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Abstract

The variational formulation and computational aspects of a three dimen
sional finite strain rod model considered in Simo [1985] are presented. A partic
ular parametrization is employed that by-passes the singularity typically associ
ated with the use of Euler angles. As in the classical Kirchhoff-Love model, rota
tions have the standard interpretation of orthogonal, generally non-
commutative, transformations. This is in contrast with alternative formulations
proposed by Argyris et.al [1979,1981,1982], based on the notion of semi-
tangential rotation. Emphasis is placed on a geometric approach which proves
essential in the formulation of algorithms. In particular, the configuration
update procedure becomes the algorithmic counterpart of the exponential map.
The computational implementation relies on the formula for the exponential of a
skew-symmetric matrix. Consistent linearization procedures are employed to
obtain linearized weak forms of the balance equations. The geometric stiffness
then becomes generally non-symmetric as a result of the non-Euclidean charac
ter of the configuration space. However, complete symmetry is recovered at an
equilibrium configuration, provided that the loading is conservative. An explicit
condition for this to be the case is obtained. Numerical simulations including
post-buckling behavior and non-conservative loading are also presented. Details
pertaining to the implementation of the present formulation are also discussed.
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3-D Finite Strain, Bod. Computational Aspects 2

1. Introduction.

This paper is concerned with the variational formulation and numerical
implementation in the context of the finite element method of the three dimen
sional finite strain rod model considered in Simo [1985]. We recall that this
model is essentially a re-parametrization of an extension to the classical
Kirchhoff-Love model, developed by Antman [1974,1975] in the context of a
director approach, which includes finite extension and shearing of the rod. The
parametrization employed here, however, avoids the use of Euler angles and its
associated singularity, and plays a basic role in the computational implementa
tion. In the context of aircraft dynamics, issues concerning alternative
parametrizations are addressed in e.g., de Veubeke [1976] and Kane [1983].

A basic feature of the present approach concerns the treatment of the rota
tion field of the rod. In the present model, as in the classical Kirchoff-Love
model, rotations have the traditional meaning of orthogonal transformations in
Euclidean space. We recall that orthogonal transformations constitute a non-
commutative (Lie) group referred to as the special orthogonal group, S0(3).
This approach is in contrast with that proposed by Argyris and co-workers
[1979,1981,1982] in which the standard notion of rotation is replaced by the so-
called semi-tangential rotation. Thus, for the present rod model the
configuration space is no longer linear, but becomes a differentiabie manifold.
The dynamical description of the heavy top furnishes another familiar example
of dynamical system whose configuration space, SO(3), is a (nonlinear) manifold
(e.g. Marsden, Ratiu & Wenstein [1984]). This example is in fact closely related
to the Kirchhoff-Love model through the so-called kinetic analogy (Love [1944]).

The finite element procedure developed in this paper is based on a varia
tional formulation, discussed in Section 4, of a precisely stated set of partial
differential equations summarized in Section 2. We emphasize that these equa
tions reduce to the classical Kirchhoff-Love model for vanishing shearing and
small axial strains. For this model, a numerical treatment restricted to circular
cross sections and particular loading is considered in Nordgren [1974]. Con
sistent linearization procedures, Marsden & Hughes [1983], are employed to
obtain the linearized weak form of momentum balance. The resulting global
tangent operator is characterized by possessing a non-symmetric geometric
stiffness. This lack of symmetry arises from the non-commutativity of the spe
cial rotation group, S0(3). Argyris et. aL [1982] pointed out that this lack of
symmetry inevitably arises at the element (local) level, although it is stated that
symmetry is recovered upon assembly at the global level (Argyris et. aL [1982,
pag. 2]). Such a result is attributed by these authors to a deficiency of the clas
sical definitions of moment and rotation, and motivated to a large extent their
adoption of a numerical formulation entirely based on the concept of semi-
tangential rotation introduced by Ziegler [1977]. On the other hand, in the con
text of a classical formulation of rotations, it is shown in Section 5 that

(i) The global geometric stiffness arising for the (consistently) linearized weak
form is non symmetric, even for conservative loading, at a non-equilibriaim
configuration.

(ii) At an equilibrium configuration the linearized tangent operator is always
symmetric provided the loading is conservative. A condition for this then
follows, with a structure similar to that discussed by Schweizerhof and
Ramm [1984] and Bufler [1984] for pressure loading.

(iii) Upon discretization, from (ii) it follows that both the global and the local
(element) geometric stiffness matrices are symmetric at an eg^Uibrvum
configuration.
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J. C. Simo and L. Vu. Quoc 3

Emphasis is placed throughout the formulation on a geometric approach
that enables one to formulate efficient algorithms. A configuration of the rod is
described by a vector field giving the position of the current line of centroids
and an orthogonal "moving" frame which physically models the cross section.
The moving frame is positioned by an orthogonal matrix, and the vorticity of the
frame becomes the rotational degree of freedom. The configuration update pro
cedure then becomes the algorithmic counterpart of the so-called exponential
map. Conceptually, for the problem at hand the procedure amounts to the fol
lowing: for fixed S€[0, L], the incremental (infinitesimal) rotation, defined by a
skew-symmetric matrix, is first "exponentiated" to obtain a finite rotation
defined by an orthogonal matrix. This matrix is then multiplied by the existing
rotation (another orthogonal matrix) to complete the update. This procedure
relies crucially on the closed form formula for the exponential of a skew-
symmetric matrix4 This formula, referred to as Rodrigues' formula in the
sequel, enables one to evaluate exactly the exponential of a (possibly non-
constant) skew-symmetric matrix. In addition, by making use of Rodrigues* for
mula, it is possible to obtain a simple closed form expression for the derivative
of the exponential map, which plays a crucial role in the evaluation of the curva
tures of the rod. A detailed discussion of the finite element formulation and the

configuration update procedure is presented in Section 6.
From a computational standpoint, an implementation based on the use of

quaternion parameters proves to be the optimal choice that avoids singularity
and minimizes storage requirements. The relevant practical aspects of this
implementation are discussed in detail in Appendix II.

The formulation discussed in this paper is illustrated in Section 7 through a
set of numerical simulation including plane and three dimensional problems,
and both conservative and non-conservative loading. An effort has been made to
compare the results with those in the existing literature, as in Argyris
[1981,1982], and Bathe [1979].

2. Finite strain beam model. Summary.

In this section we summarize the basic features of the rod model employed
in this paper. We recall that this model is essentially equivalent to that
developed by Antman [1974] in the context of a director type of formulation, as
an extension of the classical Kirchhoff-Love rod model, Love [1944]. This exten
sion accounts for finite extension and shearing of the rod. The two dimensional
version of this model is due to Reissner [1972].

Kinematic description (See Fig. 2.1) Let iti(S,£)jf/=i.2.sj represent the
orthonormal basis vector of a moving frame attached to a typical cross-section,
where S'efO.LjclR denotes the (curvilinear) coordinate along the line of cen
troids of the undeformed beam, and t €3R+ is a time parameter. The origin of
the moving frame is fixed at the centroid of the cross-section, and t$(S) remains
normal to the section at all times. The fixed reference (material) basis of the
same section is denoted by {$(S)Ji/=i,8,3|. so that (t[(5,0)}(/ssi,2.gjs
te(S)J{j=1,2,gj. for S e[0,£]. The fixed spatial basis is denoted by \ei\\i=ia,3\. In
what follows, for simplicity we assume $ constant, so that spatial and material
basis may be taken as coincident, i.e., ^aE^, for k =1,2,3. The orientation of
the moving frame {tj(S,0if/=i.2.aj along Se[0,I], and through time £eJR+, is
specified by an orthogonal transformation h(S,t) = Ay(S,£) e* ® Kj | such that

%This formula is closely related to the one often ascribed to Rodrigues. See, e.g., the foot
note onpag. 165 of Goldstein [19B1], Argyris [1862], and Kane et. al. [1883].
t Summation convention on repeated indices is implied, and ® denotes standard tensor pro-
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3-D finite Strain Bod. Computational Aspects

Fig. 2.1. Kinematic description of the rod for the
plane problem. Definition of various frames.

tj(S,t) = A(S.OEj = Atf(S,*)e£. (7=1.2.3). (2.1a)

The position x<, gR3 of the centroid of the cross section (Le., the origin of the
moving frame) is defined by the curve

Sb =0o(S.O = 0Qi(S.*)ei. (2.1b)

Accordingly, the set C of all possible configurations of the rod is defined by

C k \ 0 3 (0O>A) 0O:(O,-O-*R3. A:(O.I)-»S0(3) J (2.1c)

Here, SO(3) is the special orthogonal (Lie) group. See Fig. 2.1. The alternative
expressions in the spatial and material descriptions, of the derivatives of the
orthogonal transformation (Stt) -*A(S,t) are summarized Box 1.

duct.
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/. C. Simo and L. Vu Quoc

BOX 1. Derivatives of moving frame

Spatial

aAa5^ =°(S'*)A(s.O

Qi
0 -0>3 "2

Wg 0 -Oj

-W2 "i 0

o= wiex + «2e2 + cj3eg

— /Cjtj + /Cgtg + tfgtg

^pi-=W(S.OA(S,0

= fiJjtx + €u2te + ®2tg

Material

dA(S,t) =A(g0jg(5t0

jt4
0 -«3 *2

/C3 0 ~~^i

-IC2 Kl 0

IT = /CjEj + KgEg + /CgEg

^^-=A(5,f)W(5.0

W S itfjE! + tw2E2 + i^gEa

Notejthat AAr = 1 and that K+ K? =0, Q+ QT = 0. Similarly, W+Wr = 0, and

Stress resultants and couples. Conjugate strain measures. Denoting by
P s S Tr ® Ei the non-symmetric (first) Piola-Kirchhoff stress tensor, the stress

/=i.s

resultant, n = n^ %, and the spatial stress couple, m = m^ e^, over a cross sec
tion TcIR2 in its current configuration, are defined as

n k f T3dr; m k f [x- fo(S,t)] xT3 dT (2.2)

The material stress resultant, N = Nj Ei and stress couple, M = MjEi, are
obtained by transforming n and m to the reference configuration (pull-back);
Le.,

n(S.t) = A(5,0N(5). m(5,0=A(5,0H(S) (2.3)

Note that the components of n and m in the moving frame jtjj are identi
cally the same as the components in the basis {EjJ of N and M, respectively; Le.,
n = Nj tj and m = Mj t|. Similarly, the components of a in the moving frame
equal those of ITin the material frame, as shown in Box 1.

Appropriate strain measures conjugate to the corresponding stress resul
tant and stress couple are obtained through the stress pouter equivalence

f PiFdTdS= /[n-7 +m-a>]d5= f [N-r+ M-Jr]dS (2.4)
TxXoj.] [Q.L] [CU]

where F is the deformation gradient, and a superposed "dot" denotes time

differentiation. Here, (• ) - a7"(*) ~ wX (•) denotes the co-rotated rate; that is,
the rate measured by an observer attached to the moving frame. The expres
sions of the spatial and material conjugate strains are summarized in Box 2.
below.

April 22. 1985
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3-i? Finite Strain Bod. Computational Aspects

BOX 2. Strain measures

spatial

30O(5,Q
7 35 *

£J

material

=Arg0o(g-O
35

ff=Ar »

Eg

Remark 2.1. The following relation between the spatial and material strain
rates should be noted

6> = A~-A7'fi> = Ai: (2.5)
V

These relations show that (. ) is a particular form of Lie derivative in which
pull-back/ push-forward operations are performed with A See, Marsden &
Hughes [1983, Sec. 1.7] •

Balance laws and constitutive equations. Local form. We summarize below
the system of partial differential equations to be solved, consisting of the bal
ance laws and constitutive equations expressed in local form. The spatial form
of the local balance laws is given by

3

7 =*W*T? =^-

35

dS
+ n = pA$t

30oOvtn
m+ ~xn+ m = plw+ wx[plw],

(2.6a)

(2.6b)

where A and I denote the area and inertia tensor of a cross section at 5e(0,X),
andp =p(S) is the mass density (per unit of reference length). In addition, con
stitutive equations expressed in the spatial descriptions take the form

_ di/(S,y,a)
do

Alternatively, in the material description one has the expressions

N=M|L*L ^ i.W<g.l), (2.8)
The functions if and ^ are subjected to the invariance requirements under
superposed rigid body motions, Naghdi [1972], Antman [1972]. Finally, one
defines the material elasticity tensor according to the expression

8* 3*

3^(5.-y.6>)
and m

C(5,I\*) a
3rer

3*

dTdK

3*

dTdK dKdK

(3.7)

(2.9)

The spatial form of the elasticity tensor can be also defined. In the development
that follows, C is often assumed constant and diagonal; hence given by

C = Diag [GAU GA2, EA, EIU EI2. GJ] (2.10)

Here, GAt and GA2 denote the shear stiffness along ^ and tg, EA is the axial
stiffness, EIX and EI2 are the principal bending stiffnesses relative to tx and tg,
and GJ is the torsional stiffness of the rod.

April 22. 1985

is V 3



c/". C. Simo and L. Vu Quoc 7

This completes our summary of the rod model considered in this paper.
The numerical treatment to be developed hinges on the the variational form of
the equations summarized above, and considered in Section 4.

3. Admissible variations. Consistent linearization.

A distinct characteristic of the model problem summarized above is that
the configuration space C is a differentiable manifold and not a linear space,
due to presence of the special orthogonal group (S0(3)) in the definition of C. In
this section we first consider the appropriate definition of admissible variations
which play an essential role in the variational formulation of the governing equa
tions. The consistent linearization of the strain measures summarized in Box 2
about an arbitrary configuration is considered next. These results are essential
for the linearization of the variational equations addressed in Section 4.

3.1. Admissible variations.

Consider an arbitrary configuration of the rod specified by the position of
its line of centroids and the orientation of the moving frame; that is

0(5)S(0O(5),A(5))<=:<7 (3.1)

We construct a perturbed (or varied) configuration relative to 0(5), denoted by
0e(5) as follows. Let i7o(5) = i70i ^ be a vector field interpreted, for e>0, as a
superposed infinitesimal displacement onto the line of centroids defined by
0o(5). In addition, let 0(5) be a skew —symmetric tensor field interpreted, for
s > 0, as a superposed infinitesimal rotation onto the moving frame defined by
A(5), with an axial vector £tf(5). In components we have

Vo(S) = 77ot ej. 9(5) = ©^(5) ej 8 ej (3.2)

The "perturbed" configuration 0C(5) s (0oc(5),Ac(5)) eC is then obtained by
setting

0o£(S) = 0o(S) + eVo(S), Ae(5) = exp[e e(5)]A(5) (3.3)

It should be recalled that finite rotations are defined by orthogonal transfor
mations, whereas infinitesimal rotations are obtained through
skew -symmetric transformations. By exponentiation of a skew-symmetric
matrix (infinitesimal rotation) one obtains an orthogonal matrix (finite rotation).
Thus, (3.3)2 is constructed so that A« remains orthogonal and thus defines a pos
sible orientation of the moving frame. Hence, by construction, 0ceC, for all
eeR

Let us denote by so (3) the (lie) algebra of all skew—symmetric tensors. Given a
skew-symmetric tensor, 9eso(3), it is often more convenient to work with the
associated axial vector, denoted by #e]R3, and defined so that

8h =tfxh, for any heR3 (3.4)

We note that a and K in Box 1 are simply the axial vectors of CI and K, respec
tively. Similarly, w is the axial vector (angular velocity) associated with W. Hen
ceforth, a pair 17(5) = (i70(5),tf(5))€]R3xlR3 will be referred to as an admissible
variation. The first argument, 17o(5), is interpreted as an infinitesimal displace
ment of the line of centroids, and the second argument tf(5), is interpreted as a
superposed infinitesimal rotation onto the moving frame.

For simplicity, in what follows attention is focused on the boundary value
problem in which displacements and rotations are the prescribed boundary

April 22, 1985
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3-D Finite Strain Bod. Computational Aspects 8

data. Accordingly, the set of kinematically admissible variations (at the iden
tity), denoted by T^C in the sequel, is given by

T^C^\V(S)^(ri0(S),^(S))eTRaxR3 | Vo
Se\Q.L\

s tf 5 6(0.11 = 0! (3.5)

In geometric terms one says that T^C f is the tangent space at the identity of
the configuration space C.

Fig. 3.1. Geometric interpretation of the
exponential map.

Remark 3.1. Within the geometric context outlined in this section,
9 = ©i,- et ® e;- corresponds to a spatial infinitesimal rotation defined on the
tangent space T^C. Alternatively, one may consider the material counterpart
9* defined as

9* k Ar9A, where 9* = ©JJ^Ofy

Upon recalling the property of the exponential map in 50(3) that

t Strictly speaking, elements of the tangent space T^C at 0 a (0o.A) are of the form
(tjq, 8 A). See eq. (3.9) where the tangent to a curve of configurations is explicitly computed.
Due to the one-to-one correspondence "between R3 and so(3), 8 may be replaced by its axial
vector -*. In addition, with a slight abuse in notation, A will be often omitted. This justifies
the notation employed in (3.5).

April 22, 1985
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J. C. Simo and L. Vu Quoc 9

Arexp[9]A = exp[A7'9A] (3.7)

where Ae50(3) and 9eso(3), it follows that (3.3)2 may be expressed in the
equivalent forms

Ae = exp[e 9]A s Aexpfe 9*] (3.8)

The geometric interpretation of these relations is contained in Fig. 3.1, and
leads to a simple update procedure discussed in Section 5.2. Geometrically, 9
defines an (incremental) tangent field onto the current configuration given by
An. A subsequent configuration is obtained by means of the exponential map
simply by setting An+1 = exp[9]An. Note that 9Are7TfdBnMtyC; that is, an
infinitesimal rotation superposed onto the reference configuration. Thus, an
equivalent update procedure is furnished by A^j =An exp[9^]. See Fig. 3.1. •

3.2. linearization of strain measures.

Here, we consider the linearization of the strain measures summarized in
Box 2. The basic set-up is as above: Given a configuration 0 s (0O, A)€C we con
sider an admissible variation ij s (rjo^^T^C and the corresponding super
posed configuration $e€£7 defined by (3.3). To systematically carry out the
linearization process, we make use of the notion of directional derivative. First,
we note that for the superposed configuration defined by (3.3), by taking the
directional derivative one has

»*>-vo A £

ds

0o£(S)=i?o(S)

A rf (3'9)27A.9 k £- Ae(5) =9(5) A(5)

Next, we proceed to linearize the strain measures in Box 2 about the
configuration #eC.

Linearization of Q and K Making use of the definition of Q in Box 1, we
have

Q« =̂ -A?=(dex^e@h exp[-s•] +exp[£ 9]Qexp[-s9] (3.10)
To proceed further, one needs to compute the derivative of the exponential of a
skew-symmetric matrix. This is done in Appendix I and relies crucially on the
following formula, which is closely related to Rodrigues* formula (Goldstein
[1981], Argyris [1982], Kane [1983])

exp[9(5)] =I+i+*m (9 +9s) (3.1 la)
Here, tf(5) is the axial vector of 11(5), and is the so-called pseudo-vector of rota
tion (see Appendix II). tf(5) is related to the axialvector tf(5) of 9(5) according
to the expression

*=*tai?K3)* (3-ub)
The expression for the derivative of the exponential of a skew-symmetric tensor
then takes the form

(cfege^ exp[_8] =-rfgsV +*«-**) (3.11c)

April 22, 1985
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3-D Finite Strain Bod. Computational Aspects 10

where 9' k dB/dS. By replacing 9(5) by e9(5) in (3.11b) and (3.11c), taking
the derivative relative to e and particularizing at e = 0, it follows that

d

de
e=0

(dexp^9l)exp[.£Q3 =Q,
(3.12)

Therefore, with the aid of (3.12), the directional derivative of (3.10) may be
expressed as

270.9 =
de

ne = 9+9Q-Q9
e=0

- a 7*
aAe

Similarly, since Ke =AJ -r^; an analogous calculation shows that

DK.B k 4- K* =AT&'K
de c=0

(3.13)

(3.14)

Linearization of o and K. In order to obtain the linearization of a(S) one
simply needs to express (3.13) in terms of axial vectors. For this purpose, recall
that the commutator (lie bracket) of two skew-symmetric matrices may be
expressed as

[9,Q]h k (9Q-Q9)h=(tfxo)xh, forany heR3.

Therefore, formula (3.13) in terms of axial vectors becomes

(Da.*) xh = (* + ^x»)xh, for any heIR3

(3.15)

(3.16)

The linearization of JTnow follows at once from (3.9)2, (3.16) and the relation
Ke = A/cjc. The result is given by

(DK.*)xh=(£r
e=0

iOxh=(A7>)xhf (3.17)

for any helR3. The same result is obtained by expressing (3.14) in terms of axial
vectors. Finally, the linearization of r may by obtained with the aid of the direc
tional derivative formula; Le.,

4 J.jPr-iy £
de P« = dT (^Oe-*)

8=0e=0

dS dS

(3.18)

Remark 3.2. Note that the spatial counterpart of the linearized material
strain measures DK<*& and DT*rj is given by the expressions

6o.& k KDK*&, d7.11 k AZJr.tf (3.19)

The complete analogy between (3.19) and (2.5) should be noted. •
For convenience, the linearization of the strain measures in the spatial and

material descriptions is summarized in Box 3, where a superposed "prime"
designates d/ dS.

April 22, 1985
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BOX 3. Linearized strain measures (rj = (flo,'0)^T^C)

spatial material

57-ij = u' -tf Xtg i?r.i7 = Ar[u' -*x0'o]

60. * = *' £>*.<* = A7'tf'

11

4. Weak form of balance equations. Tangent operator.
Consider again any arbitrary admissible variation

77(5) s (t7o(5),j*(5))€7t^C. In what follows, attention is restricted to the static
case. By multiplying the spatial local forms (2.6a,b) of the balance laws equa
tions by 17(5) one obtains

G(0.i dm . <*0l) * ^[(|f-+a).i,0 +(^-+^-Xn +m)-l>]<lS =0 (4.1)
Since the variation i7(5)e7^C vanishes at the boundary, integration by parts of
(4.1) leads to the so-called spatial version of the weak form of momentum bal
ance, expressed as

dVt rf0c

- f (fi-i7o + m-tf)<£5, (4.2)

for arbitrary 17 = fao.^eT^C An entirely analogous procedure leads to the
statement of the weak form of constitutive equations. However, henceforth we
shall be mainly concerned with the development of a displacement type finite
element formulation. Accordingly, we assume that constitutive equations (2.8)
hold strongly, or point-wise.

To perform the linearization of the weak form of momentum balance, it is
convenient to rephrase (4.2) in material form. By making use of relations (2.3)
we obtain the following alternative (material) expression of (4.2)

CM]
N.Ar[ d^.-tfX^£_]+M.Ar^.d&

dSdS dS
dS

- /"(fi-i7o +m-tf)d5, (4.3)
[M]

for arbitrary 17 s (ifo.*)e7fC

4.1. Consistent linearization. Tangent Operator.
A complete account of linearization procedures relevant to the problem at

hand is given in Marsden &Hughes [1983, Chap^ 4]. Here, we proceed in the con
text discussed in Section 3. Denote by L[G($,rj)] the linear part of the func
tional G($,ij) at the configuration 0 = 0; by definition we have

£[G(0.i7)] = G(#.i7) + £G(0.i7)'A0 (4.4a)

where, as in Section 3, the (Frechet) differential DG($,rj) is obtained through
the directional derivative formula

April 22, 1985
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3-D Finite Strain Bod. Computational Aspects 12

DG($,7]) -A0 = jj-
e=0

G(0+eA0,i7). (4.4b)

and A0s(uo.f')e:7,^C is an admissible variation. The physical interpretation of
(4.4a) is standard. The term G($,ri) supplies the unbalanced force at the
configuration 0eC and the term DG(ip,rj) • A0, linear in A0, yields the so-called
tangent^stiffness. Of course, if JeC is an equilibrium configuration, we must
have 6(9.17) =0 for any 17c7^C.

The weak form (4.3) may be rephrased in a more compact form by intro
ducing the following notation. Define material and spatial vectors of resultant
stresses and stress couples, R and r, by setting

R =
_ •

N
» >

n
w — '

M t r —
M

= IIR, where II k
A O

O A

In addition, introduce a matrix differential operator H defined as

~T A w1 [*'°x]

dS

(4.5)

(4.8a)

Here, (•)' denotes differentiation with respect to 5, -j=-l is the block diagonal
aS

operator defined below, and 1 = Diag [1,1,1] is the indentity matrix. In addition,
[0'o*] is the skew-symmetric matrix associated with the axial vector
0'o = 0'oi eii i.e.,

0 -0'c3 002

[*'o*]= *'o3 0 -0'O1
-002 #'oi 0

"With this notation at hand, equation (4.3) may then be recast as

G(0.i?) = /[(E^MIIR) - i7-r]d5
[W]

where r7 k {n, m]T. To obtain the linear part (4.4) of (4.7) we need to obtain
the expression for the linearized constitutive equations. First, note that with
the aid of S defined by (4.6a) the results in Box 2 may be expressed as

3 ftTZTW,

Jr1^^^^ <4-6b>

DK.4

Thus, on account of (2.9), the linearized internal force is given by

2>r.a* =e^ =eflyg7'A0,
where C is the (material) tangent elasticity tensor given by (2.9). Note that A,
Ju, and a represent the quantities A II, and S evaluated at 0 = 0. linearization
of (4.7) leads to :

(4.10)DG($,tj) •A0 = DiG($,ri) •A0 +D2G($,ri) •A0

(4.7)

(4.8)

(4.9)

The first term in (4.10) is due to linearization of the internal force R, and
corresponds to the material part of the tangent stiffness matrix. The second
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term gives rise to the geometric part of the tangent stiffness matrix, and results
from the linearization of the operator [H IT| defined in (4.6). For the first term
in (4.10) we have

DxG{$,ii).t4 = f (§ri|)-(fe2rA*)cIS. (4.11)
[OX]

where c = ft C fl^is the spatial form of the elasticity tensor. The second term
in (4.10) may be expressed as

D2G($,ri) •A0 = f (*T 17)-(B *r A0) dS (4.12)
[OX]

where, ^ is a matrix differential operator defined as follows

d .

^ k
dS

O

0

(4.13)

dS

and B is the so-called geometric stiffness matrix which for the problem at hand
takes the form | r

O O [-nx]
B k O 0 [-mx] (4.14)

[nx] O [n8*'o-(if#'o)l]

In (4.12). B denotes the matrix B evaluated at 0 = 0. Recall that [(•)*]
denotes the skew--symmetric matrix whose axial vector is given by (•). Inspec
tion of (4.14) reveals that the geometric stiffness B is generally non-symmetric.
Hence, it appears that the geometric tangent operator given by (4.12) is non-
symmetric. We show next that this is indeed the case only if the configuration
0eC is not an equilibrium, configuration.

4.2. Symmetry of the tangent operator at equilibrium. Potential.

To examine the nature of the lack in symmetry of the tangent ££(0,17).A0
we consider the skew-symmetric part given by

[DG($,i))-A$]A 4/?2^(0.i?)-A0-Z?2G(0,A0)-i7s / (*Tq).(&*T A0)d5 (4.15)
[OX]

where B4 k }£(B-Br). Since by construction 17 s (170, tf) and A0 =(uo,fr).
expanding (4.15) we have

[DG($,rj)'ty]A = nm.[tfx^'-^xtf'] +n.ftx(tfx£'0) -tfx(^x£'0]j dS
[OX]

= f fm.(tf x^)' +n.[(^.$'o)* - (*-$'0)i>]ldS
[OX]

= f\m.(*
[OX]

xf)'-n.[(«xf)x0'o]Jd5

Integration by parts of (4.16) finally yields

[DG($,tj) •A0}4 =- f [m' +0'o x n +m]. (*x^) dS
[OX]

+ f m.&xDdS +[m.(tfx^)]
[to]

*Note that in component form[n®0o] y =*H 0oj«
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It follows that for our choice of T+C given by (3.5) m.(^xf) selo,L\ =0. In addi
tion, the first term in (4.17) is simply the weighted form of the the static version
of the local balance of angular momentum equation (2.6b). Accordingly, this
term vanishes at an equilibrium configuration. Thus, (4.17) vanishes identically
provided that m = 0 point-wise in (0,L)cJR and the configuration is in equili
brium.

Remark 4.1. The condition of no distributed moment m = 0, appears to be
in agreement with the fact pointed out by Ziegler [1977] and elaborated upon by
Argyris and co-workers [1978.1980,1982], that loading by "moments with fixed
axes" is non-conservative. Note that although •$ and & are admissible
(infinitesimal) rotations, tfx^ is not an admissible infinitesimal rotation.
Nevertheless, the boundary term m. (tfx^) se\o.u =0 in (4.17) vanishes identi
cally for most boundary conditions of practical interest, such as simply sup
ported, clamped, or free end. Other boundary conditions which result in cancel
lation of this boundary term are possible. However, this term does not vanish
for the case of an applied end moment with "fixed spatial axis," and thus this
type of loading is non-conservative (see, e.g., Argyris and co-workers [1978]).
The condition of conservative loading expressed by

f m.(#xf)dS +[m.(*x^)] 56|0<XJ =0 (4.18)
[OX]

is analogous in structure to that arising in pressure dependent loading (Bufler
[1984], Schweizerhof &Ramm [1984]). •

In view of expression (4.17) the following conclusion can be stated
(i) At an equilibriwm configuration, the symmetry of the tangent stiffness

depends solely upon external loading and boundary conditions; e.g.,
depends on whether the loading is conservative. The possible lack of sym
metry at an equilibrium configuration is not related in any way to the pres
ence of the classical rotation group S0(3) in the configuration space. The
fact that a potential exists if (4.17) vanishes is the result of a well-known
theorem due to Vainberg (see Marsden &: Hughes [1983, Sec. 1.7] for a dis
cussion in the general context of manifolds).

(ii) At a non-equilibrated configuration, the tangent operator is non-symmetric
in general, even for conservative loading. The reason for this is again found
in the fact that the configuration space C is a manifold. This conclusion is
a particular instance of a general result in analysis in manifolds discussed
below.

Remark 4.2. (Potentials) Assume in what follows that m 3 0 in (0, L), and
for simplicity let us consider the boundary condition in (3.5). Within the general
context of the dynamic problem, the following functional II: C -» R defined by

II(w, 0) k 7X0o.w) + f *(T,X}dS -

where

7X00.w) k ftf p>4||0o||2d5 +%f p(w.Iw)d5, (4.19b)
[0X] [ox]

furnishes the total energy (Hamiltonian) of the system. Here, 7(0 0,w) is the
kinetic energy of the rod, and i>(T,k) is a properly invariant (see, Antman
[1972]) stored energy function, an example of which is givenby

T(0o.w) + f *(T,k)dS - f n.0od5 (4.19a)
\o.L] [fix]

f(r,k)=%[TT KWDiag[GA1,GA2.EA,EI1,EIz,GJ] (4.20)
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For the static case, the first variation of (4.19a) yields the weak form (4.3), and
the second variation about a configuration 0eC leads to the linearized weak
form (4.10). The critical points of11(0) are the equilibrium configurations 0.

A general result of analysis in manifolds states that the second variation of
a map U:C-*R is symmetric at the critical points of II (Spivac [1982, pag.241]).
Indeed, the Hessian of II makes sense only at the critical points of II (Abraham
and Marsden [1978]). This general result is in agreement with conclusions (i)
and (ii), in the sense that at an equilibrium configuration the tangent stiffness is
symmetric. •

5. finite Element Formulation.

In this section we consider the finite element formulation of the variational
equations discussed in Section 4. Our treatment makes use of uniformly
reduced integration on the pure displacement weak form, to avoid shear lock
ing. For the linear problem the equivalence between uniformly reduced
integrated forms and mixed methods is well known; (see, e.g. Stolarski et. al.
[1984] where the equivalence with alternative approaches such as the "mode
decomposition technique is also shown). For the finite deformation plane prob
lem, the equivalence with mixed methods has been dealt with by Noor and co
workers [1981]. Notice that for the one dimensional problem no spurious zero
energy modes appear as a result of reduced integration. ' This is in sharp con
trast with the plate or shell problem (e.g., see Hughes & Tezduyar [1980],
Criesfield [1984], Beiytschko, Stolarsky &Carpenter [1984]). Details pertaining
to the discretization and finite element arrays will be considered first. The
update procedure which plays a crucial role in the formulation, is examined sub
sequently.

5.1. Discretization and F.E. arrays.
B

Consider a standard finite element discretization [0,L] = u /£ where
8 —1

/fc[0,I] denotes a typical element with length h >0, and E is the total number
of elements. The space of admissible variations T+C is approximated by a finite
dimensional subspace T*c7^C As usual, the calculations are performed on an
element basis. Accordingly, let A0f be the restriction to a a typical element J?
of the incremental displacement field-rotation field A0fc s (u6\tf*)eV* super
posed onto the configuration 0s(0o.A)eC The incremental displacement-
rotation field A0^is then interpolated in terms of shape the functions according
to

net

/al /=!
nfc(S) =2#j(S)itf; *?(5) = f,Nj(S)^ (5.1)

Here, nel represents the number of nodes of the beam element 7?, Nj(S) the
shape function associated with node I, and uf\ &f are the nodal incremental dis
placement and vorticity of element /J at node /.

Computation of the out-of-balance force. The element contribution to the
residual force vector is obtained from the discrete approximation to the weak
form of momentum balance. Proceeding in a element fashion, by introducing
(5.1) the discrete approximation to G($,rj) may be written as

&($,Vh)= t<$&Vh) (5.2a)
8=1

where
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nal

OK*.**) =17?-P?(0) ^ 5>?-P&(0)
7=1

16

(5.2b)

Here, Pf(0) denotes the unbalanced force vector in a typical element l£, which
is computed by evaluating the discrete approximations to H, II and R entering in
expression (4.7). Let 'Ef represent the discrete differential operators H associ
ated with node /. Substitution of (5.1) into (4.6a) yields

(5.3)

In these expressions, Nj' denotes the derivative of Nj(S) with respect to 5€/f,
l = Diag[l 1 l] is the rank-S^unit matrix, and [0'ox] is a skew-symmetric
matrix whose axial vector is 0'o, as indicated in (4.6b)!. Now assume that the
spatial stress vector rf = [n£ m?] is computed from the constitutive equations
(2.7) in the manner described in Section 5.2 below, and let Pfo be the unbal
anced nodal force in element if related to node /. We have the following expres
sion

Pfe(?) = /
W1 /v7i o

0 /V/l
n

dS (5.4)

This completes the computation of the local residual vector.
Computation of the tangent stiffness matrix. We consider next the linear

ized weak form (4.10). The linear part of the weak form (5.5b) relative to ele
ment lg at the configuration 0 may be expressed as

i[^.»Jh)] A 17* •[{S?($) +T*(?)|4#*+ !?($)] (5.5)

where Ss and T„ represent respectively the^element stiffness matrix and ele
ment geometric stiffness matrix. Then i%(0) +T7(0)i £5 the tangent stiffness
matrix of the element Ig at the configuration 0. Let Sgjj and Tejj denote the
submatrices coupling node / and J in S8 and T8, respectively. From (4.11) we
have the expression

Sk = fZM&dS (5.6)

where af is given by (5.3), and Cg are the spatial tangent elastic moduli. For the
particular model (2.10), for instance, we have c£ = IP1 ClF17".
The geometric tangent stiffness is obtained by evaluating the geometric contri
bution to the tangent stiffness given by (4.12). For this purpose, first note that
from (5.1) and (4.13) the discrete approximation to the operator ^ in (4.12) is
given by

/V/l o o

O /V/l /v}l]*j> = (5.7)

Making use of expression (4.14) for the matrix B, the geometric stiffness matrix
takes the form

tu =f*m*?ds

_ r O -[n*x]/V/'/V,,
~̂ Y&xMNS [-[i&xWNj +[n*®$'o-(nfe.0'o)l]/V//Vy)|d5
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We recall again that in this expression [(•)*] is a rank-3 skew-symmetric
matrix whose axial vector is (.). It should be noted that the submatrix "[2,2]i; of
Tb leads to an unsymmetrie geometric stiffness matrix if the configuration 0 is
not in equilibrium. At an equilibrium configuration the geometric stiffness
becomes symmetric, in agreement with our discussion of Section 4.| Next, we
proceed to discuss the update procedure and the solution scheme for the equili
brium configuration based on a Newton-Raphson strategy.

5.2. Configuration and stress update algorithm.
Assume the configuration 0n s (0OniAn)€C is known. In a typical iterative

solution procedure, one linearizes the weak form (4.7) about 0neC and solves
the linearized weak form (4.4a) for an incremental deformation
A0 =(uo.tf)e7yC, where # is the axial vector (incremental rotation) of the
skew-symmetric tensor 8. An update procedure which is consistent with the
geometric structure of the problem (embedded in the definition of the
configuration space C) is given by the formulae

0On+i(S) = 0on(5) +Uo(5), A„+l(5) =exp[9(5)]An(5) (5.9)

Note that this update is in fact the only possible one that furnishes an updated
configuration 0n+I s (0on+i.An+i) which belongs to the configuration space C.
Note also that the exponential of the (skew-symmetric) incremental rotation,
exp[8], is givenin closedform by formula (*) in Box4.

Remark 5.1. The geometric interpretation of the update formula (5.9) is
illustrated in fig. 3.1. The admissible configurations are symbolically
represented by points in the surface C. 8 defines an incremental rotation; Le.,
an element in the tangent plane at An. The updated configuration A**! is
obtained by projecting A onto C by means of the exponential map. A dual con
struction can be performed in the reference configuration in terms of
8* = AT 8 A, as explained in remark 3wl. •

It remains to compute the updated spatial and material curvatures £ln+i
pnd K^+1; or, equivalently, its axial vectors »n+1 and J^+i. This calculation
involves the derivative of the exponential of a skew-symmetric matrix. The
result, quoted in Box 4, takes a remarkably simple form and is justified in
Appendix I.

Remark 5.2. It is noted that (d8(5)/d5)exp[8(5)], furnishes only a first
order approximation to (dexp[8(5)]/d5j. Expression (3.12) is in agreement
with this fact. However, as indicated in Box 4, the exact expression involves the
commutator of 8 and 8' (see also Appendix I). In order to preserve the overall
accuracy of the process it is essential to employ the exact expression. Its con
ceptual simplicity resulting from the formula (*) for the exponential is noted.

Remark 5.3. It should be noted that tf defined as

e=W' * =tan(W|/ 2) e (5,10)
blows up when ||tf[| is in the vicinity of (2n +1)tt (n = 0,1,2,...), and the formula
(*) for the exponential in Box 4 becomes singular as fl*|| -* (2n +1)n. Thus, in
practical implementations the optimal parametrization of the section rotation is

t la the casewhere structural displacements stay in a plane, we have asymmetricgeometric
stiffness matrix even if the configuration is not in equilibrium. Thereason for this is that the
configuration space becomes a linear space (recall that SO{2) is isomorphic to R). A physi
cal motivation is found in the fact that finite rotations commute when the axis of rotation
remains fixed (normal to the plane of the structure).
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BOX 4. Configuration and stress update: Conceptual algorithm

• Compute axial vectors

e=]ff 5=tan(M|/2)e
» =u tan([[tffl/2)r , |*Lv( t) -,
V * HI/2 L* U sinW|MeV;eJ

• Compute exponential and derivative

exp[8(5)] =H- i+3B-F (§ +W) (•)
(*sg^exp[_e] =j^jtO- +** -55')
• Update the configuration

0On+l = 0On + "O

A^+jsexp^A,^

• Compute curvature and strains

Qn+i =deg[»1 cxp[-8] +exp[e]Q»«p[-e]
*n+l = Aji+lQn+1

*n-H = An+1 0'on+l """ %

• Calculate stress resultants and stress couples

„ _ a*(rn+i.*^i)N,n+1

_ a*(rn+i.**4-i)
dr dK

18

furnished by the four quaternion parameters. In this connection, see the dis
cussion of Kane et. aL [1983]. The details concerning the practical implementa
tion of the update procedure based on the use of quaternions is discussed in
Appendix II. We note that this implementation relies crucially on a singularity-
free procedure for quaternion extraction as proposed by Spurrier [1978]. •

Remark 5.4. The rotation formula proposed by Hughes &Winget [1980], and
further elaborated upon by Hughes [1984], furnishes only a second order approx
imation to the exact formula (*) in Box 4 obtained by setting

tan(W/8)
Ml/ 2

•Ml **}£<* (5.11)

The derivation of Hughes & Winget, however, is based on a direct approximation
to the rate equation in Box 1 employing the mid-point rule. •

6. Extension to Non-conservative Problems.

Non-conservative loading can be accommodated easily within the present
formulation. As an example, consider the case of a follower distributed load,
denoted by n"". Since this type of loading must follow the deformation of the

April 22, 1985



J. C. Simo and L. Vu Quae 19

rod, nnc is characterized by components relative to the moving frame fa] of the
form

N^ti, where Nf0 = CONST. (6.1)

The contribution of n™5 to the weak form of momentum balance is then given in
the standard manner as

Lraxt = nBCd5 (6.2)

The contribution to the tangent stiffness operator can be easily computed by
noting that, for any variation u= (uQ,f)eT^C the moving frame taif/sla2.3j is
"perturbed" according to

Dti-M^fxti, (I = 1.2.3) (6.3)

Consequently, since NJ* = CONST., it follows that DvP° .u = ^xnnc. so that the
contribution to the tangent stiffness becomes

r r r , J [n7* x]
BGgt=-fvo-(i>xriu!)dS=f[r, *]. 0 O I*J

dS (6.4)

where, as in Section 4.1, [(•) x ] denotes the skew-symmetric matrix whose axial
vector is (.)• By introducing the finite element discretization V^cT^C we have,
for each element if

-22nj-g»'tf (6.5)
z=iy=i

where SJfr is the so-called "load stiffness"" coupling nodes I and J and given by

O -JV/tf/[n"°x]
O 0

35 *

ST*--hIJ
IW]

dS (6.6)

Remark 6.1. The case of pressure loading, characterized by the condition
that an applied distributed load remains normal to the line of centroids in all
configurations, often arises in applications. This type of loading condition may
be easily characterized by introducing a second moving frame [an, as, aaj such
that aa is tangent to the deformed line of centroids. Accordingly, we may set

A 0'o A [I-ag®afl]:tg 4
89 - W "• = »-•*•%]:«" ai " ***** (6.7)

The pressure loading may then be expressed asfispaj + gag. The contribu
tion to the tangent stiffness may be computed with the aid of the directional
derivative. •

7. Numerical Simulations

In this section, we consider a series of numerical simulations that illustrate
the performance of the formulation described above. These applications show
the quadratic rate of convergence obtained, even for very large load steps, in
well documented examples. In the first four examples, attention is focused on
the plane problem where the rotation field is easily described by means of a sin
gle rotation angle (Reissner [1972,1982], Simo et. al. [1984]). A basic objective
then is to show that the proposed three dimensional parametrization of the rota
tion field exactly replicates the plane rotation. The last three examples, on the
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other hand, are concerned with fully three-dimensional deformation, and have
been considered in previous work (Bathe [1979], Argyris and co-workers [1979,
1981]). These examples demonstrate that symmetry of the tangent stiffness
does not hold in the iteration process but is attained at the converged solution.
Throughout all the examples discussed below, the constitutive model defined by
(2.10) is considered.

Convergence of the finite element solution is established on the basis of the
Euclidean norm of the out-of-balance force. A full Newton-Raphson iterative
solution procedure is employed in all the calculations reported herein. Tracing
of post-buckling diagrams throughout the simulations is accomplished by a gen
eralized form of the classical arc-length method, (Riks [1972], Wempner [1971])
to include an arbitrary linear combination of degrees of freedom as constraint
condition. The basic implementation of this procedure proceeds in two steps
and is due to Schweizerhof, see Simo, Wriggers, Schweizerhof and Taylor [1984].
The first step involves the solution of the linearized problem under unit load.
For the case of follower load, this unit load must be properly updated. It is
emphasized that no special effort is made to optimize the total number of load
ing steps for a given calculation.

Example 7.1. Pure bending of a cantilever beam. A straight rod of unit
length and bending stiffness EI = 2. is subject to a concentrated end moment M.
The finite element mesh consists of five elements with linear interpolation shape
functions Nj. A one-point (uniformly reduced) quadrature is employed to com
pute all the arrays. The exact solution to this problem is a circular curve with
radius p = EI/ M. An applied end moment, M = 4rr, will force the rod to deform
into a full closed circle. In this example a moment twice this magnitude, Le.t
M = 87T, is applied in one load step, making the rod wind around itself twice.
Convergence to the exact solution is attained in two iterations. The final shape
of the rod is depicted in Fig. 7.1. It is noted that the same performance, Le.,
exact result in two iterations, is obtained for any magnitude of the applied end
moment. The values of the residual norm throughout the iteration process are
summarized below.

Iteration
Number

Euclidean Norm
of Besidual

0

1

2

0.251 x 10+02 (8tt)
0.425 x 10+02
0.441 x 10"13

Example 7.2. Cantilever beam subject to follower end load. The material
properties for this example, considered by Argyris & Symeonidis [1981], are
EI = 3.5 x 107 and GA = 1.61538 x 108, and the total length is L = 100. The finite
element mesh consists of five elements with quadratic shape functions. Two-
point (uniformly reduced) Gauss intergration is used to compute all the arrays.
For the purpose of tracing the load-deflection curve reported by Argyris &
Symeonidis, a loading increment of 1000was selected. The agreement found with
these results is complete (see Figs. 7.2.a and 7.2.6). The characteristic qua
dratic convergence rate observed in a typical iteration of a load step is illus
trated in the table below for the first loading step. Identical convergence rate
was observed in subsequent load steps.
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Iteration

Number
Euclidean Norm
of Residual

0

1

2

3

4

5

0.100 x 10+°4
0.542 x 10+07
0.270 x 10+°5
0.583 x 10+°2
0.159 x 10"°2
0.197 x 10"08

21

Example 7.3. damped-hinged deep circular arch subject to point load. This
example has been considered by a number of authors (Noor & Peters [1981],
Simo et. al. [1984]), and the exact solution based on the Kirchhoff-Love theory is
given by DaDeppo and Schmidt [1975]. The solution shown in Fig. 7.3.a for vari
ous stages of deformation is obtained with 40 linear isoparametric elements.
The plot of the vertical and horizontal displacements under the applied concen
trated load is shown in Fig. 7.3.6. Load control is employed in the first eight
load steps, each of them of magnitude 100. Subsequently, a combined displace
ment control/arch length control is employed. The calculation was completed
in total number of 155 load steps. The analysis yields a value for the buckling
load of 905.28. The exact value reported by DaDeppo and Schmidt [1975] is 897.
A second limit point is found for a negative value of the applied load of —77.07.
The global computed solution is in complete agreement with the solution first
obtained for the entire post-buckling range in Simo et. aL [1984]. The conver
gence rate observed during a typical load step is shown below for the first load
increment.

Iteration Euclidean Norm
Number of Residual

0

1

2

0.100 xl0+°3
0.553 x 10+°5
0.325 x 10+03

3

4

5

6

0.309 x 10+°3
0.990 x 10+°°
0.125 X10"01
0.920 x 10-°8

Example 7.4. Buckling of a hinged right-angle frame under both fixed and
follower point load. This example, also considered by Argyris and Symeonidis
[1981], is concerned with the loss of stability by divergence (as opposed to
flutter) of the right angle frame shown in Fig. 7.4.a. The length of each leg is
120. The inertia and area of the cross section are respectively 2 and 6. The
value of Young's modulus is 7.2 x 108; the value of Poisson's ratio is 0.3. The
vertical point load is applied on the horizontal member at 24 units from its left
end. Ten quadratic elements, 5 on each leg, are employed in the calculation.
The deformed shapes are shown in Figs. 7.4.a and 7.4.6. The load-deflection
curves are shown in Figs. 7.4.C and 7.4.d. Note that the entire post-buckling
range is depicted in these figures, in contrast with the results reported Argyris
& Symeonidis which are limited to the pre-buckling case. It is interesting to
observe that the load-deflection curves for both conservative and non-
conservative loading cross the zero-load axis at exactly the same values, as
shown in Figs. 7.4.c and 7.4.d. These curves were traced after 43 load
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increments for the fixed load case, and 99 load increments for the follower load
case. As noted by Argyris & Symeonidis, the follower loading (non-conservative)
has a positive effect of stabilizing the system and leads to a value of the buckling
load of 35447 in contrast with the value of 18532 obtained for fixed loading (con
servative).

Example 7.5. Cantilever 45-degree bend subject to fixed and follower end
load. This example has been considered by Bathe and Bolourchi [1979] under
fixed end load. The bend has a radius of 100 with a unit square cross section.
The material properties are E = 107 and G = 0.5xl07. These authors performed
the analysis for conservative loading only using 8 three-dimensional degenerated
beam elements. In the present calculation 8 linear elements are used. For
comparison purposes with the results reported in Bathe & Bolourchi the bend is
subject to a sequence of three load increments of magnitude 300, 150 and 150.
The results are summarized in the table below.

Load

level

Number of

Iterations

Tip displacement

Present Bathe & Bolourchi [1979]

u v w u V w

300 13 22.33 58.84 40.08 22.5 59.2 39.5

450 8 18.62 52.32 48.39 —
— —

600 6 15.79 47.23 53.37 15.9 47.2 53.4

It should be noted that the final load of 600 was achieved in the present simula
tion in three load increments. This accounts for the large number of iterations
(13) required to attain convergence. By contrast, the results reported in Bathe
& Bolourchi were obtained after sixty equal load increments. A perspective view
and a projection view of the deformed bend at various load levels are shown in
Fig. 7.5.U and Fig. 7.5.6. The tip displacement versus applied load curve, shown
in Fig. 7.5.c, is given up to a load level of 3000.

In addition to the loading discussed above, the bend also is analyzed for a
follower load. The deformed configurations of the bend at various follower load
levels are shown in Figs. 7.5.d and 7.5.e —compare these with Figs. 7.5.o and
7.5.6. The tip displacement versus applied load curve obtained for this non-
conservative loading is shown in Fig. 7.5./. It should be noted from Figs. 7.5.C
and 7.5./ that the tip displacement increases monotonically with the load for
fixed loading, whereas in the case of follower load the tip displacement reaches a
maximum and then decreases. This effect is a consequence of the twist experi
enced by the bend as a result of the follower load.

Finally, a similar simulation is performed with both the consistent (non-
symmetric) and the symmetrized element tangent stiffness matrices. The total
load of 600 is applied in 8 equal load increments of magnitude 75. The purpose
of the calculation is to show that no significant loss of asymptotic convergence
rate results from using the symmetrized tangent matrix. This follows from our
discussion in Section 4. The residual and energy norms shown below correspond
to the fifth load increment.
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Iteration

number

Non-symmetric Symmetric

Residual norm Residual Norm Energy Norm

0

1

2

3

4

5

6

0.750 x 10+02
0.147X 10+°8
0.426 x 10+03
0.173X 10+04
0.299 x 10+01
0.177 x 10+co
0.230 x 10-07

0.750 x 10+02
0.147X 10+C8
0.423 x 10+03
0.140 x 10+04
0.844 x 10+0°
0.661 x 10"01
0.190 x lO-04

0.410 x 10+03
0.228 x 10+os
0.453 x 10+01
0.258 x 10+01
0.950 X 10"04
0.269 x 10_0B
0.275 x 10-13

23

Example 7.6. Lateral buckling of a cantilever right-angle frame under end
load. This problem also has been analyzed by Argyris et. al [1979]. The
geometric characteristics of the frame are shown in Fig. 7.6.tx. The value of
Young's modulus is 71240; and the value of Poisson's ratio is 0.31. The extreme

thickness 1
slenderness of the cross section, . . ..—= -rr-, should be noted. The frame is

heigth 50
subject to an in-plane fixed end load as shown in Fig. 7.6.O. Further, the frame
is driven to the buckling mode by a perturbation load initially applied at the free
end normal the plane of the frame. This perturbation is removed in a neighbor
hood of the buckling load, as shown in Fig. 7.6.C. A value of « 1.09 is found for
the critical load. The plot of end load versus lateral tip displacement of the
frame shown in Fig. 7.6.C. is in agreement with the result reported by Argyris et.
al. [1979]. The calculationis completed after a total number of 25 loading steps
employing displacement control. Perspective and projection views of deformed
centroidal line corresponding to the final value of the applied end load are shown
in Figs. 7.6.a and 7.6.6.

Example 7.7. Lateral buckling behavior of a hinged right-angle frame:
Complete post-buckling diagram. Our final example is concerned with the trac
ing of the complete post-buckling range of a hinged right-angle frame acted
upon by in-plane end moments, as shown in Fig. 7.7.O. The degrees of freedom at
the hinged ends are translation along the x direction and rotation about the z
direction. The apex of the frame is constrained to lie in the y-z plane. Due to
the symmetry of the problem, only half of the frame need be modeled. The
problem at hand involves truly large three dimensional rotations and poses a
severe test on the performance of the three dimensional rod model. As the rota
tion of the hinged end varies from 0° to 360°, the frame rotates out-of-plane
about the axis connecting its supports and returns to its initial configuration.
During the deformation process the legs of the frame experience significant
amount of twist. This example was first proposed and analyzed by Argyris et. al.
[1979] within the framework of a natural formulation based on the notion of
semi-tangential rotation. Their analysis made use of 10 finite elements with
cubic interpolation for the displacement field.

The present analysis based on the formulation described above, employs 10
finite elements with quadratic isoparametric interpolation for both displace
ment and rotation fields. Perspective and projection views of deformed
configurations of the frame corresponding to various load levels are shown in
Jigs. 7.7.6 and 7.7.C Figure 7.7.d shows the plot of the abscissa of the left
hinged end versus the load levels. The results of this analysis differ from those
reported by Argyris and co-workers in the following. Upon returning to the
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initial configuration, the applied end moment must be identical in magnitude,
but with reverse sign, to the critical moment. Hence, the plot of the applied end
moment versus lateral displacement of the apex must intersect symmetrically
the moment axis. This is clearly the case for the curve shown in Fig. 7.7.e. The
analogous curve reported in by Argyris et. al. [1979] violates this condition. The
analysis is further pursued past this (negative) critical point and terminated
upon completion of a second revolution of the frame about the line connecting
its hinged ends. This results in the post-buckling diagram, completely sym
metric relative to the moment axis, as depicted in Fig. 7.7.e. It is emphasized
that at the end of the second revolution, the exact positive critical value of the
applied end moment is recovered. Thus there no difficulty in subjecting the
frame to any number of revolutions about the line connecting its supports. This
would lead to the repeated tracing of the bifurcation diagram shown in Fig.
7.7.e..

Indeed after completion of the first revolution, the moment vs. lateral apex
displacement plot intersects the moment axis at « -626. A value of * +626 for
this intersection point is found after completing the second revolution. Initially,
a value of only 615.5 is obtained for the maximum moment due to the perturba
tion load. We recall that this perturbation load is removed subsequently.

The computational effort involved in the calculation for one revolution
amounts to 160 loading steps, performed with a combined arc-length and dis
placement control algorithm. It is noted that the number of loading steps was
not optimized.

The basic observation made in Section 4. concerning the lack of symmetry
away from equilibrium, and recovery of symmetry at an equilibrium
configuration, is numerically illustrated next. The table below shows the row
norms of the skew-symmetric part of the global tangent stiffness at an arbi
trarily selected load leveL These results demonstrate lack of symmetry during
the equilibrium iteration process, and confirm symmetry at the equilibrium
configuration.

Iteration

number

Skew-symmetric
part: Row-Norm

Out-of-Balance
Norm

0

1

2

3

4

5

1.7 x 10-08
1.1x10*°*
6.9 x 10*°2
6.2 x 10*02
1.9 x 10*01
1.6 x 10*°°

0.100 X10*01
0.784 x 10*°*
0.354 x 10*°3
0.347 x 10*°3
0.108 x 10*°2
0.807 x 10*°°

6 2.5 x 10~°3 0.141 x 10"°2
7 4.6 x lO-08 0.322 x 10"°7

8. Closure.

The formulation developed in this paper is based on a fully nonlinear rod
theory that allows for three dimensional finite rotation, and accounts for finite
extension and shearing of the rod. The rotation and moment fields possess the
usual physical meaning assigned in classical rod theories, such as the Kirchhoff-
Love model; i.e., generally non-commutatwe orthogonal transformations. As a
result, it has been shown that the consistent geometric tangent stiffness is non-
symmetric for any configuration away from equilibrium. This lack of symmetry
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concerns solely the rotational degrees of freedom, and is absent in the plane
problem. It has also been proved that full symmetry always holds at equili
brium for conservative loading.

The practical implications of the lack of symmetry have been explored in
numerical simulations employing Newton type of iterative solution schemes. Due
to the localized character of this non-symmetry, and the full symmetry at equili
brium, it has been demonstrated that use of the symmetrized element tangent
stiffness results in no loss of asymptotic rate of quadratic convergence.

Based on geometric considerations, an exact configuration update pro
cedure has been developed. To avoid the singularity typically associated with
parametrizations employing Euier angles or pseudo-vector of rotation, use has
been made of quaternion parameters. This choice is optimal in the sense that
singularity is avoided and storage requirements are minimized. Particular
attention is given to the practical aspects involved in the implementation of the
update procedure, such as the quaternion extraction from the orthogonal
transformation matrix.

Follower loading is conveniently accounted for in the present formulation as
a consequence of the representation of the section rotation by means of a mov
ing orthogonal frame.

A number of numerical simulations have been documented to demonstrate

the robustness of the proposed formulation. In particular, the performance of
the symmetrized stiffness, the effectiveness of the update procedure, and the
excellent rate of convergence have been illustrated throughout these simula
tions.
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APPENDIX I: Derivative of the exponential map
In this appendix we give the derivation of the formulae in section 5.2. for

the derivative of the exponential map. Given a skew-symmetric tensor field
9(5) and its axial vector tf(5) representing an incremental rotation field, i.e.,

8(5) =
0 -tf3 tf2

-*B *1 0

*(S) = -*B
*3

(I.D

a closed form expression for the exponential of 9(5) is given by the formula

exp[9(5)] = I + —==3-(e + 92),
i + m

(1.2)

where #(5) is given by
*

e= W' * =tan(IM/2)e' (1.3)

and 9(5) is the skew-symmetric tensor field with axial vector tf(5). By taking
the derivative with respect to 5 we find

d

dS

Upon noting the identity

a lengthy but straight forward manipulation yields the result

(^-exp[9(5)]) exp[-9(5)] =^* (&' +99' - 9'9 +A)
where A is given by

As -5.#(9 - S8) - 90S + 89'S2

It remains to show that indeed A = O. This follows at once from the identities

§S'9s-(5.*)9\ SB'S8 s -(3.*1)®8 (1-7)

(1.4)

(1.4)

(1.5)

(1-6)

In addition, it is also noted that the axial vector 0 of (d exp[9]/ dS) exp[-9] is
given by the expression

*=I7pf*5' +(*x:s')] (L9)

APPENDIX D: Configuration Update: Implementation.
In this appendix, we discuss in detail practical considerations concerning

the implementation of the update procedure based on the use of quaternion
parameters. Details pertaining to the configuration update are considered first.
The update of the curvature will be examined subsequently.

II. 1. Update of the configuration.

The update of the deformed centroidal line poses no difficulty, and is sum
marized in Box 4. In what follows, we are concerned specifically with the update
of the section rotation. To avoid the singularity at ||tf|| = (2n + l)n in the formula
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for the exponential map (see (*) in Box 4), use is made of the four quaternion
parameters. This furnishes the optimal parametrization of three-dimensional
rotations that avoids singularities. Recall that quaternions are elements of the
hypercomplex space expressed as

q = go + q; q = giei + qz*z + gs^a (n.i)

where g0 represents the scalar part, and q the vector part of q. For a unit

£tf»i.quaternion, we have In the above, we identify the spatial basis
<=o

(elt ez, es) with the imaginary basis of the hypercomplex space. Recall also the
1-1 correspondence between quaternions and orthogonal matrices. Hence,
quaternion parameters are kept in the data base to minimize storage require
ments. The update procedure may be summarized in the box below

BOX //. 1. Update of quaternion describing section rotation.

(i) Retrieve q^, and compute A^ from q^.

(ii) Compute q associated with tf.

(iii) Compute exp[9] from q.

(iv) Perform An+l = exp[9] A*.

(v) Extract q„+1 from A,^, and store ^+1.

The unit quaternion corresponding to an incremental rotation vector
tf = tfxei + tf2e2 + i^eg (see step (ii) in Box //.1) is given by

q = cos JMU ^-sint*L
2 • m — 2

The pseudo-vector of rotation tf is then the vector part of a unit quaternion
whose scalar part is normalized to one:

Clearly, singularity occurs when ||tf|| = (2n + 1)tt, i.e., when g0 = cos(|ftf||/ 2) = 0.
An orthogonal matrix Q is computed from its associated unit quaternion q

by means of the relation

qo+qf-% gi^s-gago qiqa + qzqo
Q = 2 g2gi + g3g0 gr!+g!-}£ qzqa-qtfo

qsqi-qzqo q&z + qiqo ?£ + gf-}£

1 + -3- = 1 + tf

(n.2)

(H.3)

01.4)

This applies to steps (i) and (iii) in Box 77.1.
Given an orthogonal matrix Q, the associated quaternion parameters can be

obtained from (II.4) by

go = ±Wl + Tr(t»

gi = ±(G32-£z3)/4go

q* = ±(Gi3-03i)/4go
03 = ±(£2i-Gi2)/4g0
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where Tr(Q) = Q&. Note that we only need to determine the sign of go. as the
sign of glf g2, gs will follow. Either a positive or negative sign for go is possible;
to fix the choice, we may choose g0 ^ 0. However, relations (II.5) suffer from
round-off errors since the numerators and the denominators in gi, g2, gs are
obtained from subtraction of nearly equal quantities in the vicinity of 0° and
180°. Moreover, the computation breaks down when the rotation is exactly 180°,
e.g., as in the case of Q = Diag(—1,-1,1). There are several proposed algorithms
to extract a quaternion from an orthogonal transformation matrix. Among
them, the algorithm proposed by Spurrier [1978] was reported to be the fastest
(Lowrie [1979]), and is summarized in Box //. 2.

BOX 77.2. Spurrier's algorithm for quaternion extraction.

M k max(Tr(Q); Qn, Qzz, Q&)
UM= Tr(Q), then:

9o = }*>/l + lr(Q)

qi = (&j--9jk)/4g0. fori=1.2,3
Else:

Let i be such that M = Q(a),

Qiii) , l-Tr(Q)1*
qt =

2 4

So = (Qkj -%*)/4gt
qi = (On + Qa)/4gi( forl=j,k

where ij,k is a cyclic permutation of 1,2,3.

D.2. Update of the spatial curvature vector.

The skew-symmetric matrix Q associated with the spatial curvature vector
a is updated according to

Q„tl =degal cxp[-9] +expMQnexpf-g] (n.6)

In the actual implementation, direct update of the axial vector u is obtained in
two steps:

(i) Compute the axial vector associated with the second term
(exp[9] Qn exp[-9]) in (H.6).

(ii) Evaluate the axial vector 0of the term ( e^ *) exp[-9] by
\2a = sinML^,

1 -
sinlltfil tf.tf' tf . „ sinM/2

+ 3*Ml JIM J Ml "I 1*1/2 J
tfxtf' (n.7)

obtained from (1.8) in Appendix I and from the expressions of * and & in Box 4.
The sum of the above two axial vectors then yields the updated spatial curvature
vector. We observe that p &*£' for |ffl|| small, i.e., *' is a first approximation of 0
as was noted in Remark 5.1.
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Figure Captions

Fig. 2.1. Kinematic description of the rod for the plane problem. Definition of various
frames.

Fig. 3.1. Geometric interpretation of the exponential map.

Fig. 7.1. Pure bending of a cantilever beam subject to end moment. One load step. Two
iterations to convergence.

Fig. 7.2.a. Cantilever beam subject to follower end load. Deformed shapes.

Fig. 7.2.b. Cantilever beam subject to follower end load. Vertical and horizontal tip dis
placement vs. applied end load.

Fig. 7.3.a. Clamped-hinged deep circular arch subject to point load. Deformed shapes.

Fig. 7.3.b. Clamped-hinged deep circular arch subject to point load. Applied load vs.
vertical and horizontal displacements of the apex.

Fig. 7.4.a. Snap-through of a hinged right-angle frame under fixed point load. Deformed
shapes.

Fig. 7.4.b. Snap-through of a hinged right-angle frame under follower point load.
Deformed shapes.

Fig. 7.4.c. Snap-through of a hinged right-angle frame under fixed and follower load.
Load vs. vertical displacement under applied load.

Fig. 7.4.d. Snap-through of a hinged right-angle frame under fixed and follower load.
Load vs. horizontal displacement under applied load

Fig. 7.5.a. Cantilever ASdegree bend subject to fixed end load. Perspective view of
deformed shapes.

Fig. 7.5.b. Cantilever ASdegree bend subject to fixed end load. Projection of deformed
shapes onto the x-y plane.

Fig. 7.5.c. Cantilever ASdegree bend subject to fixed end load. Components of tip dis
placement vs. applied load.

Fig. 7.5.d. Cantilever ASdegree bend subject to follower end load. Perspective view of
deformed shapes.

Fig. 7.5.e. Cantilever ASdegree bend subject to follower end load. Projection of
deformed shapes onto the x-y plane.

Fig. 7.5.f. Cantilever ASdegree bend subject to follower end load. Components of tip dis
placement vs. applied load.

Fig. 7.6.a. Lateral buckling of a cantilever right-angle frame under end load. Geometry
and perspective view of final deformed shape.

Fig. 7.6.b. Lateral buckling of a cantilever right-angle frame under end load Projection
of final deformed shape onto the x-z plane.

Fig. 7.6.c. Lateral buckling of a cantilever right-angle frame under end load. Applied
load vs. lateral tip displacement of the free end.

Fig. 7.7.a. Lateral buckling of a hinged right-angle frame subject to fixed end moment.
Geometric characteristics.

Fig. 7.7.b. Lateral buckling of a hinged right-angle frame subject to fixed end moment.
First revolution: perspective view of deformed shapes at various load level.

Fig. 7.7.c. Lateral buckling of a hinged right-angle frame subject to fixed end moment
First revolution: projection of deformed shapes onto the y-z plane.

Fig. 7.7.d. Lateral buckling of a hinged right-angle frame subject to fixed end moment.
First revolution: applied end moment vs. abscissa of left hinged end.



Fig. 7.7.e. Lateral buckling of a hinged right-angle frame subject to fixed end moment.
First and second revolution: applied end moment vs. lateral displacement of the apex.



Fig. 3.1. Geometric interpretation of the
exponential map.
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Fig. 7.1. Pure bending of a cantilever beam sub
ject to end moment. One load step. Two iterations
to convergence.
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Fig. 7.4.a. Snap-through of a hinged right-angle
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Fig. 7.4.b. Snap-through of a hinged right-angle
frame under follower point load. Deformed shapes.
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Fig. 7.4.d. Snap-through of a hinged right-angle
frame under fixed and follower load. Load vs. hor
izontal displacement under applied load.
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Fig. 7.4.c. Snap-through of a hinged right-angle
frame under fixed and follower load. Load vs. verti
cal displacement under applied load.
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Fig. 7 5.a. Cantilever ASdegree bend subject to
nxed end load. Perspective view of deformed
shapes.
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Fig. 7.5.b. Cantilever ASdegree bend subject to
fixed end load. Projection of deformed shapes onto
the x-y plane.
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Fig. 7.5.c. Cantilever ASdegree bend subject to
fixed end load. Components of tip displacement vs.
applied load.
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Fig. 7.5.d. Cantilever ASdegree bend subject to
follower end load. Perspective view of deformed
shapes.
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Fig. 7.5.e. Cantilever ASdegree bend subject to
follower end load. Projection of deformed shapes
onto the x-y plane.
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Fig. 7.5.f. Cantilever ASdegree bend subject to
follower end load. Components of tip displacement
vs. applied load.



•Fig. 7.6.a. Lateral buckling of a cantilever right- .x
angle frame under end load. Geometry and perspec
tive view of final deformed shape.

Fig. 7.6.b. Lateral buckling of a cantilever right-
angle frame under end load. Projection of final
deformed shape onto the x-z plane.

10 20 30 40

TIP DISPLACEMENT

Fig. 7.6.c. Lateral buckling of a cantilever right-
angle frame under end load. Applied load vs. lateral
tip displacement of the free end.
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Fig. 7.7.a. Lateral buckling of a hinged right-
angle frame subject to fixed end moment.
Geometric characteristics.

-602

218

235

-370

Fig. 7.7.b. Lateral buckling of a hinged right-
angle frame subject to fixed end moment. First
revolution: perspective view of deformed shapes at
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Fig. 7.7.c. Lateral buckling of a hinged right-
angle frame subject to fixed end moment. First
revolution: projection of deformed shapes onto the
y-z plane.
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ABSCISSA OF LEFT HINGED END

Fig. 7.7.d. Lateral buckling of a hinged right-
angle frame subject to fixed end moment. First
revolution: applied end moment vs. abscissa of left
hinged end.
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LATERAL DISPLACEMENT OF APEX

Fig. 7.7.e. Lateral buckling of a hinged right-
angle frame subject to fixed end moment. First and
second revolution: applied end moment vs. lateral
displacement of the apex.
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