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ABSTRACT

A single value for delay, based upon the delay of Elmore, is derived for two
types of RC tree networks. In one type of network, there is no driving source:
this undriven situation causes static charge sharing among nodes. An expression
for delay is obtained by straightforward analysis of this network.

In our second case, an RC tree which is driven by at least one source has
leaky capacitors. We show how to calculate delays for such trees by a linear time
algorithm.

Simple MOS circuits undergoing charge sharing and with leakage paths to
ground are analyzed using the methods presented in this paper. The results are
compared with those of SPICE.
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1. Introduction

Modeling digital MOS circuits by RC networks for the purpose of estimating delay has become a
well accepted practice [9,11,12,5,8]. One approach pioneered by Rubinstein, Penfield and
Horowitz (R-P-H) is to model a circuit as an RC network driven by a single source (9, 11, 12, 5].
Crystal [8] takes a more restrictive approach, calculating the delay at a node by considering only
a single resistive path to the source.

The result of a delay calculation may be a single value [8], a ‘“‘best fit” exponential [5], or a pair
of bounding waveforms [9, 11, 12]. We choose the intermediate course of supplying a “best fit”
exponential.

The RC model of R-P-H [9] depends on two basic approximations. Transistor inputs are approxi-
mated by step waveforms, and conducting transistors are approximated by linear resistors. A
simulation program like SPICE (6], on the other hand, makes no such approximations and is
hence computationally much slower, though more accurate. The R-P-H approach is conceptually
simple and computationally efficient, and has been incorporated into several timing-analysis pro-
grams [4, 10]. In this paper, we employ this basic R-P-H model.

Most analyses of RC networks introduce several additional assumptions. One is that all RC net-
works need to be driven by exactly one source. However, many MOS circuits used in practice
have no driving source: this undriven situation may cause static charge sharing among nodes (1}, a
situation we have addressed in this paper. Secondly, there are instances where more than one
source drives a network. For example, consider an nMOS inverter driving two loads with its
input set to logic value ‘1’, as shown in Fig. 1. The load capacitors are driven by two sources,
VDD and GND. To the best of our knowledge, ours is the only analysis to allow multiple sources.
A third additional assumption of analyses of RC networks is that all capacitors are ideal, having
no leakage path to ground. Under this assumption, a previously charged capacitor that is isolated
from the rest of the circuit would retain its charge for an infinite duration of time. Yu and Wyatt
[12] relax this assumption, allowing one leaky capacitor. Our analysis permits any number of
leaky capacitors.

A fourth additional assumption that many models make is that the RC network is a tree, mean-
ing that no resistor meshes are allowed. Lin and Mead (L-M) [5] have provided a “‘best fit”
exponential for an RC mesh. Wyatt [11] extends this, providing a pair of bounding waveforms for
an RC mesh. In this paper, we analyze the restricted case of an RC tree.

A most general RC model would allow floating capacitors in the network. No floating capacitors
are permitted in this paper. There exists no known analysis for such a model, and it remains an
important open problem for future research.

In this paper, an expression for delay in an RC tree network undergoing charge sharing is pro-
vided. The analysis of this network is based on two simple principles of circuit theory, namely,
charge and energy conservation.
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Figure 1. An nMOS inverter.

The analysis of RC tree networks driven by more than one source is not as straightforward as the
analysis of charge sharing networks. Our analytic approach is to use RC trees with leakage. An
RC tree with leakage is defined as a loopless resistor network where there is a resistor and capaci-
tor between every node and GND, driven by any number of sources. Fortunately, as far as delay
is concerned, only one network needs to be analyzed: an RC tree with leakage driven by one and
only one source, namely VDD. It will be shown in later sections how this can be used to take care
of all other cases.

Based upon the switch level simulation model proposed by Bryant [1], a timing model for MOS
transistor circuits is presented in Section 2. The transient behavior of a transistor circuit is
approximated by a linear RC network for estimating delays. The delay used in our model is
based upon L-M’s definition [5], modified to correctly treat the effects of charge sharing and leak-
age resistors (Section 3). The L-M definition of delay is the same as Elmore’s delay [3] for an RC
network with no initial charge [5].

In Section 3, our definition of delay is also shown to be the same as Elmore’s for the case of no
initial charge. An interpretation for delay is provided. On this basis, we estimate a waveform as
an exponential with a single time constant. RC networks driven by GND and by multiple sources
are simple extensions of the case where RC networks are driven by a single source, namely VDD
(Section 3).

In Section 4, an expression for delay at a node in an RC tree undergoing charge sharing is
derived. In Section 5, an expression for delay at any node in an RC tree with leakage is derived,
in terms of the delay values at all other nodes in the network. This leads to a linear system of
equations, with the delay values at all nodes as the unknowns. This system may be solved by
standard techniques, for example matrix inversion.

Section 6 provides a more efficient method for delay calculation. A constructive definition for RC
trees with leakage is provided. A set of parameters is defined for any RC network, including a
primitive network, which is the basic building block of an RC tree with leakage. These parame-
ters are updated at each stage of tree-construction, until the whole tree is constructed.

In Section 7, two diflerent networks, one undergoing charge sharing, and another driven by a vol-
tage source with a leakage path to ground are analyzed using the methods presented in this paper
and the results are compared with those of SPICE. Section 8 concludes the paper.

The proofs of all theorems and corollaries in this paper can be found in the Appendix.

2. The Timing Model

The timing model for MOS transistor circuits is based on the switch model proposed by Bryant
(1]. In this model, a circuit is represented by a set of transistors {ti, ..., t,, } and a set of nodes
{p1, -, Pn}. With each node p; are associated a resistance, a capacitance, a charge and a vol-
tage source. Also associated with a node is a state, which is a function of its charge. With each



transistor are associated a set of resistances. The value of a transistor’s resistance depends on the
the state of the node controlling its gate and on the states of its other two nodes, the source and
the drain. Although the capacitance and resistance at a node and the resistance of a transistor
are voltage dependent, they are assumed as constants here.

The evolution of an MOS circuit is approximated by a sequence of RC networks. Various node
capacitors are charged and discharged through the network. This charging-discharging process
may change the state of a node which in turn changes the topology of the RC network. The pro-
cess continues until the topology of the network changes no longer.

Definition 1. An RC network is a loopless connected graph on n nodes. With each edge ¢
is associated a nonnegative resistance r;. With each node k are associated a positive resis-
tance R, , a positive capacitance C}, a nonnegative charge @, and a voltage source v ¢
{VDD, GND, ¢}, where ¢ indicates no connection.
The electrical interpretation of this definition is that the nodes of the graph correspond to the
connection points. Circuit elements associated with a node in the definition are elements that
exist between the node and GND in the network. Note that this definition does not allow for
floating capacitors (capacitors associated with the edges of the graph) in the network.

When the edges and nodes are all labeled with numbers, these parameters can be grouped
together as vectors. An RC network is then denoted by N(n, r, R, C', Q, V), where n is the
number of nodes, r is a vector of edge resistances, R is a vector of leakage resistances, C' is a
vector of node capacitances, @ is a vector of capacitance charges, and V is a vector of node vol-
tage sources. In Fig. 2, below, the nodes are labeled by circled indices. Edges are the series resis-
tors r;. A single leakage resistor, Rg3, is shown. All other leakage resistors are (by default)
infinite.
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Figure 2. A standard RC network.

With the approximations introduced above, the problem of estimating the delay of an MOS cir-
cuit reduces to that of estimating the delay of an RC network. Certain special cases of RC net-
works, which occur in this paper, are denoted below:
1) N(n,r,R,C, Q,VDD,) : An RC network with n nodes, driven by a single source,
namely VDD, which is connected to node n . This network will be referred to as the stan-
dard network, or N, , in the rest of the paper.

2) N(n,r,R,C, @,GND,) : The same network as in 1) with node n connected to
GND.

3) N(n,r,o00, C, @, ¢): An RC network on n nodes with only ideal capacitances and no
sources. This network will be referred to as the charge sharing network, or N, (¢) in the
rest of the paper.



Example. Consider the standard RC network N shown in Fig. 2. There is a single driving
source, VDD, which is a step function of magnitude VDD, and connected to node 5. Since our RC
networks are loopless, we may assign the label min(a, ) to the edge (a,d).

Define a path nk to be the (unique) list of edges joining node n to node k. Let R, ; denote the
sum of the resistances of the edges common to the unique paths nk and n: [9]. For example, in
Fig. 2, Rgg=r,+rp and Rg3=r, Note that a doubly subscripted R, ; is distinct from a
leakage resistance R, .

In general, we might need to evaluate the delay at a node in any RC network. Thus, it is
sufficient to derive an expression for delay in N, and N, (¢) only. As shown in the next section,
delay computation in any network with one or more sources is a simple extension of the method
for the standard network.

3. Definition of Delay

Prior to analysis, it is necessary to have a consistent and unambiguous definition of delay.
Although there are a number of such definitions in practical use, most of these are awkward for
theoretical investigation. Elmore’s delay [3], on the other hand, is very efficient in this respect,
and is defined as

T°=}ot v! (t)dt. (1)
0

where v! (t) is the derivative of the transient voltage v(t) of some node of a network whose
delay is . This definition of delay is based upon the observation that, if v (t) is monotonic in
time, 7 is the centroid of v! (¢) and is very close to what is commonly conceived as delay.

In an RC network with no input or only step inputs, the voltage at node + can be obtained from
(2)

v (o0) (1 +a,;8 +- - +8,i6™)
8 (1+bly,~s+"'+b,,‘,~s")'

Vi(s) =

In a network with no floating capacitors and no initial stored charge 3],

P =by-ay (3)

Before we go into a discussion on delay, we need a well known result in network theory [2]:
In any passive RC network, V;(s), the Laplace transform of the voltage v, (t) at node ¢ can be
written as

V.(s)___l_ v.(0)+_ﬂ__+...+__ﬁ'_"__ (4)
! s | 1+t,;8 1 +t, 58|

when the input waveform is a step function.

We now state a theorem that is a direct consequence of the definition of Elmore’s delay.

Theorem 1. In an RC network, Elmore’s delay at node ¢ can be expressed as

9= Critye + 0t Gaila (5)
v; (o0)

where the ¢, ; and # ; are defined by (4). Theorem 1 tells us that 7P is the weighted average of
the individual time constants and hence gives us a “best fit” exponential waveform.

v (t) = v;(c0)(1 — ezp (-t /1) (6)

Lin and Mead (L-M) [5] have given a modified definition of delay, which is the same as Elmore’s
delay for zero initial charge. Here, it is assumed that all networks are driven by VDD=1, so that
v (c0) is always 1. The L-M definition of delay is valid only for type 1 networks with no leakage
paths to GND.
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THHM = [l1 - v(t)] . ™)

This expression is just the area above the response v (t), but below 1.
A “best fit” time constant, 7* M is easily obtained from T}~ as follows.
T5™
— (8)
1-v(0)

The L-M definition is not suitable for RC networks as dealt with in this paper, because v (o0) is
not always 1. Accordingly, we redefine delay as

LM

o0

{[v(oo) ~v(t) dt
T= v(co)-v(0) ©)

From our definition of delay, and from (2), we have

. v; (00)
lim s |—— - V;(s)
s -0 8 (» | vy (00) ] (10)
T = = ¢ — Q1 —_— T
v; (00) - 4;(0) MM U v (c0) - % (0) )
Therefore, our 7 is equal to Elmore’s delay 7 for RC networks with no initial charge.
Corollary 1. In an RC network, delay at node i can be expressed as
cl,itl,i + -+ Ca,f tu,i
T SRR v

An immediate consequence of Corollary 1 is that we now have a ‘‘best fit” exponential waveform
with time constant 7; .

v; (t) = v;(0) + (v; (00) - % (0))(1 — ezp (-t /7:)) (12)
Definition 2. The parameter D; is defined as the product of (v; (c0) — v;(0)) and the delay
T .

D; = (vi(o0) - v (0)) 7 (13)

D; in a network N(n,r, R, C, @, V) will also be referred to as D;(n,r, R, C, @, V) when
the context is not obvious. As the next few theorems show, most of our results on delay are
expressed through the parameter D; .

We need another important result from network theory, the Superposition Theorem [2], which
can be stated as below for the purpose of this paper:

Theorem 2. D;(n,r, R, C, @, V) is obtained as the sum of the D; in each network obtained
from N(n,r, R, C, @, V) by setting all but one source to GND.

Di(n,r,R,C,Q,V)=D;(n,r,R,C,Q,[v,,GND, ..., GND])

+ D;(n,r,R,C,Q,[GND,v,, ..., GND])
_+_ Y
+Di(n,r,R,C,Q, [GNDGND, ..., u,]) (14)

Theorem 3. D;(n,r, R, C, @,GND,) is obtained as the difference between the D; in the
networks N, (the same network, but driven by VDD at node n ), and N, (0) (the standard net-
work with no initial charge).

D‘(n,f,R,C,Q,GND“)=D,'(T¢,T,R,C,Q,VDD,.)
- Di(n,r,R,C,0VDD,) (15)
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where the network N(n, r, R, C, 0, VDD, ) represents the standard network N, with the capa-
citances having no initial charge.

Corollary 2. (The discharging theorem.) Let @ represent the final charge attained by
N(n,r,R,C,0,VDD,). The delay at node ¢ in network N(n,r, R, C, @, GND,), is the
same as the delay at node ¢ in the network N(n,r, R, C, 0, VDD, ).

A consequence of theorems 2 & 3 is that we need an expression for delay only in the charge shar-
ing and standard networks. In Section 4, we derive an expression for delay in the charge sharing
network, N, (¢), and in Sections 5 & 6, we provide methods to evaluate delay in the standard net-
work, N,. We also show that the cases of networks with no initial charge and with ideal capaci-
tors are special cases of the standard network, and do not require special treatment.

4. An Expression for Delay in the Charge Sharing Network

Consider a charge sharing network with n nodes, N, (¢). We need to derive an expression for
delay at some node in the network. Renumber the nodes as follows: the node for which we need
to solve is numbered n, and the other nodes are numbered by a depth first traversal of the tree.
The voltage waveform at any node 7 in this network can be obtained from

vy (I+ a8+ ..+ a,;5)

7 = 1
'(8) 8 (1+ b,,,-s-l- ot bn,is) (16)
where v; = v; (00) is the final voltage of the network, and is obtained as follows:
2@
v =5 (17)
> G
i=1
Here, the @; stand for the charge in C; at time t=0.
From (9), we have
f[v, - v;(t)]dt
0
" v % (0) (18)
The current into a node k at time ¢ is
dvk (t )
Y — Ok dt (19)
The voltage drop from node n to node ¢ due to all node currents is
dv
Vp ¢ (t E Rk i Ck :15 ) (20)
From (20), we get
ol do (t)
vi(t) = v (t)~ Y R, Co—3— (21)
i=1
Subtracting both sides from v, , we get
dv
vy = vi(t) = v —va(t)+ ERk:Ck r (t) (22)

dt

=1

and by integrating both sides, we have

Di = Dt S Res Gulvy - (0) (23)

=1



Since there are no leakage paths to ground, no charge is lost from the network. Therefore, at any
time ¢, the total charge in the network must equal the final charge (at t =00).

C, v, (¢ )+ "Z_:IC,-v,-(t)=v, Cp+ “‘210’,-0, (24)
i=1 i=1
By rearranging terms in (24), we get
Galoy — ua(t) == 5 Ciloy —w(0) (25)
and hence, by integrating
C,D, =~ ”2-31 C; D; (26)
i=1
Substituting for D; in (26) from (23)
C,D, =- ’:‘2_—;110,, Dy - T‘Z;:llC,- :E:Rk',- Ci (v; - v (0)) (27)
Thus, the expression for D, is

"E—IO.' ER,,',- Ci (vy - 9 (0))

k=1

D, —- i=1 _ (28)
2 G
k=1
and the expression for delay at node n is
EC ERk i G (vy = v (0)
o= i=1 k= _ (29)
(vy - (0))k210k

5. An Expression for Delay in the Standard Network
We now give an expression for delay in the standard network.

Consider the standard RC network as shown in Fig. 2. The current at time ¢t into Ry and Cj
together is

du (t) vk(t)'

o 0
% T4 R, (30)
The voltage drop along the path from n to node ¢ due to % is
: du (t) v (t)
vai(t, ) =R |G TR R, ] (31)
and, due to all f, k=12, n-11is
dog (t v (t
i) = VDD - w) = 5 Ry [0 S D (32
&
Eqn. (32) is similar to (9) of [9] except for the additional term due to the leakage currents.
At steady state, the circuit is purely resistive. Therefore,
tl Ry
VDD - v;{00) = Y, ——v;(o0). (33)
k=1 Ry

From (32) and (33), we have
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v (00)- (34)

=) dog(t)  wlt) nd Ry
i -vl(t)= Ry | C - -
wleo)—mlt) = 23 oo ) I

Using (9) and (34), we get an expression for 7; as given by (35).

RS dog () | we(t) nl Ry
o =7 [ 2l ) S
£L}:=:1 S DAY Ry :21 Ry

We now have the following theorem.

vk (oo)] de. (35)

Theorem 4. For ¢ = 1,2,..., n-1, the D; satisfy the following system of linear simultaneous
equations:
R; i nl Ry ol
[1 +—g - D; +Y, TD* = Y Rii G (m(o0) - u(0)) (36)
i kA Ltk k=1
Eqn. (36) can be put in matrix form as follows:
(., R R R ] . ]
R, R, R, ;_:le,le (v (o0)-v¢ (0))
Ran 1 Rgp ] Rga D, ] d
o 1+—=1 - —_ Ry oC 0
Rl RQ Rn D2 kgl k 2%k [vk(oo)—vk( )]
R, R, Royon D, <
1 2 S [1+ ’ ] " 3 Ry Ci (0 (00} (0))
L 1 R R, ] k=1
RD=T
D=R'T (37)

Solving this linear system of equations would in general involve O[nS] arithmetic operations,
but will provide the delay values for all the nodes in the network. However, most of the time, we
need to solve for only a few nodes. In the next section, we provide an O (n) algorithm for delay
computation at a node in a standard RC network.

8. Hierarchical Approach for Delay Computation

Prior to any further discussion, a more constructive definition of standard RC networks than the
one provided in Sections 1 & 2 is given. A standard RC network is recursively defined to be one
of the following:

a) A resistor in series with a nonideal capacitor. The free end of the resistor is the input,
labeled 2, and its other end is the output, labeled 1. The other end of the capacitor is
grounded. This is shown in Fig. 3(a). This network will also be referred to as the primitive
element or N, in the rest of the paper.

b) A series connection of the primitive element and an RC network with n nodes, N, , to
give N, ,i. The input of N, is the input of N,, with the input of N, connected to the
output of No. The nodes in N, ;. are renumbered as follows: The node numbers in N,
remain unchanged. Node 2 of No1is relabeled n +1. This is shown in Fig. 3(b).

c) A parallel composition of an n -node network N, with an m-node network N,, , forming
a network N, m_1- The input of N, ;m_; is the input of N,, as shown in Fig. 3(c). The
nodes in N, .1 are renumbered as follows: The node numbers in one of them, say Ny,
remain the same except for the input node, while the node numbers in N,, get incremented
by n-1. The input node of N, , ., gets the label n+m -1.



In all three cases, the input node is connected to VDD.

Figure 3(a). The primitive network N,.

@ Ta @ N n
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Figure 3(b). Series composition.

&) N»

Figure 3(c). Parallel composition.

Having defined standard RC networks as dealt with in this paper, we define certain parameters
associated with such a network. All parameters defined below are for N, , a standard RC network
with n nodes.
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Definition 8. p(") {dimension : resistance ) is the effective resistance between the input
node and GND.

Definition 4. v (")(c0) (dim : voltage ) is the final voltage reached at node k in N, .

Definition 5. 7"} (dim : time) is the delay at node k in N, .

Definition 6. 70,*) (dim : time) is the delay at node k in N{(n, r, R, C,0,VDD,).

Definition 7. D™ (dim : time -voltage ) is defined as v *)(o0): n),

Definition 8. Do®) (dim : time -voltage ) is defined as v,(*)}(00)70,").

Definition 9. (R,,"] ") (dimensionless ) is defined as the sum of all elements in row k of
matrix R, as defined in eqn. (37).

Definition 10. C™) (dim : charge) is defined as

Tt =33 Giul)oo) (38)
k=1
Definition 11. A®) (dim : charge) is defined as
n D (n)
A =3 = (39a)
P &7
Definition 12. A§*) (dim : charge) is defined as
n DO (n)
A =Y = (39b)
st B

Definition 13. o®) (dim : conductance) is defined as

(n)

ooy ) (40)
o\t = _— 40
k=1 Ry
Definition 14. Q*) (dim : charge) is the total stored charge in N, , at time ¢t = O:
QM =3 & (41)
k=1

We are now in a position to state a theorem, based on which we present an O (n) algorithm for
delay calculation at a node.

Theorem 5(a). For the primitive element N (see Fig. 3(a)), the various parameters are given

by

p? =r +R,

,,1(2) (e0) =VDD'[—§-1——)
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2
2) — . !
D01 VDD 011'11 1+R1]
riRy
A{D = VDD-C
¢ l(rl+Rl)
C r Rl
@ = 21 [VDD- —v 0] (42)
A T +R1 T +R1 1()

Theorem 5(b). Given the parameters for network N, , the parameters for the network N, .
(see Fig. 3(b)) are given by

Rnp(")
=R M

p(n +1)

ru
v " *(00) = VDD[ 1- —(——]

p n+1)

”i("H)(OO) =

- ) ]

(n+1) —_ , (n+1) ~
C v, (o0) [ C, + VDD

QU+ = o, (0)C, +Qf*)

(n+1) 1
(R:) =
1 +—— +r,0")
R, "
(n+1) . (n) . (n)
(R7) = (R7) - (R])
(n+1) 1
(n+1) r A gin)
o (R?) [0 o ]
(n+1)
1) | o . N ) (n
D,,("“):r,. [R,,') '[C’( +1)_Q( +1) _ aAln) W—I)AO )
{n+1)
r (n+1) =(n+1) Un (OO) ] {n)
Do,**) = r, (R)) -[0( -\ DD — B¢
(n+l)(oo)
(2+1) — pg.(n+) lﬁ‘___]poi(ﬂ)
Do, Do, +| 55

(n+1)

D; (41 — D,(®) +po,*+Y) - Do,") - r, [R,-'] . [Q(n+1) +AlR) _ Ao(")]

(n)

ot +1)‘D0,.(" +1) vn(n +1)(Oo)
[n+1) + VDD A
(R:)

Aén +1) —
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AGH) — AR AR A -1, (Rnr]("“).(,(») [Q(..+1) LAR) Ao""]

(43)

Theorem 5(c). Given the parameters for networks N, and N,,, the parameters for the network

N, +m (see Fig. 3(c)) are given by
pm)p(m)

(n+m-1)
p n m

v, (M(oo), ifi =12 ..,n-1

(n+m-1) —_ {
vi (c0) v;{m) (00), if§{ =1n,n+l, .., n+m-2
Gl+m-1) — ) L Gim)

Qir+m-1) — ) 4 Q(m)
(=)

. (n+m-1) (R'-'] 1=12,...,n-1
(R" ] = {R~'_ H](’”) i=n,n+1,...,n+m-2

Sl tm-l) _ ln) | glm)

p;®) §=12,..,n-1
D.(n+m—1)={ 1T
i D;m) i=n,n+1..,n+m-2
Do, i=1,2,..,n-1
D0~("+m_l) — { * T
g Do), t=n,n+l,.,n+m-2

Ao(n+m—1) — Ao(n) +A0(m)
Alr+m-1) — Aln) L Alm)

(44)

The algorithm for delay computation at a node in an RC network follows immediately from
Theorems 5a-¢. Starting from all the leaves, build the tree using steps a, b & ¢ as given earlier in
this section, until the entire tree has been built. At each stage of construction, update the

relevant parameters as given by Theorem 5. 7;, the delay at node 1 is then obtained as
D;
v; (00) - v;(0)

Tf =

(45)

It turns out that when all leakage resistances, Ry, are set to infinity, and VDD is set to 1, the fol-

lowing happen:
1) p{*) is infinite for all n .
2) v;(*}(co) =1, for all ¢ and n.
3) C™) is the sum of all capacitances in IV, .
4) o*) At Ad*) go to O forall n.

)
5) (R¥) =1,foralln.
Based on these five observations, the theorems can be appropriately simplified.

In the case of no initial charge (Q(") = 0, for all n ) the following happen:
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1) D;*) = D0,*) for all i and n .
2) AlM) = A" for all ¢ and n.

In the next section, an application for RC trees with leakage is provided.

7. Some Examples

Two examples are presented in this section: one is a charge sharing network and the other is a
standard network with a leakage path to ground. The results obtained using the methods
presented in this paper are compared with those of SPICE. In the case of the standard network,
we also compare our result with that obtained by the Lin-Mead model.

Example 1. A charge sharing network. Consider the nMOS dynamic-RAM cell shown in Fig.
4(a). The RC network derived from this is shown in Fig. 4(b).

E@éeﬁ

Figure 4(a). An nMOS dynamic-RAM cell.

Figure 4(b). The RC network derived from Figure 4(a).

The network parameters are given below:
n=2
ri=5KNN
Cy =16 X 1072 pF
Cy=12 X 107! pF
Q, =8 x 101" C

Q2 = 0 0
v; , the final voltage reached by the network is
-14
v = 8 x 10 — 0588 V

1.2 X 10+ 1.6 x 107
From (29), we get the values of delay at nodes 1 & 2.
5 X 10° X (1.6 X 107')* x (0.588 - 5)
0.588 X (1.6 X 107 + 1.2 X 107%9)

5 X 10° X (1.2 X 107%)* x 0.588
(0.588 - 5) X (1.6 X 107 + 1.2 x 107'%)

2 == = 7.06 X 107! sec

= 7.06 X 107! sec

1= -
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From (12), we get an estimate of the waveforms at the two nodes.
vot) = 0.588(1 — ezp (-t /7.06 X 107))
v,(t) = 0.588+ 4.412 exp (-t /7.06 X 107'})

Exactly this waveform is obtained by a SPICE simulation of the charge sharing network.

In fact, the time constants 7, and 7, obtained by algebraically solving for the voltages in this net-
work are

C1C,

— = 7.06 10!t
r ox C, X sec

T = Tg =

Example 2. A standard network.
Consider the NAND gate shown in Fig. 5(a), with both gate transistors in the ‘ON’ state. The
RC network derived from this is shown in Fig. 5(b).

vDD @

inl —{ - ®§,,

0
in2 _..I

Figure 5(a). A nMOS NAND gate.

v)}

Figure 5(b). An RC network for the circuit of Figure 5(a).

The network parameters for our NAND gate are given below:
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n =4

Tl=5KQ
7222.5}{0
T3=40KQ
Rl=5KQ

C, =16 X 1072 pF
C,=0.8 X 1072 pF
C3 =16 X 107 pF
Q, =8 x 10" C
Q, =4 X101 C
Q=8 X101 C
vy = VDD
The nMOS circuit is clearly in the discharging state: to change the logic state of node 2 from logic
‘1’ to logic ‘0’
Solving for the delay at node 2, we obtain:
v = 0.2VDD
D, = -2.272 X 10'° VDD

—2.272 X 10°1°VDD
0.2VDD - VDD

Thus the voltage waveform is estimated to be

vy(t) = 0.2VDD + 0.8VDD ezp (-t /2.79 X 107)

= 2.79 X 1070 sec

Tg =—

Solving for node 1, we get
v ¥ (c0) = 0.1VDD
D =-1212 X 10*'VDD
7, = 1.3467 X 107! sec
The voltage waveform at node 1 is

vy(t) = 0.1VDD + 0.9VDD ezp (-t /1.3467 X 107

Solving for node 3, we get
vd¥ (c0) = 0.2VDD
D = -2112 X 107°VDD
T3 = 2.64 X 10719 sec

The voltage waveform at node 3 is

vy(t) = 0.2VDD + 0.8VDD ezp (-t /2.64 X 1071%)

Fig. 6(a) - (c) shows plots of the “best fit” waveforms of vy(t), vy(t) and vs(t) respectively for
the case where VDD = 5 V. Also plotted in the same figures are the waveforms obtained by a
SPICE simulation of the RC circuit.

The waveform obtained by our analysis follows the SPICE waveform very closely, although it 1s a
single time constant approximation.
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On the other hand, the Lin-Mead model for discharging ignores the path to VDD and gives
waveforms that go from VDD to 0.

T I ! |

Best-Fit

Figure 6(a). The waveform v(t ) for the circuit of Figure 5.

8. Conclusions

An expression for delay, based upon the delay of Elmore, has been derived for RC trees with
charge sharing or leaky capacitors. Our definition of delay provides a ‘“best fit’’ exponential
waveform in networks with charge sharing, with more than one source and with nonideal capaci-
tors. The analysis of the charge sharing and standard networks is a first step towards a uniform
characterization of gates, switches, wires and dynamic RAM cells in any current VLSI technology.
We are currently examining the use of these networks in ELOGIC [7].

An important fact to keep in mind when using our results is that we have provided a “best fit”
single exponential for the linear RC model. A simulation program like SPICE can handle non-
linear circuits, although much more slowly. Thus, an interesting topic for future research is to
study the effects of linearization and the speed vs. accuracy tradeoffs in simulation programs.

We also need to study the usefulness of bounding the waveforms of a nonlinear circuit by
waveforms derived from a linear circuit, and, if found useful, derive tight lower and upper bounds
on the waveform. One important step in this direction is the derivation of bounding waveforms
for linear circuits [9, 11, 12].

Another important problem requiring attention is the characterization of wires as transmission
lines. Two questions arise: 1) what linear model do we adopt that is both accurate and easy to
analyze, and 2) can the ideas used in this paper be adapted to analyze these linear circuits.

We believe it will be possible to extend our results from RC trees to more general classes of RC
networks. In particular, it should not be difficult to analyse RC meshes with charge sharing and
leakage, since the underlying mathematical structure is still a system of linear differential equa-
tions with constant coeflicients. Our current research effort is to extend our results to RC net-
works with floating capacitances, in order to model the important ‘“‘Miller effect’”.
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PICE

Figure 6(b). The waveform v,(t) for the circuit of Figure 5.

—Qur-Bes:-Fi

ur-Best-}

it

Figure 6(c). The waveform v4(t) for the circuit of Figure 5.
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Appendix.

Proof of Theorem 1. From (4), it follows that

vi(oo) = v (0) + ein+ - +cin
and
n Lid n-1
OTTQ+ tes)+ e [T+ tias)+ - + e [T+ tins)
1 k=1 k1 =1
Vi(8)= 5 —
TG + ties)
k=1
It follows that
bip=tia+ "+ i,
and
a; | = v (0)(tig+ - A )t eaaltiot o H )+ s FatiaF  F ba)
o U,‘(O)""C."l-{— +c'-’n
Thus,
7.10= bi,l“ 4, = $,1%,1 i, ti,n

Ki (oo)

Proof of Theorem 2. The Superposition Theorem [2] states that, at any time ¢,
v(n,r,R,C,Q,V)=uwv(n,r,R,C,Q,[v,, GND, ..., GND])
+v(n,r,R,C,Q, [GND, v, ..., GND])
+ o
+v(n,r,R,C, Q,[GND, GND, ..., v,})

Since integration is a linear operation, Theorem 2 follows immediately from this and the
definition of D; .

Proof of Theorem 8. Again, from the Superposition Theorem, we have, at any time t,
vi(n,r, R, C,Q,VDD,)=1v;(n,r,R,C,Q,GND,)+v(n,r, R, C,0,VDD,)
Theorem 3 follows immediately from this and the definition of D; .

Proof of Theorem 4. Instead of directly evaluating the various integrals in (35), we consider the
expression for D; in the Laplace transform domain.

D; = lim

e —0

(1))

¥ R, |G (sVa (o) - o)) +

k=1

Vi(s) B Ry ; v (o0)
Rlc Rk 8

From (2) and (1’), we have

(14 ag18 +.+ azn8)  Rei v(oo) [1 (14 ag 18 +.4 a5 ,5)

n-1
D, =1 R ; C - -
-l—%,g_;l ki i v (o) (14 bgq8 +.c4 be n8) R, s (1 + bpgs +.4 by a8)

On taking limits, we get

D = £ Res Gulon (o) - (0) - 2

v (00)(by 1 G ,1)

From (10) and (13), we know that D is the same as v (00)-bs,1 — ¢ 1.

Theorem 4 follows from a rearrangement of terms.
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Proof of Theorem 5(a). From Fig. 3(a) and the definitions, the expressions for p® v @ (o0), cw@
and Q ) follow.

By simple analysis of the circuit using Kirchoff’s laws, we have

v,(0
2oy — VDD[?TI][ %Z]
[+ o)
Hence, we have
vy(o0 11k v,(0) v,(o0)

¥ = (bu1 - e o )—vl(o)_ln+R1 VDD 1“) v1(c0) = v4(0)

By simple algebraic manipulation, we can show that
riky

= (| —————
! 1T1+R1

Therefore, the expressions for D 2 and Do @ follow.

(@
Now, the expressions for (RI] , 0@ AP and A follow.

Proof of Theorem 5(b). The expressions for p* 1), v,(* +1(c0), v;(**V(c0) and Q**Y follow from
their definitions and Fig. 3(b).

n+1) n+1)(

The expression for C { now follows from its definition and the expression for v 00).

In the subsequent discussion, all primed parameters stand for quantities in N, ,; and unprimed
parameters for quantities in N, . In N, ., the system of equations represented by (36) becomes

r R . 21 R .
®_p(a+1) i | p.a+) ki b (n+1)
7 DY+ [1 * R, D; + :‘7:.-1?:: Dy
n-1
= E R} ;G (Uk("+1)(°°) - v (0)) + 1, Gy (vn("“)(oo) - v, (0))
k=1
i=12,..,n-1 (2))
and,
[1+ = D(n+l)+ E D(n+l)
n k
— § G (@ *9(00) - 5 (0)) + 72 Ca (5, *D(00) — v, (0)) (3)
k=1
Let

D;(*+1) = p.(») 4 Ap,(»)

Subtracting (36) from (2’), we get

R’ . r
(L kit n) "_p(n+1)
[1+ R, l )+ 2 _AD,™) & 7 D,

le;él n
n-1 n-1
= YR Ci(u™ oo) - v{*0)) + 2 1, Ci (" *(00) ~ v (0))
k=1 =1

+ Ta Cn (vu("+1)(°°) — ¥ (0))

n-1

Ta
- E D,

¥ =1 B

9 ()
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Rewriting (3’), we have

= S ADk(n) + [1 4 Tn )Dn(n+l)
k=11% Rn
n-1 n-1 T
= 3 7 G (5" ) (00) = 14 (0)) + 1 O (24" ) (00) - v (0)) - 7 7 D, (57)
k=1 E=1""%
From eqns. (4’) and (5’), and using the expression for vi* *(00), we get
= R ;
(1+ R ;)AD™ + Y] };" AD,®)
ki 1T
O ) ~ ()
=D, - —1) : G ' =1,2,...,n - ’
+ VDD kz_;:IRk" k Uk (OO) t 1,2, yn 1 (6 )
We can now put the system of equations represented by (6’) into matrix form as follows
(n +l)( )
Uy 00
R-AD = D,En‘H) + W)—— - 1] Ty (7’)
where
'ADl(n).‘ -Dn(n+l)-
ADg(n) Dn(" +1)
AD = | D+ =
ap,) Dt
and
n-1 ]
Y Ry 1 Gy vy (o)
E=1
n-1
Ry 2Cy v (00)
E=1
TO =
n-1
Y Ri a1 Ch v (o)
k=1

From (7°), it follows that

VDD
Going through a similar analysis for ADO; ™) we get

n (n +1)
AD..(") — (R'r]( )Dn("+l) +D0,-(") Un (oo) _1]

() v (n+1)(oo)
=) — (R (a+1) .(n)[;.__ _ ]
ADO; (R7) Do*Y + Do, VD 1

Substituting (8’) in (5’) and using the definitions, we get
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{n+1)
5(n+1) _ Q(n+l) _ A(") _ [ Uy \rDIgOO) _1 Ao(ﬂ)
D+ — (107)
" o™ 4 o 4+ L
R, Ty
It follows that
S+ _ [ " o) ]Ag")
VDD
DOn("+l) — - - (117)
(n)
o+ R, + =
From (9’) and (11’), we get an expression for Do, (»+1),
Gin+1) _ Iﬁl)(_‘”l A
Do,*+) = (R/) . PP : + ) ]DO (») (127)
i = o) 4 1 N 1 VDD i 2
R, T
and from (8’) and (127)
(rr) "
D,-("_H) —_ D;(") + DO.-("-H) _ DO‘.(") _ - ’1 - . ( Q(n) -+ A(") - Ao(")] (137)
o\" + . + .
From the definitions of A{"*Y and A®*!) and from (12’) and (13’) we get
! (n)
+ o
IRn _ v,,("“)(OO) v,,(""’l)(oo)
At = gy (ot [t | adn) + | ppet | & )
+ R, + m
and
(n)
Aln+1) — Aln) 4 A0(n+1)_A0(n)_ Ul - [Q(n+l) + Al _ AO(")] (15”)
o) 4 T3

To prove the rest of the theorem, we rewrite (11°) as follows:

(n+1)
1 (n+1) _ Hln+1) _ Un (OO) n)
Rt |P% ¢ VDD ]A(’(

o) +

Using the definitions, we expand the terms to get

Tn

1+

+ ra o] Do,

" +1)(c0) ] n-1 Do, (")

n-1
= Ty vn(n+1)(°°)0n + Z Ci vk(n+l)(oo)] — Ty VDD ; R,
=1

k=1
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Again, expanding for DO, , we get

n-1
+r, a(n)] Don(nﬂ) =r, {v,,("“)(oo)o,, + Z C vk("“)(oo)]
)

[1+
k=1

R,

E ) Z (ch](n)[iR.‘,k C; vi("+1)(°°)]

_1—1 k=1 i=1

S [ @) [0 e )+ 5 0w (16)

J—-l =1 =1

ﬂ
where (R;C] denotes the sum of all elements in column ¢ of the n -1 X n -1 matrix R,

By rearranging terms in (16’), we get

¢ raot®)] Do) = [

(14 S (EE)")

J—l =1

Tn
R,

= [VDD l E ] (R ) ]HX;]IIRL.- Cy v{™ *V(c0)

(n +1)
Now, from the definition of (Ry]  , it follows that

, (n+1) 1 ,
(Ry) = (17°)
1+ — + r,ol*)

and from (9°) and (17°), we get
(n+1) NGRS ,
(r1)" = (r1) " (RD) (18)
The expression for o® *!) now follows from its definition and egns. (17°) and (18°).
The final forms of the expressions for D,(**1, Do, (*+1) Dg;(»+1 D, (»+1) A ("+1) and AP+ can
now be obtained from (10°), (11°), (12°), (13’), (14’), (15’) respectively by simple algebraic manipu-
lation.

Proof( oj)' Theorem 5(c). From Fig. 3(c), it is clear that p®*™-1) is the parallel combination of p'*)
and p\™

Again, from Fig. 3(c), we note that the final voltage reached at any node in N, is the same as
the final voltage reached in N, or N, , since these two networks are connected only at the source
node. Hence, it follows that

Blntm-1) _ 5) . gim)
The expressions for D;(**™~1 and Do;(®*™ 1) hold for the same reason.

The expression for Q *+m-1) follows from its definition.

_1)

To see why the expression for (R,") holds, note that the system of equations represented

by (37) now has n +m -2 variables and n +m -2 equations. Entries in the matrix R correspond-
ing to rows ¢, +=1,2,...n-1 and columns j, j=n,n+1,.,n+m-2 are all zero, as are the
entries corresponding to rows ¢, f=n n+1,...,n+m-2 and columns j, j=1,2,.,n-1. The
other entries are the same as in the R matrices for N, or N,, .

The expressions for o**™-1) Ad»*m-1) and A"®*™-1) follow from their definitions and the discus-
sion above.

Proof of Corollary 1. From the proof of Theorem 1 and from (10), the corollary follows.

Proof of Corollary 2. Since Q represents the final charge attained by N(n,r,R,C,0,VDD,),
Di(n,r,R,C, Q@,VDD,)is 0. Now, the corollary follows from Theorem 3.

3 Ri o Ci 0 t(c0)
F=1
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