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ABSTRACT

YACR2 is a channel router that minimizes the number of through vias in adition to
the area used to complete the routing in a two-layer channel. This report explains the
algorithms used and their implementation in C



ACKNOWLEDGEMENTS

First I must mention that YACR was the idea of Prof. Alberto Sangiovanni-

Vincentelli, my research advisor, and Prof. Mauro Santomauro. I thank them for giving

me the opportunity to develop it into a usable program.

Indeed, enough cannot be said about Alberto. There have been times when I thought

I would never see the end of his suggestions, requests, and even occasionaldemands. Try

ing to keep up with Alberto is both a challenge and a pleasure; his energy is difficult to

match.

I thank Rick Rudell and Deirdre Ryan for working with me to interface YACR2 to

the HAWK graphics editor and SQUID data base system. I would also like to thank Chris

Marino for being the first to use this interface to design a chip. There are several features

of YACR2 that would not have been added if I hadn't been able to see plots of YACR2's

routing.

I must thank Aart de Geus for getting me interested in CAD. More importantly,

Aart was the one who talked me into staying at Berkeley to finish my degree when it

seemed easier to leave that to get accustomed to living here. Life in Berkeley is quite

different from life in Arkansas.



TABLE OF CONTENTS

Chapter 1: INTRODUCTION 1

1.1 History 1

1.2. Formulation of the Problem 3

1.3. Organization of Report ^^^^^^^^^^^.e..^^...^^.^..^.^^^^^.^^. 5

Chapter 2: THE ALGORITHM 7

2.1. Basic Ideas ____---------«----~---»-_«»»»_»«»-»»»«_»«_»»^^ 7

2.2. The Net Assignment Algorithm »—~~~~—~~~~~ 8

2.3. Select and Assign .------—---«_--_----^._-«««_«-»»_»»»___»»^^ 10

2.4. Removing Vertical Constraint Violations 15

2.4.1. Maze Routing ___.~.-----~>---__-^-»-«---»»»»«-«««»--..» 16

2.4.2. Adding a Row -. 20

2-5. Termination of the Algorithm . 22

2.6. Channels with Cyclic Vertical Constraints -—-----«--«----«-«_«-____-__».«. 23

2.7. Breaking Cycles - 24

2.8. Adding Columns .^^^^^^^^^-^^^^^^^^^^^^^^^^^ 25

Chapter 3: IMPLEMENTATION OF YACR2 28

3.1. Data Structures .___ 28

3.1.1.Vertical Constraint Graph 28

3.1.2. The Channel --—-~-------------^.-«»««««_«______^^ 31

3.1.3. Rectangles and Paths 32

3.2. Code 33

n



Ill

Chapter 4: INTERFACE TO HAWK 42

4.1. Preprocessor 42

4.2. Postprocessor —-~--------------»--»--««--»»»»«^^»^»«-^^ 43

Chapter 5: EXPERIMENTAL RESULTS 44

Appendix A: YACR User's Guide 49

Appendix B: YACR man Pages ----____. 1

REFERENCES



CHAPTER 1

INTRODUCTION

1.1. History

Channel routing has been used extensively in the layout of integrated circuits (ICs)

and printed circuit boards in the past ten years [1-6]. It is flexible enough to allow its use

in various design styles such as gate-arrays, standard cells and macro-cells (building

blocks).

A channel router is designed to route nets that interconnect terminals on two oppo

site sides of a rectangular region called the channel. Most of the channel routers pro

posed assume that only two layers are available for interconnection and that components

of a routed nets are horizontal and vertical segments. It is also assumed that segments in

one direction (say horizontal) are run on one layer and segments in the other direction are

run on the other layer. Terminals are placed at regular interval, and identify the

columns of the channel Horizontal segments are placed so that design rules are not

violated. This constraint identifies the rows of the channel. When a net is broken into

two or more horizontal segments occupying different rows, doglegging is used. Dogleg-

ging is effective to reduce the number of rows of the channel, but it requires additional

vias.

The goal of a channel router is to complete the interconnections in minimum area.

Number of through vias and length of nets are also important to evaluate the quality of

the routing. These criteria are in general considered secondary objectives, but we believe

that they should be given more emphasis because of their effects on the reliability and

speed of the circuits laid out.



The first algorithm for channel routing, the Left-Edge Algorithm, (LEA) was pro

posed by Hashimoto and Stevens [ll This method uses a row-by-row approach, assigning

nets to each rows and trying to minimi?* the number of rows needed, Lethe width of the

channel. Various modifications of this basic approach have been proposed [2,3]. Yoshimura

and Kuh [4] proposed a channel router based on graph theory concepts. Fiduccia and

Rivest [5] proposed a column-by-column greedy algorithm; the router scans the channel

from left to right and completes the routing for one column before proceeding to the next

one. All these methods try to minimi?* the area of the channel by minimising the

number of rows. Even though they have similar performances, Yoshimura and Kuh and

Rivest and Fiduccia report the best results in terms of speed and number of rows used,

almost always equal to the theoretical minimum, the density of the channel.

Kawamoto and Kajitani [6] proposed a column-by-column router that guarantees

routing with upper bound on the number of rows equal to the density plus one, but addi

tional column are needed to complete the routing. Thus, the goal of this router is to

minimize the number of columns of the channel.

This paper describes YACR2, ( Yet Another Channel Router) that can route chan

nels with cyclic constraints and uses a virtual grid.

YACR2 basically uses one layer for vertical interconnections and the other layer for

horizontal interconnections as other channel routers, but allows some exceptions on hor

izontal interconnections, this feature being the key to its performance. YACR2 uses at

most as many tracks as the best published results on a number of test cases. In particular,

it routed the famous Deutsch difficult example using 19 tracks as Burnstein's hierarchical

router[6l but using less through vias, much less computer time and with no need of

interactive parameter adjustments. In a number of industrial examples, YACR2 per

formed substantially better than existing channel routers.



YACR can route channels with so called cyclic constraints with no modification as

Rivest and Fiduccia (the channel router of Yoshimura and Kuh needs a non trivial

modification [7]).

1.2. Formulation of the Problem

The formulation of the channel routing problem has been given in several papers.

We recall here some basic definitions and give a more general formulation. We assume

here that the channel is gridded and that the boundaries of the channel are parallel lines.

Channel area: the space between two parallel rows of cells that have to be intercon

nected. Since the interconnecting paths lay on an orthogonal grid, a measure of this area

is given by m Xn, where m (n ) is the number of rows (columns) of the grid. Two

different layers (metal and poly) are available for the interconnections.

Horizontal (Vertical) segment: a segment of interconnecting path that lays on a row

(column) of the grid. A horizontal (vertical) segment is specified by the row (column)

which it lays on and by the column (row) ends.

Top (Bottom) terminal list [5]. T = (t i tm ) (B = (b i bm )X tt (bt ) is a

positive integer identifying the net that enters in the channel at the top (bottom) of the

ith column. If tt (bt ) = 0, no net has to be connected to the ith terminal (null terminal).

Left (Right) connection set R(L): the set of nets that enter in the channel from the left

(right) end of the channeL It can be an ordered set if the segments have to be laid out in

a specific way.

Local density and density [A\ The local density of a column j, dj, is the number of

nets crossing that column. The density k of a given channel is defined by

k = max d,. In figure 2.1, d = (3,4, 4, 4, 4, 3, 4, 3, 4, 4, 3) and k =4.
1 <j <m '



Unless otherwise specified, horizontal segments lay on one layer and vertical seg

ments on the other one. Contacts located at their intersections (vias) are used to electri

cally connect the two layers.

Two horizontal segments on the same layer, which belong to two different nets and

have in common at least a column, cannot overlap and must be assigned to different rows.

We call this type of constraint horizontal constraint.

Similarly two vertical segments on the same layer, which belong to two different

nets and lay in the same column, cannot overlap. The lower endpoint of the upper seg

ment must be placed in a row above the upper endpoint of the lower vertical segment.

We call this type of constraint vertical constraint.

Horizontal segments of a net can lay on the same row and, for each top or bottom

terminal, vertical segments can lay on the same column. Thesplittingof horizontal (vert

ical) segments of a net in more then one row and/orcolumn is called horizontal (vertical)

doglegging. Doglegging can be allowed only at terminal position (restricted doglegging)

[4] or in any position of the wire (unrestricted doglegging) [2,3]. Doglegging is used to

reduce the channel area.

The vertical constraint graph G(V, E ) is a directed graph, where each node

represents a horizontal segment (a net if horizontal doglegging is notallowed). A directed

edge from node i to node j means that horizontal segment i must be placed above hor

izontal segment j because of a vertical constraint. If there is a loop in G, we have a

Cyclic Vertical Constraint and the routing requirement cannot be satisfied without

doglegging.

The channel routing problem can be stated as follows:

PROBLEM PI

Find an assignment of horizontal and vertical segments to rows and columns such that:



i) the connection requirements specified byT, B, L, R are satisfied

ii) no violation of horizontal or vertical constraints occurs.

In this general formulation, the problem always has a solution, because constraints

can be removed by adding rows and/or columns or allowing horizontal and/or vertical

segments on the two layers. Often additional constraints are added and several criteria are

used to evaluate the quality of the solution. Typical additional constraints are: (i) fixed

breadth of the channel (Le. no columns added to the channel) [4]; (ii) fixed width of the

channel (Le. no more than one row over density) [6]; (iii) no doglegging (or only restricted

doglegging).

Typical factors that can be used to evaluated the performances of a router are: (i)

the area of the channel; (ii) the number of vias; (iii) the total length of the segments; (iv)

the length of the longest net.

These criteria are often competing. For example doglegging may reduce the area of

the channel but increases the number of vias.

YACR2 routes acyclic channels and most cyclic channels in fixed breadth and the

remaining cyclic channels with the addition of few columns at the end of the channel.

The area of the channel is the primary goal, but the number of vias and the net length

are also effectively minimiypH

13. Organization of Report

This report is organized as follows. Chapter 2 outlines the main ideas of our

approach to channel routing and describes the algorithm in detail. In chapter 3 the details

of implementation are given. Chapter 4 describes the implementation of the algorithm in

a routing system. Chapter 5 gives a detailed comparison with existing channel routers and

statistics on the running time, number of vias, and net length. Concluding remarks are

presented in chapter 6.



CHAPTER 2

THE ALGORITHM

2.1. Basic Ideas

Since various versions of the channel routing problem has been shown to belong to

the class of NP-complete problems [8], heuristic algorithms have been proposed for its solu

tion.

Our method is based on the following two considerations:

i) The Left-Edge Algorithm (LEA) assigns horizontal segments to the rows of the chan

nel without overlap in density, Le. using exactly k rows [\\ Since horizontal con

straints are satisfied while vertical constraints are disregarded, vertical constraint

violations may be introduced by LEA.

ii) After routing a channel, there are usually several horizontal and vertical segments

that are not used for routing any of the nets. This space is available "for free" and

may be used to remove vertical constraint violations.

With these considerations in mind, the basic idea of YACR2 is to start with a

number of rows equal to k and then:

1. apply a modified LEA that preserves LEA's characteristics of routing in density but

exploits all degrees of freedom to reduce the number of vertical constraint violations;

2. attempt to remove vertical constraint violations by exploiting the "free" space with

simple maze routing techniques;

3. if all violations are not removed, increment the number of rows and return to step

1.



8

Modifications to this basic strategy allowed us to route cyclic channels with the pos

sible additions of external columns to the channel. In addition, we were able to devise a

strategy that did not always discard the previous routing if all the vertical constraint vio

lations were not removed. This strategy produced in some cases better area utilization and

faster running time in the most complex channels.

2.2. The Net Assignment Algorithm

The overall algorithm has four phases: the first three assign nets to tracks trying to

minimize vertical constraint violations and using as many tracks as given; the fourth

(described in section 3.4)attempts to remove vertical constraint violations.

In this section, we describe the first three phases for channels with no cyclic con

straints. In Section 4 we will describe the modifications to the basic algorithm for channels

with cyclic constraints.

The first three phases are similar. In the first one the nets crossing a column of max

imum density are assigned to tracks, in the second the nets to the right of this column are

assigned and finally the nets to the left of this column are taken care of in the third

phase. The third phase is identical to the second one provided that the words left and

right are changed throughout. For this reason, the details for this phase will be omitted.

Before giving the algorithm used to assign nets we need the following definition:

Definition 1. 5 (x ) = {s x> s 2,.. ♦, sp } is the set of p rows to which net x may

be assigned without a horizontal constraint violation.

Assignment Algorithm

Dotal a channel and the set of nets to be routed, the number of rows to be used, the den
sity of the channel, k .

Phase I (Maxcol nets assignment)

( Initialization)
Choose a column, maxcol, s.t. d ( maxcol) = k ;
let N = {n j, n 2, •••. nk } be the nets crossing maxcol;



while (N 5*0) {

( Choose anns € N to be assigned)
ns = selectiS},

( assign ns to a row in S (ns ))
assign (n,, S (ns ));

( update)
Remove n, from N;

Phase II (Modified Left EdgeAlgorithm)

(Initialization)
set j = maxcol + 1;
setN = &,

while (y ^numcols ) [

( Collection)
if (there exists one (or two) net(s) with left endpointon j ) [

N = N|J the net(s) with left endpoint on j;
}

( Assignment)
if (there exists a net nt with right endpoint on j ) {

while (N 5*0) {
n, = selecti'S);
assign (n,, S (n, ));
Remove ns from N;

}
1

( Moveto the right)
j = J + i;

}

( Assign nets exiting right edge)
while (N 5*0) {

ns = selectCS);
assigning,
Remove ns from N;

}

Phase IH(Modified Right Edge Algorithm)

Omitted.
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The algorithm described above is not fully specified since the two procedures select

and assign have not been described. However, we can still prove some properties of the

algorithm by looking at its structure. In particular, we can prove that the Assignment

Algorithm lays all the nets in k rows, where k is the density of the channel, as long as

the selection of the nets to be placed, and the rows in which the nets are placed, are made

as specified in the algorithm, Le. the selection from the set N and the assignment using

rows in S (n, ).

Umrna 1. If the Assignment Algorithmhas processed column j andns €N, S (n, )

is the set of rows that do not contain a net in column y.

Proof: The proof is obvious for phase L For the sake of simplicity, we will consider only

the columns scanned by phase H. If ns is added to N at column j , Le^ it has its leftmost

point on j, then the lemma follows from the fact that no net has been assigned which

has its leftmost point to the right of j. Assume now that ns has been added to N in

column j . Then, the lemma holds for y. Since between j and y no nets in N nor any

nets previously placed terminate, the set of rows which do not contain a net in y is

identical to the set of rows which do not contain a net in y.

Theorem 1 Let k be the density of the channel. The Assignment Algorithm lays

all nets in k rows.

Proof: For the sake of contradiction, assume that the algorithm was not able to lay net ns

in k rows of the channel, Le. S(ns) = 0. By Lemma 1, for S (n, ) to be empty, there

must be k nets crossing column y . Therefore, the density of column j must be at least

* + 1.

23, Select and Assign

The procedures select and assign have the same basic goals: place nets so that (l) the

vertical constraint violations are minimi?^ and (2) it is easy for the simplified maze
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routers to complete the routing. Unfortunately, it is impossible to determine all the verti

cal constraint violations caused by the placement of a certain net. In fact, some of the

vertical constraint violations may occur between the net under consideration and nets that

have yet to be placed. Since the nets are placed with no dogleg, we can use the vertical

constraint graph, G, to estimate how likely is that an assignment cause violations, and

how difficult it is to remove a violation if it occurs.

Select and assign are fairly complicated procedures. Many heuristic ideas have been

combined to produce an assignment which has given excellent practical results. Note that

the heuristics described in this section are the results of many experiments carried out on

examples from industrial chips, university designs and artificially generated test cases.The

introduction of the heuristics is done to favor understanding of the concepts. The actual

implementation is reported in chapter 3.

G, the vertical constraint graph, is used to determine rows in which a net, ns, can

not be placed without causing at least one vertical constraint violation. If p (n,) is the

longest path passing through the vertex of G corresponding to ns, then the nets that

come before ns in p (n, ) must be placed above ns (each in their own row) and the nets

that follow ns in p (n,) must be placed below ns. Using p (n,) we define two sets

Pt (n, ) contains the top t (n, ) —1 rows, where t (n, ) is the number of nets that preceed

ns in p (ns ); likewise, Pb (ns ) contains the bottom b (n, ) —1 rows, where b (ns ) is the

number of nets that follow n, in p Gts). We call the union of Pt (ns) and Pb (n,),

P (nt). If ns is assigned to any row in P (n,), there will definitely be a vertical con

straint violation.

We define the set P (n, ) to be the rows not in P (n, ). The set

SrCn^SOi,) (V&O
is the set of rows in which we would most like to assign ns. We prefer to assign ns to a

row in P (n, ) because such an assignment will not necessarily cause a vertical constraint
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violation. Note that we cannot guarantee that if n, is placed in S i(n, ) no violations will

occur. In fact, violations may occur if some of the nets above ns were (or will be) placed

too low, or some of the nets below ns were (or will be) placed too high. However, the

information carried by S i(n, ) is strongly related to the structure of the channel and we

have experimentally observed that it tracks well with the number of vertical constraint

violations after the assignment algorithm is completed and with the ease of removing

vertical constraint violations.

If S i(ns ) is not empty, then we have to decide which row in it will be chosen. To

do this, we compute the number of vertical constraint violations that placing nt in each

row of Si(ns ) will cause with respect to nets already placed. Of course, the best position

will be the one which will cause the minimum number of vertical constraint violations

with respect to nets already placed.

At a first glance, it may seem that choosing a row that has the minimum number of

vertical constraint violations with respect to the nets already placed, should be the pri

mary criterion. However, when we tried this selection strategy, we obtained worse

results. A possible explanation for this fact is the following: If we were forced at a cer

tain step to place a net in the "wrong" position, it would not be wise to force other nets to

follow this "mistake" but it would be better to place the nets by looking at the structure

of the channel which is best summarized in S j(n, ).

After this criterion has been applied, we may still have a tie among some rows. This

tie isbroken by choosing the row that isclosest to the "ideal" row in which to place ns.

Placing ns in row t (ns ) forces all the nets preceding ns in p (nr ) to go in one and

only one position in the channel toavoid vertical constraint violations with n,. This lim

its the degree of freedom of subsequent assignments and is likely to produce vertical con

straint violations. Similar considerations apply for b(ns ). Thus, it is convenient to place

n, as far away as possible from the two bounds, Le, in the center of the desired range.
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However, this will give nets preceding and following ns in the longest path the same

degrees of freedom. It is better to give more degrees of freedom to the nets preceding ns if

they are more numerous than the ones following ns. With these things in mind we

define an "ideal" row in P (n, ) by the following relation:

ideal (n, ) -1 (n, ) - 1 _ t (ns )
k -b{ns)-ideal{ns) " Mn~)'

where £ is the number of rows in the channel. Note that t (n,) and b (n,) give the

bounds of P (ns ) and idedl (ny ) will always be between t (nx ) and b {ns ). If t (ns ) is

larger than b (ns ), ideal (n, ) will be closer to b (n, ); and if b (n, ) is larger than t (n, ),

ideal (ns ) will be closer to t (n, ). Especially, if t (/i, ) is zero, ideal (n, ) is the top row;

and if b (n, ) is zero, ideal (n, ) is the lowest row.

Note that 5 i(ns ) may be an empty set for either of two reasons S (ns ) and P (n,)

are disjoint; or P (n, ) is empty. Let us consider the latter case first. If P (ns ) is empty,

Pt (n> ) and Pb (n, ) overlap covering the entire channeL Any assignment of ns will lead

to at least one vertical constraint violation, so we should choose the assignment so that the

violations) will be relatively easy to remove. Since it is impossible to predict where the

violations will be, the only thing we can do to make them easy to remove is to assign ns

to a row where the violations will be "short", Le. vertical segments connecting the top

and the bottom pin on that column overlap for as few rows as possible. The best way to

keep the violations short is to assign ns to a row in the region where P, (jns ) and Pb (ns )

overlap. We define

to be the set of "second choice" rows in which to place n,. To choose among the nets in

this set, we use the same criteria as before. First the row(s) which cause the minimum

number of vertical constraint violations with respect to nets already placed are selected.

To break further ties, we also define ideal (ns ) to be the "best" row for n, by a relation

similar to that given above except t and b are exchanged throughout.
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In cases where both S i(ns ) and S 2(1, ) are empty, we must assign ns to a row in

P (n, ). We assign ns to a row causing as few violations as possible with respect to nets

already placed and as close to ideal (n,) as possible, but we avoid the top and bottom rows

unless they are the only choice. The reasons for excluding the top and bottom rows is

that it is difficult for the maze routers to go around the vertical constraint violations if

they appear in these extreme rows. The following two sets are taken into consideration in

the assignment algorithm in sequence:

53(n,) = 5(/i,) f| (PGO-U,**))

S4(n,) = S(n,) flU.*}

where st and sb are the top and bottom rows.

We can now give the algorithm used to determine the row, r, to which ns is

assigned.

R(ns) = S fa );
if CR (nx ) == 0) {

R(ns) = S2(ns);
if (R (n, ) == 0) {

R(ns ) = 53(n,);
if CR(n,)==0){

R(ns) = S4(ns);

)
}
( nowwe have R = {sr ,..., sr } )
r =*ri;
ford* = 2;i £l;i++) {

if (VCV (n,, *rj) <VCV (n,, f ) {
r = srt;

else if (VCV (n,, jr<) ==VCV (/i,, r ) {
if iabs (srt - irfea/ (n, )) <abs (f - wfeaZ (n, )) ) {

r = srt;

}
}

VCV (nx, r ) is a function which returns the number of vertical constraint viola

tions that will occur between net ns and nets already assigned, if net ns is assigned to
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row r.

The assignment algorithm finds the "best" position among the ones which are avail

able for a given net ns. Nate that the sequence in which the nets are placed, affects future

placements since the row used by net ns cannot be used for the nets in N which have not

been placed yet. We choose the "most difficult" nets first. Thus we consider first the nets

for which R (n )=5 4(n ), then the ones for which R (n )=S 3(n ) and so on until all the

nets have been considered. Among the nets in each of the sets we have identified, we

choose the net such that the set R (n ) has minimum cardinality. If there is a tie, then the

net for which the rows in R (n ) are the most distant from its ideal position is selected

first.

24. Removing Vertical Constraint Violations

After the assignment has been decided, the horizontal segments for the nets are

placed in the channel and the appropriate vertical segments are placed in all columns that

do not have vertical constraint violations. Next, we enter Phase TV* where the columns

with vertical constraint violations are examined one at a time to search for a legal connec

tion between the nets and their pins. We could use a general purpose maze routing algo

rithm to find a connection (if one exists) between the nets and their pins exploiting the

"free" space of the channel. However, the cost of this step would be quite susbtantial and

a large number of vias may be introduced. Instead, we observed that a simple search very

often resolves all the vertical constraint violation introduced by the assignment phases.

Mazel, maze2 and maze3 described below are the three strategies we follow. Note that

mazel doss not introduce any additional vias, maze2 introduces at most two additional vias

per violation, and maze3 introduces at most four additional vias per violation. If the maze

routing algorithms are unsuccessful, the channel is made larger by adding a row.
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2AA. Maze Routing

To explain the operations of these algorithms, we assume that column j has a verti

cal constraint violation. Let the net that connects to the top edge of the channel be nt,

and the net that connects to the bottom edge be nb. Net nt has been assigned to row s;

net nb has been assigned to row p. Row s is below row p. All other columns with

unresolved vertical constraintviolations are "off-limits" during the maze routing.

Mazel

The first attempt at routing a column with a vertical constraint violation uses one or

both adjacent columns, y + 1 and y —1, and short horizontal segments on the layer used

predominately for vertical segments. Any capacitive coupling caused by the overlap of

two layers will be small since the overlapping length is the distance between adjacent

columns. Note that this is the only time that YACR2 deviates from the common assump

tion that all the horizontal segments are on one layer and all the vertical segments are on

another layer.

Mazel checks for one of the following conditions

(i) no vertical segments exist between p —1 and s on column j —1 or y + 1;

(ii) no vertical segments exist between p and s + 1 on column y —1 or y +1

(this is a reflection of case i);

(iii) no vertical segments exist between p —1 and some h , between p and s, on

column j —1 and between h —1 and s + 1 on column j + 1, or vice versa.

Figure mazel.a shows an example where case (i) holds true; no vertical segmenst

exist between p —\ and s on column j —1. The completed routing isshown in figure

mazel.b. Net nb is routed with a vertical segment in column y connecting the pin at the

bottom of the column to row p . Net nt is routed with the following: a vertical segment

in column y from the top of the column to row p —1; a horizontal segment in row

p —1 from column y —1 to column y ; and a vertical segment in column y —1 from
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(a)
(b)

(c)

Fig. 1. Examples of mazel routing. (a) Before mazel routing, (b) After mazel routing, (c)
More complex example of mazel routing.
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row p —1 to row s. Figure mazelx shows a routed example where case (iii) was true.

Maze2

If a vertical dogleg of only a single column could not be used to route the pins in

column y, maze2 searches for a dogleg that spans more than a single column.

Maze2 checks for one of the following:

(i) a row, column pair (r,c) such that (a) there are no horizontal segments in

row r between columns y and c; (b) there are no vertical segments in c

between r and s; (c) the horizontal segment of net nt in row s either crosses

column c or can be extended to c without causing a horizontal constraint viola

tion; and (d) r is above p .

(ii) a row, column pair (r',c0such that (a) there are no horizontal segments in

row r' between columns j and c*; (b) there are no vertical segments in c'

between r *and p; (c) the horizontal segment of net nb in row p crosses c' or

can be extended to c' without causing a horizontal constraint violation; and (d)r'

is above s.

Figure maze2a shows an example where case (0 holds true; row r is the row above

p and column c is the second column to the left of y. The completed routing is shown

in figure maze2b. net nb is routed with a vertical segment in column y connecting the

pin at the bottom of the column to row p. Net nt is routed with the following: averti

cal segment in column j from the top of the channel to row r; a horizontal segment in

row r from column y tocolumn c; and a vertical segment in column c from row r to

row s.

Maze3

If a vertical dogleg of only one net cannot be used to route the pins in column y,

maze3 searches for a way to dogleg both nets.
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Maze3 checks for both of the following:

(i) a row, column pair (r tc) such that (a) there are no horizontal segments in

row r between columns j and c; (b) there are no vertical segments in c

between r and s; (c) the horizontal segment of net n, in row s either crosses

column c or can be extended to c without causinga horizntal constraint violation;

and (d) r is between p and s .

(ii) a row, column pair (r', c0 such that (a) there are no horizontal segments in

row r* between columns y and c*i (b) there are no vertical segments in c'

between r' and p; (c) the horizontal segment of net nb in row p crosses c' or

can be extended to c' without causing a horizontal constraint violation; (d) r' is

between r and .$•; and(e) r ^r'andc s^c'.

Figures maze3a and maze3b show an example before and after maze? routing.

2.4.2. Adding a Row

If the above maze routing algorithms are not sufficient to complete the route, the

channel must be made larger. Our basic strategy is to return to the beginning ofthe algo

rithm using a channel with one additional row, discarding all of the work so far accom

plished. The extra row creates more "white space" that can be used for maze routing to

remove vertical constraint violations. More important is that the heuristics will assign

nets to rows differently when the number of rows is increased; there will hopefully be

fewer vertical constraint violations to remove.

However, it would be nice if we could save some, or all, of the previous work.

Thus, before discarding the partial routing completed after the application of mazel,

maze2, and maze3, we attempt to add a row in such a way that the unresolved vertical

constraint violations may be removed with the help of maze2. Note that since we want to

add only one row, maze2 is the only candidate; because mazel does not use horizontal seg

ments on the horizontal layer, and maze3 requires two rows and we are only considering
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adding a single row.

If there are n rows in the channel, there are n + 1 locations in which a row may be

added. Each of these locations is checked to see if it could serve as row q for maze2 rout

ing of all the columns that have unresolved vertical constraint violations.

If we assumed that either the nets connecting to the top or the nets connecting to

the bottom edge are doglegged, then the only locations we would need to check for new

rows would be above the top row and below the bottom row. However, there may be

cases where a new row inside the channel can be used for doglegging the net connecting

to the top edge in some columns and the net connecting to the bottom edge in the remain

ing columns. It is therefore necessary to check all possible locations for an additional row.

If it is not possible to complete the route with maze2 and an additional row, we are

forced to discard what we have done and begin again with a channel that has one more

row than previously.

2JS. Termination of the Algorithm

As we show in chapter 5, the algorithms described in this section have been very

effective on a number of test cases. However, to have confidence on the preformance of

the algorithms, it is important to give a bound on the number of rows used.

It is quitedifficult to obtain a sharp bound because of the maze routing step. This step

depends on too many problem related parameters to be able to characterize it completely.

Thus, a bound can be determined only by considering the assignment algorithm. In partic

ular, we should show that f rows are needed by the assignment algorithm to assign nets

to tracks without any vertical constraint violations.

We have found this bound to be larger than the number of nets in the channel. This

is due to the way in which we compute the ideal position of a net Clearly this bound is

too large to be accepted as the worst case behavior of the algorithm. For this reason, we
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decided to implement the following "escape" mechanism in the very unlikely case the

algorithms use many rows. We employ a fast alternative assignment algorithm that will

always place the nets without vertical constraint violations in a number of rows less than

or equal to the number of nets.

Alternative Assignment Algorithm
Data: the set of nets to be routed, a channel with its number of rows equal to the number
of nets, and the vertical constraint graph.
p = length of longest path in G ;
for(t = l;i </>;»++){

N= {n, :r(n«)==*};
while (N^0;{

n, = select2 (N >,
assign2 (ns);
remove ns from N;

}
}
delete any rows from the bottom of the channel that contain no horizontal segments;

select! chooses any net in N. assign! (n, ) assigns ns to the highest row in which it

will have no horizontal or vertical constraint violations with respect to nets previously

assigned.

Note again that this algorithm is extremely fast and crude. It is used only to provide

robustness to the basic algorithm from an abstract point of view. In fact, it has never

been actually used by YACR2 in hundreds of channels we tested, where YACR2 has used

at most two rows above density.

2.6. Channels with Cyclic Vertical Constraints

When a channel has a cyclic Vertical Constraint Graph then vertical constraint vio

lations become unavoidable for channel routers which do not use doglegs. Even for the

ones which use doglegs, it may be impossible to route a channel without vertical con

straint violations. Indeed, the problem may not be solved unless additional columns are

added to the channel. An example of this situation is the channel described by T = (l, 2),

B = (2,1).



24

In this section, we present an algorithm that can always complete the routing of a

cyclic channel possibly adding a few columns at the edges of the channel. The basic algo

rithm is essentially the same as in the case of acyclic G .

The only step of the assignment algorithm that explicitly depends on the vertical

constraint graph being acyclic is the computation of p (n,). The longest path through a

node is computed by leveling G ; if G has cycles, it cannot be leveled. Because the assign

ment based on leveling G is very effective, we remove edges from G until G becomes

acyclic

2.7. Breaking Cycles

The leveling algorithm stops when it cannot assign a level to a set of nodes of G.

At this point, the cycle detection algorithm of [10] is used to determine which edges of G

form cycles. Then, an edge of each cycle is removed to break all the cycles.

The choice of the edges to remove is critical for the quality of the final routing.

Since the edge is removed from G, the corresponding vertical constraint will be ignored

by the assignment algorithm. The maze routers are the only tools which can remove the

vertical constraint violation due to this vertical constraint Therefore, we try to eliminate

the edges whose corresponding vertical constraints are related to columns of the channel

with more white space around them. Let Ec be the set of edges forming a cycle in G.

Let Y be the set of columns of the channel where the vertical constraints corresponding

to Ee are generated, then we rank the edges according to how easy is to route the

corresponding vertical constraint Ease of routing is evaluated by looking at the columns

adjacent to the columns in Y. In particular, the following criteria are used where the

easiest to route come first

both adjacent columns toy SY are empty (contain no pins);

one is empty, the other is half-empty (contains one pin);

one is empty, the other is full (contains two pins);
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both are half-empty;

one is half-empty, one is full;

both arefulL

The graph,G, is made acyclic with the following algorithm:
I = 0;
while (G has a cycle) {

Ec « the set of edges that form a cycle in G ;
e •=edge in Ec corresponding to easiest to route constraint;
adde to/;
delete e from G ;

}

while (Z 5*0) {
ei ~ edge in I corresponding to the most difficult to route constraint;
if (e/ does not close a cycle in G ) {

reinsert e* in G ;
}
remove et from I;

}

Note that no attempt is made to find the minimum set of edges that removes all the

cycles of G . This problem, also called the minimum feedback edge set, belongs to the class

of NP-complete problems and hence very difficult to solve. In addition, we are most

interested in constraints which are easy to route. However, the second part of the algo

rithm has been inserted to make sure that the set of edges removed from G is a minimal

set, Le, the removal of no proper subset of it can make G acyclic. The redundant edges

are added back to G , giving priority to the most difficult to route.

2*. Adding Columns

If the YACR2 algorithms presented in Section 2.4, have failed to remove all the

vertical constraint violations, and the only ones left to route are a subset of those con

straints corresponding to the edges removed to break the cycles, there is little hope that

repeating the algorithm with one more row will route the channel. Thus, we propose an

algorithm which introduces a number of columns at the sides of the channel to remove

the vertical constraint violations corresponding to the removed edges.
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Each vertical constraint violation is removed with routing similar to maze2. Con

sider y ,nbtp tnt and s as in Section 2.4.1. We first identify the net such that one end-

point is the closest to an edge of the channel. Let n, be such a net and let the right edge

be the closest edge of the channel. Then, we add a column, k, to the right of the right

edge of the channel, and possibly two rows r l above p and r 2 which is adjacent, either

above or below, row s.

The following segments are used to eliminate the vertical constraint violation in

column j.

(i) (n6 ), a vertical segment in column y from the bottom of the channel to row

PI

(ii) (ft, ), a vertical segment in column y from the top of the channel to a row

r\\

(iii) (nr ), a horizontal segment in row r x from column y to the added column, k ;

(iv) (ftf ), a vertical segment in column k from row r j to a row r 2;

(v) (n, ), a horizontal segment in row r 2 from column k to column I, Z contains

the endpoint of nt closest to k ;

(vi) (ft, ), a vertical segment on the horizontal layer in column Z from row r 2 to

row s.

Note that if rows r j and r 2 are new rows that are added just for this routing, the only

empty space needed is the vertical layer in column j. The availability of this column is

guaranteed by the fact that no other maze routing is allowed to use vertical segments in

columns with unrouted violations. If there are rows that have no segments between

column j and the edge of the channel, they may be used to save the addition of rj

and/or r ^

We can easily compute an upper bound on the number of additional columns and

rows to remove i vertical constraint violations: i columns and 2i rows. Note, however,
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that this is a pessimistic bound and that we never needed so many rows and columns to

complete the routing.

The construction described above with the remarks of Section 2^, guarantee that the

algorithms in YACR2 can route any channel, with or without cycles.



CHAPTER 3

IMPLEMENTATION OF YACR2

3.1. Data Structures

The two primary data structures used throughout YACR are: the vertical constraint

graph, containing all the information about the nets being routed; and the channel, con

taining all the information about how the nets have been routed. Two other structures

that need to be described are used to temporarily store possible routes made up of rectan

gles and paths found by maze2 and maze3. Other structures include a variety of stacks

and linked lists which are very straightforward and will not be described in any detail

3.1.1. Vertical Constraint Graph

Each node in the graph represents a net with the following structure:

typedef struct a_net
I

int name;
int level_from_top, level_from_bottom;
int top__preferred, bottom__pTeferred;
int pin_placement;
int row;
PIN_LIST leftmost, rightmost;
NET_LIST_M parents, children;
int available;

} NET, *NETPTR;

name

All of the net structures that will be used for a channel are allocated at the same

time as an array. The name field is just the index for the structure in the array of nets.

28
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level_from_top and level_from_bottom

level__from__top and level__Jrom_bottom are the number of nets in the longest path

from the current net to the top and bottom, respectively, of the vertical constraint graph.

A net is at the top if its parents list is empty; it is at the bottom if its children list is

empty. Nets at the top of the graph have level^from^top of one; nets at the bottom, have

level_from_bottom of one.

top preferred and bottom preferred

top_preferred and bottom__preferred fields are numbers of the top and bottom

rows in the preferred range of a net The preferred range is described in the section on

algorithm.

pin placement

The field pin^placement is used to signify if the majority of the pins for a net are

on the top edge of the channel or the bottom (or neither). This is set in routine store_pin-

pin_placement is used only for nets which have level_from__top and

level__from_bottom both equal to one, then the net is assigned to a row as close as possible

to the edge of the channel with the most of its pins.

row

The number of the row that the net has been assigned to is stored in row. If the net

has not yet been assigned to a row, row is zero. If the algorithm has to start over, row is

reset to zero for all the nets.

leftmost and rightmost

The fields leftmost and rightmost are pointers to the ends of a doubly-linked list of

pins that a net is to connect Each element in the list contains the column number of the

pin, the edge on which the pin appears, a pointer to the next pin on the left and a pointer
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to the next pin on the right The following structure is used for each element in the list

typedef struct doubly_linked__list_of__columns
{

int col;
int edge;
struct doubly_linked_list_of_columns

*right_list, *left_list;
} PIN_UST_ELEMENT,*PIN_LIST;

parents and children

The parents and children fields contain the edges that tie the nets together to form

the vertical constraint graph. An edge is represented by two elements, one in the parents

list of one net, and the other in the children list of the second net Both pieces of the

same edge share the same physical col_lisrt there is only one list of columns that is

pointed to by each element of the edge.

The parents field is the head of a linked list of pointers to nets that must be placed

above the given net to avoid vertical constraint violations with the given net The chil

dren field is a linked list of pointers to nets that must be placed below the given net The

order of the elements in the lists is not important Both lists are built by routine

build__graph. Each element in the lists is an element of the following structure:

typedef struct markable_linked_list_of_nets

struct markable_linked__list_of__nets *next
struct a__.net *net;
int marked;
INT__UST col_Jist;
int break_value;

}NET__UST_ELE\ENT_M *1NET_UST__M

If, for example, the element is in the parents list of net 12, the field net points to

some net that must be above net 12. If, on the other hand, the element is in the children

list, then the net pointed to by net must be below the first net

marked is a flag used while leveling the graph to signify that a net has been visited

by a certain parent or child.
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col_list points to the head of a list of integers representing all the columns that

require the edge to be in the graph. The list of all columns is kept so that when edges are

removed to break cycles in the graph, we will be able to estimate the ease of removing the

resulting vertical constraint violations The measure of ease of routing is stored in the

field break_yalite.

available

The available field is a flag used by routine find__cycle to help detect cycles in the

vertical constraint graph.

3.1.2. The Channel

The channel is represented by the following structure:

typedef struct a__channel

int **vert_layer, **horiz_layer;
int left__column;

} CHANNEL, «CHANNELPTR;

The fields vert_layer and horiz_Jayer are two dimensional arrays representing the

poly and metal layers of routing in the channel. Each row in the arrays is a track in the

channel, with an extra row on top and bottom. Each column in the arrays is a column in

the channel, with an extra column on the left and right edges. The upper-leftmost ele

ment in the channel has index [l] [l]. The number stored in each element of the arrays is

the index (in net_array) of the net that is routed using that part of the channel; a zero

indicates that no net currently uses that part of the channeL All the elements in the

added top and bottomrows are "-1". This forms a border that cannot be used for routing,

but serves to signify the edge of the channel to the maze routing routines.

The field left^column is used to indicate how many columns have been added to the

left edge of the channeL Initially it is zero. This information is used to make sure the

columns on the output are numbered so that column "l" is the leftmost column specified
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in the input

3.1.3. Rectangles and Paths

During maze routing, it is often desirable or necessary to store several potential maze

routes. One segment of a route is called a rectangle. All the rectangles needed for the

maze routing of one net in a column are linked together in a list called a path. All the

paths that could be used for maze routing one net in a column are linked together in a list

called a path_Jist, A path list is ordered so that the paths with shortest total rectangle

length are at the begining of the list

The following structure is used to represent a rectangle:

typedef struct linked__list__pf__rectangles

struct linked__list__of_rectangles "next;
int layer;
int orientation;
int numl, num2;
int num.3;

} PATH, *PATHPTR;

The field layer indicates whether the rectangle is on the horiz_layer or vert_layer

of the channeL

If orientation is set to HORIZ, then num3 is the row number of the rectangle, numl

is the number of the column containing the left end of the rectangle, and numl is the

column with the right end of the rectangle. If orientation is set to VERT, then num3 is

the number of the column containing the rectangle, numl is the number of the row at the

top end of the rectangle, and numl is the row at the bottom end of the rectangle.

The field next is used to link several rectangles together to form a path. The routine

insert__path is used to allocate a new rectangle and link it into an existing path.

insert__path also make sure that numl is less than numl.

The following structure is used to save a number of paths for routing the same net

in the same column:
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typedef struct linked list of_paths
I ""

struct linked_Jist__pf__paths *next;
PATHPTR path;
int cost;

} PATH__UST_ELEMENT, *PATH_LIST;

The field path is a pointer to a single path, cost is the sum of numl - numl for all

the rectangles in the path, next is a pointer to the next element in the linked list The

function merge_path_Usts calculates the cost of a path and inserts into the proper loca

tion in a given path list

3.2. Code

Chapter 2 describes the important steps in the algorithm of YACR covering the

actual implementation as little as possible. This section describes the details of implemen

tation including more detail on algorithms which are not necessary to understand the

overall operation of YACR2, but should be understood by anyone doing further work on

the program.

Outline of Routine main( )

set global variables;
process command line;
read input file; /* allocates net data structures */
build and level vertical constraint graph; /* breaks cycles */
find density of each column;
choose starting column; /* if not given */
done = NO;
num__rows = maximum density - 1;
while (done = NO)
{

num_rows++;

Vcv__cols » NULL;
allocate channel data structure;
allocate and initialize cost matrix;
Phase I;
Phase II;
Phase ID;
remove adjacent parallel vertical lines;
Phase TV; /* sets done if routing is completed */

clean channel;



maximize metal; /* if requested */
print output;
verify output;

Many of the above "statements" are described in more detail below.
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Set Global Variables

Two lists of integers, Vcv_cols and Cycle_colst are set to NULL. Vcv__cols is a list

of columns that contain vertical constraint violations. Columns are added to this list in

routine place__one__.net and are removed when they are routed by the maze routines.

Cycle_cols is a list of columns for which there is no edge in the vertical constraint graph.

Columns are added to this list in routine break__cycle.

Process Command Line

Global flags are set to either their default value or the value specified on the com

mand line. If the starting column was specified, it is stored so that a starting column will

not be calculated. The input and output files are opened and pointed to by global vari

ables.

Read Input File

Aside from the obvious reading of the input file, this routine calls allocate__nets to

allocate the array of net structures and then sets all the fields that relate to the pins for

each net

storejpin is called for each terminal in the channeL A net's pin__placement is incre

mented for each terminal on the top edge of the channel and decremented for each termi

nal on the bottom edge. An element for each terminal is inserted into the list of pins for

its net The doubly linked list is ordered from leftmost pin to rightmost pin, with left

most pointing to the leftmost pin in the list, and rightmost pointing to the rightmost pin

in the list
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The arrays top, bottom, left, and right are constructed by the input routine as the

four edge lists are read from the input file. Each element of these arrays is a pointer to

the structure for the net that is to connect to the specific column, eg. toplij is a pointer to

the net that connects to the top edge of the channel in column L There is a net structure

with name = 0 that is used to represents locations where no net is to be connected.

This routine is also responsible for setting the global variable place^relative to indi

cate if the order of nets on either the left or right edge has been specified.

Build and Level Vertical Constraint Graph

For each column in the channel, make_graph calls insert__edge to modify the verti

cal constraint graph. If there are not two different nets in the column, insert_edge does

nothing. If there already exists an edge in the proper direction between the two nets,

then the cd_Jist field of the edge is updated. If the desired edge does not exist, it is

created by allocating the two elements and inserting them at the beginning of the parents

and children lists.

The algorithm for calculating level__from_jop for all nets is as follows:

set level_from__top to 1 for all nets;
push all nets with no parents;
while (not all nets leveled)
I

if (stack is empty)

break all cycles in the graph;
push all unleveled nets with no unmarked parents;

}
while (stack is not empty)

pop top net off stack and call it working_net;
foreach child of working net

if (child's level_from_top <= working__net's level_from_top)

child's level from top = working net's level from top + 1;
} " "
in child's parent list, mark the edge to working__net;
if (all of child's parents have been marked)



36

I
push child on stack;

}
}

}
}

Calculating level_from_bottom is slightly simpler. The level__from_top of all nets

is calculated before the level_from_bottom, so the graph is acyclic when the

level_mfrom_bottom is calculated. There is no need to check for cycles in the graph.

Find Density of Each Column

Allocates an integer array, density with one element for each column in the chan

neL The array values are initially set to zero. The density is calculated by looping

through all the nets, incrementing the value in density for each column that the net

crosses.

Choose Starting Column

If the pins on either the left or right edge have a specified order, the starting column

will be either column 1 or the rightmost column. If the left and right pins have no

specified order, the starting column specified on the command line is used. If the starting

column is not specified by either method, then it is chosen to be the column with max

imum density whose nets cross the most other columns of maximum density.

It is sometimes the case that several adjacent columns will be of maximum density

and contain the same nets. These columns are considered equivalent and treated as a sin

gle column.

Allocate Channel Data Structure

The routine that allocates the channel structure, allocate__channel, also initializes all

the elements in rows 1 through num__rows to be zero. As stated before, the rows above

the top and below the bottom of the channel are dummy rows that are filled with -l's.
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Phases I, II, and ID

Phases I, n, and TH are described in chapter 2. select and assign are described concep

tually there, the details of efficient implementation are given here.

select and assign are implemented using a cost matrix M which has as many rows

as the channel and one column for each net An entry M [r, nt ] represents the cost of

assigning net ns to row r. The larger the value, the less desirable the assignment Note

that the most restricted net chosen by select according to the heuristics described in Sec

tion 3.3, is the one with the greatest column sum in the cost matrix. We use four levels of

cost when deterniining an entry in the matrix: LOW (l), MEDIUM (100), HIGH

(10,000), and INFINITY (1,000,000).

M[r, ft, ] is set to INFINITY to indicate that assigning ft, to row r will cause a

horizontal constraint violation, Le. r is not in S (ft, ).

Rows in P (ft, ) are assigned a cost of MEDIUM x IP (ft, ) I, where I I denotes

the cardinality of a set

If P(ft,) is empty, then the rows in P,(nt) (]Pb(.ns) are assigned a cost of

MEDIUMxO/U,)! - \Pt(ns) f[Pb(ns)\.

Rows outside the preferred region are assigned a cost of HIGH.

Finally, each row r with M [r, ft, ] < INFINITY is incremented by LOW times the

distance from ideal (ft, ) to r.

Once the cost matrix is constructed, select (N) simply returns the ft, € N which has

the greatest column sum in M . The algorithm for assign becomes:

R0i, ) = U : M [si, ft,] <HIGH} ;
ifCR(ft,)==0){

R (ft, ) = {Si Xi ** st and st ;* sb and M[sifns] < INFINITY};
if (2? (ft, ) == 0) {

R (ft, ) = [si: M [st, ft, ] <INFINITY} ;

}
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( now we have R = \sr ,..., sTl })

ford* =2;i <Z ;*++){
if (VCV (ft, , sn ) <VCV (ft,, r ) {

}
else if (VCV (n,, 5rj) == VCV (n,, r ) {

if(Mfcri,ft,]<Af[r,ft,D{
r = *-;

}
}

}

Note that the sets S \int ) and S _(ft, ) are combined because one of the two is always

empty.

Allocate and Initialize Cost Matrix

The cost matrix has a column for every net, and a row for each row in the channel

(plus a row 0 that is not used).

The only reason the cost of assigning a net to a given row may change as other nets

are assigned, is that a row may become obstructed so that its cost goes to INFINITY. There

fore, the basic cost of assigning each net to each row is calculated only once. Then, each

time a net is assigned to a row, the cost for assigning any net that would overlap it in that

row is set to INFINITY.

Remove Adjacent Parallel Vertical Lines

Soon after YACR was interfaced to HAWK and SQUID, it became apparent that

adjacent parallel lines of the same net on the same layer were both aesthetically unpleas-

ing and wastefuL Because the translator from YACR output to SQUID had to be able to

make rectangles oriented both horizontally and vertically on each layer, every pair of

adjacent parallel lines looked like a ladder. It was obvious that much of the material

making up the ladder could be removed while still maintaining proper connectivity. This

removal is done before any of the maze routing so that there will be more room for maze
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routing.

The procedure remove__parallel searches for a pair of adjacent columns that have the

same net connecting to the same edge. If both have been connected without vertical con

straint violations, then all but the edge-most piece of poly for one is removed.

Clean Channel

There are several ways in which the routing algorithms can generate segments of

metal that are useless. For example, any piece of metal exactly two grid units long can be

removed, because either it connects two pieces of poly (which would be connected

without the metal) or it doesn't connect two pieces of poly(and hence serves no purpose).

Another case occurs when maze2 routes the leftmost pin of a net with a dogleg to the

right, then the primary horizontal segment of the net extends farther to the left than is

necessary and can be shortened. (Maze2 does not shorten the segment because it may be

needed to remove another vertical constraint violation for the same net)

Maximize Metal

The metal maximization routine will potentially change a lot of poly to metal, but

may also leave some that could be changed but is not At each pin on the top and bottom

edge, the algorithm searches toward the opposite edge untill it reaches the row where the

poly connects to the net's horizontal segment (if it indeed does). The it steps backward

one grid unit at a time, changing the poly at a grid point to metal if the vertical segment

on the metal layer can be extended without overlapping the metal from another net If

the same net connects to both the top and bottom edges in a column, the piece of poly con

necting to the row of metal can only be removed if the metal can be extended towards

both pins. This method does not add any contacts and it does not attempt to maximize the

poly used to dogleg in maze2 or maze3.



40

Print Output

Originally a separate fprintf statement was used for each number in each layer of

the channeL Profiling showed that, on some examples, printing the output required about

50% of the entire execution time. Now, YACR does its own translation from integer to

character representation, and uses putc to output the numbers one character at a time.

This more complex method of output requires "only" about 25% of the total execution

time.

Verify Output The verification routine was originally used as a debugging tool, but has

been left in to ensure that if there are any more bugs, they will be detected and the user

will be warned. There are three reasons for verifying the output after printing it instead

of before: first, detecting an error is not the same as knowing how to correct the error;

second, if correct output cannot be obtained, partially correct output is better than noth

ing; and third, the algorithm used to verify the route also destroys it

The following recursive procedure is used to verify a single net

verify (row, col, layer)

layerfrow] [col] = 0;
if (there is a pin at this location)

delete this pin from the net's list of pins;

if (current net exists at layer[row - l] [colD

verify (row - 1, col, layer);

if (current net exists at layerfrow + l] [colD

verify (row + 1, col, layer);

if (current net exists at layerfrow] [col - lD

verify (row, col - 1, layer);

if (current net exists at layerfrow] [col+ lD

verify (row, col + 1, layer);
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if (current net exists at other__layer[row] [colD

verify (row, col,other_layer^

return;

}

To verify that all the pins for a given net are connected, the above routine is called with

the location of the leftmost terminal of the net After the routine returns, all of the net

connected to the leftmost terminal is erased from the channeL More importantly, the

only terminals in the net's list of terminals (pointed to by leftmost and rightmost fields of

the net's structure) are terminals NOT connected to the leftmost terminal of the net

Therefore, if the net's leftmost and rightmost are not NULL, then the net is not properly

routed, and the terminals in the list are reported as being "not properly routed."



CHAPTER 4

INTERFACE TO HAWK

The channel routing algorithm presented has been interfaced with the HAWK

graphics editor and SQUID data base system [11], This work was done with Deirdre Ryan

and Richard RudelL •

The router is called as a command from HAWK with the following actions taking

place: the user is requested to type the cell name (output file) for the routing geometries;

the user points to opposite corners of the rectangular channel to be routed; pin locations

are extracted from the SQUID database; columns are defined in the channel; the input file

for the symbolic router (described in chapters 2 and 3) is created; the symbolic router is

run as a separate process; the output from the symbolic router is read and translated to

geometries in the SQUID database; then the routed channel is displayed for the user.

This interface is divided into three portions; the symbolic router already decribed; a

preprocessor that generates input for the symbolic router from the database; and a postpro

cessor that translates the symbolic routing to actual geometries.

4.1. Preprocessor

The preprocessor extracts the pin locations from SQUID and generates a symbolic

grid (the lists T ,B ,L, and R ) for the symbolic router. It makes sure that the columns

are as wide as the contact-to-contact spacing for the particular technology used. Nb pin

may straddle the dividing line between columns. If this would happen, one column is

made wider than the minimum spacing. An important feature of the preprocessor is that

it defines columns without pins whenever possible. This generates white space that may

be used for maze routing.
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Even though the channels have a specific minimum width, some of the pins may be

closer together than this minimum. The postprocessor will place small jogs at the channel

edge to center the vertical segments in their respective columns. However, if the pins are

too densely packed, not all of them can be routed.

4.2. Postprocessor

There are two phases in the postprocessor, symbolic and physical- The symbolic

phase performs metal maximization. The physical phase translates the symbolic routing

into physical geometries that are design rule correct and ensures proper connections to the

pins along the edges of the channel. The symbolic postprocessing is done by the same pro

gram that does the routing, the physical phase is done by a separate program.

Metal maximization is a one-for-one exchange of pieces of poly (vertical layer) for

pieces of metal (horizontal layer). Only pieces of poly that are adjacent to metal are eligi

ble to be changed, as this keeps the number of vias from increasing.

Before any actual geometries are generated, the spacing between rows must be

defined. When the column spacing was defined there was no way of knowing the actual

space needed between columns, as the routing had not yet been done. We wait to define

row spacing until the routing is completed, then we place adjacent rows as close together

as possible. If two adjacent rows both have a contact in the same column, the rows must

have contact-to-contact spacing, otherwise metal-to-contact spacing is used.

The horizontal and vertical segment geometries are centered in their respective rows

and columns. Along the top and bottom edges the vertical segments often need small jogs

to connect to the pins.



CHAPTER 5

EXPERIMENTAL RESULTS

The algorithms have been coded in C and have been run on a DEC VAX 11/780

under both VMS and UNIX operating systems.

Table 1 gives the results for a number of channels. The CPU times are from runs on

a VAX 11/780 under UNIX 4.2bsd. The channels labeled as YK.3a, YK.3b, and YK.3c are

from [4\ DEUTSCH is the famous Deutsch's difficult exampleUJ, Rl through R5 are ran

dom channels generated by Rivest's program [9], the channels have been generated so that

they are of uniform density with many short nets making them difficult to route.

CYCLE is a modified version of DEUTSCH that contains seven cycles (with length rang

ing from four to eleven nets) in the vertical constraint graph. SOAR is the largest chan

nel of the CMOS implementation of SOAR designed at Berkeley by Chris Marino. The

Hughes channels have been provided by Dr. CLP. Hsu of Hughes Aircraft Company,

Newport Beach. The AMI channels are the channels of an entire standard cell chip.

Table 2 shows the relative amounts of time YACR2 spends in various parts of the

code. The profile information is cumulative over all the examples listed in table 1. Note

that the maze routing which gives the algorithm its robustness only requires about 1% of

the total run time.

Table 3a is a comparison between YACR2 and several other routers for the Deutsch

difficult example. Notice that YACR2 used fewer vias and had smaller total net-length

than any of the other routers. YACR2 required no multiple runs or setting of parameters

for this result

Table 3b is a comparison between YACR2 and the channel router implemented in

the BBL system based on the algorithm of Yoshimura and Kuh. We have chosen this
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router for extended comparison because it was easily available to us, for this we thank the

group of Prof. Kuh for the collaboration in carrying out the experiments. The runs of the

BBL router on all the examples but the ones from Hughes have been performed by Dr. J.T.

Li The ones for the Hughes example were peformed by Dr. Hsu.

The initial column is indeed an important parameter for the performance of channel

routers. As described in Section 3.2, we start from a column of maximum density. How

ever there may be many columns with maximum density. We choose among all the

columns of maximum density the one which shares more nets with other columns of

maximum density. By doing so, we place the most critical nets first Even though the

choice of the initial column is important, we noted that YACR2 is very robust with

respect to this choice. In fact, in all the examples we run, the difference between the

number of tracks needed starting with the "optimal" column and any other (even one

with non-maximum density) is at most two. The column tried even include the first and

the last, generally the poorest choices. We believe that this characteristic of the router is

due to the maze routers that can eliminate vertical constraint violations quite effectively.
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Portion of Code Per Cent of Run Time

Read Input and Build Net Data Structure
Allocate and Initialize Channel Structure

Build and Level Vertical Constraint Graph
Choose Starting Column
Select and Assign Nets to Rows
Maze Routing and Adding Extra Row
Cleanup and Metal Maximization
Verification of Completed Route
Output Routed Channel

22

4

53

2-5

20

1

8

14

23

Total 100

Table 2.

Profile of YACR2 Code.

47

Router Tracks Vias Net-length

YACR 19 287 5020

Hamachi 20 412 5302

Burstein 19 354 5023

YoshimuraJCuh 20 308 5075

Table 3a.

Comparison of various routers for the Deutsch difficult example.
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Example Columns Nets Density YACR BBL

YK.3a 45 30 15 15 15

YK.3b 62 47 17 17 17

YK.3c 103 54 18 18 18

Rl 139 77 20 21 21

R2 117 77 20 20 20

R3 123 28 16 17 17

R4 150 74 15 17 20

Hughesl 417 221 16 17 24

Hughes2 421 252 15 16 20

Hughes3 421 234 11 12 15

Hughes4 421 230 19 21 22

Table 3b.

Comparison of YACR2 and the BBL channel router.



APPENDIX A

YACR User's Guide

The following pages give a complete description of the input/output formats and

command line arguments of YACR2. Also included are suggestions for obtaining best

results from YACR2.
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YACR User's Guide

James Reed

1. Problem Formulation

The channels that YACR can route have the following characteristics

i) a strictly rectangular region with noobstructions;

ii) two layers to be used for routing, referred to in this guide as "metal" and "poly" but

the actual material is unimportant;

iii) fixed terminals on two opposite edges of the rectangular region, called the "top" and

"bottom" edges;

iv) (optional) terminals on the other two edges, "left" and "right", of the rectangular

region, exact position of these terminals is not specified, but order may be specified for

one edge.

All of the routing is done within the boundaries of the rectangular region, but the exact

boundaries cannot be specified by the user. The distance between the top and bottom edges is

determined by YACR, but will be minimized. The length of the top and bottom edges are

given by the user, but in rare cases may be entended by YACR to complete the route. The top

and bottom edges will be extended only by adding empty columns to their left or right ends;

the spacing between terminals on the top and bottom edges will never be altered by YACR.

YACR is guaranteed to make all of the connections specified in its input. The connec

tions to the terminals on the top and bottom edges will be made with poly. The connections

to the terminals on the left and right edges will be made with metaL

YACR routes on a symbolic manhattan grid. The metal layer is used for almost all rout

ing segments that run parallel to the top and bottom edges poly is used for almost all seg

ments parallel to the left and right edges. This choice was made because the length of seg

ments running from top to bottom is usually less than the length of segments running from

left to right and metal has lower resistance than poly.



YACR is a symbolic channel router; it does not specify routing geometries in terms of

actual dimensions or location on a chip, but shows their relative positions in the channeL The

output is comparable to a stick diagram of a circuit layout.

An interface to the HAWK graphics editor and SQUID data base that translates the sym

bolic output of YACR into physical geometries has been developed. For information on how

this interface is used see User's Guide to Routing in HAWK,

2. Yacr Input and Output

2.1. Yacr Input File Formats

Yacr can use either of two formats for input. The information that is supplied by both

formats consists of: the number of nets to be routed; the number of columns in the channel; a

list of pins that connect to the top edge of the channel; a list of pins that connect to the bot

tom edge of the channel; the number of pins that connect to the left edge of the channel; the

list of pins on the left edge; the number of pins that connect to the right edge of the channel;

and the list of pins on the right edge. First is a description of the default format, then the

format called for by the "-H" command line argument to yacr.

The number of nets in the channel is specified with the following line:

nnet= #

The number must be separated from the equals sign by at least one white space character, a

space, a tab, or a newline. No other spaces are allowed.

The number of columns in the channel is specified with the following line:

ncol= #

As with the number of nets, the only space allowed is between the equals sign and the

number. The space is also required.

The list of pins on the top edge of the channel is begun with the keyword "top__list".

The keyword is followed by a white space separated list of numbers, representing nets. The

list must contain "ncol" integers. The numbers need not be consecutive. "0" is a special



number that means "this location has no net connected to it"

The list of pins on the bottom edge of the channel is begun with the keyword

"bottom_list". The restriction for the top list also apply to the bottom list.

The list of nets connecting to the left edge of the channel is begun with the keyword

"left__list". The keyword is followed by a number telling how many nets there are in the

left list. This is followed by the list of nets. If there are no nets connecting to the left edge,

this category may be omitted. By default, the order in which the nets are listed is not mean-

ingfuL If a specific order is desired, "left__list" should be preceeded by the keyword "rela

tive". The order in which the nets are listed is then the order (from top to bottom) in which

they will appear in the final route. There is no way at this time to specify the exact place

ment of nets on the left edge of the channeL

The list of nets connecting to the right edge of the channel is begun with the keyword

"right__list". This category is exactly like the left list category. An important restriction to

note is that relative order can be specified for only the left list or the right list, If it is

specified for both, it will be ignored for the second list.

The "-H" format is identical to the default format except that all keyword are omitted

(except "relative") and all categories must be included in the following orden

number of nets

number of columns

top list

bottom list

left list

right list

The left list and the right list must be included, if there are no nets connecting to the

edge of the channel, the list will be a single "0". The file will contain nothing but integers

separated by white space, unless the keyword relative is included for the left or right list.



2.2. YACR Output File Formats

Just as there are two input formats, there are two output formats. One corresponds to

the default input format and the other is used with the *-H" flag. The default format is

described first, then the differences between it and the -H format follows

The file begins with the following information: input file; number of nets; number of

columns; number of nets in the left list; number of nets in the right list; a list of edges

removed from the vertical constraint graph to make it acyclic (if any); a list of columns with

maximum density; a list of columns that appear to be the best choices for starting column; and

the actual starting column.

The next section of the output contains a block for each "major attempt" YACR2 makes

at routing the channeL Each block has the number of rows used for the attempt, followed by

a list of vertical constraint violations (VCVs) that occurred, followed by a list of how each

VCV column was routed (if it was). If a row was added to complete the route without start

ing over, that is included at the end of the last block.

The next and most important section gives the routing of the channel. The horizontal

(metal) layer is given first, followed by the vertical (poly) layer. Each layer is described by a

matrix of integers Each row in the matrix represents a column in the channel (this keeps the

lines shorter so a printout is easier to read). There are rows to represent the left and right

edges of the channel; the extra rows are used to indicate nets that connect to the edges. Each

integer in the matrices represents the net that occupies a given space in the grid. "0" means

the space is empty. Vias are not explicitly given, but implied at each location that the metal

layer has the same net as the poly layer.

Finally, there is a summary that tells the number of vias used in the route, the total net

length of all the nets, the longest net, and how much metal and poly were used to route the

longest net.

The "-H" output format contains a minimum amount of information. It contains no

keywords, just integers The first two lines have the number of rows and columns,



respectively, in the channeL The next row is the toprow of the metal layer of the channeL

listed from left to right The entire metal layer is given followed by the poly layer. There

are no extra columns representing the edges of the channeL The last line of the file has three

integers, the first is the numberof the net with the longest route, the amount of metal used to

route it, and the amount of poly used to route it.

23, Examples

23.1. Example 1, Input (Default Format)
nnet« 2 ncol= 3

top__list
201

bottom__list
102

23.2.
Example 1, Output (Default Format)
Input file: ex/2

num_nets= 2, num_cols= 3, num_Jeft__nets= 0, num_right_nets= 0
Not closing cycle with edge from 1 to 2
Columns with maximum density: 1
Best choice(s) for starting column is (are): 1
initial_column » 1
num__rows » 2
VCV: nets 1 2, column 3
column 3 was not routed

Row 1 is being used to complete the route.
The final result is

The horizontal layer (turned sideways):
0 0 0 col - 0

0 2 2 col = 1

0 2 0 col = 2

0 2 0 col = 3

0 0 0 col - 4

The vertical layer (turned sideways):
0 0 0 col =* 0

,10 2 col= 1
111 col= 2

2 2 1 col= 3

0 0 0 col = 4

There are 2 vias

The total net__length is 12
The longest net is 2, metal length » 4, poly length » 3



233,
Example 2, Input (Default Format)
nnet= 72

ncol= 169

top__list
1 2 4 6 8 10 11 13 3 9 16 5 17 11 5 14 14 7 12 17 19 1 20 21

23 24 0 16 10 3 11 25 0 26 11 26 11 0 27 28 11 3 9 16 30 27 5 31

1 5 1 20 32 23 24 0 9 1 20 29 23 24 0 3 8 30 38 28 19 6 40 27

35 41 42 6 19 34 43 30 8 31 43 39 46 36 46 47 48 31 0 24 23 45 20 1

51 0 40 39 40 39 0 8 30 50 54 0 0 55 49 19 6 0 47 42 47 42 0 53

58 6 19 49 50 30 8 60 62 59 54 55 54 56 63 55 65 0 66 68 66 68 0 60

68 0 46 44 46 44 0 69 0 55 58 55 58 0 64 71 0 72 63 72 63 0 57 62

54

bottom__list
0 3 5 7 9 5 12 14 15 7 12 14 7 4 13 8 6 15 18 14 8 6 11 22

21 0 18 16 18 16 0 8 6 26 11 0 24 23 25 20 1 29 0 22 3 22 3 0

0 9 2 9 2 0 32 23 33 19 6 8 30 27 34 35 36 37 39 31 39 35 38 31

8 30 37 41 19 6 44 45 0 33 31 33 31 0 27 35 36 48 49 31 39 46 47 50

52 20 53 24 0 47 39 0 24 51 20 52 20 52 23 8 30 50 56 0 0 57 49 19

6 6 19 49 59 0 0 61 50 30 8 55 0 24 64 20 52 0 67 68 63 55 24 52

20 69 24 0 46 62 63 68 0 24 65 20 52 0 70 60 62 54 63 0 24 71 20 52

67

relative right__list 6
68 55 63 70 67 61

3.

Running YACR

3.1.

Description

YACR2 is run with the following command:

yacr [options] [filel [file2] ]

Filel contains the input, file2 gets the output If file2 is omitted, the output goes to standard

out If no files are specified, input is read from standard input and output goes to standard

output

The command line options described below can be specified in any order, but must come

before the input and output file names.

-a Add columns at the ends of the channel if necessary to complete the route. By default

columns are not added, but if the channel has cyclic constraints, additional columns may

be necessary. If yacr cannot complete a route, it will give a message recommending that



this flag be used.

-c n Begin routing the channel starting in column "n". If this is not specified, or if "n" is less

than one or greater than the number of columns in the channeL yacr will chose a start

ing column. If the left__list or right__list is specified in "relative" order, the "-c" option

will be ignored.

-d Sets the debug flag so that the channel will be printed (in the desired format) at the fol

lowing times when the current number of rows is found to be insufficient; when the

route is completed, before metal maximization and cleanup; after metal maximization

and cleanup. Useful only for debugging purposes.

-H Use an alternate input and output format Also forces input to be read from standard

input and output to be written to standard output

-m Do not perform metal maximization.

3.2. Diagnostics

The following error messages are all written to stderr.

"net n is not properly routed

bad pins are: coll/edge1 ..."

The verification routine has discovered a problem with the route. The pin of net "n" in

column "coll" on edge "edgel" was not connected to the leftmost pin of net "n". This mes

sage will only appear when a bug in the code manifests itself.

"The channel cannot be routed without additional columns,

please use the "-a" command line argument"

The channel has cyclic constraints that cannot be routed in the space provided. This has not

happened on any of the hundreds of industrial channels routed by YACR to date.

"top__list already specified, first list used."

The input file tries to specify the top__list portion of the input more than once, all lists after

the first are ignored. There are similar messages for the bottom__list left_list right__list



nnet and ncoL

"net n has only 1 pin."

There is only one pin with number "n". Unfortunately YACR usually will not route any

nets if this error occurs

33. Suggestions for Best Results

The best suggestion that can be given here is Let YACR make as many decisions as pos

sible. There are two ways in which the user may make decisions for YACR, either by speci

fying that the left_Jist or right_Jist is "relative", or by specifying the starting column with

the "-c" command line argument One decision that the user should make for YACR is

whether or not it should be allowed to add columns to the channel ends to complete the

route.

Relative Order

If the left__list or right_list is given a specfic order YACR will almost always require

more rows for routing that if the order was not given. This happens for two reasons first

there are more restrictions that must be met by the final route; and second, in order to guaran

tee the restrictions are met YACR must begin routing at either the left or right end of the

channel (usually a bad place to start).

Use of -c

Most of the time that YACR is allowed to choose its starting column it will route a

channel in density. Occasionally, a small number of extra rows will be required to complete

the route. Since the number of rows needed for the route will vary by one or two depending

on which column YACR started with, the user can sometimes get YACR to route a channel in

density by forcing it to begin in a column it would not normally choose.

Note that if the pins on the left or right edge have a specified order, the user is already

forcing YACR to start in the first or last column.



The YACR output file contains information that is useful in picking a starting column

that might be better than the column YACR chose. Consider the following portion of a

YACR output file (only the routing of the channel is omitted):

Input file: ex/3c
num_nets= 54, num__cols= 103, num__left_nets= 0, num_right__nets= 0
Columns with maximum density: 58 69
Best choices) for starting column is (are): 58 69
initial__column « 58
num_rows = 18
VCV: nets 38 45, column 71
VCV: nets 21 45, column 63
VCV: nets 21 24, column 75
column 75 was routed by mazela
column 63 was not routed

column 71 was not routed

Row 1 is being used to complete the route.

In this example YACR was allowed to choose a starting column. It chose column 58, and

ended up with two vertical constraint violations (VCVs) (in columns 63 and 71) that it could

not remove. We could hope for better results by forcing YACR to start in any of columns 69,

63, or 71. We might choose 69 because YACR said it might be a good choice, or we might

choose 63 or 71 in hopes that a difficult-to-remove VCV would be avoided. If we choose to

force YACR to start routing in column 63 (with the command "yacr -c 63 inputfile

outputfile") we get the following results.

Input file: ex/3c
num_nets= 54, num_cols= 103, num__left_nets= 0, num__right__nets= 0
Columns with maximum density: 58 59 69 70
initial__column = 63
num__rows = 18
VCV: nets 41 26, column 72
VCV: nets 49 35, column 90
column 72 was routed by maze2
column 90 was routed by maze2

With the forced starting column YACR was able to route the channel in density.

There are several interesting things should be pointed out about the two output files.

Notice that the first one lists 58 and 69 as the columns with maximum density and the second

lists colums 58, 59, 69, and 70. This is not a contradiction, in this example columns 58 and 59

are crossed by the same nets (the same is true of columns 69 and 70). If YACR began routing

in either column 58 or 59, it would achieve exactly the same results, so it removes all but one



of the redundant columns from consideration. When the user specifies a starting column,

YACR does not waste time figuring out if adjacent columns of maximum density are identical.

The other interesting fact is that there were not only a different number of columns

with vertical constraint violations, but the columns were totally different when YACR began

routing in a different column.

Use of -a

There are some cases in which YACR will think it needs extra columns, but could actu

ally complete the route by adding only rows Since the times when YACR really needs extra

rows are rare (it has not yet happend in a industrial example), you should only use the "-a"

command line argument after YACR tells you it is necessary.

3.4. Reed's Rule of Routing

Routers do weird things.

When looking at the output of YACR (or any other router) it is always a good idea to

keep in mind this variant of the widely known Murphy's law.



APPENDIX B

YACR man Pages

The following pages are the on-line descriptions of how to run YACR2 and the input and

output formats
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NAME

yacr — Yet Another Channel Router

SYNOPSIS

yacr [options] [filel [file2] ]

DESCRIPTION

Yacr is a two-layer symbolic channel router. Its input is a list of pins that are to be con
nected on each edge of the channeL The output is in the form of two arrays, one for each
layer of the route. Each non-zero entry in an array is the name of the net that occupies that
space in the routed channeL For information on input and output formats, see YACR(5).

Filel contains the input file2 gets the output If file2 is omitted, the output goes to standard
out If no files are specified, input is read from standard input and output goes to standard
output

The command line options described below can be specified in any order, but must come before
the input and output file names

-a Add columns at the ends of the channel if necessary to complete the route. By
default columns are not added, but if the channel has cyclic constraints, additional
columns may be necessary. If yacr cannot complete a route, it will give a message
recommending that this flag be used.

-c n Begin routing the channel starting in column "n". If this is not specified, or if "n" is
less than one or greater than the number of columns in the channeL yacr will chose
a starting column.

-d Sets the debug flag so that the channel will be printed (in the desired format) at the
following times when the current number of rows is found to be insufficient; when
the route is completed, before metal maximization and cleanup; after metal maximiza
tion and cleanup. Useful only for debugging purposes

-H Use an alternate input and output format (see YACR(5)). Also forces input to be
read from standard input and output to be written to standard output

-m Do not perform metal maximization.

SEE ALSO

YACR(5)

AUTHOR

James Reed

DIAGNOSTICS

The following error messages are all written to stderr.

"net n is not properly routed
bad pins are: coll/edgel ..."

The verification routine has discovered a problem with the route. The pin of net "n" in
column "coll" on edge "edgel" was not connected to the leftmost pin of net "n". This mes
sage will only appear when a bug in the code manifests itself.

"The channel cannot be routed without additional columns
please use the "-a" command line argument"

"top__list already specified, first list used."
The input file tries to specify the top_list portion of the input more than once, all lists after
the first are ignored. There are similar messages for the bottom__list left__list right_list
nnet and ncol.

First Edition 11/23/84
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Yacr Input File Formats
Yacr can use either of two formats for input The information that is supplied by both for
mats consists of: the number of nets to be routed; the number of columns in the channel; a list
of pins that connect to the top edge of the channel; a list of pins that connect to the bottom
edge of the channel; the number of pins that connect to the left edge of the channel; the list
of pins on the left edge; the number of pins that connect to the right edge of the channel; and
the list of pins on the right edge. First is a description of the default format then the format
called for by the "-H" command line argument to yacr.

The number of nets in the channel is specified with the following line:
nnet= #

The number must be separated from the equals sign by at least one white space character, a
space, a tab, or a newline. No other spaces are allowed.

The number of columns in the channel is specified with the following line:
ncol« #

As with the number of nets, the only space allowed is between the equals sign and the
number. The space is also required.

The list of pins on the top edge of the channel is begun with the keyword "top__list". The
keyword is followed by a white space separated list of numbers, representing nets. The list
must contain "ncol" integers The numbers need not be consecutive. "0" is a special number
that means "this location has no net connected to it"

The list of pins on the bottom edge of the channel is begun with the keyword "bottom__list".
The restriction for the top list also apply to the bottom list

The list of nets connecting to the left edge of the channel is begun with the keyword
"left__list". The keyword is followed by a number telling how many nets there are in the
left list This is followed by the list of nets If there are no nets connecting to the left edge,
this category may be omitted. By default the order in which the nets are listed is not mean-
ingfuL If a specific order is desired, "left_list" should be preceeded by the keyword "rela
tive". The order in which the nets are listed is then the order (from top to bottom) in which
they will appear in the final route. There is no way to specify the exact placement of nets on
the left edge of the channel.

The list of nets connecting to the right edge of the channel is begun with the keyword
"right__list". This category is exactly list the left list category. An important restriction to
note is that relative order can be specified for only the left list the right list If it is specified
for both, it will only be meaningful for the one that appears second in the input file.

The "-H" format is identical to the default format except that all keyword are omitted (except
"relative") and all categories must be included in the following order:

number of nets

number of columns

top list
bottom list

left list

right list

The left list and the right list must be included, if there are no nets connecting to the edge of
the channel, the list will be a single "0". The file will contain nothing but integers separated
by white space, unless the keyword relative is included for the left or right list

Yacr Output File Formats
Just as there are two input formats there are two output formats One corresponds to the
default input format and the other is used with the "-H" flag. The default format is
described first then the differences between it and the -H format follows

Version 7 Unix 11/28/84
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The file begins with the following information: input file; number of nets; number of
columns number of nets in the left list; number of nets in the right list; a list of edges
removed from the vertical constraint graph to make it acyclic (if any); a list of columns with
maximum density; a list of columns that appear to be the best choices for starting column; and
the actual starting column.

The next section of the output contains a block for each "major attempt" yacr makes at rout
ing the channel. Each block has the number of rows used for the attempt followed by a list
of vertical constraint violations (VCVs) that occurred, followed by a list of how each VCV
column was routed (if it was). If a row was added to complete the route without starting
over, that is included at the end of the last block.

The next and most important section gives the routing of the channeL The horizontal (metal)
layer is given first followed by the vertical (poly) layer. Each layer is described by a matrix
of integers Each row in the matrix represents a column in the channel (this keeps the lines
shorter so a printout is easier to read). There are rows to represent the left and right edges of
the channel; the extra rows are used to indicate nets that connect to the edges Each integer in
the matrices represents the net that occupies a given space in the grid. "0" means the space is
empty. Vias are not explicitly given, but implied at each location that the metal layer has the
same net as the poly layer.

Finally, there is a summary that tells the number of vias used in the route, the total net
length of all the nets, the longest net and how much metal and poly were used to route the
longest net

The "-H" output format contains a minimum amount of information. It contains no key
words just integers The first two lines have the number of rows and columns respectively,
in the channel. The next row is the top row of the metal layer of the channel, listed from
left to right The entire metal layer is given followed by the poly layer. There are no extra
columns representing the edges of the channel. The last line of the file has three integers the
first is the number of the net with the longest route, the amount of metal used to route it and
the amount of poly used to route it

Example 1, Input (Default Format)
nnet= 2 ncol= 3

top__list
201

bottom_list
102

Example 1, Output (Default Format)
Input file: ex/2

num_nets= 2, num__cols= 3, num_left_nets= 0, num_right_nets= 0
Not closing cycle with edge from 1 to 2
Columns with maximum density: 1
Best choices) for starting column is (are): 1
initial_column = 1
num_rows = 2
VCV: nets 1 2, column 3
column 3 was not routed

Row 1 is being used to complete the route.
The final result is

The horizontal layer (turned sideways):
0 0 0 col- 0

Version 7 Unix 11/28/84
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0 2 2 col = 1

0 2 0 col = 2

0 2 0 col- 3

0 0 0 col- 4

The vertical layer (turned sideways):
0 0 0 col- 0

10 2 col- 1

111 col- 2

2 2 1 col- 3

0 0 0 col- 4

There are 2 vias

The total net_length is 12
The longest net is 2, metal length - 4, poly length - 3

Example 2, Input (Default Format)
nnet=. 72

ncol- 169

top__list
1 2 4 6 81011 13 3 916 5 1711 51414 7 1217 19 120 21

23 24 0 16 10 3 11 25 0 26 11 26 11 0 27 28 11 3 9 16 30 27 5 31

1 5 1 20 32 23 24 0 9 1 20 29 23 24 0 3 8 30 38 28 19 6 40 27

35 41 42 6 19 34 43 30 8 31 43 39 46 36 46 47 48 31 0 24 23 45 20 1

51 0 40 39 40 39 0 8 30 50 54 0 0 55 49 19 6 0 47 42 47 42 0 53

58 6 19 49 50 30 8 60 62 59 54 55 54 56 63 55 65 0 66 68 66 68 0 60

68 0 46 44 46 44 0 69 0 55 58 55 58 0 64 71 0 72 63 72 63 0 57 62

54

bottom_list
0 3 5 7 9 5 12 14 15 7 12 14 7 4 13 8 6 15 18 14 8 6 11 22

21 0 18 16 18 16 0 8 6 26 11 0 24 23 25 20 1 29 0 22 3 22 3 0

0 9 2 9 2 0 32 23 33 19 6 8 30 27 34 35 36 37 39 31 39 35 38 31

8 30 37 41 19 6 44 45 0 33 31 33 31 0 27 35 36 48 49 31 39 46 47 50

52 20 53 24 0 47 39 0 24 51 20 52 20 52 23 8 30 50 56 0 0 57 49 19

6 6 19 49 59 0 0 61 50 30 8 55 0 24 64 20 52 0 67 68 63 55 24 52

20 69 24 0 46 62 63 68 0 24 65 20 52 0 70 60 62 54 63 0 24 71 20 52

67

relative right__list 6
68 55 63 70 67 61

SEE ALSO

YACR(l)

AUTHOR

James Reed
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