

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BBL.2 USER'S MANUAL

by

•P. Chen, C.-C. Chen, C.-P. Hsu, H. H. Chen,

E. S. Kuh, and M. Marek-Sadowska

Memorandum No. UCB/ERL M85/2

24 January 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BBL.2 User's Manual

Nang-Ping Chen, Chao-Chiang Chen

Chi-Ping Hsu, Howard H. Chen

Ernest S. Kuh, and M. Marek-Sadowska

Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

ABSTRACT

BBL is an automatic layout system for placement and routing in VLSI
design. The building-block modules are assumed to be rectilinear, and two layers
of interconnection are used. The placement system of BBL consists of three
major phases : the bottom-up phase to handle the highly connected module pairs
and clusters, the top-down phase to deal with the size and the shape of modules,
and the trade-ofif phase to minimize the global connections as well as the overall
chip area. The current placement system can only handle rectangular modules.
The routing system of BBL includes prerouting analysis, global routing, and
detailed routing. The purpose of prerouting analysis is to allocate routing space
if the original placement is not desirable. In global routing, a Steiner-Tree-On-
Graph algorithm is used to assign each net a specific route without actually
embedding it. Nets which belong to a common bus will be assigned the same glo
bal route. In detailed routing, channel router and switch-box router are used to
do the track assignment. Power and ground nets may have different wire widths,
and they will be routed on one layer unless they cross each other. Since modules
can be shifted during the routing process, 100% routing completion is always
guaranteed.

Currently, BBL runs on a VAX 11/780 under 4.2 Berkeley UNIX. HP
2648A terminal is used as the graphics display, and the final layout will be gen
erated in CIF format. The entire BBL system is implemented in C language,
except the channel router, which is written in PASCAL. Many examples from
industry have been tested. Experimental results show that the chip area can be
reduced by 10-25% with the BBL layout. For an AMI chip with 33 modules, 132
nets, and 440 pins, it takes 69 CPU seconds to finish the placement and 5.5
minutes to complete the routing.

BBL.2 User's Manual

Nang-Ping Chen, Chao-Chiang Chen

Chi-Ping Hsu, Howard H. Chen

Ernest S. Kuh, and M. Marek-Sadowska

Department of ElectricalEngineering and Computer Sciences

and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

1. What is BBL?

BBL is an abbreviation for the Berkeley Building-Block Layout System. It

can be used as an automatic tool to generate the layout of integrated circuits.

The design style of building-block layout has the following features:

(1) It uses library cells or user-designed macros as the building-block modules.

(2) Each module may have terminals along its boundary.

(3) All the terminals with the same net name should be connected together.

(4) The objective of the placement and routing is to minimize the layout area.

(5) 100% routing completion can always be achieved.

This approach has a wide application in the random-logic custom chip
design. It can also be applied in a hierarchical design where BBL is used as the
layout tool on each level.

2. What can BBL do ?

BBL can generate automatic placement and routing of integrated circuits,
provided the following conditions are satisfied :

(1) All the modules are convex rectilinear polygons. Note that the current
placement system restricts the modules to be rectangular.

(2) Each module may have terminals on its boundary. Terminals with the same

net name are to be connected together. While the positions for terminals

along the chip boundary can be shifted according to the size of the chip,

their relative positions will not be changed. All other terminals are fixed on

the boundary of their parent modules.

(3) All the modules are treated as blockages. No wires are allowed to cross the

modules.

(4) Pre-placement is not allowed in the BBL placement system. However, since

the output of the placement is a routing text file, the placement system and

routing system can be used separately. That is, the coordinates of modules

can be specified by the user without using the the completely automatic

placement system. Modules should not overlap each other, and all the bot

tom level modules must be inside the boundary of the top level module.

(5) Two layers are available for interconnection.

(6) Four design-rule parameters should be specified; namely, horizontal (vertical)

track spacing, and horizontal (vertical) edge clearance.

The current version of BBL does not allow any prewiring before the

automatic routing process. However, interactive routing and wire modifications

can be done after automatic routing.

3. The placement system of BBL

The placement system of BBL is called PARADE. It consists of three major

phases: the bottom-up phase, the top-down phase, and the tradeoff phase.

The bottom-up phase starts with the module-wise connectivity analysis.

Based on this result, the pairing process is activated to pair the highly-connected

modules. The pairing process continues until some threshold value is reached,

that is, when connectivity is no longer considered vital. The outcome of this pro

cess is a set of clusters, module-pairs, and single modules. For each highly con

nected module-pair, a set of potentially good wiring patterns is generated. The

information will be used in the next step, i.e. the cluster placement. Its

objective is to arrange the modules of each cluster or module-pair to form super-

modules which optimize the usage of space and the distance of connections. Dur

ing this step, pins of different modules are aligned, relative positions of the

modules in each cluster are determined, and wiring areas are allocated for both

the local nets and global nets. The supermodules can be of any rectilinear shape,

but the cluster placement tends to simplify them. For the single modules, local

wiring areas are estimated and attached to their peripheries. This estimation is

based on a simple probabilistic model which calculates the average local wiring

area irrespective of the placement and routing algorithms used.

The input of the top-down phase is a set of supermodules and single modules

with estimated local wiring area attached. From now on, we simply call them

"blocks". The top-down process partitions the blocks into several coarse rows of

cells on the chip. The cell in each row can be a single block, a set of merged

blocks, or a piece of a dissected block. The goal of this phase is to minimize the

maximum difference of the row lengths while keeping the maximum difference of

the cell heights in each row sufficiently small. A novel geometric bandwidth

minimization is devised to make the maximum difference of the cell heights in

each row sufficiently small. The minimization of the bandwidth is achieved by

orienting, merging, and dissecting the blocks while keeping the number of

dissected blocks and merged blocks as small as possible. On the other hand, the

minimization of the maximum difference of the row lengths is achieved by an

efficient multi-way set partitioning algorithm where repeated differencing and

backtracing are employed. The number of rows to be partitioned is determined

by the estimated chip area and the sum of the horizontal dimension of the cells

after bandwidth minimization.

The goal of the tradeoff phase is to assign "blocks" properly in the general

ized row structure such that the dissected modules are restored, and the global

connection lengths are minimized. This phase begins with an initial arrangement

where rows of cells are placed and all the constraints are satisfied. The dissected

blocks are restored in the initial arrangement. Then, an iterative process is

activated to do the global paths assignment and the detail placement. The spac-

ings between blocks are determined and the difference of the row lengths is kept

as small as possible by using pair-wise swappings. Finally, the horizontal global

tracks are assigned and the rows are vertically compacted.

After all the internal modules are placed, we start to place the I/O pads sub

ject to the sequence constraints specified in the placement textfile. The I/O pads

are free to be placed anywhere; however, their sequence on the boundary of the

chip must obey the given constraints. This placement system is completely

automatic and pre-placement is not allowed. However, the user may change the

coordinates of the modules afterwards by editing the routing textfile.

4. The routing system of BBL

The routing system of BBL is called ROSE. It can be divided into three

parts: prerouting analysis, global routing, and detailed routing. The new

features of this routing system are power/ground routing and bus routing.

At the beginning of routing process, a set of "bottlenecks" is generated.

Bottleneck is defined as a region between the parallel edges of two neighboring

modules. It is a critical region where congestion is most likely to occur.

Bottlenecks are very important for the whole routing system. As modules are

shifted, the structure of some bottlenecks will be changed.

The prerouting analysis will estimate and allocate the routing space needed,

if the initial placement is not desirable. It assumes that the interconnection for

each net will be done inside the smallest rectangle which encloses all of its termi

nals. The probability for a bottleneck to be passed through by this net is then

calculated, and the sum of probabilities over all nets is the expected routing den

sity in the bottleneck. The number of tracks needed will be the smallest integer

larger than the expected density. Modules are then shifted to allocate the rout

ing space.

The next step is global routing. The purpose of global routing is to assign

each net a wiring path without actually embedding it. A global routing graph is

generated by representing each bottleneck by an edge. The weight for each edge

is defined as follows :

edge weight = A*L+ B/ CN+ l

where L is the length of the active bottleneck region, N is the number of avail

able tracks, and A,B,C are the parameters specified by the user. If a shortest

path is desired, the length factor "A" should be large to dominate the edge

weight. If the chip area and routing congestion are of primary concern, the

congestion factors "B" and "C" should be large to avoid allocating extra space.

According to our experiences, a combination of A=l, B=50, and C=2 tends to
give the best result.

A Steiner-Tree-On-Graph algorithm is then applied on the global routing
graph to find the minimum weighted tree which connects all the terminals in a

net. The net ordering is determined by the available routing space. The net

with less routing space will be routed first. For those nets which belong to a
common bus, they will be assigned the same global route. After all the nets have

been assigned their routes, we get a better estimation of the routing space
needed. The required number of tracks in each bottleneck is equal to its max

imum routing density, and a compaction process will be done to remove redun

dant routing space. After the compaction, the minimum chip size is obtained by
the global router, though it might be increased later in detailed routing.

Two detailed routers are used in BBL. One is the channel router, and the

other is the switch-box router. The channel router is suitable for the routing
problem in a rectangular region with fixed terminals on two opposite edges and
floating terminals on the other two edges. The switch-box router," on the other

hand, can handle any rectilinear region with fixed or floating terminals. It is not

as efficient as the channel router, but it is more flexible. In BBL, the active

region of a bottleneck is routed by the channel router, and all other regions are
routed by the switch-box router.

Power/ground nets are given higher priorities during the routing process. In
global routing, the wire widths for power/ground nets will be calculated after

their global routes are found. In detailed routing, the channel router and switch-

box router use preprocessors to route the power/ground nets on one layer if

possible, and postprocessors to make jumpers for those signal wires which cross

the power/ground nets.

Both the channel router and the switch-box router will return a request for

extra space if the given routing area is not sufficient. Some modules will then be

shifted to allocate additional space for routing. A 100% routing completion can

thus be guaranteed, while the increase in chip size is kept as small as possible.

5. How do you enter input data ?

5.1. A placement input textfile

The input format of PARADE is very similar to that of ROSE. The details

can be found in Appendix B.

5.2. A net-list routing input textfile

This is the standard input for ROSE. It includes the description of modules,
terminals, design rules, and the net list information.

Two levels of modules are used. The top-level module, which encloses all

the modules on the bottom level, is usually the chip boundary. The bottom-level

modules, which are treated as blockages, are regular modules.

A terminal must be on the boundary of a module. For terminals on the chip
boundary (usually I/O pads), their positions will be moved proportionally when
the chip boundary changes during the routing process. Every terminal must have

a routing direction, which should point toward the routing region. Power/ground
terminals may have different widths. The width of the source terminal should be

equal to the sum of the widths of sink terminals. If the power terminal is on a

horizontal edge, the width will grow leftward. If the terminal is on a vertical

edge, the width will grow downward. The distance between the power/ground
terminal and its neighboring terminal (or the corner of its parent module) should

be enough to cover the wire width and the design rule spacing.

Four parameters of the design rules should be specified. The horizontal

(vertical) track spacing is the minimum spacing required between two horizontal

lines. The horizontal (vertical) edge clearance is the minimum distance required

between a horizontal wire and a horizontal boundary segment. Currently all the

design rule parameters must be set as 1, so all the coordinates should be scaled

down (i.e., divided by the track pitch) before they are used as the input.

A detailed description of the input format is in Appendix C. Theoretically,

there is no limit on the number of modules and terminals. However, to make

BBL run more efficiently, it is recommended that the input data be limited to 50

modules, 1000 terminals, and 1000x1000 chip size.

5.3. A CIF input file

The user can enter the input data by using the interactive graphics editor

KIC. In fact, any graphics editor will do as long as the CIF file generated con

tains the following layers:

TRM - symbolic layer for terminals
BNDl - symbolic layer for the chip boundary
BND2 - symbolic layer for modules

The chip boundary is a rectangular box which contains all the modules. A

module is represented by a box or a rectilinear polygon, and terminals are

represented by boxes. The center of a terminal box must be on the boundary of

its parent module. Each terminal has a label, and the lower left corner of a label

should be inside the terminal box. The spacing between the center of terminals

and between the center of a terminal and the corner of its parent module should

be equal to multiples of the minimum track spacing.

The CIF input file can be transformed into the standard ROSE input format

by using the CIF2ROSE command. The new file generated will then be the net-

list input file for ROSE.

6. What is the output of BBL ?

The output generated by PARADE is a routing input textfile. The coordi

nates of the modules are specified. The locations of the terminals are updated if

rotations and/or reflections are performed on the parent module. The size and

the shape of the boundary of the top level module are modified. The I/O pads are

reassigned subject to the sequence constraints specified in the placement input

textfile. The spacings between I/O pads are calculated proportionally to the

spacings given by the input.

The routing pattern generated by ROSE is written into a data base textfile,

whose name is specified by the user at the beginning of the program. The format

of this output file is described in detail in Appendix D. The user can look at the

final placement and routing by using the LOOKDB command. A CIF file can

also be generated by the CIF GEN command. Then the interactive graphics edi

tor KIC can be incorporated to do the interactive routing or modification. A

final plot can be obtained by using the CIFPLOT. (Both KIC and CIFPLOT

are in the Berkeley VLSI Tools package.)

7. Appendix

7.1. Appendix A : Commands and application programs

7.2. Appendix B : Input format for BBL placement

7.3. Appendix C : Input format for BBL routing

7.4. Appendix D : Output format for BBL database

Appendix A : Commands and Application Programs

Contents

cifgen(l) - CIF format generator for BBL

cif2rose(l) - translate CIF format to ROSE format

lookdb(l) - database look or dump program

parade(l) - automatic placement system for BBL

rose(l) - automatic routing system for BBL

rose2parade(l) - translate ROSE format to PARADE format

CIFGEN (1) BBL System's Manual CIFGEN (1)

NAME

cifgen - generate a CIF file from BBL database

SYNOPSIS

cifgen [-option [-option] ...] input_file outputjflle

DESCRIPTION

Cifgen is a CIF format generator for BBL. It takes BBL database as the input
and outputs a CIF file. The actual size of layout is controlled by input parame
ters. The result can be examined by an interactive graphics editor kic [1] or the
CIF plotter cifplot [2]. The options are:

-h (HPterminal)
Display a layout on the HP2648A terminal.

-d (defaults)
Allow you to change default values of geometrical parameters interac
tively during the program execution. Default values in CIF units are:
1. metal segment width = 300
2. poly segment width = 200
3. contact size = 400

4. terminal size = 400

5. metal to metal separation = 300
6. poly to poly separation = 200

-c (chip)
Generate the whole chip.

—m (module) modulejname
Generate the specified module only.

-n (number) maxjiepth
Specify how many levels in the hierarchy are to be translated into the
CIF file.

-I (input) text_file
Input data from textJUe . A database file will also be created with the
name of input_file.

A typical command of using cifgen to generate the layout for the whole chip from
our text example test.db is " cifgen -c -n 2 test.db test.cif *.

FILES

BBL/ROSE/CF/*

2nd Edition 1/11/85

CIF2R0SE (1) BBL System's Manual CIF2R0SE(1)

NAME

cif2rose - translate a CIF file into the ROSE input format

SYNOPSIS

cif2rose input.cif input.rose

DESCRIPTION

Cif2rose is an input interface between CIF format and BBL format. In order to
generate the net list (a standard input format for ROSE), the CIF input file
must include the following layer definitions:

TRM : symbolic layer for terminal definition
BNDl : symbolic layer for chip boundary
BND2 : symbolic layer for regular module frame

To define a routing problem, the modules and terminals should be specified as
follows :

1. Chip boundary is represented by a rectangular box.

2. Regular modules are represented by boxes or rectilinear polygons.

3. Terminals are represented by boxes on the TRM layer. The center of a
terminal box must be on the boundary of a regular module.

4. Terminal labels are specified on the TRM layer. The lower left corner of a
label must be inside its associated terminal box.

FILES

BBL/ROSE/CIF/*

SEE ALSO

Berkeley VLSI Tools
/C/C(cad)[l) .
CIFPLOT (cad)[2]

BUGS

This program generates the old input format for ROSE. Modifications must be
made to generate informations for power/ground routing and bus routing.

2nd Edition 1/11/85

LOOKDB (1) BBL System's Manual LOOKDB(1)

NAME

lookdb - database display routine for BBL

SYNOPSIS

lookdb filename

DESCRIPTION

This program displays all the database information on an HP2648 terminal. The
manual for usage can be printed by typing the HELP command. Currently, the
following commands are supported by lookdb:

h : help
q : quit
p : change plot flag
n : change print flag
? : print all the signal and module names
s : identify the specified signal
m : identify the specified module
d : display regular modules
dw : display regular modules with default window
da : display chip routing
daw : display chip routing with default window
x : find the name of a module by cursor
xr : find the name of a routing module by cursor
xm : find the name of a regular module by cursor
R : run channel router in the specified routing module
R2 : run 2D router in the specified routing module
W : define new window

f: find input file name
r : read input file
w : write output file
! : escape

FILES

*BBL/ROSE/LOOKDB/

BUGS

For display on terminals other than hp2648a, you must replace
BBL/ROSE/LEB/display.c with your own graphics program.

2nd Edition 1/11/85

PARADE (1) BBL System's Manual PARADE (1

NAME

parade - automatic placement system for BBL (Building Block Layout)

SYNOPSIS

parade

DESCRIPTION

Parade is the placement system for BBL[1]. It is a completely automatic process.
No pre-placement is allowed. The modules are restricted to be rectangular and
free to rotate and reflect in any orientation as long as the edges are vertical or
horizontal. The objective of the placement is to place and orient the modules in
an optimal way such that the final layout area, including the interconnection
area, is minimized. The boundary of the top level module is determined after all
the bottom level modules are placed and the wiring area allocated. The I/O pads
are assigned on the boundary subject to the sequence constraints specified in the
placement input textfile. The spacings between the I/O pads are calculated pro
portionally to the spacings given in the input file.

The system will interactively ask user the following questions:

parade
ENTER THE INPUT PLACEMENT TEXTFILE NAME : <filel>
ENTER THE OUTPUT ROUTING TEXTFILE NAME : <file2>
WHOLE CHIP PLOT ? <y/n>

where filel is the input placement textfile whose format is described in appendix
B. ,and file2 is the output routing textfile for ROSE.

DIAGNOSTICS

A new program which can handle rectilinear modules is under development. It
will be provided in our next version of BBL-PARADE.

SEE ALSO

[1] Chen, C. C; Kuh, E.S., "Automatic Placement for Building Block Lay
out", Proc. ICCAD, 1984, pp. 90-92.

2nd Edition 1/11/85

ROSE(1) BBL System's Manual ROSE (1)

NAME

rose - automatic BBL routing system

SYNOPSIS

rose

DESCRIPTION

Rose is the automatic routing system for BBL[1,2]. In the process of routing, the
system may shift functional blocks and compact the layout to achieve 100% rout
ing completion. The terminal positions should be fixed on the boundaries of
functional blocks. The I/O pads are represented by the terminals on the boun
dary of the bounding box. The bounding box may be shrunk or enlarged in size
so that it will become the smallest rectangle which encloses all the functional
blocks and interconnections. Although the positions of these I/O pads may be
changed after the routing, the ratio of the distances between pads will be kept
the same. The design rules of wire-to-wire separations, wire-to-edge clearances
are specified in multiples of the unit width. Since no additional restriction will be
put on the contact-to-contact separation, the user is responsible to specify the
wire-to-wire separation large enough to take care of this situation.

This routing system can handle convex rectilinear blocks with arbitrary shape
and sizes. No over-the-block routing is allowed. Currently, the system assumes
that two layers are available for routing.

A prerouting analysis is equipped with this system. The purpose of this prerout
ing analysis is to allocate routing space for a given placement based on a simple
uniform probabilistic model. The prerouting analysis is not needed if a good
manual placement or automatic placement has been done, but it will be helpful if
the original placement is not good. The user also has to specify three parameters
which control the global routing. If the user is happy with the placement and
does not want to change it drastically, then a large congestion factor B or place
ment adjustability factor C should be used. If the user cares more about the shor
test length connections for all nets, then a large length factor A should be used.
The system will interactively ask user the following questions:

rose

Enter input file name : <filel>
Enter output database file name : <file2>
Enter length factor for bottlenecks : (default=l)
Enter congestion factor for bottlenecks : (default=50)
Enter placement adjustability factor : (default=2)
Prerouting analysis ? (y/n)
Compaction after global routing ? (y/n)
Final plotting ? (y/n)

2nd Edition 1/11/85

ROSE (1) BBL System's Manual ROSE(1)

The system will generate a file named "debug" under the same directory. This
file contains all the bottleneck information for debugging purpose. Filel is the
input file whose format is described in appendix C. File2 is the output of the
database which can be seen by using "lookdb", or generate the CIF file by using
"cifgen".

SEE ALSO

[1] Chen, N. P., "The Routing System for Building Block Layout", Ph.D.
thesis, U. C. Berkeley, 1983.

[2] Chen, N. P.; Hsu, C. P.; Kuh, E. S., "The Berkeley Building-Block Layout
System for VLSI Design", Proc. International Conference on VLSI, Nor
way, August 1983, pp. 37-44.

[3] Chen, N. P.; "New Algorithms for Steiner Tree on Graphs", Proc. IEEE
ISCAS, 1983, pp. 1217-1219.

[4] Hsu, C. P., "A New Two-Dimensional Routing Algorithm", Proc. 19th
Design Automation Conference, June, 1982, pp. 46-50.

[5] Yoshimura, T.; Kuh, E. S., "Efficient Algorithms for Channel Routing",
IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, January, 1982, pp. 25-35.

BUGS

An early version of this program was sent to several cooperating companies, who
tried our program and gave us feedback. We fixed some bugs and in addition,
added new features in this present version, but by no means will this program be
perfect. We continue to welcome comments and will improve it in the future ver
sions of BBL.

?->d Edition 1/11/85

R0SE2PARADE (1) BBL System's Manual R0SE2PARADE(1)

NAME

rose2parade - convert from ROSE format to PARADE format

SYNOPSIS

rose2parade

DESCRIPTION

Rose2parade will interactively ask the user to enter the PARADE input file to be
generated and the ROSE input file to be translated. This program is imple
mented to help those who abeady had their own placement and would like to try
the new BBL placement for comparison.

FILES

BBL /PARADE/rose2parade

2nd Edition 1/11/85

Appendix B : Input Format for BBL Placement

(1) The input text file format

<Date>

BBL PLACEMENT TEXTFILE

< # of modules > modules
< # of nets > nets
{top-level module data}
$
{module data at this level}

$

(2) The format of module data

MOD /*top level module*/
0 0 /*origin coordinates*/
<module name> /*up to 20characters*/
<module type> /*the type of module*/
<dim(X]> <dim|Y]> /*the dimension of the module*/
$
T /*terminals*/
< # of terminals > /*number of terminals on the module*/
<x> <y> <net> <edge> <type> <layer> <width> <depth> <p/g> <bus>

/•
* (x,y) terminal coordinates relative to the bottom-left corner
* of the module;
* net name of the net, up to 20 characters;
* edge ——- the edge of the module on which the terminal locates;
* i.e. bottom 1, right 2, top 3, left 4;
* type l(fixed), 2(edge fixed), 3(floating);
* layer the wiring layer that the terminal resides;
* width the physical width of the terminal;
* depth —— the depth of the terminal toward the inside
* of the module boundary;
* p/g the power and ground flag;
* bus the bus flag (see also App.C);
* /

(3) A sample input file for placement

DATE

BBL PLACEMENT TEXTFILE
8 modules

38 nets

MOD

00

bound

0

330 230

$
T
24

0 160 Nl 4 2 1 1.00 1.00 0 0

0 140 N2 4 2 1 1.00 1.00 0 0
0 130 N3 4 2 1 1.00 1.00 0 0

0 110 N4 4 2 1 1.00 1.00 0 0

0 100 N5 4 2 1 1.00 1.00 0 0

0 30 N6 4 2 1 1.00 1.00 0 0

40 0 N7 1 2 1

70 0 N8 1 2 1

90 0 N9 1 2 1

140 0 N10 1 2

180 0 Nil 1 2

210 0 N12 1 2

330 80 N13 2 2 1
330 130 N14 2 2 1 1.00 1.00 0 0
330 190 N15 2 2 1 1.00 1.00 0 0

270 230 N16 3 2 1 1.00 1.00 0 0
240 230 N17 3 2 1 1.00 1.00 0 0
200 230 N18 3 2 1 1.00 1.00 0 0

180 230 N19 3 2 1 1.00 1.00 0 0
160 230 N20 3 2 1 1.00 1.00 0 0

120 230 N21 3 2 1 1.00 1.00 0 0

90 230 N22 3 2 1 1.00 1.00 0 0

60 230 N23 3 2 1 1.00 1.00 0 0

30 230 N24 3 2 1 1.00 1.00 0 0

$
MOD

00

ONE

0

80 70

$
T

13

40 0 N26 111 1.00 1.00 0 0

60 0 N28 1 1 1 1.00 1.00 0 0

70 0 N29 1 1 1 1.00 1.00 0 0

80 30 N18 2 1 1 1.00 1.00 0 0

80 50 N30 2 1 1 1.00 1.00 0 0
50 70 N21 3 1 1 1.00 1.00 0 0

40 70 N23 3 11 1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1 1.00 1.00 0 0

1 1.00 1.00 0 0

1 1.00 1.00 0 0

1.00 1.00 0 0

t o:

O

Ll.

i:

FIVE

,». • ,». .n, ,•

ONE

•>v
>

u

EIGHT

j TU0

X
I—I

(A

LlI
Ld

30 70 N22 3 11 1.00 1.00 0 0

20 70 N24 3 1 1 1.00 1.00 0 0

0 60 N4 4 1 1 1.00 1.00 0 0

0 40 N5 4 1 1 1.00 1.00 0 0

0 20 N2 4 1 1 1.00 1.00 0 0

0 10 N3 4 1 1 1.00 1.00 0 0

$
MOD

00

TWO

0

70 40

$
T

6

50 0 N30 1 1 1 1.00 1.00 0 0
70 10 N17 2 1 1 1.00 1.00 0 0

70 20 N37 2 11 1.00 1.00 0 0

40 40 N20 3 1 1 1.00 1.00 0 0
30 40 N19 3 11 1.00 1.00 0 0

20 40 N18 3 1 1 1.00 1.00 0 0

*
MOD

00

THREE

0

40 30

$
T

5

10 0 N17 1 1 1 1.00 1.00 0 0
20 0 N16 1 1 1 1.00 1.00 0 0
30 0 N38 1 1 1 1.00 1.00 0 0
0 20 N18 4 11 1.00 1.00 0 0
0 10 N37 4 1 1 1.00 1.00 0 0

$
MOD

00

FOUR
0

100 20

$
T

7

40 0 N27 1 1 1 1.00 1.00 0 0
60 0 N33 111 1.00 1.00 0 0
70 0 N32 1 1 1 1.00 1.00 0 0
80 0 N35 111 1.00 1.00 0 0
90 0 N34 111 1.00 1.00 0 0
60 20 N25 3 1 1 1.00 1.00 0 0
10 20 N30 3 11 1.00 1.00 0 0
$
MOD

00

FIVE

0

80 40

$
T
10

20 0 N6 1 1 1 1.00 1.00 0 0

30 0 N8 1 1 1 1.00 1.00 0 0

60 0 N29 1 1 1 1.00 1.00 0 0

80 20 Nil 2 1 1 1.00 1.00 0 0

60 40 N27 3 1 1 1.00 1.00 0 0

40 40 N26 3 1 1 1.00 1.00 0 0

20 40 N25 3 1 1 1.00 1.00 0 0

10 40 N5 3 1 1 1.00 1.00 0 0

0 30 Nl 4 1 1 1.00 1.00 0 0

0 10 N7 4 1 1 1.00 1.00 0 0

$
MOD

00

SDC

0

30 50

$
T

4

10 0 N10 1 1 1 1.00 1.00 0 0

30 20 N31 2 1 1 1.00 1.00 0 0

20 50 N27 3 1 1 1.00 1.00 0 0

0 40 N29 4 11 1.00 1.00 0 0

$
MOD

00

SEVEN

0

50 30

$
T

8

20 0N9 1*1 1 1.00 1.00 0 0

40 0 N12 1 1 1 1.00 1.00 0 0

50 10 N36 2 1 1 1.00 1.00 0 0

40 30 N35 3 1 1 1.00 1.00 0 0

30 30 N34 3 1 1 1.00 1.00 0 0

20 30 N33 3 1 1 1.00 1.00 0 0

10 30 N32 3 1 1 1.00 1.00 0 0

0 20 N31 4 1 1 1.00 1.00 0 0

$
MOD

00

EIGHT

0

40 130

$
T

10

20 0 N12 1 1 1 1.00 1.00 0 0

40 50 N13 2 1 1
40 80 N14 2 1 1

40 110 N15 2 1 1

30 130 N38 3 1 1

20 130 N37 3 11

0 120 N37 4 1 1

0 110 N30 4 1 1

0 30 N28 4 111

0 20 N36 4 1 1 1

$
$

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

1.00 1.00 0 0

.00 1.00 0 0

.00 1.00 0 0

>

(4) Restrictions on input data

The current version of BBL placement has the following restrictions on input data :

* The top level module must be rectangular.

* The bottom level modules are rectangular functional blocks.

* Module type is always 0 (regular).

* The "type" of the terminals on top level module is 2 (edge fixed).

* The "type" of the terminals on bottom level modules is 1 (fixed).

* The "layer" and "depth" of the terminals are set to 1.

* The "width" and "depth" of the terminals are floating number.

* The module and terminal coordinates should be integers.

Appendix C: Input Format for BBL Routing

(1) The input text file format

SN < number of nets>
{top level module data}
{design rules}
$
{module data at this level}

(2) The format of module data

MOD /*top level module*/
<x> <y> /*origin coordinates, all module coordinates are

relative to this position*/
<module name> /*up to 8 characters*/
<module type> /*l=routing module; 0 otherwise*/
<xl> <yl> /*corner coordinates of the module in the

counterclockwise direction*/
<x2> <y2>

$
T /*terminals*/
<x> <y> <name> <dir> <type> <p/g> <width> <bus>

/*(x,y): terminal coordinates relative to the origin*/
/*name of net is restricted to 6 characters*/
/♦routing direction : left 0, down 1, right 2, up 3*/
/♦terminal type : 2(fixed), other types are for internal use only*/
/♦power/ground flag : 1=power/ground, 0=otherwise*/
/♦power/ground width : meaningless if power/ground flag=0*/
/♦bus number : nets with the same bus number will be assigned the same

global route*/
/♦The specifications of <p/g>,<width>, and <bus> are optional*/

(3) The design rule format

DES

ht <horizontal track spacing>
vt <vertical track spacing>
he <horizontal edge clearance>
ve <vertical edge clearance>
$ /* Currently, all the parameters must be 1 */

(4) A sample input file

SN29

MOD

00

bound

0

00

100 0

100 100

0 100

$
T

200u32

40 0 g 3 2
50 0 busl 3 2 0 11

55 0 bus2 3 2 0 11

60 0 bus3 3 2 0 11

900k32

0 40 ground 2 2 1 4.0
0 75 v 2 2

090o22

10 100 x 1 2

25 100 j 1 2
50 100 s 1 2

75 100 x 1 2

100 45 power 0 2 1 4.0
$
DES

ht 1

vt 1

he 1

ve 1

$
MOD

00

a

0

10 85

10 10

50 10

50 50

20 50

20 85

$
T

10 15 ground 0 2 1 1.0
10 35 p 0 2
10 40 p 0 2
10 45 o 0 2

10 50 a 0 2

10 64 busl 0 2 0 11

10 67 bus2 0 2 0 11

10 70 bus3 0 2 0 11

10 80 s 0 2

15 10 z 1 2

20 10 b 1 2

30 10 p 1 2
35 10 r 1 2

45 10 w 1 2

49 10 v 1 2

50 15 g 2 2
50 20 f 2 2

50 30 b 2 2

50 35 a 2 2

50 40 d 2 2

50 45 e 2 2

25 50 m 3 2

30 50132

35 50 n 3 2

40 50 t 3 2

20 55 n 2 2

20 65 y 2 2
20 70 x 2 2

20 80 w 2 2

15 85 x 3 2

$
MOD

00

b

0

65 90

30 90

30 65

65 65

$
T

40 90 busl 3 2 0 11

45 90 bus2 3 2 0 11

50 90 bus3 3 2 0 11

60 90 13 2

30 70 i0 2

30 80 ground 0 2 1 1.0
35 65 u 1 2

45 65 x 1 2

5065 j 1 2
60 65 power 1 2 1 1.0
65 70 g 2 2
65 75 y 2 2
65 80 k 2 2

65 85 j2 2

$
MOD

00

c

0

75 45

90 45

90 80

75 80

$
T

80 45 power 12 1 1.0
90 50 f 2 2

90 60 x 2 2

90 75 d 2 2

76 80 c 3 2

80 80 b 3 2

85 80 ground 3 2 1 1.0
89 80 t 3 2

75 55 g 0 2
75 65 i 0 2

75 75 r 0 2

$
MOD

00

d

0

85 15

85 35

60 35

60 15

$
T

85 20 1 2 2

85 25 k 2 2

85 30 power 2 2 1 1.0
65 35 e 3 2

70 35 d 3 2

75 35 c 3 2

60 20 ground 0 2 1 1.0
60 25 e 0 2

60 30 g 0 2
60 34 z 0 2

65 15 n 1 2

70 15 m 1 2

75 15 b 1 2

80 15 z 1 2

$
$

(5) Restrictions on input data

The current version of BBL has the following restrictions on input data :

* The top level module must be rectangular.

* The bottom level modules are rectilinear functional blocks.

* Module type is always 0 (regular).

* Terminal type is always 2 (fixed).

* The module and terminal coordinates should be integers.

* All the design rule parameters must be 1.

* Power/ground width can be any positive real number. Each power/ground net
has one source terminal and several drain terminals. The width of the source

terminal must be equal to the sum of the widths of the drain terminals

* bus number must be a positive integer.

Appendix D : Output Format for BBL Database

The output file of ROSE is created by the DBWRITE subroutine. It can be checked
directly by using the LOOKDB command, or translated into a CIF file by the CIFGEN
command. The first two lines of the output file contain information about the size of
each data type. Then 11 types of data are stored in the following order : schip, module,
rmpar, geom, gterm, signal, term, srjun, rseg, sroot, and designrl. All records of a given
type are dumped consecutively. The output format for each type of record is as follows.

size

schip

Line 1 - integer, number of schip records in file
integer, number of module records in file
integer, number of rmpar records in file
integer, number of geom records in file
integer, number of gterm records in file

Line 2 - integer, number of signal records in file
integer, number of term records in file
integer, number of srjun records in file
integer, number of rseg records in file
integer, number of sroot records in file
integer, number of designrl records in file

Line 1 - integer, module pointer
integer, designrl pointer
integer, signal pointer

module

Line 1 - integer, length of module name string
******* If non-zero, the next line contains the string.
******* If zero, the next line is (2) below.

Line 2 - integer, ansmp module pointer
integer, desmp module pointer
integer, sibmp module pointer
integer, mtc term pointer
integer, geop geom pointer

Line 3 - integer, loc.xy[X]
integer, loc.xyJY|

Line 4 - integer, rot
integer, rfl
integer, placg

Line 5 -

rmpar

Line 1 -

Line 2 -

Line 3 -

Line 4 •

Line 5 -

Line 6 -

geom

Line 1

Line 2

Line 3

Line n -

gterm

Line 1

Line 2

Line 3

integer, type
integer, globrt

integer, routbnd
integer, chdr
integer, rtflag

integer, param
integer, param

integer, param
integer, param

integer, param[5
integer, param[6

integer, param
integer, param

integer, adjx
integer, adjy

integer, gtp gterm pointer
integer, rpar rmpar pointer

integer, lgtp
integer, lbndp

integer, locxypC
integer, locxyJY

for n size locxy array

integer, length of name string
******* If non-zero, next line is string
******* If zero, next line is (2) below

integer, locxy[Xj
integer, loc.xy[YJ

integer, eeg

integer, leg
integer, rdg

Line 4 - integer, placg
integer, clasg
float, pwc
integer, msklvl

signal

term

Line 1 - integer, length of name string
******** If non-zero, next line is string
******** If zero, next line is (2) below

Line 2 - integer, alls signal pointer
integer, rtls sroot pointer
integer, smp module pointer
integer, trmis term pointer

Line 1 - integer, mtc term pointer
integer, stc term pointer
integer, mp module pointer
integer, sig signal pointer
integer, rsp rseg pointer

Line 2 - integer, tnum

srjun

Line 1 • integer, alljr srjun pointer
integer, sljr rseg pointer

Line 2 - integer, locjr.xypC]
integer, locjr.xy[Y|

Line 3 - short integer, conjr

rseg

Line 1 - integer, widsr
integer, msklvl

Line 2 - integer, type of jOsr (0 = srjun, 1 = term)
integer, type of jlsr (0 = srjun, 1 = term)

Line 3 - integer, allsr rseg pointer
integer, hsr sroot pointer

Line 4 - integer, jOsr record pointer (see line two for type)

sroot

integer, jlsr record pointer (see line two for type)
integer, sOIsr rseg pointer
integer, sllsr rseg pointer

Line 1 - integer, allseg rseg pointer
integer, alljun srjun pointer
integer, nrts sroot pointer
integer, mp module pointer
integer, shr signal pointer

designrl

Line 1 - integer, htrksp
integer, vtrksp

Line 2 - integer, hegcl
integer, vegcl

	Copyright noticE 1985
	ERL-85-2

