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ABSTRACT

It is shown by example that a large class of engineering design problems
can be transcribed into the form of a canonical optimization problem with ine-
quality constraints involving max functions. Such problems are commonly
referred to as semi-infinite optimization problems. The bulk of this paper is
devoted to the development of a mathematical theory for the construction of
first order nondifferentiable optimization algorithms, related to phase I - phase
1l methods of feasible directions, which solve these semi-infinite optimization
problems. The applicability of the theory is illustrated with examples that are

relevant to engineering design.



0. INTRODUCTION

0.1. Evolution of Optimization-Based Engineering Design

Over the years, engineering design has been increasing in complexity. This
constant growth in complexity is due to several factors, such as, (i) progres-
sively increasing expectations in product performance, (ii) progressively more
restrictive constraints imposed by environmental and resource cost considera-

tions, and (iii) progressively more and more ambitious projects being launched.

For example, in structural engineering, the increase in design complexity is
due to the need to ensure the earthquake survivability of sky scrapers and
nuclear reactors at reasonable cost; in control engineering and electronics to
the need for reliable, high performance, worst case designs; in the automotive
world, to the need to conserve energy while eliminating pollution; and in the
area of space exploration, to attempts to design complex shaped, highly flexible,
large space structures and their control systems simultaneously, to unpre-

cedented performance standards.

Fortunately, over the last decade, while material and labor costs have
grown rapidly, computing costs have decreased dramatically and h;:nce, not
surprisingly, engineers have been turning more and more frequently to the com-
puter for assistance in design. As a result, a new, interdisciplinary engineering
specialty has emerged which is commonly referred to as computer-aided design
(CAD). Most of the existing CAD methodology is based on computer-aided
analysis, with the design parameter selection carried out by the designer on a
trial and error basis. Since decision making in a multiparameter space is very
difficult, the trial and error approach is not very effective. Therefore, there is
growing hope that considerable benefits in enginéeri.ng design might be obtained
from the use of sophisticated optimization tools. However, the effective use of

optimization algorithms in engineering design is predicated on the supposition
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that engineering design problems are transcribable into a suitable canonical

optimization problem.

Fortunately, as we shall shortly illustrate by example, engineering design
specifications can frequently be expressed as inequalities in terms of a finite

dimensional design vector £ € R". These inequalities are either of the form
gz) =<0 (0.1.1)
where g : R™ - R is continuously differentiable, or of the form

plzy) =0, Vy €7, (0.1.2a)

or, equivalently
T =
Inax p(zy) <0, (0.1.2b)

where ¢ :IR® X IRP - R is locally Lipschitz continuous and ¥ C IR? is compact.
Constraints of the form (0.1.1) often express simple bounds on the design vari-
able or a "static” design condition. Constraints of the form (0.1.2b) can be used
to express bounds on time and frequency responses of a dynamical system as
well as tolerancing or uncertainty conditions in worst case design. Conse-
quently, a rather large number of engineering design problems are transcrib-

able into the following canonical optimization problem;

min{ f(z)|gi(z) < 0,1 € k; ¢ (z,y;) = 0,y; € Y5, € m} (0.1.3)
where we use the notation kL A {1,2,...,k}, for any positive integer k. At a
minimum, the functions Jf:R*-R, g':R*->R, i€k and

goj :R* x R » IR, j € m., must be assumed to be locally Lipschitz continuous,

while the sets ¥; C IR” must be assumed to be compact.

Occasionally one encounters equality constraints as well, in engineering
design. These can be removed by means of exact penalty function techniques

which we will not discuss in this paper. For examples of exact penalty functions
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in conjunction with algorithnis of the type that we will describe in this paper, the
reader is referred to [May.2, May.4].

Problems of the form (0.1.1) are often referred to as semi-infinite optimiza-
tion problems, or SIP for short, because the design vector z is finite dimen-

sional, while the number of constraints is infinite.

A number of optimal control problems with state space constraints also
have the formal form of (0.1.3), except that the design vector Z is a control (in

L™[0,1], say) rather than a finite dimensional vector. Although the theory that

we will present will be entirely in terms of problems in which the design vector =
is finite dimensional, it is very easy to extend the algorithms that we will be
presenting, both fdrrnally and analytically, to the case where T i-s a control. In
Example 5.34 we shall illustrate this fact.

0.2. Factors in the Selection of an the Axiomatic Structure

Problem (0.1.3) has a great deal of structure. The effect of this structure is
particularly pronounced when, as is so often the case in engineering design, the
functions f (+), g*(*) and ¢?(-,-) are differentiable. In this case, (0.1.3) is a
differentiable optimization problem with an infinite number of constraints.
Hence (0.1.3) is best solved by algorithms which exploit its structure to the limit
(such as [Gon.1, Pol.10]), rather than by general purpose nondifferentiable
optimization algorithms (such as [Lem.1, Lem.2, Lem.3), [Mif.1], [Kiw.1] [Sho.1]).

AAlgorithrns which exploit the structure of (0.1.3)' can be first order or higher
order. First order algorithms tend to be extensions of methods of feasible diree-
tions (see e.g. [Gon.1, Kiw.1, Pol.10]), while higher order methods are extensions

of Newton's method or sequential quadratic programming methods (see e.g.,
[Het.2, May.7, Pol.11]).

In this paper we present an axiomatic approach to a class of

nondifferentiable optimization algorithms for solving problem (0.1.3). These
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algorithms can be viewed as extensions of combined phase I - phase II, methods
of feasible directions for differentiable problems, introduced in [Pol.6]. Because
the literature contains oniy a few examples of methods of feasible directions
(see, e.g., [Ben.1, Pol.1, Zou.1]), it is, generally, not realized that it is possible to
define a very large number of such methods. We shall now demonstrate how one

can generate whole families of methods of feasible directions.
Consider the problem
mjnifo(Z) | fj(x) = 0: j = 1)2v--)m ;» (0'2‘1)

where, for j = 0,1,2,..,m, f7 :IR* - R are continuously differentiable, and sup-
pose that Z is a local minimizer for (0.2.1). Let us adopt the notation that vec-

tors € R™*!' have components u%ul, ..., M™, and let us define
) A {p,eIR"’”" | =0forj =1,2,....m, _§°pf = 1}. Finally, we define
=
J(Z) A {7 €em | f7(£) = 03 U {0}. Then one can state the F. John condition of
optimality [Joh.1] in two ways:
0 € cofVf i (2N es@). (0.2.2)

where "co" denotes the convex hull of the set, or, equivalently, that for some

1 € Z,, ;1. the following two equations must be satisfied:

D3

wvfri(z) =0, (0.2.3a)
7=0

2

n™3

lﬁi fi@) =o. (0.2.3b)

To define a family of methods of feasible directions, we derive from either (0.2.2)
or (0.2.3a,b) a family of search direction finding problems. For ¢ = 1,2,...,/n and
j=012,...,m, le¢ s"t/:R+IR be continuous functions such that (i)
s(z) =0 if and only if 2 = 0, sgn s*(z) = sgn z, (ii) £/(2) >0 for all z #0.

Next, let B be any compact set in IR® containing the origin in its interior, and



let o,8 > 0 be arbitrary. Now consider the functions

0! & iy may £9(1957 ()IKTS (@), b, (0.2.40)
0 min max (HAIEHSI (1) + AV @K@ AN, (02an)

8 2 min {a|-

k m . .
BET Elw'sf(ff(x)) +,3}|Lz=;oﬂzt:(||vf:(x)")vfz (z) ||?§(0.2.4c)

for Kk =1 or k = 2. It is easy to see that if Z .is such that f7(Z) < 0 for all

j € m., then (0.2.2) (and hence also (0.2.3a,b)) holds if and only if ®(Z) = 0,
where £ = 1,2,3. We have thus created broad families of equivalent first order
optimality conditions. Now, if £ € IR™ is such that f/(z) =<0 for all j € m. and
®!(z) <0 (so that @ (z)#0 for £ = 2,3 also holds), then the solution vector
h(z) of (0.2.4a) (or of (0.2.4b)) defines a direction along which the cost can be

reduced without constraint violation. The same holds true for the vector

h(z)8 - 2 u%t’ (Ivf3 (2)|)Vf I (z), where u, is a solution of of (0.2.4c). We
=

are thus on the way to obtaining several infinite families of methods of feasible
directions. In the literature one finds methods related to (0.2.4a) for
= th € R* | |h|_, = 1} (see [Pol.1, Zou.1]), methods related to (0.2.4b) (see

[Kiw.1]) and methods using (0.2.4c) with £ = 1, but not with & = 2 (see [Pir.2,
Pol.1]).

In constructing an axiomatic theory of semi-infinite optimization algo-
rithms, we were faced with the choice of whgther to place emphasis on elegance
and simplicity or whether to make sure that as many of the published algo-
rithms and possible variants of these, such as those sketched out above, could
be accounted for. We have opted to emphasize axiomatic simplicity and have
concentrated on algorithms which can be viewed as progressively more complex
extensions of the method of steepest descent. These are related to those defined

by (0.2.4b) and (0.2.4c) with & = 2.



A number of the algorithms stated in this paper have not been published
before, because, whenever we could not find in the literature an appropriate
algorithm that satisfied our axioms exactly, we made use of the above explained
freedom to generate a new algorithm, by creating a variant of an existing algo-
rithm. Usually this involved no more than replacing ¥ = 1 by £ = 2 in a form
such as (0.2.4c). On the basis of experience, we expect that the computational
behavior of these new variants will be found to be quite similar to that of the ori-

ginal algorithms.

0.3. Comments on Contents and Bibliographical Notes

This paper is reasonably self contained. In Section 1, we present four exam-
ples of the transcription of an engineering design problem into an optimization
problem of the form (0.1.3). In Section 2, we present the mathematical results in
the areas of continuity of point-to-point and point-to-set functions, convexity of
functions and sets, and nonsmooth analysis which are essential to the under-
standing of our work. In Section 3, we assemble a number of results on max
functions. In Section 4, wé give first order conditions of optimality for problem
(0.1.3). In Section 5, we show that it is possible to evolve a family of algorithms,
for the solution of both unconstrained and constrained semi-infinite optimiza-
tion problems, by extension of the method of steepest descent for differentiable
functions. In Section 6, we present a family of more sophisticated algorithms,
derived by extension of the algorithms in Section 5. These more sophisﬁcated
.algorithms are characterized by search direction subprocedures that require
less computational effort than the ones used by the algorithms presented in
Section 5. As might be expected, the savings in search direction computation
are paid for by the loss of some continuity in the search directions, which is
likely to increase the number of iterations required to solve a problem to a given

precision. However, there is some consensus in the community of feasible direc-



tions code users that the savings do seem to outway the losses. Finally, in Sec-
tion 7, we introduce the reader to the concept of algorithm implementation and

illustrate it by an example.

Our list of references includes citations to articles and books which are of
immediate relevance to the material presented, as well as to some articles and
books which may help the reader to see our results from a broader perspective.

We conclude this section with a brief discussion of our sources and bibliography.

For further examples of engineering applications, see [Bha.1, May.5, May.8,
Pol.2, Pol.4, Pol.7, Pol.10, Pol. 15, War.1].

Our sources for nonsmooth analysis, optimality conditions and max func-

tions were [Ber.1, Cla.1, Dan.1, Dem.1, Dem.2, Leb.1].

Our axioms for the convergent direction finding maps represent the culmi-
nation of a considerable effort on the theory of nondifferentiable optimization
algorithms. For earlier results see [Pol.12, Pol.16, Pol.17]. Our convergence
proofs are based on general convergence theorems. For a sampling of such

theorems, see [Pol1, Pol.9, Pol.16, Tish.1].

The algorithm implementation theory presented in Section 7 is based on

results in [Kle.1, Muk.1, Pol.1, Pol.8, Tra.1].

For further examples of nonlinear and semi-infinite programming algo-
rithms which have contributed to our development of the theory in this paper,
see [Bert.1, Gon.1, May.4, May.8, Oet.1, Pir.1, Pir.2, Pol.1, Pol.3, Pol.8, Pol.10,
Tra.1, War.1].

For optimal control algorithms which can be understood in terms of the

algorithm models presented in this paper, see [May.2, May.3, Warg.1, Wil.1].

The possible variety of ‘'direct” alternatives for constructing

nondifferentiable optimization algorithms is illustrated by [Het.1, Het.3, Kiw.1,



Lem.2, Lem.3, May.9, Mif.1, Mif.3, Polj.1, Polj.2, Polj.3, Sho.1].

There is a good deal of work on curve fitting which is closely related to that
done in the area of semi-infinite optimization, see, e.g., [Opf.1]. We refer the
reader to the book by Hettich and Zencke [Het.3] for a bibliography of this work

and some discussion.

An "indirect" alternative for solving semi-infinite optimization problems is
presented by various versions of problem decomposition by means of outer

approximations, see, e.g., [Gon.2, May.1, May.5, May.8].

For a few examples of superlinearly converging nondifferentiable optimiza-
tion algorithms, which will not be covered in this paper see [Het.2, Lem.1, Lem.4,
Lem.5, May.7, Mif.3, Pol.11].

Finally, we would like to draw the reader’'s attention to the following major
works: the book by Clarke [Cla.1] which presents a comprehensive theory of
nonsmooth analysis and optimality conditions for nondifferentiable optimization
problems, the doctoral dissertation by Lemarechal [Lem.3], which presents an
interesting collection of algorithms for the solution of nondifferentiable, convex
problems, the book by Kiwiel [Kiw.1] which is a compendium of various
nondifferentiable optimization algorithms, and the book by Shor [Sho.1] which
presents some very original alternatives, including space dilation methods which
have subsequently led to the so called ellipsoid methods (see, e.g.,[Sho.4, Iud.1,
Blan.1]) including the famous Khachian algorithm [Kha.1]. For additional biblio-

graphic information, the reader may consult [Nur.2].

1. DESIGN EXAMPLES

We shall now illustrate by means of a few simple examples how SIP problems

of the form (0.1.3) arise in a variety of engineering design situations.



1.1. Design of Earthquake Resistant Structures

One of the simplest examples of a problem of the form (0.1.3) is found in
the design of braced frame buildings which are expected to withstand small
earthquakes with no damage and large ones with repairable damage. A simple
three story braced frame is shown in Fig 0.1.1. The components of the design
vector  are the stiffnesses of the frame members, as indicated in Fig.0.1.1.
Under the hypotheses of a lumped parameter model, the horizontal floors and
roof are assumed to be rigid and to concentrate the mass of the structure. The
relative displacements of the three floors and roof form the components of the
displacement vector ¥. The lumped parameter model of the braced frame

obeys a second order vector differential equation of the form:

Miy(tz)+Dyy.x)ytz)+ K(yy.z)y(tz)=F(t), (1.1.1)

where F'(t) represents the seismic forces. When F’ is small, i.e., when the earth-
quake is small D and K can be taken to be constant so that (1.1.1) is a linear
differential equation, but when F is large, the bending of steel introduces gross
nonlinearities due to its hysteretic behavior. It is common to consider a whole
family of earthquakes {F} i ¢ k. both large and small, in carrying out a design.
When an earthquake is small, a building is expected to remain elastic and no
structural damage is allowed. When an earthquake is large, survival of occupants
becomes a major consideration and large, energy absorbing, non eleastic defor-
mations are accepted, short of outright failure of the structure. A simple
optimal design problem consists of minimizing the weight of the structure sub-
ject to bounds on the relative floor displacements over the entire duration of the
family of earthquakes considered as well as simple bounds on the stiffiness of the

structural members. This leads to a SIP of the form



min{f(z) |0<a = z*! = 8, Vi € n;
|yt .z, F) —yi(t,z,F)| < df, (1.1.2)
Vit eloT], Vk € K, j =0,1,28.

1.2. Design of a MIMO Control System

We shall now consider a simple design of a multi-input multi-output (MIMO)
control system, with specifications both in time and frequency domains. Con-
sider the feedback configuration in Fig: 1.2.1, where C(z,s) is a compensator
transfer function matrix that needs to be designed. The equations governing the

behavior of this system in the time domain are of the form

Zp = Ap2zp + Bpuy (1.2.1a)
Yp = G 7 (1.2.1b)
2. = A (z) 2z, + B.(z)u, (1.2.2a)
Yo = C(z) 2, (1.2.2b)
Up =Y (1.2.3a2)
U, =T —Y (1.2.3b)
Yy =yp+d (1.2.3¢c)

where (1.2.1a,b) represents the plant, (1.2.2a,b) represents the compensator to
be designed and (1.2.3a-c) are the interconnection relations. We assume that 7,
Ug, Uc, Yp, Yo are all m-dimensional vectors and that the matrices A, B, C
are continuously differentiable in the design vector  which, most likely, con-

sists of the "free"” elements of these matrices.
The most elementary requirement is that of closed loop stability. With
Gy(s) = G(sI—4) By, (1.2.4a)
G (z.5) = G (z)(sI -4 (2)) 7' B (), (1.2.4b)

it can be shown that the eigenvalues of the closed loop system are the zeros of

the polynomial in §



x(z.s) & det(sI-4,)det(sI—4 (z))det(I+G,(s)G: (z,5)).  (1.2.5)

To ensure that the zeros of x(z,s) are all in the open left half plane, we make
use of the modified Nyquist stability test introduced in [Pol.14]. For this pur-
pose, let d(s) be a monic polynomial of the same degree as x(s). such that all
zeros of d(s) are in the open left half plane. Let T(z,s) A x(z,s)/d(s). The
closed loop system is stable if the locus of T'(z,jw), traced out in the complex
plane for w € (—o0,00), does not pass through or encircle the origin. A
sufficient condition for ensuring this (see [Pol.14]) consists of keeping the locus
of T(z,jw) out of a parabolic region containing the origin (see Fig. 1.2.2) by

imposing the semi-infinite inequality:
~dRe[T(z,jw)R + Im[T(z,jw)]+c <= 0 Vw = 0. (1.2.8)
wherec,d > 0.

Next, for a set of specified inputs {7} (-)}; € ., the designer may require that

the zero initial conditions response error be limited as follows (see Fig. 1.2.3):
Bi(t) = yi(tiz,me) —ri(t) = Bi(t) (1.2.7)
forallk € K andi = 1,2,...,m, with the &, 5}: piecewise continuous functions.

Finally, for the purpose of expressing insensitivity to the disturbance d, we
set 7 = 0, which leads to the Laplace transform equation
F(s) =[I + P(s) C(=z.,s)]7* &(s)
A Q(z,s) &(s)

Up(s) = —C(z,s) Q(z.s) &(s)
b R(z,s)a(s) ,

(1.2.8a)

(1.2.8b)

where %p(s), &(s), §(s) denote the Laplace transforms of ug(¢), d(£), y(¢),

respectively.

Let H denote the largest singular value of a complex m Xm matrix H.

Since the largest singular value of a matrix is its induced Lz norm, to make the
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response Y of the system small for a large class of disturbances d, without
unduly saturating the system as a result of 4 becoming too large, control sys-
tem designers strive to keep G[Q(z,jw)] small and [ R(s,jw)] bounded over
the frequency range [w', &"] in which the energy of the disturbances is known to

be concentrated. This leads to the following formulation of the MIMO control sys-

tem design problem:
minimize f (x),

where

F(z) 4 max{5[Q(z,jw)]|w € [, 0]} (1.2.9)

subject to (1.2.8), (1.2.7) and

o[R(z.jw)] = b(w), V w € [0, 0], (1.2.10) |
zt <zt < zt, (1.2.11)
where b () is a continuous, real valued funéction.

In addition, there could be constraints expressing decoupling i.e., the
requirement that when only a single component of the input vector is a nonzero
function, only the corresponding component of the output vector is nonzero, as
well as stability robustness requirements, all of which are semi-infinite in form.
We note that from an algorithmic point of view, since singular values are non-
differentiable, l;.he optimization problem corresponding to MIMO control system

design is considerably more difficult than the one corresponding to structural

design.

1.3. Design of a Wide Band Amplifier

The design of a wide band amplifier usually involves three transfer func-
tions: the input impedance Z;, (z,s), the output impedance, Z,y(Z,s) and the

gain, A(z,s), which are all proper rational functions in the complex variable s.



The design vector £ € IR™ determines certain critical component values (e.g.,
~ resistor, capacitor values) in the circuit, which affect the impedances and the
gain. Thus, the coefficients of the rational functions Z;,, Zgy: and A are func-

tions of the design vector z.

The simplest formulation of a wide band amplifier design has the form

glgﬁc)iwf lbin < | Zin(z.J0)|2 < by, V0 € [wo, wp] 5

bout < 1 Zout(2.50) |7 = by, V0 €[00, 0] 5 (4.3.10)
4 = IA(S,jGJ)Iz = z, VweE [GJo, wf];
i<zt =, i=12..n].

As stated, this problem is not quite of the form (0.1.3). To bring it in line
with the canonical form (0.1.3), we augment the design variable by one com-
ponent, 2% to Z = (2% z) € R**!. Problem (1.3.1a) can then seen to be

equivalent to the problem:

min {-z°\bin < | Zin (2.5 (wotyz)|? = bin, V¥ € [0,1];

P-4
bow < | Zp (2.5 (0otyz D) |2 = by, V' y € [0,1];
(1.3.1b)
A = |A(z.j(wtyz?)|? = 4, Vy € [01];
zt <zt <= 7, i=12..n}.

1.4. Robot Arm Path Planning

In designing a sequence of moves to be carried out by a robot manipulator
in a manufacturing situation, it is necessary to find a number of paths which
take the robot arm from one location to another without collision with the work-
piece. We shall describe a simple problem involving a two link robot manipulator
and a circular workpiece obstacle in R%. Let 9(¢), ¥3(t) be the angles at time t

between reference rays and the robot links (see Fig. 1.4.1), and let
9(¢) & (9'(¢), 93(£)). Then the dynamics of the robot have the form

MB@))S(E) = 7(t) = C((L),8(£))0(t) + G(3(¢)) (1.4.1)

where M() and C(:,’) are 2x2 continuously differentiable matrices, and

-14-



G:IR? » IR? is continuously differentiable and 7(¢) € Rz is a torque vector, with
71(t) the torque applied at the first joint and 7%(¢) the torque applied at the

second joint. The circular workpiece is described by an inequality of the form
h(z) < 0, (1.4.2)
where f :IR?® » R is defined by
h(z) =1 — (z1-a)® — (z?-b)? . (1.4.3)
for somea ,b €R.

Now suppose that we are given that at t = 0, the angles are ¥91(0) = U,
¥5(0) = 9, and that we are supposed to find a torque vector 7(£), £ €[0,1],
which results in a collision free path that takes the robot manipulator from
these initial angles to the angles 9;(1) = 19}, 93(1) = '0? at time t = 1, with
|79(t)| = c,j= 12 fort €[0,1]. We assume that 7(-) is an L? [0,1] function.

Let us denote the solution of (1.4.1), which satisfles the initial condition
¥(0) = ¥, and which'corresponds to the torque 7(-) by ¥7(-). We can now
express our problem in the form
min{f (1)|g?(7) = 0,7 =12, ¢*(1y)<0,k =12, V yeY} (1.4.4a)

where f : Li [0,1] » Ris defined by

F(n) & (-, R; (1.4.4b)

the g7 : L2 [0,1] = R, j = 1,2 are defined by
oo

gi() 8 [max |7()] —c ; | (1.4.4¢)
ga(r) & Jax | 73(¢)| — ¢ ; (1.4.4d)

Y =[0,1]1%[0,1] c R? and, for k = 1,2, andy 2 (s.t), ¢* :L2[0,1]xR? » R

are defined, by



ol ry) & h (st cos ¥17(t),sl cos 9%7(t)) (1.4.4e)

(1Y) A h((L,cos BY7(t) + slocos(WI7(¢)+m—9%7(t)) ,

L,sin 917(¢) + slysin(917(¢) + T=927(1)) (1.4.4f)

where l; is the length of the first link and 5 is the length of the second link. The
function ¢)(-,") is used to ensure that the entire first link will avoid collision
~with the workpiece, while the functon 9(-,) is used to insure that the entire
second link will avoid collision with the workpiece. As stated, the design vector
7(+) is a function. The problem can be made finite dimensional by representing

7(+) in terms of splines, say, over a fixed set of nodes.

2. PRELIMINARY RESULTS: CONTINUITY, CONVEXITY AND NONSMOOTH ANALYSIS

We shall now summarize the various results in the theory of point-to-set
maps, convexity, and nonsmooth analysis that we shall make constant use of in

this paper. In the process we shall also establish the mathematical notation that

we shall use.

The book by Berge [Ber.1] is an excellent reference for various point-to-set
map results used in optimization. Unfortunately, it is out of print and hence we
reproduce in this section a number of the most essential definitions and
theorems that Berge presents. In addition, we reproduce a certain number of
results in convexity theory, most of which can be found in [Roc.1] or [Ber.1].

Finally, we extract from [Cla.1] a few basic results in nonsmooth analysis.

2.1. Continuity

We begin by summarizing the various concepts of continuity which play a
role in optimization theory. Since in the context of optimization algorithms one
generally deals with sequences rather than with neighborhoods, we shall give

sequential alternatives whenever possible.



Definition 2.1.1. A function f:IR"-R is said to be upper semi-continuous
(u.s.c.) at T if for every 6>0 there exists a >0 such that

F@)-f(@¥)=<6 ¥V zeB(Zp)), (2.1.1a)
where

B@Ep) dizeR | |z-2| <5 (2.1.1b)
A function f (-) is said to be u.s.c. if it is u.s.c. at all z € R™.
-
Proposition 2.1.1. A function f:R*-R is u.s.c. at Z if and only if for any
sequence {z; ;=g in R™ , such that z;»Z as i-»o0

Hmf (z;) < f (%) ‘ , (2.1.2)

-
Definition 2.1.2. A function f:IR®* >R is said to be lower semi-continuous if
—f(-) is us.c.

-
Proposition 2.1.2. A function f:R"-R is Ls.c. at £ if and only if for any
sequence {Z; ;= in R", such that z; »Z as i -» oo, imf (z;) = f (Z).

-
Notation 2.1.1. We shall denote the s'olution set of a maximization (minimiza-
tion) problem by argmaz (argmin). Thus, for example,

argmax o(z.y) & ty €Y |o(z,y) =9(z)l.

Next we turn to point-to-set functions. For example, let ¢:IR"xIR™ IR be a

continuous function. We can define the point-to-set function
F(z) & ty e R™|op(z,y) = 0} (2.1.3)

which maps IR™ into 2R™  As another example, consider the point-to-set func-

tion



M(z) & argmax o(z,y), (2.1.4)

where YCIR™ is compact and ¥(z) A mg:}qp(a: ,% ), which also maps R™ into
y
zmm
The most important concept for point-to-set maps is that of upper semi-
continuity, though some use can also be made of lower semi-continuity. Note
that the definitions, below, have nothing to do with the ones that we gave for

functions from IR® into IR. Note furthermore, that the definitions, below, which

are due to Berge [Ber.1], are not universally adopted.

Definition 2.1.3. A function (map) f:R"-2F" is said to be upper-semi-

continuous (u.s.c.) at T if
a) f(Z) is nonempty and compact, and
b) for every open set G such that f(Z)< G, there exists a >0 such that

J(z)C G, forallz € B(Z D).

Definition 2.1.4. A function f :IR*+2R" is said to be lower-semi-continuous
(Ls.c.) at T if for every open set G such that f (£)NG#(Q ,there exists a >0
such that f (z)NnG#Q, for all z € B(Z,p), where () denotes the empty set.

A function f :R™»2F" is w.s.c. (Ls.c.) if it is u.s.c. (L.s.c.) at every z € R™.
-
Definition 2.1.5. A function f :IR*-+2R™ is said to be continuous if it is both
u.s.c. and Ls.c.
-
Remark 2.1.1. Note that when f:R™" >R is either u.s.c. or Ls.c. in the sense of
set valued maps, it is continuous in the ordinary sense.

Proposition 2.1.3. Suppose that f:R"-2F" is Ls.c. at £ and f(Z) is
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compact. Then for any 3>0 there exists a >0 such that

F(@)nByd#0 vz € B(xp), Vy € f(Z). (2.1.5)

Upper and lower semi-continuity can also be given a sequential interpreta-
tion in terms of limit points and cluster points.
Definition 2.1.8.  Consider a sequence of sets {4;32¢ in R™.
a) The point (Z) is said to be a limit point of {4;}{2q if d(£,4;) » Oas i - oo,
where
d(2.4;) & nfflz-2||z € 43, (2.1.6)
i.e., if there exist £; € 4; suchthatz; » T asi - oo,
b) The point Z is a cluster point of {4;}{2¢ if it a limit point of a subsequence
of {4;}iz0-

c) We denote the set of limit points of {4;} by Lim4; and the set of cluster
points of {4;} by Lim 4;.

Proposition 2.1.4.

a) A function f :IR™ -» 28", such that f (z) is compact for all z € IR® and

bounded on bounded sets is u.s.c. at T if and only if for any sequence
{z;3°- gsuch that z; » £ asi » o0, Lim f(z;) € f(Z).
b) A function f :IR™ -» 2R™ jsls.c. at Z if and only if for any sequence §Z; }{°= o

such that z; » ¥ asi » oo, Lim f(z;) > f (Z).

2.2. Convexity

We assume that the reader has had some exposure to convexity. Thus, we

assume that the reader is familiar with the definitions of convex sets and convex
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functions, and that the reader is aware of the following facts: (i) that convex
functions are continuous, (ii) their epigraphs are convex, (iii) gradients of
differentiable convex functions are normals to support hyperplanes to their epi-
graphs. Apart from these commonly known results, we shall make use of a few
which are not in every elementary text dealing with convexity. To simplify
matters, we collect in this subsection these assorted results. For proofs we refer

the reader to [Roc.1] and [Ber.1].

We begin with two results involving convex sets: the Caratheodory theorem

and a separation theorem.

Definition 2.2.1. Let S be a subset of R®. We shall denote by coS the convez
hull of S (i.e., the smallest convex set containing S').

Theorem 2.2.1 (Caratheodory). Let S be a subset in R®. If Z € coS then

n+l
there exist at most (n +1) distinct points {z;}%!, in S such that £ = )} W'z,
i=1

Definition 2.2.2. Let S, Sy be any two sets in R®, and let v € R™ and

a € IR be given. We say that the hyperplane

H=fz € R*"|{z,v)=a] (2.2.1a)
separates S; and S if

{zv)= aV z €S8, ‘ (2.2.1b)

{yp)=a V y € S,. (2.2.1¢c)

The separation is said to be sirict if one of the inequalities is satisfied strictly.
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Definition 2.2.3 Suppose S C R™ is convex and v € R™ is given. We say that
H={z|{z-z,v)=0} (2.2.2a)

is a support hyperplane to S at T with inward (outward) normal vif Z € 5 (the

closure of S) and

{z-Zv) z 0 =0V zes. (2.2.2b)

Proposition 2.2.1.  Suppose that S € R" is compact and convex and 0 € S.
Let

Z = argmin {|z|F|z € S}. (2.2.3)
Then the hyperplane

H={z|{2,z)=|z|} (2.2.4)
is a support hyperplane to S at £ which separates S from 0, i.e.,, {Z,z ) = ||Z|]?

forallz € S.

More generally, it is possible to establish the following result, (see [Roc.1] p. 97).

Theorem 2.2.2. (Separation) Suppose that 5,52 CIR™ are nonempty convex
sets. Then there exists a hyperplane H which separates them if and only if their
relative interiors have no points in common.

-
Next we turn to support functions which can be used to characterize convex

sets and which play an important role in nondifferentiable analysis and optimiza-

tion.

Definition 2.2.4. Let S C IR™ be convex and compact. We define the support
SJunction gg:IR® » Rof S by

og(h) & max{{h,z)z € Si. (2.2.5)
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Proposition 2.2.2. Let 0g(‘) be defined by (2.2.5) with S € R™ convex and

compact. Then

a) 0g(-)is positive homogeneous, i.e., v A = 0,
os(Ah) = Aog(h); (2.2.8)
b) 0g(:) is subadditive, i.e., V' hy,hp,
os(hithg) = os(hy) + o5(h2); (2.2.7)

c) o0g(-)isconvex

Proposition 2.2.3. Let S € IR™ be convex and compact. Suppose that for a
givenh € R* ,z, € Sissuchthatog(h) = <¢h,z;). Then

{z-z,,h) <= 0 V=z €S, (2.2.8)

i.e., {z ,h ) = {z,h Yis a support hyperplane to S with outward normal k.

Proposition 2.2.4. Let 0:IR-» IR be a positively homogeneous, subadditive

function. Then the set
C=fz e R*|{z,h) < o(h) Vh € R"} (2.2.9)

is nonempty, convex, compact and o(-) is the support function for C.

Minimax theorems play an important role both in game theory and in the
construction of search directions subprocedures in optimization algorithms.

The following result is one of the best known (see [Ber.1] for proof).

Theorem 2.2.3 (Von Neumann). Let f :IR® X R™ - IR be such that f (z,y) is
convex in £ and concave in ¥ and let X ¢ IR®, ¥ € R™ be compact convex

sets. Then
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Iniy max fz.y)= ax min f(z.y). (2.2.10)

It is easy to extend the Von Neumann Theorem to the case where either X or ¥

is unbounded, as follows.

Corollary 2.2.1. Let f :IR* x R™ - R be such that f (z,y) is convex in
and concave in Y and let Y be a compact, convex set in IR™. Suppose that

fF(z,y) > oas||z|| » oo, uniformly iny € Y. Then

:Ielllu}ln rgg}},cf (z,y) = max m mlnf (z.y). (2.2.11)

The result for X compact and Y = IR™ is obtained by assuming that

f(z,y)»—ocas||y]|| » oo, uniformly inz € X.

An extension of Von Neumann's theorem for the case where X,Y are subsets

of normed spaces was given by K. Fan [Fan.1].

The minimax theorems lead to the following results which are important in

optimization algorithm theory.

Proposition 2.2.5. Let S be a compact convex set in IR® and let
= {h€R™ | |h] = 13. Then, with og(-) the support function of S, we have

min o5(h) = —min (4] (2.2.12)
and
: 2 = —mi 2
minfh |h|° + os(h)} = —min % [=]". (2.2.13)

Proof. By definition of og(-),

min o3 (h) = min T§§‘<h""> (2.2.14)

Since B,S are convex and compact and {h,z ) is convex-concave, by the Van

Neumann Theorem we get



- h = - ,h
min o5 (h) rggﬁg(w > (2.2.15)

Now 1}’551‘191(3: ,h Yis solved by h = —z/ ||z |. Hence, substituting in (2.2.14) we get

minog(h) = max —|z|

heB (2.2.16)
= —min |z
z€ES
Next, by Corollary 2.2.1,
mmi}éllhll2 + 05(h)} = min maXE%IIhIIZ +<h,z )
heR? heR? (2.2.17)

= max Imni}éllhll2 +<{h,z N

ZES ph
Now ImRnuE%Hh IR+{h,x N is solved by h = —z (by taking derivatives and setting
he
them to zero). Substituting into (2.2.16) we obtain

min HIAl + o5(h)} = mag—Hlal?

= —min¥|z|?
z€S

The following obvious corollary plays an important role in the development

of optimality conditions for optimization problems.

Corollary 2.2.2. Let S be a compact convex set in R™. Then gg(h)=0 for all
h€R™ if and only if 0€S.

The last result that we need is

Proposition 2.2.8. Let C,D be two convex, compact subsets in IR®. Then

CcDifandonlyif opo(h) < op(h) forallh € R™.

2.3. Nonsmooth Analysis

We now turn to real valued functions on IR™ which are assumed to be only

locally Lipschitz continuous (LL.c). The results in this section culled from the
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book by F. H. Clarke [Cla.1]. Functions within this category that are particularly
important in engineering design are the max functions discussed in Section 3,
eigenvalues and singular values of various system matrices [May.8, Pol.10], and
max min max functions discussed in [Pol.5, Pol.8], in connection with toleranc-

ing and tuning problems.

Definition 2.3.1. We say that f :IR® » R™ is locally Lipschitz continuous
(LL.c.) at Z if there exist . € [0,%), > O such that
If ()-5 (@)l = Llz—2'| V¥ z,2' € B(Z.0). (2.3.1)
We begin by stating a key property of LL.c. functions, the Rademacher
Theorem [Ste.1].

Proposition 2.3.1. Suppose f :IR® - IR is locally Lipschitz continuous. Then
Vf (x) exists for almost all z € IR™.

Since a LL.c. function may fail to have directional derivatives at a point
z € IR™, it became necessary to extend the concept of directional derivative,

as follows.

Definition 2.3.2. Let f :R™ -» R be L.L.c. We define the {Clarke) generalized
directional derivative of f () at £ € R™ in the directionh € IR™ by

. ) [ -
dof (z:h) & I -ﬂy—)—ﬂm—”’; .

Y-z

(2.3.2)

Since there exist € > 0, L > 0 such that | f (y+th)—f (y)| = tL|h| for
ally € B(x,t), t < ¢, itis clear that dof (z;h) is well defined.

Proposition 2.3.2. Let ¢:IR" X IR™ » R be a continuous function such that

V. %(:,") exists and is continuous and let ¥ be a compact subset of R™. Let
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>

Y(z) 2 maxip(z,y)|ly € ¥} (2.3.3a)

>

&(z) minfe(z,y)|y € Yi. (2.3.3b)

Then for any z,h € R™ the (ordinary) directional derivatives
dy(z;h), d&(z;h) exist and satisfy
dy(z;h) = doy(z;h), (2.3.4a)

d&(z:h) < dof(z;h). (2.3.4b)

Proposition 2.3.3.  The generalized directional derivative dof (z ;) of a LL.c.

function f : R™ - R has the following properties:
a) h - dyf (z;h) is positively homogeneous and subadditive on R™.
b) IfLis alocal Lipschitz constant for f (-) at z , then for any h € IR™

|dof (z;R)| = L|R]. (2.3.5)

c) The function dgf (:;) is ws.c.

d) For any £ € IR™, the function dgf (x;') is Lipschitz continuous with con-
stant L, where L is a local Lipschitz constant for f (-) at z.

e) Foranyz,h € R™, dof (z;=h) =do(—F )(z;:h).

Definition 2.3.3. Let f :IR® - R be LL.c. We define the (Clarke) generalized
gradient of f (-) at z by

8f (z) & (€ € R*|dof (z:h) = &), VY h € R, (2.3.6)

We now elucidate the reasons for calling the set 8f (z) the generalized gra-
dient of f (). First, suppose that f (-) is continuously differentiable at . Then,
dof (z;h) = df (z;:h) = {Vf (z),h) for any b € IR*. By definition (2.3.8), for
any £ € 0f (z)
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(Vf(z)—-&RY=20 VA € R : (2.3.7)

Hence we must have Vf (z)—£ =0 for all £ € 8f (z), ie., 3f (z) = {Vf (z)].
Next, suppose that f :IR® -» R is l.L.c. and convex. Then its epigraph is convex
and, at any point (Z,f (£)) the epigraph has one or more support hyperplanes,

with normal (§,—1) € R™*!, such that

(&,-1),(z-Z,f(z)-f ())<= 0 Vz € R". (2.3.8)
Hence

(¢z-ZY = f(z)-f(@) Yz € R*. (2.3.9)

Nowlet £ = Z+th, foranyh € IR®, £ > 0. Then we get

(¢h) = Im I (Eﬂht)—f () o dof (Z;h), ‘ (2.3.10)

ie., £ € 3f (). Finally we have

Proposition 2.3.4. Suppose that f :IR® - IR is 1.L.c. with constant L in a ball

centered on Z. Then

a) df () is nonempty, convex and compact, and [|§] < L forall ¢ € 3f (Z).

b) Foreveryh € R",

dof (Z:h) = max{{&h )| € € of (z)3. (.3.11)
c) |
of (z) = G(z) & co l‘lfg (Vr ()3, (2.3.12)

where the convex hull is taken over all sequences {z;} converging to z, such

that Vf (z;) exists for all i € N and {Vf(x;)}{=; converges (where
N = §0,1,2,3,...).

d) The generalized gradient 8f (:) is u.s.c.
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In general, when a LL.c. function f (-) is the result of operations on other
functions (e.g., sum, product), its generalized gradient will not be equal to the
set suggested by similar operations on differentiable functions. Rather, it will
only be contained in it. A sufficient condition for equality to hold is satisfied

when the functions being operated on are regular.

Definition 2.3.4. A LL.c. function f :IR"® - R is said to be regular if its direc-
tional derivative df (z;h) exists for allz,h € R™ and df (z;h) = dof (z:h).

Thus, for example, we have the following result:

Proposition 2.3.5. Suppose that f1,f?:R* - IR, are LLc., then
a[fl+ f3(z) c aflz) + o5 ¥z). (2.3.13)

Furthermore, if f , f? are regular then equality holds in (2.3.13).

Proposition 2.3.6.  Suppose that f1,f2,...,f™:IR® » R are LL.c. and let
A i |
Y(z) max f (z). (2.3.14)
Then

ay(z) < coldfi(z)|j € I(z)}, (2.3.15)

where I(z) A {j € m|fi(z) =y9(z)} and m a f1,2,...,m3. Further, if the
functions f7(-), j € m are all regular, then equality holds in (2.3.15).

It is also possible to establish a chain rule.

Proposition 2.3.7. Let h:IR® » R™ be continuously differentiable, let
g :R™ - R be LLc. and let f :IR® - IR be defined by

f(z) & g(r(z)) (2.3.17)
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Then
8 (=) C T 3 Fmilns € oia), 7 = V@ (23.10)

Again, equality holds in (2.3.18) when g is regular.

The last result in nondifferentiable analysis that we wish to establish is the

Lebourg Mean Value Theorem [Leb.1].

Theorem 2.8.1. (Mean Value). Let f:RR™ » R be LLc. Then, given any
z,y € R?,

F(y)-f(z) ={¢y—=) (2.3.19)

for some & € 3f (z+s(y—=z)), withs € (0,1).

3. MAXTFUNCTIONS

It is clear from the examples presented in Section 1 that max functions
play a central role in optimization problems arising in engineering design. They
are also a particularly tractable kind of nondifferentiable function. In this sec-

tion we shall establish some of their most important properties, see also [Ber.1],

[Cla.1], [Dan.1], [Dem.1].

Notation convention. Given a sequence {z;};" and an infinite subset

K
KcN& {0,1,2,3,...}, we shall denote by z; »Z as i - oo the fact that the subse-

quence {Z; }; ¢ ¢ converges to Z.

Proposition 3.1.  Let p: IR X R™ - IR be continuous and ¥:R™ - 28" us.c.
Then
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A .
v(z) 2 yrggl}(cz)co(x,y) (3.1)
is u.s.c.

Proof. Let T € IR™ be given. Let {z;} be an arbitrary sequence such that
Z;, % as 1 > o0, and let y; € Y(z;) be such that ¥(z;) = ¢(z;,y;) for
i = 1,2,3,.... Since Y() is ws.c. and z; » Z, {¢;} is bounded and hence, since

@(,") is continuous, im¢(z;,y;) exists. Suppose ¥;,© € K ¢ {0,1,...} is such
K
that Iim ¢(z;,y;) = ].iél}(fl’(xi %) and y; » ¥*. Then (see Proposition 2.1.4),
k)
y* € Y(Z) by u.s.c. of Y(-) and hence

Y(Z) = p(Ty*) = }iérllf¢(§i.yi) = Iim y(=;), ' (3.2)

¥

which completes our proof.

Corollary 3.1. Consider ¢(:,") and Y(:) as in Proposition 3.1 and suppose that

Y(-) is continuous. Then ¥(+) is continuous.

Proof. We only need to show that ¥(:) is L.s.c. under the stronger assumption

on Y(-). For the sake of contradiction, suppose there is a point Z € R™ and a

sequence T; - T asi - oo such that lim ¥(z;) exists and
lim Y(z;) < Y(Z). (3.3)

Suppose that Y¥(T) = ¢(Z,§) with ¥ € Y(Z). Let y; € Y(z;) be such that
Y(z;) = ¢(;,y;) and let §; = argminfly —JI® |y € Y(z;)}. Then, since Y()
and ¢(-,") are continuous, ¥; » 4 as i - 00, so that lim o(z;,¥:) = ¢(Z,7).
Hence there exists an ig such that ¢(z;,%;) > ¥(z;), which contradicts the
definition of Y¥(z; ). -

Proposition 3.2.  Consider the function
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P(z) & max o(z.y), (3.4)

with ¢: R® x R™ - R continuous and Y :IR* - 28" continuous. Let
P(z) & ty € Y(@)|¥(=) = o(=.y)3 (35)

Then ?() is w.s.c. Furthermore, if Y(z) = fy ()}, a singleton, then Y(:) (¥ (:) is

continuous at x.

Proof. Clearly ¥(-) is bounded on bounded sets and ¥(z) is compact because
Y(z) is compact and ¢(z,') is continuous. By Proposition 2.1.4 we only need to
show that Lim ¥(z;) c 7(Z) for any sequence §z;}{2o converging to a point Z.
Suppose this is false, i.e., there exists a point Z and a sequence z; - Z such that
for y; € P(z;) we have y; »7 € Y(£). But this means that
w(z;) = o(z;,%;) » ¢(Z,5) < ¢(Z), which contradicts the continuity of ¥(:)
(Corollary 3.1).

When ?(x) is a singleton, its continuity follows directly from the definition

of upper semi-continuity, see Remark 2.1. This completes our proof.

Next we explore the differentiability properties of max functions of the form
(3.4). First, suppose that ¢(z,y) is differentiable in z, with V,¢(z,y) continu-
ous, and that Y ={¥y;,¥2 ...,Ym). Letting Fi(z) A p(z,y;), for

iem 8 {1,2,...,m}, (3.4) becomes
¥(z) = max f*(z) (3.6)

Drawing the graph of ¥(z+Ah), for a fixed h € R™, which is a function of A
only, we obtain Fig. 3.1 and conclude that 9(-) is not differentiable everywhere.
However, its directional derivative seems to exist and seems to be equal to its
generalized derivative (see Propositions 2.3.4, 2.3.6). From Fig. 3.1, we conclude

that the directional derivative of ¥ at £ in the direction h is equal to the
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steepest slope of the "active" functions fi(-), ie., if we let

I(z) & ¢ € m|y() = fi(z)}, ie. that

dy(z;h) A lti{g Yz +th;)—1(/(x)

= (-
= goax df*(z;h) (3.72)

= irg;aéc)<vf‘(z),h Y.

Furthermore, we conclude that its generalized gradient is given by

(=) = &8, ‘(=) (3.7b)

These results are, in fact, correct. We shall now explore to what extent it
can be generalized for the case where ¥ is defined as in (8.1). First, assuming
that ¢: R™ XIR™ - R is continuous and that ¢(-,%) is LL.c. for any y € IR™, we
define the partial directional and Clarke generalized directional derivatives at
z € R™ of ¢(-,y) in the direction h, by

dyo(z,y:h) 8 lim ‘”(”t’“?‘“’(”'y) - (3.8a)

and

T o(z +th,y)—v(z',
dzop(z,y:h) & lim (. yt) vlz’y) (3.8b)
-
10
We shall denote by 8,9(z,y) the partial generalized gradient of ¢(-,¥ ).
Theorem 3.1. Consider the function

¥(z) & mago(z.y). (3.9)

Suppose that
(i) ¢:R®* x R™ - Ris continuous and Y € IR™ is compact;

(ii) forally € Y, ¢(-,3) is locally Lipschitz continuous.

32-



Then ';l/() is locally Lipschitz continuous and its generalized gradient satisfies

the relation

o¥(z) < G(z) & cofLimdzp(z u)lu € Y.y € P},

(3.10)
Vv

where ?(:r:) was defined in (3.5) and Lim in Definition 2.1.8. The convex hull in

(3.10) is taken over all possible sequences {z;3}, {¥; .

Proof. Clearly, ¢(',y) is LL.c. near £ € IR®, uniformly in ¥ € Y, with con-

stant L, say. Hence, for z', " in the appropriate neighborhood of z,

Yz )—p(z") = o(z',y')—p(z" y")
= [p(z' .y ) —o(z" . y')] + [e(z"y') — (2" .y")] (3.11)
< o(z' .y )—p(z"y") = Lz —x"],

where ¥ € Y(z') and y" € ¥(z"). Interchanging ' and z" in (3.11) we con-
clude that Y(:) is LL.c.

Next, let g (z;*) be the support functional of G(z), so that for any h € R",
g(z:h) = max{{&h )€ € G(z)}. (3.12)

By Proposition 2.2.6 and the definition of d%¥(z) in (2.3.6), to show that
dy(z) ¢ G(x), we only need to show that

g(z:h) = doy(z;h) WV h € R*. (3.13)
Hence, let h € IR™ be arbitrary and let ; » £ and ¢; + O be such that

A = ¥(z; +ti?)“¥'(¢e) (3.14)

converges to doy(x;h), the generalized derivative of . Lety; € f’(a’:, +t;h) be
arbitrary. Then

z; +t:h vy ) —e(x; ,y;
A = o(z; +1; 3:) o zyz)_ (5.15)
T
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It now follows from the Lebourg Mean Value Theorem 2.3.1, that there exist

£ € Bz9(z;+s;t;h,y;), for some s; € [0,1], such that
A = {g,hY WielN (3.18)
Hence

doy(z:h)=1lim A, < TIm {&,h) .

1 -»00 { -+00

(3.17)

Since (z; +s;4;h) »  asi - oo and P(:) is us.c., it follows that all the accumu-
lation points of {y;} are in ¥(z) and hence that all the accumulation points of
{&:} are in the set G(z). Consequently, (3.13) holds and so does (3.10). This com-
pletes our proof.

In general, relation (3.10) has negative consequences from an algorithmic
point of view. This is due to the fact that, as we shall see later, the accumulation
points ¥ constructed by an algorithm, minimizing ¥ over IR®, can only be
guaranteed to be such that 0 € G(Z). Hence, when 0%(Z)#G(Z). it is possible
that the accumulation points are not stationary. Fortunately, in our experience,
the functions entering engineering constraints are regular {(see Definition 2.3.4):

a fact that leads to the following, much more satisfactory result.

Theorem 3.2. Consider the function %(-) defined in (3.9). In addition to

hypotheses (i) and (ii) of Theorem (3.1), suppose that
(iii) forally € 7Y, ¢(-,¥) is regular;
(iv) for any £ € R® and ¥ € Y and any sequences {z;}CIR™ {y;}C Y, con-

verging to z, ¥, respectively, co Iz"‘l.{.;' Az 0(x;,y:) = dz9(z,y).
Vv

Then



(a) dyY(z;h)existsforallz € R*,h € R;
(b) dy(z;h) = dgy(z;h), and
(c) we have
aY(z) = G(z) = coldz v(z,y)}y € Y(=)}, (3.18)
where G(z) was defined in (3.10).
Proof. To prove that d¥(z;h) exists and that dy(z;h) = do¥(z;h) we only
need to show that

o B li YEHh)—Y(=)
ti0 t

(3.19)
> g(z;:h) = doylz:h) = %1 11/(:1:+ﬂ:)~¢(x)
where g (z;h) was defined in (3.12).
First we note that because of hypothesis (iv),
G(z) = cold,p(z.y) |y € ¥(z)} (3.20)

(which proves half of (3.18)). Next, let y € Y(z) be arbitrary. Then for any
t >0,

w(x+tf;)-10(x) > ¢($+th»?i).‘¢(z'y). (3.21)

Since dg@(z,y ;h) exists by (iii), andy € Y(z) is arbitrary, (3.21) yields that

a = maxid p(z,y:h)|y € ?(x)f,
= max{d;op(z,y:h) |y € Y(z)} (3.22)
= max{{£h )& € G(z)} = g(z;h)

where we have made use of hypothesis (iv). Hence d¥(z;h) exists and
dy(z;h) = doy(z;h).
Finally, the fact that 8y(z) = G(z) follows from the fact that

do¥(z:h) = g(x;h) for all h € R™ and Proposition 2.2.6. This completes our

proof.
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Theorem 3.2 has an obvious, but important corollary.

Corollary 8.1.  Consider the function ¥(:) defined in (3.9) and suppose that
¢:R® xRP > R is continuous, ¥ C IRP is compact, V;¢(:,") exists and is con-

tinuous. Then

dY(z) = cofVp(z,y)ly € Y(z) (3.23a)

and

dy(z;h) = doy(z;h)

= max (Vp(zy)h). (3.230)
Corollary 3.1 has an important special case.
Proposition 3.4.  Suppose that with (z,0) € R"XR,
¥(z) & max (o[H(z.jo) - b(w)) | (3.24)

where H(%,jw) is an mXm continuous complex valued matrix which is

differentiable in z, [ H] is its largest singular value, H(z,jw) exists and is

oz*
continuous, b (w) is continuous and 1 € R is compact. Then
o¥(z) = cofw [v* = U(w)z, 22E49) yw)z,
oz (3.25)
lzl =1, @ € (=)},

where @ A pThy , U is an orthonormal matrix of eigenvectors corresponding to
its maximum eigenvalue g[H]? and  Q(z) = fo € Q|y¥(z)
= o[H(z,jw)?-b(w)}.

Proof. lety = (w,u) € R™*! and let

o(z.y) =u,Q(z.jw)u )-b(w). (3.26)



Then V,¢(z,y) is a vector whose i* element is (u,a ;’i 9) w). Since
z

Y=0x{u e €|l =13 ¥(z)=0)xu|QEjo)u =o[H.jo)lu,
lu] = 1,2 € C™}. The desired result now follows directly from Corollary 3.1.

Referring to [Clar.1], Section 2.8, we see that the continuity assumption on

b(w) in (3.24) can be relaxed to upper semi-continuity. This fact is of

significance in engineering design.

4. FIRST ORDER OPTIMALITY CONDITIONS FOR PROBLEM (0.1.3)

We shall now develop first order optimality conditions for the canonical
optimization problem (0.1.3). Since in problems of engineering design, the
hypotheses introduced in Theorems 3.1 and 3.2 are usually satisfied, we shall

adopt them in the derivation of optimality conditions as well.

Definition 4.1.  Consider the problem P: mlr}( f (z) where f :IR™® » R is con-
z E

tinuous and X € IR®. We shall say that T is a global solution to P if £ € X and
f (@) = f(z) V z € X. We shall say that ¥ is a local solutionto P if £ € X
and there exists a > O such that f(Z) < f(z) for all £ € X such that
|z -zl < 3.

Proposition 4.1.  Consider the problem

zrgi%" S (x) ' (4'1)

where f :IR* > R is LL.c. Suppose that £ is a local solution for (4.1), then
0 € af (Z).

Proof. Suppose Z solves (4.1). Then we must have
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dof (Z;h) =2 0, VAR € R (4.2)

for otherwise there would be a direction fz\. such that

dof (3:h) & Tm f(x+t€)"f () ¢,

z-T
40

(4.3)

and hence for a finite £ > 0, f (Z+th) < f (Z) would hold for all £ € (0,], con-
tradicting our hypothesis that T is a local solution. Referring to Corollary 2.2.2,
we see that (4.2) implies that 0 € 3f (Z). This completes our proof.

The following characterization of a local solution Z to a general form of
problem P, in Definition 4.1, is suggested by Fig. 4.1 for the simple case where
the set X is defined by a finite number of differentiable inequalities, i.e.,
X=tzx e R"|gi(z)=<0,j = 1,2,...,m]. Note that for the "active" gradients
in Fig. 4.1, the origin is moved to the optimal point Z and the result suggested
by this figure is that if:]’;neaz}égj (£) = 0, then O € co{Vf (Z),Vg’ (Z)3; e 1(z). Where

I(2)8¢j em|gi(@) =03
Theorem 4.1. Consider the problem

min {f (z)|¢(z.y) < 0 Vy € ¥} (4.4)
where
i f()islLec;
(ii) ¢(-,") is continuous and ¥ € R™ is compact;
(iii) forally € Y, ¢(-,3¥) isLL.c;
(iv) forally € Y, ¢(-,%) is regular;
(v) for any sequences f{z;} CIR", {y;1C Y, such that z;»z € R® and

Yi»Yy €7, coLim 8z 9(x;,%;) = 0z 0(z,y).

1-+00
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If Z is a local solution to (4.4), then

0 € cofdf (£): 8,9(Ey).y € V(8 it w(@) =0 (4.52)
and

0 eadf(x) ify(x)<o, (4.5b)

where, as in Section 3,

Y(z) & max o(z,y), (4.8)
and
P(z)8 ty e Y]z y) = ¥(z)}. (4.7)

Proof. Let p > 0 be such that f(Z) < f(z) Vv = € IR® such that ¥(z) <0

and |z —Z| < p. Let

F(z) 8 max{f (z) - f (8),¥(z)} (48)
=max{f (z)-f (@) ¢(z.y). y € 13

Note that F(Z) = 0, since %(Z) < 0 and that F(z) = O for all z € IR™ such
that |z —Z|| < p, because f (z)—f (Z) = O when |z —Z|| < p and ¥(z) < O.
Hence T is a local minimizer of F(z) and hence, by Proposition 4.1, we must

have
doF(Z;h) = 0 V h € R (4.9)

The desired result now follows from (8.18) and Proposition 2.3.5.

The following special case follows directly by means of Caratheodory's

Theorem (2.2.1).

Corollary 4.2. Suppose that Z is a local solution to (4.4) and that Vf (-),
V.¢(:,) exist and are continuous. Then there exist at most (n+2) points

Vf(®). Vop(Z.:). 1 = 1,2,....n+1, withy; € P(£), such that

-39-



~ n+l | . -
KOVF () + Y MiVe(Fy;) =0 (4.10)

i=1

. n+l ~
where #* = 0 for i = 1,..,n+1 and ), x* = 1. Furthermore, if ¥(Z) <0,

=0
then (£ =0 for i = 1,2,...n+1; if Y(£) =0 and 0 £ V,0(Z.¥)|ly € P (&)
then[l,o > 0.

5. SEMIINFINITE OPTIMIZATION ALGORITHMS I: BASICS

We now return to the optimization problem {0.1.3). So as to avoid obscuring
clarity by excessive notation, we shall consider in detail only the -simplest form
of problem (0.1.3), which captures all the essential features of problems in this

class. Thus, consider the problem
min{f (z) | ¢(z,¥)=<0 V y €Y}, (5.1)

where f:IR" > R and ¢:IR"XIR™ > R, and Y satisfies the hypotheses of Theorem

3.1 and Theorem 3.2, viz.

Assumption 5.1.  We shall assume that

(i) the functi'on f()islLLec,;

(ii) ¢(-,') is continuous and ¥ ¢ IR™ is compact;
-(iii) forally € Y, ¢(-,y) isLL.c.;

(iv) forally € Y, ¢(-,y) is regular;

(v) for any sequences f{zr;}€IR™, {y;$C Y, such that z; >z € R® and
Y; 2>y €Y, co Lim 8, 9(z; y;) = 8z 0(z,y).

1-+00
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Y(z) 8 glg:}gco(x Y), (5.22)

we can express (5.1) in the equivalent form
min{f (z) | ¥(z)=<03. (5.2b)

Unless otherwise stated, we shall assume that Assumption 5.1 is satisfied
throughout the next two sections. We recall that first order optimality condi-
tions for the problem (5.1) were given in Theorem 4.1. In this section we turn to
the development of algorithms for solving problems of the form (5.1). All the
algorithms that we will present can be thought of as being evolved from the
method of steepest descent for unconstrained differentiable optimization. We

therefore begin by recalling this method of steepest descent (which is attributed

to Cauchy).

Consider the problem
min ¥(z),
z € R® ¥(=) (5.3)
where ¥:IR™ »R is continuously differentiable.

Algorithm 5.1. (Diﬁeren‘tiable Steepest Descent for Problem (5.3))
Data: zo€ R™.
Step 0: Seti =0.
Step 1: Compute the search direction
hi = h(z;) & argminfflh|P + dy(z;h)} = —V9(z;) . (5.4)
Step 2@ Compute the step size

A € A(z;) 8 argmin W(z; + M) (5.5)

Step 3: Update:
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Tivy = Z; + Mhy (5.6)

Replace 7 by 2+1 and go to Step 1.

All of our convergence theorems will be stated in terms of subsequences

constructed by an algorithm, which are conveniently handled by the notation

introduced in Section 3, ie., given a sequence {z;}{ and an infinite subset
K
KcNA £0,1,2,3,...}, we shall denote by z; »Z as i - oo the fact that the subse-

quence {Z;}; ¢ x converges to T.

Theorem 5.1. Consider a sequence {z;};2o constructed by Algorithm 5.1. If

K
Z; > Z as1i - oo, then V¥(Z) = 0.

Proof. Suppose that V¢(Z) # 0. Then

dy(Z:h(2)) = —|Vy(2)|? <0. (5.7)
Hence, any A € A(Z) satisfies A > 0 and there exists a 6>0 such that
V(T +An(Z)) —¥(T) = —3<0. (5.8)

Since hA(:) = -V¥(-) is continuous by assumption, the function
Y(z +Ah(x)) — Y(z) is continuous in Z and hence there exists an i such that

foralli € K, 7 = 1y,

V() — Yz S Y(m + M) - We) s -2 (5.9)

: K
Now, by construction, {¥(z;)}f=o is monotone decreasing and ¥(z;) »¥(Z) as

1 - o by continuity of ¥(-); we must therefore have that ¥(z;) > ¥%(Z) as i -» .
But this contradicts (5.9). Hence we must have that Vy(Z) = 0.

Remark 5.1. We must point out at this time that practical algorithms do not use
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the stepsize rule (5.5), but the much more efficient Armijo step legth rule
[Arm.1], which uses two parameters a, 8 € (0,1) and which is defined by

A & maxfA|A= gtk €N, f(z; +My) — F (z)<-2alh . (5.10)

The geometry of this stepsize rule is given in Fig. 5.1.

The convergence analysis of Algorithm 5.1, modified to accept the Armijo
Step length rule, is only somewhat more complex than the analysis presented in

the proof of Theorem 5.1. The reader may look it up in [Pol.1].

Now suppose that ¥(-) in (5.3) is only LL.c. Since in this case the gradient
Ve(z) need not exist for all z, a first attempt at generalizing Algorithm 5.1 to
the nondifferentiable case would consist of replacing, in (5.4), the term
dy(z;:h) (=<Ve(z)),h>) by doy(z,h) (=max<§h>| € eoy(z)l). This

amounts to computing the search direction according to the formula

h; = h(z;) & argminflnl? + doy(z;;h)}
heR®
= i 2
argmin max flh|" + <¢.h>]

= argmax min {¥Jh[? + <¢,h>
ngW(f) hEIR“{%“ | ¢ ;

= —argmin{§r|?| b € oy(z)},

(5.11)

where we have interchanged the min and max operations on the basis of Corol-
lary 2.2.1 and have eliminated the min by making use of the fact that if h’f solves
min{¥|h|? + {&h)Y| h € R}, then he= —¢ so  that
HRR + <ghe> = — KRR

Because 9%(*) is not continuous, h(-), as defined by (5.11) is not continu-

ous. Hence it is not possible to simply mimic the proof of Theorem 5.1 in trying

) K
to show that the extended Algorithm 5.1 is convergent in the sense that z; » Z

implies that O € 3y(Z). In fact, there are known counter examples in the litera-

ture on methods of feasible directions, which show that the accumulation points
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T constructed by the extension of Algorithm 5.1 using (5.11) fail to satisfy
0 € 3y(Z). Clearly, a much more sophisticated approach than using (5.11) is

needed for extending Algorithm 5.1 to the nondifferentiable case of problem

(5.3).

To try to obtain some intuitive insight into techniques for generating con-
tinuous search directions, let us examine the simple case where

Y(z) = meaxf J (z), with the fj :IR® >R continuously differentiable and, as
jem

before, m 2 {1,2,...m}. In this case, (see Proposition 2.3.6),
8y(z) = colVf i (z)}; e (z). where I(z) & j e m | ¥(z) -7 (z) = 0}. Since
the index set J(z) can change abruptly, it is clear that 3%(-) is not continuous.
Now, if T is a minimizer of ¥(-) over IR®, then by Proposition 4.1, we have

0 € 3Y(Z), ie., for some / = 0, j€I(z) such that Y, 7 =1, we have
jiel(z)

Y W Vfi(Z) =0. A commonly used device for avoiding the introduction of
jel(z)

the index set I(z) into this optimality condition, is to express the optimality

condition in the equivalent form of two equations

.§1 wWIfI(E) =0 (5.12a)
J=
5"31 W WE) - FiE) =0 (5.12b)
Jj=

. m . . 3
with the 4/ = O such that )} &/ = 1. Since &/ = 0 and Y(Z)—-f7(Z) = 0,
i=1

(5.12b) implies that &7 = 0 for all j  I(Z). Now, (5.12a) and (5.12b) state that
0 is an element of the set GY(Z) ¢ IR™*! defined by
Gy(2) & coff; e R | = (&) -5 (). (B)).j € m}. (5.12c)

we shall denote vectors in IR**! as & = (¢9,€) with & € IR". The set valued map

Gy(-) is continuous (see Example 5.1 further on) and hence,



h(z) = (h%z),h(z)), with h(z) € R®, defined uniquely by A(z) A -’?rgawox
€
min Y| |, is also continuous by Proposition 3.2. Hence, the principle of wish-

Jul thinking leads us to the correct guess that h(z) must be a "good" search

direction for solving mlllril" ¥(z). We shall now present an axiomatic structure
z €

which emanates from this guess and which enables us to construct algorithms
for the solution of the general case of problem (5.3). In the next section we shall
present a more complex axiomatic structure which leads to computationally

more efficient algorithms.

Definition 5.1. Let ?:IR™ >R be LL.c.. We shall say that G¢:R™ -» 2R is an
augmented convergent direction finding (a.c.d.f.) map for ¥(-) if:

(a) G¥() is continuous (i.e., both u.s.c. and ls.c.) and G¥(z) is convex for all

z € R*.
(b) Foranyz €R", if £ = (¢9,€) € IR**!is an element of Gy¥(z), then £ = 0.

(¢) For any z € R®, a point & = (0,£) is an element of Gy¥(z) if and only if
£ € ay(z).

Proposition 5.1. Suppose that ¥:IR® » R is L.L.c. and G¥(*) is an a.c.d.f. map for
¥(:). Then for any z € R",

(a) O € 8y¥(z) if and only if 0 € Gy(z).
(b) The functions ®:R"™ -» R and h:R™ » R"*! defined by

®(z) & min{YE]|E < Cy(z)] | (5.13a)

>

R(z) & —argmin{Y|&?|E € Gy(z)} (5.13b)

are both continuous; furthermore, ®(z) = 0 <= => 0 € 3Y¥(xz).



(c) Writing A (z) = (h%(z),h(z)), with h(z) € R™,
do¥(z;:h(z))=-0(z), v z € R™. (5.13c)

Proof.

a) Let £ = 0. Then the desired result follows directly from Definition 5.1 (c).

b) Since G¥(-) is continuous, it follows from Corollary 3.1 and Proposition 3.2
that ®(z) is continuous and A(z) is u.s.c. Since the solution of (5.13a) is

unique, it follows that E(x) is a point-to-point rnalp and hence continuous.
¢) By definition (5.13b) we have

<-h(z),E> = YR (z)IF = 8(z) Vv e Gy(z). (5.14)
Now suppose that € = (0,£) € Gy(z), so that £ € dy(z). Then

{~h(z),E) ={-h(z),&) = O(z). ‘ (5.15)

Consequently we have
dey(z:h(z)) = tgnagé)<h(x)»$> < —-8(z), (5.18)

which completes our proof.

We shall now see that if we modify the search direction computation in (5.4)
as shown below, we obtain an algorithm for solving (5.3) under the assumption

that 9(-) is only L.L.c. The convergence proof of this algorithm mimics the proof
of Theorem 5.1.

Algorithm 5.2. (Nondifferentiable Steepest Descent for Problem (5.3).
Requires an a.c.d.f. map G¥(-)).

Data: <z € R™.



Step 0: Set® =0.

Step 1: Compute the augmented search direction h(z;) = (h%(z;).h(z;))
according to (5.13b), i.e.,

h(z;) = —argmin{ %€ | € € Gy(z;)} (5.17a)
and set the actual search direction h; = h(z;).

Step 2: Compute the step length
M €A(z;) & agggrginW(% + My). © (5.17b)
Step 3: Update:

Tipy = T + Nhy (5.17¢c)

replace © by t+1 and go to step 1.

Remark 5.2. The Armijo step length rule (5.10) can be modified for use in’Algo-
rithm 5.2 as well. For Algorithm 5.2 it assumes the form

A 8 maxfA | A= F5k €N, f(z; + M) — f (z;) < —Aa8(z;)}, (5.17d)

where a, 8 € (0,1).

Theorem 5.2. Suppose that ¥:IR™ » R is LL.c. Consider a sequence {z;}/=o

K
constructed by Algorithm 5.2. If z; +Z as 1 -» o0, then O € 3Y(Z).

Proof. Suppose that 0 £ 3%(Z). Then by Proposition 5.1 0 & 8G¥(Z) and
therefore ®(Z) > 0. Consequently,

do¥(Z,h(Z))< -0(Z) <0. (5.18a)
Hence, the stepsize X € A(T) computed at Z, satisfies A > 0 and

Y(ZT + AR(Z)) —Y(Z) = —9<0. (5.18b)
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Since () is continuous by assumption and h(-) is continuous by Proposition

5.1, it follows that there exists an ig such that for allt € K, © = 1g. .
Y(T41) — Y(x;) <Y(z; + 7R (x;)) — Y(z;)< -3/ 2. (5.18c)

K
Now {¥(z;)}i=o is a monotonically descreasing sequence and ¥(z;) > ¥(Z) as

i - 0o, Hence ¥(z;) > ¥(Z) as © -» c0. But this contradicts (5.18¢), and hence we

must have 0 € 3y(Z).

It is only slightly more difficult to establish the convergence properties of
Algorithm 5.2, with (5.17b) replaced by (5.17d), as we shall now show.

Theorem 5.2b.  Suppose that %:IR™ - R is LL.c.. Consider a sequence {T; }{o

constructed by Algorithm 5.2, with (5.17b) replaced by (5.17d), i.e., using the

K
Armijo type step length rule. If z; » Z as i - o0, then V¥(Z) = 0.

Proof. Suppose that 0 € 3¥(Z). Then (5.18) must hold. It now follows from
the Lebourg Mean Value Theorem 2.3.1 that for any A > 0,

Y(Z+AR(Z)) —Y(2)+2a8(Z) (5.19a)

= Més » A (2)) + AaB(Z)
< Mdo¥(T + sAR(Z); h(Z)) — do¥(Z; () — (1 — 2)8(Z)),

where &g € 0Y(Z+sAh(Z)) and s € (0,1). Hence, since by Proposition 2.3.3

do( ;) is u.s.c., there exists ak € N such that
Y(E + BER(Z)) — Y(Z) + FFO(Z) < —pF (1 — a)B(Z)/ 2. (5.19b)

Hence, since Y(-), h(-) and @(-) are continuous, there is an i such that for all

1€ K,1 =1,

Y(z; + BEh(z)) — ¥(z;) + BFO(z;) < 0, (5.19¢)



so that A; = ﬁE for all i € K, 1 = 1. Next, Since ®(+) is continuous, there exists
an i; = ig such that for all i € K, 1 = 1,, 0(z;) = 0(Z)/ 2. It therefore follows
that forallt € K, © = 1,,

Y(41) — Y(x;) < —FFa®(E)/ 2. | (5.194)
Since (5.19d) implies that ¥(z;) » — as i - oo, we have a contradiction of
the fact that ¥(z;) » ¥(Z), which follows from the fact that {%(z;){{=0 is a mono-

tone decreasing sequence with an accumulation point. This completes our proof.

The applicability of Algorithm 5.2 to a specific nondifferentiable optimiza-
tion problem depends on the availability of an appropriate a.c.d.f. map. We shall
now present three examples which show that for the max functions which occur
in problems of engineering design, it is quite easy to construct a.c.d.f. maps. Our _
first example deals with the simple max function that triggered the introduction
of Definition 5.1.

Example 5.1. Suppose that ¥:IR" » R is defined by

Y(z) & maXf (z) (5.20)

where the f7:IR® - R are continuously differentiable. We shall show that

Gy(z) 8 {[10(4:) (“)]] (5.21)
R | Em (3-')

is an a.c.d.f. map for %¥(+), i.e., that it satisfies the requirements (a), (b) and (c)
of Definition 5.1.

(a) By construction, G¥(z) is convex. Next, forallj € m let £;:R™ - R™*! be
defined by ;(z) = (§(z).&;(z)) = (W(z) —f7(z),Vf7(z)). Then &(-) is con-

tinuous. Let



Eméflu,e]lep,zo, P W= 13 (5.22a)

JEm
andletz € IR be arbitrary. Then Gy¥(z) can be expressed in the form

Gy(z) =FeR* €= ¥ WE(), pelnl. (5.22b)

j€Em
Since Z,, is compact and the §;(-) are continuous, G¥(z) is bounded on

bounded sets. Now suppose that z; >z as 1 -+ 0, and that —é‘,; € 511/(::,;) are such

that § » Eas i - oo. Then for some i4; € Z,,, & = 3, y,{?, (z;) and, since Z,,
j€Em
K .
is compact, there exists an infinite K CIN such that u; »u € Z,, as i - oo,

Clearly, €= Y @' £j(z) and hence £ €Gy(x) Hence it follows that
JEmM

Iim Gy(x;) ¢ Gy¥(z) which proves that Gy¥(:) is upper semi-continuous.

Next, let £ € Gy¥(z) be arbitrary. ThenE= Y, w7 E;(z) for some u € Z,.

JEm

Since §; a Y WEeGy(z;) and § € as 100, we conclude that
JEm

Gy(z) c LimGy(x;), i.e., that Gy¥(-) is Ls.c. Since it is both u.s.c. and Ls.c., it

is continuous.

Properties (b) and (¢) of Definition 5.1 follow from the fact that
Y(z)—f7(z) = Ofor all j € m and (3.18). This concludes the proof that Gy(-)

is an a.c.d.f. map.

To compute the search direction h(z), defined in (5.17a), for the function
%(-) defined in (5.21a), we can proceed in two steps. First we solve the finite qua-

dratic program

min %t( ¥ @/ [W(z)-fi@)D2+ | L V7 (=)F, (5.23)

BHEZ, jEm jEm

for a solution u; € Z,,. Since the quadratic form in (5.23) may be only positive
semi-definite, standard quadratic programming codes, such as [Gil.1], may fail

occasionally. In that case, the Wolfe proximity algorithm [Wol.1] may be used. In
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either case, only a finite number of iterations are needed to solve (5.23). Once

Mz has been computed, the search direction kA (z) is obtained according to the

formula

h(z) = — 3 ulVfi(z) (5.24)

JEmM
Thus, we see that the computation of the search direction is quite simple for the

function in (5.21a).

Example 5.2. Suppose that ¢:IR"* » R is defined by

Y(z) & maxfo(z,y)|y €Y} (5.25a)

where ¢g:R*XR™ >R and V,¢:R"XR™ -+ R" are continuous and Y C R™ is

compact. We shall show that

Gy(z) = co[

10(33 ga-(gg )y)]]y ey (5.25b)

is an acdf map. Let ER"XR™->R"*! be defined by
&z,y) = (Y(z) —p(z,y).V29(z,y)). Then we see that &(-,") is continuous. By
construction, Gy¥(z) is convex and bounded on bounded sets because Y is com-
pact and £(-,-) is continuous. Suppose that z; >z as i - o0 and that §; € Gy(z;)
for alli € IN are such that §; -+ £ as i - oo, Since by Caratheodory's Theorem
2.2.1, there exists a u; €X,,s (defined in (5.22)) and vectors

Y1 €Y,j =12, n+2 suchthat § = ), wuf€(%,Y;;). and since both Y
j eEnt2

and I, are compact and (:,-) is continuous, it follows that & € Gy¥(z).

Hence .@’;0(-) is u.s.c.

Now, let £ € Gy(z) be arbitrary. Then, by Caratheodory’s Theorem,

E= Y WE=zy;) with p € Z,,5 and y; € Y, for all j €n+2 Clearly,
Jj €Ent2

[ A _ %ﬂp{?(z, ,¥j) is an element of Gy¥(z;) and & > & as i » oo. Hence
jEni2
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LimGy¥(z;) > Gy¥(x) for any sequence z; -z, which proves that G¥(-) is Ls.c.

{00
Hence, it is continuous.

b) and c) follow from the definition of Gy(-) and (3.18). This concludes the
proof that Gy¥(-) is an a.c.d.f. map.

Next we must examine the problem of computing a search direction accord-
ing to (5.13b). Clearly, (5.13b) no longer defines a finite dimensional quadratic
program and hence ki (z) must be computed by means of a proximity algorithm,

such as the one stated below (see Fig. 5.2):
Proximity Algorithm 5.3.

Step 0: Compute a & € GY(z); set 5o = &, © = 0.
Step 1: Compute

Er1=(¥(x) —o(T,Y;41), V2 0(Z ,Y;541))

€ ergmin{(Es,) | E € Ty(z); (5.282)

where
Y1 € Yiug & argminisfy(z) —p(zy)] + (Vao(zw)sdly € V3. (5.26b)
St!;ep 2: Compute
S;41 = arg minffs|? | s € co {§;.E41i3. (5.26¢)

Step 3: Replacei by i+1 and go to Step 1.

Proposition 5.2.  The sequence {5; }{2g constructed by Algorithm 5.3 converges
to —h(z), defined by (5.13b).

]
Remark 5.8. Formula (5.26a) is based on the observation that for any compact

n +1 : g.) = : s
set S CIR™*, lggg@,s,) zrélng@,S.‘).
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When Yy;,.; satisfying (5.26b) is not unique, a more efficient selection would

be to set

(5.26d)

(=) - ¢(x,,y)]]
Vo (z; Y) Y€y,

€41 = argminf|z|?|Z € 00[

We note that the computation of A(z) by means of the Proximity Algorithm 5.3
is no longer a finite process (unlike the case in Example 5.1) and hence imple-
mentation procedures must eventually be introduced (see, e.g., [Kle.1, Muk.1,
Pol.1, Pol.8, Tra.1]). Also, the computation of ¥;4+; according to (5.26b) may or
may not be practical. For example, when Y C IR, ¥%;,; can be computed by
scanning the linear segment Y, with {V.¢(z,y),s;) = d.o(z,y;s;) approxi-
mated by a finite difference. However, whén y =(wu), withw € R, u € R™,
and ¢(z,y) = {u,Q(z,j w)u) with @ symmetric and positive definite (as in Pro-
position 3.4), the computation in (5.26b) appears to be prohibitive.

Finally, we shall show that it is possible to extend the concept of an a.c.d.f.

map to max functions defined on an infinite dimensional space.

Example 5.3. Suppose we are given a dynamical system
2(2) = f(z(t)u(t), t €[0,1], 2(0) = z,, (5.27)

where f:R"XR - IR" is continuously differentiable, and suppose that we are

required to find a control w € L_[0,1] such that g(z(¢)) <0 for ¢ €[0,1],

with g :IR™ -» IR continuously differentiable. First, denoting the solution of (5.27)
by 2%(t), we define p: L_[0,1]XR » R by

p(u,t) & g(z*(t)) (5.28a)

and ¥:L_[0,1] » R by
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Yv(w) A tlél{%’}i] p(u,t). (5.28b)

Next, we define Gy(u) as in (5.25b), with » replacing £. To obtain an expres-

sion for V, ¢(u,¢)(-), we note, formally, that to first order (in L_[0,1])

plu +5,8) = plut) = g (2% () — g (z*(¢))
~ O (5u (¢))62°(8)

(5.292)
8 (Vup(ut).sd,
where {:,")s denotes the L3 scalar product and
sS4y — O u s o) u
02°) = I u@se @) + Il OueNs ), telonl, o
6z(0) = 0.
Hence,
Yy p(u,t)(T) = %L(zu(t),u(t))fpu-t(T) for0< T <t
u (5.30)
=0 fort<tr=<1,
where, for T € [0,£], p%*(7) is determined by the adjoint equation
&Pt = =2l @O ue)Tp (), (5.31a)
pui(t) = Vg(2¥(t)). (5.31b)

Next, referring to the operations in the proximity Algorithm 5.3, in step 1, (with

y = t) we determine
1341 € atrglrgllﬁ]nis,p(@#(m —g(2%(t)) + dg (2*(¢):;62™(¢))3, (5.32a).
where the directional derivative dg (2%(¢);62*(£)) can be approximated by the

finite difference i—[g (z¥™4(£)) — g (2%*(£))] for A> O small. The computation

of §;4+ in (5.26b) reduces to solving for A € [0,1] the problem



Arerﬂflﬂi[xt/(u) +Ap(u,b;) + (L =N .t )R

which is a simple problem.

Note that as defined by (5.26b), because V, ¢(w,t)(T) is possibly discontinu-
ous at T = ¢, it follows that the search directions s;(¢) are only piecewise con-

tinuous and may not have an accumulation point in L_[0,1]. Consequently, one

must eventually introduce the concept of relaxed controls [Warg.1, Wil.1] in
analyzing the convergence properties of the extension of Algorithm 5.2 to
optimal control. Once this is done, one finds that a corresponding restatement
of Theorem 5.2 remains valid.

We are now ready to tackle problem (5.2). First we shall treat the solution
of problem (5.2) as a two phase process. In phase I, an algorithm of the form of
Algorithm 5.2 is used to find a point Zo such that ¥(zy)=<0. Note that if

Imnlz'ln ¥(z) <0, then such an Zg is obtained in a finite number of iterations. In
z€ '

phase II, we construct a minimizing sequence {z;}§ such that Y(z;)) =<0V 1.
Then we shall show that the phase I and phase II processes can be combined into

a more efficient single process.

For the purpose of defining search directions for the phase II process, we
need to postulate a continuous set valued map G¥(z) such that 0 € Gf;¥(z)
holds if and only if the optimality condition (4.5) holds. We proceed by extension

from the unconstrained case.
Definition 5.2 Llet fR'->R,¥R*"-»IR be LLe. and let

Fa fx e R" | ¥(z) < 0}. We shall say that Gh*:R* - 2F"*! is a phase IT aug-

mented convergent direction finding map for (5.2b) if



(a) Gfy¥(-) is continuous and Gf;'¥(z) is convex for all z € F.
(b) Foranyz €F,if & = (¢°,¢) € R**!is an element of Gf'¥(z), then &0 = 0.

(c) For any z € F, a point € = (0,£) is an element of Gf;¥(z) if and only if
either £ € 8f (z) or & € co{df (z),0%(z)} and ¥(z) = 0.

(d) For any z € F, such that ¥(z) <0, a point &€ = (—¥(z),£) is an element of
GI¥(z) for all £ € dy(z).

Proposition 5.3. Suppose that f,J:R" >R are lLLec. functions and that
&7 ¥(.) is a phase Il a.c.d.f. map for (5.2b). Then for any z € R™ such that

Y(z)=0,

(a) (i) it¥(z)<0,0€df (z) <= = 0€ Gf¥=).

(i) if¥(z) = 0,0 € cofdf (z),0¥(z)} <==>0¢€ Gl ().
(v) The functions 8:R”™ - R and &:R"* - R**! defined by

O(z) & minf¥ER|Ec Gh¥(=)} (5.33a)

R(z) & —argminf¥[E|? | € Gf¥(z)3 (5.33b)
are both continuous.
(c) Writing h(z) = (h%z),h(z)), with h(z) € R™, we have
—hO(z)y(z) + doy(z;h(z)) < -8(z), (5.33c)
dof (z;h(z))=-8(z). (5.33d)

Proof. a) (i))If0€df(z). then0€ Gf;'¥ because of (c) in Definition 5.2. Now
suppose that 0 € Gff'¥(z). Then, because of (c) in Definition 5.2, we must have
0 € 8f (x). (ii) This part follows directly from c) in Definition 5.2.

b) The continuity of ®(-) and A(:) follows from Corollary 3.1 and the fact that
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the argmin in (5.33b) is a singleton.

c) By definition (5.33b), A (z) satisfies
(~h(z).E) = Klh(z)I? = 8(z), Vv Eec Gf¥=). (5.34)
Now, let £ € 3f (z) . Then, & = (0,£) € Gy y(z) and, from (5.34) we get that
h%z)0 + <h(z),£><-0(z). (5.35)

Maximizing the left hand side of (5.35) over £ € 8f (z) we obtain (5.33d). Next,
suppose that £ € 6';1/(.1:). Then (—¥(z),£) € Gfi'¥(z) and hence (5.34) yields

~hO(z)y(z) + <h(z),£><-08(z). (5.38)

Maximizing the left hand side of (5.38) over ¢ € d¥(z), we obtain (5.33c).

Example 5.4. Suppose that f:R" »R and ¢:IR"XIR™ » R are differentiable

functions and that Y(z) A may ¢(z,y) with Y ¢ R™ compact. The reader can
v

easily verify that the map

et & ool byl FEER)] 3

satisfies the assumptions of Definition 5.2.

-
Next we state a phase 1I algorithm model for solving (5.2b) and give a proof

of its convergence.

Algorithm 5.4.  (Phase II for problem (5.2b). Requires a phase 1I a.c.d.f. map’
&/840))
Data: Zgo € IR™ such that Y(zg)<0.

Step 0: Seti = 0.
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Step 1: Compute the augmenteed search direction h(z;) = (ho(a:i),h(z,;)),
according to
R(z;) & —argminfyfél? | € € Gf¥(z;)3 (5.36a)
and set the actual search direction h; = h(z;).

Step 22 Compute the step length
N € Mw) & ergmin {f (2 +Ah:) |[9(z; +AR) < O] (5.38b)
Step 3: Update:
Tivr = Tythhy, (5.38c)

replace © by i+1 and go to step 1.

Remark 5.4. Again one can replace the exact minimization step size rule (5.38b)
with a phase 1I Armijo step size rule, without altering the conclusions of the
theorem below. The phase II Armijo step size rule is defined as follows:

A D maxfA| A=k €N, f (7 +My) — f(m) < —Aad(z;),

Y(z; + ;) < 03. (5.38d)

where a, 8 € (0,1).

Theorem 5.3. Suppose that f,¥:R® -+ IR are LL.c., that _G-f;""(-) is a phase II

a.c.d.f. map for (5.2b). If fx; {720 is a sequence constructed by Algorithm 5.4 and
K N o R

x; % as i » oo, then Y(Z) < 0 and 0 € GI*¥(%), (i.e., T satisfies the first

order condition of optimality (4.5)).

Proof. To obtain a contradiction, suppose that 0 € Gff'¥(Z). Clearly, since

¥(z;) = O for all i, we must have ¥(Z) =< 0. We consider two cases:

a) W%(Z) < 0. Then, since ®(Z) > O, (see 5.33a), we have from (5.33d) that
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dof (£:h(8)) = — 8(%) < 0 (5.39)

Consequently, since f (), ¥(:) and h(:) are continuous, there exist ap > 0, a
A >0, andad > 0 such that

S (z+7h(2))-f (z) = -3, (5.40a)
Y(z+Ah(z)) < 0, (5.40b)

—~ K
for all x € B(Z)p). Hence, since x; % as 1 o0, and

I (zi4y) = f(z; +Xh(xi)) forall 1 € K, there exists an ig such that

F(Ziv)—f(m) = =8 Vi=15, i € K. (5.41)

: K
Now {f (x;)3520 is monotone decreasing and f (2;) - f () because f (-) is con-
tinuous, hence f (z;) - f (Z). But this contradicts (5.41) and therefore we must
have 0 € Gfi'¥(Z).

b) %(Z) = 0. In this case,since 0 € Gf'¥(Z). it follows from (5.33c) that
doy(Z;h(Z)) <= —0(T) <0 ~ (5.42)

holds in addition to (5.39). It now follows from the continuity of f (-), ¥(-) and
h(") that for some B > 0, A > 0, 8 > 0 (5.40a), (5.40b) hold for all z € B(Z,0).

Hence, we again obtain a contradiction as for case a). This completes our proof.

The main disadvantage to using a two phase approach, is that the search for
an initial feasible solution (phase I) does not, in any way take into account the
values of the cost function, which must be minimized in phase II. A second disad-
vantage is that the programming of a two phase approach is somewhat cumber-
some. A well executed, combined phase 1 - phase II approach tends to consider-

ably alleviate both of these disadvantages.
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In order to construct a phase I phase II algorithm for solving problem (5.2),
we must endow a single set valued a.c.d.f. map G’ '¥(-) with the combined pro-
perties of the maps GY¥(-) and Gfi’¥(). together with a "cross over" mechanism.
The cross over mechanism ensures that when %(z)>0, the algorithm behaves as
a phase 1 method which takes the cost into account, so that when ¥(z)>>0,
G’ *¥(") closely approximates Gy(z), while when ¥(z) < 0, & ¥(z) = Gf¥ and
the algorithm becomes a phase II method. The construction of phase I - phase II
a.c.d.f. maps can be done in a number of ways, mostly differing in the cross over
mechanism that is used. For example, we can adopt the following axiomatic

structure.

Definition 5.3. Let JfR*"->R,R">R be LLc. and Ilet

F 2 fzeR* | y(z) < 0}, and let 7>0. We shall say that &7 ¥:R* +2F"" is a

phase I - phase II augmented convergent direction finding map for (5.2b) if

(a) &7 ¥(.) is continuous and &' ¥(z) is convex for all z € F.

(b) Foranyz € F, if £ = (¢9,€) € R**'is an element of Gf;¥(z), then ¢° = 0.

(c) Foranyz € R®, a point € = (0,£) is an element of &/ '¥(z) if and only if
(i) € F° and £ € 8y(z) or
(ii) z € F and either ¢ € 8f () or & € cofdf (z),0¥(z)} and Y(z) = 0.

(d) For any z € F, such that ¥(z) <0, a point £ = (—¥(z),£) is an element of
& ¥(z) for all £ € Y(x).

(e) For any z € F°, a point € = (7¥(z),£) is an element of G ¥(x) if and only
if £ € daf (z).

We note that Definition 5.3 differs from Definition 5.2 only in the additional
condition e) which provides the "cross over” mechanism, and the addition of (i)
to condition ¢). Fig. 5.3 gives an elementary illustration of the effect of the term

v¥(z) on the search direction when ¥(z)>0 and both f(-) and ¥(-) are
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differentiable. The reader will find it easy to verify the following resuit.

Proposition 5.4. Suppose that f,:R® »R are lL.c. functions and that

ﬁ'ﬂ'(-) is a phase - phase II a.c.d.f. map for (5.2b). Then for any € R™ such

that ¥(z)=<0,

(a) () ify(z)<0,0€df (z) <= = 0e & ¥z).

(i) if ¥(z) = 0, 0 € cofdf (z),8¥(z)} <= = 0 € &7 ¥(z).

(b) The functions ®:R™ » R and h:R™ -» R"*! defined by

>

8(z) 2 minf¥JER | &/ ¥(z)3

1>

h(z) 2 —argminf¥[E|? | E e & ¥(z)}

are both continuous.

(c) Writing A (z) = (R%(z),h(z)), with h(z) € R™, we have
(i) if ¢(xz) < 0, then

—h(z)y(z) + doy(z:h (z))= —8(x),
and

dof (z:h(z))=-8(z),
(ii) if ¥(x) > 0, then

doy(z;h(z))=-0(z).

(5.43a)

(5.43b)

(5.43c)

(5.33d)

(5.334)

Example 5.5. Suppose that f:R" »R and ¢:R"XIR™ + R are differentiable

functions, that Y(z) A max ¢(z,y), with Y € R™ compact, and that 7> 0. Let
Yy €

w(z), 8 max{0,psi(z)}. The reader can easily verify that the map
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ee) & oo (5] Y =
yeY
satisfies the assumptions of Definition 5.3.

To conclude this section, we state a combined phase I - Phase II algorithm

for solving problem (5.2b).

Algorithm 5.4. (Phase I - Phase II for problem (5.2b). Requires a phase I -
phase Il a.c.d.f. map & '¥(-)).

Data: =z € R™.
Step 0: Seti =0.

Step 1: Compute the augmenteed search direction h(z;) = (h%z;),h(z;)),

according to

R(z;) & —argmin$lER | € € &7 ¥(z;)} (5.45a)
and set the actual search direction h; = h(z;).

Step 2: Compute the step length as follows:
if ¥(z;)>0, then

A € A(z) 8 argmin ¥z, k), (5.45b)

if ¥(z;) < O, then |

A € Az;) & argmin {f (m+AR;) [9(z+Ah) < 03 (5.45c)
Step 3: Update:

Tiay = TyHhy (5.45d)

replace © by 1+1 and go to step 1.



Theorem 5.4. Suppose that f,%:R* - R are L.L.c., that G7*¥(-) is.a phase I -

phase 11 a.c.d.f. map for (5.2b), and that for all z € R® such that ¥(z)>0,

K
0 g 8y(x). If {x;}{20 is a sequence constructed by Algorithm 5.5 and z; > Z as

i - oo, then Y(Z) < O and 0 € & ¥(%), (ie., T satisfies the first order condi-
tion of optimality (4.5)).

Proof. TFirst suppose that there is an ig such that ';0(:1:,;0) < 0. Then, by con-

struction, ¥(z;) < 0 for all i =1iq Since G’ ‘¥(-) satisfies all the conditions

defining a phase II a.c.d.f. map, it follows from Theorem 5.3 that, for this case,
Y(Z) < 0and 0 € & ¥(2).

Next, suppose that ¥(z;)>0 for all i € N. Then. by repeating the argu-
ments in the proof of Theorem 5.2, we conclude that 0 € G/ ¥(Z). Since ¥(-) is
continuous, we must have that ¥(Z)= 0. Suppose that ¥(Z)>0. Since
0 € &F *¥(Z), we see from Definition 5.3, that we must have that 0 € 3¥(Z). But
this contradicts our hypothesis on the nature of problem (5.2), and hence we
must have that %(Z) = 0. This completes our proof.

This concludes our exposition of a first approach to the construction of
semi-infinite optimization algorithms. While the approach is simple, it often
results in unacceptably difficult search direction finding problems. Our second
approach will therefore be to reduce this computational difficulty at the expense

of an increase in algorithmic complexity.

6. SEMI-INFINITE OPTIMIZATION ALGORITHMS II: REDUCTION OF COMPUTATIONAL
COMPLEXITY

We devote this section to the development of semi-infinite optimization

algorithms, for solving problem (5.1), and, more generally, problem (5.2b),
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which are computationally more efficient than the ones presented in Section 5.
The increase in computational effiency will be obtained by reducing the compu-
tational complexity of the search direction finding programs at the expense of
loss of continuity in the search direction. In particular, we will show that in the
search direction finding programs (5.13b) and (5.33b), the a.c.d.f. maps Gy¥(-)
and Gfy'¥(-), introduced in Section 5, can be replaced by subsets having lower
cardinality descriptions. The effect of these replacements is to make the associ-
ated, dual search direction finding, quadratic programming problems (c.f.
(5.23)) easier to solve. We shall proceed in two steps: each time gaining in
efficiency and each time having to face more complex convergence analysis.
Those familiar with the theory of methods of feasible directions (see [Ben.1,
Pir.2, Pol.1, Pol.6, Zou.1]) will recognize that we are generalizing tecfmiques
used in methods of feasible direction. Indeed, we are relying on the fact that

what is true for the simple function ¥(z) = 1jn€axf J(z) is also true for a much
jem

broader class of max functions.
It has been known for some time (see [Pol.8, Kiw.1]),that for the function

Y(z) = Iréaxf J(z), the convergence properties of Algorithm 5.2 remain unal-
jeEm

tered when G¥(z), defined by (5.21) is replaced in (5.13b) by G,¥(z) < Gy¥(z),
defined below, with &€ > 0: in (5.13b)

B col¥l@)=f () .
Gy(z) = co{ Vf’(:r)z ]je!,(z) (8.1a)
where

I(z) & {j em |9(z) - fi(z)<¢} (6.1b)

Clearly, when &£ > 0 is small, the set G¥,(-), defined in (6.1a) is a polyhedron
with a smaller number of vertices than the set G¥(-), defined in (5.21). Assum-
ing that the search direction will be computed as in (5.23), (5.24), with I (z)



replacing

m., we see that the use of @810(:8) leads to a lower dimensional, quadratic pro-
gramming search direction computation. The effect of £>0 on the search direc-

tion is shown in Fig. 6.1. Note that when &€ = oo, (6.1a) reduces to (5.21).

Since the index set I, (z) can change abruptly, it is clear that the map
@103(-) is not continuous. However, an examination of proofs of convergence of
methods of feasible directions shows that they contain proofs that ﬁs‘;b(') is
u.s.c.and that it is "almost" l.s.c. Axiomatizing these observations, we obtain the
following modified definition of an augmented convergent direction finding map

(c.t. Definition 5.1).

Definition 6.1. Let %:R" >R be LL.c. We shall say that Gy :R® » 28" is an
efficient augmented convergent direction finding (e.a.c.d.f.) map for ¥(-) if:

(a) G¥(z) is convex for all z € R™.
(b) For any z € R™, if (£%,6) € Gy(z)). then £°20.

(c¢) For any £ € IR®, a point £ = (0,£) is an element of Gy¥(z) if and only if
¢ € 0y(z).

(@) G¥(-)isus.c.

(¢) For any Z € R®,8>0, there exists a >0 such that for any
%= (0%) € Gy(Z) (so that £€8¥(Z)) and any = € B(£), there exists a
E = (£%.6) € GY(z) such that [¢-E|<3.

-
We see that in Definition 6.1(e), the Ls.c. relation is imposed only at those
% € Gy(Z), that have zero as their first element. Furthermore, the definition

involves only the last n elements of the vector £ € Gy¥(x). Thus Gy(') is

"almost'' l.s.c. in a rather loose sense.



Before proceeding further, we show that the map G,¥(:), defined by (6.1),

satisfies the hypotheses stated in Definition 8.1.

Example 6.1. Consider the function P(z)= max fi(z) with
jem

fi:R" >R, j € m, continuously differentiable. Let G ¥(z) be defined by
(6.1a) with £ > 0. Then, referring to the requirements in Definition 6.1, we find
that

(a) Gey(z) is convex for all £ € IR™ by construction, i.e., property (a) holds.

(b) Since ¥(z)—f7(z)=0for all j € m., property (b) holds.

(c) By (3.18), for any j € m., Vfi(z) € d¢(z) if and only if f7(z) = ¥(z).
Hence property (c) holds.

(d) Suppose that z is given and 7 € I (z)°. Then ¥(z)—f7(z)>¢ and there
exists a p;>0 such that for all z' € B(z,0,), ¥(z')—fI(z')>e for all
j el (z),ie, I (x)° Ccl(z')° for all z € B(z,p;). Consequently,
I(z') c I (z) for all 2z € B(z,p). Since  the functions
W()=f7(:),VfI(-)) ,j €m are continuous, it follows that given any 6>0
there exists a p€(0,0;] such that if =z €B(z,p) and

€= Y W((=)-ri) Vfi(z)) € Gy(a'), (with u* =0, E © = 1),

jel(=) . Jel (@)

then¥= 3 47 (P(x)—f7(2),Vf7(2)) € GY(z) and

jel(®)

I8¢l = joax || =f7 (@ )+f(z)

vii@)-vfi(z))l <& (6.2)

which shows that G,¥(-) is u.s.c. at , and hence u.s.c. since z is arbitrary. Thus
property (d) holds. |

(e) Finally we show that property (e) holds. Let £ € R™ and 3>0 be given.
Then there exists a p; >0 such that for all z € B(Z,0,), and j € Io(Z) (ie.,
Y(E)—-fI(Z) = 0), ¥(z)-fi(z)<e, ie., j € I(z). Thus, Io(ZT) € I (z) for all
z € B(Z,p,;). Hence there exists a 6 € (0,0,] such that for any (O,E) € Gy(x),
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and any £ € B(Z,p), we have that

(i) €€ 0y(Z). and hence that &= Y WVFI(Z), with all & =0, and
jelyZ) '

w=1
J €ly(Z)

(i)  The vector ¥ defined by &= (£ = ( Y WW(z)-ri(z)).
j €Tyz)

Y, @Vfi(z)) € Gy(x)), because Io(Z) I (z), and

J ely(2)
(iii) For & defined as in (i) . above, we  have

le—2l sjr&a(}% )||V F3(z)-Vfi(Z)|<3, so that property (e) does indeed hold.
0

We conclude that G,¥(z) is an e.a.c.d.f. map in the sense of Definition 8.1.

Example 6.2. Consider the function ¥(z) = max ¢(z,y), with : R*XR™ - R
y

continuous, V¢ :IR*XR™ - IR® continuous and ¥ C R™ compact. The reader
can easily deduce from our analysis to be given in Example 6.5 that the follow-

ing, obvious generalization of (6.1) defines, for £ > 0, an e.a.c.d.f. map for Y(-):

o) & eV ptep]| (630
where

Yo(2) 8 ty € Y|9a)—p(z.y)sel. | (6.3b)
Next, again with £ > 0, we define a much smaller set valued map by

G . (z) 8 co{ (3;)‘; ‘;(';')y)]}ye 26" | (6.4a)
where

17',,(::) A fy € Y (z)|yis a local maximizer of ¢(z,") in Y}. (8.4b)

It can be shown, by emulating the analysis to be given in Example 6.6, that if

67-



Y.(z) has finite cardinality for all z € R"™, then G".¥(z) is an e.a.c.d.f. map.

The e.a.c.d.f. map G";¥(z) is of importance in engineering design, because
by their very nature, dynamic responses, usually, are not flat and hence the
corresponding set ¥,(z) contains only a finite number of points.

The following result facilitates the proof that Algorithm 5.2 remains conver-
-gent in the sense of Theorem 5.2 when Definition 8.1 is substituted for Definition
5.1.

Lemma 6.1. Suppose that G¥(‘) is an e.a.c.d.f. map for a LL.c. function
. ¥:R™® >R. Then given any Z € IR™ and 3> 0, there exists a 7> 0 such that for
al z'zxz"eB(Zp) if (0,&)e Gy(x'), then there exists a
' = (£0,¢") € Gy(z") such that

le — gl <3. (8.5)

Proof: Since 8y¥/(-) is u.s.c., there exists a p; > 0 such that for all z' € B(Z,p,),

eI 2 T, 1€ —l=0/2, (6.62)

and by (e) of Definition 8.1, there exists a % € (0,p;] such that for all
z' € B(Z.p), given a &€ dY(Z), there exists a £' € Gy(z"), such that
&' = (£9¢") and

le" =l <3/2. (6.6b)

Hence, if z',2' € B(Z,p), and & € 8y(z'), then by (6.6a), there exists a
2 € 3Y(£) such that |£—£||<8/ 2 and by (6.6b) there exists a £’ € GY(z"') such
that ]IE'—E""SE/ 2. Hence we see that (6.5) must hold. This completes our
proof.

=
Theorem 6.1. Consider Algorithm 5.2, in which the search direction is com-

puted as in (5.13b), with Gy/(-) satisfying the hypotheses of Definition 6.1. Then
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any accumulation point Z of a sequence {I; }{=¢. constructed by this algorithm,

satisfies 0 € ay(Z).

K - -
Proof. Suppose that ; »Z as i » oo and that 0 € 8%(Z). Then 0 g Gy(Z)

and hence ®(Z) > 0 defined in see 5.13a). Since G¥(-) and 8%(-) are both u.s.c.,
®(+) is Ls.c. Hence there exist an ip and a b € (0,00) such that for all
1219, 1 € K, 0(z;)=0(Z)/2 and ||h(x;)|<b. Next, for any © = iq, © € K|, any
A>0 and any £ = (£2,£;) € Gy¥(x;), we have that
Y(Ti41) — Y(2:) < Y + AR (2;)) —Y(;)

= MéEnh ()

= A[{&ia— &, h(2:)) — £20(z;) + <&, h(2;)) + £2RO(x;))
< Nl&a— &l R ()] —20(=;)],

(8.7a)

where §;) € 8¥(z; + sAh(z;)), with s € [0,1], by the Lebourg Mean Value
Theorem 2.3.1, and where we have made use of the fact that §’h%(z;)= 0 by
Definition 6.1(b). Since for all i € K, © = i, |h(z;)] = b, it follows from Lemma
6.1 that there exists a A>0 and an 1, = ig such that for all © € K, © = 1§, and
any & € 0Y(z; + sih(z‘i)). with s € (0,1), there exists a
& = (82.8) € Gy(x;), satistying b &3 — & < ®(F)/2. Since —8() is Ls.c.,
there exists an iz =i;, such that for all i € K, i = i3 —0(z;) = —0(Z)/2.
Hence, for alli € K, © = ip, we obtain from (6.7a) and the above that

YT 1) — V() < Yz + MR (2;)) —(z:)

~ .7Tb
< -AB(Z)/2. (8.7b)

K .
However, ¥(z;) »¥(Z) as i » 00, because ¥(-) is continuous. Therefore, since

f9(z;)}i=0 is monotone decreasing, Y¥(z;) = Y¥(Z) as 1 - oo, which contradicts

(6.7b). We conclude that O € 3¥(Z). This completes our proof.

Remark 6.1. In implementing Algorithm 5.2, with e.a.c.d.f. maps, the Armijo
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step size rule (5.10) should be used instead of the exact line search in Algorithm
5.2, since the Armijo step size rule is much more efficient and does not affect

the conclusions of Theorem 6.1.

We leave it as an exercise for the reader to relax the continuity assumption
in Definitions 5.2 and 5.3, along the lines of Definition 6.1, to obtain more
efficient search direction finding rules for the constrained problem (5.2).
Instead we proceed to describe an even more efficient scheme which we will
develop in full. To g'uide our intuition we re-examine the sets defined in (6.1a),
and (6.4a). Since & >0 is fixed in these expressions the cardinality of the sets
I.(z), ¥.(z) can be much larger than that of Jo(z) or Yo(z). Consequently, the
question arises whether it is not possible to drive & to zero as a solution point is
approached and, progressively, obtain simpler and simpler search direction
finding problems. We note that as €= 0, ¥(z) — ¢(z,y)»0forally € Ye(z), in
(6.4a), and hence it seems that the term 9¥(z) — ¢(z,y) can be replaced by 0 in
G".(z) without any ill effect. When this is done G";¥(z) effectively becomes a
subset of IR® rather than a subset of R®**!. These considerations (supported by
the fact that they are known to work (see [Gon.1], [Pol.10])) lead to the following
definition of convergent direction finding maps which will eventually have to be

used in conjunction with an & -reduction rule.

Definition 6.2.  We shall say that {G,¥(-)};=0. Where G¥:IR™ » 2", is a family

of convergent direction ﬁhding (c.d.f.) maps for the LL.c. function ¥:R™ - R if
(a) Forallz € R®, dv¢(z) = Goy(z).
(b) Forallz € R®, if 0<e<¢', then G¥(z) C Gpy(x).

(c) Forany e=0and z € R*, G,¥(z) is convex.



(d) For any €20, G¥(z) is bounded on bounded sets.
(e) Ge¥(z)isus.c.in(e,z)at (0, Z) for all Z € R™.

(f) For any T € R®,©>0 and 3>0 there exists a >0 such that for any
€ 0y(Z) and any z € B(Z,p). there exists a & € Goy(z) such that
l€-%]=<s.

We note that the property (f) above is analogous to property (e) in Definition
8.1. It is also possible to define &£ -families of efficient augmented convergent

direction finding maps by modifying Definition 6.2 only very slightly, as follows.

Definition 6.2a.  We shall say that {G,¥(:)}e=0. where G¥:IR® » 2" is a fam-

ily of efficient augmented convergent direction finding (e.a.c.d.f.) maps for the

LL.c. function ¥:IR™ » IR if

(a) For all z € R™, a point & = (¢°,€) isv an element of Ggy(z) if and only if
£ € oy(x).

(b) Foranyz € R*, if (£9,£) € G(z), then £ = 0.

(c) Forallz € R*,if 0<e<¢', then G¥(z) C Gpy(z).

(d) For any e=0and z € R, G¥(x) is convex.

(e) For any £=0, G,¥(x) is bounded on bounded sets.

(£) Ge¥(z)isus.c.in(e,z)at (0, ) forall T € R™.

(g) For any £ € IR*,£>0 and 3>0 there exists a >0 such that for any
2 € 8Y(Z) and any z € B(Z,p), there exists a & = (£2,£) € Gy(z) such
that [l¢-2]<3. |

Before proceeding with the construction of an algorithm based on Definition
8.2, we derive c.d.f. maps for a few functions, which frequently occur in

engineering design.
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Example 6.3. Suppose that f7:R*-R,j €m are continuously

differentiable functions, and that ¥(z) A (Ileaxf J(z). We shall show that the
JeEm

family of maps {G,Y(:)};=0 defined by
Ge¥(z) 8 colvfi(z)}jer@) €20, (6.8)

with I, defined in (B.1b), is a family of c.d.f. maps for Y(z).

(a) Clearly, Goy(z) = dy¥(z) for all z € IR™.

(b) Since 0<¢& < &' implies that I,(z) € I/(z), we must have G.y(z) C G/¥(z).
(c) Ggy(z) is convex by definition.

(d) For any €20, G,¥(z) C co[ij(x)fj em- Since the Vf7(-) are all continu-
ous, it follows that G,¥(z) is bounded on bounded sets for any €= 0.

(e) Consider the point (0,Z). If j €m is such that j & Io(Z), then
¥(Z) — f7(£)>0. Hence there exists a >0 and an'§§0 such that j & I (z)
for all =z € B(Zp),¢€[0E]; ie, for al x€B(Zp) and
¢ € [0,2), Io(Z) > I.(z). Therefore, since the V f7(-) are continuous and finite
in number, if £; » 0 and z; » Z as 1 - o0, are arbitrary sequences, then we must
have Lim G, ¥(z;) € Go¥(Z), i.e.. G:¥(z) is u.s.c. at (0,%).

(f) Let £,£>0 and 8>0 be given. First, since for all j € Io(Z), we have
W(Z) — f7(£) = 0, there exists a p;>0 such that Y(z)—fi(z)<e for all
z € B(Z,01) and j € Io(Z), i.e., Io(Z) C I3x(x) forallz € B(Z,p1). Next, there
exists a P € (0,0,] such that |[VfI(z)—=Vfi(Z)| < 3 for all z € B(Z.p) and all
j € m. Hence, if & Y WVfi(Z), with #=0and Y @ =1, is any

jely(®) jeL(®)
point in 8Y(Z), then for any £ € B(Z,0) there exists a § A Y @Vfi(z)in
j€ly(@)
Go¥(z) such that e —F| = | ¥ & (Vf7 (=) - V7 (@))I=6.

Jely

Example 6.4. Suppose that Y¥(z) = m2§¢(x ,y) where ¢:R"XIR™ » R is con-
v
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tinuous, V; go(~,-) exists and is continuous and Y € IR™ is compact. We shall

show that the family of maps { G;¥(:)},20 defined by
Gew(z) & colV:p(z.¥)yev,e). (6.9)

where Y (z) was defined in (6.3b), is a family of c.d.f. maps.

(a) Clearly, Ggy(z) = 8¥(z) for all z € R™.

(b) Since 0O=e<e' .'unplies that Y (z) € Y.(z), we must have that
GeY(z) C Gey().

(c) Ggy(z) is convex by definition.

(d) For any £=0, G.¥(z)CcolV,¢(z,y)}, cy. and hence, since Vzo(z,y) is
continuous and Y is compact, Gg¥(z) is bounded on bounded sets uniformly in
e=0.

(e) Suppose that as i » oo, z; +Z€R"™, g; +0, y; € Y, (z;), and y; »JE Y,
Then Y(z;) — ¢(x;,¥;)<¢&; and since Y¥(-) and ¢(-,") are continuous, it follows
that ¥ € Yo(Z) and hence that Y (z) is us.c. in (¢,z) at any (0,Z). Since
V. #(:,") is continuous, it now follows that Ge¥(z) is u.s.c. in (¢,z) at any (0,%).
() LetZT € R®, €>0, 3>0 be given. First, there exists a p; > 0 such that for
all £ € B(Z,0;) and y € Yy(Z), ¥(z) — ¢(z,y)<E, i.e., Yo(Z) C Yz(z), for all
z € B(Z D). Next, there  exists a P € (0,01] such  that
Ve e(z.y) — V,¢(£,y)||s3 for all z € B(Z,0) and ally € Y. Now, if £ € dY(Z),

then, by Carathedory’s Theorem 2.2.1, there exist m+1 vectors y; €Y and

. n+l n+l -
scalars W =0 with 3 & =1 such that &€= ) WV;9(Z,y;). Since for
i= i=

S FV.0(2.3;) € GY(z) ana

n
z € B(Z,p), Yo(Z) c Ya(z), the vector &=
: J

& —¢l<3.
This completes the proof that {G,¥(:)}.0 defined by (6.9), is a family of

c.d.f. maps.



Example 6.5. It is worth considering a special case of the function ¥(:) that
was dealt with in Example 8.4. This particular form of %(-) occurs in multivari-
able feedback control system design when the frequency variable is discretized
(see [Pol.10]), as well as in mechanical vibration control problems in which
beams, plates, etc. are approximated by ordinary differential equations. An
extension of the result, below, has also been used in a vibration control problem

in which the beam was described b}y a partial differential equation [War.1].

Suppose that @ :R™ » C™*™  is continuously differentiable, and that for
all z € R®, @(z) is an mXm, symmetric, positive definite, complex valued

matrix. Let ¢(z,y) A {y,Q(z)yYand Y 2 fy € R™ | |ly|l = 1}. Then we define

V(@) & Amal Q)] = fmex . v.Q(=)y> (6.10a)

where Apgg[] is the largest eigenvalue of @(z). In this case, (referring to
(3.25)) we see that (6.9) assumes the form
Gey(z) = cofv € R™ | vt = (Ut(x)z,a—Q—(iELUa(z)z),
Oz (6.10b)
i=12,..n,]z| =11,
where U,(z) is a matrix of orthonormal eigenvectors corresponding to the
eigenvalues Amay = Aj=Ap= - - - A, of Q(z) such that Apzy —A; <€ for
1=12,...,k;, and Apay —A; > € for i1 >k, (for an alternative definition of
G:Y(z) see [Pol.10].
-

Example 6.6. Next, we consider another important special case of the func-

tion Y(z) = max ¢(z,y), where ¢: R"XIR - IR is continuously differentiable, and
Y

suppose that ¥ C IR is a compact interval. This is one of very few cases where

the construction of the set f’c(x). defined in (B8.4b) is computationally simple. As



we have seen in the examples given in the Introduction, this type of ¥ function
arises when ¢(z,') is the time or frequency response of a dynamical system to a
given input. A characteristic of dynamic systems is that their responses do not
remain flat over intervals of time/frequency and hence they have only a finite
number of local maximizers within a finite time/frequency interval, so that the
cardinality of the set ?c(z) is usually finite. We now assume that ?8(::) is finite
for all z € R™ and any £ = 0. We define a family of c.d.f. maps {Gs¥(-)}e=g for

the function 9¥(-) being considered by
G¥(z) & colVze(@ )y ete)- (8.11)

It remains to be shown that as defined by (6.11), the maps G,¥(-) satisfy

the postulates of Definition 6.2. We proceed one part at a time.

(a) Forallz € R®, Gyy(z) = 8y(z) by (3.23a).

(b) Since O<e<é' implies that Ye(z)c ¥,(z). - we must have
G.Y(z) € Gy(z) for all z € R™,

(c) Ggy(z) is convex by definition for all z € IR™,

(d) Since Vr¢(:,’) is continuous and Y is compact, the set valued map
co{Vz9(z,y)}, e v is bounded on bounded sets and hence G,¥(z ), which is con-
tained in it for all €20, is bounded on bounded sets.

(e) It was shown in Example 6.4 that Y (z) is u.s.c. in (¢,z) at (0,%) for any
£ € R™. Since Y,(z) is closed and Y4(z) = Yo(z) and ¥.(z) c Y.(z). it fol-
lows that ¥,(z) is ws.c. in (¢,z) at (0,Z) for any Z € IR™.

(f) First, for any £=0, let u (z) A Lebesgue measure of Y (z). Then, it can be
seen that . (-) is continuous, that u,(z) is continuous in &,z at (0,z), and that
0< &' < &" implies that p,(z) < e(z) . Now, let £ € R®, £>0 and 6 >0 be
given. Since V_¢(:,') is continuous and Y is compact, there exists a p; >0 such

that for all z € B(Z,p,) and ¥,y € Y such that |:i]—y.| =p;



IVzp(z.y) — V. 0(Z.9)<3. (6.12)

Since the set Yo(Z) is finite by assumption, there exists an &; € (0,Z] such
that 4, () <p;/R2. Hence, by the continuity of i ('), there exists a

pz € (0,01] such that u, (z)<p, for allz € B(Z,p3).

Finally, referring to Example 8.4, we see that there exists ap € (0,03) such
that ¥o(£) € ¥, (z) ¢ Ys(z) for allz € B(Z7).

Let §; € Yo(Z) and =z € B(Z,5) be arbitrary. Then §; € Y (z) C Yi(z).
Since u,,(T)<p; and since each disjoint interval in Y; () must contain at least
one point of ?&‘1("') c ¥x(z), there exists a y; € }7,:1(:::) c Ya(z) such that

ly: =3 | <py. Hence |V;9(2,3:) — Vzo(z, %) <8.
k .
Therefore, for any ¥ € 0Y(Z), we have (a) § = 3, W'V, (Z,¥;). where k is
i=1
Ly RPN ~ Ly ~ -~ . k -~
the cardinality of Yo(Z), ¥; € Yo(Z), with f*=0for alli € k and ), @* = 1;
i=1
~ é k ~
and (b) there exist y; € Y¢(x) such thaty 2 )] i*Ve.(z,¥;) € Gey(z) and
i=1

=1

ko R -
ly =3l =1 X @ Vze(z.y;) — V.9(2.5:)]]=6, (6.13)

which completes our proof.

We note that the assumption that ?,(:L') has finite cardinality has two
effects. The first is that the search direction finding problem
h (z) = —argmin{|h|? h € G,¥(z)}, yields a simple dual quadratic program-
ming problem which takes very little time to resolve (by a quadratic program-
ming code, such as [Gil.1], if it does not fail due to the semi-definiteness of the
quadratic form in (6.14a), below, or by the Wolfe proximity algorithm [Wol.1] oth-

erwise):



k. . ko
pe(z) € arg;nin % 21 WV (zy; B wi=0, ) =1 (6.14a)
Jj= j=1

which, in turn leads to
k .
he(z) = --21 pé(z )z 0(z,y;). (6.14b)
J=
Since the quadratic form in (6.14a) may be only positive semi-definite and hence

the solution ,u.a(:c) need not be unique. However, the search direction hs(:c)

which it defines is unique.

The second effect of the finite cardinality assumption is to be found in the
proof, given above, that property (f) of Definition 6.2 is satisfied by the sets
G.y(z) defined in (6.11). Lt it easy to construct an example which shows that
when Yy(z) contains intervals of finite length, property (f) will fail to hold for
G.¥(z) defined in (6.11).

-
Example 8.7. Consider again the case of the function % :IR" >R, introduced in
Example 6.5, but in somewhat greater generality, as would be the case in mul-
tivariable linear feedback control system design, when one wishes to suppress
the maximum singular value of a frequency response matrix over a specified fre-

quency range:
Y(z) & maxinulQ(z.jo)]-b (), (6.15)

where @Q(z,jw) , defined on R®"XR is an m Xm, symmetric, positive semi-
definite, continuously differentiable, complex valued matrix, {1 C IR is compact,
and b:R - R is continuous. Let ¥ & (w,u) with u € R™,and let Y2 Qx U,
where U=f{uecR™| |ul =1 If we define
p(z,y) A (u,@(z,jow)uy—b(w), we find that (B.15) is equivalent to
Y(z) = §n€a§¢(x,y). For any £=0, z € IR™, we define



0.(z) & fwel|¥z) - Mm@z )] -b(w))<e,

and w is a local maximizer of (Ap.[@(z,jw)] —b(v)) in O3 g6.16a)

Suppose now that the cardinality of ﬁs(x) is finite for all x € IR™ and that €= 0.
Consider the maps Gy¥(z) defined, with € =0, by

Gy(z) & cofv e R |

vt ={U,(z,jw), w_g%i&)_v*’(z Jo)z), (6.16b)

weae(z)a "Z" = 1)1.' Gn;»

where Ug(z,jw) is a matrix of orthonormal eigenvectors of Q(z,jw)
corresponding to the eigenvalues A (z,7 W) which satisfy
Y(z) — N (z,jw) —b(w)<e. The reader may wish to verify our claim that
(6.16b) defines a family of c.d.f. maps.

We hope that we have convinced the reader that it is not overwhelmingly
difficult to construct c.d.f. maps for commonly occuring problems. We shall

therefore proceed with the construction of an algorithm for solving the problem

min ¥(z).
z€R"

Definition 6.3. Let ¢¥:R™ -» R be LL.c., let {G,;f(z)!azo be a family of c.d.f.
maps for ¥(-), and let v € (0,1). We define the £— search direction at £ € R"
by

he(z) & —argminf¥lh|? |k € Goy(z)}, (6.172)
and the & -adjustment law by

e(z) & maxfe € E||h (z)?=¢}, (8.17b)
where

E & (0,1,0218 - - . (6.17c)



Before we continue, it is worth while to pause and examine the &-search
directions h (z) defined by (6.17a). Suppose we define the &- generalized direc-
tional derivative of ¥ by

dey(zih) & max (eh), (6.182)

so that d_¥(z;h) is the support function of G,¥(z). Then we find that, because
oy (z) c Gy ().

doy(z,h)<d.y(z;h), (6.18b)

and hence that any h which makes d (z;h) negative is a descent direction for

Y(+). Also, it is easy to see that h (z), defined as in (6.17a), satisfies

he(z) = argmintflh I?+d y(z;h)}. ' (6.18¢)

Consequently, when 0 € G.¥(z), h.(z) is a descent direction for ¢¥(-) at z.
Finally, a comparison with (5.11), shows that (6.18c) is still fairly close to the
most naive extension of the method of steepest descent to the nondifferentiable
case, except that, now, as we shall see, we have generated adequate near con-

tinuity properties.

Remark 8.2. In practice, it is common to add a second parameter § >0 to the
definition of &(z), replacing the test [h (z)|?=¢ by the test |h (z)[?=0de in
(8.17b). The parameter & enables us to exercise greater control over the value of
e(z) so as to achieve better computational behavior. In addition, as should be
" obvious from the discussion in Section 0.2, when the structure of the problem
permits it, it is often possible to use scaling parameteré to change the shape of
an initial c.d.f. map G;¥(z) in such a way as to get a new c.d.f. map which yields

a better descent direction.

For example, let o/ >0, j € m. be arbitrary scaling parameters, then



Ge¥(z) & colad Vfi(z) e 1z) €20, (6.18d)
is also a c.d.f. map for the function ¥(:) considered in Example 8.3.

We are ready to state an algorithm model for solving

min{y(z) | z €e R"*}, (6.19)
with 9(-) L.L.c., and establish its convergence.
Algorithm 6.1.  (Requires a family of c.d.f. maps {Ge¥(*)}ea0 for ¥:R™ > R,
and v € (0,1) for (6.17c)).
Data: zo € R™.
Step 1: Compute £(z;) and the search direction

hy = hy(z)(z;), (8.20a)

making use of (6.17a,b,c).

Step 2: Compute the step length

A ; ) ,
N € Az) 2 argann';l/(x, +Ah;). (6.20b)
Step 3:
Update:
Zieq = 35 + Ay, (6.20c)

replace © by 1 +1 and go to Step 1.
| .
Lemma 86.2. Let ¥:IR® > R be LL.c.. Then for every £ € R" such that
0 & 8yY(ZT), there exists a p>0 and € € E, £>0 such that &(z)=% for all
z € B(Z.p).

Proof. Suppose that 0 ¢ 8¥(Z). Since G,¥(z) is us.c. in (&,z) at (0,%), it
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follows that |h.(z)|? is Ls.c. in (¢,x) at (0,£), and hence that [ (z)|? — ¢ is
Ls.c. in (¢,z) at (0,Z). Consequently, since |ho(Z)|| >0, there exist a 3 > 0 and
an € € E, with €> 0, such that |h(z)[P—€=0 for all x € B(Z,p) and
e € [0,2]. But this implies that £(z)=% for all £ € B(Z,5). This completes our
proof.

Theorem 6.2. Supposé that {x;if=¢ is a sequence constructed by Algorithm

K
8.1 in minimizing a L.L.c. function ¥:IR™* > R. If z; »Z as i - oo, then 0 € 3Y(Z).

Proof.  Suppose that 0 ¢ 0Y(Z) for the sake of obtaining a contradiction.
Then £(Z) > 0 and, by Lemma 6.2, there exist ig and € > 0 such that e(z;)=€>0
for all i =1g, % € K. Since for any &€ > 0, G,¥(:) is bounded on bounded sets and
since Gg¥(z) € Gyy¥(x), for all ¢ € E, there exists a b <00 such that for all
z € K, i=1g, we have 0<E=<e(z;)<||h(z;)|?<b? Referring to Lemma 6.1, let
P> 0 be such that for any z', ' € B(Z,5), and any & € 8¥(z') there exists a
£' € Gy(z") such that b [|§' —&"|<E/2. Hence there exists an ©; =15 and aA>0
such that for all i=1iy,1 € K, z; € B(Z.9), (z; +sAh;) € B(Z) for all
s€(0,1) and for any &3 € ¥(z; +sAh;), there exists a
Ex € GY(x;) C Goz)(%;) such that [[£;3—&'33lb <Z/2. Making use of the

Lebourg Mean Value Theorem 2.3.1, we now obtain, for all  =1,, © € K, that

Yz + Nhy) —Y(z;) < Plz; + M) —y(=;)

= §<h1 »Eix>
= é[(h.,' ) gt» + <h‘l. vEiX 5'i’i>]
< A=A IR + [l lll £:x — €3xll] (6.22)

< N—e(z;) + Ihsll &5 — :xll]
= A[-E+b &3 —€'3l]
< -At/2<0,

where £;% € 6';!/(:5,;+s,;7\hi) for some s; € (0,1) and §;% € Gyz)¥(z:). Now,
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K
§¥(z;) )50 is monotone decreasing and Y(z;) » ¥(Z), since ¥(:) is continuous.

But this implies that ¥(z;) >y¥(z) as 1 - o0, contradicting (6.22). Hence we
must have had 0 € 3%(Z). This completes our proof.

Remark 6.3. In implementing Algorithm 6.1, an Armijo step size rule should
be used instead of the exact line search (6.20b), since the Armijo step size rule
is much more efficient. In this case, the Armijo step size rule is commonly used

in the form:

A 8 maxfA|A= g5k €N, Yz + M) —¥(m) s -Noe(z),  (6.23)
where a, § € (0, 1).
We leave it is an exercise for the reader to verify our assertion that the con-

clusions of Theorem 6.2 are unaffected by the substitution of (6.23) for (6.20b).

. Next, we develop a phase II algorithm model for solving the problem
min {f (z) | ¥(z) < 0}, (6.24)

where f, ¥:IR">R are LL.c.. Since this is going to be a phase Il algorithm, it
will require as data an g € IR™ such that ¥(zg)<0. As we have indicated ear-
lier, whenever min{y¥(z) | z € R"{<0, such an Zg can be computed by means

of a finite number of iterations of Algorithm 6.1.

Definition 6.4. Let {G.f (-)}s =0 and {G¥(-)}s = ¢ be given families of c.d.f.
maps for the functions f (-) and () in (6.24), and let F Az eRr | y(z)=< 0}
We define the family of phase II convergent direction finding (c.d.f) maps

EG'{I‘! ()3 e=p for (6.24), where G'{["f ‘R -» 2", by setting

Gh¥(z) & G.f (z),if w(z)<—e, (6.252)

and



G (z) 8 co{G.f (z), Gew(z)}, if Y(z)=>—z . (6.25b)
Next, we define the € -search directions by

he(z) & —argminfflnl? | h € GH¥(z)} (8.25¢)
and the € -adjustment law by

e(z) & maxfe € E||h(z)|P=¢}, (6.25d)

where E was defined in (68.17¢c).

Algorithm 6.2.  (Phase II for problem (6.24). Requires { G¢f (-)3s=0, {Ge¥(:)}e=0
families of c.d.f. maps for f (-) and ¥(-) and v € (0,1) for the set E in (6.17c)).

Data: Zg € R™ such that ¥(z)<0.
Step 0: Seti =0.
Step 1: Compute &(z;) according to (8.25d) and the search direction
hi = hyz)(z;), (6.26a)
according to {6.25c).
Step 2:

Compute the step length

A; € argmintf (z; + M) | Y(z; + Ahy;) <03 (6.26b)

Step 3: Update:
Tip1 = Ty tAhy (8.26c)

replace © by 2+1 and go to Step 1.

Remark 6.4. The following Phase II Armijo step size rule should be substituted

for (6.26b) when implementing the above algorithm model:



A 8 maxfA|A= g5k €N,

£ (@ +20) = £ (@) S -hoe(m), Yo+ M) < 03, O

where a, 8 € (0,1), since it improves computational efficiency.

It is straightforward to extend Lemma 6.2 to the following result.

Lemma 6.3:

(a) For every £ € R™ such that 0 ¢ Gfg¥(Z), there exist a $>0 and an
% € E, >0 such that e(z)=F% for all z € B(Z,5).

(b) Suppose that T solves (6.24), then &(Z) = 0.

Theorem 6.3. Suppose {z;};> is a sequence constructed by Algorithm 6.2 in
K
solving (6.24) with f (), %(-) LLe.. If ; T as © oo, then ¥(Z)<0 and

0 € Gf ¥(Z) (and, conséquently, e(Z) = 0).

Proof. TFirst, since ¥(z;) <0 for all © by construction and ¥(:) is continuous,
we must have ¥(Z) <0 for any accumulation point Z of {z;}{2o. For the sake of
contradiction, suppose that z; -If Z and 0¢ GJ ¥(Z). Then &(£)>0 and, by
Lemma 6.3, there exists an ip and an € € E such that £(z;)=€>0 for all i =1
and 1 € K.

(a) Suppose that Y(Z) <0. Since the h; are bounded for all i € K, there
exist an i; = ig and a A;>0 such that ¥(z; +\h;) <O foralli € K, ¢ = i; and
all A € (0,A;]. Consequently, by essentially repeating the arguments of the proof
of Theorem 6.2 we can show that there is an =1, and a e (A1,0] such that

foralli € K, 1 = ig, ¥(z; + Ah;) <0, while

flz +AR) — f(z)=-A%/2. (6.28a)



Since f(Z;41) — f (z;)<f (z; +'}\\h.,) — f(z;), we are led to a contradiction,

exactly as in the proof of Theorem 6.2.

(b) Suppose that ¥(Z) = 0. Then there exists an i3=1( such that for all

1 € K, 1213, Y(x;)=—8=—e(x;), so that G{(‘}‘;) (z;) is given by (6.25b). Conse-
quently, for all® € K, 7 = iy,

h‘i = argmin f%”h-llz + max idc(z‘)f (z'c ;h')v dc(:q)'w(xuh')” (6.28Db)

and is a descent direction for both f (-) and %(-). We conclude that there is an

t4=1%3 and a A= 0 such that for all i € K, 1214,
S (@) = f (=) < F (m + Ahy) = f (z)<-XE/ 2, (6.28¢)
V(®i44) — V() S Yz + W) — Y(m) < —XE/ 2. (6.280)

K
Now §f (x;)f2p is monotone decreasing and f (z;) > f(Z) as i »0,1 € K.

Hence f (z;) - f (%) as i - oo, which contradicts (6.28¢c). This completes .our

proof.

To conclude this section, we present a combined phase 1 - phase II algo-
rithm which eliminates the disadavantages of a separate, two phase approach,

discussed in Section 5.

Definition 6.5. Let {G.f ()le=o and {G¥(:)}e=0 be given families of c.d.f.
maps for the functions f (-) and ¥(-) in (8.24), let Y¥(x), 8 max§0,9(z)}, and
let 7:IR » R; be a continuous, strictly monotone increasing function such that
¥(0) = 0. We define the family of phase I-phase II efficient augmented conver-
gent direction finding maps (e.a.c.d.f.) maps {GL ¥ (-)};=0 for (8.24), where

GI ¥ .R" » 2%, by setting

GI¥(z) A FeR | E=(08), £ € Gf (z)], if ¥(z)<—¢, (6.29)
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GI¥(z) & colEe R |E= (0.8).£ € G¥(z)} U
(6.29b)
(E € R | E= (7(¥(2).).8), £ € Gof (z)} ] if Y(z)=—¢.

Next, we define the augmented &- search direction by

Ro(z) & (O(@).ho(2)) & —argmin¥lBIP |k € BL¥ ()},  (6:290)
yielding the actual search direction h (z), and the ¢ adjustment law by

e(z) & maxie € E | | (z)P=¢i. (8.29d)

Note the effect of ¥(zx) on h.(z). When %(z), is large, then
ho(z) 2 —argmin ¥A|2 | h € G¥(z)}. When ¥(z)=<0, he(z) is the same as
computed in Algorithm 6.2 (phase 1I). When ¥(z) >0 and decreases to zero, the
effect of the cost on A (x) becomes progressively more pronounced. For the

case where f (-) and ¥(:) are differentiable, this effect is illustrated in Figure
6.1.

We can now state a phase I-phase I algorithm for solving 6.23.

Algorithm 6.8.  (Requires {G¢f (-)}c=0, {Ge¥(*)}enp families of c.d.f. maps for
S () and ¥(:); v € (0,1) for the set E in (6.17c)).

Data: zo € R™.
Step 0: Seti =0.
Step 1: Compute £(z;) according to (6.29d) and the search direction
hi = hygzy(z;) ' (6.30a)
according to (6.29¢).

Step 2@ Compute the step length as follows:

If Y(z;) > 0, then
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M\ E arggin';b(x,- + AR;). (8.30b)
If Y(z;) < 0, then

A € argmin U (z; +AR) | Y(z; +AR;)<08. (6.30c)

Step 3: Update:
T4y = T + Mhy, (8.30c)

replace © by i+1 and go to step 1.

Remark 8.5. Since it improves computational efficiency, the following Phase I-
Phase I Armijo step size rule should be substituted for (8.30b,c) when imple-

menting the above algorithm' model:

If ¥(z;) > 0, then
A 8 maxfA|A=F5k € N, y(z; + M) — Y(z;) < —Aae(z;) 3. (6.31a)
If ¥(x;) < 0, then

A 8 maxfa|a=g5k eN,

J (x'l. +>‘hi,)b— J (z,-)s—)\ae(z,-) , 10(3;1: +}‘h’i) < 0; . (6-31b)

where a, 8 € (0,1).

The following theorem is easy to establish and hence we leave its proof as an

exercise for the reader.

Theorém 8.4. Consider Problem (6.24) and suppose that f (cdot), ¥(:) is

lL.c., and that 0 & Gg¥(x) for all z € IR® such that ¥(z)=0. If {z;};%g is a
K
sequence constructed by Algorithm 6.3 in solving (6.24) is such that Z; »Z as

i - oo, then Y(Z)=<0 and 0 € G§ ¥ (Z).
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This concludes our exposition of semi-infinite optimization algorithms in

conceptual form. OQur next task is to sketch out an implementation technique.

7. MPLEMENTATION OF CONCEPTUAL ALGORITHMS

In the preceding two sections, we have presented algorithms for solving

semi-infinite optimization problems, the simplest of which is
. in z ) = ’
P: mi if()lrynggt,;o(xy) 03 (7.1)

where f:R">R, ¢:R* XR » R are continuous and Vf (-), Vz9(-,’) exist and

are locally Lipschitz continuous, and Y A [y,, ,y_f] C IR is compact.

In this section we shall be concerned with Algorithm 6.3. For problem P,

Algorithm 6.3 requires the exact evaluation of ¥(z) A max ¢(z,y) and of the &-
y

active local maximizer set ?,_.(x) (defined in (6.4b). Neither of these evaluations
can be carried out with infinite precision in finite time and hence the Algorithm
8.3 must be viewed as being only conceptual. We now turn to techniques for
making this algorithm (as well as others like it) implementable, or more pre-
ciéely. to techniqes for constructing implementations, A general theory related
to conceptual algorithm implementation can be found in [Pol.1], see also [Kle.1,
Muk.1, Pol.8, Tra.1]. In this section we shall only illustrate the general approach
by constructing an implementation of Algorithm 6.3, as it applies to the problem
P in (7.1). '
As we have already pointed out in Example 6.8, within the realm of

engineering design, we are justified in making the following hypothesis:

Assumption 7.1. For every z € R*, ¢ = 0, Y.(z). defined in (6.4b), is a
finite set.
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We shall construct an implementation of Algorithm 6.2, by imbedding Algo-
rithm 6.2 in a Master Algorithm which replaces problem P with an infinite
sequence of approximating problems Equ for which Algorithm 8.2 is implement-

able as stated. For this purpose, we shall need the following definitions.

Foranyq € INsuchthatg =1, let

k
Yy & tyeeY |y = yo+q—(yf-yo),k =01, --,9}, (7.2a)
and let pg :IR™ X Y - IR be defined, by means of Yg, as follows:

¢e(z.y) & Ao (z,5) +H(1-N(Z Y1) (7.2b)
for ¥ = Ayr+(1—=A)Yk41, with A € [0,1), and y;, €Y, fork = 0,1,---,g—1.
Next, let -

A
Yo(z) 2 max ¢ (z.y). : (7.2¢)

Finally, for ¢ € IN, we define the family of approzimating problems

Pg: min{ f(z) | pe(z,y) <0,V yeY], (7.2d)

which can also be written as
Pg: min{ f (z) | ¥(z) =< 0}. (7.2¢)

To distinguish the quantities associated with one value of g from another,
we shall add a subscript g to all the quantities in (6.26b) - (6.29d) and in Algo-
rithm 6.2. Thus, for any ¢ € IN, ¢ = 1, we define, for any z € R™ and & = 0,

the set of e-activey € Y by

Yq.a(x) & fyeY | qu(I,‘y)?’;llq(z)—C;, 4 (7.2f)
and the set of £-active local maximizers by

?q.e(:c) A {y € Yy (z) | ¥ is alocal maximizer of pg(z,y) in Y}. (7.2g)
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The simplest situation for constructing an implementation for Algorithm

6.3, for problem P, arises when the following hypothesis holds.

Assumption 7.2. For every x €IR", €= 0, ¢ €N such that g = 1, the set
Y, .o(z) is finite.

Note that it is harder to justify Assumption 7.2 than Assumption 7.1.
Since Yq(z) = max ¢q (z,y) holds, it is clear that the evaluation of Yg(z)
Yy
is a finite process. Similarly, when Assumption 7.2 holds, the construction of the
set, for £ = 0,
A - .
GeYq (z) 2 cof Vzp(x :y);y €Y,.(z) (7.2h)

is also a finite process. Since it follows from Example 6.6 that (7.2h) defines a
family of c.d.f. maps for ¥4(-), and since we may take G.f (z) = { Vf (z) } for
all £¢= 0 and all z € R", we see that for problem Py Algorithm 6.3 is, in fact,
implementable.

Now consider the following master algorithm in which £4(z) is defined by
(6.29a) - (6.29d) for the problem P,. The reason for calling it a master algorithm
is that it calls Algorithm 6.3 as a subprocedure. In fact, any other algorithm can

be substituted for Algorithm 8.3 in the master algorithm, as long as it computes

the required quantities.

Master Algorithm 7.1. (Solves Problem (7.1)).

Data: go € N4, 2,, € R™, and a sequence {7, }g=0 such that 7, > 0 and
7¢40 as g »oo.
Step0: Setg = qo.

Step 1: Apply Algorithm 6.3 to problem Pq, from the initial point Zo = 2g¢, for

a sufficient number of iterations, to compute a vector 2543 = T, such
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that &, (2; ) < 74, and ¢, (z,) < 74

Step 22 Replace g by 2q and go to step 1.

Note that any monotone law for increasing g can be used in Step 2 of Mas-

ter Algorithm 7.1, not just the doubling one which was used for the sake of sim-
plicity.

Theorem 7.1. Suppose that Assumptions 7.1 and 7.2 hold and consider any
sequence § Zq ;;;0 constructed by the Master Algorithm 7.1. If Z is any accu-
mulation point of {2z § g0, then Y¥(2) < 0 and £(Z) = 0, where (') is defined
in (6.29d), i.e. Z satisfies the optimality condition stated in Theorem 4.1, as it

applies to the problem P in (7.1).

K
Proof.  Suppose that 2z, -»Z. Then, since ¢(-,) is locally Lipschitz continuous,

there exists a constant L € (0,00), such that for all 2, g € X,
| 9(z4,y) — 9q(2q.¥) | < L(yy—y,)/q, VYEY. (7.3)

Hence, since ';[/q(zq) = 7q forall g €N and since 7q¢0 as g - oo, by construc-
tion, we must have that ¥(Z) < 0. Next, for all g €N, there exists a vector
hq € E{fgv) sv(2g), defined by (6.29¢c) (with v as in (B.17c)), such that
Al <&4(zg)/ v=7,/v. Let € >0 be arbitrary. Then, since £4(2g)~0 as
g o0, there exists a § €N such that forallg =7, &g (zq)/ vs 7éf./Z and, from
(7.3), |¥(2q) — Yg(2g)| =E/2. Hence

Poreg(erfZg) C Yelzg) & (yeYlo(zgy)2w(zy) —5}.  (7.40)

It now follows from Definiton 8.4 that when ¥, (2q) = —£4(2q).



; _ ( +
C{')‘W v(zq) =co [7V?((Z§B ]' [Vz¢(2q 'y)] ’

E?q.e =z Vv
e (7.4b)
(¥(2q)) 0
ceo [yw (é’.,f]' [vch(zq,y) ’
yeY;
and that when ¥ (2¢)<—¢&q(2),
d;;{';u(zq) = { Vf ?zq)] } (7.4c)
_ K
Since hq - 0asqg - o0, and Yg(-) is u.s.c., we conclude that either
Vf(Z) = Oand ¥(2) <0, (7.4d)
or
O€cof Vf (2).99(2,y) }y ey, (s) and ¥(2) = 0. (7.4e)

Since & > 0 was arbitrary and Y,(2) is u.s.c. in (¢,2) at (0,2), the desired result
follows.

Next, we consider again the problem P in (7.1) and we suppose that Assump-
tion 7.1 holds, but we do not suppose that Assumption 7.2 holds. In this case,
G¥q(2), defined by (7.2g) is no longer a c.d.f. map for Yq (z). We propose the
following alternative set, defined for any'q €N, g=1, any €= 0 and any

z € R™, to be used when Assumption 7.2 cannot be trusted to hold:
Geve (=) B cof V,0(z.4) Iy e ¥, ) (7.52)
where for any p > 0,

Voel@) & 7o Uty ey | o(z,y) = Yo (x)—e/pg? 3 . (7.5b)
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We see that (7.5a), (7.5b) are a "two tier" definition aimed at keeping the
number of vectors in G,¥q(z) relatively small, but not so small as to adversely
affect the behavior of the resulting algorithm. The reason for using q2 in (7.5b)
is that if ¢(z,y) can be approximated by a quadratic ¢(z,%) + M(y —F)3 with
M > 0, in a neighborhood of a local maximizer 4y € Y of p(z,y), then the test
p(z,y) =Yg () — e/ pg? will tend to keep the cardinality of the set
fyveY, | olz,y)=y,(z) - €/pq?} in (7.5b) approximately constant for all
g, for a given € = 0. If we had réplaced qz by ¢, the cardinality of that set

would have grown with g, which would have been computationally undesirable.

We invite the reader to verify the following result.

Proposition 7.1. (a) The relations (7.5a), (7.5b), define a c.d.f. map for Yg(-).

(b) Suppose that the c.d.f. map defined by (7.5a), (7.5b) is used in Master Algo-
rithm 7.1, then Theorem 7.1 remains valid.

This brings us to the end of our elementary exposition of semi-infinite

optimization algorithms, both in conceptual and in implementable form.

8. CONCLUSION

We have shown that a broad class of semi-infinite optimization algorithms
can be evolved by progressively more complex extensions of the humble method
of steepest descent for differentiable optimization. Our approach was based on
the introduction of convergent direction finding maps which have the property
that the point of smallest norm, in the sets which they define, defines a good
search direction. We hope that our approach has enabled the reader to acquire a
quick understanding of an important family of semi-infinite optimization algo-
rithms.



Our approach does not enable us to account for all the "first order” algo-
rithms in the literature, nor can it be extended to explain or generate algo-
rithms for nondifferentiable problems defined on normed spaces that are not
Hilbert spaces. We believe that many of the algorithms which solve finite dimen-

sional nondifferentiable optimization problems that we did not account for, as
well as algorithms for solving problems in function spaces such as H ®or L oo’

which are not Hilbert spaces, can be organized into a related, coherent struc-
ture by introducing axioms which define super directional derivatives in terms
of certain supersets of the generalized gradient. The super directional deriva-
tive, in turn, can be used to define convergent search direction finding prob-
lems. To make this suggestion more concrete, we point out that the function
dy.(z:h), introduced in Section 86, is and example of such a super directional
derivative. However, the exploration of this possibility is beyond the scope of

this paper and is left as a suggestion for future research.
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