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Abstract

In this paper we examine the problem of query optimization for extended data manipulation

languages. We propose a set of tactics that can be used in optimizing sequences of data base

operations and describe the corresponding transformation procedures. These transformations

result in new equivalent sequences with better space and time performance. The proposed

techniques are especially useful in artificial intelligence and engineering applications where

sequences of commands are executed over high volume databases.
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1. Introduction

Existing database languages, including QUEL ([STON76D and SQL ([CHAM76P, were

designed to meet the needs of business data processing applications. That generation of

languages, and their associated database management systems, are now reaching maturity.

Benefits of DBIVEs and languages include efficient access to large disk-based data sets and

a nonprocedural interface to data. Disk-based data, and complex programs requiring a higher

level programming interface to data, are now beginning to be common in other applications

areas, such as artificial intelligence and engineering design automation.

To extend the benefits of the data base approach to other areas, many researchers have

defined various extensions to existing database languages. Examples of these extended

languages include the language QUEL* ([KUNG84D, designed to support artificial intelligence

applications, GEM ([ZAM83D, *° support a semantic data model, and the proposal of

([GUTT84]), for support of VLSI design.

As with the introduction of relational DBMSs, the first attempt at implementing these

extended query languages has resulted in terrible inefficiencies, e.g. several minutes to search a

path through a 30 by 30 nodemap dKUNG84D. Relational DBMSs were made efficient largely

through the use of sophisticated optimization algorithms ([WONG76,SELI79]). In this paper

we propose an extension of those optimization algorithms to the new extended query

languages. Although we use QUEL* as an example, the principles we propose should be appli

cable to a wide variety of extended languages.

In this paper we will consider only the case of programs consisting of database com

mands embedded in a host language, although our results also apply to interactive commands.

It is common to optimize each query in a program separately. To "optimize" a query means to

choose among the various ways of executing the query. For example, there may be a choice of

indexes to use, or a choice of strategies for executing a relational operator such as the join. In

([FINK82]) it is proposed that some interquery optimization be done. We extend those ideas

here. We know of no actual implementation which does interquery optimization.
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The paper is organized as follows: In the next section we present the extended language

QUEL* and define the optimization unit. In section 3 we describe various optimization tactics

for use by a QUEL* optimizer. Each of these tactics is related to a tactic from some other area,

namely compiler construction, query optimization, or physical database design. In Section 4

we present two new optimization tactics, each of which transforms a sequence of QUEL*

commands into a single REPLACE command. Finally, section 5 contains our conclusions and

ideas for future research in the area.

-2. What is Optimization ?

Optimization in database languages means to choose among the various ways of executing

a command or set of commands in the language. For example, there may be a choice of

indexes to use, or a choice of strategies for executing a relational operator such as the join. In

this section we will examine what optimization will mean for extended languages. We begin

the motivation of our definition of optimization by reviewing the structure of QUEL*.

2.1. QUEL*

QUEL* is an extension of QUEL, designed so that it is possible to code relatively sophisti

cated algorithms in QUEL* with little or no need for statements in a host programming

language such as C. QUEL* adds to QUEL two new constructs, namely transitive closures of

some QUEL commands and an EXEC command.

In QUEL*, by a transitive closure of a command we mean repeated application of that

command until the database does not change. For example, the following command makes Joe

the manager of every employee who eventually reports to Joe via the hierarchy of managers

(the transitive closure of a command is denoted by the command followed by a "*"):

REPLACE* emp (mgr ="Joe")
where empjngr *• empljiame
and empl-mgr = "Joe"

The addition of transitive closure operators to QUEL was first proposed in [GUTT841 where it

was identified as crucial to VLSI design applications. The APPEND* command especially
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behaves in the same way the Least Fixed Point operator does in [AH079b]. For example, the

APPEND* command makes QUEL* capable of computing the transitive closure of a relation.

The second new construct in QUEL* is the EXEC command, which executes a sequence

of QUEL* commands. This EXEC command is similar to a suggestion in [STON84] which gives

recursive power to QUEL by allowing the system to execute relation fields. It is most useful

in its EXEC* form, when the given sequence of QUEL* commands is executed repeatedly,

until the database does not change. For example, given a map with costs between neighbour

ing points described by a relation FEASIBLE (source,dest^ost) and a relation

STATES (dest,cost) which will give for every point in the map its current cost from some

specific START point, the following code represents an algorithm that finds the shortest-path

from START to FINISH :

RETRIEVE into STATES (dest = START, cost = 0)

range of s,t is STATES
range of f is FEASIBLE

EXEC*

{
APPEND to STATES (dest = f .dest, cost = fxost+sxost)

where shiest =» fsource

DELETES

where shiest = Uiest and sxost > txost

'• or sxost > tcost and tdest = FINISH

}

2.2. What is an optimization unit?

Each new command in QUEL* represents a sequence of one or more QUEL commands.

This is also true of the other extended database languages we have mentioned. In Guttman's

thesis ([GUTT84D the only new constructs are the * operations of QUEL*, and GEM has been

implemented on top of INGRES ([TSUR84]). A primary difference between business data pro

cessing and other applications areas is that in the business data processing environment data

base transactions are short, or involve one complex command, whereas in the domains for
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which extended database languages have been designed, transactions are lengthy and complex.

Since a command in an extended language typically represents several commands in a classical

database language, in this section we will propose that our query optimizer operate on a

sequence of commands rather than the traditional approach of optimizing a single command at

a time.

As a first attempt at designing a QUEL* optimizer, we could merely optimize each

corresponding QUEL command separately, using an existing QUEL optimizer. For example, a

REPLACE* command would be processed by generating one REPLACE command, optimizing

and executing it, and continuing until the execution of the REPLACE command does not

change the database.

We use the term "optimization unit" to refer to the unit acted on by the optimizer.

Thus in QUEL the optimization unit is a single QUEL command ([STON763).

We propose that for QUEL* the optimization unit will be a single QUEL* command,

including even an EXEC or EXEC* command. With our proposal we have effectively made

the optimization unit equal to any sequence of QUEL* commands, for any such sequence can

be the argument of an EXEC command. In fact, if the programmer wishes, he can code an

entire QUEL* program (containing no programming language commands) inside a single EXEC

statment and the optimization unit will then be that entire program. There are at least two

advantages to enlarging the optimization unit:

(1) The optimizer has more information on which to base its decision. For example, know

ing that there will be several consecutive REPLACE commands executed, the optimizer

may elect to build an index which is not worthwhile for only one REPLACE.

(2) The optimizer has more flexibility to rearrange the order and implementation of opera

tions. For example, in an EXEC* which includes a DELETE command, it will be useful

to do the DELETE operations as early as possible, in order to reduce the size of the rela

tion to be processed.
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There are also at least two possible disadvantages to this approach:

(1) Concerning the notion of transaction, we note that an optimization unit must be smaller

than or equal to a transaction unit. This is because the optimizer may completely rear

range the order of execution of commands in an optimization unit. If there were an

end-transaction statement inside the optimization unit, it would have a completely

different meaning after a rearrangement. We know that as the size of transactions

grows, the degree of concurrency decreases. In our context this means that as the optim

ization unit grows the concurrency will decrease. On the other hand, concurrency con

trol is not a significant issue in many applications (such as artificial intelligence) for

which these extended query languages are defined. In engineering design applications

the most significant issue is how to handle very long transactions which occurs as a

result of the nature of design (e.g. checking out a chip design for several days). There

fore increasing the size of the transaction unit may not be a significant disadvantage for

extended database languages.

(2) As the size of the optimization unit grows, so does the complexity of the optimization

.task. The first comprehensive approach to query optimization ([WONG76D proposed

query decomposition as a method to avoid searching the exponentially growing space of

query processing strategies. However, the most successful query optimization method

has been that of System R ([SELI79D, which does perform essentially an exhaustive

search of the strategy space. Even System R's strategy avoids searching the full strategy

space by, for example, considering joins of at most four relations. Therefore if we allow

the optimization unit to grow arbitrarily, the cost of searching the strategy space may

exceed the savings in efficiency.

The benefit of these advantages, and the cost of the disadvantages, grows with the size of

the optimization unit. The size of the optimization unit is to a significant extent under the

control of the programmer, who can enlarge it by placing several QUEL* commands inside an

EXEC command.
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3. Optimization Techniques

In the previous section we proposed that an optimization unit be any QUEL* command,

including an EXEC (which can include an arbitrary string of QUEL* commands). We claimed

two advantages for this enlarged optimization unit, namely that the optimizer has more infor

mation and more flexibility. In this section we list specific techniques to make use of this

added information and flexibility.

The three classes of optimization tactics we present in this section are each closely

related to techniques used in other contexts, namely compiler design, query optimization and

physical data base design.

In many of these tactics the size of relations is an important factor. Most of the tactics

can be implemented as part of either a compiler or interpreter. In the compiler case, statistics

must be estimatedusing methods analogous to those used in System R ([SELI79]).

3.1. Compiler Design Techniques

Optimization techniques in compiler design focus especially on two areas ([AH079D

- loop optimization (time), and

- temporary storage management (space)

3.1.1. Loop Optimization

In data base commands loops are found in two levels, single queries and transitive clo

sure (*) operations. The loops of the first kind are inherent in the commands. For example, a

query involving a join between two relations can be implemented with a nested loop. On the

other hand * operations are explicitly user defined loops.

The case of implicit loops has been studied in the past as the problem of finding execu

tion plans that minimize execution time and avoid calculating the same expressions many

times ([BLAS76,EPST79]). This corresponds to identifying loop invariants in compiler design.
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In the context of * operations a new problem arises, namely the problem of identifying

loop invariants within a set of commands. For example, aggregate computations that involve

relations not updated during the execution of one iteration can be evaluated outside the loop

and be replaced with a constant in the body of the loop. This resembles the previous case of

intraquery optimization and the gain in execution time is substantial especially in cases where

the result of the aggregate is involved in join clauses. An algorithm that does this transforma

tion can be very easily derived for each aggregate in the loop, it will check if it involves rela

tions that are not updated before this aggregate is encountered in the loop. If this is the case

then the aggregate can be computed outside the loop and stored in a variable which then

replaces every occurrence of the aggregate in the loop.

A more careful treatment of aggregates in loops is also possible if after doing the

modifications suggested above there are still aggregates to be calculated in every iteration. It

may be worth incrementally computing those aggregates, Le. computing them once in advance

and then every time the data involved changes after an update operation. For example, con

sider a query that needs to compute the average salary of all employees. We can define a

"variable" AVG that will hold the result of this aggregate. Then, given an operation that

inserts k new tuples with salaries sa^ ^al2 ,-^alk »the new value for AVG is computed using

the formula

AVG*NUM + £sali
AVG = — .

NUM+k

where NUM is the number of tuples in the relation. Similar formulas can be derived for all

common aggregates, like MQN, MAX, SUM and COUNT. This technique will usually result in

a more efficient implementation, if the number of inserted or deleted tuples is smalL

Although it will not work in all cases, it is not difficult to identify the aggregates for which

it will work. Aggregates with no qualification part or with qualifications that are time

invariant (do not include relations that are modified through out the execution of the loop) are

clearly good candidates for this optimization.
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Another common example of loop invariants is common subexpressions. For example,

suppose we are given a sequence of operations on the EMPLOYEE relation where all

qualifications restrict the initial relation to the set of tuples of employees working for Joe.

Then it might be more efficient to create a temporary relation in advance that will contain

only the tuples of those employees. This problem is examined in more detail in the following

section because it is not found only in loops but generally in any given sequence of commands

and is viewed as the problem of temporary storage management.

3.1.2. Temporary Storage Management

The problem of temporary storage management in the context of data base operations is

how to optimize commands by reusing results (eg. temporary relations) from the execution of

preceding commands. In compiler design the same problem is found as the common subexpres

sion problem GAH079D.

The problem can be attacked from two different directions. First, one can build a sophis

ticated caching scheme where temporary results are saved and can be used later in the execu

tion of other commands (see [FINK82] for a detailed discussion of this approach). This scheme

must be sophisticated since indexing of queries and clever validity and utility factors for the

implementation of the cache must be invented. In [FINK82] the problem of identifying useful

temporary relations that are saved in the cache is examined using the query graph representa

tion for queries.

In this paper we describe a second approach, which is performed at compile time. This is

contrasted to the run time approach that caching corresponds to. The problem that we exam

ine can be stated as follows :

Given a sequence of QUEL commands is there a set of temporary relations that can
be constructed and when should each of them be created so that the execution is
more efficient in terms of temporary space usage and execution time.

For retrievals the above problem can be restated as rearranging the sequence of queries and

arranging the construction and saving of the temporaries so that the new sequence of queries
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is equivalent (produces the same set of answers) but more efficient then the inital one. We

will briefly refer now to this second problem.

As it was stated in the previous section, there is much analysis that can be done if a

sequence of data base commands is given in advance. In conventional query processing, tem

porary relations are created depending on the query optimization methods used. It is the case

that some of these temporaries are known that will be created well in advance. For example,

temporary relations in INGRES are known except in the case of tuple substitution where the

size of the relations is crucial and determines the outcome. We can observe that there are

various ways to solve the temporary storage problem. First, one can use some normalized

representation of queries (eg. query graphs or tableaux) to examine how the execution of a

query affects the execution of another query in terms of common subexpressions. For exam

ple, a simple minded approach would be to examine all possible permutations of the sequence

in which the queries are executed and use the procedures from [FINK82] to determine what

the total cost of execution would be. To give an example, the cost of executing

RETRIEVE (emp.all) where emp^ge < 30
RETRIEVE (emp.all) where emp.age <40

is much higher than the cost of executing

RETRIEVE (empjill) where emp.age <40
RETRIEVE (emp.all) where emp.age < 30

since in the latter case the second command can use the result of the first query.

The next step would be analogous to the System-R's query execution planner ([SELI79P,

that is to build a decision tree and use some heuristic rules to prune down the size of the tree

that is searched. The difference is that here we have a decision forest instead of a tree where

each query is represented by a tree. Transforming this forest to another forest that guarantees

more efficient execution, is a process that must preserve some chronological order on the

sequence of the commands. Actually it is a problem similar to the serializability problem in

concurrency control ([PAPA79]) where given the sequence of low level operations (joins, res

trictions and projections) we would like to find a serial execution of the queries that
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corresponds to a nearly optimal sequence of the operations that is equivalent to the initial one.

The major factors considered in this decision process are

- joins among relations are expensive operations

- restrictions are also expensive in the absence of indices or other fast access structures.

Therefore one would like to minimis first the number of times the same join operation is exe

cuted and then, using the restriction clauses, the number of times the same tuples are touched.

Clearly there is a tradeoff between executing all joins first and then all the restrictions or

interleaving join and restriction operations.

To extend further the previous idea, one might come up with a notion of a distance

between queries. This distance will, somehow, measure the cost of executing one query given

the execution pattern (intermediate temporary relations and results) of the other query. Hav

ing numerical values to express the complexity of executing a query allows us to use tech

niques from other areas in order to design efficient execution plans. For example, in [SELL82]

the distances between characteristics of speech phonemes are used to define a potential func

tion in the phonemes space. Then some notion of force is used to group characteristics of simi

lar phonemes into clusters dKACH82D and a representative is selected for each cluster. In

analogy, using similar algorithms we can identify clusters of queries which will be covered

by the representative query. By "covered" we do not necessarily mean that the result of

every member of the cluster is directly available from the result of the representative, but

that the cost of getting this result from the result of the representative is much less than the

cost of executing the whole query from the beginning. Finally, this technique can also be

thought similar to reduction of single queries ([WONG76D in conventional query processing

where "loosely connected" subqueries within a single query are identified.

When update operations are involved in the sequence the above ideas are not directly

applicable. In the next section we examine optimization techniques from query optimization

where update commands are also considered.
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3.2. Query Optimization Techniques

In 3.1.2 we examined a problem that is closely related to query optimization, namely

the problem of finding a sequence of join, select and project operations that produces the most

efficient execution pattern for a given query. In this section we examine some more ideas

from query optimization that are useful in optimizing extended query language constructs.

These are

- early restrictions

- combining operations

3.2.1. Early Restrictions

It is usually advantageous to restrict the size of the relations involved in a query as

early as possible in the execution plan. For example, INGRES selects to execute all one vari

able selection clauses in the first step of processing. In QUEL*, DELETE commands can be

thought as restrictions since they restrict the size of the relations involved in the subsequent

commands. Therefore, one might want to incorporate the effects of DELETE commands as

early as possible. Clearly this cannot happen always without changing the semantics of the

program, but there are many cases where this transformation will be very useful. The effects

of a DELETE command can be introduced by enchancing the qualifications of preceding com

mands. For example, the sequence

/* make Joe the manager of all employees */
APPEND to EMP (name=empjiame, salary=emp.salary, mgr=" Joe")

/* but ~ nobody can make more than his(her) manager*/
DELETE emp

where emp^alary > empl^alary
and emplJiame => empjngr

can be changed to

/* append only tuples of employees that make less than Joe */
APPEND to EMP (name=empjiame, salary=emp.salary, mgr="Joe")

where emp^salary <= empl^alary
and empl.name •» "Joe"
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/* and make sure nobody of the old employees make more than hisiher)
manager */

DELETE emp
where emp^alary > empl.salary
and empljiame = empjngr

Notice how the above transformation resembles the implementation of integrity constraints

using query modification ([STON75D. Doing this transformation, which is syntactic rather

than semantic, does not require a lot of knowledge about the query and most of the time

proves to be very useful, especially in cases where the number of tuples appended and

immediately deleted by the next command, is large.

3.2.2. Combining Operations

In single query optimization one might prefer to execute both a selection and a join in a

relation at the same time, to avoid scanning the same tuples twice. In our extended environ

ment one might like, analogously, to combine the execution of multiple commands. In the

case of RETRIEVE only commands, merging is possible and practical in many cases (the previ

ous section examined this problem).

Consider now a sequence of two REPLACE commands. We show in the Appendix that

there is a single REPLACE that produces the same result. This new command is the composi

tion of the two previous commands and the transformation is also shown in the Appendix.

Composition in the context of data base operations is defined in the same way as with func

tions. An update command like

range of t is T
REPLACE t (Target-list) where Qualification

can be thought as the operation

where

I (T,Ri,R2>*"»RnJ ~~

Here, h is a function that describes how values are assigned to fields of the relation T
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according to the Target-list.

The importance of this transformation relies on the fact that the relation updated is

opened and accessed only once and moreover the query processing engine can make the new

command more efficient than the separate execution of the two initial commands. The other

advantage is in changing a loop to a single REPLACE loop and is shown with an example in

section 4.

Examining other combinations of update commands we can see that there is no easy (and

sometimes there is not at all a) way to combine two different commands in one. For example,

an APPEND followed by a REPLACE cannot be generally changed to a single APPEND or

REPLACE It is also the case that two APPEND's or two DELETES cannot be combined

because the relation changes considerably by the addition or deletion of tuples, even in aggre

gate free commands.

3.3. Physical Database Design Techniques

Physical database design dSCH078D, assumes a given set of data, a set of commands to

that data, and frequencies of those commands. It then derives a physical organization, or reor

ganization, of that data which will optimize the cost of the given set of commands. QUEL*

optimization presents a similar problem: the optimizer is given a set of data, namely the given

relations and their organization, plus a set of commands, and some information about the fre

quency of the commands. The optimizer seeks an optimal reorganization (perhaps none) of the

physical database. What is missing is complete data on the frequency of the commands. For

example, the QUEL* command:

REPLACE* emp (mgr = "Joe")
where empjngr = empl.name
and empljngr = "Joe"

may benefit from the creation of indexes (if not already present) on the attributes "mgr" and

"name". However, the benefit will depend on the number of times the REPLACE is executed.

The optimizer must estimate the frequency of execution of each * command, using a heuristic
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such as those suggested in [KUNG841 where the same issue is discussed in the context of algo

rithm selection. With such frequency estimates, all the techniques of physical database design

are potentially usable by the QUEL* optimizer. However, the QUEL* optimizer must take

care not to reorganize the database in a way which will degrade future performance, e.g.

creating an index which will slow down updates for future commands which do not use that

index.

4. Transforming a QUEL* Command into a Single REPLACE

In this section we present two new optimization techniques which extend the technique

of combining operations mentioned above. Each transforms a sequence of QUEL* commands

into a single REPLACE command.

The transformation of several commands into a single REPLACE* command can yield

significant savings. It allows the optimizer to concentrate its efforts on processing one canoni

cal type of command, namely REPLACE Since REPLACE does not change the size of the rela

tion, the optimizer need make no estimates about that size. Processing need not involve the

overhead of handling several different types of operators. Experimental evidence indicates

that such a transformation does in fact save significant processing time for a particular class of

problems.

4.1. Bounded Problem Space Problems

Consider a QUEL* command where only one relation, say R, is modified and this relation

is known to be a subset of some other relation S, where S is known in advance of execution of

the given QUEL* command. It is also known that R remains a subset of S throughout the exe

cution of the given command. We will show that in this case it is possible to transform the

given command to a single REPLACE or, in the case of EXEC*, in a single REPLACE* com

mand.

In order to show that this transformation into a single command is possible, we first note

the result of the appendix, which shows that any two REPLACE commands can be combined

-15-



into a single REPLACE command. Thus we need only show that any data base operation on R

can be expressed as a REPLACE command. We do that by constructing a relation S* which is

equal to S with the addition of a new field, Present, with the following semantics :

a tuple from S that is currently in R will have a 1 in its Present field in S*

a tuple from S that is not currently in R will have a 0 in its Present field in S*.

We will now show that every database operation on R is equivalent to a REPLACE command

onS*

— An APPEND command is transformed to a REPLACE command where the tuples that

satisfy the qualification change their Present field value to 1. That is

range of r^ **• ,rm is R
(range definitions for other tuple variables)

APPEND to R (f j = valj, «^fk = valk)
where w2 (T1j2f~fmf-~)

becomes

REPLACE s (Present = l)
where si^ =vali
and si"2 = val2
and s^k = valk
and Wj (s1^2i-^mv-)
and S!.Present=l
and

and sm.Present=l

— A REPLACE command remains exactly the same with the addition in the qualification

of the clauses

and s1J)resent=l
and

and sm.Present=l

for all tuple variables T1j2r-Jm that range over R.

— A DELETE command is transformed to a REPLACE command where the tuples that

satisfy the qualification change their Present field value to 0.
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range of r,^* • • • ,rm is R
(range definitions for other tuple variables)

DELETEr

where w2 (riJ2r-ftmr~)

becomes

REPLACE s (Present =* 0)
where w2 (s1,s2wsm,~.)
and SiJPresent^l
and

and smJPresent=l

In all of the above cases the tuple variables Sj range over S* and the qualification changes by

adding clauses of the form

Si.Present • 1

for all tuple variables rj that range over the given relation R. This clause simply states that

the tuples that should be referenced from S are only those that would normally be in R, Le.

those that result from APPEND or REPLACE commands (Present=l) and not those that have

been deleted (Presents=0). It is also clear that in the case of an APPEND command one need

not include all fields in the new qualification. Only those fields that constitute a key should

be included. The number of those is in most of the cases less than the total number of fields

and the size of S much less than the cartesian product of the domains of the fields of R.

The reason for using the above transformation is that having a program with only

REPLACE commands we can, using a systematic procedure, turn it to a single REPLACE*

command (see Appendix). The problem is that in some cases the relation S is not known in

advance or it is an extremely large relation. In the first case this transformation simply can

not be used and other optimization techniques must be used to get a better version for the pro

gram. In the second case it may still be possible to do the transformation. We shall see an

example of this in the next section.
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4.2. Dynamic Programming Problems

The problems we discuss in this section share the property that all are some implementa

tion of the dynamic programming approach, in that a STATES relation, which contains (in

each tuple) the current best value of the cost to be maximized, is built using the usual

dynamic programming method. The example we use is a shortest path problem. The same

tactic that we present here can be used with other standard applications of dynamic program

ming, e.g. the knapsack problem or the reliability problem.

A complete QUEL* program for our shortest path example appears in section 2.1

above. There the relation FEASIBLE is fixed and the relation STATES contains at all times

the current state of knowledge about the problem. If we were to try to apply the technique

of the previous section, we would seek a fixed relation S which contains STATES for the life

time of the algorithm's execution. The problem is that such an S would have to hold a large

number of tuples for each node, namely one tuple for every number less than the current

cheapest cost of getting to that node. We will propose here a way to overcome this problem.

The shortest path program, like any program using the dynamic programming approach, con

sists of two phases.

In the first phase the relation STATES is expanded with the introduction of new
nodes,Le. the ones that can now be reached in the search space (expansion phase)

Then in the second phase nodes with the same "node" value are compared and all but
one are deleted according to some criterion, e.g. the cost of getting from the initial
node to that specific node (optimaUty phase)

The main loop of the program would be

range of r^i^2» ***Jm is STATES
(range definitions for other tuple variables)

/* expansion phase */
APPEND to STATES (node = valo, f x= val!, -JFk « valk)

where wx (r1^2r-^*mr~)

/* optimality phase */
DELETEr

where r-node => fjiode

and w(r,rV-)
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Moreover the function w is such that w(r,r',«.) and wCr^r,-.) cannot be both true (antisym

metric relation of r and r'). This means that only one tuple with a specific value of rjiode

will remain in the STATES relation after the optimality phase.

Let us now show that the above program can be transformed to a single REPLACE com

mand. First, we add a field Present to the STATES relation and call the new relation S. We

assume that initially all tuples in the S relation have their Present field with value 0. As

was explained in the previous section the APPEND command will set the value to 1 while the

DELETE will reset it to 0. Then the first command of the above program will be transformed

to

range of s^'^a • • • ,sm is STATES
(range definitions for other tuple variables)

REPLACE s (fi » valx, -/k = val^esent - 1)
where sjiode « valo
and Wj (s1,s2r_^5m,_)
and Siiteseni^l

. and

and ^.Present^l

Note that we have used the fact that "node" is a key in order to identify the tuple from S to

be updated.

An attempt to transform the second command using the transformations from the previ

ous section would fail since in the S relation there cannot be two tuples with the same "node"

value. So the second command should be translated as follows

if the tuple appended from the previous command is the first one appended to S for
that value of the "node" field (Le. r.Present=0), then do the update,

else do the update only if the new tuple would not be deleted by the second com
mand, Le. if w(s,(valcvall,val2^-,valk),-J is true, which guarantees that this tuple
will not be deleted by the DELETE command.

This interpretation allows us to omit the DELETE command by only enhancing the

qualification of the REPLACE command that replaced the initial APPEND operation (see simi

larities with the example presented in section 3). The final one-REPLACE command program

will be
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REPLACE s (fi = valx, .^fk = valj^esent = l)
where sjiode » valo
and wx (s1^2r«^mr-.)
and s1J)resent=l
and

and sm.Present=l
and (sj*resent = 0 or w(s,(valo,vallr«,valk),~))

We should also note here that the query shown above might now be ambiguous since

there may be many values to be assigned to a single tuple corresponding to the case of append

ing many tuples with the same "node" field value. This is the general problem of ambiguous

updates and in our case is easy to solve by using the relation w to eliminate tuples. However,

this will require the computation of the transitive closure of w over the candidate tuples.

We have shown how the above dynamic programming problem for search spaces has

been reduced in a single REPLACE* program. The difference between the two programs is that

the first one starts with a rather small relation which is incrementally growing as the itera

tions are executed while the second one starts with the whole problem space and updates the

information about the nodes. What remains to be examined is how this new version compares

in execution time and I/O operations with the initial version of the problem. The result of

this comparison depends not only on the size of the S relation but also on the fraction of it

that will be used in the program. It has been shown through a series of experiments that

Dynamic Programming problems is a class of problems that will gain in execution time from

this transformation GKUNG84]).

5. Conclusion

We have described the problem of optimizing extended query language commands and in

particular sequences of QUEL commands. We have presented several optimization tactics,

some based on similar tactics in other areas and some new tactics. Our new tactics include the

somewhat surprising result that any QUEL program satisfying certain criteria is equivalent to

a QUEL program which consists of one REPLACE statement. We also show that a large class

of problems, namely those which use the dynamic programming approach, satisfy these cri-
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teria. The transformations presented are useful not only in this context but in general tran

saction processing as well, since they are motivated solely by the need to expand the optimiza

tion unit form one database language command to a sequence of commands. The optimization

techniques presented can be applied in a preprocessing phase, Le. given a set of applications and

the corresponding sequences of data base commands that implement them, one can apply our

techniques in order to extract more information about the application and therefore design a

more efficient execution pattern.

This is another level in the optimization hierarchy. Depending on the flexibility a

language gives to the user, more or less optimization is possible; in data base languages espe

cially where the expressive power of the language is much more restrictive than a general

programming language, preprocessing can result in a much more efficient implementation.

Normally the amount of information needed for the transformations we have described is

minimal and the performance gains substantial We will be able to verify these results by

coding the transformations and measuring the performance of the two versions of various

applications.

The extended query languages we have studied have been designed for engineering and

for heuristic search applications. We hope in our future work to investigate the usefulness of

our strategies especially in rule based systems and more generally production systems

([FORG79D. The existence of sets of rules which are thought of as parallelly executed com

mands, brings up the problem of efficient processing and execution. Deductive data bases

GWONG84]) is also another area where these optimization techniques can be used in order to

implement efficiently the processing of inferences which can be thought of (for static environ

ments) as predefined sequences of commands on the data base. In summary, we think that

there is more mileage that can be gained in data base query optimization, especially as new

constructs and extensions are proposed to support the need for more flexibility.
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APPENDIX

The mechanical transformation proposed for changing two REPLACED into a single

REPLACE, is the following
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^

Given

Relation T (fi£2r-fk)

range of t,t1,t2^-,tn is T
range of Si^fi^Tj^^i are other relations

(I) REPLACE t (f1«F1(tti.t>-,l^x*>-ts1IIX
f2=F2(t,t1,t&~,tn^1^2^sm),

fk=Fic(t,ti,t2r-,tn^i^2»—»Sm))

where QUALl (t,t1,t2^-,tn,slr-^sni)

(H) REPLACE t (f1=G1(t,t1,ta-,tnj1^2r-Ji),
f2=G2(t»ti,t2^-,tn^,1^2r-^l)»

fk=Gk(t»tl,t2r~»tn^1J2^-Jl))

where QUAL2 (t,t1,t2^-,tnjlr-^r1)

transform it in the following query

REPLACE t (fi=fi-Krrf^d^value,
f2=f2+(f"2-f2)*d2.value,

fk»rk+(rk-fk)*d2.value)

where

[ (QUALl (t,t1,t2r-,tn,s1,_^sm) and dx.value=l)
or

(not QUALl (t,t1,t2r~,tn,slr-^sm) and dj.value=0)
]

and

[ (QUAL2 (t* ,flr«,t*n^lr^ri) and d2.value=l)
or

(not QUAL2 (t,,t'1^,t'n^lr^r1) and d2.value=0)
]

where

f i = tf{ + [ Fjfo^V!!,-^) - ti"i ]* devalue

f"i = Gi(t',t,1,_,t,nfSi,-^sm)

t'j=the tuple tj where its fields f4(l^i^k) are changed to fj
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dj and d2 are range variables over some dummy relation with a single
field "value" and values 0 and 1 (a way to implement free variables)

Notice that this transformation can be done automatically. What remains to be seen is if the

time of executing the two REPLACE commands separately is greater than the time of execut

ing the new REPLACE command. Also note that we have generally expressed differences

using the standard "-" operator. It is not difficult to define this operator for strings too so that

if s is a string

s-s=0

s+0=s

s-0=s

s*l=s

s*0=0
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