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1. Introduction

Currently, the domains of the relations in INGRES, as in most relational systems, are res

tricted to be numbers or character strings (hencefoth referred to as "primitive" data types).

This restriction substantially limits the power of data manipulation in many cases. In this

paper we propose to extend domain types in two significant ways: (a) as user-defined data

types, and (b) as "relations." In addition, a means for operators to be defined on data types is

also provided. While other suggestions for supporting user defined operators [ROW79] and

extended domains [ST084] have been made, our approach differs significantly in the closure

that it achieves. For example, user defined operators are realized within the query language

without appealing to any host language procedures. While some measure of generality is

sacrificed in the process, one gains a much needed degree of control over what the users define.

Since the semantics of user defined operators are now understood by the DBMS, unified optimi

zation can be undertaken with potential for significant performance gains.

At first glance, one might think that operators definable within the query language

would be exceedingly restricted. We do not think this is the case,, and illustrate the power of

our approach by applying the syntax to an extensive list of examples from geometric data.
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2. Extended Domain Types

In existing INGRES, relations are defined by "create" commands[ING79] of the form:

create relname(domain»format{,domain»format})

where "format" is one of the currently recognized primitive data types: {114244/4/8,01-

c255}. In addition, we assume that "binary" is also an accepted format. There are at least

three commonly occurring situations for which these do not suffice. The three are:

(a) Vectors: For this case, each element of the domain is an n-tuple, n being fixed,

eg, complex numbers or coordinates of points in the plane. In addition, the values

may be constrained (eg., to be positve). While such domains could be represented

by multiple domains, as is done currently, we need to treat each vector as an

atomic object both in data manipulation operations and for defining new operators.

(b) Entities: Here, each domainvalue is an entity, eg., "dept" in an employee rela

tion, or "manager" in a department relation. While we can usually get by with

using a numerical identifier as a surrogate for the entity, doing so causes undesir

able linguistic complications, both syntactically and semantically.

(c) Sets: Here, each domain value is a "set" of entities or values, the size of the sets

varying from set to set. For example, "children of employee" in an employee rela

tion is such a set-valued domain. This situation corresponds to that of "repeating

groups" in traditional data processing.

We propose that "create" statements be modified as follows

create relname (domname =» dtype {, domname = dtype})

where "dtype" (domain name) can be one of the following cases

(a) dtype = format, where format is one of the existing primitive data types.



(b) dtype = typename, where "typename" is the name of a user defined data type

specified by a "define type" statement with syntax yet to be specified.

(c) dtype = relname, where relname is the name of a relation.

(d) dtype = relname using domname, where "domname" is the name of a domain in

the relation referenced by "relname"

Case (a) is what exists now. Case (b) corresponds to the "vector" case. Cases (c) and (d)

represent "relations as a domain type," and corresponds to "entities" and "repeating groups"

respectively.

3. User Defined Data Types

A vector domain type is defined by using the following syntax:

define type typename(domain =typenametformat {, domain =typenameiformat})

[where qualification]

For example, we can define "date" by:

define type date(year = i2, month = il, day = il)

where 1 < month <12 and 1 <day <31

and"position" on the globe by:

define type positionGongitude =c_coord, lattitude » c_coord)

define type c_coord (hemisph « binary,angle =il)

where angle <= 90

The syntax is designed to serve two purposes (a) to allow multiple domains to be treated

atomically, and (b) to allow constraints to be expressed on a domain. We note that a "type" so

defined is a "pseudo relation" in the sense that it represents the cartesian product of its



domains when no qualification is given, and the subet of the cartesian product defined by the

qualification when one is stated. In either case, no relation need be stored.

A relation with a vector-valued domain is always equivalent to one containing only

primitive domains, together with a set of integrity constraints representing the the

qualification. For example, a domain: ship-date = date can be expressed as (ship-year = i2,

ship-month =• il, ship-day» il) with integrities on ship-month and ship-day. However, to do

so would mean a loss of atomicity of the domain ship-date Further, since integrity con

straints are expressed on relations, not domains, every time the type "date" is used, the

integrity would have to be restated. The importance of atomicity lies not merely in liguistic

economy. Our proposed means for supporting user-defined operators depends on it in a crucial

way.

4. Relation as a Data Type

4.1. Entities

First, consider the case of "entities" as a domain type This case is represented by: dtype

= relname, where an identifier in the relation referenced by "relname" is presumed. For

example, a pair of relations "employee" and "department" might be defined together as fol

lows

create emp(ID = eno = i2,ename = c20, salary = i4, works = dept)

create dept(ID = dno = i2,dname = clO, mgr = emp)

where we have introduced the keyword "ID" to denote an identifier.

We note that in our example, the two relations are mutually dependent in their

definition. While it does not mean that recursion is involved, it does pose a minor problem in

name recognition since whichever relation is first defined it would involve an unrecognized

name This can be dealt with in various ways, eg., by requiring they be defined in a single



transaction.

4.2. Repeating Groups

The case of "repeating groups" is represented by: dtype «• relname using domname A

value of of such a domain is the set of all tuples from the relation referenced by "relname"

that have the same value in the "using clause" domain. The following "create" statements

illustrate the use of this syntax:

create part(ID = pno= i2,pname » clO, colorcode = il, size = il)

create supplierGD - sno«i2, sname = clO, city = clO, poh =» inventoryusing S)

create inventory(S = supplier,P =» part, qoh = i2)

The domain "poh" (parts on hand) is a repeating group domain. A value of this domain is the

set of all tuples in "inventory" that share a common S value (which in turn is an entity

"supplier"). As a second example, consider a domain "dep" (dependents) in an employee rela

tion:

create emp(ID = eno = i2, ename = c20,salary = i4, works = dept,

dep « edepusing E)

create edep(E = emp, dname = c20, relationship = il)

Here, a value of the "dep" domain in "emp" consists of the set of tuples of "edep" sharing the

same E value (presumably, the sameemp).

5. Retrieval

Using the extended domain types and a convention due to Zaniolo [ZAN83], we can gain

a tremendous simplification in QUEL statements. The convention is that: if x is a tuple then

xJD is its value in domain D, which may be again a tuple or a set of tuples. In that case, xJD.C



stands for the value (or set of values) of xD in domain C and so forth. The effect of the con

vention is to reduce the number of tuple-variables that need to be introduced and to eliminate

the need for explicit join-clauses. For example, under the proposed extension the following

query is a legal expression:

retrieve (emp.ename) where emp.salary >emp.worksjngr.salary

In current QUEL, it would probably be stated as

range of e is emp

range of m is emp

range of d is dept

retrieve (eename) where edept =ddno anddmgr » aueno

and esalary > nLsalary

As a second example, consider finding those suppliers in New York who stock widgets in

quanties greater than 1000. This can now be stated as

retrieve (suppliensname) where city « "New York" and supplier.inventory.qoh >

1000 and supplierinventory.partpname ="widget"

A great advantage of our extension is that data at different levels of detail can be seen and

quantified simultaneously in a natural way. It is particularly well suited for "forms" inter

faces that allow the details of the different levels to be successively displayed quickly and

easily.

6. Interpretation of Extended Types as Views

A relation with a non-primitive domain can be thought of as a "view" on base relations

with only primitive domains as follows

(a) For the "vector" case, the domain can be replaced by the multiple domains



specified the "define type" statement with the qualification term represented by

integrity constraints. Thus for example "number - cx8" becomes "numbenreal =

f8, numberumag= f8."

(b) For the "entity" case, the domain can be replaced by the "identifier" of the

entity. For example, "mgr=emp" becomes "mgneno =i2."

(c) For the case of repeating groups, we can replace the nonprimitive domain by

the domain referenced in the "using clause," repeating the step if necessary until a

primitive domain is obtained. For example, "poh =» inventory using S" becomes

"pohAsno = i2."

A major consequence of the view interpretation is that any query (retrieval or update) on a

relation involving extended domain types can be translated into a query on base relations

involving only primitive domain types. However, the resulting query need not be legal

unless any operator defined on the extended domains is translatable into recognized operators

on primitive domains. Our proposed facility for defining operators will be designed to ensure

this.

7. Updates

Since with extended domains a relation can be unnormalized, updates are potentially

troublesome However, the interpretation of extended domains as views provide us with a

fallback position. All we need to ensure is that every update involving an extended domain

can be translated into a view update, which is then accepted or rejected according to the exist

ing criteria on acceptable view updates. This is a reasonable but somewhat conservative posi

tion.

For "append" and "delete" the conservative position means that there would be no pro

pagated updates. For example, it would not be possible to use "append to emp" to add to the

"dep" domain.



Propagated replacements are possible For example,

replace emp(emp.worksjngr.ename = "Jones") where emp.ename = "Smith"

will change the name of the manager of Smith's dept to "Jones" (probably an erroneous

expression for "move Smith to Jones' dept"). We note that even when it is unambiguious a

view update often has unintended sideeffects. For example,

replace (empanember-of.mgr.eno»203l) where emp.ename=>" joe"

is unambiguious, but has side effects that the user may not be aware of. Not only is the

manager for "joe" changed, but so is the manager for everyone in "joe's" department. On the

other hand, the statement:

replace (empdep.dname=«"bobby") where emp.dep.dname="robert"

is unambiguious and has no side effects. It is possible that updates involving extended domains

may lead to an increase in updates with unintended side effects. If that proves to be true, it

may require a test to determine whether an update has side effects, and to require an over-ride

before such updates are executed.

8. Defining Operators

An operator is a function, and the conventional mathematical notation for a function is

z = ftx,y, • • •)

where f denotes a function mapping variables x,y, etc. into a target variable z. The informa

tion that we need for each variable is (symbol,type),and for the function f we need to specify

its name and a formula for computation. We propose to incorporate these items of information

in a "define oper" statement as follows

define oper opname(variable=type{,variable=type})



as tvar=type

where tvar.dom=formula [if condition

[else tvar.dom=formula [if condition] ] ]

The "formula" term is any expression involving elsewhere defined operators, including those

defined on primitive types (eg., arithmetical operator). The "condition" is any legal QUEL

qualification, which may involve operators on user defined types. As an example, consider the

operation of translating a "point" in the plane The following statements define the type

"point" and the operator "translation:"

define type point(xcoord=i4, ycoord=i4)

define oper translation(p=point, a=i4,b=i4)

as pi «> point

where pl.xcoord = pxoord+a and pl.ycoord = p.ycoord+b

As a second example, consider the following defiinition for complex numbers and their multi

plication:

define type cf4(real=f4, imag=f4)

define oper cmult(u=cf4, v=cf4)

as z •» cf4 where z-real = ujeal*vjreal - udmag*vjmag

and zimag = meaPvimag + iLimag*v.real

9. Some Geometric Types and Operators

Geometric data provide a rich source of examples for datatypes and operators that would

supply a reasonable test for the power and flexibility of our proposed approach. In this section

the definition facility that we have proposed is applied to a rather extensive list of geometric

examples. In and of itself, the list may be useful in applications.



The types that we shall define are as follows

point

line (infinite and oriented)

line-segment

triangles

rectangles

polygons

9.1. Points and Lines

"Point" and "line" are basic geometric types, and are defined as follows

define type point (xcoord=f4, ycoord=f4)

define type line (phase=f4, dist=f4)

where "xcoord" and "ycoord" are self-explanatory, "phase" is the angle (0 to 360 degrees) that

the line makes with the x-axis, and "dist" is the distance from the origin to the line Of the

numerous ways that a line can be parameterized, our choice enjoys some geometric claims of

being the best. These claims will be tested by the simplicity with which operators are

defined.

For the basic types "point" and "line" the following operators are natural ones

norm (of point as vector)

define oper norm (p=point)as n=f4

where n«=(p.xcoord**2+p.yccorcf*2)**0.5

argument (of point in polarcoord.)

define oper arg (p=point) as a=f4

where a=arctan(p.ycoord/p.xcoord) if p.xcoord>0 and p.ycoord>0

10



else a=arctan(p.ycoord/pjccoord)+180 if p.xcoordO

else a=arctan(p.ycoord/p.xcoord)f360 if p.xcoord>0 and p.ycoord<0

translate (a point)

define oper translate (p=*point^L«f4,b=>f4) as pinpoint

where pl.xcoord«p.xcoordfa and pl.ycoord=p.ycoard+b

difference(between points)

define oper diff (pl=point,p2=point) as p

where p = translate(pl, p2xcoord, p2.ycoord)

move (parallel, of line)

define oper move (l=lined=f4) as nl=line

where nLphase°>Lphase and nLdist=Ldist-ki

•

rotate (a line)

define oper rotate (l=line,ph=f4) as nl=»line

where nLphase=Lphase+ph and nLdist=Ldist

intersect (whether two lines)

define oper intersect (ll=»line,12»line) as z=binary

where z=l if ll.phase 1= 12.phase or ll.dist=12xlist

intersection(point of, between lines)

define oper intersection (ll=line,12=line) as p=point

where p^ccord^ll.dist*cosine(l2.phase)-12.dist*cosine(ll.phase))/

sine(ll.phase-12.phase)

and p.ycoord==(-lluiist*sine(12.phase)+12.dist*sine(ll.phase))/

11



sine(ll.phase-12.phase)

contain (point in line)

define oper contain (l=line,p=point) as binary

where z=l if p^coord*sme(Lphase)+p.ycoord*cosine(Lphase)=Ldist

else z=0

side (which, lies the point)

define oper side (p=-pointJ«line) as s»binary

where s « 1 if 0<*arg(p)-Lphase<»180

else s » 0

distance (point from line)

define oper distance (p=point,l=line) as d«=f4

where d^p^coord!|sme(Lphase)fp.ycoord*cosme(l.phase))-Ldist

separation (between points)

define oper separ (pl=point,p2=point) as d=»f4

where d=norm(translate(pl,-p2jccoord,-p2.ycoord))

colinear (line defined by two points)

define oper colinear (pl=point,p2»point) as z=line

where z.phase=arg(diff(p2,pl))

and z^nst»(p2jrcoord*pl.ycoord - pijccoord*p2.ycoord)/separ(pl,p2)

As an example, sonsider the following relation:

create city(cid = i2, cname = clO, state = clO, location = point)

To find the distance from Chicago to New York, we can use the query:

12



range of c is city

range of cl is city

retrieve (d = distancedLlocation, c2.1ocation)) where ccname = "Chicago"

and clxname = "New York"

Line segments can be parameterized in several ways. One natural parameterization is by

the initial and final points of each segment. Thus, segments can be defined as follows

define type segment (first=>point,last»point)

The following operators involve line segments

define oper length (s«segment) as z=f4

where z=separ(sfirst^s.last)

define within (s=segment) asz»line

where z=colinear(sfirst^.last)

define oper on (p=point^s*segment) asz=binary

where z=l if separ(p,sfirst)fsepar(p,s.last)=length(s)

else z=0

define oper cross (sl=segmentTs2=segment) as z=*binary

where z=l if mtersect(sl.within^2.within)«l

andon(mtersection(within(sl),within(s2))^l)=»l

and on(mtersection(within(sl),within(s2))^2)=l

define operconnect (pl=point,p2=point) as s=segment

where sfirst=pl and s.last=p2

As an application of the type "segment," consider the relation "route" deined as follows

13



create route (rid = i2, sid =i2, section = segment)

Tofind those routes that include a section linking "Denver" and "Omaha," we can write:

range of c is city

range of cl is city

range of r is route

retrieve (rjrid) where section = connect(c.location,cl.location)

and cxname = "Denver" and clxname •»"Omaha"

9.2. Two Dimensional Shapes

The two-dimensional shapes that we shall consider are: trcdnagles, rectangles, and

polygons. The first two are vectors, while polygons with variable number of sides must be

considered as repeatinggroups. We define "triangles" as follows

define type triangle (vl»point,v2»point,v3=point)

where vi's are the three vertices of the triangle For a triangle with sides a, b, and c, its area

is given by the formula:

A= iVa2(b2 + c2-a2) + b2(a2 + c2-b2) + c2(a2 + b2-c2)
4

Since the three sides of a triangle are the distances between its vertices, we can easily (though

tediously) express the area as an operator as follows

define oper area (t » triangle) as A «* f4

where A = .25 * ((

(dist(t.vl,t.v2)**2) * (dist(t,v2,t.v3>*2 + dist(tvl,t.v3)**2 - dist(t.vl,t.v2)**2)

+ (dist(tv2,tv3)**2) * (dist(t.vl,t.v2)**2 + dist(t.vl,t.v3)**2 - dist(tv2,tv3)**2)

+ (dist(t.vl,tv3)**2) * (dist(t.vl,t.v2)**2 + dist(t.v2,t.v3),c*2 - dist(tvl,t.v3)**2)

14



Another example of an operator involving a triangle is "enclose" defined as follows:

define oper enclose (t - traingle, p = point)as e = binary

where e = 1 if side(p, colinear(t.vl, t.v2)) andside(p, colinear(t.v2, t.v3))

and side(p, colinear(t.vl, t.v3)) =1

else e = 0

There are many ways of defining a rectangle, but most obvious ones are either redundant

or require constraints. For example, it can be uniquely defined by three of its vertices, but the

six parameters involved are one toomany and the vertices are constrained to make a right tri

angle One way of defining a rectangle that is free of both redundancy and constraints is by a

triplet: (point, line, positive number). The rectangle in question can be constructedby project

ing the point orthogonally to the line and then folowing the line in its orientation for a dis

tance equal to the positive number. Thus, we have

define type rectangle ( V - point, L = line, D =» f4 ) •

and the area of a rectangle is defined by:

define oper AREA ( r => rectangle ) as A = f4 where A = distancedJ*, rX>D

Since polygons must be dealt with as repeating groups, the vehicle for doing so is via

relations. An implication of this is that we cannot define all polygons at once as a type, but

must represent the ones that are needed as a relation and store it. To represent a polygon, we

again encounter the problem of doing it without redundancy or constraint. One way is asfol

lows We first represent a convex polygon by a set of lines, the polygon being the intersection

of the half-spaces defined by the lines Then a generalpolygon, convexor not, is representedas

the algebraic sum of convex poygons. For example, we might write:

create polygon(pid=i2, side=line)
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A map showing the states would then be represented by:

create map(state=clO,shape=polygon using pid)

or the map could be combined withother information as follows

create states(sname = clO, population =i4, governor •» c20,

map = polygon using pid)

Though advantageous in some sense, the representation of a convex polygon as the intersection

of half spaces also has disadvantages. For example, the computation of area is difficult to define

A alternative way is to represent a polygon, convex or not, as a special case of an algebraic

sum of triangles, eg.,

create polygon(pid=i2, sign=binary, componente=triangle)

create states(sname=clO, population=44, governor=c20, map=polygon using pid)

Then, to find the area of each state, we can use the query: '

range of s is states

retrieve (s^name, size=sum( area(sjnapxomponent) by ssname))

This might be viewed as the penultimate example, since it combines many of the features that

make QUEL powerful: aggregate function, relation as a data type, user-defined operator, and

nesting of these constructs.

10. Conclusion

In this paper we propose an extension to QUEL that consists of: (a) allowing vectors and

relations to be domain types, and (b) allowing vectors to be the basis of a facility for user-

defined operators. Vectors together with the operators defined on them provide a way of

significantly extending the semantics of INGRES. "Relation as a data type" provides a means
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for achieving great linguistic simplification and for allowing user expressions that more

closely match user conceptualization of data.

A number of further generalizations are possible First, we have avoided "recursion" in

defining domain types. It may be a desirable feature to add especially since it is easily incor

porated into the proposed syntax. For example, consider a relation:

create assemblyOnaster = part, sub = assembly)

To do a "parts explosion," one need merely to print out the relation "assembly."

A second interesting direction of generalization is to generalize "aggregation" operators to

include user-defined set operators that can be qualified. For example, "the minimum distance

between *New York' and Denver* via interstate routes" might be such an operator. While we

believe that the building blocks of doing this are now available the details are not yet at hand.

A third area of generalization concerns geometric data. Polygons are an example of col

lection of elementary geometric elements. More generally, one can define "point groups," "line

groups" and "segment groups." A polygonal path, for example, is a segment group with a con

straint. In terms of the constructs that we have introduced in this paper, these are all repeat

ing groups, and can be used as domain types. Finally, in addition to geometrical data, textual

data also provide interesting examples of both "types' and "operators." Some of these are given

in [WON83],
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