

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EFFICIENT SOLUTION OF THE VARIATIONAL EQUATION

FOR PIECEWISE-LINEAR DIFFERENTIAL EQUATIONS

by

T. S. Parker and L. 0. Chua

Memorandum No. UCB/ERL M85/28

26 April 1985

EFFICIENT SOLUTION OF THE VARIATIONAL EQUATION

FOR PIECEWISE-LINEAR DIFFERENTIAL EQUATIONS

by

T. S, Parker and L. 0. Chua

Memorandum No, UCB/ERL M85/28

26 April 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Efficient Solution of the Variational Equation for
Kecewise-iinear Differential Equations!

Thomas S. Parker and Leon 0. Chua

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley

ABSTRACT

An efficient method for computing the solution of the varia
tional equation associated with a piecewise-linear differential equa
tion is presented. The method relies on the matrix exponential
and requires no integration beyond the calculation of the trajec
tory along which the variational equation is being solved. Initial
results show a ten-fold increase in efficiency over traditional
methods. Some source code is included for the three-dimensional
case.

1. Introduction

Due to the complexity of nonlinear phenomena, much recent work on non
linear dynamical systems has relied on numerical simulation. In the hope of
obtaining analytical results, several researchers have focused their attention on
piecewise-linear systems [1,2,3]. However, even though analytical results are
the goal, numerical simulations still play a crucial role in these piecewise-linear
studies.

One widely used tool in the numerical study of differential equations is the
variational equation. Most numerical techniques for finding periodic solutions,
such as the shooting method [4], rely on the variational equation in the correc
tion phase of the Newton-Raphson algorithm. Once a periodic solution has been
found, its stability can be determined by calculating the eigenvalues of the solu
tion to the variational equation. Current methods for calculating Lyapunov
exponents also utilize the variational equation [5].

The solution to the variational equation is typically obtained by numerical
integration. The variational equation is a matrix equation and thus computa
tionally costly to integrate. To make matters worse, every evaluation of the
right-hand side of the variational equation requires some additional integration
of the original differential equation.

We will show that once the trajectory of a piecewise-linear differential equa
tion has been calculated, the associated variational equation can be quickly and
cheaply calculated with no additional integration {provided the solution exists).

In [l], Chua et aL study a second-order piecewise-linear differential equa
tion with sinusoidal forcing. They derive an expression for the solution of the
variational equation along a periodic solution with transverse boundary cross
ings. Our treatment removes these restrictions and extends the result to forced

tResearch supported in part by the Hertz Foundation, by the Office of Naval Research under
Contract N00014-76-C-0572 and by National Science Foundation Grant ECS8542685.

frog

-2-

and unforced equations of any order.

2. Notation, and Statement of the Theorem

Consider the piecewise-linear differential equation

x=/(*)+u(0 (1)

where x elR^, u:IR-»lRn, and where /:IRn->Rn is in piecewise-linear canonical
form [6]

/(x) =a+Bc +£ci|<ai.x>-ft|. (2)

Here B e: RnXn, a, cit a* e IRn, and ft £ 1R are constants. Note that / is a sum
of continuous functions and is itself continuous. Most piecewise-linear functions
of interest may be represented in this canonical form [7]; however, our result
relies only on the continuity of / (•)•

Let K denote the number of linear regions defined by /(•)• we say x lies on
a boundary if one or more of the absolute value functions in f(x) evaluates to
zero. If x does not lie on a boundary, we say x lies in the "interior of one of the
JTlinear regions.

Suppose <p(t; x0t t0) is the solution to (1) at time t with initial condition x0
and initial time t0. As t increases from ta, <p(t:xQ, t0) repeatedly leaves one
region and enters another. Thus for any time t > t0, <p(•; x0, ta) defines a finite
sequence of linear regions R = \rat rlt ... rm\ where rt e (1, 2,... K\ denotes a
particular region. For simplicity we assume neither x0 nor <p{t\ x0, t0) lies on a
boundary. Thus x0 and <p(t; xot t0) are in r0 andrm, respectively. Note that it is
possible for r* to equal r^. This situation may occur when the trajectory is
tangent to a boundary.

For any time t > t0, <p(•; xot t0) also defines a unique, ordered set of boun
dary crossing times T = \t': t0 £ V ^ t, (p(t'\ x0; t0) lies on a boundary J. If each
boundary crossing occurs at a single instant of time, then T is a finite, ordered
sequence \tlt r2, ... tm] where ft is the time at which the trajectory passes from
region ?v-i to region t\. We say such a trajectory has finite boundary crossings.
A trajectory without finite boundary crossings must lie on a boundary for a non
zero interval of time.

The sample trajectory in Figure 1 has R = (3,2,1,2,1,2,3J and
T = \tlt t2, £3, £4, rs, fflJ. It is important to remember that the sequences R and
T both depend on t as well as on Xq and t0.

The variational equation of (1) along <p(•; x0, tQ) is

* =*/(*<*:*.*.))*. (3)
where $(r) €]RnXw and $(£„) = /, the identity matrix. If <p{ •; xQt t0) has finite
boundary crossings over \tot t], $(t) exists and is the derivative of <p(t; x0, t0)
with respect to x0 [8].

Theorem: If the solution to (l), <p(", xa, t0), has finite boundary crossings over
the time interval [f0, t] with sequences R and T denned above, then the solution
of the variational equation (3) at time t is

$(0 =eM'rJt-tn)) exp^.^-^-O)... expG^Crr-O) (4)
where the Jacobian /< e IR***** is equal to Dxf{x) in region i and exp(A) denotes
the matrix exponential of A.

SOS

-3-

The proof is presented in Appendix 1.

3. Discussion

To evaluate $, we need the matrices Ji, 1 ^ i ^ K and the two sequences R
and T. The Jacobians Ji are generally known a priori since the coefficients of (2)
depend on them. If not, we can find them analytically by differentiating (2). R
and T can be found by integrating (1) numerically and checking at each
timestep whether the trajectory has entered a new region. When it does, a sim
ple timestep-halving scheme can be used to calculate the crossing time.

The problem of calculating the matrix exponential is a tricky one. There is
currently no satisfactory algorithm available for reliably calculating the
exponential of an arbitrary nxn real matrix [9].§

We have included C functions in Appendix 2 for calculating the matrix
exponential for the three-dimensional case. Though limited in dimension, these
functions are still useful since the majority of recent research in nonlinear
differential equations has concentrated on the three-dimensional case. We use
La Grange interpolation (method 9 in [9]):

espW^Vft^zW (5)
where the A* are the eigenvalues of A.

This method has several advantages for our application:

1) There is a large one-time expense to initialize the algorithm for each
matrix A; however, evaluations of exp(At) for different t are very efficient.
2) Complex eigenvalues are easily handled with real arithmetic. See Appen
dix 2 for details.

3) The algorithm is easy to program.
The major disadvantage is that the algorithm is not reliable when the eigen

values lie near each other. Fortunately, in most real-world applications this con
straint is not a problem.!

Comparisons of the La Grange interpolation method versus the exact solu
tion of exp(yU) using 84 bit floating point arithmetic indicate accuracy to about
twelve digits. No integration routine can hope to achieve this accuracy.

We also calculated the solution to the variational equation of the piecewise-
linear circuit presented in [2] using the matrix exponential and by direct
integration of (2)$ using an EKF45 variable stepsize integration routine. Direct
integration was roughly ten times slower than the matrix exponential method
and the result was less accurate. The matrix exponential method required
slightly less than twice the time it took to integrate the original differential
equation. Most of the additional time was spent locating the boundary
crossings-—the evaluation of the matrix exponential was very quick.

§Evaluating matrix exponentialsis currently a hot research topic for numerical analysts. It
is likely that robust and efficient computation methods will become available in the near fu
ture.
fTo make the routine robust, it could be altered to solve r = Ax, x(0) = / whenever the
eigenvalues are close.
fFhfo is not as easy as it sounds. Each timestep of the variational equation integration re
quiresintegration of the original differential equation. Thisnested integration becomes even
more complicated when a variable timestep integration routine is used.

90S

-4-

Acknowledgements
The authors would like to thank Greg Bernstein for his comments and

suggestions on the manuscript. T. Parker gratefully acknowledges the John and
Fannie Hertz Foundation for its support.

Appendix 1: Proof of the Theorem
In this appendix we assume xQ and t0 are fixed and we abbreviate

<p(•; xot t0) by ?(•)• By 0(s) we mean a function such that || 0(£)||/e is bounded
as s -» 0, s > 0. By o(s) we mean a function such that ||o(e)||/e -* 0 as s -* 0,
e>0.

First, we present a lemma.

Lemma: Let A € BnXn and t e R. Then exp(A(t + 0(e))) = exp(^) + 0(e)-t

Proof of Lemma: We use the Taylor series expansion for exp(-):

exp(i4(r + 0(a))) = exp(^)exp(A0(e)) (6)
= exp(i4r)(/ + A0(s) + (A0(e))2/ 2 + ...

= exp(i4*) + 0(e)

which completes the proof.

Proof of the Theorem: What we want to find is $(f) = DZ(t<p(t) . If (1) were linear
with Jacobian J, <p(t) would have the form

t

Kit) = exp(/(r -t0))x0 + f exp(/(r -r))u(r)dr (7)

and $(r) would simply be $i(0 = exp(J(t —t0)). The subscript L denotes the
linear case.

However (1) is not linear. To account for the boundary crossings, we isolate
them by choosing any sequence (r0t Tj, ... ttoJ such that t0 = t0, rm = t and
*i_i <Ti <ti for 1 ^ i ^ m —1. By the chain rule,

D*a<f>{Tm) = 2^(T0)9Kfm) =^(r^^Tm) ^(T^^Tm-l) •" ^(r0)^(Ti). (8)

Hence the problem is reduced to calculating $i := £*(T<„l)r'('ri) tor 1^ i ^ to.
Then « = *w*Ili-i ...#!.

Each $i accounts for exactly one boundary crossing. We will show that

*< = exp(/ri(T<-f<))exp(/r<_1(*t-Ti-l)) 1ss i *s to (9)
which will conclude the proof. Intuitively, (9) means that the boundary crossing
has no ill effect; ${ is simply the product of the $£ fc in regions ri_1 and ri.

Some sample trajectories <?(•) are shown in Figure 2 over the interval
[r<-i, Tt]. Figure 2 also shows trajectories with perturbed initial conditions
?(0 "= ?(*: xo + Ax, f0) over the same time period The perturbation is slight,
that is || ?(r*) - <p(f) || < e for t0 ^ t £ t. e > 0 is chosen small enough that ^(n)
and ?(ti) Ue in the same region for 0 ^ i ^ to. Continuity of p(*) with respect to

fWe have abused notation here. On the left-hand side, 0(e) € IS while on the right-hand side
0(e) e E?1'0*. Of course the two are not equal

LQ

-5-

the initial condition allows us to find such an e.

Define k<p(-) := ?(•) —?(•). From the definition of the derivative, $i is the
matrix such that

MTi) = *tZ^(Ti-i) + o (e). (10)

Let V be the first time (after Ti-\) such that either <p(t') or ?(t') lies on a
boundary. Similarly, let t" be the last time (before r^) such that either <p(t") or
?(r") lies on a boundaryt- Finite boundary crossings and the continuity of <p with
respect to initial conditions guarantee that £{— f = 0(e) and t" —£t = 0(e).
Hence *"-*' = 0(e).

<p(') and £(•) stay in region r^ over \ri-i, t'). Thus from (7)

Mr) =exP(/r4_1(r -n-JJ^CT*-!). (ii)

Since tt—t' = 0(e) we use the lemma and the fact that 0(e) 0(e) = o(e) to get

bp(t) =expf/^ft-r^OJMTi-i) +o(e). (12)

Similarly

Arfr4) =exp(/r<(Ti-ti))A^(i") +o(e). (13)

To get $t all that remains is to take care of the boundary crossing. We need
to find a relationship between A?(f) and L<p(t). Recall that

r

<p(t") = <p(t)+ f[f (<p(r)) +u(r)]dr (H)
*'

is the solution to (1) with initial condition <p(f). Using a similar expression for
y(t") with initial condition $(?) we get

Ap(r") =Ap(f) +f[f &(t)) - / (9(r))]dT. (15)
. t

Since t" —r* = 0(e) and / is continuous, the integral is o(e) and

Ap(f')s'MO+ »(*). (16)

Finally we combine (12). (13) and (16) to get

Apfa) =exp(/n(Ti-*)) / expC/^ft-Ti^WMTi-i) +° M (17)
which, when compared with (10), yields the desired result (9) and finishes the
proof.

For trajectories without finite boundary crossings, t" —t' &0(e) and (16) no
longer holds. For a particular perturbation of x0 (Figure 3(a)), (16) becomes

Ap(f) =exp(/rt(r- t'))ty(t>) +o(e) (18)

while for another perturbation (Figure 3(b)) it becomes

Ap(r) =exp(/rt_1(i" - f))Ap(r) +o(e). (19)
Thus $t depends on the perturbation and $ is not well-defined.

flf ?(•) does not hit a "boundary duringthe interval [t^, t4] (Figure 2(c)), then r^ =r< and
we have $t= fy —exp(/r^fa—n.^) which satisfies equation (9).

809

-6-

Appendix 2: Computer Algorithm

A computer routine for solving the variational equation using matrix
exponentials has three parts:

1) Integrate the trajectory of the original differential equation.

2) Locate the boundary crossings.
3) Calculate the matrix exponential.
Typically the differential equation would be integrated until two successive

points lie in different regions. Then a timestep-halving scheme would be used to
accurately locate the time of the boundary crossing. Next the matrix exponen
tial would be calculated and multiplied into the result. Since steps 1) and 2)
depend upon which integration package you choose to use, we will concentrate
only on the matrix exponential.

The La Grange interpolation formula (5) requires the eigenvalues of the
matrix A. Since we are restricting our attention to the three-dimensional case,
we use the closed-form solution to a cubic equation to find the eigenvalues.

When a complex conjugate pair of eigenvalues exists, the La Grange formula
can be rewritten

(20)

e^iA-XiI)
(X,-a)« + /J»

where Xj is the real eigenvalue and the complex conjugate eigenvalues are

The C functions to implement the La Grange Interpolation formula for the
three-dimensional case are given in Figure 4» There are two main functions. The
function initjrnatjBxpQ performs the one-time initialization for a particular
matrix. If the eigenvalues are too closef iniijnat_gxp() returns NULL; other
wise, it returns a pointer to a structure which contains all the necessary infor
mation for 7nat_sxp() to compute exp(At) at different values of t.

We have also included a test routine main() which can be activated by
^defining TEST on the compiler command line.

((2a - Xi)/ - A)cos(0t) + ((a - \i)/p)(A - al) + /J/)sin(/3t)

fFhere is no strict definition of close. We believe the tolerances used in the source code are
very conservative.

60S

-7-

References

1. L. 0. Chua, M. Hasler, J. Neirynck, and P. Verburgh, "Dynamics of a Piece-
Wise Linear Resonant Circuit," IEEE Trans. Circuit Syst., vol. CAS-29, pp.
535-547, August 1982.

2. T. Matsumoto, L. 0. Chua, and M. Komuro, "The Double Scroll," IEEE Trans.
Circuits Syst., vol. CAS-32, August 1985.

3. T. Matsumoto, L. 0. Chua, and S. Tanaka, "Simplest Chaotic Non-
Autonomous Circuit," Physical Review A, vol. 30, no. 2, pp. 1155-1157,
August 1984.

4. L. 0. Chua and P.-M Lin, CorrvpiLter-ALded Analysis of Electronic Circuits, pp.
687-702, Prentice-Hall Inc.. Englewood Cliffs, N. J., 1975.

5. I. Shimada and T. Nagashima, "A Numerical Approach to Ergodic Problem of
Dissipative Dynamical Systems," Prog, of Theo. Phys., vol. 61, no. 6, pp.
1605-1616, June 1979.

6. L. 0. Chua and R L. P. Ying, "Canonical Piecewise-linear Analysis," IEEE
Trans. Circuit Syst, voL CAS-30. pp. 125-140, March 1983.

7. S. M. Kang and L. 0. Chua, "A Global Representation of Multidimensional
Piecewise-linear Functions with linear Partitions," IEEE Trans. Circuit
Syst., voL CAS-25, pp. 938-940, November 1978.

8. I. N. Hajj and S. Skelboe, "Steady-State Analysis of Piecewise-linear
Dynamic Systems," IEEE Trans. Circuit Syst, vol. CAS-28, pp. 234-242,
March 1981.

9. C. Moler and C. Van Loan, "Nineteen Dubious Ways to Compute the Exponen
tial of a Matrix," SIAM Review, voL 20, no. 4, pp. 801-836, October 1978.

OTS

-8-

Rgure Captions
Figure 1. A typical trajectory for a piecewise-linear differential equation with
three linear regions.

Figure 2. Some typical trajectories <p, each making a finite boundary crossing.
Also shown is a typical perturbation p of each trajectory.

Figure 3. A typical trajectory <p, making a boundary crossing which is not finite,
(a) and (b) show different perturbations of this trajectory.
Figure 4. C source code for the evaluation of three-dimensional matrix exponen
tials.

•ITS

+(t2)

Fig. 1

4>(T) #TW)

(a) (b)

<*>(*!-,)
^(Tj-i)

+(Ti.,)

(c) (d)

Fig. 2

(a)

<jb(TM)

</>(T|-|)

r.

Fig. 3

/***»♦«****♦*******♦**♦»*♦♦**♦*♦**•»♦*♦♦♦♦♦•**♦*•♦*♦•*♦#♦♦*♦**♦♦*/

/•*♦**♦••♦**♦♦♦»♦»*♦«*••****♦♦«#»**»♦**♦•*♦•♦♦•♦*♦♦♦♦♦♦**•♦******/

^include <stdio.h>

#define FALSE 0
^define TRUE 1

tjpedef struct
I

int m_cplx;
doable" m ev[3l;
doable m_a[3][3][3];

J MATJBCP;

/*TRUE if complex eigenvalues*/
/*the eigenvalues*/
/*the three interpolation matrices*/

/♦ft***/

/*Eualuates the matrix exponential of the matrix associated with m (as
the result of a call to iniijrnatjexpu) at a gvuen time t. The result
is returned in expjxt as a 3x3'matrix.*/

mat_exp(exp_at, t, m)

doable exp at[][3], t;
MATJSXP •m;

I
int i, j;
doable exp_t[3], expO, cosO, sinO;

if (m—>m_cplx)

«*P_1[0] ar expfm—>m_ev[0]*t};
e*P—t'X = exP(m~>m—?vLi]*t);
exP—t

i

= exp t[l]*sin(m->m^ev[2]n);
exp3tlJ •* cosfon—>m_ev[2]*tj;

for (i = 0: i < 3; i++)
exP—t[i] = exp(m—>m_ev[i]*t);

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)

exp_at[i][j] = exp_t[0]*m->m_a[0][ij
exp—tfll^m-
expjt[2]*m-

mat-£xp

/*lnitializes the 3x3 matrix a for subsequent matrix exponential
evaluation. Returns a pointer to an initialized MAT_EXP structure.
If an error occurs (no more memory, eigenvalues too close), NULL is
returned. V

HAT_EXP *
init_mat_exp(a)

char *malloc();
MAT_EXP ♦m;

irvit-incLtsxp

fr9£

- 2 -

m = (HAT EXP •)malloc(si3Eeof(MAT-EXP));
if (m == NULL)

return (NULL);
e_values(a, &m—>m_cplx, m->m_ev};
if~(ev_close(m—>m_cplx, m—>m_ev))

free(m);
return (NULL);

if (m->m_cplx)
cplx_init(a, m);

real_init(a, m);
return (m);

/*Performs initialization for the complex case*/

static
cplxi.init(a, m)

doable aQ;
MAT_EXP *m;

cplozJnit

\
doable scale, b[3][3], c[3][3];

scale = (m->m_evfO] - m->m ev[l])*(m->m_ev[0] - m->m_ev[l]) +
m->nCevt2l•m->m_evt2];

mat_copy(b, a);
add_diag(b, -m->m ev[l]);
mat_mult(m->m_a[0], b, b);
add diag(m->m__a[0], m->m_ev[2j*in->m._ev[2j);
maCscale(m->xn_a[0], 1.0/scale);

mat_copy(b, a);
add_diag(bt -m->m_ev[0]);
mat_scale(b, 1.0/scale);
mat"~copy(c, a);
add~diag(c» -2.0*m->m-evfl] + m->m_ev[03);
mat~mult(m—>m_a[ll b, c);
mat_scale(m—>m__a[lj, —1.0);

mat_copy(c, a);
add_diag(c, —m—>m_e
mat
add_—ox-, — —_--,.-..,.
mat_mult(m—>m_a[2J, b, c);

t„copy(c, a);
;_diag(c, —m—>m evTln;
t_scale(c, (m->m_evTf] - m->m_ev[0])/m->m_ev[2]);
L_diag(c, m->m ev[2j);

/*Performs initialization for the real case.*/

static
real_init(af m)

doable aQ;
HAT_EXP •m;

redLinit

S9S

/♦<

/**

- 3 -

int i, j;
doable b[3][3][3]; /*b\i] is (a - ev\i])*/

for (i = 0; i < 3; i++)

mat_copy(b[i], a);
add_diag(b[fj, -m—>m_ev[i]);

mat_multfm—>m_aTO],
mat_mult{m—>m_a l]
mat""*mult(m—>m_a[2j.
for "ft = 0; i < 3; i++)

for (j = 0; j < 3; j++)
if (i != j)

mat_3caie(m->m_a[i], 1.0/(m->m_ev[i] - m->m-ev[j]));

. b

. b

. b

. b

. b

. b V

►•♦**♦♦♦♦#*••♦♦♦♦**••*•**•/

►♦**♦**♦♦*♦♦«*****♦♦•*♦**♦/

/*Copies 3x3 matrix a to a_copy.*/

mat_copy(a_copy, a)

doable a_copyQ, aQ;

\
int i;

for (I = 0; i < 9; i++)
a_copy[i] = a[i];

^r***
y***

/*Scales each element of 3x3 matrix a by alpha.*/

mat_scale(a, alpha)

doable aQ, alpha;

i
int i;

for (i = 0; i < 9; i++)
a[i] *= alpha;

/♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦•♦♦♦.♦♦♦♦♦♦*♦♦♦♦♦♦•♦*.♦♦♦♦♦♦♦♦♦♦♦♦,♦*♦♦.♦•♦♦♦/

/*Adds alpha to diagonal terms of a, i.e a = a + alpha*!*/

add_diag(a, alpha)

double alpha, aQ[3];

\
int i;

for (i = 0; i < 3; i++)
a[i][i] += alpha;

99S

mat-copy

mat-scale

adcLjiiag

- 4 -

/*3x3 matrix multiplication: c = ab.*/

mat—mult(c, a, b)

doable aQ[3]. bQ[3], c[][3];

\
int i, j;

for (i = 0; i < 3; H-+)
for (j = 0; j < 3; j++)

c[i]D] = a[i][0]«b[Q]Q] + a[i][l]*b[l][j] + a[i][2]n>[2]Q3;

mat-znult

*/

/*Finds eigenvalues of the real 3x3 matrix a. cplx is returned TRUE if
the eigenvalues are complex; FALSE otherwise. If the eigenvalues are
real they are returned in ev\d\, ev[l] and ev[2\. In the complex case,
ev\G\ is the real eigenvalue, evil] and ev[3\ are the real part and the
imaginary part of the complex eigenvalue, respectively.*/

e_values(a, cplx, ev)

int *cpbc;
doable aQ[3], evQ;

e-2jalues

I

/•♦<

/♦♦<

doable p, q, r; /*coeffs of the characteristic polynomial*/

ST

cubic(p, q, r, cplx, ev);

+ aJL21T2
"1T+ aTpiror*ar2][2'
M - atlTl
"oT*ari]rii

l>ar2T2l
2l*a?2]fo1

+ a[l][l]'a[2][2]
- aM2>a[2lt0l

+ a[2lTl]»a[l]r2l*am}rp]
- aTO t0l*ari1ri>aT2jr2l
- a[0][2]*aClj[0ra[2l[l];

+

21 -

*/
*/

/•Computes roots to cubic eon: s~3 + p*s~2 + q*s + r = 0. The roots
are returned in x. If complex roots exist, cplx is set TRUE, x\0] is
the real root, x[l\ is the real part of the complex root and x\Z[> 0
is the imaginary part of the complex root; otherwise cplx is set FALSE
and x\C\, x\l] and a£2] hold the three real roots.*/

static
cubic(p, q, r, cplx, x)

int ♦Cplx;

doable p, q, r, xQ;

I
doable a, b, c, A, B, dummy, fabsQ. pow(), sqrtQ;

a = q/3.0 — p*p/9.0;
b ss p*p«p/27.0 - p«q/6.0 + r/2.0;

cubic

LS

- 5 -

c = a*a*a + b*b;
if (c > 0.0) /*complex roots exist*/

♦cplx = TRUE;
cube—root(-b + sqrt(c), 0.0, &A, &dummy);
cube_root(-b - sqrt(c). 0.0, &B, &dummy);
xO
x'l

= A + B - p/3.0;
= -(A + B)/2.0 - p/3.0; /*real part*/
= fabs(A - B),sqrt(3.0)/2.0; /*venag part*/x[2

I
else /*all real roots*/

\
♦cplx = FALSE;
cube_root(-b, sqrt(-c), &A, &B);
xO
xTl
xf2

= 2.0^A - p/3.0;
= -A - sqrt(3.0)#B - p/3.0;
= -A + sqrtfa.O^B - p/3.0;

/•♦*•••***#•♦*•»***»*♦**♦**•*♦♦•»«*♦♦♦*♦♦•♦♦♦♦♦*♦♦**♦♦♦**»•♦♦♦♦*•/

/*Cbmputes the cube root of xr + j*xL Returns the real and imaginary
parts in yr and yi, respectively.*/

static
cube_rcot(xr. xi, yr. yi) CU&@—Z*Oo£

doable xr, xi, ♦yr, ♦yi;

doable mag, phs, cosO, sinQ, atan2(), pow(), fabsO;

if (xi = 0.0)

•yi = 0.0;
•yr = pow(fabs(xr), 1.0/3.0); . /*pow() needs positive org*/
if (xr < 0.0)

♦yr •= -1.0;

mag = po^xr^xr + xi*Ki, 1/8.0);
phs s atan2(xi, xr)/3.0;
♦yr = mag^cos(phs);
•yi =s mag*sin(phs);

/•*•*******•**••**•*•*******••+***•**•*•**••*•«**•*+«**•***♦*****/

/*Returns TRUE if eigenvalues are too close for the algorithm to be
accurate; otherwise FALSE. The relative and absolute tolerances are
chosen to be conservative.*/

^define REL TOL 0.01
#define ABSJTOL 0.01

static
ev_close(cplx, ev) eVUCLOSe

int cplx;
doable evQ;

89£

- 6 -

doable fabs();

if (cplx)
I

if (2.0#fabs(ev[2]) < REL_TOL*fabs(ev[l]) + ABSJTOL)
return (TRUE);

\
else

if (fabs(ev[0] - ev[l]) < (REL_TOL*fabs(ev[0]) + ABSJTOL) ||
fabs(ev[0l - ev[2]) < (REL_TOL*fabs(ev[0]) + ABSJTOL) ||
fabsfevfl] - ev[2j) < (REL__TOL^abs(ev[l]) + ABSJTOL))

. return (TRUE);

return (FALSE);

/* Writes the 3x3 matrix a to stdout.*/

mat_write(a)

doable aQ[3];

\
int i, j;

printf("\mnat_writeO:\n.");
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)
printf("%15g", a[i]|j]);

printfC'W);

mat^uurite

*/

/*Testxng routine*/

#ifdef TEST

main()

\
int cplx, i, j;
doable t, a[3][3];
MAT_EXP ♦m, ♦init_mat_exp();

fprintf(stderr, "\nEnter matrix eiements:\n");
for (i = 0; i < 3; i++)

for (j = 0; j < 3; j++)

fprintf(stderr, " a[%d][%d]: ", i, j);
scanf("%lf'. &a[i]D]);

if ((m = init_mat_exp(a)) == NULL)

fprintf(stderr, "no more memory or eigenvalues too close\n");
exit(l);

mcuiTi

69

- 7 -

\
do

fprintf(stderr, "Enter t (0.0 to quit): ");
scanf("%lf". &t).;
mat_exp(a, t, m);
mat write(a);

\ while (t != 0.0);

#endif

/♦♦♦•♦♦••**•*•***•******♦♦******••♦*****♦**♦*****♦•*********•****/

/♦♦♦♦♦*•♦♦••*♦•***»**•♦••#****♦*•*•••*********************♦****•*/

/»♦♦♦♦*»♦*+•♦**♦*♦**♦***•**•*♦*♦**♦••***♦♦****•*****♦**♦*********/

ULC

	Copyright noticE 1985
	ERL-85-28

