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ABSTRACT

The advent of local-area networks has made possible the implementation of
distributed flle systems: file systems which physically encompass several
distinct machines but which provide a global file system logically spanning the
connected machines. Users who access files across this system are unaware that
their files may logically reside on a machine other from their own. Distributed file
systems vary widely in functionality and design, differing largely in their degree of
distributed control, provisions for data consistency, and transparency.

This report describes the design and implementation of a prototype
distributed file system at IBM San Jose Research Laboratory. The 925
Distributed File System (DFS925) is constructed for a network whose nodes are
high-performance engineering workstations, connected by a reliable local area
network. Emphasized are distributed control, the maintenance of workstation
independence, and data consistency. DFS925 will be used as a research and
development tool in the Computer Science Department at IBM San Jose.
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ABSTRACT

The advent of local-area networks has made possible the implementation of
distributed flle systems: file systems which physically encompass several
distinct machines but which provide a global file system logically spanning the
connected machines. Users who access files across this system are unaware that
their files may logically reside on a machine other from their own. Distributed file
systems vary widely in functionality and design, differing largely in their degree of
distributed control, provisions for data consistency, and transparency.

This report describes the design and implementation of a  prototype
distributed file system at IBM San Jose Research Laboratory. The 925
Distributed File System (DFS925) is constructed for a network whose nodes are
high-performance engineering workstations, connected by a reliable local area
network. Emphasized are distributed control, the maintenance of workstation
independence, and data consistency. DFS925 will be used as a research and
development tool in the Computer Science Department at IBM San Jose.

1. Distributed Systems

As the need for communication between systems grows, and the cost of such communication
lessens, distributed systems based upon a communications network have become a topic of
increasing interest.

The motivations behind the development of such systems are well-known, being both
economic and conceptual. The optimal use of storage and processing power across the network, as
opposed to within one network node, becomes feasible with the development of such a system.
Whereas each node maintains independence, the system is seen as a unified collection of resources
by the individual user. The difficult mix of independence and cooperation which must be addressed
gives the problem of design its interest: the challenge arises in taking advantage of node
autonomy while maximizing the size and availability of the pool of resources which the user sees.

The introduction of the inexpensive, yet powerful, personal workstation has led to
distributed systems which link these small, generally single-user systems together by networks.
When a local-area network is used as a link, its high bandwidth and reliability decrease the cost of
communication between network nodes; frequent contact between workstations and other,
physically remote, computers becomes feasible. The workstations can exploit the capabilities of

+ The design and implementation of DFS925 took place from May 1084 through January 1085: the work herein
described was accomplished by the author under the supervision of Dr. J.C. Wyllie, Office Systems Laboratory,
Computer Science Department, IBM San Jose Research. The views and conclusions contained in this document
are those of the author, not those of the IBM San Jose Research Laboratory. Publication of this report was
supported by the Computer Science Division, University of California, Berkeley.
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each other and more powerful systems using the inexpensive communication provided.

The combination of such small independent clients cooperating together to offer a cohesive,
powerful service through network communication characterizes an emerging breed of network-
based distributed systems. This report describes the design and implementation of a file service
based upon this system paradigm: a distributed file system encompassing a group of engineering
workstations connected by a token-ring local area network.

2. DFS925 Development Environment

The 925 Distributed File System has been developed at the IBM San Jose Research
Laboratory, in the Office Systems Laboratory. The multiprocessor MC68000-based 925
workstation, developed by research staffl in the Office Systems group, is a prototype high-
performance workstation. The 925 workstation offers bit-map addressability, allowing for high-
resolution graphics, and can contain up to five processor boards. 925 workstations contain a local
20-40MB disk, incorporate a 2MB RAM, and are connected by a 4Mbit [sec experimental token
ring local area network. Software packages developed for the 925 include WHIM, a window
manager, FS925, a local file system upon which DFS925 was built, CP925, a message-based
operating system; and CSS, the Communications SubSystem, through which both local
communications and communications over the local area network can take place. Compilation and
binding are done on an [BM mainframe, then downloaded onto the 925; the languages used are
PL8 and Pascal8. To date, about twelve 925 workstations are in active use.

3. Report Structure

Section 4's exposition of the definition and design alternatives available for a distributed file
system gives the necessary background for the subsequent discussion of DFS925. The system
model, degree of data consistency guaranteed, and the flexibility of the data model are the main
attributes of comparison between distributed file systems.

Section 5 summarizes the historical influences and motivations behind DFS925. DFS925,
intended both as a research and development tool, gives particular emphasis to the maintenance
of distributed control and the provision of considerable database functionality. The functionality
vs. performance tradeoff is important to the design.

The development tools and environment which led to the creation of DFS925 are presented
in Section 6; structural details of the design and implementation conclude that section. Location
transparency is a necessary component for a useful distributed system; DFS925’s implementation
extends the concept of transparent distribution to the system structure. Sections 7 and 8 describe
the DFS global directory structure and transactional support. Throughout the report,
performance considerations are commented upon; performance measurements and their
significance are included in Section 9. In closing, Sections 10 and 11 discuss the current status and
future plans for DFS925.

4. Definition: A Distributed File System

The definition of a distributed file system is not a subject of general agreement: features and
expectations vary greatly from implementation to implementation. Birrell and Needham [BIRR80]
address the task of definition in their paper discussing the ‘“Universal File Server””. They describe
the limits between which a file server may vary, from a virtual disk to a complete filing system,
the latter providing group structuring, file access protection, complete crash recovery techniques,
concurrency control for regulating concurrent access to files, and a naming mechanism. These
parameters can be expanded into a list of design issues for a distributed file system: ease of
sharing, availability, data consistency across the network, degree of distribution, workstation
independence, and performance should all be considered.

Two design issues not emphasized by Birrell and Needham refine the resource pool concept.
First, transparency of file location is a mecessary characteristic of a genuinely useful distributed
file system. The user and/or the application layers which are built upon the file system are not



-3-

required to know any information about the physical location of a file in order to access it. They
may indeed be unable to gather such information, and are unable to influence file placement
directly. The distributed file system is assumed to be responsible for file placement and the
maintenance of a global view of the system, if any.

Second, uniform distribution of the file system implies that individual views of the file
system’s directory structure are globally consistent. Each node, or machine which shares the file
system over the metwork, perceives the same directory structure as another. This is not the
assumption commonly made for network file systems, where one node may see a distinctly
different view of the directory structure than another [WELC85, KARES5, HUNT85]. Portions of
a network file system may only be seen by subsets of nodes. By contrast, uniform global
perception enforces equal treatment of all nodes; availability of one node is equivalent to
availability of another.

For the purposes of system comparison, Birrell and Needham's above criteria and the
subject of transparency can be condensed into three areas.

(1) The most structurally significant is the choice of the system design model, of which two
exist: the server/client model and the integrated model. Birrell and Needham take only the
server /client model as the template for their definition. This choice most directly affects the
balance of independence and cooperation in the resultant system.

(2) The extent to which a file system incorporates traditional database functionality,
guaranteeing data consistency and atomicity, is another criterion for comparison.
Distributed databases are considerably more complex than their local cousins: guaranteeing
complete data consistency may be prohibitive in the face of network or node failure. Many
distributed file systems provide no database building blocks in favor of a simplified system,;
this may cause the correct implementation of a distributed database system using file system
primitives to be impossible.

(3) Finally, the generality of file identification and organization affects the transparency the
distributed system affords. A uniformly distributed system grants the same view of the file
system to each member of the system. The least general distributed system should provide
file location transparency; the most general will allow heterogenous nodes to share the
distributed file system. The latter is a much-desired but extremely difficult goal.

4.1. Server Model vs. Integrated Model

The client/server model relies upon one or more members of the distributed system having a
special role, such as file storage, name lookup, authentication, printing, or computation. In the
case of a file service, separation of reliable storage from the client workstations on the network
offers some strong incentives. Unlike processors, whose costs per instruction increase with power,
large disk drives are much less expensive per data unit stored than their smaller counterparts.
Economy of scale encourages the cooperative use of large disk drives by several workstations.
Maintenance of the file servers is centralized, which is advantageous when changes are made to
the file system and for backup. When one or few servers exist, data consistency considerations are
less complex. A related advantage is that workstations themselves may be made less complex;
local workload may decrease as there is little or no processing overhead on the workstation for file
system and disk handling. Availability is proportional to the reliability of the file server: as in a
time-sharing system, users may use any workstation and access their files if the file server is
active.

However, the client/server model has some drawbacks. The reliability and availability of an
operation which depends upon multiple servers is proportional to the product of the reliabilities of
all network links and machines involved. If the client/server roles are distinct, all file system calls
from the client workstation must inevitably involve at least one message across the network.
While the cost of sending a message across a network is decreasing in importance as local area
networks become faster and more efficient, such a call is yet substantially slower and more costly
than a local procedure call. Distinct file server(s) inevitably compose a performance bottleneck for
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each of the local workstations. The advantage of “‘owning” a local processor on a workstation
disappears when productivity is limited by the bottleneck on an overloaded shared file server.
According to Lazowska’s studies on the performance of diskless workstations [LAZO84], under
“average’’ request loads, a file server's CPU becomes a bottleneck when it serves 20 workstation
clients regardless of packet size (performance is degraded by at least a factor of two). Welch
[WELCS85] has discovered that the BNCF file server becomes a bottleneck when it serves 5
workstation clients with heavy demands. Local client caching uzpon a small local disk yields a
dramatic improvement: however, each client must then have some kind of local file system in
order to allow such caching. The advantage derived from non-duplication of file system code upon
the clients begins to be eroded. Finally, the useful independent existence of a client workstation is
at an end, since the client cannot obtain any file information except through communication with
the server machine. The advantages of node independence are decreased through the cooperative
demarnds of the distributed system.

The integrated model (exemplified by LOCUS [WALKS83] and the 925 Distributed File
System) requires all members of the distributed system to contain the same functionality. The file
service, name service, and other service software is duplicated in each of the nodes in the system;
each workstation is an independent unit, able to access those files which are resident locally
without cooperation with other workstations. Steps must be taken to prevent fragmentation of
directory information and dangling references. If the network is rendered inoperable, at least the
portion of the file system stored locally should be accessible. Similarly, the loss of use of one node
on the network should only preclude the access to that portion of the file system stored on that
node. This is a strong advantage over the client/server model, where the loss of the file server
may spell the loss of use of the entire file system. Judicious use of file placement strategies can
minimize the number of messages necessary to access a file, decreasing use of local caches and
avoiding expensive cache update algorithms insofar as possible. Such strategies may use many
messages themselves, however. Distributed control is implicit, which complicates the
implementation of crash recovery and concurrency control. The integrated system structure
therefore encourages increased availability; the problems of distributed coordination are, however,
much harder to avoid than in the server/client model.

4.2. Atomlcity/Data Consistency

Providing some database functionality is complicated greatly with the distribution of a file
system. If data consistency is guaranteed, the user must be confident that his actions are reflected
in the data, regardless of the degree of sharing allowed, the state of the network, and the reality
of imperfect data transmission. These requirements lie behind the ideas of atomic transactions,
automatic recovery, and concurrency control, which are addressed in the property of atomicity.
Atomic transactions guarantee that actions seen as completed by the user are completed by the
file system, regardless of the states of all the (potentially remote) participants in the action.
Automatic recovery relates to the support of system crash recovery: the unavailability of any
workstations or the network must not cause the data at any location to be in an inconsistent
state. Through concurrency control, users are prevented from seeing inconsistent data and losing
updates to their data due to update conflicts between users.

There is argument as to how many of these capabilities should be provided in the underlying
file system. Applications vary in the degree of consistency required; the consistency demanded by
a database system produces substantial overhead. Allowing choice in the degree of consistency
provided by the file system is one option: this is the course taken by DFS925 and many of its
predecessors. With the introduction of choice, simplicity suffers, and care must be taken that the
perception of the integrity of the distributed file system is uniform over the user environment.
Explicit involvement by a file system administrator may be necessary to enforce data integrity if
too many data consistency shortcuts are allowed. Providing too little database support is another
danger. Relegating the implementation of all data consistency to an application layer may result
in the inability to construct a database system atop the file system with guaranteed consistency.
The INGRES database system has encountered such problems with the underlying UNIX file
system [STONSO, STONS84|. Database designers may prefer to circumvent the file system

UNIX is a trademark of AT & T Bell Laboratories



altogether, accessing the raw disk directly.

4.3. Transparency

File identification, naming, format, and organization are all facets of file system design
which impact transparency of use and the extensibility of the system. The decisions made in the
area are strongly influenced by the size and composition of the distributed system planned. A
distributed system incorporating nodes of many different machine types, operating systems, file
formats, and naming conventions would be extraordinarily useful for both research systems and
the outside world. Few computer environments encompass one single type of machine; permitting
file sharing across machine boundaries would allow for greatly increased efficiency of resource use.
In tackling such a task, however, the developer takes on all the accumulated problems of
compatibility of the last three decades. It is unfortunate that no uniformly accepted standards of
data representation or remote procedure call protocol exist: the efforts to produce such standards
are continual.

Given the number of translation interfaces possible, a completely heterogeneous distributed
file system within the constraints of transparency is, as yet, unrealized. The gerver/client design
paradigm carries much more potential for its incarnation, however: N interfaces must only be
implemented between the client machines data representation and the file server representation
(for N different types of machines) , rather than the cumulative N*(N-1) mutual interfaces which
would be necessary using the integrated system design. Efforts have been made in both research
and industrial arenas to create a standard file server interface for access by several of the major
file systems [LYON84, DECS84]. Introduction of file server call translation and standard data
representation protocols necessarily degrades performance substantially: optimization of such
translation is clearly an area of current research interest.

4.4. Existing Systems

The intricacies of implementing distributed control, guaranteed consistency over a network,
and location transparency have limited the number of distributed file systems which exist; the
majority are within the domain of research rather than development. Most systems stop short of
true transparency, only a few have attempted distributed control or the inclusion of distributed
database functionality. Allowing heterogeneity is largely a dream of the future. WFS [SWIN79],
CFS [MITCS81], LOCUS [WALKS3], XDFS [ISRA78|, The V System |[CHERS83| and the SUN
distributed file system [LYON84| are among some innovative systems which have formed the basis
for past and present work in distributed file systems. Looking at these systems briefly aids in
motivating the development of DFS925.

WFS was one of the first file systems to attempt distributed access. Following the
client/server paradigm, it was developed at Xerox PARC, connecting a network of Alto
workstations on the Xerox Ethernet. WFS’s implementation was little more than a ‘“virtual disk™;
concurrency control and transaction support were left for application layers. Locking commands
were provided by WFS but not enforced. Atomicity was provided only at the level of single page
requests: each operation accessed at most one page. The argument in favor of WFS was that it
was extremely simple, and hence flexible; each client could implement transaction, directory, and
access protection services as needed. WFS file operations were optimized by a set of specialized
access protocols. The small size of the system made it feasible for its workstation environment.
Building these services into the client was certainly possible. However, while WF'S allowed for the
non-local storage and access of files by its workstation clients, it ignored the other main purpose
of a file server: to facilitate the sharing of data among clients.

CFS, the Cambridge file system, accompanied WFS as one of the first distributed efforts.
CFS provided significantly more functionality, allowing file-level locking and supporting single-file
atomic update. CFS allowed variable levels of data consistency to be specified; files could be
classified as normal or special, according to the level of guarantee desired. Many files do not
contain critical data; the choice of file classes is a reasonable performance optimization.
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LOCUS, developed at UCLA, is a distributed operating system based upon a distributed file
system. Clients are VAX's; the network used is the Ethernet. The LOCUS design has concentrated
on the issues of transparency, reliability, and availability. It follows the integrated system model;
each node is both a server and a client, and provides guaranteed data consistency across the
system. To date, LOCUS is the only distributed file system to have developed propagation update
algorithms for replicated files, at substantial performance cost. Multiple-server, multiple-file
transactions are allowed. Specialized file access protocols optimize file access; the UNIX directory
service is built into the file server. Of all the file systems here noted, LOCUS provides the most
complete transactional support, allowing nested transactions, which has increased the complexity
of the locking algorithm considerably. The file system’s close integration with the operating
system has contributed largely to its acceptable performance despite the bulk and complexity of
the design. LOCUS has been used successfully at UCLA for several years.

XDFS, or the Xerox Distributed File System, is a multiple-server system which has had
extensive development at Xerox PARC. XDFS supports atomic multiple-file update on multiple
servers. Several novel lock optimizations were introduced in order to make it efficient for clients
to maintain local caches of shared data. XDFS was written to facilitate database access, allowing
byte-level access and locks.

The V System, an experimental server/client system at Stanford University, is one of several
UNIX-based distributed file systems currently in development (including two presently in progress
at Berkeley [WELC85, KARESS, HUNTSS5] ). Consisting of a group of SUN workstations linked
by the Ethernet, the V System concentrates on efficient file transfer, leaving the question of
providing data consistency and transaction support to overlying application layers. (This is typical
of UNIX-based distributed file systems. The original design of the operating system makes it
difficult to incorporate locking and transactional capabilities in the file system without making
changes to the operating system itself.) The designers of the V System claim to have used
interprocess communication calls exclusively rather than introducing special-purpose file service
calls into the operating system. The V System was designed specifically for use with diskless
workstations: the server(s) are the only nodes in the system which contain disks.

General heterogeneity was not a proposed goal for DFS925; the scope of the problem was
too large for consideration. It is valuable to mention that a few systems exist which aspire to
heterogeneity. DEC Research is working on a system which proposes to handle VMS, ULTRIX,
and MS-DOS file system requests to a file system server [DEC84] ; SUN Microsystems has
announced a similar product which substitutes UNIX for ULTRIX [LYONB84]. Berkeley’s Remote
File System [KARE85, HUNTS5] also intends to include heterogeneous machines.

5. DFS925 Motivations/Influences

DFS925 is a prototype distributed file system running on a group of workstations connected
by a local area network. Each workstation node has an identical view of the file system,
regardless of the location of the files in the system: this property may be termed uniform global
distribution. Transactions and file locking provide data consistency and concurrency control; crash
recovery allows the correct recovery of data upon node failure.

The development of the 925 Distributed File System responds to a perceived twofold need of
the Office Systems group at IBM Research: a continuance of the study of distributed applications,
and the provision of a tool to facilitate further software development upon the 925 system. It was
hoped DFS would contain seeds for challenging research in the future, yet use the resident file
system insofar as possible, and be of a size such that a useful system could be produced by the
author over a constrained period of time.

Characteristics of the distributed file systems cited above were used as partial guidelines for
design decisions. WF'S is now mainly significant historically as the first trial of file distribution; it
provided far too little functionality for useful sharing among clients; the one-page atomicity
constraint was a very limited guarantee of consistency. The simplicity of the system was laudable:
allowing some individual file system tailoring in each node seemed reasonable and would simplify
implementation considerably. The policy of placing the local/remote reference interface, or cut,
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at the virtual disk level allows the network to appear interchangeable with a disk; DFS925 follows
suit by making one local/remote cut at the volume (logical device) level.

By supporting file classes and breakable locks, CFS and XDFS both allowed evasions of
expensive complete data consistency, yet provided the latter when perceived necessary. Permitting
an application to trade off performance for consistency seemed a valuable addition to a
transaction-based distributed file system: this became an emphasized goal of DFS925.

LOCUS’ rich transactional functionality and inclusion of data replication was attractive, but
a similar system would have been far too complex for the manpower and time available.
Providing comparable transactional functionality in DFS925 was desirable, but the same efficient
integration with the operating system was not possible. Shortcuts and optimizations within
transactional constraints were necessary for adequate performance. Replication of files on a more
simplified scale for DFS925 would greatly increase availability; the potential for such a future
extension in the implementation tradition of LOCUS was kept in view. DFS925 will eventually
mix replication and file migration to maximize availability and minimize remote file access.
DFS925 adopts the use of a specialized file access protocol as do both WFS and LOCUS.

The V System represents a much different approach than DFS925, as it includes no data
consistency guarantees. Generality of use of the IPC mechanism was appealing, since the
extension of the IPC mechanism in CP925 to allow distributed interprocess communication was
planned; the possibility of including extended IPC in the filesystem was left open. The V System’s
diskless workstations encouraged deliberation on the composition of the DFS925 network: while
the 925 workstations incorporated a disk, adding diskless workstations to the system was possible.
It was hoped to be able to incorporate a mix of disk-bearing and diskless workstations without
any change in DFS925.

The character of the software development environment in the Office Systems Group
encouraged a distributed file system emphasizing workstation independence and availability. Each
workstation is dedicated to one person and one office; sharing of machines is rare. Although
individual work is important, integration of distributed applications is an important step towards
the creation of a coherent office systems environment. The support of a distributed file system
facilitates integration through transparent interaction between applications on distinct
workstation nodes.

An important motivation for DFS925 is the potential for allowing the mainframe IBM 3081
machine used for development to access files on the 925 network system. DFS$925, though not a
heterogeneous file system, can provide some of the advantages of such a file system by allowing
host-workstation sharing. Transparent access of the DFS925 file system will be possible from the
IBM 3081 currently used for compilation and binding. The latter will run 925 code (compiled for
use on the 3081); it may then operate on files stored on workstation nodes by simulating a
workstation with no local disk. The DFS925 file system would still be homogeneous, since the code
running on the 3081 is the same as that on the 925 workstations; the 3081 simulates a 925 node
with extra processing power. Such an application of DFS925 would alleviate the time-consuming
task of downloading from the larger machine into the workstations.

The independent work habits of the workstation users caused a bias towards workstation
autonomy in the design of DFS925. 925 users disappear frequently (locking their offices); their
absence could not impact the productivity of the other participants in the distributed file system.
The prototype nature of the 925 workstations encouraged the adoption of reliability as a feature.

The integrated system design model was chosen for DFS925. It was felt that this model best
preserved the independence of the individual workstation nodes by still potentially allowing work
in the presence of partial system failure. The integrated model seemed the more flexible of the
two; the DFS925 may mimic a client/server system by having a mix of disk-bearing and diskless
workstations, incorporating some of the advantages of both models. (Since the file system code is
still resident upon all nodes, the system is not a true client/server structure.) File system calls
would be automatically routed to the workstations controlling the appropriate disk. The economic
advantages of large disk drives can be exploited in this manner. Small local disk drives can then



-8-

be viewed as automatic “caches” for files being frequently modified, files being moved to large
disk drives, either manually or automatically, as they are less likely to be used.

FS925, the previous 925 file system, ensured local data consistency using a transaction
model. Distributing the guarantee of atomicity, crash recovery, and extending concurrency control
were consistent with the pursuit of reliability. Performance escape routes from consistency
constraints, such as those used in CFS and XDFS, are provided by DFS925 for those applications
which do not demand complete consistency. While giving support for most of the requirements of
the “Universal File Server”, DFS925, in the interest of simplicity, leaves the implementation of file
access protection to applications.

Network transparency was a primary characteristic in the DFS925 design. It was felt that
external file names should be independent of their locations; internal file identifications should be
designed so that files may be moved from one location to another without having to find and
update all references to them.

Integration with current and future 925 packages was of interest to the Office Systems
group. No application with substantial continuous use of the CSS/LAN capabilities was previously
in operation. Integration with planned distributed services such as the 925 name server,
distributed CP925, and global file placement algorithms are possibilities for the future.

Finally, the desire for good performance encouraged implementation decisions such as the
addition of multiple file system server tasks, the provision for caching, and optimization of
network use through the use of a specialized file access protocol.

5.1. Overview

In the design of DFS925, the decision was made to initially emphasize the development of a
uniformly distributed system, where data consistency is guaranteed, and workstation independence
maintained to a high degree. A global directory system, linking across the network, distributed
transactional capabilities, node crash recovery, and eventual caching are the means by which
these goals are to be realized.

A user of the 925 Distributed File System should be able to access and link to all files
resident on volumes belonging to remote workstations, unaware of their location, using a global
pathname as reference. A hierarchical global directory structure allows uniform naming of all files
in the file system. Preserving location transparency, the global directory is only a logical means
of organization; physical file location is completely independent. Distributed transactions
guarantee atomicity to the user; locking and concurrency control are provided transparently by
the file system. Choice between levels of consistency, file types, and transactional guarantees
allows the user to favor performance over complete functionality.

As noted, rather than having a workstation with special properties designated as a file
server, it was decided to provide the local file system on each workstation with equal
functionality, in the tradition of LOCUS. A uniform interface to each workstation promotes the
development of a system with genuinely distributed control. File servers, while avoiding many of
the consistency problems associated with a distributed file system, fall prey to the familiar
availability problems of centralized time-sharing systems. The integrated system model has more
complex control problems but was felt to better maintain the independence of the individual
nodes. The integrated system is easily extensible: DFS925 coordinates added “file servers”
(workstations with disks) automatically. Location transparency is extended to the implementation
of the file system task design and control flow.

Transactions are distributed: they may include files in several locations. File consistency is
eventually guaranteed through a distributed two-phase commit protocol. Crash recovery
procedures guarantee data consistency in the case of a node failure. The user may choose to use
files for which no consistency guarantees are made or choose ‘‘probable” data consistency in favor
of increased performance.

Performance optimizations, implemented and planned, will shield the negative effects of
“distributedness’’ from the DFS925 user. The file system is composed of many concurrent file
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server tasks, each dedicated to a local or remote file system request as the requests appear. This
both increases the efficiency of local file system processing and avoids blocking synchronous waits
on the network. The performance of remote reads and writes across the network is optimized by a
cooperative protocol between initiator and recipient. A relatively small penalty is paid for block
reads and writes; performance measurements show that the CSS setup overhead through upon
each file system call causes a significant performance loss. Planned distribution of the interprocess
communication facilities of CP925 should decrease both buffer copying across interfaces and
message setup overhead.

Extension of the 925 distributed file system to include optimal volume choice policies, to
include directory locking and caching, and to support file replication would be the next steps.
Distributed file migration algorithms to allow efficient use of storage resources would increase the
performance of DFS925. A simple locating service aids in file identification/address translation;
eventual integration with a planned distributed location server will allow distributed update of
address tables.

8. DFS925 Implementation

The remainder of this report discusses implementation specifics of the 925 Distributed file
system. Indications of design alternatives considered are given where appropriate; detailed sections
are code-specific.

The software environment of the 925 [[BM84] had an important influence on the structure
and functionality of DFS925. The service reguest/offer interface provided by CP925 and the
features of FS925 contributed largely to DFS925 task interaction, control flow, and file system
structure. CSS provides the confirmed request/response protocol which is the basis for DFS925'
remote procedure call, as well as the unconfirmed send which underlies the abort and checkpoint
operations. Determining the point at which the distinction between remote and local file system
requests is made is a significant design decision: DFS925 chooses division at both the system call
interface and the logical device level. The file system preserves file identification transparency by
assigning fileids based upon locally generated sequence numbers and logical volume ids. This
technique guarantees unique identification while allowing file migration between systems. Linking
is handled in the same manner as normal file references.

Implementing a failsafe atomicity guarantee is complex; a distributed commit protocol is
described which is also used by crash recovery routines. Distributed abort and checkpoint are
optimized to avoid waiting for a response from remote partners. Complete data consistency can
be circumvented in various ways for increased performance. Transaction checkpoint in lieu of
commit, locks allowing multiple writers and the use of nonguaranteed temporary file types are
among these methods.

Note: Throughout the rest of this paper, reference will be made to both “local file systems”
and “remote file systems’”. These phrases might be misleading, and should be clarified. The
DFS925 is one logically cohesive file system, whose files are distributed over a network at several
locations. However, when referring to file system calls which originate at a different physical
location than that node which holds the file to which the call refers, it is convenient to refer to
those calls being sent from a ‘“local file system’ to a ‘‘remote file system”.

8.1. The 925 Software Environment

Three software packages exist upon which DFS925 directly depends. FS925 is the local file
system upon which DFS925 was modeled. CSS is the subsystem which handles communication
between nodes across the local area network. CP925 is the operating system providing the
mechanism through which the DFS925 file service is offered.

FS925 provided an indispensable framework for DFS925; maximal use of F5925 software
was encouraged for expediency. The basic features of the two systems are the same; DFS925
development was influenced towards enhancement of FS925 through distribution rather than
change of general characteristics. FS925 supports a tree-structured hierarchical file system and
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resembles UNIX in style. Files are specified by pathnames, starting either at the root of the file
system or at the current working directory. Files are divided into two classes: ordinary and
directory files. Directory files contain names and pointers to other directories and/or ordinary files.
Ordinary files contain user data, and must occur at the leaves of the file system tree. F5925
(unlike DFS925) does not support links, hence the directory is a tree rather than a directed graph.
I/O is stream-oriented: files supported by FS925 and DFS925 have no internal structure unless one
is imposed by an application; they are represented by a linear stream of bytes. Every file has a
descriptor associated with it called a file root; this root is stored on disk and contains the file
length, date last modified, and the physical addresses of the file's disk blocks. The file root is
equivalent to the UNIX inode.

FS925, and its successor DFS925, is a transaction-based file system: all file access operations
of FS925 must run as part of a transaction. Changes to permanent files made by a transaction
may be rolled back to a checkpoint by aborting the transaction, or may be checkpointed or
committed once a point is reached after which rollback is not necessary. Shadow pages and
commit logs form the basis for this guarantee of consistency.

CSS, the communications subsystem, is a message-based internode communication
subsystem, offering a mailbox/capability interface as a means to pass messages between local or
remote processes. The subsystem interface is simple, providing the three primitives of
request /receive/send for sending and receiving messages, and the other necessary calls to create
and register mailboxes and send and receive capabilities for those mailboxes with CSS. DFS925
uses the coupled request/receive capability of CSS to implement the synchronous remote
procedure call requesting operations on remote files. The danger of hanging remote calls upon
network failure is allayed by CSS timeouts; if a call is not successfully received by the network,
CSS returns an error code to the file system indicating that the network is not available for use.
Asynchronous (decoupled) send calls are used for transaction calls with nonguaranteed delivery
such as distributed checkpoint and abort, and in the protocol used for remote buffer-handling
calls. The file system server tasks make use of asynchronous receive in the dual wait on local and
remote file system requests.

Both FS925 and CSS, as well as WHIM, the window manager, are offered as services
through the auspices of CP925. The operating system is kept simple by this means of system
augmentation: services are easily added to the system, CP925 acting only as a central coordinator
of their use. A service can be defined as a uniquely identified entity denoting a pair of queues, for
requests and offers. A more precise understanding of the partners request and offer mechanism is
essential to the exposition of the basic task structure of DFS925.

A task may make service requests by calling CP925 with a well-known identification for the
service required. Requests are queued to await available offers of service. A task may
correspondingly provide a service to the system by creating the service with some well-known
identification, registering its offer for that service with CP925, then indicating its willingness to
wait for a request. The task suspends itself if no waiting request exists. When its offer is matched
with an incoming request {or that service, the offering task is dispatched.

Once the offering task is done servicing the request, it completes the request, which allows
the requesting task to proceed. Any number of tasks can request a service, and any number can
offer it: requests and offers are matched first-come first-serve by CP925. A task is allowed to wait
for any of a group of requests and offers to be respectively completed or requested.

CP925 therefore fulfills several roles. First, it provides a registration database for new
services created and offered by tasks. Secondly, upon receiving a request or an offer for a
particular service from a given task , it records the query in the corresponding queue for the
service, then tries to match the query with a matching, unoccupied partner in the opposite queue.
Finally, once a match is made, the corresponding pair of tasks are marked accordingly and the
service provided. Once a service request has been completed, the queues are updated and the
waiting task awoken. Figure 1 illustrates the registration and matching mechanisms of CP925.
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The service request/offer model is used by CP925 as the basis for the construction and
integration of applications into the 925 system. Parallels can be drawn between this model and a
common queueing system. User programs may be the customers in that model: requesting a
service from the server, or application program offering that service. Servers may be customers of
other servers ; hence the need for two queues in the model. E.g., CSS, which offers communication
services, must request the services of the WHIM window handler when placing a debugging
window upon the 925 screen.

6.2. DFS925 Structure

DFS925 attempts to extend the transparency of the user's view into the system structure.
This effort was made partly for historical reasons. DFS925 was built on top of the local file
system, FS925. Isolating the old file system code from references to the network allowed maximal
use and minimal change of the previously-written code. Network transparency also decreases the
number and complexity of interfaces internal to the file system: encapsulation encouraged simple
call control flow and task interaction.

DFS925 is composed of three logical levels. The server task level intercepts system calls
from the local file system or the network. Calls are then dispatched to the processing level, which
executes the internal operations necessary to complete the call. Processing the system call may
involve reading or writing physical data: the device level is accessed in these cases. The device
used may be either the network or the local disk. Remote file system calls may be initiated from
either the processing or device layers.

Transparency to the network is present in two ways: the file system is unaware of the origin
of its requests; interaction with the network can appear identical to interaction with the local
disk. These are applicable at different levels in the processing of a local and a remote call. DF5925
makes use of CP925's service request /offer mechanism at the server task level to receive remote
requests using the system call interface; the processing of remote procedure calls follows the same
call control flow as local calls. Buffer-handling calls add an extra cut at the device level to
improve performance while preserving the simplicity of the remote procedure call/return interface.

8.2.1. Queueing Structure

DFS925 uses a two-queue model allowing synchronous request and offer of a service in order
to handle both local file system requests and remote file system requests.

A DFS925 server task services local file system calls by creating and offering the DFS service
through the registration capability of CP925, then performing cyclical waits for requests. As
requests are initiated through file system calls, CP925 matches them with the ready offer of DFS
service; completion of the request results in the renewal of offer readiness by the DFS925 service
task. The server task receives remote file system calls by being a client to CSS at the same time
as it offers the DFS service. The request for messages from CSS and the readiness to offer DF'S
service are combined into a synchronous wait. Whichever event is satisfied first is completed by
the DFS925 server task. Completion of the request for file system service or completion of CSS
message processing results in the renewal of both the DFS service offer and the request to the CSS
service.

There are hence two queues into the DFS queueing system: the queue of waiting requests
from file system calls, and the queue of waiting messages from the network. This may be
approximated by a M/M/2 queueing structure. Figure 2 gives an idea of the queueing structure
with the addition of Ernestina tasks, discussed in the following section.

8.2.2. Ernestina Server Tasks

Calls upon the file system are synchronous, which creates a performance difficulty for a
distributed system. A file system call may now involve waiting for the return of information from
a remote file system over the network. Preempting additional file system activity while the single
server task waits for a remote message is clearly unacceptable. The file system could be gainfully
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occupied in processing another local file system call during the wait. Reassigning the server task to
handle another request would force the file system to duplicate the task scheduler function of the
operating system.

This inefficiency was avoided by the use of a multiple server model for DFS925. Rather than
creating only one DFS925 server task, a fixed number N of server tasks (dubbed Ernestinas*) are
created at the outset of file system initialization on each workstation. Each Ernestina waits
simultaneously upon both a request for messages from CSS and its offer of the DFS service.
Whichever of those is first satisfied, the Ernestina task completes the call requested, then returns
the information to its origin (either a local user or a remote requestor). Each workstation’s local
file system thus has the potential of handling N local and remote requests at the same time.
Ernestinas share a common heap, but have individual stack segments.

Since each Ernestina must have the ability to access global volume descriptors, free space
maps, and other global data structures, the Ernestinas are synchronized through the manipulation
of a global semaphore. An Ernestina must capture the semaphore before being able to run, and
releases it before performing I/O or waiting for a request from the network. Performance of local
as well as remote file system calls should be enhanced as well; disk processing in the background
frees a server task to process another request.

Several file system calls may be thus performed synchronously on one file system through
the the Ernestina server tasks, data conflicts being prevented by global semaphores and file
locking. A server task is dedicated to a call from the time that the request is matched to an offer
to the time of its completion. No file server tasks are created once a system has been initialized:
there is a2 maximum configurable limit upon the concurrency of the file system. This prevents task
creation overhead during file system call processing.

8.2.3. Call Control Flow

Remote and local procedure calls requiring no user buffer handling are differentiated at the
server task level only. Control flow and processing of a call through the underlying layers of the
file system are unchanged by the origin of the call.

A local file system call passes its information to the file server task through the auspices of
CP925. The information included in the call is first converted into a file system call parameter
block by a stub routine (i.e. fsopen). The stub routine requests the DFS service from CP925,
including the parameter block as part of the request. When one of the Ernestina server tasks is
free, CP925 matches the outstanding request from the user with the DFS service offer from that
Ernestina. The parameter block is passed to the Ernestina task specified. The server task passes
the parameter block to a call processing routine to process the request, returning the altered
parameter block to CP925 when the request has completed. CP925 passes the parameter block
back to the user, then updates the DFS request and offer readiness queues and allows the server
task to reinitiate its service offer and metwork request. The local user routine has waited
synchronously for the call to be completed. Figure 3 illustrates the possible path of a local file
system call through the levels of DFS925 . )

In the case of the request arriving via CSS, the message received is a parameter block
identical in format to the parameter passed through CP925 in the local procedure call. The
parameter block is passed to the call processing routine as in the local case. The Ernestina task
assigned to the call has the responsibility for sending the altered parameter block back to the
point of the call's origin through CSS. The system call interface at the server task level is
preserved in both local and remote cases by the consistent use of the system call parameter block.
Figure 4 shows the reception of a remote request by a local file system; such a request may access
only the local disk at the device level.

* The name Emestina was derived from comic Lily Tomlin’s portrayal of s switchboard operator cailed
“Ernestina”. A telephone operator’s function is to coordinate and dispatch calls: receive both local and remote
telephone requests, connect them to the correct line, and disconnect them when the call has been terminated.
The functions are similar to that of the DFS025 server tasks.
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Returning remote procedure calls can be distinguished from new initiations by their
destinations. Since many Ernestina tasks may wait simultaneously on remote requests, remote file
system calls must wait for their returning parameter at a unique CSS address distinct from the
well-known address, else the returning parameter is directed to a free Ernestina task. All remote
procedure calls contain a return address for the source: the initiator of the call generates a unique
CSS address (a locally unique mailbox, and CSS net and host identifications) and sends it with the
file system parameter block over the network to the destination file system. A send capability for
that address is generated by the remote file system when the parameter block returned to the call
source. The generation, registration, and deletion of CSS mailboxes and capabilities takes place
with each remote system call: it is a cause of substantial inefficiency.

In summary, a DFS925 server task (Ernestina) is required to wait upon two events: a request
by the local file system and an offer from the communications subsystem. Once the system call
parameter block has been received, either through CP925 or CSS, request processing proceeds by
the same sequence of calls regardless of call origin. Multiple server tasks allow for simultaneous
processing of calls of both local and remote origin (and destination); synchronization of server
tasks prevents degradation of global information.

6.2.4. Sending & Optimizing Remote Requests

As described, the reception of both local and remote requests is done through the system call
interface at the server task level. The distinction between a local and remote request is
acknowledged by the Ernestina server task only; the call is processed and the results placed in the
parameter block alike, regardless of the call’s source.

For constructing and sending remote file system requests, a one-to-one local/remote system
call translation can be imagined. Each file system call which accessed a remote file could be
translated into an equivalent remote call by the local call processing routine; results would be
passed back to the user with the total combined overhead of one local and one remote file system
call.

This one-to-one system-level cut model is complicated by unresolved factors: the need for
local processing and maintenance of state on the source file system, and the transmission of data
buffers to and from user-space buffers. While the system cut model described above fits simple file
system calls, which translate one local system call into one remote file system call, two other
types of calls are common: compound calls and buffer-handling calls. Table 1 contains the
DFS925 file system calls and their classifications.

Compound calls are those which demand changes in local state information; they may
translate into several internal, and hence potentially remote file system calls. Most file system
calls are compound.

The cost of maintaining transparency at the system call interface at both the remote call
initiator and at the call recipient is the passage of any call through more system layers in both file
system participants; in compound calls it is magnified by the number of remote calls made. A
simple call accessing a remote file passes through the local CP925 request queue, the local server
task and processing levels, the network, the remote CSS request queue, the remote server task and
processing levels, and possibly the disk driver at the device level before returning over the
network to the waiting requestor. Direct communication between layers using a specialized
transfer protocol is considerably more efficient. Such an optimization was considered worthwhile in
the case of buffer-handling calls.

Two buffer-handling calls exist: fsput and fsget; they include local buffer addresses from
which or to which data is passed. The requestor wishes either to move data from a user buffer into
the remote file, or to receive data in the user buffer from the remote file. A buffer-handling call
may also be transformed into several block moves from disk or across the network. Numerous
obstacles arise to such a call being divided into several system calls: the most obvious being the
performance burden of treating these calls as separate, acknowledged, instances.
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Table 1
DFS File System Call Type
febegin_transaction Compound
Sfscheckpoint_transaction | Compound
Jscommit_transaection Compound
Sfeabort_transaction Compound
Jecheckpoint_ freemap Simple
Jscreate_ file Compound
Jacreate_temp_ file Compound
fetruncate Simple
Sfelink Compound
fslock Compound
Jsset_directory Compound
fscreate_directory Compound
fsremove_directory Compound
Sfadelete Compound
feopen Compound
Sfaget Buffer-handling
Jeput Buffer-handling
fsdate Compound

To avoid breaking up all buffer-handling calls into several remote call instances, data
movement across the network mimics the transfer of data from a local disk. Unlike remote
procedure calls, buffers sent over the network are not separately acknowledged. Remote data
transfer time is correspondingly improved. The remote/local cut is placed at the device level.

The communicating remote and local tasks create their own CSS addresses and pass those
addresses over the network to their partners. This establishes a private conduit through which the
data can be sent without the overhead of a system call construction or an acknowledgment. Once
that conduit has been established, whenever a call requiring actual disk access is necessary, the file
system need only send or request a buffer directly from its partner through the network. No
remote disk addresses are maintained in active transaction or file information structures. The
logical volume number in the fileid is the original piece of information which indicates the location
of the remote file to the requestor; the remote file system call sent acts as a conduit “set-up” call.
The CSS addresses created by the partners are the subsequent private addresses for direct data
transfer.

Aside from the performance advantage of establishing a direct network link for the entire
data transfer, burying the cut internally has logical appeal. The network fills the role of an
intermediary device through which the disk is accessed. Use of remote files is indistinguishable
from that of local files until 2 very low level. The uncomplicated RPC protocol at the server task
level remains unchanged.

Buffer-handling calls thus set up an internal protocol mimicking device access between
remote and local tasks through the use of private mailboxes. The number of messages over the
network is reduced to the request/acknowledgement of the initial remote file system call, plus the
number of block requests made. Copy overhead is high. Buffers must be copied from system
buffers to CSS buffers for transmission, them from CSS to user space upon reception.
Improvement of copy overhead could be gained with the use of distributed IPC (much like the V
System) as the transport mechanism rather than CSS. Through the use of disk block pointer
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references, the additional copies to and from CSS buffer space would be avoided without loss of
transparency.

7. The DFS Global File System

A flat file identification space incorporating a level of location indirection is enabled by
embedding volume ids in file and directory identifiers. Location servers allow volume/address
translation. Linking to remote or local files permits the existence of duplicate file references; links
can be used as shortcuts to avoid traversal of a long path name.

Movable volumes and volume location servers control the generation of unique file identifiers
in the DFS global file system. The 925 workstation node directly controls a variable number of
physical volumes or hard disks. Each volume is identified by a logical id which is unique across the
system. Location servers on each workstation are responsible for maintaining tables associating
logical volume id's with the network address of the file system which controls them. This address
specifies the CSS net, host, and mailbox upon which the file system server tasks wait for the
reception of remote requests.

The DFS925 file system structure is a directed graph. Files form the leaves of the tree;
directories the inner nodes. Complete file and directory text string names are specified by
concatenation of the individual text string names along the path by which they are reached.
Internal file and directory identifiers are unstructured and guaranteed unique within the
distributed system. For the creation of each new file or directory, 2 unique file root number is
generated by the local file system; that number is combined (“stufled”’) with the logical volume
number of the disk upon which the file resides. Since numbers are generated in sequence by the
local file system, only repeated when all references to a previous file have been deleted, and
volume numbers are uniquely assigned by the system manager, the resultant fileid will be
unduplicated. Figure 5 shows a sample DFS925 global file system configuration. The logical
structure of the directory system is disassociated from the boundaries of the volumes holding the
system.

Choosing unique internal identifiers as internal file names in the manner described is
attractive for several reasons. Fileids are absolute within the system, and only indirectly related to
the file’s physical location in the network. They can be passed between nodes and processes
without any relative translation being necessary. In order to find the physical address of a file, the
file server passes the fileid to the location server, which associates the “unstuffed” logical volume
number in the fileid with a CSS network address, and returns the address to the node’s file server.
This indirection of location information in internal file identifiers allows the easy transfer of
volumes between nodes. Individual files can be moved between volumes by copying; volumes may
be physically moved between nodes by notifying the location servers of the logical volume
id/address change. If the network address were embedded in the fileid rather than the volume id,
volumes could not be moved from one workstation to another without all references to that file
being discovered and updated. This solution does depend upon continued maintenance of the
location server database on each workstation. Incorrect database entries will result in the file
system being unable to locate remote files.

This kind of flat identification scheme is only possible in a fairly small, homogeneous
distributed system with some system administrator intervention. Assumptions made are that local
file system sequence numbers do not grow too large over time, and that the number of volumes in
the system will stay bounded.

It is worthy of comment that the “..” , or relative pathname problem found in distributed
UNIX-based file systems which mount portions of their file system is nonexistent in a file system
which imbeds location indications in the file identifiers. Directories in both distributed UNIX and
DFS925 contain an entry indicating the fileid of that directory’s parent directory, denoted in a
path name as ”..”. The existence of the unnamed parent entry allows the contruction of path
names relative to the current directory. Complications arise in a mounted distributed file system
when the parent directory entry intersects a mount boundary: the location of the server upon
which the parent directory exists may not be known to the current server. Since no logical
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boundaries exist in the DFS925 file hierarchy, and possession of any fileid implies the ability to
find that file’s location, construction of relative pathnames can be handled by normal pathname
parsing. A more detailed discussion of the complications of relative pathnames in a distributed
UNIX-based file system can be found in [WELC85].

7.1. File Access Protection

The DFS925 file system does not provide external file access protection; users may access
and update any file in the system. Both ideological and practical concerns dictated this decision: it
was felt that the DFS925 environment was not one where malicious file access was likely, and the
author had insufficient leisure for its consideration. Policies which govern volume choice upon file
creation can afford a kind of automatic protection directly related to performance, however. The
policy for volume choice upon file creation controls the physical location of that file. Volume
choice policy can differ from workstation to workstation; workstation users may be prevented
from creating files on given volumes by adjustment of the volume choice policy resident to their
node. Performance is clearly impacted by that choice. Should the local node not hold a disk,
volume choice policy must clearly indicate a remote disk, preferably one which is the most
efficient of those available and has sufficient free space to hold the file. A distributed volume
policy server, using dynamic algorithms similar to load balancing algorithms could provide an
optimally global choice for file creation dependent upon the state of the system. More simply,
choice of the local disk (if one exists) is likely to minimize network references. Creators of files are
the most likely frequent users of that file, particularly during a development phase.

7.2. Links

A link is a directory entry referring to a file or directory; the same file (together with its
size, and all accompanying information) may have several links to it. Links may be used for
organizational purposes: if a file is logically associated with more than one directory, or for ease of
reference, if the complete or relative pathname of the file is lengthy and the file is frequently
accessed. A link to a file is indistinguishable from the original directory entry; any changes to a
file are eflective independent of the name used to reference the file.

The implementation of file links in DFS925 was extremely simple. A link entry in a directory
looks and acts identical to a file reference; the only distinction is made during file and link
creation. Directory entries contain very little information, only the name of the file and its id.
The "unstuffed” generated file id number represents an internal file root residing on the file’s local
file system. The file root contains a pointer to the physical location of the file, as well as the link
count. Creating a new link to a file involves finding the file’s file root through volume/address
translation and the unstuffed generated file id number, updating the link count in the file root, and
adding a new directory entry to the current directory with the new name of the link and the file
identification. Once a link is added to a file, there is no way of distinguishing the original from the
linked file. When deleting a file reference, the link count is decremented in the file root. If the link
count is greater than zero after decrementing, the file root is not removed and the storage for the
file not deallocated. DFS925 links are identical to UNIX hard links.

7.3. Criticilsm

DFS925’s provision of a flat file identification space, enabled by embedded (volume) location
information and location servers results in a directory system whose logical structure and physical
composition are completely distinct. Such an approach ensures location transparency and volume
migration; relative path names are easily handled; linking is a simple extension. Each file system
node has a equivalent view of the entire file system: this symmetry satisfies the goal of uniform
distribution. Wise volume choice policies can optimize file system performance and provide weak
protection without the explicit implementation of file access protection.

Some problems exist with such a global structure, however. Paths which are logically
hierarchical may physically span a large number of volumes and nodes; unless directory references
are duplicated, the loss of a node from the network may fragment paths. Files resident on active,
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connected, workstations which should be mutually accessible may become unreachable due to the
inavailability of an intermediary node containing a necessary directory entry. Nodes may actually
be unable to access files which physically exist on local volumes. Workstation independence and
file system availability are severely degraded.

A second, performance-related disadvantage of the incremental manner in which pathnames
are processed is that the file system may have to access as many remote file systems as elements
in the pathname of the file accessed. Paths are traced through the file system by looking at the
directories they access; each directory entry matched gives the location of the next file system to
be queried. Non-centralized knowledge of the file system structure fulfills the precepts of
distributed control, but is correspondingly expensive. Each remote file system access involves at
least two messages across the network in order to find the next path. Avoiding incremental
pathname parsing in at least some circumstances would cause substantial improvement in
performance.

Enhancement of performance and file system availability should be implemented through
directory information caching. Either of two methods could be followed. First, the directory
structure could be shadowed on each workstation node. A workstation would always be able to
access any files resident on local (or active, connected) volumes, given that the shadowed local
directory structure was valid. Only local files would be allowed to be updated with the help of this
information; new directory entries in inaccessible, or physically unavailable directories, could not
be created. As directories are infrequently updated, maintaining this shadowed structure as a
"hint” should be maintainable with acceptable overhead.

A similar, simpler caching technique is to maintain string prefix tables of directory prefixes
which “cache” the locations of directories once accessed. The string prefix and cached directory
location are the associated pair which make up an entry in the table. Such a system works only
with absolute path names; pathnames relative to the current directory would need to be
transformed into their absolute pathnames for string matching. Since only directory locations,
rather than their contents, are cached, such an approach has fewer cache update implications than
the method mentioned above. Unlike the full shadowing technique, there is no guarantee that the
workstation user will be able to access files on all reachable volumes. The table may be an
incomplete list of directory prefixes. The user will only be able to reach those files whose
directory prefixes are contained in the string prefix table, or whose entire directory path refers to
available volumes.

Either one of these approaches would be viable additions to DFS925; such enhancement is
necessary to fulfill its goals of node independence and availability while maintaining the uniform
distribution of the file system.

8. Transactional Support

DFS925 is a transaction-based file system. Transactions are a means of grouping sequences
of file system calls and guaranteeing atomic execution of the entire sequence of calls: the actions
contained in the transaction will either succeed or fail as an indivisible unit. Transactions are units
of both consistency and recovery.

DFS925 extends transaction support and recovery to operate in a distributed environment.
One transaction may access files on many network nodes; part of the transaction resides on each
node involved. The transaction’s resident site identifies the master of the transaction; the master
is responsible for managing communication between transaction fragments to insure consistency.
Distributed locking, commit, checkpoint, and abort algorithms are actively controlled from the
master participant; commit logs on each node involved in the transaction regulate the storage of
all critical state information on disk, enabling distributed recovery if necessary.

DFS925 attempts to minimize the cost of providing transactional support. Multiple-write
locks and temporary file type are options which provide better performance at the cost of lower
data consistency. Transaction checkpoint and abort make use of unacknowledged messages to
remote transaction participants; local writes may at least be guaranteed if network or remote
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node states are doubtful. The two-phase commit protocol is unavoidably complex; it consists of a
sequence of independent actions designed to be idempotent to aid in error recovery. The crash
recovery algorithm resolves unfinished commits by continuing the commit protocol where it was
interrupted.

All DFS925 file system calls must be included in a transaction; every atomic sequence of
calls is preceded by a begin_transaction system call. The begin_transaction call creates a
transaction descriptor which records the transaction state for the duration of the transaction.
State information includes the files read and written during that transaction session, the types of
locks kept on those files by that transaction, and the physical addresses of shadow pages reflecting
any file changes made during that transaction. Each node involved in the transaction contains a
transaction descriptor identified by a common transaction identifier. Transaction identifiers are
only created by the file system which first initiated the transaction. The initiating site is called the
master participant; it assigns a resident volume to the transaction created. All other participants
are known as slaves.

Transaction identifiers are constructed in an analogous manner to file identifiers. They
consist of the combination of a generated number unique to the initiating file system with a
logical volume number local to that system. This resident volume of a transaction will hold its
commit log; it may be considered the transaction’s home location. Through the same mechanism
as the file identifier, the transaction id is unique system-wide.

Transactions may include operations on files which reside both locally and remotely. In the
case where a transaction accesses a remote file for the first time, a transaction is created on that
remote file system with the same transaction id as that on the master site. New transaction id’s
are only created if a begin_transaction request originates locally. File systems thus support
transactions which have been initiated at remote locations as well as at their own location.
However, only a transaction descriptor on the master site contains global information about the
transaction; slave sites hold information only about resources local to their sites. The resident site
of the transaction contains a list of all slave sites by volume id. Because the resident volume
number of the transaction is embedded in the transaction id, a slave site may always discover the
master location of an active transaction. This becomes important upon transaction commit and
crash recovery.

8.1. Locking

Since multiple transactions may exist at the same time, it is possible for a file to be accessed
by more than one transaction. Concurrency control is enabled by means of file locking. Locks have
the effect of notifying others that the file is being used, and protect the file from modification from
others: inconsistencies such as lost updates, dirty read, and unrepeatable read are avoided
[GRAY78]. Whenever using a file, a transaction must acquire a read or write lock and hold it until
the transaction is complete. DFS925 uses an automatic two-phase lock control: after releasing a
lock, transactions may not acquire additional locks.

The degree of transaction serialization enforced by file locking controls the consistency and
concurrency levels allowed. Insuring that only one transaction accesses a file at one time enforces
complete transaction serialization and insures data consistency, but decreases system concurrency.
DFS925 allows the trade of conmsistency for increased concurrency. Third-level consistency (one
writer, multiple readers) [GRAY78] is the strongest guarantee of consistency provided by DFS925.
File changes are only performed by one transaction; no permanent changes to a file root are made
until full agreement for commit has been attained (see description of transaction commit below).
DFS925 permits weaker consistency and higher potential concurrency through two optional
mechanisms. Multiple-write locks allow more than one transaction to have a write lock on a file,
and files are updated in place rather than through shadow pages. Temporary files are scratch files
for which no consistency guarantee is made; updates are made in place, and no record of changes
to those files is written in the commit log. .

A new lock on a file must agree with all previous locks by all active transactions according
to the consistency level chosen. Only the file system which physically contains the file has a
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complete list of all locks kept on that file for all transactions. In order to aveid communicating
with that file system for each lock request, local lists of kaown remote locks are maintained on
each file system as a "hint” to determine lock success. If the lock requested agrees with the local
list (the hint is positive), final lock confirmation takes place upon the file system containing the
file’s physical volume.

Currently, DFS925 does not guarantee third-level consistency for directories. Write-locking
directories in a hierarchical system is problematical due to the potential of lock-out of all other
transactions accessing that directory and children of that directory. It is proposed to alleviate this
problem by the introduction of an incremental log table associated with each directory. Such a log
table would essentially allow record-level locking of the directory; only the record of the file which
was being updated by the directory would be locked for write, rather than the entire directory.
File creation would add a provisional record to the log table; potentially conflicting file creations
would be checked against all provisional records. Other transactions could simultaneously update
other files in the directory. The log table would be saved in the commit log as are shadow pages;
upon successful commit the transaction’s log table would be applied to the directory concerned.

8.2. Fallsafe Guarantees

DFS925 insures the data consistency granted by locking and transactions against both node
and network failures. Distributed two-phase commit, distributed abort, non-guaranteed
checkpoint, and individual crash recovery upon node failure provide this insurance. Such
distributed guarantees must (1) allow for correct action amid error conditions on master, slave, or
network and (2) minimize disk writes and messages under normal file system operation. Keeping
crash recovery and commit/abort actions idempotent, limiting distributed abort to one phase, and
avoiding the use of special-purpose crash recovery algorithms are among the optimizations used
by DFS925 to increase performance while maintaining functionality. In conformity with the design
goals allowing the tradeoff of functionality for performance, transaction checkpoint differs from its
canonical definition; it gives only a probable guarantee of consistency. The number of messages
required is correspondingly reduced.

8.2.1. Distributed Commit

A two-stage distributed commit protocol consists of a two-phase dialogue between the
master, who acts as the active tramsaction coordinator, and the passive slave sites. Each phase
transition in a commit request is initiated by the master through a commit call differentiated only
by an argument indicating the current state of the master. Complete rounds of acknowledged
messages ensure that no incorrect irreversible assumptions are made about the state of any site.
DFS commit_transaction is designed to be a series of idempotent communications between the
master and the slaves. Any state information essential to the preservation of consistency is hence
written to disk; loss of active state information through node failure only degrades performance
rather than also functionality.

The protocol is as follows:

Master:

(1) Commit_transaction is called at the master site. The master allocates a commit
log, labels it with the transaction id, and fills it with the file identifiers and shadow
page addresses of any changed files local to that file system, first forcing those
changes from active buffers out to disk. The log is flagged ready and atomically
written to disk. (This protocol assumes that a block write is atomic action, and
that failure to complete the write successfully will result in a detectably bad block.
This assumption is probably unrealistically optimistic for DFS925.)

(2) The master then sends Commit_transaction messages to each of the remote
participants in the transaction. These messages are constructed and dispatched as
normal remote procedure calls; a call argument indicates that the master is
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requesting confirmation of ready status from the slaves.

(3) If the master receives ready confirmation from all slaves within a reasonable
length of time, the commit log is flagged commit and rewritten to disk. The global
commit is irrevocable from this point on. Local files changed in the transaction are
updated, shadow pages replace old pages, and disk storage for replaced pages is
freed. The master then sends out Commit_transaction messages to all slaves
indicating that the commit phase has been reached. Once all remote calls return
affirmatively from the commit, the master frees the commit log and the commit is
complete.

Slave:

(1) In error-free circumstances, the slave receives two Commit_transaction messages
from the master, indicating passage into each of the ready and committed phases.
Receipt of the Commit_transaction(ready) remote procedure call entails forcing
out file buffers, and constructing and writing a commit log flagged ready.
Successful return of the commit call to the master automatically confirms slave
receipt and action.

(2) After receiving the Commit_transaction(commit) message, the slave is free to
update files and free storage without rewriting the commit log. Return of the
remote file system call parameter block to the master is again sufficient as receipt
and confirmation.

The protocol is illustrated in Figure 6. Message or commit failure is allowed for at any of
the stages at the master or slave. If, during the ready phase, a master site does not receive ready
confirmation from all of the slave sites (which could be caused by network or slave node failure} ,
the user is informed. He may choose to continue local processing with that transaction, abort, or
use non-guaranteed checkpoint; should he reattempt to commit, the commit log will be reused.
Once the master site has committed, the commit log will not be deallocated until all slave sites
have acknowledged that commit. Protocol failure beyond the master’s commit point will at least
leave ready logs on uninformed slave sites and a commit log on the master site. Crash recovery
protocols reinitiate the commit protocol at the point where it was interrupted, resolving any
conflicts between communicating nodes.

8.2.2. Transaction Abort and Checkpoint

One phase abort and non-guaranteed checkpoint are calls which assure the continued
functioning of the file system in the case of node or network failure.

Transaction abort nullifies any actions performed on permanent files with level three locking
consistency. Upon receiving an abort request, the master site sends out unguaranteed abort
messages to all slaves, not waiting for a reply to destroy the transaction. If a slave site does not
receive the abort request, the slave must be assumed failed. There are two possible states of the
transaction at that failed slave site: either all state information about that transaction has been
lost (which is equivalent to that tramsaction being aborted) or the transaction is partially
committed. Any unresolved slave ready commit logs for an aborted tramsaction are destroyed
upon slave file system recovery: the slave site checks the master site for saved commit logs. If the
partially-committed transaction had not been aborted, a commit log would exist on the master
site. If the master is unavailable, the slave retains the partial commit log; the master will query
the slave when the master once again becomes active.

Transaction checkpoint represents a non-guaranteed commit; comsistent data is only
guaranteed on the local file system. Like abort, mon-guaranteed messages are sent out for
checkpoint to all slave sites; no commit log is written. The checkpoint requestor only receives
acknowledgement that locally changed files are updated and replaced pages deallocated. Non-
guaranteed checkpoint is mandatory for the continued functioning of a transaction-based
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distributed system. While data consistency is guaranteed through commit and crash recovery, the
loss of use of one node on the system could potentially cause incomplete transactions to hang
almost indefinitely. Unless it is possible, through checkpoint, to override the transactional
mechanism and save changed data where feasible, dropping file locks could only be accomplished
by aborting the transaction. At the price of system-wide data consistency, transaction checkpoint
followed by abort saves file changes made on all active nodes.

8.3. Error and Crash Recovery

Crash recovery is initiated after a node has failed and is attempting to reinitialize the file
system. The recovering file system sequentially reads all commit logs, trying to resolve all
unfinished transactions by querying the other known members of the transaction as to their
status. Transaction status query is accomplished through the use of the Commit_transaction
remote procedure call. Unlike the normal commit protocol, however, both master and slave may
initiate the Commit_transaction call during the crash recovery process.

The master reattempts to recommit the transaction only if the saved commit log is marked
commit. If the log is marked ready, only the ready phase was completed, and the master sends out
abort messages to the slaves. A slave discovering a commit log (marked ready) attempts to find
out the status of the transaction on the master. If no record of the transaction on the master
exists, the slave aborts, else the slave continues in the commit protocol.

Distributed crash recovery can be a complex process. As in the Commit_transaction it must
be composed of an idempotent sequence of calls; repeated node or network failure may interrupt
the recovery protocol without warning. Using the same Commit_transaction protocol for crash
recovery reduces the potential for inconsistency.

9. Performance

Performance measurements made give the relative overhead of a file operation involving a
remote file as opposed to one involving a local file. Timings were done for copying files and for
repeated truncate, read, and write calls: they are contained in Tables 2, 3, and 4 respectively. File
copy is composed of several compound file system calls. Truncate is a simple file system call, and
is DFS925’s closest approximation to a null system call. Read and write are both buffer handling
calls.

Compound commands on a small scale exhibit few adverse effects in the remote case. The
composition of the file copy command in particular is favorable to reasonable performance.
Buffer-handling calls are the most important of the file system calls in file copy: these calls are
optimized to decrease the number of CSS setup calls and messages required by the network.

Local file system calls are considerably faster than the remote operations; neither network
latency nor CSS setup overhead are present. The setup overhead imposed by DFS925 for a
remote procedure call through CSS includes the creation and deletion of both mailbox send and
receive capabilities. Observation of the measurements for truncate, read, and write calls
emphasizes the increased efficiency of buffer-handling calls over other calls requiring CSS setup
overhead for each network message. Truncate follows the simple request/response model; two
messages are sent across the network, and 6 CSS setup calls (2 CreateCapability calls, 1
CreateMailbox call, and the corresponding DeleteCapability and DeleteMailbox calls) are used. A
read file system call requires the same setup calls, but may use many more messages: the
minimum read message count (for 2048 bytes or less) is three. Each additional 2K block transfer
across the network requires another message, but no added CSS setup calls. The difference
between a 4 byte remote read and a truncate call is about 20 ms (averaged over 1000 calis): this
represents the approximate cost of one network message. The average cost of a CSS setup call can
be approximated by comparing the times of a remote read and a remote write call. Remote writes
involve one additional message with respect to remote reads because the remote respondent to a
remote write must return an additional address to the call source: the address of the mailbox to
which the write buffer may be sent. A 4-byte remote write requires 10 CSS setup calls and 4
network messages: a 4-byte remote read requires 6 CSS calls and 3 network messages. Using 20
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ms as the cost of 2 network message, a CSS setup call can be said to take (215 - 4*20)/10 = 13.5
ms. This figure checks with the summed cost of the truncation and read calls. Confirmation of the
importance of the CSS setup overhead can be seen in the increased efficiency of 8192 byte
transfers over 2048 byte transfers - the ratio of CSS setup calls to network messages is lower
when larger read and write requests are made. This implies that overhead is caused less by
network latency and buffer copies than by the setup cost of individual remote file system calls.

It should be noted that since read and write buffers are kept in core umtil forced out,
measurements taken for repeated read and write calls are not indicative of disk latency. The calls
requiring more than one 2K buffer each have the extra overhead of searching through more than
one buffer descriptor to find all cached buffers required by the call: this will account for some of
the time taken by both the local and remote 8192-byte read and write calls.

Considerable tuning needs to be done in order to bring these costs down to a reasonable
level. The CSS setup cost per remote procedure call is currently inevitable; a distributed IPC
mechanism for CP925 should be able to use well-known mailboxes for communication between
nodes, largely decreasing the number of calls to CSS. Update of compound file system calls which
make several internal file system calls (such as copy, set_directory, and so on) could make a
visible improvement to performance. Performance is badly degraded both locally and remotely for
operations which use several compound calls: listing a local directory with 10 entries takes 5
seconds , whereas listing a remote directory of the same size demands 55 seconds and over 300
remote file system calls.

Few performance figures are available for transaction-based distributed file systems; null

remote procedure calls in the V System and the Berkeley Network Distributed File System are 5
and 11 milliseconds respectively; these systems perform no atomic guarantées or concurrency

control.

Table 2
Times for File Copying

16K | 32K | 64K
Local 5sec | 5sec | 6sec
Remote | 5sec | 6 sec | 7 sec

Table 3
Elapsed times for
1000 Truncates [seconds]
Local 13
Remote 121
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Table 4

Elapsed times for
1000 repeated Reads and Writes [seconds]

Reads Writes
4 bytes 2048 bytes 4 bytes 2048 bytes
Local 14 18 15 29
Remote | 142 212 215 260
Table 5

Elapsed times for
250 Reads and Writes [seconds]

8192 bytes
Reads Writes
Local 28 29
Remote | 110 140

10. DFS925 Experience

DFS925 was tested incrementally in two major phases. Distributed file systems first ran on
one 925 workstation, writing to a disk-simulation file. Final testing placed a DFS925 file system
upon each of two workstations, communications passing over the network and writing taking
place to disk. The DFS925 file system currently runs in prototype form only as an additional
service to the local file system on two workstations. The system grew from the F5925 size of 70K
to the DFS925 size of 150K.

It should be observed that the consistent service/request interface provided by CP925 made
the construction of a test system trivial; 925 system enhancement through application additions is
extremely simple due to CP925's design. The basis provided by a tested underlying file system
(FS925) was essential to any kind of progress in distribution. The prototype 925 workstations
were, unfortunately, quite unreliable over the development period. During the implementation, the
lack of a debugger running on the 925 made software testing considerably more difficult; the
often-lengthy process of compiling and downloading from the 3081 was very tedious. Providing a
solution to the latter irritant gave impetus to the project; the potential usefulness of a distributed
file system linking the 3081 and the 925 network was incontroversible.

11. DFS925;: Present and Future

This report has described the design and implementation of a distributed file system
intended to emphasize uniform distribution, workstation independence, data consistency and
availability. The integrated system model and the global file system best exemplify the efforts
towards uniform distribution and workstation independence. Data consistency, built upon the
structure offered by FS925, is provided by transactions, locking, and a collection of transaction
operations such as commit, checkpoint, and abort. An idempotent sequence of actions compose a
commit protocol which is used in both transaction commit and node recovery procedures.
Network transparency was an essential goal: implementation strove to extend that transparency
into the file system structure. Among the performance enhancement measures taken were the
multiplication of file server tasks, and the introduction of a degree in choice of functionality in
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varied file types and lock modes.

Some of the changes proposed for DFS925 have been described in the body of this report.
Criticism of the global file space has been discussed; directory caching used as "hints” would aid
to fully address workstation independence and availability. File caching, widespread in
server/client-based systems, complicates the distributed maintenance of data consistency
substantially. Given the independent file usage pattern in the Office Systems Group, it is felt that
effective file migration policies - moving files to local or efficient disks upon frequent use - would
better minimize the number of remote file references and enhance performance.

Data replication, in the tradition of LOCUS, would increase system availability, though
inevitably complicating transaction guarantees. Propagation of changes to replicated files is a
problem beyond the scope of DFS925. An alternative to change propagation while preserving
consistency is to disallow file update when one file copy is not available. DFS925’ lack of an
explicit protection mechanism would always permit file duplication.

An implementation advantage of the integrated system model approach was that the control
flow of local file system calls was unchanged; no additional local performance burden was added
by distribution. However, the unnoticeable inefficiency of local file system calls is magnified
severalfold when the call becomes remote. Redesign of common compound calls in order to
minimize the number of internal file references made would increase the performance of the
DFS925 file system overall. Studies have shown that performance of distributed or remote file
systems can be tuned through adjustment in network packet size. Investigation of DFS925
performance gains through volume transfers and buffer read-ahead should be carried out.

Integration with further distributed applications could increase the functionality and
performance of DFS925. Global file migration and volume choice policy algorithms could optimize
the latent performance advantages of DFS925's global file system. Replacement of the CSS
interface with the CP925's expected capacity for distributed interprocess communication would
improve network performance by avoiding call setup costs for send and receive capabilities and
bufler copies.

DFS925 was designed as a small distributed file system; design decisions such as a flat file
and volume identification space, the maintenance of considerable state for active files and
transactions, and the static limitations placed upon concurrency were possible because of the
environment’s homogeneity and limited scope. The integrated model was a successful choice by
reasons of some of these limitations: given a more massive system and powerful special-purpose
server nodes, the server/client model might be the more viable. The provision of complete
transactional capability is probably not necessary in the design of a ‘“Universal” file system.
Allowing tools such as buffer-force-out and lock modes is sufficient to permit the construction of a
reliable database system as an overlying application layer. Heterogeneous systems are the next -
challenge of the future: unless implementation biases change, the server/client model is the
obvious choice. The advent of widely accepted network, remote procedure call, and data
representation protocols will encourage the development of such heterogeneous systems.
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