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ABSTRACT

Executing an incoming job on the least loaded of the machines of a
distributed system can comsiderably improve its response time. To make the
right choice, it is useful to have some information both about the load on the
machines of the system and about the job we are considering. The information
about the load ought to indicate the resources a machine is able to give, whereas
the information about the job must tell which resources the job is going to need.
We developed a multivariable scheme to distribute load information and to match
a machine’s available resources with a job’s specific requirements. The
experiments we performed with a prototype implementation show that our tool is
able to make the right choice on a set of test jobs between 55 and 88% of the
times. Our purpose is to shed light on some controversial issues, in order to
prune the intricate complexity of the problem and open the way to future more
general implementations.
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1. INTRODUCTION

Suppose you are waiting in a long line at an ice-cream parlor, and you are concerned about
having the ice cream in your hands as soon as possible. Suddenly, a messenger with wings on his
heels appears and tells you that just around the block another similar ice-cream parlor is much
less crowded. You think you could get faster service over there, but you are also concerned about
the time it would take to walk, and the loss of a good position in line (if you had to come back, it
would be a disaster!). Maybe you don't realize it, but you are concerned with a problem of load
balancing in a distributed system.

Due to the parallel evolution of microprocessor and network communication technologies
[Smith1984a], today’s computer systems have tended towards small units for individual use, with
their resources connected together through a communication medium. The power of each unit
may be small, but they can join their efforts for the execution of particular tasks. Moreover,
significant savings in installation costs can be accomplished by sharing resources like printers,
tape drives, special hardware devices; each one of them may be connected only to one machine,
but be accessible through the network to anybody else. In this case, a simple system map would
be enough to locate the resource and ask the machine in charge of it for service.

In a further evolutionary step we may want to share even the basic resources any computer
is equipped with, like the power of its cpu or its secondary storage area, with several different
purposes: fault tolerance, concurrency control, data synchronization, performance improvement
[Waag1985a).

Performance improvements, in particular, can be obtained with respect to different objective
functions: the most intuitive criterion is to try to maintain the same number of processes on all
the machines accessible to the users, with the assumption that the machines' performances will be
similar. But the migration of programs over the network has its own cost, and could lead to
unexpected delays, defeating the purposes of the effort. Other objective functions, more related to
what the user sees and suffers, are the mazsmization of the system throughput and the
minimization of the system average response time. In our case, we considered a subset of the
latter: we designed a load balancing scheme with the goal of minimizing the response time of a
particular set of jobs, as seen by the user of one particular machine at his terminal; by providing a
better indsvidual response time, we also hope to improve the global system responsiveness.

This work was jointly sponsored by the Defense Advanced Research Projects Agency (DoD), monitored by the
Naval Electronics Systems Command under contract No. N00030-84-C-0089, by the Ministry of Public
Education of Italy and by the HUSPI project. The views and conclusions contained in this document are thoee
of the author and should not be interpreted as representing official policies, either expressed or implied, of any of
the sponsoring Institutions.
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Two main components can be identified in any load balancing scheme: the control law, that
determines when and where the offloading can take place, and the information policy, that selects
and spreads information on the load of each machine, in order to devise an optimal choice (fig. 1).
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Figure 1: A Load Balancing Scheme

The design of the control law is the most crucial point of any load balancing scheme: if we send
some load away, we may well increase the system'’s responsiveness by leveling the load, but we
surely increase the utilizations of the remote machine and of the transmission medium.

1.1. Description of the Report

This report has the following structure: Chapter 2 describes some of the solutions devised by
other authors in the past, and discusses some controversial points. Chapter 3 describes the
scenario of our approach. Chapter 4 describes a set of experiments we performed in the first
phase of the research in order to test the feasibility of the idea of sharing the load in a real
environment, the Berkeley distributed system running under Berkeley UNIX [1] 4.2BSD. We were
looking for some general load index from which we could get indications on the expected response
time of every new job. We discovered instead several indices, each suitable for a different situation
and a different type of job. This suggested the idea of a multivariable information scheme, where
a separate index for each resource is maintained over the whole system. In the following three
chapters the multivariable scheme is developed from the assumptions to the implementation: two
alternative load schemes are introduced, one based on the real values of the indices selected to
measure the load, and one on binary busy/idle indicators. In Chapter 9 the results of the
experiments performed with a prototype implementation of the scheme are described: the
multivariable information scheme and the binary choice are supported by the results.

1.2. Description of the Approach

When the goal is the minimization of the response time, we can think of a load balancing
tool as a job-level scheduler(2] that decides, when a new job is submitted to a distributed system,
whether or not the local load conditions would grant it a satisfactory response and, in case of a
negative answer, chooses a remote machine and sends the job there for execution. The strategy is

[1} Unix is a trademark of ATET Bell Laboratories

[2] In an interactive eystem, a user job usually corresponds to the unit that is executed as the result of the
inputting of a command line. The execution of a job gives birth to one or more processes.
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going to be successful provided that some unloaded machines do exist on the network. If all the
machines are heavily loaded, the program should do as little as possible, to avoid performing
useless work. We are not thinking, by now, of migrating processes already in execution, even if
attractive schemes to do that have been proposed in the literature [Powell19833,Danzi31984a].
These papers show clearly that the implementation of process migration is a major effort, that
goes far beyond the scope of the present research.

The load balancing scheme we designed is characterized by the following attributes:
° Dynaemic: the information about the system load is periodically collected and updated.

° Deterministic: the choice of the target machine is a unique function of the system load, with
no randomness in the decision.

) Nonpreemptive: jobs that start running cannot be interrupted and moved to other machines
(they are subject, of course, to the normal cpu scheduler of the machine they are running
on).

We now define the general structure of our scheme, and introduce a terminology that will be
consistently used in the sequel. For every job entering the system, the submsssion site is the
machine connected to the terminal where the job is first submitted; the ezecution site is the
machine where the job will be eventually executed. The job scheduler rurs constantly, examines
the jobs submitted to the system, selects some of them, and routes them to the current best
execution site. If this site is a remote machine, the job must be transferred over the network.

qu
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Figure 2: The Modules

The following four modules are running on each site (fig. 2):

1. ULYSSES (very clever and efficient), the job scheduler: picks the jobs and submits them to
the best execution site.

2. DIOGENES (knows about the behavior of the programs), the job characterizer: maintains
information about the requirements of the jobs.
3. HERMES (the messenger with wings on his heels), the system load information keeper:

maintains current information about the load on the system, exchanging messages with the
other messengers on the network.

4. CUPID (the couple-maker), the matching module: gets information from HERMES and
DIOGENES, and reveals the best execution site to ULYSSES.
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The modules will be described in detail in the following chapters. In the pext, we briefly
review some of the most relevant papers on load balancing that can be found in the literature.

2. RELATED WORK

The problem of sharing the load in a computer network has been extensively addressed in
the literature. Very few of the available papers, though, describe actual implementations: they are
mostly descriptions of theoretical algorithms or paper designs. Authors usually agree in
presenting load balancing as a job scheduling problem, i.e., how to pair the jobs arriving at a
distributed system and the machines in the system. Some of them even consider the possibility of
stopping processes during their execution and moving them to other machines. There is less
agreement on what the purposes of these schemes should be: some want to reduce the averege job
response time, some to increase the global system throughput, others to obtain a unsform load on
all the processors.

The proposed schemes can be classified in many different ways (see e.g.
[Zbou1983a, Wang1985a] ). We will draw the first, coarse line between static and dynamic
strategies. The static ones try to solve the problem once for all, by devising a per node routing
rule to be applied to every incoming job. The rule can be deterministic (a job of type i will always
be routed from machine A to machine B for execution), or probabilistic (a job of type i will be
moved from machine A to machine B with probability p). Static policies typically ignore run
time information about the current load of the system, and tend to devise a general criterion
based on machine and job idiosyncrasies, or maybe on the past history. For example, [Chul980a|
solves a linear integer programming problem to determine the optimal allocation on the basis of
some constraints depending on system parameters, while [Ma1982a] uses a branch-snd-bound
technique to solve an analogous problem, with the goal of obtaining balanced utilization of all the
processors while minimizing the IPC cost. An alternative proposed by [Nil981a] uses nonlinear
programming techniques to build an optimal job scheduling matrix whose entries are probabilities
for job class § to go to processor A. These schemes require nontrivial numerical computations to
find the optimal solution|3}, and do not ensure that the strategy will still be valid if any of the
system parameters changes.

Other authors, concerned about the possible aging of the information decisions are based on,
design semi-dynamsc algorithms that periodically modify their strategies. These algorithms
unfortunately can provide only sub-optimal solutions. [Ramakrishnan1983a] uses time
thresholding to alternate execution among processors: after allocating a job to machine B,
machine A refrains from sending more jobs to it for a certain time threshold t , whose optimal
value is that which minimizes the response time in a queueing network model. [Stankovic1983a)
and [Stankovic1985a] apply Bayesian decision theory to the problem of job allocation: all the
possible states of the system are considered with their probabiltity distribution, and for each state
the set of actions maximizing a utility function (in Stankovic's formulation of the problem, the
expected response time) is computed. At run time, the allocation of a job is determined simply by
a lookup of the table with the actions. Information about the load (which Stankovic defines as the
number of jobs) is maintained on each processor. The overhead of remote execution is considered
by introducing a bias, similar to our delta threshold (see infra): a remote machine’s load is
increased by the bias to keep into account the overhead of remote execution. The maximizing
actions are recomputed at certain intervals (a simulation study suggested a value of 6 seconds for
this interval), but we feel that such a frequent operation can be costly and influence appreciably
the overall performance of the algorithm.

The dynamic schemes, many of which gave us inspiration for our design, try to make a
decision based on the current status of the system, that is maintained and distributed at each
node according to some information policy. The choice is generally deterministic, based uniquely
on the current status. Dynamic schemes seem more feasible for real implementation. This is the

[3] Brench-and-bound, for example, is NP-Complete: if n tasks are allocated into m processors, the algorithm
requires 1™ complete allocations in the search tree.
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case of UCLA's Locus Distributed System [Walker1983a]. Locus actually provides a user-initiated
mechanism to execute a job on the least loaded machine, where the load is defined as the size of
the run queue. Unfortunately, the designers did not develop any more general policy upon this
mechanism. Also, Hwang et al. developed a Unix-based Local Computer Network, with a load
balancing mechanism called rze[HwanngS‘;’a]. Only some of the commands can be fed to rze,
and the user must select them explicitly. They will be executed on the least loaded of the
machines: the load index is a sort of “‘stretch factor”, i.e., the ratio between the execution time of
a standard job on a fixed machine with fixed load conditions (in their case, it was an empty PDP-
70) and on the machine being considered. Neither one of these two papers mentions any results
about the performance of their load balancing schemes. The possibility of balancing the load does
pot seem the main concern of the designers, but just a marginal issue.

A similar information policy is used by [Barak1984a] in the scheme developed at the Hebrew
University of Jerusalem for the MOS operating system. The load index is the ratio between the
number of time quanta requested by the processes and the number of quanta that the system was
able to grant them during a certain time interval. This information is periodically refreshed by an
algorithm that keeps information only about some of the machines, choosing them in a random
way. A process runs on each processor, supervising the other processes and asking some of them
to migrate out if they have been running for a while. The controller estimates each process’s
remaining execution time, and adds to it a stability value to avoid processor thrashing. The
mechanism for process migration is not described in the paper.

A clever mechanism is the one devised by [Krueger1984a] to keep the load of all machines
on the network as close as possible (i.e., within an acceptable load range) to a presumed average
load. A machine that finds its load to be below the average load broadcasts a bid to accept
incoming load, whereas a too loaded one broadcasts a request for bids. Bids and requests pair up
and build a connection, and some processes are selected and moved through that connection. The
criterion to choose the processes to suspend and move to other machines is suggested in a previous
paper from the same group of researchers [Brya.nt1981a]: the authors prove that jobs that have
been running for some time are likely to run as long in the future. Thus identified, big jobs are
suspended and moved to less loaded machines.

A recent work in the field is [Eager1984a], which introduces and compares three different
control laws: random placement, threshold (canvass a number of machines, and send the job for
execution to the first found whose load is below a certain threshold), and shortest (maintain
information about the load of a number of machines, and choose the least loaded one). Load is
here the number of users in the run queue. The schemes are all evaluated by means of a queueing
model, together with the worst case (M/M/1) and the ideal case (M/M/K). The results show
that random placement gives a dramatic improvement in the response time with respect to
M/M/1, whereas the other two schemes do a little better, but are not definitely worth the cost of
getting the information they need. Chivalrously, the authors concede ‘‘the benefit of the doubt” to
the policies that maintain and use load information.

Among the wide breadth papers which introduce several algorithms and compare them, both
[Livny1982a] and [Wang1985a| deserve mention. In the former, the authors prove that there is a
high probability that, if the arrival rates at the nodes of a computer network are the same, then
there exist some nodes that are overloaded (queue length > 1) while some other nodes are very
lightly loaded. This motivates the idea of moving the execution to remote machines. Three
information policies are introduced: State Broadcast (the state of each machine is periodically
updated and broadeast to the others), Broadcast when Idle (a node that becomes idle sends a bid
to all the others) and Poll when Idle (a node that becomes idle asks some of the others for jobs).
The three schemes are evaluated through simulation: their relative performances turn out to
depend strongly on system parameters, and the authors do not express a definite opiniou about
any one of them. A very systematic approach inspires the paper by Wang and Morris, where 14
schemes are introduced, ordered by their needs of load information (from no knowledge to future
knowledge), and subdivided in server- and source- initiative. The schemes are compared by means
of a general performance index called Q-factor, that tells how close the system’s behavior is to
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that of a multiserver FCFS station (M/M/K'), as seen by every job stream. The Q-factors are
evaluated with several different methods (both queuing models and simulation): the main result is
that server initiative generally outperforms source initiative, and that some less popular
algorithms like random service or cyclic service can in some circumstances provide effective load
sharing at low communication costs. Wang's taxonomy is not really comprehensive: all the load
indices he considers concern only ome resource, the cpu. No other resources that could be
responsible for delays in the response time are considered in any of the 14 schemes described in
the paper. A multivariable scheme like our own, for example, does not fit in this taxonomy.

3. PROCESSING SCENARIO
The computing environment to which our considerations apply includes:
° A set of multiple user hosts with:
- Diflerent CPU powers.
- Different mass storage facilities (number and speed of disk drives).
- Different memory sizes.
- Connection to the same local area network, that provides broadcasts.

) The files containing the object code of the programs we waat to execute are replicated
everywhere. There is, therefore, no need to move them to the execution site. This
assumption allows some heterogeneity to exist among the machines: a machine’s executable
code resides on it, without any need for a translation. If the program needs one or more
input files, though, these files have to be moved and maybe even translated into the target
machine’s data representation code. The assignment of a job to a host is accomplished
simply by shipping the command line, and possibly the input files.

The network might also contain (note that this would require an extension to the design):
) Single user workstations.

) Machines with special-purpose hardware, like array processors, FFT processors, floating
point processors, or special printers. These resources may be present in multiple quantities
on the network, thus requiring the choice of a particular one of them.

. Machines dedicated to specific services, like file servers, name servers, and mail servers.

We call the set of machines that could possibly receive the jdb we want to ofload the set of
eligible machines. This set is constantly changing on the basis of the load information (see infra).

Besides the load, however, other external factors like ownership and autonomy could
determine a reshaping of the set: the owner may want to restrict the access to her facilities. For
example:

- The owner is willing to allow only N% of her resources to be used for foreign jobs, and,
when this limit is reached, she claims the right to refuse further load. An automatic
mechanism must be provided to guarantee that this will be possible.

- A workstation’s owner wants the machine all for herself when she is working on it, but is
willing to yield it when she is not using it.

- The owner wants to be able to “close the faucet” by denying access to her system, or maybe
only to a single type of resource. In this case no job at all can make use of that resource or
that machine, until she changes explicitly her mind.

These considerations require a definite choice about the “politeness” of our policy: due to
the particular timing of messages over the network, a machine could still get incoming jobs after
its availability has been denied. Where should the authority to decide the execution site reside?
In transient situations, the transmission of a high load index value to state unavailability could
not be enough to avoid an unpleasant convergence of jobs into a machine that used to be
unloaded.
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For example, a machine could be quickly jammed by incoming jobs, before the change in the
value of its load index can reflect the new situation and induce the load balancer to stop the flow.
In this case, the target machine’s Ulysses could resend the extra jobs out, incrementing a hop-
counter to avoid an endless bouncing of the same job from machine to machine. Alternatively,
the chosen machine could be impolitely compelled to execute everything it receives, with no
possibility of refusal. This choice should be made dependent on the environment we are
considering, the ownership of the machines, and the existence of a general authority that can
impose decisions.

We will henceforth assume that our environment is made up of machines totally willing to

cooperate: if the copy of Ulysses running on one of them still sees jobs arriving after access was
denied, it will either process them or send them out again under its own responsibility. The copy
of Ulysses running at the submission site will soon receive the new value of the corresponding load
index, and refrain from sending there jobs to execute.
Possibly, an owner could even refuse access to someone else’s jobs, or to some particular job
classes. [ will not consider this here: our load balancing should not enforce any class
discrimination. Finally, being the environment so collaborative, no malicious misuse of the
mechanisms will be considered.

4. THE FIRST PHASE OF THE EXPERIMENTS

4.1. The Feasibllity Study

When first approaching the problem, in the Spring of 1984, we did not have any experience
with remote execution, that could convince us that distributing the load was a good idea: the
documented implementations we knew about [Hwan51982a,Walker198Sa] did not provide very
conclusive data. We designed and ran a first set of experiments to test the feasibility of remote
execution, and to analyze some load indices on which a decision about remote allocation could
rely. We started by addressing the following issues:

] The nature of a system's load, and its characterization by means of a load indez. Several
metrics had been proposed [Alonso1983a,Cabreral985a), but they had not been related with
measurements to a program’s response time.

. The amount of the improvements in job response time we can get by remote execution, and
the price we have to pay for network communication ([Cabreral984a) evaluates in detail the
TCP/IP network protocols) and control of the process on the remote machine.

) The characterization of the job classes that would benefit from remote execution and the
ones that could always be executed locally.

A rather primitive tool, called dsh, was available under Berkeley Unix [Presottol1983a]. dsh
(distributed shell) allows remote execution of a manually selected job on the currently least loaded
machine, using Unix's load average as the load index. Load average is actually the length of the
queue of runnable processes waiting for the cpu, exponentially smoothed over an interval of one
minute; clearly, it is a metric purely related to the cpu load.

For our experiments we selected some machines and generated artificial background loads on
them by means of shell scripts. Then we ran repeatedly some standard probe jobs, both with and
without dsh. The response times can be easily measured with the C-shell time command|CSHa).
Two typical results of the experiments are shown in figure 3 and figure 4. They are described in
|Zatti1984a]. The dotted lines have been added only for pictorial clarity.
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We observe that the local response time is better than the remote one, as long as the load
remains below a certain local load threshold. But as soon as the load passes this threshold, we get
noticeable improvements if we can find, somewhere in the network, a sufficiently unloaded
machine. Note that, to consider a remote machine sufficiently unioaded, the value of its load
average must be situated below a second load threshold, the remote load threshold, that is smaller
than the local one. Due to the overhead of dsh itself, in fact, a remote execution is penalized, and
can improve the response only under very particular load conditions.

The overhead of dsh could be evaluated by measuring the response time on the remote aite
and subtracting this value from the total response time: we found the value of this overhead to be
very high (16 seconds on the average). In fact, dsh collects the loads of the remote machines by
creating a TCP/IP connection [Postel1981a] in turn with every one of them. TCP/IP provides
reliable communication by retransmitting for up to 10 times a message that has not been
acknowledged. The round-trip time of a message is severely affected by the reliable transmission
mechapism, and by the load of the sending and receiving machines, as shown by
[Cabrera1984a, Cabrera1985b]. The delay to gather the information about the remote machines is
entirely suffered by the user, waiting in front of his terminal for the response. A faster,
nonreliable remote procedure call mechanism based on UDP/IP [Postel1980a] would be much
more suited to this probing strategy, but still any delay incurred by the mechanism would be
suffered by the user. Moreover, the probing strategy requires messages to be sent every time a
new job comes under consideration: this does not scale well with the number of jobs coming into
the system. We prefer the idea of maintaining information about the load with an asynchronous
mechanism (that we called Hermes), and getting the data with a fast local i inquiry every time it is
needed.
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However, the main conceptual result of the experiments was the definition within the load
space of a load balancing ares where we are likely to get some benefit by remote execution (fig.
5).

Figure 5
The Two Load Thresholds
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The area is delimited (the picture is restricted to a two-dimensional local-remote load space for
clarity) by two thresholds: The Local Threshold , beyond which we can expect better results from
a remote execution, and the Remote Threshold, lower than the local one, that limits the benefits
achievable on a remote machine (there is one of each for each machine, of course). We call Delta
Threshold the difference between these two thresholds: this is an important parameter for the
binary information scheme we will define in Chapter 5.

4.2. The Load Metric

In the second set of experiments we investigated the relationship between the probe job's
response time and several load indices we selected to express the system’s load. Our goal was to
identify one load index suitable to all jobs and all load conditions: the performance of load
average in the first experiment was not very convincing. Of the indices we tried, instead, no one
showed the generality we were looking for: we decided to look at different resource-related indices
depending on the type of job that we are considering.

In these experiments, on a given machine a background load was generated by running
several instances of the same two kinds of very heavy programs, a cpu bound and an ifo bound
one, every time with different mixtures of the two. A probe was run once for each different load
value, and its response time was plotted versus different resource-oriented metrics. Some of the
results are showa in figures 6-10: every point refers to a single observation.
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As intuitively expected, if we run a cpu bound job with a pure cpu bound background load
the response time increases roughly linearly (see fig. 6); the same is true for i/o bound load and
i/o bound probes, even if we use the load average as our index (not shown). More intricate cases
show stranger behaviors: The cpu bound job’s response time plotted in figure 7 does not increase
monotonically with the load average, but starts decreasing beyond a certain value: the scheduler
reduces the background processes’ priorities after they have been running for a while, making it
easier for the probes to get executed quickly. According to the requirements expressed in
[Ferrari1985a], we want a curve of a job's response time that is single valued, monotonically
increasing, and linear. The load average is not a good metric in the case of figure 7.

If we have an if/o-cpu balanced background load, we still have an almost linear curve for the
cpu bound probe (see fig. 8), but an irregular one for the i/o bound, that flattens (i.e., does not get
worse) after a while. )
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One possible reason for this behavior is that an i/o bound job makes use of the cpu anyway, but
keeps cycling between it and the i/o without wholly using the time slice the scheduler grants it;
therefore it does not see its priority decreased by the multi-level feedback-like mechanism used by
the scheduler [Peterson1983aj.

The crucial observation here, though, is that the load average does not show a good
correlation, under general load conditions, with the response time of typically ifo bound jobs.

Loz}xg Avelrsage

Consequently, we tried some other metrics, related to other resources, and we got results we
found interesting. Figure 9 shows the response time of two typical ifo (symbol: “0”) and cpu
bound (symbol: ““+'’) jobs as a function of the system's ifo traffic. The machine was a VAX 750
with 2 disks, and the background load was balanced. The i/o system has a maximum throughput,
that we can observe to be about 18 blocks/s (on both the disk drivers altogether, assuming the
traffic to them is evenly split). When the system is under full load, the response time for the i/o
bound job grows very fast, whereas the cpu bound job's response, increases more slowly. An ifo
bound job is extremely sensitive to the load of a machine’s i/o system.

Figure 12 shows another result about the i/o index: the i/o traffic is plotted versus the load
average, and no correlation can be seen between the two. This experiment was performed on
another machine, with more disks and therefore a larger total disk i/o bandwidth: the i/o system
works at full rate even with a small number of processes in the cpu queue, almost independently
of their number.

Hence, we can relate the behavior of an i/o bound job to the ifo traffic, but we must make
sure that the i/o traffic is less than the maximum throughput that the machine's ifo system can
provide, if we do not want the respomse time to degrade too noticeably. The maximum
throughput is an §/o threshold, analogous to the cpu threshold we defined earlier. This
consideration led us to the definition of the binary load scheme that will be introduced in Chapter
5, Section 2.

Exploring the behavior of the virtual memory, we obtained a good correlation [4],
respectively, between the free list size (fig. 10) and the active list size (analogous, but growing

[4] The correlation coefficients are, respectively, -0.8 and 0.7; they are lowered by the high variance of the
response time for low (high) values in the free list size (active list size).
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with the size of the list), and the response time. First, a higher response time corresponds to
smaller free memory size: with little free memory it is more difficult for the virtual memory
manager to allocate the job’s working set. Second, and somehow complementary, more memory
occupied causes delays to further allocations. Notice that the graph does not show any
pathological situations, such as when the system is thrashing: this would happen for a free list size
smaller than 500, but such a phenomenon was not observed during our experiments (the swapping
rate was monitored, too, and was found quite consistently to be around a value of 15).

Figure 10
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The main phenomenon we can observe here is the clustering of most of the -responses,
respectively, in the big-free-list and small-active-list areas. This confirms the well-known
conclusion that the response time is generally good if there is enough memory available.

To bind this result to the number of processes, we ran some tests trying to correlate the size
of the active list to the load average. Figure 11 shows the results; as expected, the number of
active pages in memory is correlated (with correlation coefficient 0.74) to the number of processes
in the cpu queue.
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In conclusion, no one of our experiments revealed a load index suitable for all circumstances:
as far as we can tell from this set of experiments, that analyzed, however, only a few of the
possible load indices, the best load index depends rather on the type of job we are considering. We
were led to a general information scheme: we characterize each resource with a scalar value, and
build a load vector with these values; the load vector is the index that Hermeses on all the
machines exchange with each other to make their situation known. Another parallel project at
Berkeley [Ferraril985a] has suggested resource-oriented load indices to be used alternatively in
different occasions, depending on the type of job being considered. Analogously, our approach
keeps all the load information in the vector, but matches it with the job’s requirements in a
uniform way, independent of the job type, using all the fields available.

The experiments suggested also that some of the resources behave in a binary way: they
provide a generally good service as long as they are not saturated. We will characterize these
resources with a binary value (resource saturated/non saturated) and compare the performance of
this method with that of the real-valued one (i.e., that using the actual value of the load index).

5. HERMES: MAINTAINING SYSTEM LOAD INFORMATION

A computer system is a composite device, made up of separately available resources. Some
of these, like cpu, memory, i/o system, are common to all computers, while others (tapes, printers,
or floating point processors) are peculiar only to some of them. The requirement for a certain
amount of a specific resource is different for every runnable job. The availability of a specific
resource at a specific site must be advertised, in order to allow a redistribution of the processes as
tailored as possible to the needs of each process. We propose a multivariable scheme to distribute
information about resource availability.

The load on a system is expressed by a vector of n fields, each of which refers to the
availability of a particular resource. We will refer to it as the a.vector.

The values of each field of this vector can be either binary or real. Sometimes the nature of
the field requires a binary value, as in the case of a special device, about which we just need to
know whether it is there or not. Other times, an integer value is necessary, as in the case of a
hop count. In yet other cases, the value of the field can be either binary or real. We consider both
the alternatives for the fields related to cpu and i/o activities, trying to determine which is better.
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The mechanism for updating the information, common to both approaches, is described in the
next section. The nature of the information, the data structures used to store it, and the use that
the program makes of it by matching it with the requirements of the incoming processes, are
different; they are dealt with in the following sections.

5.1. Updating the Information

The information about the resources we selected should be kept constantly up to date, but
this requires frequent measurements that generate load on the sysiem. That informaticn must also
be transmitted to the other machines, and this generates further load, both on the system and on
the network. Therefore, the fresher the information is, the higher the load on the transmission
medium: this tradeoff is commonly referred to as the transmission dilemma [Livny1984a]. We
try to solve the dilemma by refreshing the information only at periodical intervals, of such length
that the information should not change appreciably during them.

A Hermes process runs constantly on each machine, performing the following operations:

- It reads the load indices from the kernel with interval ¢, (the update interval), and smoothes
the values with an exponential combination of the old one, to avoid sudden jumps.

- It broadcasts this information to all the other Hermeses only when some of the fields
“change.” The meaning of ‘‘change” depends on the approach (see infra)[5].

- It receives from the other machines’ Hermeses information about the remote loads, and
builds a structure to keep this information.

This sequence of messages allows:

- The dynamic reconfiguration of the set of the eligible machines (a new one comes up,
another one denies access,...).

- Periodic checkpoints for correctness of current information.

- The detection of crashes, or even of very stable conditions: Hermes can determine whether
during a certain interval a machine did not send any message.

In both the real and binary vectors, we have integer (and not binary) values for the hop
count and for memory availability, which is expressed by number of pages in the free list. A
binary characterization of memory (thrashing/not thrashing) seems too rigid and is not motivated
by any of our previous results.

5.2. The Binary Metric

The a.vector has binary components, one for each resource, whose meaning is:
0 = Saturated
1 = Not saturated.

The availability is here defined with respect to a load threshold: each time the load threshold is
crossed (what we referred to as ‘‘change” in the previous section), the bit toggles, and the a.vector
is sent out to the other machines with its updated value. The load threshold is determined
experimentally on the basis of the following factors:

. The utilization of the resource: when the threshold is passed, the resource is so busy that it
cannot ensure a satisfactory service to new clients.

) The relative power of the resource, with respect to the corresponding ones in the network
(i.e. cpu power (MIPS), speed and number of the disk drives).

° The distance of the resource: sending a job through the network to be executed remotely
costs in terms of response time. The remote load threshold (the nom-availability limit) must

{5) The information broadeast could be just the difference from the previous ome: this could avoid
transmission of redundant information, but would make the system more vulnerable to message losses: if one
update is lost, the information about that machine will be wrong, and, what is worse, will remain wrong until a
brand-new a.vector will arrive. We will not follow this alternative method.
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be smaller than the local load threshold (the limit above which balancing is performed). The
difference between the two thresholds (Delta Threshold) represents the cost of remote
execution (see figure 13): the job would take approximately the same time to execute on the
local machine with a load equal to the local threshold as on the remote machine with load
equal to the remote threshold.

Figure 13: The Delta Threshold
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The following pseudocode shows how the information algorithm works:

while(running) do {

for each field in a.vector {
read the load index;
it (value > threshold) bit = O;
else bit = 1;

}

if (a.vector != a.previous) {
broadcast nev a.vector;
a.previous = a.vector;

}

wait for a time t1;

Obviously, this approach is the only reasonable one when the field refers to the availability
tout court of a specific hardware resource, like a laser printer, on a given machine, but in tkis case
we do not need to refresh the information unless the resource is physically removed from the
network.

5.3. The Real Valued Metric

The a.vector is made up of real components, one for each resource. Each one of these values
is normalized into a scale that is the same for all processors, so that it allows us direct
comparison of values from diflerent machines. In order to perform the normalization, we could
run the same probe job, that uses heavily the resource we are conmsidering, on two different
machines with the same load conditions (ideally: no load) and we compute the ratio between the
execution times. We use this value as the normalization factor for the resource and for the two
machines. For the real value metric, the degree of availability is simply stated by the value of the
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index for the resource that is being considered.

As in the previous case, the information about a machine is sent out with an interval ¢,.
But, since it is represented by a real number, this value is very likely to be too sensitive to any
small changes. The new value just obtained from the system is therefore smoothed by the
previous value with parameter alpha, with an algorithm similar to that used by the ioad average
command. Also, if we want to save on the side of the network traffic we can define a per-machine
sensstivity threshold for a resource, as the range within which we consider a value “‘unchanged”
since the previous time it was observed. The algorithm would be:

vhile(running) do {
changed = 0;
for each field in a.vector{
measure resource’s metric value into current;
if lcurrent ~ previous| > sessitivity threshold{
previous = current; ;
changed = {;
}
)}
if (changed = 1) broadcast new info;
vait for a time t1;

The binary and real metrics are sometimes alternative for specific resources, especially for
the cpu. Other resources could be well characterized by a binary value. Recall the experiment
described in Chapter 4 (see fig. 9 and 12): as soon as the bandwidth of the disks is saturated, and
this may happen even if the cpu load is low, the ifo system causes long waiting times to those
jobs that make some use of it. A simple saturated/not saturated bit is enough to keep the typical
victims, i.e., the i/o intensive jobs, off that machine. As a general rule, we want the job to stay
away from a resource that is too busy to provide it a satisfactory service (i.e., we want to avoid
bottlenecks).

5.4. The Flelds of the A.Vector

The choice of the fields in the a.vector was inspired by the experiments we described in
Chapter 4: we observed there that, in different situations, different resources have critical
importance in the allocation decision. We orient our choice to those resources: cpu, ifo and
memory availabilities are declared in every machine’s a.vector. Special hardware devices need a
field too, to indicate their presence. A field is allocated to the hop count: after a certain number
of hops, the job will be executed locally. In the case of a workstation, the cpu field would act as a
busy /idle indicator: a workstation, we said, is available only if nobody is working on it.

A resource-oriented metric seems more suitable than a functional or logical one because it is
a physical resource that might turn out to be a bottleneck, while other resources in the same
machine could be idling. Relieving the physical bottleneck of some of its load could produce a
considerable increase in the overall performance of the system. The resources, obviously, are not
independent from each other, but do work separately; on this basis we consider their load values
separately.

The choice of the best execution site for a newly submitted program is performed by Cupid
(described in Chapter 7), which checks the load information maintained on the submission site by
Hermes, and the information (if any) that Diogenes can collect about the requirements of the job
itself. Cupid must be extremely quick in his decision, since the time it takes will be entirely
suffered by the user waiting for response at the terminal (recall that our goal is giving the user a
better response time). The price for an efficient decision has to be paid by Hermes, which must
organize its data to optimize the access time. We call this data maintained by Hermes the
g.matriz, composed by a.vectors,
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In this context the data structure we use for the a.matrix is crucial: we would like to find
the best execution site with a minimum number of searches, and also to gain access only to that
subset of data we are going to need. Cupid uses some of the information about the load itself as
an access key to the a.matrix.

5.4.1. Binary Information

We organize the a.matrix in a hashing table with 4 slots 0, 1, 2, 3, accessed through a
function of the cpu and ifo bits, considered as an integer key. If we have other bits in an
a.vector, representing other resources’ availabilities, they could be embedded in the hashing
function as well. The memory field and all the other various fields of the a.vector are stored in a
linked list sorted in ascending order of the memory fields. The table is shown in the Figure 14.

Figure 14: The Binary Information
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5.4.2. Real Information

The real information is much more difficult to organize, since we would like to gain access to
it with multiple keys (e.g., ifo field first for i/o bound jobs, and so on). We would need a
database-like structure, but we do not want to sufler any query processing delay. In analogy with
the binary scheme, therefore, we divide the domain of the cpu load metric into n finite intervals,
thus creating an n-slot ordered table. For example, if the range is 0-100 we divide it into 10
intervals, each of which corresponds to a field of a table with 10 entries. The values of the ifo
field are divided into intervals in ascending order as well, constituting analogous tables pointed to
by each slot of the cpu table. We get a multiple-level index structure ordered in a somehow
“lexicographic’” way with respect to each one of the fields. When an a.vector arrives, Hermes
breaks it and fills the slots in the tables corresponding to the values of the indices. The memory
field and the machine name are then inserted in a linked list appended to each ifo table slot,
according to the ascending order of the memory field, as suggested by figure 15.
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Figure 15: The Real Information
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This way of organizing the a.matrix allows almost random access, that is faster than a
sequential search, to the cpu and ifo fields. Cupid bas eventually to search the linked list until a
complete match is found, but, given the sparseness of the a.matrix, we can expect this list to be
very short.

6. DIOGENES: MAINTAINING PROCESS LOAD INFORMATION

Once we have all the information about the system load, we want to be able to use it for the
choice, at the submission site, of the execution site for a new job. There are some commands
(probably the majority) that are so light that they do not deserve any effort: they should be
simply executed locally. The first selection should identify the class of jobs that could benefit
from remote execution, and make their names known to Ulysses. To achieve a better allocation, it
would be helpful to collect some more information about these jobs and their resource
requirements. A complete workload characterization is a major effort, and requires:

° A thorough analysis of the jobs submitted daily to a system.
° The selection of those heavy enough to deserve consideration.
° The grouping of these jobs into classes, if necessary to reduce the size of their population.

. The definition of a single requirement vector for each class (henceforth to be called the
r.vector).

. The characterization of each selected job with its class' r.vector.

A new job should be assigned an r.vector on the basis of its behavior (how much of each
resource it used in its first run) or on the basis of hints contained in the command line. Only
some of the job classes would benefit (or suffer...) from the load balancing policies. Diogenes tells
Ulysses which jobs should be considered for remote execution, and which ones should always be
executed locally, by looking at their r.vectors. The r.vector belongs naturally in a job's
executable file(s}, as a piece of information that each of them should carry with itself.

In this study we will not perform a full scale workload characterization that, however
interesting, is beyond our present scope. However, we need to characterize some test jobs ior our
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next experiments: rather arbitrarily, we assign an r.vector to a job according to the following
rules:

° In the real vector case, we insert in the r.vector the cpu utilization of the job, obtained
dividing the cpu time actually used by the elapsed time, or the number of processes in the
run queue, and the ifo rate, that we can obtain by dividing the total number of ifo
operations performed by the elapsed time. )

. In the binary vector case, we put a 1 in the cpu-field and a 0 in the i/o field (i.e., access key
10: 2) if the job is considered cpu bound, a 1 in the ifo-field and a 0 in the cpu field (i.e.,
access key 01: 1) for an i/o-bound job, a 1 in both fields (i.e., access key 11: 3) if the job acts
heavily on both.

e  The memory field contains in all cases the real memory (resident set) size of the process in
1024 byte units, since a binary characterization of the memory needs does not seem to make
much sense in this context. In Unix, this information can be obtained by reading the RSS
field of the output of the ps command.

7. CUPID: THE MATCHING MODULE

We have an a.matrix, with information about system-wide availabilities, and an r.vector.
We must now design a vectorial function from the (systemload X processload) space into the
system space, that returns to Ulysses the name of the machine expected to yield an optimal
execution time to the command under consideration:

[(a.vector, r.vector)=machine name

Cupid must be extremely fast, since its response time is totally perceived by the user. Its action
depends on the kind of vector (binary vs. real) we are using. Separate functions, therefore, have
to be designed in relation with the approach we want to test. The distance to a possible execution
site is crucial: whenever feasible, local execution is the best choice, and then the execution on
machines on the same network. We could even move out to other networks, if we had for example
a pool of workstations with their own independent connection, but we will not go that far in the
present implementation. Cupid will check first of all if the local load is good enough to allow a
satisfactory local execution. In case we allow the remote machine to ship the job further, the hop
count is kept in the r.vector and checked to determine whether or not the job can still be sent
away. After this preliminary exam, Cupid looks into the data structure maintained by Hermes to
find the optimal matching. The operations differ depending on the type of vector (binary vs. real).

7.1. Binary Matching

In the case of the binary approach, we want to match a 1 in the r.vector (expressing need
for a resource) with a 1 in the a.vector (expressing availability of the resource for that machine).
The matching function implemented by Cupid uses the bits in the r.vector as an access key to the
load table, then scans the linked list according to the free memory field to find the first fit (note
that in this case it is also a best fit), and returns the name of the machine. (We do not consider
here other possible fields for special devices, that would have to be checked as well, by embedding
them in the bit pattern of the access function.) Then Ulysses sends the job to the named machine
for execution, waiting for an acknowledgement to make sure the machine has not crashed in the
meantime. The copy of Ulysses running on the target machine will reconsider the job, deciding
whether to execute it (as presumably will happen), or ship it out again (if the situation of the load
changed in the meantime). The hop count is increased at each hop, and, when a maximum value
is reached, the execution takes place anyway (at that point the user will be in a rage anyhow).
After Ulysses has made a decision about the process, the local Hermes changes sts view of the
a.vector of the chosen machine, by subtracting the fields of the job's r.vector from the
corresponding fields of the a.vector, thus avoiding any further allocation to that machine until a
new a.value is received from it. (In this case, Hermes simply resets the bits of the binary fields,
and diminishes the free memory size by the allocated process’s working set size.) This mechanism
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mimics the time thresholding scheme mentioned above [Ramakrishnan1983a), with the interval
between two consecutive load index upgrades as the value of the time threshold. Note once again
that the availability of the local machine will be always checked first, to try local execution. Local
execution is inevitable either in case the hop count in the process’ r.vector has reached the
maximum allowed, or in case no available machine has been found on the network (null returned

by Cupid).

7.2. Real Matching

In the real-indices case, the load table is accessed using the cpu field as a key. The ifo field
is then directly accessed in the table corresponding to the cpu field we aiready matched, and then
the first fitting memory field is checked. The first complete match will point to a machine name
returned by Cupid as the *“optimal” execution site. We may need to backtrack while scanning the
tables, but we are always sure that all the following slots of a table we accessed will be suitable
for that job as well, since they are ordered. As for the binary case, after a choice has been made,
Hermes updates its own view of the chosen execution site: the values of each field of the a.vector
are adjusted in correspondence to the values of the fields in the r.vector. For example, if we are
using the size of the run queue as the index for the cpu, we will increase by one unit (the process
we just allocated) the size of the run queue in the remote machine, and if the ifo traffic is our i/o
metric, we will increase it by the submitted job's i/o rate. The true values will be restored after
t, time units by the new a.vector coming directly from the machine. Note that the local machine
must still be checked first to see whether a local execution is reasonable or whether the maximum
hop count has been reached.

8. EVALUATION CRITERIA

We now list some important criteria for evaluating a load balancing scheme, and use each
one of them to assess our own scheme.

° Scalability: How does the scheme react to an increase in the number of the machines?

We saw that every Hermes broadcasts its own machine’s load informatior on the network.
Too many processes exchanging messages can load considerably both the network and the
machines that have to process and organize the incoming information. The scheme is not
scalable to very large networks. However, it has been demonstrated [Livny1982a] that there
is a good chance that, in a sufficiently large network, some machines are found idle, or very
lightly loaded, while some others are too busy. For example, in a network with 10 machines,
if the average system utilization is between 0.4 and 0.8, the probability that one node is idle
when another one is overloaded is higher than 0.9. It might be sufficient, therefore, to keep
load information only about ¢ fraction of machines, choser according to some selection rule
as in |Barak1984a] , to ensure a reasonably high probability of finding a satisfactory
execution site. This allows us to set an upper bound to the growth of the a.matrix. The
network traffic generated by the distribution of the information, though, will be growing
with the number of the machines, causing increasing traffic problems that could be solved by
piggybacking the load information on other packets that have to be sent anyway.

° Flezibility: Does the scheme work for different machines and configurations?
The threshold scheme allows the maximum flexibility, with some risks of instability. The
real metric has to be scaled into a unique range of values. This operation can be hard with
very different architectures, requiring heuristic solutions to be devised case by case.

° Tunability: How easily can we modify the scheme, to adapt it to the characteristics of the
load?
This is the best advantage of the binary vector metric: we can use the thresholds as knobs,
to tune the scheme up according to the real system’s behavior. The real vector metric is
harder to manipulate since it is based on the real values of the load indices.

° Resource Cost: How much does the scheme cost, in terms of resource consumptions?
When the local load is small, the choice is going to be a local execution. It might be better
just to turn the scheme off. But the load could grow and the load balancing process be still
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sleeping. We believe it is necessary to provide a mechanism simple enough to work
continuously without imposing a major overhead on the system. For example, we could
monitor regularly only the local load, and start collecting remote load information only
when the local load goes beyond the local threshold. The cost of the service would be the
sum of the following components:

- The cost of maintaining fresh information on the load (always present).
- The cost of choosing the optimal execution site (always present, even if the local is the
optimal).
- The cost of the remote execution, that is the sum of:
* The cost of transmitting the command, possibly with input files.
*  The cost of execution (present also in the local case, of course).
* The cost of resending results back to the terminal where the user is waiting.

9. THE EXPERIMENTS

9.1. The Setup

We built an experimental version of Ulysses to execute jobs locally and remotely while
measuring their response times and the current system load. Using this tool we ran a series of
experiments on a selected set of probe jobs, to assess both the improvements in response time
Ulysses is able to provide and the relative performance of the real and binary metrics. We
wanted to find out whether the choices based on the binary metric are as eflective as the ones
based on the real values.

The experiments were performed within the range of a full month, at various times of the
day and the pight, on machines running with their real users and their real loads. The setup
included:

1) A local machine on which two processes were running, together with the normal load:

) The first process encompassed the functions of Ulysses, Diogenes, and Cupid, executing
and timing any jobs we submitted to it both locally and remotely. For convenience,
remote execution was performed by rsh[RSHaj, that creates two TCP/IP connections
[Postel1981a] between the two machines, one for standard input and output, and one
for the error messages and the transmission of signals, with a high setup cost. We
measured the overhead of rsh by executing remotely several times a very light
command (date), so that we could assume that the response given by time accounts
only for the setup operations. When both the machines were unloaded, rsh averaged
4.9 seconds of response time, whereas when the local machine was loaded (with a load
average of about 6.5) and the remote was unloaded, the response time was 5.6 seconds
on the average. To give an upper bound, we mention also that rsh takes on the
average 6.4 seconds to execute date between two equally loaded machines (load
average about 6.5), even if a remote execution would never be chosen by Ulysses in
these conditions. The major part of reh's delay is due to the layers of software to be
crossed by the messages (connection setup, buffer management, checksums, input and
output queues); the delay due to the transmission medium itself is probably much
smaller: Cabrera et al. measured TCP/IP transmission delays of the order of a few
milliseconds, with a maximum of a few tenths of a second in case of high load
[Cabrera1984a]. However, the minimum delay we measured is suffered by any remote
execution performed by means of rsh.

) The second process realizes the functions of Hermes, reading from kmem (in Unix, a
file that contains up-to-date information about the virtual memory) the values of cpu
utilization, ifo traffic, free memory size and run queue size, and building an a.vector
with them. Hermes reads new values every 30 seconds, and smoothes them with the
old corresponding ones using an exponential smoothing aigorithm with a=0.5 (i.e., the
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previous value of the average is considered as important as the new value of the
index). The resource consumption is extremely low (order of 0.1 % of cpu usage), since
the process is almost always inactive, waiting either for the timeout to elapse or for a
request of information from Ulysses, and when it is active it simply seeks the
parameters in the kmem file. A request of information from Ulysses to Hermes takes
an average round-trip time of 27 milliseconds.

2) A remote machine with its own (generally light) load, ready to receive the remote
executions. A copy of Hermes runs on this machine too, and exchanges with its peer the
information it collects using the UDP /IP message exchange protocol provided by the 4.2BSD
inter-process communication facilities.

9.2. The Test Workload

For this set of experiments, we chose four test jobs to be used as probes, and we analyzed
them through a series of runs, in order to compute their r.vectors. Diogenes, just a piece of the
balancing process, maintained the r.vectors in a table.

The selected four jobs had the following characteristics:

- CC: The compilation of a 6Kbyte C program (the source code of Hermes), that exercises
alternatively both the cpu and the i/o subsystem.

- I0: An ifo bound program (10 copyings of a 60K file), that exercises heavily only the ifo
subsystem. ’

- CPU: A cpu bound program, that performs only arithmetic operations. Please notice that
the cpu% (cpu utilization wrt real time) of CPU is slightly smaller than CC’s and NROFF's:
since CPU never releases spontaneously the cpu, it gets delayed by the scheduler.

- NROFF: The formatting of a 6Kbyte text, a chapter of this report: cpu bound and with a
big memory resident set.

We assigned an r.vector to a process according to the following rules:

. In the real case, we inserted in the r.vector the cpu utilization of the job, obtained by
dividing the cpu time used by the elapsed time, and the i/o rate, obtained by dividing the
total number of ifo operations performed by the elapsed time. The data was obtained by
running each job 75 times on an unloaded machine, measuring its response times with the
time command, and averaging the values. The number of repetitions was chosen big enough
to provide a standard deviation substantially smaller than the average value (no more than
the 20% of this value). Table 1 shows the complete characterization of the jobs used in our
experiments with the real-valued metric. The elapsed time is given in seconds, the i/o rate
in number of blocks transferred to/from disk per second; the “memory” column shows the
number of pages in the free list.

Table 1.
The Real-Metric Characterization of the Test Jobs

type of job | cpu% | elapsed | i/o rate | memory
CC 56.98 27.52 5.46 7
10 20.75 17.28 27.70 7
CPU 51.10 13.09 0.0 S
NROFF 51.59 46.83 0.4 73

. In the binary case, we put a 1 in the cpu field and a O in the i/o field (i.e., access key 10: 2)
for the jobs we considered cpu bound (CPU, NROFF), a 1 in the i/o-field and a O in the cpu
field (i.e., access key O1: 1) for the if/o-bound job (IO), a 1 in both fields (i.e., access key 11:
3) for CC, that is a heavy consumer of both resources. Table 2 shows the characterization
of the jobs in this case.
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Table 2.
The Binary-Metric Characterization of the Test Jobs
type of job cpu ifo memory
CC 1 1 7
I0 0 1 7
CPU 1 0 5
NROFF 1 0 73

¢  The memory field contained the real memory (resident set) size of the process in 1024 byte
units, as given by the RSS field in the output of the ps command.

8.3. The Execution

We ran a separate session for each one of the probe jobs. For each session we executed the
probe many times, recording each time the local and remote response times and the corresponding
a.matrix. In this way we were able to construct in the load hyperspace two related clusters of
values: those of the local and of the remote response time. Note that Ulysses executed a job both
locally and remotely at every step, and simply printed out the load and the execution times, to
give us a way to determine the choice it would have made in the real and binary case; we did this
by computing the matching function by hand, and adjusting the thresholds to their optimal value.
It Ulysses’ choice agreed with the best execution site (i.e., the one where the job executed faster),
it scored a win, otherwise it lost. The total count of the wins was divided by the total number of
the executions to yield the win rate. Two win rates were computed for each job type: wy,, based
on the binary matching mechanism, and w,, based on the matching of the real values.

We plotted the response time versus all the load indices that constitute the a.vector,
obtaining many projections of the response time set of points onto the component planes. The
projections which turned out to be of interest are shown in the following description of the results.

9.4. The Results

9.4.1. CPU: Cpu Bound Probe Job

The win rates of Ulysses’s choice for the cpu bound job, that is based only on the cpuy,
field, since CPU does not perform any i/o operation, are
for the binary:

and for the real:
w,..,=.§§},_o 55

The cpu was considered busy if its idle time was less than 10% (local load threshold). Of the 158
right choices of the binary scheme, 69 were local and 89 were remote, whereas of the 161 of the
real scheme, 90 were local and 71 were remote. The real scheme tends to favor very slightly the
local choice, but without a really dramatic benefit. It is clear that this decision strategy is not the
best we can do: we simulated random placement on the same data and we got a win rate of

w~.‘=é§-§-=49.135

not too different from either one of them. If we observe carefully the behavior of the cpuy, field,
though, we notice that it is O the great majority of the times. The few times when cpugy, 70,
local execution is better, but even when cpuy, =0 the response time can be excellent. Many times
Ulysses chose the remote machine on the basis of this criterion, and the choice turned out to be
wrong. There is a clear negative correlation between cpu utilization and response time, as figure
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16 shows, but a much greater variance corresponds to small values of the cpuy, (see how
scattered are the values for cpuy,=0). The response time, in the next as well as in all the
following figures, is given in seconds.

Figure 16
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The variance of the remote response time, however, is always limited, since we always
choose for our remote execution the right machine, that is an unloaded one: figure 17 shows that
the remote execution time can still be bigger than the local one, but has a smaller variance.

Even though it makes matching very easy, the use of cpu utilization as an exclusive load
index is to be considered a bad idea: it does not really tell how fast the service provided by the
cpu will be at a given moment. A few jobs in the cpu queue are enough to bring the idle time
down to zero, but this does not necessarily mean that the response time will be bad.
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Figure 18
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A possible alternative index to consider is la, the number of processes in the running queue,
that shows a good correlation with the response time of CPU (figure 18) and a good negative
correlation with cpuyy,. We can observe that the variance is limited when the number of processes
in the run queue is smali, but increases dramatically when this number grows (please compare this
figure with figure 6 in Chapter 4). We consider the machine busy (setting the cpu bit to one) when
the local run queue is bigger than a certain local threshold. We computed the binary win rate
when the choice was based on this index. We used a local load threshold of 4, as suggested by the
figure, and a delta threshold of 3, i.e., Ulysses did not send the process out unless the cpu queue of
the target machine was smaller that the local’s by more than 3 processes. We got a considerable
improvement in the win rate:

w,.=§g§.=o.7128

This suggests that the number of processes in the run queue is a better load index for cpu bound
jobs with a binary matching scheme.

9.4.2. I0: I/O Bound Probe Job

The idea of matching the per job ifo rate with the i/o traffic does not turn out to be very
effective: if we try to perform the matching in this way, the local machine is always chosen in
despair, since the high i/o bandwidth (27.7 blocks/sec) required by IO is hardly available in mass
storage systems with a maximum bandwidth of 40 blocks/sec; the win rate corresponds actually
to the win rate of the local execution (about 0.5), i.e., we win only when we execute locally. As
we observed in Chapter 4, if we know that a job does some ifo, it is sufficient to keep it out of a
machine where the ifo traffic is close to the saturation point. The relationship between ifo traffic
and response time for IO is represented in figure 19. There is a clear positive correlation between
the two quantities, while the variance increases with the traffic.
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Local I/O Traffic (blocks/sec)
Figure 20 shows that, on the contrary, the response time is quite constant on the remote
machine, and is better than the local when the local traffic has passed a certain threshold. We
originally set this threshold to 10 blocks/sec, but we realized that Ulysses was sending the ifo
bound job out too easily, with unsatisfactory results. By increasing the threshold to 15 blocks/sec,
we got a remarkable win rate:

We can consider the i/o traffic a definitely good load index for an i/o bound job, whereas we feel
that the i/o rate is too detailed to characterize properly a job’s ifo requirement: a simple i /o need
bit is probably sufficient.

9.4.3. Compllation

The compilation job, balanced in its cpu and i/o requirements, offers probably the most
difficult choice among our test jobs. The binary metric provided an unsatisfactory:

whereas the real metric gave:

The inaccurate indication Cupid gets from the cpuyy, field is responsible for this not very
exciting result. A compilation has a bursty behavior: it alternates cpu and ifo service requests, and
we observed in Chapter 4 that bursty processes are favored by the scheduler. Cupid always
chooses the remote machine when it bases its choice on the fact that cpug;, =0, and many times
this is wrong because the job could still obtain a fast local service, thanks to the scheduler. The
real metric has a higher win rate because sometimes Cupid, not finding sufficient cpu power on the
remote machine, comes back to the local in despair. However, the correlation between ifo traffic
and response time is good: the graphs are similar to the i/o bound job's (figures 19 and 20): all the
times that the i/o field determines the choice, Cupid wins. As for CPU, we recomputed the win
rate for the binary metric using the number of processes in run queue as the cpu load index. We
used the same thresholds, 4 for local and 3 for delta. We got:
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wh=é%31—=0.625

that represents an improvement with respect to using cpuu,, and encourages us to choose this
index for the load of the cpu. Out of curiosity, we tried with a different threshold value for the
local, 3: We got 5 more wins, not a very substantial improvement. The win rate that the number
of running processes yielded turned out to be very close to the real metric’s one. We must notice,
though, that the local choices of the latter are due to desperation (neither of the execution places
was considered good), while the former’s are based on the actual value of the metric; we favor the
binary approach because it is more likely to work well in other, more general situations.

0.4.4. Text Formatting

The win rate for the text formatting job, a typically cpu bound one, was quite good (local
threshold: 4, delta threshold: 3):

wu.=-}g-=0.8

and:

w,_,=11.°£.=o.77

Looking at the results in detail, we notice that remote execution gave better responses most
of the times: the text formatting job is twice as heavy as the pure cpu bound job, and since it
tends to use up all its cpu time slices, it sees its priority reduced by the scheduler very soon. If the
local machine is not empty (i.e., if cpu;q,==0), the remote choice pays off. '

We here observed that two jobs with the same resource-relative characteristics (both cpu
bound) can perform very differently when Ulysses uses the same information policy. Once more,
this result highlights the importance of an accurate workload characterization and suggests that
any control law should keep into account both the behavior of the scheduler and the size of the
input file.

Finally, we must mention that in all of our experiments the memory field never determined
a wrong choice: there was always enough memory for a job to be executed, either locally or
remotely. This is probably due to the peculiarity of our work environment, where the jobs are
generally small, the text segment of the images is shared, and there is plenty of memory available.
The jobs we selected are also typical of our work environment. There might be other
environments where memory is a critical issue, e.g., where machines have relatively small main
memories. Since maintaining information costs very little, we think we should keep memory
usage anyway, to provide the scheme with more fiexibility and generality.

-10. CONCLUSION AND FUTURE WORK

The aim of our research was not to offer a full and comprehensive solution to the problem of
balancing the load, but just to shed light on some issues in order to clear the way for future work.

There are two flaws in the design we are perfectly aware of (plus probably many others we
are not):

) The information policy based on periodic broadcasts leads to large ‘network traffic and
higher processor load when many machines are connected to the network. We can get an
idea of the impact of such a mechanism by looking at an analogous one already
implemented in Unix, the rwho daemon, a distributed service that maintains information on
the status of the network by means of periodic broadcasts. The rwho daemon is slways
among the 5 heaviest processes running on every machine, even if it runs only once every 5
minutes!

® The local response time improvements we observed do not necessarily imply that the global
response will be optimal as well. If our own probe jobs got better response times, the happy
users of the unloaded target machines must have paid something. We did not consider the
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price of our intrusions.
There are also some crucial issues that we considered only marginally in our experiments:

) A general characterization of the workload is important. Even if we do not need a
description of the requirements at the quantitative level, we must divide the jobs into classes
and devise a separate strategy for each one of them.

° The influence of the size of the input file must be investigated with an experimental setup
somehow orthogonal to ours: while maintaining constant load conditions, the same command
should be fed with different-sized input files, and the response time monitored. The behavior
of the scheduler can change the response time in a critical way, depending on the type of the
command as well as on the size of the input file.

° As we already pointed out at the beginning of Chapter 9, the use of rsh, i.e., of the TCP/IP
protocol, for remote execution does not yield optimal performances. We think there is space
in this area for research on faster and more efficient mechanisms for remote execution.

Nevertheless, we feel we learned something from our experience. Both the binary metric and
the multivariable information policy have turned out to be good instruments for a correct location
policy: maintaining distributed information about the load is easy with not too many machines,
and, when the load index is properly chosen, we can base effective choices on it.

We had hoped that cpu utilization would be a good load index because it is easy to match
with a single job’s cpu requirements. It turned out that cpuy,, does not produce good estimates of
a job’s possible response time, because it tends to be zero too frequently. The number of processes
in the run queue gives a better indication of the load, and it too is fortunately very easy to match
with a job's requirements through a binary scheme based on load thresholds. These thresholds
have to be tuned manually, and their determination is an important factor of the success of the
scheme.

The ifo traffic is a good load index for a specific class of jobs: the ones that make a large
use of ifo; in this case, a binary, threshold-based selection is enough to determine choices that
frequently provide a better response. We do not need too much information about the job, but
only an indication of its requirements. '
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