is discussed below. Since almost all of the design rules are the same for
both types of diffusion, both pdiffusion and ndiffusion are drawn with the same
cross-hatch in this document; where the difference is important, the different
diffusions are labelled as p-type or n-type.

Magic Technology Manual #2: CMOS February 28, 1985

2.58. Metal2 Contacts

metall

wor | N

N T

4

All contacts involve the metall layer. Contacts from metall to metal2 are
called m2contact. They are drawn as an area of metall overlapping an area of
metal2, with a cross through the contact area. Metal2 contacts must be at least 4
units wide. For large contact areas Magic will automatically generate many small
via holes in the CIF. All contacts, including metal2 contacts, must be
rectangular: two contacts of the same type may not abut.

There is an additional special rule for metal2 contacts: there must not be
any polysilicon or diffusion edges underneath the area of the contact (it is hard to
fabricate a metal2 contact over the sharp rise of the poly or diffusion edge).
Polysilicon or diffusion edges may lie at the edge of a metal2 contact, as long as
the poly or diffusion material is outside the contact. It is also acceptable for poly
or diffusion to lie under a m2contact area, as long as it completely covers the area
of the m2contact with an additional 1-unit surround.

2.8. Polysilicon and Diffusion Contacts

ndiff
poly pdiff

/

% N

metall

% > —p
5 4
Contacts between metall and polysilicon go by the name pcontact. They
must be at least 4 units wide everywhere, and in the direction(s) where metal
enters or leaves the contacts they must be at least 5 units wide. Contacts
between metall and diffusion are called ndeontact (for ndiffusion) or
pdcontact (for pdiffusion), and need only be 4 units wide. Both poly contacts

Magic Technology Manual #2: CMOS February 28, 1985

and diffusion contacts are drawn as an overlap between the two layers, with a
cross over the contact area. Polysilicon and diffusion contacts must be at least 4
units wide, and polysilicon contacts must be at least 5 units wide in any direction
where metal leaves the contact. Polysilicon and diffusion contacts may abut each
other but not contacts of the same type.

2.7. Transistors

poly
ndiff or pdiff 2 /] 12
N \\ L / /)

s, —.

P-type transistors are drawn as an area of poly overlapping pdiffusion, with
brown stripes in the transistor area. Magic accepts the names pfet or
ptransistor for this layer. N-type transistors are drawn as an area of poly
overlapping ndiffusion, with green stripes in the transistor area. The names nfet,
and ntransistor may be used. Transistors of each type can be generated by
painting polysilicon and diffusion on top of each other, or by painting the
transistor layer explicitly. The design rules are the same for both types of
transistor: transistors must be at least 2 units on a side, must be surrounded by
either poly or diffusion for 2 units on each side, and must be separated from
nearby contacts by at least 1 unit. Polysilicon must be at least 1 unit away from
diffusion, except where it is forming a transistor {adjacent poly and diffusion
contacts are an exception to this rule).

Magic Technology Manual #2: CMOS ‘ February 28, 1985

2.8. Well Contacts
oly

L

pwe V| ndiff

——
4 2

Each connected area of pdiffusion or ndiffusion {(including ptransistor
and ntransistor, respectively) must contain a well-contact. Well contacts
associated with ndiffusion are called pweontact (they connect to the p-well
surrounding the diffusion). Well contacts associated with pdiffusion are called
nwcontact: they connect to the n-well or n-type substrate. Well contacts are
drawn as metal over diffusion of the associated type, with square black staples to
indicate the well contact. Pweontaet must be tied to Ground, and nwecontact
must be tied to Vdd. We don’t have specific rules yet as to how many well
contacts you should place. If you place too few, you risk latch-up in your circuit,
so a good rule of thumb is to place one nweontact for each ptransistor that
has its source tied to Vdd, and one pweontaet for each ntransistor that has its
drain tied to GND. The well contacts can abut other types of contacts. Well
contacts must be at least four units wide in each dimension.

2.9. Spacings between P and N

it 7//
11 pwe /
— 5 %
12 / /

Diffusions, transistors, and well-contacts of the n type must be far away away
from those of the p persuasion, in order to leave room for a transition from one
well type to the other. Ndiffusion and pdiffusion must be 12 units apart. Well
contacts can be one unit closer to material of the opposite sex, so nwcontact need

NN

-6 -

Magic Technology Manual #2: CMOS February 28, 1985

only be 11 units from ndiffusion, pwcontact need only be 11 units from pdiffusion,
and nwcontact and pwcontact need only be 10 units apart.

2.10. Hierarchical Constraints

The design-rule checker enforces several constraints on how subcells may
overlap. The general rule is that overlaps may be used to connect portions of
cells, but the overlaps must not change the structure of the circuit. Thus, for
example, it is acceptable for poly in one cell to overlap poly-metal contact in
another cell, but it is not acceptable for poly in one cell to overlap diffusion in
another (thereby forming a transistor).

For contacts, there are additional restrictions. A contact in one cell may not
overlap a contact in any other cell unless the two contacts have same type and
they occupy exactly the same area. Partial overlaps are not permitted, nor are
abutting contacts of the same type (contacts of different types may abut, as long
as the abutment doesn’t violate any other design rules). The contact restrictions
are necessary to guarantee that CIF can be generated correctly in a hierarchical
fashion.

2.11. Special Layers for Pads

There are four additional layers provided for pads and other special circuits
where guard rings and special well configurations are needed. They should not be
used in normal circuits. Two of the layers, nring and pring, are used to
generate guard rings. Nring is used for guard rings around n-wells: it will result
in an n+ diffusion area, and will also generate n-well over the area of the ring.
Pring is used for guard rings around p-wells: it will result in a p+ diffusion area,
and will also generate p-well over the area of the ring. For rings, wells are
generated only over the area of the rings (whereas for normal diffusion the wells
are generated by bloating the diffusion area); this means that guard rings can be
placed at the edges of wells. The minimum widths and spacings are the same for
the rings as for diffusions, but the required spacings to opposite diffusions are
different. Consult your technology file for details. Nring and pring may be
adjacent.

In addition to the ring layers, an additional layer pwell is provided. This
layer has no design rules, and is used only to fill in well areas where there would
be insufficient well material generated otherwise. This layer should never be
needed (?) but is provided just in case. Eventually there will probably be an
nwell layer also.

The fourth extra layer is called glass. It is used to make holes in the
overglass layer for bonding to pads. The glass layer includes metal2, metall,
plus overglass via.

You should only use the special layers under extraordinary circumstances,
such as pad design. You'll probably need to use the :¢cif see command frequently
when using these layers so that you can see exactly what mask material will come
out in the end.

Magic Technology Manual #2: CMOS February 28, 1985

2.12. Hierarchical Constraints

The design-rule checker enforces several constraints on how subcells may

overlap. The general rule is that overlaps may be used to connect portions of

cells, but the overlaps must not change the structure of the circuit. Thus, for

~ example, it is acceptable for poly in one cell to overlap poly-metal contact in

another cell, but it is not acceptable for poly in one cell to overlap diffusion in
another {thereby forming a transistor).

For contacts, there are additional restrictions. A contact in one cell may not
overlap a contact in any other cell unless the two contacts have same type and
they occupy exactly the same area. Partial overlaps are not permitted, nor are
abutting contacts of the same type (contacts of different types may abut, as long
as the abutment doesn’t violate any other design rules). The contact restrictions
are necessary to guarantee that CIF can be generated correctly in a hierarchical
fashion.

3. Routing in CMOS

If you use Magic’s automatic routing tools on a CMOS design, the routing
will be run in metall and metal2. Metall is the primary routing layer and will
be used wherever possible. In order for Magic to route to terminals, they will
have to be on layers that connect to either metall or metal2. For example,
terminals may be on the pcontact layer (since it connects to metall) but not on
the polysilicon layer. In this technology, the router will use an 8-unit grid.

4. Reading and Writing CIF

There are two output styles available for CIF. The default style is
lambda==1.5, which writes out CIF layers according to the preliminary

specifications of the MOSIS 3.0 micron scalable CMOS process. The CIF layers
are:

Name Meaning

CS second-level metal

CF first-level metal

CG polysilicon and transistor gates

CA diffusion (both p-type and n-type)

CV via: contact holes in metal2 contacts

CC cut: contact holes in all other contacts

Cw p-well

CP p-plus implant mask: surrounds all n-type diffusion
CO overglass cut

If you're curious to see exactly where these layers get generated for a particular
design, read about the :cif see command in the Magic tutorials or man page.

The second CIF output style is called plot. It isn’t useful for fabrication or
further processing by programs; it 1s intended to be used only for plottlng The
CIF layers are almost exact copies of the Magic layers:

-8-

Magic Technology Manual #2: CMOS February 28, 1985

Name Meaning

CS metal2 layer
CF metall layer
CP polysilicon layer (includes transistors)

CND ndiffusion layer (includes contacts)

CPD pdiffusion layer (includes contacts)

Ccv m2contact layer

CC pcontact, nwcontact, and pweontact layers
CWC nwcontact and pwcontact layers

CNR nring layer

CPR pring layer

CPW pwell layer

CO glass layer

For reading CIF, there are two styles. Style lambda=1.5 is the default;
use 1t to read files that were written by Magic in style lambda==1.5. The
second style is caesar_lambda=2. Use this style for porting designs from
Caesar’s cmos-pw technology: write files from Caesar with a scale factor of 200,
then read into Magic using style caesar_lambda=2.

b. Extraction

The CMOS technology has only two types of transistor: pfet and nfet. Both
must have at least two diffusion terminals. A diffusion terminal is a contiguous
region along the perimeter of the transistor channel that connects to diffusion, as
shown below:

terminal 1

poly

terminal 2

2 diff terminals

termingl 2
|

terminal { —— — terminal &

3 diff terminals

Magic Technology Manual #2: CMOS February 28, 1985

A transistor may have more than two diffusion terminals, in which case it is
modelled as a collection of two-terminal transistors. If only one diffusion terminal
is present, the the extractor flags this as an error and outputs a transistor with
the source and drain shorted together.

The CMOS technology file contains values for only two kinds of parasitic
coupling capacitance: overlap capacitance and sidewall coupling capacitance.
Sidewall capacitance is only computed between parallel edges within 4 lambda of
each other.

- 10 -

Using Crystal for Timing Analysis

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720
415-642-0865
Arpanet address: ousterhout@berkeley
Uuep address: ucbvax!ousterhout

This user manual corresponds to Crystal version 2.

1. Introduction

Crystal is a program that analyzes the performance of VLSI circuits. Its
input consists of a circuit description extracted from the mask layout by the
Mextra program. Users also supply a few lines of text to guide the analysis.
Crystal then determines how long each clock phase must be and outputs
information about the portions of the circuit that cause the worst delays.

Crystal helps in performance tuning by pointing out paths that limit clock
speed. It is intended for circuits designed using multiple non-overlapping clocks.
It will determine the length of each clock phase, but will not check clock skew or
set-up and hold times. Circuits using more complex timing disciplines may
require additional timing analysis besides what Crystal provides.

This manual is a tutorial on how to use the Crystal commands to get
accurate timing information. It should be used together with the Unix man page,
which provides detailed syntax information along with more concise descriptions
of the commands, options, and built-in tables. Crystal is easiest to understand if
you try it out on simple test cases while you read the manual sections.

Using Crystal for Timing Analysis February 28, 1985

2. Timing Analysis versus Simulation

Crystal's approach is very different from simulation, so the way you’ll use it
is quite different from the way you use a simulator. The difference is that Crystal
does not consider specific data values. When you use a simulator like SPICE, you
invoke a run by giving specific values for all the inputs to the circuit. The
simulator then tells you exactly what will happen at each node at each point in
time. When using Crystal, the goal is to specify as little as possible about your
circuit. You only give Crystal vague information about a few nodes in the circuits
(usually the clocks). Wherever Crystal doesn’t have specific information from
you, it chooses the worst possible alternative. Crystal combines all these worst
possibilities to find the overall slowest path through the circuit, which it presents
to you. :

_ Simulation results are only as good as the specific choice of test cases: if your
test cases don’t exercise a particular portion of the circuit, bugs in that portion
may go undetected. The advantage of Crystal's value-independent approach is
that it is guaranteed to find the worst-case timing behavior of the circuit. Crystal
tries all possibilities at each point and picks the worst, so it doesn’t depend on
designer input to find the critical paths. Furthermore, Crystal does all this in a
single run. Simulation requires separate runs for the different test cases, which
can be expensive for large circuits.

The disadvantage of Crystal’s approach is that it may examine paths that
could not occur in the actual chip. For example, Crystal may examine a path
whose first portion can occur only when signal A is zero and whose second portion
can occur only when A is one. Unless the value of A has been specified explicitly,
Crystal will assume that A could be zero in the first portion of the path and one
in the second portion. False paths like this result in camouflage that may hide the
true critical paths. To eliminate false paths, you restrict Crystal's analysis by
fixing a few node values, by restricting the way that signals can flow through
transistors, and by giving Crystal specific information about which nodes to
watch. Sections 10 and 11 show how to do this. You should try to get by with as
little additional information as you possibly can: if you restrict the analysis too
much, you may accidentally prevent Crystal from examining the true critical
path. The best way to use Crystal is to start out with no additional information,
and then add only the bare minimum that’s needed to eliminate the false paths.

Crystal is not a replacement for a simulator. Since it ignores most data
values, it doesn't give any information about whether your circuit is funectionally
correct; it will merely tell you how fast it will run. However, by analyzing the
timing behavior for you, it allows you to use a fast high-level simulator that
ignores timing behavior (ESIM, for example) instead of a slow circuit-level
simulator like SPICE. Crystal's models for timing are much simpler than
SPICE’s. This makes the program run fast, but produces less accurate results in
some situations. Section 14 discusses Crystal’s models in detail.

Using Crystal for Timing Analysis February 28, 1985

3. Signal Flow, Stages, and Delay Analysis

Crystal analyzes your circuit in terms of signal flow. ‘‘Signals” means zero
or one signals, not current or electrons. Signals flow from sources to targets.
Signal sources are the chip inputs and the Vdd and GND supply rails. In
addition, nodes of the circuit that are labelled as busses are also considered to be
signal sources in some situations {see Section 9). Signal targets are places where
information is used: gates of transistors and the chip outputs. A slage is a path
leading from an signal source through transistor channels and other nodes to a
target. If all the transistors in a stage are turned on, then a signal can flow from
the source to the target. See Figure 1.

vdd Vv

[=9
[-%

Vdd

. b

| —
=8

I°
1.

'

>

Figure 1. The path from Vdd to C through transistors 2 and 3 is a stage. If you
tell Crystal that node A can fall at a certain time, Crystal will infer that node C
might rise at a later time, node E might fall at a still later time, and node F rise
latest of all.

To start a delay analysis, you give Crystal the time when some signal in your
circuit rises or falls (usually this is the input pad for a clock signal). Crystal finds
all the signal targets that can be reached from that node. For each target that is
a gate, Crystal looks for stages that might be activated by the change in the gate.
For each stage that it finds, Crystal computes the time when the stage's target
will change value. Then if the target is a gate, Crystal repeats the whole analysis
recursively by finding other stages that the gate change might activate. This
continues until all possible consequences have been examined.

For example, in the circuit of Figure 1, if you tell Crystal that node A can
rise at time 0, Crystal will realize that this change could activate a stage from
GND to C through transistors 1 and 3. Whether or not this happens in the actual
circuit depends on the value of B; if you haven’t specified that value, Crystal will
assume that it might be 1, so it will examine the stage. Using the information in
the stage, Crystal will compute the delay to C, and use it to update the worst-
case fall time for C. Since C connects to the gate of transistor 5, Crystal will then
realize that when C falls, it could turn off the pulldown stage from GND through
transistors 4 and 5 to E. This could activate the pullup stage from Vdd to E
through transistor 6, so Crystal will examine that stage (of course, if node D is 0
then the pulldown stage was already turned off and the change in C has no effect;
if you haven't explicitly told Crystal that D is 0, it will assume that it might be
1). Finally, when E rises it could activate the stage from GND through transistor

-3-

Using Crystal for Timing Analysis February 28, 1985

7 to F, so the worst-case fall time for F will be updated.

If the circuit has many input signals, you invoke the delay analysis again for
each of them. Crystal remembers the worst delays seen in any of the analyses.
After all the delay analysis has been done, you tell Crystal to print out the worst-
case paths through the circuit. A path is a sequence of stages, each causing a
change in the next. The worst-case path is the one whose final target reaches its
final value later than any other node in the circuit. For example, the path from A
to C to E to F is the worst case path in Figure 1. Information about the worst-
case paths is recorded by Crystal as part of the delay analysis; you can control
how many paths Crystal records.

4. Naming Nodes

Many of the Crystal commands take node names as parameters. A name can
either refer to a single node or to a group of nodes. There are two forms for
group names. The first form selects nodes whose names form a numerical
sequence. The limits of the sequence are delimited by angle brackets (which are
not part of the name). Thus, Bit<(1:4>> selects the nodes with names Bitl,
Bit2, Bit3, and Bit4. To select a node whose name contains an angle bracket,
use a backslash character in front of the bracket. For example, type
Truelfl X\ <Y to select the node whose name is TruefX<Y. To get a
" backslash in a node name, use two backslashes in a row.

The second form of group name selects all nodes whose names contain a
given pattern. The name is specified as a star follwed by the pattern. Thus,
*abe selects all nodes containing the pattern abe. Oanly simple pattern matching
is done. The name * selects all nodes in the circuit.

5. How to Run Crystal
Invoke Crystal with the shell command

crystal file

where file is the name of a .sim file. If you want to modify Crystal's timing
models, then you should not specify file on the command line; use the build
command to read the file in after changing the models. The .sim file should have
been created by Mextra. If Mextra was run with the -o switch (thereby
generating “N” lines in the .sim file}, then Crystal will know about parasitic
capacitances and resistances associated with wires. If the -o switch wasn't
specified to Mextra, then there will be “C” lines in the .sim file instead of “N”
lines and Crystal will only know about parasitic capacitances. A .sim file
shouldn’t contain both “N’’ and *C” lines. Note: Crystal will not work with .sim
files generated by Cifplot using its -x option.

Crystal reads its commands from standard input and writes its output to
standard output. Each input line consists of a command name followed by
arguments. The fields are separated by spaces or tabs. Any unique abbreviation
for a command name is acceptable. If the first character of a command line is an

Using Crystal for Timing Analysis February 28, 1985

exclamation point, then the whole line is treated as a comment and ignored.

Commands are divided into seven groups, which should appear in the
following order:

Model commands These commands modify the timing models that
Crystal uses to compute delays, and must appear
before the circuit is read in. The model commands
are model, parameter, and transistor. See
Section 14 for information on how the models work
and how to change them.

Circuit commands Circuit commands are used to input the circuit and
- provide additional information about it, such as
inputs and outputs. The c¢ircuit commands are
build, bus, capacitance, inputs, outputs, and
resistance.

Dynamic node command This group includes the single command
markdynamie, used to find and mark the dynamic
memory nodes in the circuit. Section 13 describes
how to use this command.

Check commands There are two commands in this group, check, and
ratio. They are used to examine the circuit’s
structure for suspicious looking electrical features,
and may be useful in pointing out places where you
need to provide extra information to Crystal. See
Section 12.

Setup commands Setup commands are used to restrict the paths that
Crystal can examine in any given delay analysis.
This group includes the flow, precharged,
predischarged, and set commands.

Delay command This group contains only a single command, delay,
which performs the actual delay analysis.

Miscellaneous commands ~ These commands are used to set internal options and
print out results and statistics. They can be invoked
at’ any time. Commands in this group are: alias,
eritical, dump, fillin, help, options,
prcapacitance, prfets, prresistance, sourece,
statisties, and andump.

The only command outside these groups is the eclear command, which resets
information that was set by setup and delay commands. After clear, input may
resume with anything except model commands. Clear is used to perform several
different timing analyses (for example, for different clock phases) without having
to read in the circuit again.

Using Crystal for Timing Analysis February 28, 1985

6. Simple Runs on Combinational Circuits

The simplest use of Crystal is for combinational (unclocked) circuits, where
you are interested in knowing how long it takes for a change in an input to
propagate throughout the circuit. Only four commands need be used: inputs,
outputs, delay, and critical. First, you must identify to Crystal the circuit
inputs (nodes that are driven by the outside world, such as input pads) and the
circuit outputs (nodes whose values are used by the outside world). This
information is used by Crystal in figuring out how signals can flow. For example,

inputs Bus<31:0> Select
outputs Overflow

identifies the 32 bus bits and the Select signal as inputs, and ths Overflow
signal as an output. See Section 9 for more on the inputs and outputs
commands.

Delay commands are used to tell Crystal when input signals change value.
For example,
delay BusBit 0 2

indicates that the latest time when BusBit will rise is time Ons and the latest
time when BusBit will fall is time 2ns. Crystal will then examine the
consequences of this change to determine the latest possible rise and fall times for
all other nodes affected directly or indirectly by BusBit. A negative time in a
delay statement means that the transition never occurs:

delay Select -1 0

means that Select is initially 1, and will become O no later than time 0. Thus,
only the falling transition of Seleet will be considered in the delay analysis.
Many consecutive delay statements can be used where there are many inputs
that change at different times.

After the delay commands, all that is needed is to print out the critical path.
The eritical command can be used for this. It requires no arguments.

7. Simple Runs on Clocked Circuits

Clocked circuits are handled like combinational circuits, except that there is
a separate group of delay and critical commands for each clock phase.
Typically, things in the circuit happen in response to the rising edges of clocks,
and we'd like to know how long it takes for everything to stabilize once the clock
phase has begun. Thus, there is usually a delay command of the form

delay Phil 0 -1

in the group for each clock phase. If no other delay commands are given, it is
assumed that all other input signals stabilize long before the clock rises.

The command
clear

is used between the commands for the different clock phases; it clears out old

-6-

Using Crystal for Timing Analysis February 28, 1985

delay information. An alternate way to handle different clock phases is with a
completely separate Crystal run. However, for large chips it takes a long time to
read in the circuit so it is usually faster to process all clock phases in a single run.

Phasel Phase?2 Phasel Phase?2 Phasel

Figure 2. I Crystal doesn’t know that Phase2 is zero, then during Phasel analysis
it will consider a path from the left end of the shifter all the way to the right end.
If 2 set command is used to tell Crystal that Phase2 is zero, then Crystal won't
propagate delays through the pass transistors that are turned off.

In addition to the clear commands between clock phases, set commands will
be needed just before the delay commands for each phase. A set command
indicates that a particular node will always have a particular value during the
ensuing delay analysis. For example,

gset 0 Phi<2:3>

indicates to Crystal that Phi2 and Phi3 will be 0 during the analysis. Crystal
uses set information to avoid delay paths that cannot occur, as illustrated in
Figure 2. The clear command will erase information from previous set
commands; see Section 10 for more details on set.

Although the simple set of commands described above will work for many
circuits, there are other circuits where it won't work very well. In particular,
circuits with networks of transistors used for muitiplexors or shifters require
additional information that is discussed in Section 11. If only the simple
commands are used for these circuits, Crystal will either produce pessimistic
results or it will never finish, The sections below describe how to get more
information out of Crystal and how to feed additional information into Crystal to
produce more accurate results more quickly.

8. More on the Printing Commands

Besides the simple usage of the critical command, there are several
additional ways that Crystal can print information. All of the printing commands
are in the “miscellaneous’” command group, so they can be invoked at any time.

8.1. Graphical Command Files

The printing commands will generate graphical command files if you wish.
The command files can be used to highlight nodes and transistors using layout
editors like Caesar, Magic, and Squid. The default for such files is Caesar format
(the options command can be used to change the format to Squid or Magic
style). The -g switch is used to generate the command files. For example,

critical -g dum

will generate in file dum a list of Caesar commands that will highlight the critical
path. To use a Caesar command file generated in this way, do the following: first,

-7-

Using Crystal for Timing Analysis February 28, 1985

edit the circuit in Caesar; second, select a view that contains the entire circuit
{(using the v short command if necessary); third, use the :source long command
to process the command file. The commands will place splotches of the error
layer along with labels to identify “interesting points’’ on the circuit. Boxes are
pushed on the box stack so that you can step from one interesting point to
another using the :popbox long command. The interesting points and labels are
different for different Crystal commands. In the critical command, for example,
the points are the gates of transistors along the worst-case timing path, and the
label for each point shows the delay to that point.

8.2. Critical Paths

The critical command prints out delay paths through the circuit and has the
following form:

critical [-g graphicsFile] |-s spiceFile] [textFile] number number ...

For each number given, information about the numberth slowest path in the
circuit is output (Crystal only records a small number of the slowest paths; to
change this number use the options command). If the -g switch is given,
graphics output is generated. If the -s switch is given, a SPICE deck is generated
for the critical path. If lextFile is given, a textual description of the critical path
is written to that file. If none of graphicsFile, spiceFile, or textFile is given, a
textual description is output on standard output.

SPICE decks generated by Crystal contain circuit description cards and
transient analysis cards, but no model cards; you should add your own model
cards to the beginning of the deck. The circuit contains all the transistors and
parasitic resistances and capacitances along the path, including gate-source and
gate-channel capacitances for transistors that aren’t part of the path but connect
to it. Node 0 is used for GND, node 1 for Vdd, and node 2 for the substrate
body. Crystal generates a card for Vdd, but it doesn’t know what the body bias
voltage is, so you must add your own card to the deck to generate it.

Crystal actually records three separate lists of slow paths, corresponding to
different categories of nodes. The first list is for all nodes. The second list is for
paths leading to memory nodes, and the third list is for paths leading to nodes
that you have specially requested to be watched, using the wateh command.
Normally the numbers in the eritical command refer to the overall list.
However, if you end the number with the letter “m’, then the the numberth
slowest path to a memory node is printed. For example, “1m” refers to the
slowest path to a memory node. Similarly, the suffix “w” is used to refer to the
list for watched nodes: “2w"” refers to the next-to-slowest path leading to a

watched node. The lists for memory and watched nodes are explained in Section
13.

8.3. Capacitance and Resistance Information

Prcapacitance and prresistance have similar synta.k and are used to print
out nodes with large capacitances or resistances:

Using Crystal for Timing Analysis February 28, 1985

prcapacitance [-g graphicaFile] [-t threshold] node node ...
prresistance [-g graphicsFile] {-t threshold] node node ...

For precapacitance the threshold is in picofarads, and for prresistance the
threshold is in ohms. The thresholds default to zero. If no nodes are specified,
then the entire circuit is searched for nodes whose capacitance or resistance is
greater than the threshold. If nodes are specified, then only those nodes are
considered. A line of output is generated for each node exceeding the threshold.
For example, prcap abe will print out the capacitance at node abe, and prres
-t 10000 will print out all nodes with lumped resistance greater than 10 kohms.
The -g switch is used to generate a graphical command file. If Crystal encounters
several nodes with exactly the same resistance or capacitance, only the first is
printed. At the end of the printout, Crystal lists how many duplicate values were
discarded.

8.4. Information about Transistors
The cornmand

prfets node node ...

will print out lots of information about each transistor whose gate attaches to one
of the nodes. If no node is given, then information is printed about all transistors.

9. Circuit Commands

Commands in the ‘‘circuit” group are used to read in the circuit and give
Crystal additional information about it. Information from circuit commands lasts
for the entire Crystal run, and isn’t affected by clear or any other commands.

¢8.1. Reading in the Circuit
The command

build file

is used to read in the circuit. Ftle is the name of a file in .sim format. If you type
a filename on the command line when you invoke Crystal, then the build
command is automatically invoked. However, if you wish to modify the circuit
models, you must do so before reading in the circuit. In this case, don’t give a
filename on the command line, but use build instead. See Section 14 for
information on changing the models.

If a node has been labelled several times, then Mextra picks one of those
labels to identify the node. The other names are recorded in an alias file but are
not used in the .sim file. If you'd like to use one of the aliases to refer to a node,
rather than the name Mextra chose, you can use the command

alias file

to read in the ‘‘.al” file produced by Mextra and add the aliases to the Crystal's

-9-

Using Crystal for Timing Analysis February 28, 1985

name table.

1

——t B
input DC

Figure 3. If Input isn’'t marked as an input, Crystal will not realize that it is a
source of signals, and will mistakenly assume that a change at A has no eflect on B.

9.2. Inputs and Outputs
These two commands were introduced in Section 6. They have the form

inputs node node ...
outputs node node ...

Crystal uses information about inputs and outputs to determine how signals can
flow around the circuit: inputs and Vdd and GND are assumed to be sources of
either a logic one or logic zero, and outputs and gates are assumed to be signal
targets (places to which signals flow). If you forget to tell Crystal which nodes are
inputs and/or outputs, it may miss some signal flows and overlook the critical
path (see Figure 3). The check command can help to find nodes that should be
marked as inputs.

Any input node that is not also an output node is assumed to be driven
entirely from off chip. Crystal assumes that nothing on the chip can affect the
value of the node, so if the node isn’t used in a delay command, then Crystal will
assume that its value never changes during the timing analysis. However, if a
node is marked as both an input and an output, then Crystal will ealculate delays
to the node from the rest of the circuit. Usually only pads are marked as inputs,
but this need not necessarily be the case. Marking a node as in input is roughly
equivalent to applying a probe to the circuit at that point,

98.3. Changing Parasitic Values

Two commands are available to override Crystal’s computation of parasitic
capacitance and resistance:

resistance ohms node node ...
capacitance pfs node node ...

These commands will replace Crystal’s computed value for the parasitic resistance
or capacitance of one or more nodes with the specified value. There are at least
two situations where this may be useful. For pads, there is relatively little
capacitance on-chip, compared to the off-chip capacitance that must be driven.
The capacitance command can be used to simulate the presence of the off-chip
capacitance. The resistance command is used primarily to compensate for errors
in the way Crystal computes resistances. To compute the internal resistance of a
node, Crystal sums all of the internal resistances of all the wires connected to the
node. All of the transistor gates attached to the node are assumed to be driven
through all of the resistance. If a node has no branches this will give an accurate

- 10 -

Using Crystal for Timing Analysis February 28, 1985

result, but if the node has many branches them Crystal will substantially
overestimate the resistance (this happens commonly for clock lines). The
resistance command should be used to correct such situations. Since Crystal’s
resistance calculation is comservative, I suggest that you not use the resistance
command until you discover that a bad resistance value is causing Crystal to
overestimate the critical path.

9.4. Bus

There are a few occasions where, without guidance from the user, Crystal
will chase around the circuit almost endlessly during a delay command without
getting anywhere. This section describes once such scenario, and Section 11
describes another one that is even more serious.

4 08

Figure 4. Without any additional information, Crystal will make a separate
examination of every path from an output in one cell to an input in another cell. If
Crystal knows about the presence of the bus, it first examines all paths from outputs
to the bus, then examines paths from the bus to inputs. This makes the analysis
much faster.

One situation where Crystal works too hard is the case of a bus with many
elements attached to it. Figure 4 shows such a situation. During delay analysis,
Crystal will check separately each path from the output of each bus element to
the input of each other bus element, resulting in total work proportional to the
square of the number of elements on the bus. If Crystal is told that the
connecting node is a bus, then it breaks up the paths into separate stages from the
elements onto the bus and from the bus to the Inputs of the elements For N
elements on the bus, this results in 2N stages to examine instead of N2 The bus
command has the followmg syntax:

bus node node ...

Nodes marked as busses are treated both as signal sources and as signal targets.

It is only safe to mark a node as a bus if its capacitance is much greater than
the internal capacitances of its elements. If this is not the case, then delays
through the supposed bus will be underestimated. Crystal automatically marks
all nodes with more than 2 pf of capacitance as busses (the threshold value can be
changed with the options command; to prevent Crystal from automatically
marking busses, use a very high threshold)

<11 -

Using Crystal for Timing Analysis February 28, 1985

10. Setup Commands

Commands in the “setup” group are used to give Crystal additional
information to restrict the paths it examines in delay commands. The clear
command will erase any information provided by setup comands.

10.1. Set
The set command indicates that a node is fixed in value. Its syntax is

set 0/1 node node ...

When you tell Crystal that a node is fixed in value, Crystal performs a simple
logic simulation to see if that fixed value causes other nodes to be fixed as well.
For example, if an input of a NAND gate is set to 0, Crystal will deduce that the
output is fixed at 1. If an input of a NOR gate is fixed at 1, then the ocutput must
be 0, and so on. See Section 14 for a description of how Crystal does the logic
simulation. When processing delays, Crystal checks transistors to see if their
gates are fixed in value. If a transistor’s gate is forced to the value that turns the
transistor off, then no signals can flow through the transistor.

If a node is forced to a value by a set command, then Crystal assumes that
its value can never change during the timing analysis; that node will never
appear in a critical path. Because of this, you should use set sparingly, lest you
accidentally mask the critical path. Normally, set is used only to turn off all
clock phases but one and to disable diagnostic circuitry such as scan-in-scan-out
loops.

10.2. Precharging
The commands

precharged node node ...
predischarged node node ...

indicate to Crystal that the nodes are precharged to 1 or 0, respectively. When a
node is precharged, Crystal assumes that it has an initial value of 1 and can only
change to 0. Delays that would pull the node to 1 are ignored. When a node is
predischarged, Crystal assumes that it has an initial value of 0 and can only
change to 1. Delays that would pull the node to 0 are ignored. Precharged nodes
are assumed to be highly capacitive, so they are treated like busses.

11. Pass Transistor Flow

As mentioned in Section 9.4, there are a few situations where Crystal can end
up doing more work than necessary. The most severe examples of this concern
pass transistors. Because Crystal does not generally have information about
specific data values, it may examine impossible paths through pass transistors.
Figures 5 and 6 show two cases. In Figure 5, Crystal will produce a pessimistic
delay to Output2 by examining a path that passes forward and backward through

-12 -

Using Crystal for Timing Analysis February 28, 1985

Select Select
L
Inputl Inputl '
i--—- Output = Outputl
elect | utputl Select e
L o L |
Input2 "D"—,"'—"_ Input2 ‘D"—

..................

Output2 —— Output?2

(a) " (b)

Figure 5. If Crystal doesn’t know about pass transistor flow, it will consider the

impossible path shown in (a). If the pass transistor flow is labelled with attributes,

as in (b), then Crystal will consider paths from Inputl to Outputl and from

"Input2 to both outputs, but it will not consider the path from Inputl to

Output2,
the multiplexor. In Figure 8, there is an enormous number of contorted paths
through the shifter array. Crystal will attempt to examine every distinct path,
even though the values on the control lines will prevent most of the paths from
occurring in the actual circuit.

Inputl —{ o— x‘q &N &» ----------- &ﬁ

Input2 —Dc &ﬂ &n &” &n

Input3 —DC &w)& %)\v

Input4 —DC &a &"&" &\A

Outl Out2 Out3 Outd

Figure 8. Crystal will consider long snake-like paths through this barrel shifter

structure unless pass transister flow information is provided,

To keep Crystal from chasing impossible paths, you must give it additional
information about which way signals flow through pass transistors. Flow is
indicated using transisfor attributes in the CIF files that are input to Mextra. A
transistor attribute is a label (CIF ‘94" construct, or a standard Caesar label)
that touches the gate region of a transistor and ends in the character “$”.
Crystal ignores all attributes unless their first characters are either Cr: or
Crystal:. To indicate the direction of signal flow, attach an attribute to a
transistor’s source or drain; this is done by placing the label exactly on the line
between the gate and the source or drain (attributes placed entirely within the
gate region are attached to the gate of the transistor and are used to identify the
type of the transistor; see Section 14 for details}.

- 13-

Using Crystal for Timing Analysis February 28, 1985

For pass transistors that are unidirectional, two special attributes, In and
Out, may be used. To use the In attribute, place a label of the form Cr:In$ or
Crystal:In$ on the source or drain edge of a transistor gate. This indicates that
whenever a 0 or 1 signal passes through the transistor, the source of the 0 or 1is
on the same side of the transistor as the In attribute {i.e. the 0 or 1 flows into the
transistor from that side). The Out attribute indicates just the opposite, namely
that 0’s and 1’s flow out of the transistor at that side.

DL L 1

._‘:g—_ _____ {l_._a_.oﬂ_

Figure 7. Named attributes can be used to control flow in bidirectional structures.
In this case, paths from a to b and from ¢ to d will be considered, but the path
from a to ¢ to d will not be considered (flow must be unidirectional with respect to
tags of a given name).

Bidirectional pass transistors cause special problems. To handle bidirectional
structures, one terminal of each pass transistor in the structure should be labelled
with an attribute other than In or Out. See Figure 7. These attributes limit the
way that signals may flow through the array: Crystal only allows signals to flow
unidirectionally with respect to the attributes. This means that Crystal will
consider any path through the array as long as the signal either a) flows into each
transistor from the labelled side, or b) flows out of each transistor from the
labelled side. A path will be ignored if a signal enters one transistor from the
labelled side and leaves another from the labelled side. This allows signals to
cross the structure in either direction, but will not allow them to criss-cross back
and forth.

If different bidirectional structures are labelled with different attributes, then
they are treated independently by Crystal. For example, Crystal will consider a
path that enters at one transistor at a side labelled Cr:AS$, and leaves another
transistor at a side labelled Cr:B3$. However, if the attribute Cr:A$ is used for
both transistors then the path is ignored.

Only a small number of transistors in any design should need to have flow
attributes. These transistors can be identified in either of two ways. The easiest
way is to use the check command, described in Section 12 below, to identify
candidates for flow tagging. The hard way is just to run Crystal: if you haven’t
placed enough tags, then either Crystal will suggest impossible critical paths, or it
will abort the delay analysis because it found too many paths. In the first case, it
will be easy to identify the transistors that need flow tagging by looking at the
critical path. In the second case, you'll have to examine the backtrace
information printed after the abort to try to identify the transistors that need
tagging (see Section 186).

- 14 -

Using Crysté,l for Timing Analysis February 28, 1685

11.1. Flow

The flow command allows you to restrict flow through named attributes, and
has the form

flow direction atlrtbute attributle. ...

Direction must be one of in, out, off, ignore, or normal. If direction is in then
Crystal treats each of the attributes as if it was an In attribute, and if direction is
out then the attributes are treated as if they were Out. If off is specified then no
flow is allowed through any transistors with the given attributes. If igmore is
specified, Crystal will pretend that the attributes don't exist. If normal is given,
the flow is reset to do the normal thing. All flow attributes are reset to normal

by the clear command. The flow command has no effect on attributes In or
Out.

12. Checking Commands

Two commands are provided by Crystal to perform a static electrical analysis
of the circuit. They are only indirectly related to timing analysis, but are useful
to find problems such as improper ratios, nodes that aren’t marked as inputs, and
transistors that should have flow attributes.

12.1. Check
The command

check

makes a series of static electrical checks on the circuit. It prints out information
about nodes with no transistors connected to them, nodes that are not driven
from anywhere, nodes that don’t drive anything, transistors that are permanently
forced off, and transistors connecting Vdd and GND directly. Each of these
situations is probably an error. The check command also identifies transistors
that are bidirectional {each side of the transistor has both a signal source and a
signal target), but do not have any flow attributes attached. In most cases,
bidirectional transistors should have flow attributes to keep Crystal from
examining impossible paths.

12.2. Ratio
The ratio command has the form

ratio [limit value| [limit value] ...

and may be used for nMOS circuits to detect improper pullup/pulldown ratios.
Normal logic gates are expected to have pullup/pulldown ratios between 3.8 and
4.2, while logic gates driven through pass transistors must have ratios between 7.8
and 8.2. Any ratios outside this range are printed out. If the same erroneous
ratio occurs more than 20 times, only the first 20 are printed. The acceptable
range may be changed using limit-value pairs. Limit is one of normalhi,

- 15 -

Using Crystal for Timing Analysis February 28, 1885

normallow, passhi, or passlow.

13. Multi-phase Signals, Memory Nodes, and Watched Nodes

Crystal treats clock phases in a very simple fashion: each clock phase is
assumed to be long enough for the circuit to completely settle. The critical
command indicates how long this takes. Although this approach will produce
correct circuits, it is an overly pessimistic view of how clocks are used. In most
clocked designs, some signals will settle over more than one clock phase. For
example, the input latch for an ALU might be loaded during phase 1, and the
output of the ALU might not be used untii phase 2. In situations like this,
Crystal will normally charge the ALU delay entirely to phase 1, leading to a
pessimistic timing estimate.

Phasel Phase2
e Ama B~ o b

Figure 8. Because node A is 2 memory node, Phasel must be long enough for A
to settle. Nodes B, C, and D need not settle during Phasel: they can settle
anytime during Phasel or Phase2. However, if they don’t settle during Phasel,
enough time must be allowed during Phase2 for them to settle and for the value at
E to settle also.

For a circuit to function correctly, it isp’t really necessary for everything to
stabilize during each clock phase. All that matters is that clock phases are long
enough for memory cells to be loaded correctly. This means that there can be
some tradeoff between the lengths of the various clock phases: see Figure 8 for an
example. Ideally, Crystal should deal only with memory nodes: when analyzing
clock phase 1, Crystal should compute delays to memory cells loaded in phase 1,
memory cells loaded in phase 2, and so on. Then, instead of outputting a single
time and critical path, there would be separate times and critical paths for delays
between the leading edge of phase 1 and the trailing edges of phase 1, phase 2,
and so on. Unfortunately, Crystal doesn’t provide this much detail. Instead, it
uses memory nodes to provide a first-order approximation to this.

During the delay command, Crystal keeps three separate records of worst-
case delays: one for all nodes, one just for memory nodes, and one for watched
nodes. In the eritieal command, you can use the “m’ suffix to print out memory
nodes. For example, critical 1m will print out the path to the slowest memory
node. This simple facility allows you to ignore signals that need not settle during
the current clock phase. However, if a signal starts settling in one clock phase
and is loaded into a memory cell in the next clock phase, Crystal will not check
that the sum of the two phases is enough for this to happen safely. I suggest that
you examine critical paths both for memory nodes and for all nodes: check to see
that memory nodes will settle before the end of the current clock phase, and that
all nodes will settle before the end of the next clock phase.

There are two kinds of memory nodes in a MOS circuit, static and dynamie
(see Figure 9). Static memory nodes are those like cross-coupled NAND gates

- 16 -

Using Crystal for Timing Analysis February 28, 1985

Eft___. False
Phase 1
1
De —/LA I>°
Reset True

(a) (b)

Figure 9. In (a), nodes False and True are static memory nodes. In (b}, A is a
dynamic memory node.

where there is an ever-present feedback path. Crystal detects such feedback
paths during delay analysis and marks the memory nodes. However, Crystal
cannot identify dynamic memory nodes without help from the user. At the
beginning of analysis, you should use the markdynamie command to tell Crystal
which nodes are dynamic memory. The command has the form

markdynamic node value node value ...

During the markdynamie command, Crystal sets each node to the given value
Just as if the set command had been used. Any nodes that are electrically
isolated by these settings (i.e. all transistors connecting to them are forced off) are
marked as dynamic memory. Normally, markdynamie is used by turning off all
of the clock phases.

If Crystal’s memory mechanism isn't discriminating enough to pick out all
the important paths, there is one more mechanism available as a last resort. You
can indicate certain nodes to be handled specially. These nodes are called
“watched nodes’ because you select them with the command

watch node node ...

A special third list of slow memory nodes will be used to record the slowest delays
to watched nodes. This allows you to select key nodes and see the delays to those
nodes, even if those delays aren’t great enough to make the nodes appear on the
overall list or the memory list. The danger of the watch mechanism is that it
forces you to pick out the key nodes. If you forget a key node then you may end
up missing the critical path. I recommend that you work as much as possible
with the overall and memory lists, and only use the watch mechanism as a last
resort.

14. The Models

Crystal’'s model of circuit behavior has two parts: one part is used to do
logic simulation during the set command, and the other part is used to do delay
calculations during the delay command. Both the simulation and delay models
are based on transistor types: there are several types of transistors in the circuit,
and each is parameterized by several values. The man page lists the predefined
transistor types and the fields associated with each type. The subsections below
tell how this information is used by Crystal, how to change the predefined

- 17 -

Using Crystal for Timing Analysis February 28, 1985

information, and how to define new transistor types.

14.1. Simulation

In order to do logic simulation, each type of transistor is given two integer
strength values: histrength tells how strongly the transistor can pull to logic 1,
and lostrength tells how strongly the transistor can pull to logic zero. The
strength values are the same for all transistors of a given type, and are
independent of the geometry of the transistor. For example, all nMOS
enhancement transistors have a lostrength greater than the histrength of all
nMOS depletion pullups.

During the set command, the nodes listed in the command are forced to a
given value. Then Crystal sees if these settings cause any transistors to be forced
on or off. If this happens, nodes on either side of the forced-on or forced-off
transistors may be forced to a value. The strength values are used to see if this is
the case. For a node to be forced to 1 in this way, two conditions must be met.
First, there must be a path from the node to a source of logic level 1, all of whose
transistors are forced on. Second, all paths from the node to sources of logic 0
must either contain a forced-off transistor or be weaker than the path to logic 1.
The strength of a path is the strength of its weakest transistor.

This simple simulation model is powerful enough to handle a variety of
pMOS and CMOS structures. Its weakness is that it doesn’t take account of the
sizes of transistors, so it may behave incorrectly if improper ratios are used.

N2 == N3 “j“

 —
~[r2

N1

{1

Figure 10. To calculate the delay alorg this path with transistor T2 as the trigger
device, the resistances from T1, N1, T2, N2, T3, and N3 will be summed, and the
capacitances from N2, T3, N3, and T4 will be summed. The delay will be the
product of the two sums.

14.2. Delay Calculation: the RC Model

Crystal has been designed to include several different delay models and to
permit the user to switch between them. At present, there are two delay models,
rc and slope. In the rc model each transistor type is characterized by two
resistances, rup and rdown. The transistor is assumed to have a fixed resistance
value rup per square whenever it is used to transmit a 1 signal, and rdown per
square whenever it is used to transmit a O signal.

- 18 -

Using Crystal for Timing Analysis February 28, 1985

To calculate the delay in a stage, the RC model divides the stage into two
portions, separated by the transistor that turned on or off to activate the stage
(this transistor is called the trigger for the stage). See Figure 10. All the
resistances along the stage are summed, including rap or rdown for each
transistor, plus the resistance of the interconnect. All the capacitances between
the trigger and the target are also summed, including the gate-channel
capacitance of each transistor along the stage, the parasitic capacitances of the
interconpect, and the gate-source or gate-drain capacitances of unrelated
transistors that connect to nodes along the stage. Crystal assumes that the
trigger is the last transistor in the stage to turn on or off, so that all the charge
between the trigger and the signal source has already been drained. The total
delay for the stage is computed by multiplying the total capacitance by total
resistance.

14.3. Delay Calculation: the Slope Model

The RC model is simple and efficient, but it often produces optimistic delay
estimates. It assumes that the effective resistance of a transistor is independent of
the waveform on the transistor’s gate, and this simply isn't true in reality. If the
gate voltage of a transistor rises or falls very slowly, the transistor has a much
higher effective resistance than if the gate voltage changes instantaneously. The
same transistor -may vary in effective resistance by an order of magnitude or
more, depending on the exact waveform on its input.

In the RC model, the waveform at a node is characterized solely by the time
at which it rises or falls. In the slope model, an additional parameter is added:
the rate at which the signal rises or falls. This is called the edge speed, and is
measured in ns/volt at the instant in time when the signal crosses its logic
threshold voltage (the logic threshold voltage is a model parameter and can be
changed with the parameter command). Although this is only a first-order
approximation to the actual waveforms, in Mead-Conway style digital circuits the
waveforms tend to have about the same shape except for slope, so this
characterization is fairly accurate.

The slope model characterizes the effective resistance of a particular type of
transistor in terms of the ratio of two edge speeds: the input edge speed, and the
output native edge speed. The output native edge speed is the edge speed that
would occur on the output if the input rose or fell infinitely fast (edge speed 0). If
the edge speed ratios are small (inputs much faster than output), or if they are
uniform across the whole circuit, then the RC model is accurate.

Two tables are used to characterize each transistor type. One table is used
when the transistor is pulling up, and the other is used when the transistor is
pulling down (these are the slopeparmsup and slopeparmsdown fields in the
transistor models). Each table consist of several triplets. Each triplet contains
three values: an edge speed ratio, the transistor’s effective resistance per square
when that edge speed ratio occurs, and the output edge speed {per pf of
capacitance driven and per square of transistor), when that edge speed ratio
occurs. The table entries must be in increasing order of edge speed, and the first

- 19 -

Using Crystal for Timing Analysis February 28, 1985

entry must have a zero edge speed ratio. If Crystal ever encounters a ratio larger
than the largest in the table, it issues a warning message and extrapolates from
the largest values. To simplify the task of gathering all this model information,
use the Mkcp (‘‘make Crystal parameters”) program.

Delay calculation in the slope model proceeds in much the same way as for
the RC model, except that for the trigger transistor, Crystal interpolates in the
tables to find the effective resistance. For transistors other than the trigger, the
native resistance is used. In addition, the slope model computes an output edge
speed contribution from each component along the path (transistor or node
resistance), and sums these to compute the edge speed at the target. The edge
speed contributions are computed for each componenet as if that component were
driving the capacitance all by itself.

The slope model appears to be fairly accurate. Initial measurements suggest
that it is usually within 5% of the times that SPICE predicts for the same
circuits, and is rarely worse than 209 off. In contrast, the rc model often
produces estimates that are optimistic by 40% or more. The slope model is
almost as fast as the r¢ model, so there is little reason to use the re model
anymore, except for comparison.

14.4. Changing the Models

‘Crysta.l provides three commands that you can use to change its internal
models. The command

model [name]

will set the current delay model to name, if it is specified. If neme is omitted,
then the command will print out the valid model names with two stars next to the
current model.

The command
transistor [name [field value(s]] [field value(s} ...]

is used to see and modify the values used to characterize each transistor. If
transistor is invoked with no arguments, all the transistor types and their
current values are printed. If only name is supplied with no fields or values, all
the transistor type information for name is printed. Otherwise, fields for
transistor type name are changed to the given values. The man page lists the
predefined transistor types and the field names. If name isn't one of the
predefined transistor types, then a new transistor type is created with the given
field values.

The third command is used to see and set the model parameters that don’t
have to do with specific transistor types. At present, these parameters are used

only for computing the parasitic resistance and capacitance of interconnect. The
command has the form

parameter [name| [value]

If both name and value are specified, then the selected parameter is set to the
given value. If value is omitted, then the value of the parameter is printed. If

- 90 -

Using Crystal for Timing Analysis February 28, 1985

neither value or name is given, then the values of all parameters for the current
model are printed. See the man page for a listing of the parameter names.

14.5. Defining New Transistor Types

The transistor command can be used to define new transistor types besides
the standard ones. To get Crystal to treat transistors in your circuit as one of the
new ones you've defined, use transistor attributes. Normally, Crystal decides the
type of each transistor based on its type in the .sim file (enhancement, depletion,
p-channel, etc) and how it is used in the circuit. For example, depletion
transistors with source or drain connected to Vdd and the other two terminals
connected together are given type mload. If you want Crystal to use a type of
your choosing for a tramsistor, place an attribute inside the gate area of the
transistor. The name of the attribute will be taken by Crystal as the type of that
transistor. For example, if you have defined a new transistor type bootstrap,
then each of these devices should have an attribute Cr:bootstrap$ on its gate.

15. Misecellaneous Commands

The help command prints out a list of the commands and their parameters.
For information on the commands that is more detailed than help, and more
concise than this document, see the man page.

The command
source file

will cause Crystal to read commands from file until its end is reached. Upon
end-of-file, Crystal continues reading from the standard input. Source files may
be nested.

The options command is provided so that you can change internal
thresholds and switch settings used by Crystal. For example, one of the options is
the threshold capacitance value at which Crystal automatically marks nodes as
busses. Normal users shouldn't need to use this command very frequently. See
the man page for details on its syntax and on the available options.

The statisties command prints out a variety of statistics gathered by
Crystal as it runs. This information is probably not useful except to system
maintainers.

The quit command causes Crystal to return to the shell.

18. Deciphering Crystal’s messages

Crystal outputs a huge variety of error messages, bug messages and hints.
Most of them are in response to syntax errors in the .sim file or errors in
commands: these are relatively easy to understand. You should never see a
message beginning with the words ‘‘Crystal bug:”. If you do, report it to me or to
your local Crystal wizard. There are several other messages whose meaning is not
obvious. They generally indicate that something not-quite-right happened and

-921 -

Using Crystal for Timing Analysis ‘February 28, 1985

are hints that either you are not issuing the right commands or you need to use
flow tags or set commands to restrict Crystal's analysis. Each of the following
subsections describes one such message.

16.1. Aborting: no solution after examining 206000 stages

Crystal has a limit on how many stages it will examine in delay calculations.
If the limit is reached, Crystal gives up in despair. When it gives up, it usually
means that you need to add more flow control to pass transistors to restrict the
set of paths Crystal has to analyze. Occasionally, the built-in limit isn’t sufficient
for a particular clock phase, even after all the necessary flow control has been
added. In this case, use the options command to increase the limit.

When the limit is reached, Crystal outputs many messages, the first of which
is the “Aborting:” message. Following this will be many messages of two forms:
“ChaseVG giving up at xyz”’, and “ChaseGates giving up at abe”. ChaseVG and
ChaseGates are the two internal routines that trace out paths through the circuit
during delay analysis. The messages indicate the path Crystal was examining
when it gave up in despair, in backwards order from the node where it gave up to
the node in the delay command. Often, the node names in the messages will
identify the area where more flow control is needed.

If Crystal aborts a delay calculation, then the information in eritical and
similar commands may not be accurate, since the delay analysis wasn’t completed.
However, the path provided by critical may indicate the place where more flow
control is needed. Another way to locate transistors that need flow tagging is to
use the check command.

16.2. More than 8 transistors in series

During delay analaysis, if Crystal finds a single stage containing more than a
certain number of transistors in series, it prints this message. The stage is also
ignored (usually such stages cannot occur in practice anyway). A typical place
where this might occur is in carry-chain precharging schemes where there are
both parallel and serial paths to each node in the chain.

Phil Phi2

[|

Busln . BusOut

v
rd L4

32 32

Figure 11. A simple circuit with two non-overlapping clock phases, 32 data inputs,
and 32 data outputs.

- 929.

Using Crystal for Timing Analysis February 28, 1985

17. An Example

For the circuit of Figure 11, the following Crystal commands might be used to do
timing analysis, assuming that data is read into the circuit only during Phil and
that it stabilizes no later than 20ns into the clock cycle. The Busln signals are
unidirectional (if they could also be driven from on-chip then it would not be
necessary to specify them in the inputs command). As a result of this set of
commands, two Caesar command files will be created: philemds and phi2emds.

inputs Busln<0:31> Phil Phi2
outputs BusOut<<31:0>

set Phi2 0

delay Phil 0 -1

delay BusIn<0:31> 20 20
critical -g philemds

clear

set Phil 0

delay Phi2 0 -1
critical -g phi2emds

-93-

B e

Designing Finite State Machines with PEG

Gordon Hamachi

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

PEG is a finite state machine compiler. It translates high level
language descriptions of finite state machines into the logic equations
needed to implement state machine designs. Since the output format
is compatible with egntotf, PEG may be used as a front end for
Berkeley PLA tools.

1. Introduction

PEG (PLA Equation Generator) is a design tool for finite state machines. It
compiles high level language descriptions of finite state machines into the logic
equations needed to implement a design.

PEG programs are isomorphic to Moore machine state diagrams. There is a
one-to-one correspondence between states in a state diagram and state definitions
in the corresponding PEG program. The translation from state diagrams to PEG
programs is simple and straightforward.

Designing with PEG provides a number of advantages over the traditional
pencil-and-paper approach method of FSM design. PEG’s high level language
enables designs and design changes to quickly be implemented. PEG programs
provide easy-to-understand documentation with clear control flow. PEG does the
tedious and error-prone bookkeeping task of generating output and next state bits
as a function of current state bits. It checks for design errors and eliminates
redundant terms in logic equations.

As output PEG generates logic equations in the egrn format accepted by
eqntott [{Cmelik], another Berkeley design tool. By piping the output of PEG

-1-

Designing Finite State Machines with PEG A February 28, 1985

through egniott, PEG may be used as a front end for Berkeley PLA tools such as
mpla [Mayo], and espresso [Rudell]. As an option, PEG will also print the
unminimized truth table from which the logic equations are derrived.

2. A Simple Example

Figure 1 shows the state diagram for a four-state finite state machine
implementing a 2-bit binary counter. The PEG description of this design appears
in Figure 2. The program has no inputs besides an implicit clock. The outputs of
the state machine are its nezt state bits, which are automatically generated by
PEG. :

Figure 1: State Diagram for Example 1

In its most simple form, a PEG program consists of a list of state
descriptions. The sample program has four states. Each state has four parts: an
optional label, a colon, an optional signal assertion part, and and optional control
part.

-—-Simple PEG program for 2-bit counter
--State tramsition on every clock
--No reset =>> starts in a random state

Start : ~This is state 0
: --This is state 1

—This is state 2

—This is state 3

GOTO Start;

Figure 2: PEG Program for Example 1

The first state in the example is labeled with the identifier Starf. The label is
necessary only because of the GOTO from state 3 back to state 0.

States 1 and 2 are examples of the minimal state description. These states
are completely defined by a colon, which acts as a place holder for the state.
Empty states, in which no branching or signal assertions occur, are sometimes
used to Introduce necessary delays in FSMs.

Designing Finite State Machines with PEG February 28, 1985

Flow of control in PEG programs is sequential unless otherwise specified.
Since no control information is present for states 0, 1, and 2, the program steps
sequentially through the states 0, 1, 2, and 3. State 3 has control information
specifying a jump back to the state labeled Start.

Since it has no sequential next stale, control must always be defined for the
last state in the program. PEG generates an error message and quits if control is
not defined for the last state.

Although state transitions are performed on clock ticks, no clock is
mentioned in the program. It is the user’s responsibility to implement the state
machine with synchronous logic to latch input and output signals.

Comments begin with a double dash "--" and terminate at the end of the line
on which they appear. The first three lines of the program are comments.
Comments also appear on lines 5 through 8.

Input is free-format. White space may appear anywhere in a program to
enhance readability.

3. Interpreting the Output

Assuming that the PEG program for example 1 is in a file called counter, the
following Unix command line may be used to invoke PEG:

peq counter

The resuiting output is shown in figure 3. Generating a PLA from the same input
file is accomplished with the command line:

peg counter | eqniott | mpla -1 -O

Mpla will not automatically connect next-state outputs to current-stale inputs.
After generating the PLA the state outputs must be manually wired to the state
inputs.

INORDER = InSto* InSt1*;

OUTORDER = OutSt1* OutSt0*;

OutSt1* = (1InSt1*);

OutSt0* = (InSt0*&!InSt1*)| {!InSt0*& InSt1*);

Figure 3: PLA Equations for Example 1.

3.1. Equations

PEG generates the two input variables InSt0* and InSt1* which are the
state inputs for the finite state machine. It also generates two output variables
OutSt0* and OutSt1¥* the next-state outputs. Any signal name ending with an

Designing Finite State Machines with PEG February 28, 1985

asterisk was generated by PEG.

The INORDER and OUTORDER statements specify that the resulting PLA
inputs and outputs, from left to right, are InSt0*, InS¢1*, OutSt1*, and OutSt0*.

Following the OUTORDER statement are the logic equations for the two
output variables, OutSt1* and OutSt0*. The exclaimation mark ”!” indicates
logical negation. The ampersand "&” signifies the logical AND, while the vertical
bar 7 |” signifies a logical OR.

3.2. Truth Table

The -t option generates a truth table for the finite state machine. This truth
table is written to the file peg.summary. The truth table for example 1 is shown
in figure 4.

INPUTS: s00: InSt0* (msb)
: sO1: InSt1* (Isb)
OUTPUTS: n0l: OutSt1* (Isb)
n00: OutSt0* (msb)

State Table

- -0 Qo W
R
Qo O o - S
[T e e I

Figure 4: Truth Table for Example 1.

Labels across the top of the truth table identify its columns. The mapping
from column labels to actual signal names is given in the lists of input and output
signals which preceed the truth table. To the right of the truth table are the
names of the states described by the rows of the table.

4. Another Example

The second and more complex example shows the state diagram and
corresponding PEG program for a FSM which recognizes the regular expression
{110)*100. The state diagram for this FSM is shown in figure 5.

The PEG program which implements this design is given in figure 6. Figure
6 describes a state machine with four states. The state machine has two inputs,
RESET and in, and one output, accept.

Assume the text of figure 2 is in a file called prog. Logic equations for the
state machine are generated by running the command

Designing Finite State Machines with PEG February 28, 1885

Top

[InStream]

accept
[laStream]

Figure 5: State Diagram Recognizing (1{0)*100

peg prog

Since this program has two inputs, they are declared in the INPUTS
statement. If a PEG program has any inputs they must be declared in an
INPUTS statement which must be the first statement in the program. The input

RESET is a special keyword input. The other program input, InStream, is used
to generate the nezt state for the FSM.

RESET indicates that when the RESET signal is asserted the state machine
jumps to the top of the program, which in this case is named Top. When this
keyword is present, conditional branches to the first state are automatically added
to the next state expressions for each state. If RESET is not listed as an input,
the program initializes in a random state.

IF the FSM designer does not want to pay the penalty of a larger and slower
finite state machine, RESET may be omitted as it was in example 1. In this case

-5 -

]jesigning Finite State Machines with PEG February 28, 1985

—Simple FSM example: Accepts the regular expression (110)*100

INPUTS : RESET InStream,;

OUTPUTS : accept;

Top : IF NOT InStream THEN LOOP; -0*
Sawl B IF InStream THEN LOOP; -1

IF InStream THEN Sawl; =10

ASSERT accept;
IF InStream THEN Sawi ELSE Top; --100

Figure 6: PEG Program Recognizing (1]0}*100

INORDER = RESET InStream InSt0* InSt1%*;

OUTORDER = OutSt1* OutSt0* Accept;

OutSt1* == ('RESET& InStream) |
('RESET&!InStream& InSt0*&!MnSt1%);

OutSt0* = ('RESET&!nStream& InSt0*&!InSt1¥) |
InStream&!InSt0*& InSt1*);

Accept = (InSt0*& InSt1*);

Figure 7: Equations for Example 2.

the reset function may be external to the PEG program by implementing the
FSM in such a manner that the next state feedback lines are pulled low when the
RESET signal is asserted. This method will work because the top state in a PEG
program is always assigned to state zero.

The OUTPUTS statement declares that this program has a single output
called accept. The FSM asserts this signal high if a string in the given grammar is
recognized. If any outputs are generated by a PEG program, they must be
declared in an OUTPUTS statement which immediately follows the INPUTS
statement. If no INPUTS statement is present, then the OUTPUTS statement is
the first program statement.

Designing Finite State Machines with PEG

February 28, 1985

INPUTS: i00: RESET

i01; InStream

s00: InSt0* (msb)

s01: InSt1* (Isb)

QUTPUTS: n0l: OutSti* (Isb)
n00: OutSt0* (msb)
000: Accept
State Table i i s $ n n 0
0 1 0 1 1 0 0

1 - 0 0 0 0 - Top
0 0 0 0 0 0 - Tep
0 1 0 0 1 0 - Top
1 - 0 1 0 0 - Sawl
0 0 0 1 0 1 - Sawl
0 1 0 1 1 0 - Sawl
1 - 1 0 0 0 - Sawl+1
0 0 1 0 1 1 - Sawl+1
0 1 1 0 1 0 - Sawl+1
1 - 1 1 0 0 1 Sawl-+4-2
0 0 1 1 0 0 1 Sawl+4-2
0 1 1 1 1 0 1 Sawi+2

Figure 8: Truth table for Example 2.

Example 2 introduces the IF-THEN-ELSE control construct. This construct
is used to provide two-way branches based only on a single inpul signal
Branches based on more than one input signal are handled by the CASE
statement which has not yet been presented.
Statements of the form IF-THEN-ELSE-IF are not allowed. The syntax of the

IF is:

IF statements do not nest:

IF [NOT | <signal> THEN <state name> [ELSE <state name> [;

The ELSE clause is optional: If it is omitted, the ELSE defaults to the next
sequential state in the program. Thus, in state Top, if InStream is high, then the
condition in the IF is false and the program takes the default branch to state

Sawl.

Designing Finite State Machines with PEG February 28, 1985

The alert reader will have noticed that the state name LOOP is used but not
defined. This is intentional. LOOP is a keyword which means to stay in the
current state. It is an error to define a state with the label LOOP.

The final state in example 2 shows the first use of the ASSERT statement.
The accept signal is asserted only in the accepting state of the FSM. If an
ASSERT statement is present in the definition of a state, it must preceed the
state’s control statement.

Start

[Select]

default

Dummy

Found3 FoundOther

Zero

FoundO

Start

Figure 8: State Diagram for Example 3

Figure 11 shows an ambiguous case specifier. It is ambiguous because more
than one case selector applies to the input (0 1 0). In such cases PEG processes

-8 -

Designing Finite State Machines with PEG February 28, 1985

—-Decode inputs a, b, and ¢ into
-0, 1, 2, 3, or "other”.

INPUTS : RESET Select a b ¢;
OUTPUTS : FoundO Foundl Found2 Found3 FoundOther;
Start : | ~This is the reset state

IF NOT Select THEN LOOP;

CASE (a b ¢) —-Second state
0 0 ? => Dummy; --A don’t-care

010=> Two;
011 => Three;
ENDCASE==>Other;

Dummy : IF ¢ THEN One;
Zero : ASSERT Found0; GOTO Start;
One : ASSERT Foundl; GOTO Start;
Two : ASSERT Found2; GOTO Start;
Three : ASSERT Found3; GOTO Start;
Other : ASSERT FoundOther; GOTO Start;

Figure 10: PEG Program for Example 3

the list of case selectors from top to bottom, using the first one that applies to the
inputs. Since the case specifier for State2 comes first, it defines the next state for
inputs (0 1 0) and (0 1 1). The case specifier for State3d defines the next-state only
for the case (1 1 0).

Statel : CASE (a b ¢)
01?=> State?;
710 => State3;
ENDCASE==>State4;

Figure 11: Ambiguity Resolution in Don't-Cares

Designing Finite State Machines with PEG February 28, 1985

5. Final Example

Figures 9 and 10 show the state diagram and PEG program for a state
machine which decodes 3 bits into 0, 1, 2, 3, and "other”. Example 3 shows the
use of multiple inputs, multiple outputs, and multi-way branches.

Multi-way branches and branches based on two or more inputs are handled
by the CASE statement. The CASE statement consists of the keyword CASE
followed by an input signal list, a list of case selectors, and an ENDCASE,

A case selector specifies two things: a bit pattern corresponding to the input
signals, and a nezt-state for that combination of inputs. Bit patterns are strings
composed of the characters '0’, '1’, and signals in the input signal list. Don’t-cares
are specified with 2. :

The ENDCASE statement optionally specifies the default next-state if none
of the other case selectors applies to the input. In keeping with the model of
sequential execution, if the ENDCASE does not specify a next-state, the next-

state defaults to the state following the one in which the CASE statement
appears.

8. References
[CADMan|
CAD Manual, Online Unix documentation.
[Danford]
Peggy Danford, Private communication with author, June 1982.
[Unix]
Uniz Programmer’s Manual, 4.2 Berkeley Software Distribution, Virtual

VAX-11 Version, Computer Science Division, University of California at
Berkeley, November 1980.

-10 -

Designing Finite State Machines with PEG February 28, 1685

7. Peg Syntax

<program> : <InputList> <OutputList> <StateList>

<InputList> : INPUTS : <IdentList> ; | /*NULL*/

< OutputList> : QUTPUTS : <IdentList> ; | /*NULL*/

< StateList > : <State> | <StateList> <State>

<IdentList> : <Identifier> | < IdentList> < Identifier>

<State> i <Identifier> : <Signals> <Control> | : <Signals> <Control>
< Signals> : [*null*/ | <ASSERT> <lIdentList> ;

< Control> - : CASE (<IdentList>) <Cases> <DefaultCase>

| IF <Identifier> THEN < Identifier> ;

| [F <Identifier>> THEN <Identifier> ELSE < Identifier> ;

| IF <NOT> <ldentifier> THEN <Identifier> ;

| [F <KNOT> <Identifier> THEN < Identifier>> ELSE < Ideatifier> ;
| GOTO <« Identifier>

| /*NULL*/
<Cases> : < Cases> < CaseStmt> | <{CaseStmt>
< CaseStmt> : <BitList> => < ldentifier> ;
<Bit> 01 110?
< BitList> ! <BitList> <Bit> | <Bit>

<DefaultCase> : ENDCASE => <Identifier> ; | ENDCASE ;

<NOT> ;M PNOT |
< Comment > RS 1
< Identifier> : [A-Za-2]{A-Za-20-9._]*

- 11 -

