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ABSTRACT

It is shown by example that a large class of engineering design problems

can be transcribed into the form of a canonical optimization problem with ine

quality constraints involving max functions. Such problems are commonly

referred to as semi-infinite optimization problems. The bulk of this paper is

devoted to the development of a mathematical theory for the construction of

first order nondifferentiable optimization algorithms, related to phase I - phase

II methods of feasible directions, which solve these semi-infinite optimization

problems. The applicability of the theory is illustrated with examples that are

relevant to engineering design.
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0. INTRODUCTION

0.1. Evolution of Optimization-Based Engineering Design

Over the years, engineering design has been increasing in complexity. This

constant growth in complexity is due to several factors, such as, (i) progres

sively increasing expectations in product performance, (ii) progressively more

restrictive constraints imposed by environmental and resource cost considera

tions, and (iii) progressively more and more ambitious projects being launched.

For example, in structural engineering, the increase in design complexity is

due to the need to ensure the earthquake survivability of sky scrapers and

nuclear reactors at reasonable cost; in control engineering and electronics to

the need for reliable, high performance, worst case designs; in the automotive

world, to the need to conserve energy while eliminating pollution; and in the

area of space exploration, to attempts to design complex shaped, highlyflexible,

large space structures and their control systems simultaneously, to unpre

cedented performance standards.

Fortunately, over the last decade, while material and labor costs have

grown rapidly, computing costs have decreased dramatically and hence, not

surprisingly, engineers have been turning more and more frequently to the com

puter for assistance in design. As a result, a new, interdisciplinary engineering

specialty has emerged which is commonly referred to as computer-aided design

(CAD). Most of the existing CAD methodology is based on computer-aided

analysis, with the design parameter selection carried out by the designer on a

trial and error basis. Since decision making in a multiparameter space is very

difficult, the trial and error approach is not very effective. Therefore, there is

growing hope that considerable benefits in engineering design might be obtained

from the use of sophisticated optimization tools. However, the effective use of

optimization algorithms in engineering design is predicated on the supposition
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that engineering design problems are transcribable into a suitable canonical

optimization problem.

Fortunately, as we shall shortly illustrate by example, engineering design

specifications can frequently be expressed as inequalities in terms of a finite

dimensional design vector x e ]Rn. These inequalities are either of the form

g(x) <£ 0 (0.1.1)

where g :lRn -* IR is continuously diflerentiable, or of the form

<p(x,y) <. 0, Vy e 7, (0.1.2a)

or, equivalently

max tp{x,y) -s 0, (0.1.2b)

where <p :lRn X 1RP -* IR is locally Lipschitz continuous and Y C ]RP is compact.

Constraints of the form (0.1.1) often express simple bounds on the design vari

able or a "static" design condition. Constraints of the form (6.1.2b) can be used

to express bounds on time and frequency responses of a dynamical system as

well as tolerancing or uncertainty conditions in worst case design. Conse

quently, a rather large number of engineering design problems are transcrib

able into the following canonical optimization problem,:

min(/(x)|flri(x) -s 0,i z k.; <pi(x,yj) <, 0,y3- e Yjtj e mj (0.1.3)

where we use the notation k. 4 (l,2f...,fcjf for any positive integer k. At a

minimum, the functions / :IRn -* IR, g* :Mn -* TR, i e Jn and

tft :IR71 X IR*^ -> IR, j e 221, must be assumed to be locally Lipschitz continuous,

while the sets Yj C ]RPi must be assumed to be compact.

Occasionally one encounters equality constraints as well, in engineering

design. These can be removed by means of exact penalty function techniques

which we will not discuss in this paper. For examples of exact penalty functions



in conjunction with algorithms of the type that we will describe in this paper, the

reader is referred to [May.2, May.4].

Problems of the form (0.1.1) are often referred to as semi-infinite optimiza

tion problems, or SIP for short, because the design vector x is finite dimen

sional, while the number of constraints is infinite.

A number of optimal control problems with state space constraints also

have the formal form of (0.1.3), except that the design vector x is a control (in

Z/^[0,l], say) rather than a finite dimensional vector. Although the theory that

we will present will be entirely in terms of problems in which the design vector x

is finite dimensional, it is very easy to extend the algorithms that we will be

presenting, both formally and analytically, to the case where x is a control. In

Example 5.34 we shall illustrate this fact.

0.2. Factors in the Selection of an the Axiomatic Structure

Problem (0.1.3) has a great deal of structure. The effect of this structure is

particularly pronounced when, as is so often the case in engineering design, the

functions / (•), gz(-) and ^(v) are differentiable. In this case, (0.1.3) is a

differentiable optimization problem with an infinite number of constraints.

Hence (0.1.3) is best solved by algorithms which exploit its structure to the limit

(such as [Gon.l, Pol. 10]), rather than by general purpose nondifferentiable

optimization algorithms (such as [Lem.1, Lem.2, Lem.3], [Mif.l], [Kiw.l] [Sho.l]).

Algorithms which exploit the structure of (0.1.3) can be first order or higher

order. First order algorithms tend to be extensions of methods of feasible direc

tions (see e.g. [Gon.l, Kiw.l, Pol. 10]), while higher order methods are extensions

of Newton's method or sequential quadratic programming methods (see e.g.,

[Het.2, May.7, Pol.ll]).

In this paper we present an axiomatic approach to a class of

nondifferentiable optimization algorithms for solving problem (0.1.3). These



algorithms can be viewed as extensions of combined phase I - phase II, methods

of feasible directions for differentiable problems, introduced in [Pol.6], Because

the literature contains only a few examples of methods of feasible directions

(see, e.g., [Ben.l, Pol.1, Zou.l]), it is, generally, not realized that it is possible to

define a very large number of such methods. We shall now demonstrate how one

can generate whole families of methods of feasible directions.

Consider the problem

min(/°(x) \f*(z)*0,j = 1,2 m j, (0.2.1)

where, for j = 0,l,2,..,m, f3' :]Rn -»]R are continuously differentiable, and sup

pose that x is a local minimizer for (0.2.1). Let us adopt the notation that vec

tors j^ E Em+1 have components /JtP,/*1 JJ,m, and let us define

£ {i,cTQm +l
m

£m+i - fA*eIRm+1 | fj? 3* Oforj = 1,2 m, £ fjP = lj. Finally, we define
i=0

J(x) k [j e m | f3'(x) = Oj U (Oj. Then one can state the F. John condition of

optimality [Joh.l] in two ways:

0ecofV/'(£)fce/CB). (0.2.2)

where "co" denotes the convex hull of the set, or, equivalently, that for some

fi, e 2m+i, the following two equations must be satisfied:

™>

£#V/J(x) = 0, (0.2.3a)
2 =0

m

S Ar/J(*) = 0. (0.2.3b)
i = i

To define a family of methods of feasible directions, we derive from either (0.2.2)

or (0.2.3a,b) a family of search direction finding problems. For i = 1,2,...,m and

j = 0,1,2,...,7n, let sT| t3 :IR-*IR be continuous functions such that (i)

s(z) = 0 if and only if z = 0, sgnsx(z) = sgn z, (ii) t3(z) >0 for all z 5*0.

Next, let B be any compact set in lRn containing the origin in its interior, and



let a,jS > 0 be arbitrary. Now consider the functions

01 4nun^ma^ *'(|V/'(*)D<V/'(*) ,fc>. (o.2.4a)
02 k min max (JflAI8 +«*(/'(x)) +**(|V/'(*)|XV'(x) .ft>}. (0t8 4b)

®3 4 min (a
/*eS

m \k

- 2 mj*'(/'(*))
l»+l I J = 1

+011
m

Emj*j(I|V/'(x)||)V/J(x) ll2i (0.2.4c)

for fc = 1 or fc = 2. It is easy to see that if x .is such that f3'(x) < 0 for all

j em, then (0.2.2) (and hence also (0.2.3a,b)) holds if and only if ®fc(x) = 0,

where fc = 1,2,3. We have thus created broad families of equivalent first order

optimality conditions. Now, if x e ]Rn is such that f3'(x) < 0 for all j E m and

®1(x)<0 (so that ®fc(x)5*0 for fc = 2,3 also holds), then the solution vector

h{x) of (0.2.4a) (or of (0.2.4b)) defines a direction along which the cost can be

reduced without constraint violation. The same holds true for the vector

TO

h(x) i - 2 fJ.£t3 (\\Vf3 (x)\\)Vf3 (x), where yu* is a solution of of (0.2.4c). We
i = 0

are thus on the way to obtaining several infinite families of methods of feasible

directions. In the literature one finds methods related to (0.2.4a) for

B = [h e IRn | IHI^fS U (see [Pol.l. Zou.l]), methods related to (0.2.4b) (see

[Kiw.l]) and methods using (0.2.4c) with fc = 1, but not with fc = 2 (see [Pir.2,

Pol.l]).

In constructing an axiomatic theory of semi-infinite optimization algo

rithms, we were faced with the choice of whether to place emphasis on elegance

and simplicity or whether to make sure that as many of the published algo

rithms and possible variants of these, such as those sketched out above, could

be accounted for. We have opted to emphasize axiomatic simplicity and have

concentrated on algorithms which can be viewed as progressively more complex

extensions of the method of steepest descent. These are related to those defined

by (0.2.4b) and (0.2.4c) with fc = 2.



A number of the algorithms stated in this paper have not been published

before, because, whenever we could not find in the literature an appropriate

algorithm that satisfied our axioms exactly, we made use of the above explained

freedom to generate a new algorithm, by creating a variant of an existing algo

rithm. Usually this involved no more than replacing fc =lbyfc=2ina form

such as (0.2.4c). On the basis of experience, we expect that the computational

behavior of these new variants will be found to be quite similar to that of the ori

ginal algorithms.

0.3. Comments on Contents and Bibliographical Notes

This paper is reasonably self contained. In Section 1, we present four exam

ples of the transcription of an engineering design problem into an optimization

problem of the form (0.1.3). In Section 2, we present the mathematical results in

the areas of continuity of point-to-point and point-to-set functions, convexity of

functions and sets, and nonsmooth analysis which are essential to the under

standing of our work. In Section 3, we assemble a number of results on max

functions. In Section 4, we give first order conditions of optimality for problem

(0.1.3). In Section 5, we show that it is possible to evolve a family of algorithms,

for the solution of both unconstrained and constrained semi-infinite optimiza

tion problems, by extension of the method of steepest descent for differentiable

functions. In Section 6, we present a family of more sophisticated algorithms,

derived by extension of the algorithms in Section 5. These more sophisticated

algorithms are characterized by search direction subprocedures that require

less computational effort than the ones used by the algorithms presented in

Section 5. As might be expected, the savings in search direction computation

are paid for by the loss of some continuity in the search directions," which is

likely to increase the number of iterations required to solve a problem to a given

precision. However, there is some consensus in the community of feasible direc-
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tions code users that the savings do seem to outway the losses. Finally, in Sec

tion 7, we introduce the reader to the concept of algorithm implementation and

illustrate it by an example.

Our list of references includes citations to articles and books which are of

immediate relevance to the material presented, as well as to some articles and

books which may help the reader to see our results from a broader perspective.

We conclude this section with a brief discussion of our sources and bibliography.

For further examples of engineering applications, see [Bha.1, May.5, May.6,

Pol.2, Pol.4, Pol.7, Pol. 10, Pol. 15, War.l].

Our sources for nonsmooth analysis, optimality conditions and max func

tions were [Ber.l, Cla.1, Dan.l, Dem.l, Dem.2, Leb.l].

Our axioms for the convergent direction finding maps represent the culmi

nation of a considerable effort on the theory of nondifferentiable optimization

algorithms. For earlier results see [Pol. 12, Pol.16, Pol.17]. Our convergence

proofs are based on general convergence theorems. For a sampling of such

theorems, see [Poll, Pol.9, Pol. 16, Tish.1].

The algorithm implementation theory presented in Section 7 is based on

results in [Kle.l, Muk.l. Pol.l, Pol.8, Tra.1].

For further examples of nonlinear and semi-infinite programming algo

rithms which have contributed to our development of the theory in this paper,

see [Bert.1. Gon.l. May.4, May.8, 0et.l, Pir.l, Pir.2, Pol.l, Pol.3. Pol.6, Pol.10,

Tra.1, War.l].

For optimal control algorithms which can be understood in terms of the

algorithm models presented in this paper, see [May.2, May.3, Warg.l, WU.1].

The possible variety of "direct" alternatives for constructing

nondifferentiable optimization algorithms is illustrated by [Het.l, Het.3, Kiw.l,



Lem.2, Lem.3, May.9, Mif.l, Mif.3, Polj.l, Polj.2, Polj.3, Sho.l].

There is a good deal of work on curve fitting which is closely related to that

done in the area of semi-infinite optimization, see, e.g., [Opf.l]. We refer the

reader to the book by Hettich and Zencke [Het.3] for a bibliography of this work

and some discussion.

An "indirect" alternative for solving semi-infinite optimization problems is

presented by various versions of problem decomposition by means of outer

approximations, see, e.g., [Gon.2, May.l, May.5, May.8].

For a few examples of superlinearly converging nondifferentiable optimiza

tion algorithms, which will not be covered in this paper see [Het.2, Lem.l, Lem.4,

Lem.5, May.7, Mif.3, Pol. 11].

Finally, we would like to draw the reader's attention to the following major

works: the book by Clarke [Cla.l] which presents a comprehensive theory of

nonsmooth analysis and optimality conditions for nondifferentiable optimization

problems, the doctoral dissertation by Lemarechal [Lem.3], which presents an

interesting collection of algorithms for the solution of nondifferentiable, convex

problems, the book by Kiwiel [Kiw.l] which is a compendium of various

nondifferentiable optimization algorithms, and the book by Shor [Sho.l] which

presents some very original alternatives, including space dilation methods which

have subsequently led to the so called ellipsoid methods (see, e.g.,[Sho.4, Iud.1,

Blan.l]) including the famous Khachian algorithm [Kha.1]. For additional biblio

graphic information, the reader may consult [Nur.2].

1. DESIGN EXAMPLES

We shall now illustrate by means of a few simple examples how SIP problems

of the form (0.1.3) arise in a variety of engineering design situations.



1.1. Design of Earthquake Resistant Structures

One of the simplest examples of a problem of the form (0.1.3) is found in

the design of braced frame buildings which are expected to withstand small

earthquakes with no damage and large ones with repairable damage. A simple

three story braced frame is shown in Fig 0.1.1. The components of the design

vector x are the stiffnesses of the frame members, as indicated in Fig.0.1.1.

Under the hypotheses of a lumped parameter model, the horizontal floors and

roof are assumed to be rigid and to concentrate the mass of the structure. The

relative displacements of the three floors and roof form the components of the

displacement vector y. The lumped parameter model of the braced frame

obeys a second order vector differential equation of the form:

My(t,x) + D(y,y,x) y(t,x) + K(y,y,x) y(ttx) = F(t), (1.1.1)

where F(t) represents the seismic forces. When F is small, i.e., when the earth

quake is small D and K can be taken to be constant so that (l.l.l) is a linear

differential equation, but when F is large, the bending of steel introduces gross

nonlinear!ties due to its hysteretic behavior. It is common to consider a whole

family of earthquakes \Fk\k^Kt both large and small, in carrying out a design.

When an earthquake is small, a building is expected to remain elastic and no

structural damage is allowed. When an earthquake is large, survival of occupants

becomes a major consideration and large, energy absorbing, non eleastic defor

mations are accepted, short of outright failure of the structure. A simple

optimal design problem consists of minimizing the weight of the structure sub

ject to bounds on the relative floor displacements over the entire duration of the

family of earthquakes considered as well as simple bounds on the stiffness of the

structural members. This leads to a SIP of the form
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min{/ (x) | 0 < a < x* < p, Vi ea;

|y'+1(*.*.ipfc)-yi(*.*.^)l * 4, (1.1.2)
V* e [0,7], Vfc e iST, jf =0,1,2}.

1.2. Design of a MIMO Control System

We shall now consider a simple design of a multi-input multi-output (MIMO)

control system, with specifications both in time and frequency domains. Con

sider the feedback configuration in Fig. 1.2.1, where C(x,s) is a compensator

transfer function matrix that needs to be designed. The equations governing the

behavior of this system in the time domain are of the form

zp -ApZp + BpUp (1.2.1a)

Vp = CpZp (1.2.1b)

2C = A (x) zc + Bc(x)uc (1.2.2a)

yc =Cc(x)zc (1.2.2b)

Up=yc (1.2.3a)

uc = r-y (1.2.3b)

y =yp+d (1.2.3c)

where (l.2.1a,b) represents the plant, (l.2.2a,b) represents the compensator to

be designed and (l.2.3a-c) are the interconnection relations. We assume that r,

Up, uc, yp, yc are all m-dimensional vectors and that the matrices A^, Bc, Cc

are continuously differentiable in the design vector x which, most likely, con

sists of the "free" elements of these matrices.

The most elementary requirement is that of closed loop stability. With

Gp (s) = Cp (si-Ac )-*Bp , (1.2.4a)

Gc(x,s) = Q(x)(s/-4;(x))-1£c(x), (1.2.4b)

it can be shown that the eigenvalues of the closed loop system are the zeros of

the polynomial in s
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X(x,s) k det(sI-Ap)det(sI-Ac(x))det(I^Gp(s)Gc(x,s)). (1.2.5)

To ensure that the zeros of x(x,s) are all in the open left half plane, we make

use of the modified Nyquist stability test introduced in [Pol.14]. For this pur

pose, let d(s) be a monic polynomial of the same degree as x(s)« such that all

zeros of d(s) are in the open left half plane. Let T(x,s) = x(x>s)/d(s). The

closed loop system is stable if the locus of T(x,joj), traced out in the complex

plane for w £ (—00,00), does not pass through or encircle the origin. A

sufficient condition for ensuring this (see [Pol.14]) consists of keeping the locus

of T(x,jd) out of a parabolic region containing the origin (see Fig. 1.2.2) by

imposing the semi-infinite inequality:

-d]Re[T(x,jo)]2 + l7n[T(x,ju)] + c ^ 0 V« S* 0. (1.2.6)

where c ,d > 0.

Next, for a set of specified inputs (r^ (•) jfc e#-» ^ne designer may require that

the zero initial conditions response error be limited as follows (see Fig. 1.2.3):

J&(t) <. y*(t;x,rk)-4(t) =£ fiftt) (1.2.7)

for all fc e K and i = l,2,...,m, with the.o£, b% piecewise continuous functions.

Finally, for the purpose of expressing insensitivity to the disturbance d, we

set r = 0, which leads to the Laplace transform equation

y(S) = [/+P(S)C(x,S)]-12(S)

A <?(*.s) 8(.) <1ABa)
up(s) = -C(x,s) Q(x,s) 2(s)

A*<«..) 8(.) . aaBb)
where Uj,(s), &(s), y(s) denote the Laplace transforms of lip(i), d(t), y(t),

respectively.

Let VH denote the largest singular value of a complex rnXm matrix H.

Since the largest singular value of a matrix is its induced L% norm, to make the
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response y of the system small for a large class of disturbances d, without

unduly saturating the system as a result of u becoming too large, control sys

tem designers strive to keep v[Q(x,joj)] small and &[R(s,jco)] bounded over

the frequency range [w\ cj"] in which the energy of the disturbances is known to

be concentrated. This leads to the following formulation of the MIMO control sys

tem design problem:

minimize / (x),

where

/(x) 4 max{a[Q(x,ju)]\cj e [w\w]} (1.2.9)

subject to (1.2.6), (1.2.7) and

v[R(x,jcS)] «s 6(w), V « e [«V], (1.2.10)

j? <£ xi ^ Si , (1.2.11)

where 6 (cj) is a continuous, real valued funbtion.

In addition, there could be constraints expressing decoupling i.e., the

requirement that when only a single component of the input vector is a nonzero

function, only the corresponding component of the output vector is nonzero, as

well as stability robustness requirements, all of which are semi-infinite in form.

We note that from an algorithmic point of view, since singular values are non

differentiable, the optimization problem corresponding to MIMO control system

design is considerably more difficult than the one corresponding to structural

design.

1.3. Design of a Wide Band Amplifier

The design of a wide band amplifier usually involves three transfer func

tions: the input impedance ^n(x,s), the output impedance, Z^(x,s) and the

gain, A(x,s)t which are all proper rational functions in the complex variable s.
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The design vector x e 3Rn determines certain critical component values (e.g.,

resistor, capacitor values) in the circuit, which affect the impedances and the

gain. Thus, the coefficients of the rational functions Z^, Zout and A are func

tions of the design vector x.

The simplest formulation of a wide band amplifier design has the form

maxfa/|.fifa> ^ | Zin (xj co) |2 <s 6"^, V a e [co0, cof] ;

•*W * l^oii«(*.i«)la ^ Soui. Vw e [co0,cof] ; (!.3.la)
^ < \A(s,jd)\2 <s A, V a? e [w0, cj/];

JL* ^ X* -£ X* , i = 1,2,...,7LJ.

As stated, this problem is not quite of the form (0.1.3). To bring it in line

with the canonical form (0.1.3), we augment the design variable by one com

ponent, x°, to x = (x°,x) e IRn+1. Problem (1.3.1a) can then seen to be

equivalent to the problem:

min{-*0l-&in * \Zin(x,j(oo+yx0))\2 ^ 6in, Vy e [0,1];

h*ut * \Zovt(x,j(co0+yx°))\2 <; Eovii\/y e [<U];(131b)
A <; U(xj(cj0+yx°))|2 <lVt/e [0,1];

jl* <s xi <, x4, i - l,2,...,7lj.

1.4. Robot Arm Path Planning

In designing a sequence of moves to be carried out by a robot manipulator

in a manufacturing situation, it is necessary to find a number of paths which

take the robot arm from one location to another without collision with the work-

piece. We shall describe a simple problem involving a two link robot manipulator

and a circular workpiece obstacle in IR2. Leti?1(i), tf2(0 be the angles at time t

between reference rays and the robot links (see Fig. 1.4.1), and let

V(t) = (tfHO. tf2(*))- The11 tne dynamics of the robot have the form

Jf(0(O)S(O = t(0 - CW),*(0W0 + G(tf(0) (1-4.1)

where M() and C(v) are 2X2 continuously differentiable matrices, and
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G :IR2 -» IR2 is continuously differentiable and t(£) eIR2 is a torque vector, with

T*(t) the torque applied at the first joint and T2(£) the torque applied at the

second joint. The circular workpiece is described by an inequality of the form

h(x) <, 0 , (1.4.2)

where / :IR2 -» IR is defined by

h(x) = 1 - (x1-^)2 - (x2-6)2 . (1.4.3)

for some a ,b eIR.

Now suppose that we are given that at t = 0, the angles are T?1(0) = T?o,

lJg(0) = $§, and that we are supposed to find a torque vector r(t), £ ^[0.1].

which results in a collision free path that takes the robot manipulator from

these initial angles to the angles t?i(l) =i?/, i?2(l) = I?2 at time t = 1, with

|t3(t) | -£ c, j = 1,2, for t e [0,1]. We assume that t(-) is an L^ [0,1] function.

Let us denote the solution of (1.4.1), which satisfies the initial condition

i?(0) = i?q. and which corresponds to the torque t() by T?T(-)- We can now

express our problem in the form

mintf (t) \g3'(r) < 0 , j = 1,2; <pk(r,y) ^ 0, fc = 1,2, Vyer| (1.4.4a)

where / :L^ [0,1] -» IR is defined by

/(t) ^ ||i?T(l)-^/||2; (1.4.4b)

the g3' :L^ [0,1] -> IR, j = 1.2 are defined by

gx(T) & max |t(0I -c ; (1.4.4c)

02(t) ^ max It2^)! -c ; (1.4.4d)
* ^L0|1J

y=[0,l]x[0,l] C IR2and, for fc = 1,2, and t/ ^ (s,*). pfc :Z,2 [0,l]xIR2 -> IR

are defined, by
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<p\r,y) k fc(sJ1costflT(0,sJ1cos'fl2T(0) (l.4.4e)

<p2(r,y) k M(JlCos tflT(*) + sZ2cos(i?lT(0+7r-T?2T(^)) ,
fjsin i?lT(0 +s£2sin(tflT(0 +tt-tJ^O) (l-4.4f)

where £j is the length of the first link and £2 is the length of the second link. The

function p*(v) is used to ensure that the entire first link will avoid collision

with the workpiece, while the functon (p (v) is used to insure that the entire

second link will avoid collision with the workpiece. As stated, the design vector

t(-) is a function. The problem can be made finite dimensional by representing

t(-) in terms of splines, say, over a fixed set of nodes.

2. FRELIMINAKY RESULTS: CONTINUITY. CONVEXITY AND NONSMOOTH ANALYSIS

We shall now summarize the various results in the theory of point-to-set

maps, convexity, and nonsmooth analysis that we shall make constant use of in

this paper. In the process we shall also establish the mathematical notation that

we shall use.

The book by Berge [Ber.l] is an excellent reference for various point-to-set

map results used in optimization. Unfortunately, it is out of print and hence we

reproduce in this section a number of the most essential definitions and

theorems that Berge presents. In addition, we reproduce a certain number of

results in convexity theory, most of which can be found in [Roc.l] or [Ber.l].

Finally, we extract from [Cla. 1] a few basic results in nonsmooth analysis.

2.1. Continuity

We begin by summarizing the various concepts of continuity which play a

role in optimization theory. Since in the context of optimization algorithms one

generally deals with sequences rather than with neighborhoods, we shall give

sequential alternatives whenever possible.
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Definition 2.1.1. A function /:IRn-»IR is said to be upper serni-continuous

(u.s.c.) at x if for every 6>0 there exists ap>0 such that

/ (x)-/ (x) <, 6 V x e B(x,p) , (2.1.1a)

where

B(x,p) k \x elR71 | ||x-x|| ^pj (2.1.1b)
Afunction / (•) is said to be u.s.c. if it is u.s.c. at all x e IRn.

•

Proposition 2.1.1. A function / :IRn-»IR is u.s.c. at x if and only if for any

sequence [x^ \JLq m ^n • such that Xj-»x as i-*oo

ISn/(xi) -s /(x) (2.1.2)
•

Definition 2.1.2. A function / :IRn-»lR is said to be lower serni-continuous if

—/(•) is u.s.c.

•

Proposition 2.1.2. A function /:IRn->IR is Ls.c. at x if and only if for any

sequence (xi }£.0 ^ ^n •such that x$ ->x as i -» oo , lim/ (x^) >/ (x).

•

Notation 2.1.1. We shall denote the solution set of a maximization (minimiza

tion) problem by argmax (argmin). Thus, for example,

argmax <p(x,y) k \y e Y \ (p(x,y) = f(x)l.
y ey

•

Next we turn to point-to-set functions. For example, let p:IRnxlRm-»IR be a

continuous function. We can define the point-to-set function

F(x) k \y ^^r\cp(xty) ^ 0\ (2.1.3)

which maps IRn into 2 . As another example, consider the point-to-set func

tion
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M{x) k argmax (p(x,y), (2.1A)

where ycIRm is compact and ^(x) s max(p(x,y), which also maps IR71 into
l/ey

2^.

The most important concept for point-to-set maps is that of upper semi-

continuity, though some use can also be made of lower semi-continuity. Note

that the definitions, below, have nothing to do with the ones that we gave for

functions from IR71 into IR. Note furthermore, that the definitions, below, which

are due to Berge [Ber.l], are not universally adopted.

Definition 2.1.3. A function (map) /:IRn-*2RB* is said to be upper-semi-

continuous (u.s.c.) at x if

a) / ix) is nonempty and compact, and

b) for every open set G such that / (x) C G , there exists a p>0 such that

/ (x) C G, for all x e B(x,p).

•

Definition 2.1.4. A function /:IRn-»2 is said to be lower-semi-continuous

(Ls.c.) at x if for every open set G such that / (x)r\G^(f .there exists a p>0

such that / (i)nG^$ , for all x e i?(x,p), where $ denotes the empty set.

Afunction / :lRn->2R,n is u.s.c. (Ls.c.) if it is u.s.c. (Ls.c.) at every x E IRn.

•

Definition 2.1.5. A function / :IRn->2 is said to be continuous if it is both

u.s.c. and Ls.c.

•

Remark 2.1.1. Note that when / :IRn-*]R is either u.s.c. or l.s.c. in the sense of

set valued maps, it is continuous in the ordinary sense.

•

Proposition 2.1.3. Suppose that /:IRn-»2Rn* is Ls.c. at x and / (x) is
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compact. Then for any ?>>0 there exists ap>0 such that

f(x)nB(y$)*Q Vx e B(x,p), Vye/(i). (2.1.5)

•

Upper and lower semi-continuity can also be given a sequential interpreta

tion in terms of limit points and cluster points.

Definition 2.1.6. Consider a sequence of sets [AiJ|Lo in IR71.

a) The point (x) is said to be a limit point of [AiI^-q if d(x,Ai) -> 0 as i -» °°,

where

d(x,Ai) k inff||x-x|||x z Ai\, (2.1.6)

i.e., if there exist x$ E Ai such that x$ -* x as i -» °°.

b) The point x is a cluster point of [A^ j£Lo if it a limit point of a subsequence

ofMiii°=0-

c) We denote the set of limit points of [Ai j by lAmAi and the set of cluster

points of \Ai Iby Tim A^.

•

Proposition 2.1.4.

a) A function / iIR71 -> 2Km, such that / (x) is compact for all x E IR71 and

bounded on bounded sets is u.s.c. at x if and only if for any sequence

\xi\i- 0 such that x$ -> x as i -> t», Lim/ (xi) C / (x).

b) Afunction / : IR71 -• 2 is Ls.c. at x if and only if for any sequence (x$ j|°=q

such that x£ -» x as i -» oo, Lim / (xi) D / (x).

•

2.2. Convexity

We assume that the reader has had some exposure to convexity. Thus, we

assume that the reader is familiar with the definitions of convex sets and convex
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functions, and that the reader is aware of the following facts: (i) that convex

functions are continuous, (ii) their epigraphs are convex, (iii) gradients of

differentiable convex functions are normals to support hyperplanes to their epi

graphs. Apart from these commonly known results, we shall make use of a few

which are not in every elementary text dealing with convexity. To simplify

matters, we collect in this subsection these assorted results. For proofs we refer

the reader to [Roc.l] and [Ber.l].

We begin with two results involving convex sets: the Caratheodory theorem

and a separation theorem.

Definition 2.2.1. Let 5 be a subset of IRn. We shall denote by coS the convex

hull of S (i.e., the smallest convex set containing S).

m

Theorem 2.2.1 (Caratheodory). Let S be a subset in IRn. If x E coS then

_ n+l
there exist at most (n +l) distinct points (x$ j/LV» m S such that x = JJ MTxi»

i=l

71 + 1

M* * 0, 2 mz = 1.
i=l

•

Definition 2.2.2. Let Slt S2 be any two sets in IRn, and let v E IR71 and

a E IR be given. We say that the hyperplane

H - [x E Mn |<x,y> = otj (2.2.1a)

separates Si and 52 if

<x,y> > a V x E Slt (2.2.1b)

(y,v} <, a V y e 52. (2.2.1c)

The separation is said to be strict if one of the inequalities is satisfied strictly.
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Definition 2.2.3 Suppose S C IRn is convex and v E IR71 is given. We say that

H - (x|<x-x,i/>= Oj (2.2.2a)

is a supporthyperplane to S at x with inward (outward) normal v if x E S (the

closure of S) and

<x-x/u> ;> 0( < 0) V x E 5. (2.2.2b)
•

Proposition 2.2.1. Suppose that S C IR71 is compact and convex and 0 £ 5\

Let

x = argmin (||x||2|x a S\. (2.2.3)

Then the hyperplane

« = («|<£,*>= |£|»J (2.2.4)

is a support hyperplane to 5 at I which separates 5" from 0, i.e., (x,x ^ > ||x||

for all x E 5.

•

More generally, it is possible to establish the following result, (see [Roc.l] p. 97).

Theorem 2.2.2. (Separation) Suppose that S'i.^cJR71 are nonempty convex

sets. Then there exists a hyperplane H which separates them if and only if their

relative interiors have no points in common.

•

Next we turn to support functions which can be used to characterize convex

sets and which play an important role in nondifferentiable analysis and optimiza

tion.

Definition 2.2.4. Let S C IR71 be convex and compact. We define the support

function o$ : I?71 -> IR of S by

us(h) k maxi(htxy\x E Sj. (2.2.5)
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Proposition 2.2.2. Let <JS(') De defined by (2.2.5) with 5 C IR71 convex and

compact. Then

a) &s(') is positive homogeneous, i.e., V A ^ 0,

us{Xh)=\(7s{h)'t (2.2.6)

b) Gs(') ^ subadditive, i.e., V hy,hZt

vsiKi+hz) ^ vsfai) + ^5(^2); (2-2-7)

c) ^(O is convex.

•

Proposition 2.2.3. Let S C IR71 be convex and compact. Suppose that for a

givenh E ]Rn txh E 5 is such that ^(/i) = (h,xhy. Then

<x-Xfc.fi,> <; 0 Vx E 5, (2.2.8)

i.e., <x ,/i > = <Xfc,/i >is a support hyperplane to S with outward normal h.

m

Proposition 2.2.4. Let a: IR -> IR be a positively homogeneous, subadditive

function. Then the set

C = (x e IR71 |0.>i> *s tr(/i) VfieEn| (2.2.9)

is nonempty, convex, compact and a() is the support function for C.

•

Minimax theorems play an important role both in game theory and in the

construction of search directions subprocedures in optimization algorithms.

The following result is one of the best known (see [Ber.l] for proof).

Theorem 2.2.3 (Von Neumann). Let/ : IR71 XIRm -> IR be such that / (x ,y) is

convex in x and concave in y and let X C IR71, Y C lRm be compact convex

sets. Then

-22-



minmax/(x,y) = max mm f (x,y). (2.2.10)
xeX yeY yeYxeX v '

It is easy to extend the Von Neumann Theorem to the case where either X or Y

is unbounded, as follows.

Corollary 2.2.1. Let / :IRn x IR771 -> IR be such that f (x,y) is convex in x

and concave in y and let Y be a compact, convex set in IR771. Suppose that

/ (x,y) -» oo as | | x | | -> oo, uniformly in y E Y. Then

min max/ (x,y) = max min/ (x,y). (2.2.11)

m

The result for X compact and Y = IRm is obtained by assuming that

/ (x,y) -»—oo as | |y | | -» °°, uniformly inx E X.

An extension of Von Neumann's theorem for the case where X.Y are subsets

of normed spaces was given by K. Fan [Fan. 1].

The minimax theorems- lead to the following results which are important in

optimization algorithm theory.

Proposition 2.2.5. Let S be a compact convex set in IR71 and let

B = [hEMn | \\h\\ < 1{. Then, with <Js() tne support function of 5, we have

minos(/i) = -min||x|| (2.2.12)

and

min^||/i||2+(75(/i)j = -min^||x||2. (2.2.13)

Proof. By definition of crs(').

min crs(h) = min max<fc,x > (2.2 14)

Since B,S are convex and compact and (h,x^ is convex-concave, by the Van

Neumann Theorem we get
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min (7Sih) = maxmin<x,fc> (2.2.15)
heB xeS hzB x '

Now min(x ,h ) is solvedby h = —x/ ||x||. Hence, substituting in (2.2.14) we get
h€.B

mmas(h) =max-||x||
fttD XEo

= —min llx II
xes ' "

Next, by Corollary 2.2.1,

min$||/i||2 + as(h)\ = min maxM|/i||2 + <>>.*>$
fceR11 ZieR71 xeS

= max min$||/i||2 + </i,x>j
xeS fceR"

(2.2.16)

(2.2.17)

Now min[}£||/i||2+(Ji,x^j is solved by h ——x (by taking derivatives and setting
/ieR"

them to zero). Substituting into (2.2.16) we obtain

mtaflflfcp + vsWl =naoHaxp
heRn xe5

= -min}a|x||2
xeS

•

The following obvious corollary plays an important role in the development

of optimality conditions for optimization problems.

Corollary 2.2.2. Let 5bea compact convex set in IR71. Then G$(h)>0 for all

ZiElR71 if and only if OeS.

•

The last result that we need is

Proposition 2.2.6. Let C,D be two convex, compact subsets in IR71. Then

C<z£> if and only if ac(fi) <, aD(h) for all h E IR71.

•

2.3. Nonsmooth Analysis

We now turn to real valued functions on IR71 which are assumed to be only

locally lipschitz continuous (l.L.c). The results in this section culled from the
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book by F. H. Clarke [Cla.l]. Functions within this category that are particularly

important in engineering design are the max functions discussed in Section 3,

eigenvalues and singular values of various system matrices [May.8, Pol. 10], and

max min max functions discussed in [Pol.5, Pol.8], in connection with toleranc-

ing and tuning problems.

Definition 2.3.1. We say that / :]Rn -» IR771 is locally Lipschitz continuous

(LL.c.) at x if there exist L E [0,°°), p > 0 such that

||/(x)-/(x')|| <5 L||x-x'|| Vx,x' E Bix.p). (2.3.1)

We begin by stating a key property of l.L.c. functions, the Rademacher

Theorem [Ste.l].

Proposition 2.3.1. Suppose / :JRn -» JR is locally lipschitz continuous. Then

V/ (x) exists for almost all x E IR71.

•

Since a l.L.c. function may fail to have directional derivatives at a point

x E ]Rn, it became necessary to extend the concept of directional derivative,

as follows.

Definition 2.3.2. Let / :JRn -» IR be I.L.C. We define the (Clarke) generalized

directional derivative off (•) at x E IR71 in the direction h E IR71 by

d(/(»;J0fiE/fr+<y-/<W>. (2.3.2)
•

Since there exist e > 0, L > 0 such that |/ (y+th)-f (y) | s£ tL\\h\\, for

all y E.B(x,e)tt<e,itis clear that do/ ix'^) is well defined.

Proposition 2.3.2. Let <p: IR71 x ]Rm ^ IR be a continuous function such that

Vx^Cv) exists and is continuous and let 7bea compact subset of IRm. Let
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f(x) k maxf<p(x,T/)|2/ e Y\ (2.3.3a)

f(x) k min(^(x,T/)|y E Y\. (2.3.3b)

Then for any x,h E IR71, the (ordinary) directional derivatives

d^(x;ft,), d£(x;/i) exist and satisfy

d-^(x ;h) = d0f(x ,h) , (2.3.4a)

d£(x;/i) <5 d0f(x;/i). (2.3.4b)
•

Proposition 2.3.3. The generalized directional derivative do/ (x,h) of a l.L.c.

function / : IR71 -> IR has the following properties:

a) /i -» d0/ (x ;h) is positively homogeneous and subadditive on IR71.

b) If L is a local lipschitz constant for / (•) at x , then for any h E IR71

|do/(x;/i)| <£ Z,||k||. (2.3.5)

c) The function do/ (•;•) is u.s.c.

d) For any x E IR71, the function do/(x;-) is Lipschitz continuous with con

stant L, where L is a local Lipschitz constant for / (•) at x.

e) For any x, h E IR71, dtf {x\-h) = dQ(-f)(x;h).

m

Definition 2.3.3. Let / : IR71 -> IR be l.L.c. We define the (Clarke) generalized

gradient of / (•) at x by

a/(x) £ [f E lRn|do/(x;/i) ^ <£,/i>, Vfc E IR71!. (2.3.6)
•

We now elucidate the reasons for calling the set df (x) the generalized gra

dient of / (•). First, suppose that / (•) is continuously differentiable at x. Then,

do/(x;/i) = df(x;h) = <V/(x),/i> for any h E IRn. By definition (2.3.6), for

any£ E d/(x)
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<V/ (x) - f,fc> > 0 V h E IR71. (2.3.7)

Hence we must have V/(x)-£ = 0 for all f E 3/ (x), Le., 3/ (x) = (V/(x)j.

Next, suppose that / : IR71 -> IR is l.L.c. and convex. Then its epigraph is convex

and, at any point (x,/ (x)) the epigraph has one or more support hyperplanes,

with normal (f,-l) E lRn+1, such that

<(£-!)»(*-*./(*)-/(*))> * 0 Vx E IR71. (2.3.8)

Hence

<f,x-x> < /(x)-/(x) Vx E IR71. (2.3.9)

Now let x = x-\-th, for any fc E IR71, £ > 0. Then we get

<?,&><; IE /(*+'fc)-/(*) ^ d0f(x;h), (3.3.10)
£4>0 I

i.e., £ E 3/(x). finally we have

Proposition 2.3.4. Suppose that / : IR71 -> IR is I.L.C. with constant L in a ball

centered on x. Then

a) 3/ (x) is nonempty, convex and compact, and ||£|| ^ L for all £ E 3/ (x).

b) For every h E IR71,

dof(x;h) =max(<£,fc>l£ e 3/(x)$. (2.3.11)

c)

3/ (x) = G(x) k co lim (V/ (x,)}, (2.3.12)

where the convex hull is taken over all sequences [x^] converging to x, such

that V/ (x$) exists for all i E IN and {V/(xi)5lpl1 converges (where

IN = [0,1,2,3,. ..j).

d) The generalized gradient 3/ (•) is u.s.c.

-27-



In general, when a l.L.c. function / (•) is the result of operations on other

functions (e.g., sum, product), its generalized gradient will not be equal to the

set suggested by similar operations on differentiable functions. Rather, it will

only be contained in it. A sufficient condition for equality to hold is satisfied

when the functions being operated on are regular.

Definition 2.3.4. A l.L.c. function / : IRn -» IR is said to be regular if its direc

tional derivative df (x ;h) exists for all x }h E IR71 and df (x ;h) = d0/ (x ;/i).

•

Thus, for example, we have the following result:

Proposition2.3.5. Suppose that f1,f2:lRn -+ K, are l.Lc, then

a[/a + /2](x) C df\x) + 3/2(x). (2.3.13)

Furthermore, if / *, / are regular then equality holds in (2.3.13).

•

Proposition 2.3.6. Suppose that /l,/ 2,...,/ m: IR71 -> IR are l.L.c. and let

V(x) k maxf3'(x). (2.3.14)

Then

3^(x) c co\df3'ix)\j E 7(x)j, (2.3.15)

where I(x) k [j e m|/J*(x) =^(x)i and m = (1,2,...,m{. Further, if the

functions /•'(•)• 3 e 2a are all regular, then equality holds in (2.3.15).

•

It is also possible to establish a chain rule.

Proposition 2.3.7. Let h: IR71 -> IRm be continuously differentiable, let

0:IRm ->IRbel.L.c. and let/ :IRn -* IR be defined by

f(x) k gihix)) (2.3.17)
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Then

m

3/(x) c co i 2 y^ilm e 3^(x), yl = Vgihix))]. (2.3.18)

Again, equality holds in (2.3.18) when gr is regular.

The last result in nondifferentiable analysis that we wish to establish is the

Lebourg Mean Value Theorem [Leb.l].

Theorem 2.3.1. (Mean Value). Let / :lRn -» IR be 1.L.C Then, given any

x,y E IR71,

/(y)-/(*) = <£.y-*> (2.3.19)

for some £ E 3/(x+s(y—x)), with s E (0,1).

3. MAX FUNCTIONS

It is clear from the examples presented in Section 1 that max functions

play a central role in optimization problems arising in engineering design. They

are also a particularly tractable kind of nondifferentiable function. In this sec

tion we shall establish some of their most important properties, see also [Ber.l],

[Cla.l], [Dan.l], [Demi].

Notation convention. Given a sequence jx^jf* and an infinite subset

A K ~iifcIN 5 {0,1,2,3,...}, we shall denote by x$ -»x as i -» oo the fact that the subse

quence \xi liex converges to x.

•

Proposition 3.1. Let (p: IR71 XJRm -» IR be continuous and Y: IR71 -» ZBm u.s.c.

Then
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fix) k max (pixty) (3>1)
y e 7(x) v '

is u.s.c.

Proof. Let x E IR71 be given. Let (x^J be an arbitrary sequence such that

a^ -> x as i -» oo, and let t/^ E ^(x^) be such that '^(xi) = ^(x^,^) for

i = 1,2,3,.... Since y(-) is u.s.c. and x$ -> x, [yi\ is bounded and hence, since

<pi',-) is continuous, lim^(xi,T/i) exists. Suppose yi,i E A" C (0,1,...{ is such

K

that Hm^(xi,T/i) = lim^(xi,i/i) and T/i -*y*. Then (see Proposition 2.1.4),
t£A

y* E y(x) by u.s.c. of y(-) and hence

fix) s* p(x,T/*) = Jim ^(xi.i/i) =lim^fe). (3.2)
t En

which completes our proof.

•

Corollary 3.1. Consider (pi',) and Yi) as in Proposition 3.1 and suppose that

y(*) is continuous. Then^(-) is continuous.

Proof. We only need to show that f(') is Ls.c. under the stronger assumption

on Yim). For the sake of contradiction, suppose there is a point x E IR71 and a

sequence x$ -» x as i -* oo such that lim ^(x^) exists and

lim^Xi) <^(x). (3.3)

Suppose that fix) = (pix,y) with y E Yix). Let y* E Yixi) be such that

fixi) = pfe,^) and let yt = argmin(||y-y||2 | y E Yixt)\. Then, since y(-)

and (pi,) are continuous, 5t -» J as i -» », so that lim ^(x^,^) = <pix,y).

Hence there exists an in such that (pixityi) > ^(x^), which contradicts the

definition of ^(x^).

•

Proposition 3.2. Consider the function
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iKx)^ max <p(x,y), (3.4)

with (p:Hn XIRm -> IR continuous and y:lRn -» 2Km continuous. Let

?(x) k \y e Yix)\fix)=<pix,y)\ (3.5)

Then Yi) is u.s.c. Furthermore, if Yix) = (t/(x)J, a singleton, then Y(-) (y(-) is

continuous at x.

Proof. Clearly Yi') is bounded on bounded sets and Y{x) is compact because

y(x) is compact and ^(x,-) is continuous. By Proposition 2.1.4 we only need to

show that Lim T^x^) C Yix) for any sequence (x^J^q converging to a point x.

Suppose this is false, i.e., there exists a point x and a sequence x$ -» x such that

for yi E y(xi) we have y^ ^ y & Yix). But this means that

fity) —(pixi^i) -* (pix,y) <fix), which contradicts the continuity of ^()

(Corollary 3.1).

When y(x) is a singleton, its continuity follows directly from the definition

of upper semi-continuity, see Remark 2.1. This completes our proof.

•

Next we explore the differentiability properties of max functions of the form

(3.4). First, suppose that (p{x,y) is differentiable in x, with Vxtpix,y) continu

ous, and that Y- \y\,yz, . . . ,yml Letting /i(x) k ^(i,^), for

i Em = (1,2,...,7711, (3.4) becomes

f(x) =maxfiix) (3#6)

Drawing the graph of ^(x+X/i), for a fixed h E IR71, which is a function of X

only, we obtain Big. 3.1 and conclude that fi') is not differentiable everywhere.

However, its directional derivative seems to exist and seems to be equal to its

generalized derivative (see Propositions 2.3.4, 2.3.6). From Fig. 3.1, we conclude

that the directional derivative of f at x in the direction h is equal to the
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steepest slope of the "active" functions /*(*)• i-e-« if we let

/(x) k [i e m|iKx) =/i(x)j, i.e., that

dfix;h)k hm f(x+^)^ix)
UQ t

= max dfiix;h) (3.7a)
ie/(i)

= max <V/*(a:),/i> .
ie/(x)

Furthermore, we conclude that its generalized gradient is given by

dfix)= co (VT(x)j. (3.7b)
te/(z) v '

These results are, in fact, correct. We shall now explore to what extent it

can be generalized for the case where f is defined as in (3.1). First, assuming

that (p: IRn XlRm -> IR is continuous and that (pi',y) is LLc. for any y E lRm, we

define the partial directional and Clarke generalized directional derivatives at

x E IR71 of (pi',y) in the direction h, by

dsV(x,y;K) 4 lim ?(«+»,»)-?(«.*) (3.8a)
HO to

and

cWCx.j,*) 4 Dm y(x-^ft,y)-y(x-,y) {3 Qb)
tiO

We shall denote by dx(pix,y) the partial generalized gradient of (pi',y).

Theorem 3.1. Consider the function

f(x) k maxtpix,y). (3 9)

Suppose that

(i) <p: IRn X IRm -> IR is continuous and y C IRm is compact;

(ii) for all y E Y, (pi',y) is locally Lipschitz continuous.

-32-



Then fi>) is locally Lipschitz continuous and its generalized gradient satisfies

the relation

dfix) c Gix) k co(Lim3z^(xi,yi)|T/i e Y, y e f(x)j,
sj-nc (3.10)

where y(x) was defined in (3.5) and Lira in Definition 2.1.6. The convex hull in

(3.10) is taken over all possible sequences (x$ j, [yi ].

Proof. Clearly, (pi',y) is LLc. near x E IR71, uniformly in y E Y, with con

stant L, say. Hence, for x', x" in the appropriate neighborhood of x,

fix')-fix") = p(z',l/,)-p(ariy")

= [rfa^lO-rtrf',!/»)] + [?(*",2/') - *(*".VM)] (3.11)
<S p(x',2/')-<p(x",T/') <5 L||x'-x"||,

where 3/' E y(x') and y" E y(x"). Interchanging x' and x" in (3.11) we con

clude that ^(-) is LL.c.

Next, let g (x;-) be the support functional of Gix), so that for any h E IR71,

0(x;/i) =max(<^>l^ e G(x)j. (3.12)

By Proposition 2.2.6 and the definition of dfix) in (2.3.6), to show that

dfix) C Gix), we only need to show that

gix;h) 2* d0fix;h) V h E IRn . (3.13)

Hence, let /i E IR71 be arbitrary and let x^ -» x and t^ X0 be such that

•^(xi+^/O^KxJAi = YK x x ' rK^J (3.14)
H

converges to dnfix;h), the generalized derivative off. Let yi E y(x^+^/i) be

arbitrary. Then

Aj ^ 7 . (3.15)
H
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It now follows from the Lebourg Mean Value Theorem 2.3.1, that there exist

fi E dx(pixi +Sitih,yi), for some Si E [0,1], such that

^ <£ <fi,/i> ,VieR (3.16)

Hence

dQfix\h) = lim 4 < Iim<fi,/L> . /3 17n
i-»oo i-*oo

Since (xi+Si^/i) -» x as i -» oo and Yi') is u.s.c, it follows that all the accumu

lation points of JT/iJ are in F(x) and hence that all the accumulation points of

f£i! are in the set Gix). Consequently, (3.13) holds and so does (3.10). This com

pletes our proof.

•

In general, relation (3.10) has negative consequences from an algorithmic

point of view. This is due to the fact that, as we shall see later, the accumulation

points x constructed by an algorithm, minimizing f over IR71, can only be

guaranteed to be such that 0 E Gix). Hence, when df(x)*£G(x)t it is possible

that the accumulation points are not stationary. Fortunately, in our experience,

the functions entering engineering constraints are regular (see Definition 2.3.4):

a fact that leads to the following, much more satisfactory result.

Theorem 3.2. Consider the function fi') defined in (3.9). In addition to

hypotheses (i) and (ii) of Theorem (3.1), suppose that

(iii) for ally E Y, (pi',y) is regular;

(iv) for any x E JR71 and y E Y and any sequences (XiJcIR71' \yi\tzY, con

verging toi.y, respectively, co Lim. 3Zp(xi,yi) = dx<pix,y).
Vf*V

Then
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(a) dfix;h) exists for all x E IR71, h E IR;

(b) dfix,h) = d0fix,h), and

(c) we have

a*(«) = g(x) = co{ax^(x,!/)}„ e y(x)j, (3.1s)

where Gix) was defined in (3.10).

Proof. To prove that dfix;h) exists and that dfix\h) = d0fix;h) we only

need to show that

a A lim *(x+th)-jr(x)

;> gixth) > do^(x;^) * lim H***)^*)

where 0 (x ;/i) was defined in (3.12).

First we note that because of hypothesis (iv),

Gix) = co{dx(pix,y)\y E ?(x)j (3.20)

(which proves half of (3.18)). Next, let y E y(x) be arbitrary. Then for any

t >0,

Tfr(x+to)-Tfr(x) ^ y(x+th,y)-y(x,y) _ ^
b £

Since dj^fx.yA) exists by (iii), ando/ E y(x) is arbitrary, (3.21) yields that

a s* max^yixty\h)\y E y(x)j,

= max£dxo<pOc.l/;/Ol2/ e ?(x)j (3.22)
= maxKf./i>lf e G(x)j = y(x;/i)

where we have made use of hypothesis (iv). Hence dfix\h) exists and

dfix;h) = dnfix\h).

Finally, the fact that df(x) = Gix) follows from the fact that

dofix',h) —gix\h) for all h E IR71 and Proposition 2.2.6. This completes our

proof.
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Theorem 3.2 has an obvious, but important corollary.

Corollary 3.1. Consider the function fi') defined in (3.9) and suppose that

^:lRn XIRP -» IR is continuous, Y C ]RP is compact, Vzp(v) exists and is con

tinuous. Then

dfix) =co[!x<pix,y)\y E ?(x) (3.23a)

and

dfix\h) = dnfix\h)

(*)
= max K<yx<pix,y),hy.

y g Y{z

(3.23b)

Corollary 3.1 has an important special case.

Proposition 3.4. Suppose that with (x,o) E IRnxIR,

fix) k max{a[Hixtjco)]2-bico)\ (3.24)

where H{x,jco) is an mXm continuous complex valued matrix which is

differentiable in x, u[H] is its largest singular value, ——H(x ,jco) exists and is
3x*

continuous, 6 (cj) is continuous and Q C IR is compact. Then

3V'(x) =co[i;|7;i=<f7(a;)2, ^^^Lt/(a;)2>, / v
3xT (3.25)

1*1 = 1. a e fi(*)l,

where Q — H H, U is an orthonormal matrix of eigenvectors corresponding to

its maximum eigenvalue 0[H] and &ix) = {« ^ ^l^(x)

= V[Hix,jo)]2-bico)l

Proof. Let y = (cj,u) E IRm+1 and let

<pix,y) = (u,Qix,ju)uy-bico). (3.26)
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Then Vx<pixty) is a vector whose ith element is (u, ^^X,J—<-u ). Since
3x

y = Qx [u E Cm |||u|| = lj. Yix) = fi(x) x \u\Qix,jco)u = <7[H(x,jcj)]V

||u|| = l,u E Cm{. The desired result now follows directly from Corollary 3.1.

•

Referring to [Clar.l], Section 2.8, we see that the continuity assumption on

6(w) in (3.24) can be relaxed to upper semi-continuity. This fact is of

significance in engineering design.

4. FIRST ORDER OPTIMALmr CONDITIONS FORPROBLEM (0.1.3)

We shall now develop first order optimality conditions for the canonical

optimization problem (0.1.3). Since in problems of engineering design, the

hypotheses introduced in Theorems 3.1 and 3.2 are usually satisfied, we shall

adopt them in the derivation of optimality conditions as well.

Definition 4.1. Consider the problem P: min / (x) where / : Kn -> IR is con-
z e X

tinuous and X C IR71. We shall say that x is a global solution to P if x E X and

/ (x) ^ / (x) V x E X. We shall say that x is a local solution to P if x E X

and there exists a p > 0 such that / (x) <> fix) for all x E X such that

||x-x|| <p.

•

Proposition 4.1. Consider the problem

min fix) , (4>1)

where / :IRn -> IR is I.L.C. Suppose that x is a local solution for (4.1), then

0 E 3/ (x).

Proof. Suppose x solves (4.1). Then we must have
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dnfix\h) 2> 0, W h E IR71 (4.2)

for otherwise there would be a direction h such that

do/ (x;£) kEH /(«+*fr-/(«) <o. (4.3)
as-*z £

and hence for a finite t > 0, / (x+£/i) < / (x) would hold for all t E (0,£], con

tradicting our hypothesis that x is a local solution. Referring to Corollary 2.2.2,

we see that (4.2) implies that 0 E 3/ (x). This completes our proof.

•

The following characterization of a local solution x to a general form of

problem P, in Definition 4.1, is suggested by Fig. 4.1 for the simple case where

the set X is defined by a finite number of differentiable inequalities, i.e.,

X = (x E IR71 \g3'ix)^0,j = l,2,...,mj. Note that for the "active" gradients

in Fig. 4.1, the origin is moved to the optimal point x and the result suggested

by this figure is that ifmaxflfJ'(x) = 0, then 0 E cojV/ ix),Vg3'ix)\j e jr^\, where
j e m

I{S)k[j em|sr'"(£) =0}.

Theorem 4.1. Consider the problem

mm[fix)\(pix,y) < 0 V y e Y\ (4.4)

where

(i) / (•) is LLc;

(ii) (pi',) is continuous and Y C ]Rm is compact;

(iii) for all y E Y, <pi,y) is l.L.c;

(iv) for ally E Y, (pi',y) is regular;

(v) for any sequences {xi{ ClR71, {%} C y, such that Xi^xElR71 and

T/i-»T/ E Y, coUmd^ixiMi) = dx<pix,y).
i-*oo
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If x is a local solution to (4.4), then

0 E co(3/ (x); dMx.y), y E ?(x) j if f(x) = 0 (4.5a)

and

0 E 3/ (x) if fix) < 0, (4.5b)

where, as in Section 3,

TKx) = max(pix,y), (4t6)
yeY v '

and

Y(x)klyzY\<p(xty)=f(x)l. (4.7)

Proof. Let p > 0 be such that / (x) < / (x) V x E IR71 such that fix) <, 0

and ||x -x|| ^ p. Let

F(x) S max[f (x) -/ (x) ,*(*)}
= maxj/(x)-/(x);^(x,T/),y E yj

Note that F(x) = 0. since i^(x) ^ 0 and that Fix) ^ 0 for all x E IR71 such

that ||x -x|| ^ p, because / (x)-/ (x) > 0 when ||x -x|| ^ p and ^(x) <, 0.

Hence x is a local minimizer of F{x) and hence, by Proposition 4.1, we must

have

dnFix;h) 2* 0 V h E IR71 (4.9)

The desired result now follows from (3.18) and Proposition 2.3.5.

•

The following special case follows directly by means of Caratheodory's

Theorem (2.2.1).

Corollary 4.2. Suppose that x is a local solution to (4.4) and that V/ (•),

^xVi'*') exist and are continuous. Then there exist at most (71+2) points

V ix). Vxp(x,T/i), i = 1,2,...,n +l, witht/i E Yix), such that
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M°V/ (x) +̂ n*VM$>Vi) =o (4.10)

n +1 ^
where /x* ^ 0 for i = l,...,n +l and 2 Mx = 1. Furthermore, if ^(x) < 0,

then JJ = 0 for i = l,2,...,7i +l; if ^(x) = 0 and 0 £ [Vx(pix,y)\y E y(x)j,

then /z° > 0.

5. SEM14NFIN1TE OPTIMIZATION ALGORITHMS I: BASICS

We now return to the optimization problem (0.1.3). So as to avoid obscuring

clarity by excessive notation, we shall consider in detail only the simplest form

of problem (0.1.3), which captures all the essential features of problems in this

class. Thus, consider the problem

min(/(x) | tp(xty)*0 V y e yj, (5.1)

where / :IRn -> IR and p:IRnx]Rm -> IR, and Y satisfies the hypotheses of Theorem

3.1 and Theorem 3.2, viz.

Assumption 5.1. We shall assume that

(i) the function/ (•) is I.L.C.;

(ii) (pi',') is continuous and Y C IRm is compact;

(iii) for ally E Y, (pi',y) is l.L.c;

(iv) for ally E Y, (pi,y) is regular;

(v) for any sequences \xi \ E E71, [yi j C Y, such that o^ -»x E IR71 and

yi^y e y, coL5ri3a.^(xi,T/i) = dx<pix,y).
i-»oo

•

If we define
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fix) k max(pix,y), (5>2a)
y e Y v '

we can express (5.1) in the equivalent form

minf/ (x) | ^(x) ^ Oj. (5.2b)

Unless otherwise stated, we shall assume that Assumption 5.1 is satisfied

throughout the next two sections. We recall that first order optimality condi

tions for the problem (5.1) were given in Theorem 4.1. In this section we turn to

the development of algorithms for solving problems of the form (5.1). All the

algorithms that we will present can be thought of as being evolved from the

method of steepest descent for unconstrained differentiable optimization. We

therefore begin by recalling this method of steepest descent (which is attributed

to Cauchy).

Consider the problem

min ^(x), (53)

where ^:IRn -*IR is continuously differentiable.

Algorithm 5.1. (Differentiable Steepest Descent for Problem (5.3))
*

Data: x0 E IR71.

Step 0: Set i = 0.

Step 1: Compute the search direction

hi =hixi) k argminfJfl/Lf +df(xi:/i)i =-V^fe) . (5.4)

Step 2: Compute the step size

Xi EA(xi) k argmmfixi+Xhi) . (55)
XT2:0

Step 3: Update:
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xi+1 = Xi + Xihi . (5.6)

Replace i by i +1 and go to Step 1.

•

All of our convergence theorems will be stated in terms of subsequences

constructed by an algorithm, which are conveniently handled by the notation

introduced in Section 3, ie., given a sequence jxij" and an infinite subset

A K ~ifclN = [0,1,2,3,...$, we shall denote by xt -»x as i -* oo the fact that the subse

quence \xi Jie/r converges to x.

Theorem 5.1. Consider a sequence \xi\i-n constructed by Algorithm 5.1. If

K ^
Xi -» x as i -» oo, then V^(x) = 0.

Proof. Suppose that Vfix) * 0. Then

dfixMx)) = H|VtKx)||2 <0 . (5.7)

Hence, any X E A(x) satisfies "X > 0 and there exists a (5>0 such that

fix +X/i(x)) - fix) = -3 <0 . (5.8)

Since hi') = —Vfi') is continuous by assumption, the function

fix +X/i(x)) —^(x) is continuous in x and hence there exists an in such that

for all i E K, i > i0,

*fa+i) " fixj^fixi +ViiXi)) - f(Xi)<.-^-. (5.9)
K

Now, by construction, {f(xi)\j%o is monotone decreasing and fixi)->fix) as

i -* oo by continuity of ^(*): we must therefore have that fixi) -*fix) as i -» °°.

But this contradicts (5.9). Hence we must have that V^(x) = 0.

•

Remark 5.1. We must point out at this time that practical algorithms do not use
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the stepsize rule (5.5), but the much more efficient Armijo step legth rule

[Arm.1], which uses two parameters a, /5 E (0, l) and which is defined by

Xi k max{X\X = (P,k zN,fixi+Xhi)-fixi)^-Xa\\hi\\2l (5.10)

The geometry of this stepsize rule is given in Fig. 5.1.

The convergence analysis of Algorithm 5.1, modified to accept the Armijo

Step length rule, is only somewhat more complex than the analysis presented in

the proof of Theorem 5.1. The reader may look it up in [Pol.l].

Now suppose that fi') in (5.3) is only l.L.c. Since in this case the gradient

Vp(x) need not exist for all x, a first attempt at generalizing Algorithm 5.1 to

the nondifferentiable case would consist of replacing,, in (5.4), the term

dfixi,h) i=<Vtpix)),h>) by d0fix,h) (=max<f,/i> | f E dfix)\) . This

amounts to computing the search direction according to the formula

hi = hixi) k argminMH2 +dnfix^h)]

= argmin max. $|W|2 + <£,>>>!

= argmax min {Jfl/if + <f,/i>j

= -argminM/if | h e 3^(x)j,

where we have interchanged the min and max operations on the basis of Corol

lary 2.2.1 and have eliminated the min by making use of the fact that if h^ solves

min$||/tf + <£.^> Ih c IR71 j. then h( = -£, so that

Because dfi') is not continuous, hi), as defined by (5.11) is not continu

ous. Hence it is not possible to simply mimic the proof of Theorem 5.1 in trying

to show that the extended Algorithm 5.1 is convergent in the sense that Xi -* x

implies that 0 E dfix). In fact, there are known counter examples in the litera

ture on methods of feasible directions, which show that the accumulation points

-43-



x constructed by the extension of Algorithm 5.1 using (5.11) fail to satisfy

0 E dfix). Clearly, a much more sophisticated approach than using (5.11) is

needed for extending Algorithm 5.1 to the nondifferentiable case of problem

(5.3).

To try to obtain some intuitive insight into techniques for generating con

tinuous search directions, let us examine the simple case where

tKx) = max/J(x), with the /•7:IR7l-»IR continuously differentiable and, as
j Em

before, m k (l,2,...,m j. In this case, (see Proposition 2.3.6),

dfix) =coiV/J'(x)!/e/(z), where /(x) k tf e m | f(x)-f*(x) =Oj. Since
the index set /(x) can change abruptly, it is clear that dfi') is not continuous.

Now, if x is a minimizer of ^(-) over IR71, then by Proposition 4.1, we have

0 E dfix), i.e., for some /J? ^ 0, j E/(x) such that 2 A*7 = *• we nave
;e/(x)

2 A*7 V/J(x) = 0. A commonly used device for avoiding the introduction of
je/(x)

the index set /(x) into this optimality condition, is to express the optimality

condition in the equivalent form of two equations

2M'V/J(x) = 0 (5.12a)

771

2 n3ifix)-f3ix)) = 0 (5.12b)

771

with the fj? > 0 such that 2 fJp = 1. Since JJ? S> 0 and fix) -/J(x) ^ 0,

(5.12b) implies that fj? = 0 for all j g /(x). Now, (5.12a) and (5.12b) state that

0 is an element of the set Gfix) C IRn+1 defined by

Ufix) k coffy e En+1 |?j = ifix)-f3'ix),Vf3ix)),j Emj. (5.12c)

we shall denote vectors in JRn+1 as | = (f°,f) with f E IR71. The set valued map

Trfi') is continuous (see Example 5.1 further on) and hence,
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E{x) = (/l°(x),/l(x)), with /i(x)ElRn, defined uniquely by h(x) - ~arg

min }£||/i||2, is also continuous by Proposition 3.2. Hence, the principle of wish

ful thinking leads us to the correct guess that Ji(x) must be a "good" search

direction for solving min fix). We shall now present an axiomatic structure
z eK*

which emanates from this guess and which enables us to construct algorithms

for the solution of the general case of problem (5.3). In the next section we shall

present a more complex axiomatic structure which leads to computationally

more efficient algorithms.

Definition 5.1. Let f:lRn ->IR be LLc. We shall say that 'Gf:Hn •+ 21Rn+1 is an

augmented convergent direction finding (a.c.d.f.) map for f(m) if:

(a) £jfy(0 is continuous (i.e., both u.s.c. and Ls.c.) and £ty(x) is convex for all

x ElR71.

(b) For any x ElR71, if f = (£°,f) E IRn+1 is an element of Gfix), then £° 2s 0.

(c) For any x E IR71, a point f = (0,£) is an element of Gfix) if and only if

f E df(x).

•

Proposition 5.1. Suppose that f'.TE?1 -* IR is 1.L.C and Gfi') is an a.c.d.f. map for

^(•). Then for any x E IR71,

(a) 0 E dfix) if and only if 0 E Gfix).

(b) The functions ©:IRn -> IR and h:1Rn -* JRn+1 defined by

®(x) k minfMf 11 e Gfix)l (5.13a)

Eix) k -argmin(^|?||2|?E^(x)} (5.13b)

are both continuous; furthermore, GD(x) = 0 <= ^> 0 E dfix).
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(c) Writing /i(x) = (k°(x),/i(x)), with/i(x) E IR71,

d0f(x;/i(x))^-0(x), V xeIR71. (5.13c)

Proof.

a) Let f = 0. Then the desired result follows directly from Definition 5.1 (c).

b) Since Gfi') is continuous, it follows from Corollary 3.1 and Proposition 3.2

that ®(x) is continuous and h(x) is u.s.c. Since the solution of (5.13a) is

unique, it follows that K{x) is a point-to-point map and hence continuous.

c) By definition (5.13b) we have

<-E(x),?> > Wix)\\2 = 8(x) V ? E Gfix) . (5.14)

Now suppose that £ = (0,£) E Gfix), so that f E dfix). Then

<-E(x),f> = <-*<*),f> Sr <3>(x) . (5.15)

Consequently we have

d0fix;hix)) = max </i(x),f> ^ -<5>(x) , /5 16\

which completes our proof.

•

We shall now see that if we modify the search direction computation in (5.4)

as shown below, we obtain an algorithm for solving (5.3) under the assumption

that fi') is only l.L.c. The convergence proof of this algorithm mimics the proof

of Theorem 5.1.

Algorithm 5.2. (Nondifferentiable Steepest Descent for Problem (5.3).

Requires an a.c.d.f. map Gfi')).

Data: x0 E IR71.
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Step 0: Set i = 0.

Step 1: Compute the augmented search direction h~ixi) = (Ai°(xi),/i(xi))

according to (5.13b), i.e.,

Eixi) = -argmin(Mt | f e S^fo) i (5.17a)

and set the actual search direction h^ = h(xi).

Step 2: Compute the step length

Xi EX(xi) k argmin^(xi +Xhi). (5.17b)

Step 3: Update:

xi+1 = xi+Xihi; (5.17c)

replace i by i +1 and go to step 1.

•

Remark 5.2. The Armijo step length rule (5.10) can be modified for use in Algo

rithm 5.2 as well. For Algorithm 5.2 it assumes the form

\ k max{X|X=/Sfc,fc EIN,/(Xi+^)-/(Xi)^-Xa®(xi)!, (5.17d)

where a, jS E (0,1).

•

Theorem 5.2. Suppose that ^:lRn -+ IR is LLc. Consider a sequence [xi lj°-n

K ^
constructed by Algorithm 5.2. If a^ -t x as i -» oo, then 0 E dfix).

Proof. Suppose that 0 £ dfix). Then by Proposition 5.1 0 £ 3S^(x) and

therefore ®(x) > 0. Consequently,

d0fix,h(x)) <> -®(x) <0. (5.18a)

Hence, the stepsize X E X(x) computed at x, satisfies X > 0 and

fix + th (x)) - fix) = -Z <0. (5.18b)
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Since fi') is continuous by assumption and /i(-) is continuous by Proposition

5.1, it follows that there exists an in such that for all i E K, i ^ io-

fixi+1) - fix^^fixi +?JiiXi)) - fixi)^-Z/2. (5.18c)

K

Now (^(xi)Jilo *s a monotonically descreasing sequence and fixi) -»^(x) as

i -* oo. Hence fixi)-*fix) as i -> oo. But this contradicts (5.18c), and hence we

must have 0 E dfix).

m

It is only slightly more difficult to establish the convergence properties of

Algorithm 5.2, with (5.17b) replaced by (5.17d), as we shall now show.

Theorem 5.2b. Suppose that f:]Rn -> ]R is l.L.c. Consider a sequence (x^ jil0

constructed by Algorithm 5.2, with (5.17b) replaced by (5.17d), i.e., using the

K\
Armijo type step length rule. If Xi -> x as i -» oo, then V^(x) = 0.

Proof. Suppose that 0 £ dfix). Then (5.18) must hold. It now follows from

the Lebourg Mean Value Theorem 2.3.1 that for any X> 0,

f ix+Xhix)) -f(x)+Xa®(x) (5.19a)

= X<fAs,/a(x)> + Xa®(x)
<Xid0fix + sXhix);hix)) - dnfix ;h(x)) -(1 - a)©(x)),

where fxs e df(x+sXhix)) and s E (0,1). Hence, since by Proposition 2.3.3

do(*; •) is U.S.C., there exists a fc E IN such that

if(x + fhix)) - f(x) + 0*8(x) ^ -jS*(l - a)©(x)/ 2. (5.19b)

Hence, since ^(-). MO an^ 8(0 are continuous, there is an io such that for all

i E K, i ^ io,

^(Xi + /S*M**)) -f(xi) + /5^®(Xi) <£ 0, (5.19c)
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so that X^ > jS^ for all i E K, i > i0. Next, Since 0(0 is continuous, there exists

an ij ^ in such that for all i E A\ i ^ ilt ®(xi) ^ ®(x)/2. It therefore follows

that for all i E K,i^ ilt

f ixi+1) - lK*i) <s -fia%ix)/ 2. (5.19d)

Since (5.19d) implies that fixi) -» —oo as i -* °°, we have a contradiction of

the fact that f{xi) ->fix), which follows from the fact that ifixi)li°=n is a mono

tone decreasing sequence with an accumulation point. This completes our proof.

•

The applicability of Algorithm 5.2 to a specific nondifferentiable optimiza

tion problem depends on the availability of an appropriate a.c.d.f. map. We shall

now present three examples which show that for the max functions which occur

in problems of engineering design, it is quite easy to construct a.c.d.f. maps. Our

first example deals with the simple max function that triggered the introduction

of Definition 5.1.

Example 5.1. Suppose that ^:IRn -+ IR is defined by

fix) k maxf3'ix) (520)
2 em x '

where the f3 :IRn -> IR are continuously differentiable. We shall show that

(5.21)Gfix) £ co
j em

f(x)-J'{x)

is an a.c.d.f. map for fi), i.e., that it satisfies the requirements (a), (b) and (c)

of Definition 5.1.

(a) By construction, Ufix) is convex. Next, for all j E m. letfj-rlR71 -*IRn+1 be

defined by ?,-(x) = (#(*).£(*)) = Mx)-/>(x),V/> (x)). Then ?,() is con-

tinuous. Let
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Em A \n e R» |it, ar 0, J ^ =lj (522a)
j em

and let x E IR71 be arbitrary. Then Gfix) can be expressed in the form

Bf(x) = ffeR»+1|?= 2 M'liOO.MeSmi. (5.22b)
j em

Since 2m is compact and the |j(0 are continuous, Gfix) is bounded on

bounded sets. Now suppose that Xi -*x as i -> oo, and that & E Gfi^) are such

that |i -♦ ? as i -> oo. Then for some ^ E Sm, & = £ A*/fj (xf) and. since 2m
j em

is compact, there exists an infinite ifclN such that m -*/x E 2m as i -> oo.

Clearly, £ = J ^-(i) and hence | e Gf(i) Hence it follows that
j em

Lim. ^(Xi) C £ty(x) which proves that 5^(0 is upper semi-continuous.

Next, let| E "Gfix) be arbitrary. Then? = £ V?lj(x) for some Me 2m.
jp em

Since & - 2 MJ?j e ^(xi) and ?i "* ? as * "* °°» we conclude that
j em

Gfix) C IimGty(xi), i.e., that Gfi') is Ls.c. Since it is both u.s.c. and Ls.c, it

is continuous.

Properties (b) and (c) of Definition 5.1 follow from the fact that

^(x) -f3\x) ^ 0 for all j E m and (3.18). This concludes the proof that Gfi')

is an a.c.d.f. map.

To compute the search direction /i(x), defined in (5.17a), for the function

^(0 defined in (5.21a), we can proceed in two steps. First we solve the finite qua

dratic program

min Jg ( S M%(*) ~fH*)])Z + II E (JV>(.x)t\, (5.23)
Me*i» j em j em

for a solution fly. E Sm. Since the quadratic form in (5.23) may be only positive

semi-definite, standard quadratic programming codes, such as [Gil.1], may fail

occasionally. In that case, the Wolfe proximity algorithm [Wol.1] may be used. In
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either case, only a finite number of iterations are needed to solve (5.23). Once

fix has been computed, the search direction Ji(x) is obtained according to the

formula

M*) =- E t4vfH*) (5.24)
2 em

Thus, we see that the computation of the search direction is quite simple for the

function in (5.21a).

Example 5.2. Suppose that ^:IRn -> IR is defined by

f (x) k max{<pix,y) | y E 7J (5.25a)

where p:lRnxIRm ->IR and Vz^:IRnx]Rm-•IR71 are continuous and YcRm is

compact. We shall show that

re

(5.25b)
fix)-tpixy)

Vs^(x,y)Gfix) = co
yey

is an a.c.d.f. map. Let f :IRn X IRm-»IRn+1 be defined by

?(x,t/) = ifix) —(p{x,y),Vx(pix,y)). Then we see that f(v) is continuous. By

construction, Gfix) is convex and bounded on bounded sets because Y is com

pact and f (v) is continuous. Suppose that ^ -»x as i -* oo and that & E £^(xi)

for all i E IN are such that & -* £ as i -» oo. Since by Caratheodory's Theorem

2.2.1, there exists a fa E 2n+2 (defined in (5.22)) and vectors

yji e y. J = 1.2, • • • Ti+2. such that fi = 2 M/K^.^ii). and since both 7

and £n+2 are compact and f(v) is continuous, it follows that f E Zr^x).

Hence Gfi') is u.s.c.

Now, let £ E ^(x) be arbitrary. Then, by Caratheodory*s Theorem,

?= S A^Ks.T/j). ^itn Me 2n+2 and ty e ^ for ^ J eiuhZ Clearly,
j euL±2

li - E MiK^i.l/y) is an element of S^(xi) and & -> f as i -* 00. Hence
j eiLi2
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UniGfiXi) D Gfix) for any sequence Xi ->x, which proves that Gfi) is Ls.c.
i-*oo

Hence, it is continuous.

b) and c) follow from the definition of Gfi') and (3.18). This concludes the

proof that 5^(0 is an a.c.d.f. map.

•

Next we must examine the problem of computing a search direction accord

ing to (5.13b). Clearly, (5.13b) no longer defines a finite dimensional quadratic

program and hence £(x) must be computed by means of a proximity algorithm,

such as the one stated below (see Fig. 5.2):

Proximity Algorithm 5.3.

Step 0: Compute afo e Gfix); set s0 = fo, ^ = 0-

Step 1: Compute

li+i=ifix)-(pix,yi+1), Vz(pix,yi+1))
E argminK?,§•> | f e G#c)j

where

S/i+i e yi+1 k argminfsi°hKx) -tp{xty)] +<V,^(x,T/),si> | y E Y\. (5.26b)

Step 2: Compute

si+1 = arg min(||s f \ s e co fo ,h+iti • (5.26c)

Step 3: Replace i by i +1 and go to Step 1.

•

Proposition.5.2. The sequence (§i J^-q constructed by Algorithm 5.3 converges

to -E(x). defined by (5.13b).

•

Remark 5.3. Formula (5.26a) is based on the observation that for any compact

set 5 cIRn+1, min<|,Si>= min<?,Si>.
?e5 ?eco5
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When 2/i+i satisfying (5.26b) is not unique, a more efficient selection would

be to set

fi+i = argminflxflf e ca fM-tpfriM)
Vz<Pixi>v)

(5.26d)
y e yt+1

We note that the computation of /i(x) by means of the Proximity Algorithm 5.3

is no longer a finite process (unlike the case in Example 5.1) and hence imple

mentation procedures must eventually be introduced (see, e.g., [Kle.l, Muk.1,

Pol.l, Pol.8, Tra.1]). Also, the computation of T/i+i according to (5.26b) may or

may not be practical. For example, when Y Q IR, ?/i+i can be computed by

scanning the linear segment Y, with (Vz^(x,T/),Si^ = ctgCpix,y;Si) approxi

mated by. a finite difference. However, when y = (cj/ix), with co E IR, u E ]Rm,

and <pix,y) = ^u,9(x,jcj)u^with Q symmetric and positive definite (as in Pro

position 3.4), the computation in (5.26b) appears to be prohibitive.

•

Finally, we shall show that it is possible to extend the concept of an a.c.d.f.

map to max functions defined on an infinite dimensional space.

Example 5.3. Suppose we are given a dynamical system

z(0=/(*(0.u(0). * e[0,1], z(0) = z0, (5.27)

where / :IRnXlR-> IR71 is continuously differentiable, and suppose that we are

required to find a control u E £^[0,1] such that gr(z(£)) <* 0 for t E [0,1],

with g :IRn -* IR continuously differentiable. First, denoting the solution of (5.27)

by zuit), we define xp rl^O.lJxIR -> IR by

<piu,t) k flf (**(*)) (5.28a)

and^:L [0,1] -> IR by
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Next, we define Gfiu) as in (5.25b), with u replacing x. To obtain an expres

sion for Vu0>(u,£)(O, we note, formally, that to first order (in ^^[0,1])

p(u +s,0 - p(u,0 = gizu+sit)) -g(zu(t))

«g-<«*(0)*.'<0 (529a)
k <Vu^(u,0,s>s,

where {-,*)s denotes the Lg scalar product and

w-(*) =|J.(««(0.t*(0) '̂(0 +|£-(z-(0,u(0)s(0> *e[o,i], (529b)
(5z(0) = 0.

Hence,

Vu<piu,t)iT) =•|f-(zu(0,it(0)7,JDu,i(T) for 0 -S T ss *

= 0 fort <t -£ 1,

where, for T E [0,£], pu% (t) is determined by the adjoint equation

%PU-Ht) =-g-(«"(*).*(*))VM . (5.31a)

p«.'(t) = Vflf(Z»(0). (5.31b)

Next, referring to the operations in the proximity Algorithm 5.3, in step 1, (with

y = t) we determine

fi+l e MHmjnj%°(f(«)-ff(«»(0) +^(."(O;*^*))}. (5.32a).
* e|_o,ij

where the directional derivative dg(zuit);6zSt(t)) can be approximated by the

finite difference ^-[g(zw+As*(£)) ~gizuit))] for X>0 small. The computation

of si+i in (5.26b) reduces to solving for X E [0,1] the problem
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