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ABSTRACT

When near-integrable Hamiltonian systems are perturbed by dissipation,

then the stable orbits become simple attracting sinks, the KAM tori are des

troyed, and persistent chaotic motion disappears. We determine analytically

the mean lifetime, the quasistatic distribution, and the fraction trapped into the

various sinks for a dissipatively perturbed area-preserving twist map.
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Two dimensional, near-integrable, measure-preserving maps are used to

model conservative physical phenomena in such fields as celestial mechanics,

cosmic ray physics, accelerator theory, and plasma heating and confinement.1

Conservative systems of two, nonlinear, coupled oscillators are also used widely

as physical models. This system motion also generates such maps as the phase

space orbit repeatedly pierces a surface of section.

The phase plane structure in near-integrable measure-preserving maps is

well known. There is persistent regular motion on some perturbed KAM orbits

and on KAM "island" orbits surrounding stable fixed points of the map. Regions

of persistent chaotic motion are densely Interwoven with these regular regions.

The measures of the regular and the chaotic regions can vary widely, both within

the phase plane and as a function of the system parameters.

This structure is not stable under dlssipative perturbation. The stable fixed

points become attracting centers (sinks), and all KAM curves are destroyed.

Although transient chaotic motion generally exists, the phase point eventually

enters an embedded island and is attracted to an island sink; the motion ulti

mately becomes periodic. The complete destruction of persistent chaos when a

weak dissipation is added to a near-integrable Hamiltonian system is typical and

probably generic behavior. It is clearly of interest to understand this degenera

tion from persistent to transient chaos.

In this letter, we present the first study of transient chaotic motion for a

class of near-integrable Hamiltonian twist maps that are perturbed by dissipa

tion. We determine analytically such properties as the mean lifetime for chaotic

motion, the quasistatic distribution for the transiently chaotic region, and the

probability of trapping into the various embedded islands.

We note that above a critical dissipation strength, a new type of attractor

("strange" attractor) in the phase plane can appear, on which the motion is per-
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slstent and chaotic. &We have considered this case elsewhere.

We illustrate the calculation procedure for transient chaos using as an

example the dissipative Fermi map. However, the procedure is directly appli

cable when dissipation is introduced into other twist maps such as the Chirikov-

Taylor8"9 and the separatrix maps.2,8 The Fermi map describes a cosmic ray

acceleration mechanism in which charged particles are accelerated by colli

sions with moving magnetic field structures. In the modal, a ball bounces in

one-dimensional motion between a fixed and an oscillating wall. We adapt a

simplified model11 in which the moving wall oscillates sinusoidally,

a^y(i) —acosut, and elastlcally Imparts momentum to :he ball according to

its velocity xw without the wall changing its position in space. We introduce dis

sipation by assuming that the ball suffers a fractional loss <!; in velocity upon col

lision with the fixed wall. The map Is then

u = (l-o^ -sin^n , (la)

f = fn + 2-nM/U , (lb)

(^n+i.^n+i) = ($&) sen V- . <lc>

where i^ = vn/ (Sua) is the normalized ball velocity and i/n = utn is the

phase of the oscillating wall, and M - l/{Zna)i is the normalized distance

between the two walls. The function sgn u = ± 1 for u £ 0, and is introduced to

maintain i^+j fe 0 for low velocities 1% < (l-O*)"1, as physically occurs in the

exact model, while preserving the continuity of the map nsar u = 0. The Jaco-

bian of the map is 1 —6, and thus the map is area-preservi'ig for 6 = 0.

The primary fixed points of the map are found by setting 1^+1 = u„, and

T^n+i = l^n(mod27r) in (1). We obtain



(uk Jk) = (M/k, siiTl(-uk 6) ), (2)

where k Is an integer. There are two fixed points for each k :^/k « 0 or ipk w tt

for *u*(5 « l. yk w 7T is stable for U* > v? = (tiM/2)uz\ fk w 0 is always

unstable. For <5 = 0, invariant (KAM) island orbits surround the stable fixed

points.

We summarize the behavior of the motion, determined by numerical itera

tion, as the parameters M and 6 are varied. For (5 = 0, there is no dissipation

and the usual Hamiltonian chaos ensues, with intermingled areas of persistent

chaotic and regular motion in the (ii—^) phase plane. Numerical iterations for

10 £ M < 10 show that the phase plane divides into three characteris

tic regions: (1) For large velocities, u > ub « 2us, invariant (KAM) curves span

the plane in ^ and isolate the narrow layers of stochasticity near the separa-

trices surrounding the fixed points of the map; (2) there is an interconnected

stochastic region for intermediate velocities, U(, > u > v^, in which invariant

islands near stable fixed points of the map are embedded in a stochastic sea;

and (3) there is a predominantly stochastic region for small velocities, u < us,

in which all primary fixed points are unstable. The globally stochastic motion

within the connected regions (2) and (3) is isolated from region (1) by a KAM

barrier at it^, and has a constant equilibrium invariant distribution / q(u , fp).

For weak dissipation, 0 < 6 < 6C, the numerical iterations show that the

fixed points of the Hamiltonian map become attracting centers (sinks), the KAM

curves no longer exist, and all persistent chaotic motion is destroyed. However,

transient chaotic motion surrounds the sinks in regions (2) and (3). As an exam

ple, for M = 30 (6C « .02) and 6 = .003, we find that an initial phase point

chosen randomly in region (3) undergoes transient chaotic motion for a mean

number of iterations N * 13,000 before it enters an embedded island in region

(2) and becomes trapped in an island sink. The decay rate a = -77-1 is tabulated



for various values of M and 6 in Table 1.

In Fig. 1, we plot the cumulative phase-integrated distribution

7(u) =100 f dn J dff (u,i/,n)

for M = 30, 6 = .003, after Af = 5 x 104 iterations, for 100 initial conditions at low

velocities chosen randomly. We see evidence of attracting sinks near the pri

mary resonances at ib = 3 (a period 1 and a period 5 sink coexist) and at k = 4

(a period 1 and a period 3 sink coexist). Numerical studies for various values of

Nt M and 6 « 1 show that an exponentially decaying quasistatic distribution

/ (utfji) =/^(u)exp(- an) (3)

for values of u outside of the "sticky" islands, is formed for n J> ub w 2i\U.

The distribution Jq can be found analytically by solving the appropriate
1R

Fokker-Planck equation for the map1

£L= i. _a_(i? §L.\ _ d{B/) m0 (j
&n 2 duy du ' du w

where, to first order in 6, D is the diffusion coefficient for the area-preserving

15ifi = 0) map, and B = —ud is the friction coefficient due to the dissipation.

For u < 1X5, D = 1/2, the quasilinear value. However, the domain of interest

includes the region v? ^ u £ ix&. In which the quasillnear diffusion coefficient

is invalid. To obtain an estimate of D in this region, we locally expand (l) In u

about a fixed point uk, which yields

/»+i = 'n(l-*) +* sin tfn - uk6 . (5a)

*n+l - #n + Ai+1 . <5b>



where

In = - J^ti*-u*) (6a)

^n = Vn . (6b)

and

K = 2nM/uk2 (7)

is the stochasticity parameter. For (5 = 0, (5) is the Chirikov-Taylor or "stan-
11

dard" map,1' which has a diffusion coefficient X) that depends on K. For

K £ 4, corresponding to u < u^, 5» /f2/ 2, the quasilinear value. For

4 J> JT > 1, corresponding to ifj < it < ub, one finds

5 « (/f-l)7 ,

o

with the estimate0 7 w 2.5 for 4 > /f > 1 obtained numerically, and the asymp

totic result18"19 near K = 1, 7 « 3.01. However, over the entire A' >1range, a

reasonable fit to the numerical data for D is

B«:f-(^L)2 . (8)
with 7 = 2. Transforming from / back to it, we have D = D/K2, and using (7)

and (8), we obtain, for u < ub,

*=|-C1-^2. (9)
Using (9) in (4) and the condition that the net flux is zero, we obtain

fQ(u) = F exp[-2pu2/(uf^u.*)] , (10a)

where



F = (ZKUtP^lKM - JSoWr'expt-p) . (10b)
P —u26, K\ and Kq are the modified Bessel funcUons, and

ut

2n J dufg(u) = 1 .
0

This distribution, scaled to the value of J at it = 0, is plotted as the dashed line

in Fig. 1. The agreement with the numerical result outside the island regions is

excellent. Equally good agreement is found for a)L other cases listed In Table 1.

We now determine the phase space area t^Af^ in the transiently chaotic

region that is "eaten" by each primary island during one iteration. The standard

map [(5) with 6 = 0] has a closed KAM barrier I(n3) with area %surrounding the

central fixed point (7,1?) = (0, 7t). This barrier curve separates the outer

chaotic region from the inner closed island orbits. For 6 > 0, A contracts by the

factor 1-6. Thus AA = Ad. Transforming back lo (it, «^) variables using (6), we

obtain

Mk{uk)=Z6/K . (11)

A is a function of K = ub/uk alone that can be found analytically or

numerically . A good approximation for 1 < K < 6 is A w 20nzK~lz. For the

results in Table 1, we determine A numerically by setting 6 = 0 in the first term

on the right hand side of (5a). The small correction in A due to the last term

•^Ufc<5 In (5a) was therefore included.

Using the (10) and (11), we obtain the decay rate for the transiently chaotic

region

a-?tt* • (12a)

where
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a* =/<?C"*)A4 (12b)

and the sum is over all stable primary fixed points it^ in the region

Ut < it < Itj,.

The first entry in Table 1 gives the exponential decay rate a determined by

numerical iteration of 100 random initial phase points at low velocities; the

second entry gives the analytical result (12). The agreement Is seen to be quite

reasonable.

The fraction flk of initial phase points that stick to the various islands can

also be found analytically using (12b). In Fig. 2, we plot the ratio Rk = fj,k

(analytical)//^ (numerical) for all stable uk for the cases in Table 1. For M =

30, k = 3, 4; for M = 100, k =5-8; for M = 300, k = 9-16. We see that (12b)

agrees well with the numerical results. Even better agreement is obtained using

7 = 3 in (8),-particularly for those Islands that are close to the adiabatic barrier

ub. We expect a better estimate for E in (8) to yield even closer agreement to

the numerical results for a and \ik.

Several additional features observed numerically remain to be brought

within the framework of the theory presented here. In several cases In Table 1,

a few of the hundred initial conditions were attracted to a primary resonance

having period two. These resonances, i^+2::uii',^+2 = VVi (m°d 27r), are

looated near it* « 2M/k, k odd, and are stable within some parts of region (2).

We believe the effect of these higher period sinks can be treated analytically by

considering the square, cube, etc. of the map (l).

For the case M = 100, the stochasticity parameter for the k = 8 fixed point

at 6 = 0 is K « 4.02. Thus this fixed point is linearly unstable, and a stable,

bifurcated periodic orbit appears nearby. However, a KAM barrier having area

A still surrounds this period two orbit. The size of A depends delicately on 6.

Thus we determined A by numerically iterating the map (5) with 6 set to zero in



the first term on the right hand side of (5a). In general, the areas of the stable

period two, four, etc. islands are small.

Another numerical observation is that within each island surrounding a pri

mary sink at uk, there are a number of secondary sinks having periods greater

than one. For example, Fig. 1 shows a period 5 secondary sink surrounding the

primary sink at it3 =10. and a period 3 secondary surrounding the primary sink

at xt4 = 7.5. We determined in (12) only the total fraction of initial orbits eaten

by an island, and not the distribution among the primary and secondary sinks

within the island. We believe the latter distribution might be determined by first

2 8transforming to obtain the separatrix mapping ' associated with the primary

resonance uk and then by applying the theory presented here to the separatrix

mapping. The procedure for effecting this renormalization transformation from

primary to secondary resonances is described in reference 1. sees. 2.4 and 4.3.
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CAPTIONS

Table 1. Numerically/analytically determined decay rates a (in units of 10 ),

for various values of M and 6.

Fig. 1. Cumulative, phase-averaged distribution J.versus it, for M = 30, 6 -
4

.003, N = 5 x 10 iterations. The solid curve shows the numerical

result; the dashed curve shows the quasistatic theory.

Fig. 2. The ratio Rk of the analytically-to-numerically determined fractions

flk of initial phase points attracted to the various island sinks, for all

the cases given in Table 1.
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Table 1

N .0003 .001 .003 .01

30 2.0/2.5 2.7/6.6 7.4/12.0 7.7/8.6

100 1.2/2.0 2.0/3.6 2.9/2.6 1.1/.29

300 1.1/1.1 1.1/.90 .40/.16
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