
 

 

 

 

 

 

 

 

 

Copyright © 1985, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A SEQUENTIAL OPTIMAL REDESIGN PROCEDURE

FOR LINEAR FEEDBACK SYSTEMS

by

E. Polak, S. Salcudean and D. Q. Mayne

Memorandum No. UCB/ERL M85/15

28 February 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Sequential Optimal Redesign Procedure for Linear Feedback Systems

by

E. Polak* S. Salcudean* and D. Q. Mayne**

•Department of Electrical Engineering

and Computer Science

University of California

Berkeley. Calif. 94720

USA

•♦Departmentof Electrical Engineering

Imperial College

London SW7-ZBT

ENGI4ND

Abstract

This paper presents a new approach to on-line control system tuning, based

on worst case design using semi-infinite optimization, together with a plant

uncertainty identification scheme which this approach requires.



1. Introduction

Semi-infinite optimization is emerging as a powerful tool in control system

design [l. 2], making it possible to formulate and solve important classes of new

design problems. In this paper, we show that semi-infinite optimization can be

used in a novel and powerful way for on-line control system tuning.

In the simplest case, the designer is given plant identification information,

either in the form of nominal plant parameter values or in the form of an uncer

tainty set containing the plant parameters, as well as a set of design

specifications. The specifications are then transcribed into semi-infinite inequali

ties involving compensator coefficients, which form, in turn, the constraints of a

semi-infinite optimal design problem (see, e.g. [l]). The solution of the optimal

design problem is a vector of optimal compensator parameters.

Unfortunately, complex specifications may be inconsistent and hence the

optimal design problem may have no solution. To overcome this difficulty, in this

paper, we formulate optimal design in terms of a new concept: that of achievable

performance which is expressed in terms of an unconstrained semi-infinite

optimization problem which always has a solution.

A more complex design situation arises when an identifier is used to update

plant parameter information while the closed loop system is in operation.

exploiting the intuitively clear idea that one should be able to improve the

actual control system performance as the plant identification improves. "We show

that, under certain conditions, a sequential redesign scheme, based on informa

tion updates, produces a linear time varying control system which is asymptoti

cally stable. Furthermore, we show that this time varying control system has

better properties when a plant parameter uncertainty set identifier is used,

than when an asymptotic plant parameter identifier is used.
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There are various schemes in the literature, see e.g. [3]. for the asymptotic

estimation of plant parameters. The notion of parametric uncertainty set

identification is a recent by-product of the use of semi-infinite optimization in

design [2] and has not been explored until now. Consequently, we present in this

paper a scheme for the identification of a decreasing sequence of uncertainty

sets for the parameters of a plant which is incorporated in a closed loop system,

and we show that under certain hypotheses this uncertainty set shrinks to the

•true parameter values as time goes on.

2. Optimal Design via Performance Factors

Without loss of generality, consider the simple S1S0 sampled-data system in

Fig. 1. Suppose that the continuous plant characterization is given only in the

form of the z -transform transfer function

where we have used the notation ak [S0 al • • •5n]T , b= [bt b2 •• • bn]T and

0 k [aT bT]T eF^*1 . The compensator to be designed is also specified as a z-

transform transfer function, to be implemented by means of a digital computer

and a sample and hold:

^•>-&H'lM'S&f- (22)
where xeR* is a vector of designaJble coefficients of the compensator, e.g. the

coefficients of the numerator. For the purpose of illustration, let us consider

three typical performance requirements: (i) closed-loop stability, (ii) rise time,

overshoot and settling time bounds on the step response and. (iii) disturbance

rejection in a specified frequency range. In nominal design , the plant parame

ter vector 8 is assumed to be known. In worst case design, the plant parameter



vector is assumed to be known only to the extent that 9 eA, a. compact uncer

tainty set in R?**1. Since we wish to deal with both worst-case and nominal

design, we include the parameter vector 0 in all our formulas.

First we consider closed loop stability. The characteristic polynomial of the

closed loop system in Fig. 1 is given by x(*. ©A) - Tip(9,X) nc(x,X) + dp(0

,X) dc(x,X) , where XeC. Let d(X) be a polynomial of the same degree as x.

with all the zeros of d(X) contained in the open unit disc

D k IX e C| |X| <1J. Let T(x, 9,X) k x(x. 9,X)/d(X) . Then, refering to

the modified Nyquist stability test proposed in [1], we see that if the locus of

7*(x, 9,X) traced out for X = exp(j&>) . with 0 ^ u < 2n , stays out of a parabolic

region in C containing the origin, then the closed loop system is exponentially

stable, assuming that there are no hidden oscillations. The parabolic region has

a boundary described by v = b'tu-b"9 , where b'9tb"a > 0 and s e C is given by

* = u +jv . Hence the stability requirement, for the sampled-data system, leads

to the semi-infinite inequality (in normalized form )

^- ilmErfx. 9,ju)] - b'a Re[r(x. 9. jo)]2 +lj * 0, (2.3)
V 0ei4,V&)G[O,27r]

where, in the case of the nominal design, one sets A = j 9 J. In the case of worst

case design, A is a compact set. Note that the coefficients b'8 and 6", are nego

tiable and that they can be used to control the conservatism of the stability

test

Since we are interested in the stability of the sampled-data system, not

only viewed as a discrete time system, but also of the sampled-data systern

viewed as a continuous time system, we must make sure that there are no hid

den oscillations. Referring to [9], we see that, assuming that the continuous time

plant is described by a rational transfer function, these can be eliminated by

choosing a sufficiently high sampling rate.



Hie step response requirements can be expressed in terms of upper and

lower bounds over an appropiate time range. Thus, if we let y(x. 9, t). t = 0.1

denote the closed loop system unit step response from rest, the sampled peak

overshoot requirement leads to a set of inequalities of the form

V(*.P.O -i gg o, V0£i4. V*ef0,l. •• -.*0j. (2.4a)

where A = jSj in the case of nominal design. The sampled rise time require

ment leads to a set of inequalities of the form

, _y(x.9.t) +X as Qf v 9eAt v t e{ *,.. Wi .•".'.) . (2.4b)
°r

where, again, A = {©} in the case of nominal design. The sampled settling time

requirements lead to similar inequalities.

To complete our dscussion. we address the question of disturbance rejec

tion over a frequency range. The problem is somewhat complicated by the fact

that the disturbance is assumed to be defined for all time, while our z-transform

transfer functions deal only with sampled signals. Let d[t) be the continuous

time output disturbance and let y(x.f) be the corresponding continuous time

closed loop system output Assuming that the sampling rate is preassigned. we

can write

d(0«*(0+*(0 (25a)
y(x.O =v.(*.0+Vr(x.O <2-5b)

where d\(t) and y.(x.f) are the outputs of zero-order sample and hold circuits.

with input d{t) andy(f ) , respectively. Then, it is easy to show that

£«(*•*) - «*•/- *+\ (2.5c)

where y.(x.s) and a\(s) are the Laplace transforms of ys(x,t) and d(s) respec

tively and H^t(x.z) is the z-transform transfer funtion from d toy and h is Oil*

sampling period. "We note that the sampled-data system has no effect on the



reminder dp(0 • The only way to make a\.(t) and yr(t) small is to increase the

sampling rate. Since the spectrum of a\{t) is very close to the spectrum of d(t)

when the sampling rate is sufficiently high ( as it ought to be for the feedback

system to be effective ), when the output disturbance d(t) is specified as having

a Fourier spectrum concentrated in a frequency interval [cjx . 02 ] . the distur

bance rejection requirement results in the following normalized inequality :

^jj-l/f^x.O.e^)! -1 ^ 0. V«€[»!,**]. (2.5d)

where /fjd(x, 9,z) is the transfer function from d toy, h is the sampling period

and bd(u) > 0 is a continuous bound function.

The above examples show that design specifications result in normalized

inequalities of one of two possible forms:

- ^ fc .'(^ +1*0. veex.v^eJVy, (2.6b)
where all functions are continuous and the denominators are strictly positive

over the range of interest. Such a system of inequalities can certainly be incon

sistent. In the case of inconsistency, the designer may try to change the bound

functions 6y(i/) , bq(v) .A better way, derived from multicriteria optimization

considerations, see e.g. [6], is to use a vector of weights w = [wf wj]r > 0 and to

define the achievable performance factor p (A, w) by

p(A,w)k min J.y | Wy[?li(x, 0. v)/ 61;(i/) - 1] <; y
(yj0£(R.R9)

V 9e^.V^e^lilVjfe/, ;

-*^!>2;(x. 9,1/)/ 62;(i/) + 1 ] -S y ,

V 0eJ4.Vt/e^2;.V;e/2.

(2.7)



JL* x * x J

where Wy , ujgj are the components of Wj , w2; /j . /2 are index sets and the sets

Nij *Nq are either intervals or finite sets. The vectors x x denote realizability

bounds on the design parameters. As before, in the case of nominal design.

A = \9] in (2.7).

A more sophisticated, but also more complex way of using of weights w, is

to make them v dependent functions. When this is done, weights can be used for

response shaping and more subtle tradeoff than can be done with fixed weights.

Suppose that j>(j4,w) ^ 0 . Then all the specification inequalities are

satisfied. When p (A , w) > 0 , at least one specification inequality is violated and

the designer may wish to increase its weight in (2.7) while decreasing other

weights as a way of getting closer to desired performance. Thus, for a selected

compensator structure, design tradeoffs are performed by repeatedly solving

problem (2.7) (which always has a solution) with adjusted weights until satisfac

tion is achieved. If that does not take place, the compensator structure must be

modified.

3. Identification and Sequential Redesign

We shall now explore the possibility of obtaining improved performance in a

closed loop system, such as the one in Fig.l. by redesigning and updating the

compensator whenever the identification of the plant transfer function P*(9 , z)

is improved in some sense. Although not required by the theory we are about to

present, in practice such a scheme is likely to work better if the initial plant

parameter estimate, or the initial uncertainty set A(0) is such that the design

vector (y(O).x(O)) which minimizes (2.7) results in an exponentially stable

closed loop system. We assume that a plant identifier is installed which produces

either a sequence of plant parameter estimates (9(/)J or a rnonotonu:ally

-7-



decreasing sequence of plant parameter uncertainty sets [A(t){ such that the

true plant parameter 9 €.A(t) for all t eN+. where N+ k (0.1,2.3 j. The follow

ing twotheorems canbe deduced from results on max functions in [7. 10].

Theorem 3.1: Let \9(t)J be a sequence of plant parameter estimates such that

0(O"*§ as t -»oo , and let Kl/(0* *(0)i be a sequence of optimal solutions to

(2.7), corresponding to A = f 9{t)\ and a given weight vector w. Then.

(0 J>a©(0i.w)->pa9j.w)as t-co.

(ii) any accumulation point x . of $x(£)i • defines an optimal compensator for

the actual system.

•

We conclude from this theorem that if p(\ 9j. w) < 0 ,i.e. desirable perfor

mance can be achieved, then there exists a t0 such that for all t ^ 10 , p([9

(Oi.'w) ^ 0 and. furthermore, by continuity of the functions py . p2;-, the per

formance inequalities (2.5a), (2.5b) are satisfied for A = [9\ , i.e. desirable per

formance is achieved for all t ^ 10 . A similar result holds true for the perfor

mance inequalities considered one at a time.

Theorem 3.2: Let \A{t)\ be a sequence of compact uncertainty sets in R2n +1 .

•uch that for all t CN . 9 €4(0 and4(i +l) C A(t) Next, let i(l/(0.*(0)J be a

sequence of optimal solutions to (2.7). corresponding to A = A(t) and a given

weight vector w > 0. Then,

(i) p(A(t + \)t*)*p{A{t).m) forallf eIN and \p(A(t),w)\ is bounded;

CD

(ii) If A^ = n 4(0. andp^.w) < 0. then there exists a t0 such that for all

t*tD, p{A(t),w) * 0;

(iii) If i4<B = {9J. then j)(i4(f).w)-»p(|0{.w) as f-»oo and any accumulation

point x of ( x(f) j defines an optimal compensator for the actual system.



Since the sequence \p(A(t),w)\ is monotone decreasing, it follows that if

there exists a r0 such £ha.l p(A(t0),w) £ 0 . thenp(A(t) ,w) £ 0 must hold for

all t -i t0 . Thus we see that there is one major difference between nominal and

worst case control system sequential redesign. In the worst case sequential

design, one can determine when the identification is good enough to ensure that

desired performance requirements are satisfied, while in the case of nominal

design such a determination does not appear possible.

Now suppose the conditions in Theorems 3.1 or 3.2 prevail and that each

time the compensator C(x,z) in Fig. 1 is redesigned, it is updated in the feed

back system. Note that we can ensure by algorithmic means that the compensa

tor vectors x(r), t eIN, defined as in Theorem 3.1 or Theorem 3.2 . converge to x,

a local optimal compensator vector for the actual plant, for the given weight

vector w. The following theorem which assumes a state space realization for the

feedback system in Fig. 1. shows that if the stability inequality (2.7) is satisfied

for this x, then the time varying sampled-data system which results from the

compensator updates is uniformly asymptotically stable ( assuming that there

are no hidden oscillations ).

Theorem 3.3: Consider the linear time varying discrete time system

{(t+l)sG(Ot(0 .'=0.1. ••• (3.1)

where the G(r) are N*N matrices such that G(f) -»G as t -»oo . where G has all its

eigenvalues into the open unit disc D e C . Then (3.1) is uniformly asymptoti

cally 8table.

The above theorem can be proved easily by constructing a Lyapunov func

tion corresponding to the system

£(r+l) = G£(0 ,t =0.1. .-• (3.2)



and showing that this Lyapunov function is also a Lyapunov function for the sys

tem (3.1) for t sufficiently large.

4. A Scheme for Plant Parameter Uncertainty Identification

In the control literature there exist many schemes for estimating the

parameters of a plant from input and disturbance corrupted output measure

ments [3], but it appears that there are none for obtaining families of uncer

tainty sets [A(t)l , as stipulated in Section 3. We shall describe a new uncer

tainty identification scheme and we shall give sufficient conditions on the com

mand input and compensator updating procedure so that the resulting time

varying control system is asymptotically stable.

The uncertainty identification scheme we are about to present is based on a

simple observation. Consider the simplest plant described by

V(*+l) = bju(*) . UNt (4.1a)

*(0 = v(0+<*(0 . *eW«. (4.1b)

and suppose that the disturbance is known only to the extent that it is bounded,

Le.

|d(f)| asa , Vi€N+ (4.2)

Now, suppose that we have measured (u(t)J and (z(t)J for r = 0,1,...,*. Then, for

all t ^ t such that u(t-1)*0 we have that 6 j is given by

1 u(r-l) (4'3>

but cannot be computed from (4.3) because |i/(t){ is not accessible. However,

for all t €N+ we can compute an interval A(t) at time t which contains b j as fol

lows . Note that from (4.3).
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bi= *ffi~*AT) , VreN* such that u(t-1)*0 .

Hence, since d(r) c[-a,a] for all t£N+ , we have that

6t e A(t) k n
*(t-|)»»0

z(r)-a z(r)+a
u(t-1) ' u(t-I)

(4.4)

(4.5)

Note that the interval .4(0 shrinks as t increases. Furthermore, suppose that

for soma Ti,t8€N* we have that dfa) = a , d(rz) = -a with

«(Ti-l)i*0 for i=l,2. Then, by substituting (4.1b). (4.4) in (4.5) we obtain that

b\ e A(t) k n
«(T-l)»iO

1 i*(t-1) ' 1+ix(t-1) = I*iJ (4.6)

Thus, for this smple case , it is possible to construct an identification scheme

which

(i) produces a decreasing sequence of intervals containing the actual plant

parameter, and

(ii) yields the actual parameter bx in finite time if the disturbance sequence

attains both of its bounds in finite time.

We shall now show that this simple idea can also be extended to higher

dimensional difference equations of known order.

Consider the n-th order plant defined in (2.1). Its input-output behavior is

governed by the difference equation

£ a*y(f+n-*) = £ bk u(t +n-Jb),
*»o fc = l

(4.7)

where the coefficients ak and bk need to be identified. We shall assume that we

can measure the plant input (u(OI and disturbance corrupted output \z(t)\ .

where z(t) =y(f)+d(f) for all t G]N+ and that there exists an ae(O.oo) such

that the output disturbance satisfies \d(t)\ ^ a for all t GN+ .
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For a given plant input |u(r )J and corresponding output \y(t)\, let

j(t)k[y(t+n) ••• v(01reRn+1 . (4.B)

^O k [2(t+n)--- z(t)]T eR»+l .

Ht)k[d(t+n) ... d(f)]r eIR"*1 .

u(0*[w(f+n-l) • • • u(OF eRn ,

Although it is common to normalize (4.7) by setting a0 = 1 .we will need the

alternative normalization lajj =1, where Ia||| = 2 | a* | .
* = o

flnflnitinn 4.1: For a given plant input [u(t)\ and observed output \z(t)\ , we

define the plant uncertainty set F(t) , at time t ^ n to be the set of all plant

parameters 9= [a7 br]r , with aeRntl. b€FT» , and Mil = 1 . such that the

output [y(t)\ of the difference equation

£ aty(t+n-k) = £ bfcu(f+n-fc) (4.9)

satisfies Iv(t)-z(t)| i a for all t ^ t-n . for all initial conditions

V(t).t = 0,1.....n-1 such that |v(t)-z(t)| js a for t = 0.1. • • • n-1 . i.e..

using the notation (4.8) and rewriting (4.9) as an inner product,

/*(*)£ je=[arbr]r| aeRntl, Mi =1.b€R», (4.10)

and there exists d(j) such that |d(r) | ^ a,

for 0 ^ r ^ * , and

<a.z(r)-d(T)>-<b,u(T)>= 0 for 0 £ t ^ f -n J .

We note that, without additional assumptions, it is not possible to identify

the plant at time t with any greater precision than to state that the actual

parameter vector 9e.F(f) . Since the description of F(t) is too complex for

efficient algorithmic design, we introduce a computationally more tractable
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uncertainty set A(t) that contains the set F(t).

Definition 4.2: For t eN+. t fc n let

X(0 ^ i©=[ar br]r |a€Rn+,,|a||1 = l.beRn .and (4.11)

|<a,x(T)>-<b.u(T)>| s a for 0 ^ t ^ f-n J .
•

First, note that each inequality that appears in the definition of A(t) deter

mines a slab in R^*1. Thus A(t) is the intersection of a polyhedron, which is the

intersection of slabs, and the surface defined by the piecewise linear constraint

lalx = 1, see Fig.2 . Next, note that, as t increases, the number of intersecting

slabs that form the polyhedron increases and therefore A(t) shrinks as t

increases. It is possible that the sets A(t) shrink to the set [91 - 9j in finite

time. To see how this may happen, suppose that 9 = [aT,bT]T£A(t) . Then,

from (4.11). for t * t-n , |<a, z(t)> - <b. u(t)>| £ a. Since

d^ • yM) —$. **{i")) =0 for all - T. we obtain that

—a as <a-3i,«(t)) - <b—b, u(T)>+(a. d(T)> ^ a must hold. Now, suppose that the

same pair (x(r), u(r)) = (p, q) occurs for two values tx and r2 of

T£.{0,lt • • • t-n\ , while <a, dfo)) = o and <a. d(T2)> = - a . Then the intersec

tion of the slabs corresponding to t = Tx and t = t2 is a hyperplane orthogonal to

[pr I""1r]r Tnich contains 9. It follows that if this phenomenon occurs 2n times

with the normals to the resulting hyperplanes being linearly independent, then

the normalization |a|i = 1 implies that A(t) is reduced to }9, -9} in finite time.

In Theorem 4.1. we will show that under plausible assumptions on the distur-

bance sequence fd(OJ • the sets ^(0 shrink to {9, -9j .

Proposition 4.1: For all t St n. (i) 9 eF(t)cA(t) ; (ii) F(t +l)c,F(0 , and (iii)

A(t + l)cA{t).

Proof:
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(i) Let 9= [arbT]r e F(t) . Then, by (4.10). pU, = 1 and there exists \d(t)\

such that | d(r)\ * a for 0 as t £ t and <a.z(r) -d(T)>-<b.u(t)> = 0. It follows

that, for all 0 as t * r -n. ,

|<a.s(T)>-<b.u(T)>| = |<a,y(T)>-<b.u(T)>+<a.d(T)>|

= |<a.d(T)>| *a.

and therefore 9e.4(2)* Since we have assumed that output disturbance is

bounded by a and fall! s 1, it is clear that 9 eF(t).

•

Definition 4.3: We shall say that a sequence U(t)\ ClRn is persistently exciting (

p.e. ) if there exists a P and a 6 > 0 such that for all k e N+ ,

lS#«0«Or **I . (4.12)

Note that in the above definition, we do not require an upper bound on the

sum of the rank one matrices $(f) £(f )r in (4.12) , so that the definition is not

restricted to bounded sequences.

Consider the intersection SriCp(9) of the polyhedral surface 5=J9

eR2»+i| e= [arDr]ft i^ _ Xj ^^ the half cylinder of radius p, Cp(9) = j9

eF2*1*1! 9 =/i9 +w./iS: 0,<w.9>= 0, Wk^P). Clearly, the diameter of

S (")£?(&) is proportional to p. The following lemma establishes a bound on p

such that for all t feJb*+n. . where k* is as in (4.12), A(t)c SC\(Cp(9)\jCp(-9

)) and hence on how well A(t) approximates 9.

Definition 4.4 For all t C]Nt let A*(t) denote the orthogonal projection of A(t) on

the orthogonal complement of the line spanned by 9 . i.e.

A«(t) k JveR2**11 <v. 9>;<9-¥.v> =0 for some 9eR2n+1 j (4.13)

and let the \ J2-norm radius of A"(t) be denned by
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fi(t)k SUpiMllTCit'COi (4.14)

Ummft 4.1: Suppose that the sequence (p(Oi defined in (4.8) is p.e.. with

f €N+ and 6 > 0 such that for all Jfe GlN+

*£T?(fMOr* 6i
t>*

(4.15)

Then, for all t fc P+n , (i) A(t) is bounded, and (ii) p(t) «s 2a VFTT / 6 .

Proof: For ell t eK+ , let G(f )eR^+1W2n+l) be defined by

f(t)T -u(0r

G(0 k

y(*+*')r -uff+f*)7.

V('+n)

H(f)

-IS-

(4.16a)

(4.16b)

y(f+n+f»)

where H(f )eR^*+l>x2n consists of the last n columns of G(f). and \y(t)\ is the

actual plant output corresponding to the input {ix(r)J . Because of the plant

dynamics relationship (4.7), we have that

G(f) 9 = 0 . V*eN* (4.17)

Next, because of (4.12).

H(OrH(0 * 51. Vf €W+ (4.18)

which shows that H(f) is of maximum column rank. Now, suppose that for some

f0 fe f«+n . 9= [aT bT]r eA(i0) . Then, for all t eW+ . t s 10 . we obtain from

the definition of A(f 0), that

|<2(f).a>-<u(0.b>| * « . (4.19)



and hence that for all t eK, ,t£l, ,

|<n(f).b>| sea+K^O.aM .

LetU(0) eRl1'*1*" be the submatrix of H(0) defined by

>

Then, by (4.20),

|Ubl„^a+ max|<x(0.a>l

(4.20)

(4.21)

(4.22)

Since H(0) has maximum column rank, so does the submatrix U . Hence, since

Wi = 1 by definition of A(t0) , it follows that A(t0) is bounded, and (i) follows by

(iii) of Proposition 4.1.

Next, we proceed to obtain a bound onp(f0) , the radius of A(t0) . Let

YZA^to) be arbitrary , and let 9 = [ar br]r £A(t0) be such that <9-v, v> = 0 .

By (4.16a) and (4.19) we have that

|G(0BiL * 2a- V 0 ^ f ^ tD-k* -n . (4.24)

Making use of the relationship between the J-lb and the JH^ norms, we now

obtain that

jG(f) 9J2 £ 2av7n. V 0 ^ t ss f0-f»-n (4.25)

Now, for any t €]N+ , H(f) has full column rank, and therefore G(f) can have a

null space . ker[G(f)] . of dimension at most 1 . But G(0 9 = 0. where 9 is the

true parameter vector. Hence ker[G(f)] is spanned by 9 . Furthermore, from

(4.18) . H(f) has has 2n singular values greater than 6 > 0 . By the Courant-

Rscher characterization of eigenvalues of Hermitian matrices [ll], G(0 ( see

(4.16b) ) also has 2n singular values greater than 6 . Let a» . i = 1.2, • • • 2n be

the nonzero singular values of G(f) , with ox ^ o2 ^ • • • ^ o2n ^ <5 > 0 . It
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follows that for all f £ N+ there exists a singular value decomposition [l l]

U(*)2(')V(0r = G(0 (4.26a)

where

U(f ) e R<#xfc# . V{t) e itffc*D»C*i*i),

are orthogonal matrices,

2(0 =

?i 0 . 0

0 Og .

. . . 0

0 . 0 Ozn

0 . . 0

e R**x(2n+1) i (4.26b)

and such that V(f) is partitioned as follows: V(0 - [V^O I v-jn+i] . with

Now. for any f eW+, 9 can be expressed in terms of the orthonormal basis

that forms the columns of V(f ) .i.e.

G = V(f)7(0 = [V1(f)|v2n+i] 7i(0
Tten-i

(4.27)

for some 7(f) eR2"*1. Since Vi(f )rv2n+i = 0 , we must have that v = Vj(f)yx(t).

Now. from (4.25). (4.26) and (4.27) we obtain that for all feN+ with

t £ t0-P-n .

2aVFr+I * |G(f) 9J2 = ||U(f)E(f)V(f)rV(07(OII8 = P(07(0112

* 5"\/2 7i(02 =51^(071(012 =*«*b ,
V 4*1

because Vi(f) has orthonormal columns. This completes the proof of Lemma 4.1.

>From Lemma 4.1 we see that the persistency of excitation of \<p(t )\ implies

that the computation of the plant parameter vector from input - output data has

a finite condition number.
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Theorem 4.1: Suppose that (i) the sequence [<?(t)\, defined in (4.6). is p.e.. (ii)

the disturbance sequence \d(t)\ is a sequence of independent random variables

uniformly distributed on [-a , a] . Then , Am= C\ A(t) = (9 , -9J with proba-
t cO

bility 1.

Proof: Suppose that there exists a9UB such that 9£ \ 9 ,-9 J . Then . there

exist weR8**1 and v CR such that w*0 and

9-w+rjYzn*i . *b»*is 3/|Bk and <v2n^1.w>=0 . (4.28)

Furthermore, there exists an e > 0 (without loss of generality, e < a ) such that

I [y(Or I -u(Or]w| fe c infinitely often (i.o.). (4.29)

To see this, suppose, by way of contradiction, that for any e > 0,

I[y(0r I -u(0r]w| < c only finitely often. Then. lim| [y{t)T | -u(f )r]w| = 0

and therefore (4.16a) implies that lim|[G(f)wj2 = 0 . But [<p(t )\ is p.e. and there-
t-»ao

fore there exist r* eN+ and 6 > 0 such that (4.15) holds. Making use of the

singular value decomposition (4.26), we obtain that

|G(f )wl2 = lU(0E<0M0rwii (4.30)

= |2(0[Vl(f)|v2n,1]rw|l2 = IE(f)

fe5BVl(f)rwl2=d||w||2>0,

and therefore lim ||G(f) wj|2 cannot be 0, so that (4.29) must hold.

Now, by the definition of the sets A(t) and A^ , it follows that

|[«(0r |-u(Or]©l *a. VfeN+

Substituting (4.28) in the above we obtain

-IB-
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-** [y(Or |-«(f)r]w+<d(f),a>^a , VfeN+,

which. together with (4.29) can be used to establish that either

<d(0.a>* -a +c (4.3la)

or

<d(0,a>* a-e (4.31b)

or both must hold for infinitely many t eIN+ . Without loss of generality, we may

assume that (4.31b) holds for infinitely many t eNt. We thus obtain that

l-ProbU00=[0.-9Ji * ProbKd(0.a>i o-e Lo. J . (4.32)

Now. for all t eN+. if s#n(a* )d(f+n-fc) > a -e . k = 0,1...n . then,

«0.*>= £*<*(*+n-Jfc)
*«o

=£ Ia* |son(a, )d(f+n-Jb) >(a-e) £ la* | =o-e

It foUows that, for all t €N+ .

FrobKd(0.a>.£ a-c} * 1-Prob|so7i(ai)d(f+n-fc) > a-e ,i=0,l....nj (4.33)

But Jd(f )j is a sequence of independent random variables, uniformly distributed

on [ -a, a ] and therefore for all t e 1N+

Probf<6X0.a>sS a-z\ * l-f[Problsgn(ak)d(t+n-k) >a-e{ (4.34)

kp e(0.l) .= 1-

kso

e

2a

If <d(0.a> ^ OL-t to. . then.there exists a subsequence \d{tx)\ of |d(OJ such

that for alii €N* , ft+1-ft > n+1 and <d(fi).a> ^ a-t . But

Prob(<d(0.a>* a-c Lo.J

^ProbK^t).*)^ a-c . VicJNtJ
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• s;Prob(<d(fi).a>i a-e , 1 ss i «s j | , V;eN+

=I*[ProbKd(f4).a>s: a-ej*p' , V;eN* ,

so Prob(<d(0> o> ^ a—c i.o. j = 0 , because p e(0,1) , and this completes the

proof.

•

Since (p(01 cannot be measured, condition (4.15) cannot be checked. We

therefore need to develop conditions on the exogenous signals (r(f)i and [d(t)\

which ensure that the sequence \y(t)] is p.e. For this purpose, we need the fol

lowing definitions and useful Lemmas.

Definition 4.5.: A sequence (77(f)] cR is p.e. of order n if (17(f)! cRn defined by

17(f) = [77(f+n-l) • • •77(f)]7,. t €K+ is p.e.

•

Definition 4.8: A sequence (£(*)J cRn has a spectral line at oe [0,2n) , if there

exists a vector £(j u) G C-(0} such that

** jt't#«0e-/ltf =«(*«) (4.35)

uniformly ink €N.

Note that a signal (£(f ){ has a spectral line at oe[0,2tt) if it has finite non-zero

average energy at the frequency o .

The continuous time version of the following result can be found in [8].

Lemma 4.2: If a sequence (f(f )j CR* has TV linearly independent spectral lines

R0>i)...^0>jv)i . at i/4e[0.2ir).i = 1.2.....n . then Jf(f)) is p.e.

The following result is easy to obtain and therefore the proof will be omitted.
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1*mm" 4.3: If (u(f )j cR has N distinct spectral lines [u(ivi) • • • u{juN)\ at

Vi €[0,2tt) , i = 1.2,..n , then \u(t)| is p. e. of order N.

The proof of the following result is given in the Appendix.

temmn 4.4: Consider the state equation

«f +1) = *,&)+btu(f) . Ac €R^ . be eRN (4.36)

where the pair (Ac ,h.) is completely controllable. If the input [u(t){ is p.e. of

order N, then, the state (((f)) is p.e.

An examination of the proof of Lemma 4.1 (in the Appendix) reveals that,

for a given input [u(t)\, the smaller the condition number of the controllability

matrix of the system (4.36). the smaller the 6 in the definition of persistency of

excitation (4.12) will be. Eventually, this observation translates to the conclusion

that the closer are the plant polynomial np, dp to having a common factor, the

harder it will be to identify the plant parameter 9.

Theorem 4.2: Consider the feedback system in Figure 1. Suppose that

(0 fr(OJ.(d(Oi are bounded and that (r(f)-d(OJ nas 3n+m-l spectral

lines;

(ii) C(t,z)k Q(z)= ™?&\ for t^t^ti+l , ieIN+ where
dc.i\z)

*».i(*) = i+cui"!+ •• • +cm.i«"m and a^^z) = cfuarl+ • • •+dmiz-m.

The compensator update times f* are denned by the recursion

f0 = 0 . (4-37)

ti*x =fi+2n+min J*€N+| '£' [^ffi] [u(f+n)r | u(f )T ]*y1\

for some fixed y > 0.
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(iii) The sequences ([cu. •• • .c^]7") and ([du. •• • .dm.i]7'l are bounded In

R* with ([di.i. • • • .dm.i]r| bounded away from zero. (Note that when the

compensator is designed by using (2.7), the above bound conditions on the

compensator coefficients can be automatically ensured).

Then, the sequence fp(Oi is p.e.

•

Proof:

first, note that if we let

*s

'i

1

0

&o ao

0 0

0

0 1

h, k[OnUIOn-iJeR2*

a0

€R2nx2n
(4.38)

1 0

we have

f(t+1) = Ac <p(t)+bc u(t +n) (4.39)

and, since rtp(9,z) , d^(Q,z) are coprime (Ac , be ) is a completely controllable

pair [3]. In view of Lemma 4.4. if \u(t)j is p.e. of order n . then \<p(t)j cK2" is

p.e.

Intuitively, if one were to fix the compensator in Fig. 1 and assume that all

the signals in the loop are bounded, one would see that . because the transfer

function from r —d to it has only n+m-1 zeros. \u(t )J could not have less than

2n spectral lines. By Lemma 4.3 , it would then follow that \u(t){ is p.e. of order

2n.

We will now present a rigurous argument for the case of the time varying
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compensator. By Lemma 4.2, condition (i) of Theorem 4.2 implies that the

sequence \r(t)-d(t)l is p.e. of order 3n+m-l. Let c(f) k r(t)-d(t) and

e(0 k [e(f+3n+m-2) •• • e(0]eRan+m-1, t gN+ . Then. there exist

f eN+ . 6 > 0 . such that forall r G N+ ,

ir«(0«(Or * " • (4.40)

To show that (u(f )J is p.e. of order 2n , it is enough to show that the sequence

{Tij , defined by 7t s tt4.l—ti , i€N+ , is bounded . Suppose, by way of con

tradiction, that \Ti\ is not bounded. Then, for all f eK+ such that 14 ^ t < ti+l

and all ieJT k [ieN+ | fi+i-fi >f*+3n+m.-l{ we have that the transfer

function from e to u is given by

dp(0.z)nc(xj,z)
#;*(*.*) =t|(^lf)ll?(elf)^h1,)fli(elf) (441)

and therefore, for t GN* . *i ^ f < fi+i-f*-(3n+m-l) . i GiT we have that

Using (4.42) and the notation

w(f) £ [v(f+2n-l)v(f +2n-2) •• • v(t)]T GR2" (4.43a)

«(f) k [u(f+2n-l)u(f+2n-2) • •• u(t)]T GR2" • (4.43b)

V,*(0 k [v(t+P+n+m) |v(f+f+m+n -1) | ••• |v(f+m+n)] eR2nx(t#+1)(4.43c)

U|.(f) ApS(f+f+m+n)|u(f+f+m+n-l)| ••• | u(0]eR2nx(''+m+n+1) (4.43d)

**
0 rw . * .

. . . . . 0

0 .0 rlti r2.t . rm+n_14 rm+ni

-23-
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U-.ik

1 0 . . 0

Pw 1 0 . .
•

Pz.% Pu 1 . .
•

• Pz.i Pu • • 0

• • Pzx 1

Pn+m.l • ' Pu

0 Pnt-m.i • PZA

•
0 Pn+m.i • .

• •
0

•

0 • 0 Pn+m

C Jj(l •+!» "H* ♦ !)«(< •♦ 1)

we obtain that for all t GN+ . ty ^ t < fi+i-f* -(3n+m-l) , i GA"

v(f+n+m) = Jit(f) .

V,.(0=H*(Ol**t

and

- S *<t)i<t)'
r sf+m+n

*V«*(OV,*(Or

(4.43f)

(4.44)

(4.45)

= u<.i(f)itMul..t(f)^':.t

* Xn«[I<Ml<*t]Ut.(OU«.(Of

Since l,M is full column rank, Xmto[I,«i<l^#i] > 0. we have that for all

<€Nt . U * t < i4*i-f*-(3n+m-l),iGA'

*max LM #.i M #.t J
(4.46)

By Lemma A.1 ( see the Appendix ) . there exists a § > 0 such that for all i c IN, ,
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. 6-\nrin[J<Jtr) ^

Now. let icN+ be such that 106 & Zy . Since we assumed that \TX\ is

unbounded, there exists a k such that f*+i~f* > I(f*+m+n +l)+2n . It follows

firom (4.46), that

* S t^RO7***/*? *2y .
t=tk

which contradicts part (ii) of the Theorem's hypothesis . Therefore |fi+i-fi| is a

bounded sequence and \u(t)\ is p.e. of order 2n.

Making use of Theorem 3.3 and Theorem 4.2 we obtain the following

Corollary 4.1: Suppose that the conditions (ii) in Theorem 4.1 and (i) . (ii) and

(iii) in Theorem 4.2 are satisfied. Then the feedback system shown in Fig.l is

uniformly asymptotically stable with probability 1 .

Since we propose to redesign the control system compensator by semi-

infinite optimization using a worst case problem formulation, it is clear from the

theorems and discussion in Section 3 that an asymptotically stable, time varying

closed loop system can be obtained even if the uncertainty sets A(tx), used in
*****

redesign, do not converge to the doublet \—9,9j. In addition, by interpreting

the results of Theorems 3.2, 3.3 and Lemma 4.1 and Theorem 4.2. we see that

this will be the case when the input signal r(f) is rich enough and the distur

bance is small enough, as stated below.
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Theorem 4.3: Suppose p(f9j.w) < 0 for a particular choice of weights w > 0.

and that the assumptions of Theorem 4.2 are satisfied for (*\(z) = Cfc.z), with

%i a solution of (2.7) for w = w. Then there exist a t* G N and an a0 G (0, «>)

such that if the bound on the disturbance satisfies a& a0, then (i)

p(A(t),w) s 0 for all t fe t• and (ii) the resulting time varying control system.

which is obtained by updating the compensator at the times tx defined in (4.37)

using the solutions x* of (2.7). is asymptotically stable.

•

If we assume, in addition, the conditions of Theorem 4.1, we need no longer

postulate the existence of a bound a0. the following additional result.

Corollary4.1: Suppose j>(9. w) < 0 for a particular choice of weights w > 0. that

assumption (ii) of Theorem 4.1 is satisfied and that the assumptions of Theorem

4.2 are satisfied for Ci{z) = C(x<,z), with x» a solution of (2.7) for w = w. Then

there exist a t• c N such that (i) J>(i4(0,w) ^ 0 for all t ^ r* and (ii) the

resulting time varying control system, which is obtained by updating the com

pensator at the times f» defined in (4.37) using the solutions x* of (2.7), is

asymptotically stable with probability 1.

•

Appendix

Proof of Lemma 4.4

Let x(X) = A* +a1A*~1 + • • • +a# be the characteristic polynomial of Ac

and for all f cNt , define £(t) k x(f +AT) +a,x(f +7V-1)+ • • +aN x(0- Then.

since x(f +j) = A/x(f)+ £ A/^h- u(f+i-l). we have that
4=1

e(o =*?x(o+£ A^bcWf+i-D (A1)
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+a*_1ABx(0 +ajV_lbbu(0

+ a*lx(0

s[MU+a,lb| ••••|Afr-|bb+ ••• +**.,!*]

u(f+JV-l)

= RTu(f)

where we have used the Cayley-Hamilton Theorem, and the notation

KA[tU4,tfc| ••• IAc '̂h. ]eE"-"
for the controllability matrix and

T k

1 a% «2 . . . a#_i

0 1 ax .

.01.

. . 0. . . . a2

110 .0 0 .

Now, since ju(f )J is p.e. of order N , it follows that there exist t* GIN* and 6 > 0

such that

VtgIN*. <S^fl#u(f)u(f)r * 6\ . (A.3)
For all TGWt, let

Z(t) k [f(T) | «t+1) • • • «r+f)] GR^' (A.4a)

X(t) 4 [x(r) | x(r+l) • • • x(T+f+W)] gJR"*^"*1* (A.4b)
Then.

e^ and u(f) k

-27-
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E(0=*OM

where

M*

aN 0

1

0 1

0

0

a*

0 1

(A.4c)

eR«*+tf+l)x(«*+l)

Using, in order (A.4b), (A.4c), (A.4a), (A.2) we obtain that , for all TG3N+ , we

have:

t >T

* Wtfl ******

(A.5)

1

H(t)E(t)'

A_[HMTt1>)f(0i
WHHr]

RT ^'lulO11 TrRr

^ WTTr]WRRr] s n
WMM'] >° '

since (Ac . h-) is a completely controllable pair and T is obviously of full rank .

Hence the sequence Jx(f )j is p.e. and this completes the proof of Lemma 4.4.

•

Lemma A.2: Suppose that the assumption ( iii ) of Theorem 4.2 is satisfied.

Then, with J< , !«..< , i GN+ as in (4.43e), (4.43f). respectively, we have that
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(i) 4jirfWJttf]>o

oo

Proof:

The second statement is clear. We shall only show (i) . For all i GN+ , we have

that

ri=A.dc

where

* k [du\du •••dU.JO •••OpeK"-

Kk

"** «.

a0 0 0
*** M

al a0 .

• Oj 0
**t

o0
** ***

0 an
•**

Oi

0 . On

On eR(nfnWntm).

But A. is of full rank and ffmiii(A,) > 0. It follows that

|rt|2^ amin(A,)KB2

and therefore (Jr^j is bounded away from 0 . Furthermore, since $UdJ'2j is

bounded, it follows that {fafe j is bounded . Now, for all i GN+ , Jt is of full rank

and therefore , for all i GN+ , X/= XmmfJ* Jtr] > 0- Suppose , by way of contrad

iction, that there exists a subsequence JX/)ieJf of |X*J such that Urn \J = 0 .
t-w.ti K

Since {rt J is bounded and bounded away from zero, it follows that there exist an

rGRm+n -{0j and a subsequence {rx JiC£, . L CK such that lim rt = r . Then.

since J-»Xmln[JJr], JeR2nx<3R+m+1) is continuous, we obtain that AmuJT)7] =0

where
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i£
o ?, . .

0 • 0 rx r2 rm+n_j rm+n

and is clearly of full row rank, so there exists a neighborhood of 0 that contains

only finitely many X/-s . Hence, there exists a fix > 0 such that

X^faJJi J/1 ^ /Si, V teNf. This completes the proof of (i).

Appendix

gc&ix(3n+m-l) (A.6)

Proof of Lemma 4.4

l*t x(X) = \N + ax\N~l+ • • • +a# be the characteristic polynomial of Ac

and for all t GIN+ . define £(0 ^ x(f+#) +a^xff+A7-1) + • • • +o*t<x(t). Then.

x(f+i) = A/»(0+ 2 A^bc u(f+i-l), we have thatsince

t*i

e(0=4f+5 AB^bcu(f+i-l)

+a1Acv"1x(f) +a1^lAcv-l-*bcu(f+i-l)

+ aAr-,Aex(f) + a^_1bcu(f)

+ a*lx(0

= [bfe lAcbfc+a,^ Af-1b6+ • • +0*-,*;]

= RTu(f)
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where we have used the Cayley-Hamilton Theorem, and the notation

for the controllability matrix and

T*

1 aj a2 . . . a^_i

0 1 aj . . .

.01.. . .

. . 0. . . . a2

• «i

0 .0 0 . . • 1 ,

GR**" and u(f) k

(f+TV-l)
(f+JV-2)

I u(0 J

gR"

Now. since {u(f )J is p.e. of order N , it follows that there exist t* GlN+ and <5 > 0

such that

VtgN*. tmfu(t)u(t)T * 51 .
t ST

ForallTGlN+. let

«t) A[*(t> | tfr+1) ••• «T+f)] GR^;
X[r) 4 [x(t) I x(t+1) • • • x(T+f+tf)] ER^1**1)

Then,

E(0=*(OH

where

HA

aN 0

1

0 1

0

0 0

0

OJV-I

Ol

0 1

eR(f*AT+l)x(l«+l)

(A.3)

(A.4a)

(A.4b)

(A.4c)

Using, in order (A.4b). (A.4c). (A.4a). (A.2) we obtain that , for all TGlN, . we

have:
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I »T

£* *t)*t)T ^HtWt)7 (A.5)

Xnv„[llli'-]
S(T)H(T)f

uWr,1>H(i)r

^ Xmin[TTr]\nin[RR7'] . n

since (Ag, h-) is a completely controllable pair and T is obviously of full rank .

Hence the sequence {x(f )(is p.e. and this completes the proof of Lemma 4.4.

Lemma A.2: Suppose that the assumption ( iii ) of Theorem 4.2 is satisfied.

Then, with Jt , I«#,i , i GN+ as in (4.43e), (4.43f), respectively, we have that

(0 i^xiata[jtj/,]>o

(ii) mipABIB[IfMI^ii] <oo

KT 2"ii(0 ntOr1
( =T

T7Rr

Proof:

The second statement is clear. We shall only show (i) . For all i GN+ . we have

that

ri=A.d1

where

rt£[ru|rw..rm+n.ir eW»

*&[dul*M"-*».i|0---0]reKm+n
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i&

a0 0
**t «w

oi o0
**t

• Oi
Mi

o» .
** *—

0 a»

0
**t

o0
**i

Ol

But A, is of full rank and amin(At) > 0 . It follows that

|rib**«in(A.)|diI2

and therefore (falsi is bounded away from 0 . Furthermore, since HKIsi is

bounded, it follows that £fait j is bounded . Now, for all i G]N+ , J< is of full rank

and therefore , for all i GN+ , Xf = X^^^i J4r] > 0. Suppose , by way of contrad

iction, that there exists a subsequence (X? Uck of fX/j such that lim X? = 0 .

Since {r^ ( is bounded and bounded away from zero, it follows that there exist an

rGRm'H' -(0j and a subsequence \rxli£i , LcK such that lim r» = r. Then.

since jr-»XB-B[JJr]i jGR2n*(3n+m+1> is continuous, we obtain that Xmin[T77'] = 0

where

€R(»+w)x(n+m)

rl r2 • rm+n-l rn+m 0
of,..

0 . 0 f i ?2 ^m+n-l Tm+n
and is clearly of full row rank, so there exists a neighborhood of 0 that contains

only finitely many X/-s . Hence, there exists a 0i > 0 such that

Xnjat Jt Jtr] at Pi. V i GN*. This completes the proof of (i).

^jD2nx(3n+m-l) (A. 6)

5. Conclusion

We have presented two new results. First, we showed that control system

design, in a situation requiring tradeoffs, can be very effectively formulated in

terms of achievable performance factors that are evaluated by means of serni-
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infinite optimization algorithms. Second, we developed a new approach to on-line

control system tuning, using performance factors, for sequential worst case

compensator redesign, together with a new plant uncertainty identification

scheme which this approach requires.

In a practical situation, we expect that some measures will be taken to

enhance the efficiency of the method described in this paper. Two such meas

ures, in particular, are worth mentioning, in case they should not be obvious to

the reader. The first is that it may be possible to have an initial tuning period

during which one can apply to the control system a particularly "rich" input

since the persistence of excitation constant 6t c.f. (4.12) of the plant input u(t)

is proportional to the one of the control system input r(t). Alternatively, the

addition of a small "rich" input to a "poor" command input may be be permissi

ble, over an initial period of control system operation.

Another measure which may speed up the uncertainty reduction process is

the use of a priori information, such as a knowledge of the location of a pole or

zero of the transfer function (2.1). Thus, if z0 is a known pole of the transfer

function P*(9,z), then 2jQ*z8"* = 0 must hold. Since this is a linear relation-
l

ship, it can be added to the definition of the sets A(t) without any effect on Lie

conclusions of the resulting theorems. The effect of adding this relationship,

however, is to reduce considerably the size of A(t).

To conclude, we wish to point out the obvious: when new solution tools

become available, it becomes possible to formulate and solve design problems

that were previously not even considered.
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