Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT FOR INTERMEDIATES

by
B. Nye and D. Wang

Memorandum No. UCB/ERL M85/32
26 April 1985

DELIGHT FOR INTERMEDIATES

by
B. Nye and D. Wang

Memorandum No. UCB/ERL M85/32
26 April 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DELIGHT FOR INTERMEDIATES

by
B. Nye and D. Wang

Memorandum No. UCB/ERL M85/32
26 April 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

DELIGHT For Intermediates (3/ 1/85)

Bill Nye
Deborah Wang

Department of Electrical Engineering and Computer Science
University of California
Berkeley, Ca. 84720

Abstract

The purpose of this guide is to provide additional information for users
already familiar with the basic DELIGHT features covered in DELIGAT For
Beginners. DELIGHT, an interactive optimization-based computer-aided
design system designed to provide a friendly and flexible environment for
designers working in a multitude of disciplines, bas evolved greatly since
the publication of the Beginners Guide. The most notable of sections
included here are one discussing the online help system, a thorough sur-
vey of debugging techniques, and one documenting how new application-
specific DELIGHT versions are created and tested. Throughout this guide
references to additional information available using this online help sys-
tem have also been included. Through judicious use of this guide,
DELIGHT users should be able to take advantage of this accrual of prag-
matic and productive computer-aided design diversity.

Table of Contenls

2 Online Help Systemcc.cccceeineennseees eensensessutesssassassresseseass

2.1 INtroductioncecsecesceccenscsensescecsace . escasecsnesnersresans

2.2 Using the Help Commandsccceresee cesessarsstsssasassrassransranase reassensessansnsnns

2.3 Where Binary Help Files are Found cesasessonessser censansovass

8 More Define Enhancements eesennnes

esoconsscssssessstececene

3.1 Review of Define Enhancements cesesssssanessssennessnsnnaass
3.2 No-Quote COnVentioneecsessccsscsssssssnesnsnssssssessessanananns
3.3 Define OPLiONSccccesuenssranessncsntennesanssnssnasaasnsssrssncsnssssssansnsane
3.4 Auto-Pushback Convention ...c..ccceecceeeences vesseesennsassssenassernnes
3.5 Creating New Commands With Definesccccccuceneccsercccsenanes

4 The New Plot Options

oooooooooo essscscves

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooo eescececsncsne

5 Additional 170 Featuresccccccccccrevneanes

5.1 Writing Interactive Programs With Answer_to_prompt ..

5.2 File Input and OULPUL ..ccccceiicetnnnisieneennnnsinscnnisasitisses coseeens
5.2.1 The Openhdtl File eecssessnssesassassessssassenatsatsanans .
5.2.2 File I/0 With Built-in Functionscccccimniinninncen
5.2.3 Opening Temporary Scratch Files With Opumq

ooooooooooooooooooooooooo

--------- 4c0sssscnccsnane

5.2.4 An Application of Opuniqcccccecesesncncnee. .
8 Language Extensibility Using Macros

6.1 Tokens and Push-Back eeesessesessasssssastessssssassassensatsanans .
6.2 Language Extensibility Using Macrosc..ccecceeccnsccnscnncenc
7 Debugping Rattle Programsccccccseenesstiesisssnnssssssssscassscsncesens

7.1 Debugging Compiler-Reported Errorsccecceeeeceesecanecaness

oooooooooooooooooooooo

ooooooooooooooooooooo

7.1.1 Tracing What is Pushed Backcccccccccncsiurcrsenssencenne.
7.1.2 Other Debugging Suggestions ...c.cc.cccceunivieenenece.

7.2 Debugging Run-Time Errors ..

7.2.1 What Run-Time Errors Are oaveseessesnssennssnsasen

oooooooooooo

7.2.2 Review of Commands for Debuggmg Run-'ﬁme Errors ..

7.2.3 Using Pdebug__ For Debugging cesssnsasssscsssace

ooooo

7.2.4 Debugging by Adding Print and Suspend Statements .

7.2.5 Aborting On Numeric OVerflowccccccescnrnscenanees

ooooooooooooooooooooooooo

7.2.8 DELIGHT Internal Aborts and the Hardreset Command

7.3 General Use of Whatis and Whereis essessenseseressesanasesare

8 Creating New DELIGHT Versionscccccsiceecerscsssseesancscnnanes

ooooooooo

oooooooooooooooooooooooo

ooooooooooooooooooooooooo

8.1 Adding Built-in ROULINES ...ccccccvciisiniecinisnninnncennesanecanneancas
8.2 Declaring Variables for Rattle Accesscccneiieineccnciicnicenes
8.3 Version-Specific Routines Called by DELIGHTccccecenuueee.
8.4 Loading DELIGHTcccceeenee teresertsesesesaseeeseststtreeissnsaanesssnnane
8.5 Making a Memfileccccceueee eeseatesannrasenssasasestatnssesasstsnanesanrens
8.8 Starting DELIGHTceceeueeee teeeessenantesssestsssssesnasaaesassantnsasans
8.7 Debugging Added Built-in Routinesc.cccecevveeicntincnnncanes .
8.8 General Guidelines for Creating a DELIGHT Version

evsesssscsesccssscsnaneie

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

ooooooooooooooooooooooooo

.........................

DELIGHT For Intermediates (3/1/85)

OO oL p

PRBLRRBLBEEERRER/RESR

;38

DELIGHT For Intermediates (3/1/85)

3333

4 DELIGHT For Intermediates (3/1/85)

1 Introduction

The DELIGHT For Intermediates guide has two purposes. One is to point out more
advanced features for users who are already familiar with the basic ideas presented in
the DELIGHT For Beginners guide [4]. The second is to present several important new
features that have come into being since the publication of the Beginners Guide. For a
complete discussion of many more technical details than presented here, see the Ph.D.
Dissertation of W.T. Nye [5].

This guide makes liberal use of examples, presented in the form of terminal dialo-
gue. In this dialogue user input is in boldface for clarity. Also, blank lines have been

occasionally inserted at various places in the terminal dialogue to separate groups of

statements, and will not appear on the terminal screen!.

As a reminder, a backslash ("\") at the end of a line indicates that the line is to be
continued onto the next——that the fictitious newline character at the end of the line
has been "escaped” (had its meaning changed) so that it no longer terminates the line
containing it. The DELIGHT prompt for the continued line changes to "1\", "2\" etc. as
seen in the following examples:

int 2.2\

By
i

TR
i
§55%

The plan of this guide is as follows. We begin with the usage, descriptions and
examples of the online help facility commands in section 2. Section 3 discusses
enhancements to Rattle defines. After a review of defines, it then proceeds to the vari-
ous enhancements including, probably the most important, define options. Finally, the
last subsection illustrates the general idea of creating new commands using defines,
define options, and Rattle procedures. Section 4 shows the power of define options by
demonstrating all the nifty new options associated with the plof command. Additional
1/0 features are covered in section 5. One, for example, is an easy way to write Rattle
procedures that interact with the user through question/answer dialogue. Another
topic addressed is how flle input/output (1/0) is accomplished in DELIGHT. Just as the
Beginners Guide showed how defines are used for Rattle extensibility, section 6
presents extensibility using Rattle macros by first explaining the concepts of fokens
and the DELIGHT push-back mechanism. Debugging facilities for compile-time and
run-time bugs are introduced in section 7. Finally, section 8 considers the entire pro-
cess of creating new application-specific DELIGHT versions. It explains how to add
built-in routines, declare variables for Rattle access, load/link the executable program,
make a new memflle, and start the new DELIGHT version.

! When using DELIGHT on the UNix (a trademark of Bell Laboratories) operating system (and possibly on
other systems), there is a command called hsiper which may be used to obtain the same on-line assistance
available in DELIGHT =and with exactly the same command syntax. These commands will be explained in
section 2 of this guide; additional information is available in [6].

DELIGHT For Intermediates (3/1/85) : 5
2 Online Help System

2.1 Introduction

This section introduces users to the help facility available in DELIGHT. Through vari-
ous easy-to-use commands, quick on-line assistance is made available for DELIGHT
commands, features, topics, tutorials, etc.—basically, for whatever information has
been set up by system personnel or even by other users. Moreover, this on-line assis-
tance is obtained quickly—even if there are many help entries available —since the

large binary help files read by the help commands are “hashed” for relatively rapid
table lookup.

. The help commands fall into four categories: {1) the basic help command for
displaying all the standard parts (flelds) of a help entry and the helpall command for
displaying all fields, (2) the helpsubject command for showing a brief description of all
help entries having to do with a specified subject, (3) the helpnewer command for
displaying commands newer than a specified date, i.e., according to when they were
‘created, and (4) several commands for displaying certain fields of a help entry quickly.
These commands are briefly summarized in the following table:

Online Help Commands
Command What is Displayed
r—r——————t S rer——— —t ——
help All standard help entry fields.
helpall All help entry fields.
helpsubject A brief description of all entries

having to do with a given subject.

helpnewer All commands or options newer
than a given month-year.

helpexamples | Just the EXAMPLES fleld.

helpnext Just the NEXT field.

helpoptions Just the OPTIONS field.

helpusage Just the USAGE fleld.

The remainder of this section consists of two subsections: 2.2 gives the usage,
description and examples of help commands while 2.3 shows where the binary help flles
reside that the help commands open and read.

2.2 Using the Help Commands

To get assistance on commands, features, topics, tutorials, etc. while inside
DELIGHT, type help, followed by the particular command or topic name of interest. For
example.: you can get information on the DELIGHT oufput_to command by typing help
output_to:

;] DELIGHT For Intermediates (3/1/85)

1> help cutput_to
output_to - Make all following DELIGHT output go to a file.

output_to FILENAME

OPTIONS .
~verbose=YES YES prints message about creation/overwrite/append of file.
LES

output.to diary
output_to ~iverbose diary
ALSO

output_onto, output_end, echo.o.to, ?
1>

If you do not know what help entries (by name) are available, the help command is set
up so that typing help alone has the same effect as typing help help and shows how to
use online help. Don’t worry about the OPTIONS fleld above if you don’t understand
what they are; they will be explained in detail later in section 3. Suffice it to say that in
the above example, the ~verbose option is shown followed by =YES, indicating that the
option has a default setting of YES and that thus, the messages are printed. How to
tlérn off this option for a particular use of the command is shown in the second example
above.

As just mentioned, one of the problems with an online help facility which provides
help by cornmand or topic name is that users do not know what commands or topics
are available. For this reason, DELIGHT provides the helpsubject command for showing
a brief description of all help entries having to do with a given subject. For example,
try the following:

1> belpsubject draw

clip.vector - Draw vector between 2 coordinates, clipping to viewport.
clip.draw - Draw vector to x,y coordinate, clipping to stay in viewport.
clip.oove - Pogition begimning of a vector, ready for a clip.draw.

draw - Draw vector fram previous position to specified x,y coord.

In the above, you have been presented with four commands that are related to the sub-
Ject of drawing graphics vectors. After seeing this output, one would probably pursue
additional information on one of the commands as in:

1> help draw
NAME

draw - Draw vector fram previous position to specified x,y coord.
draw X Y

gaw .2 .5 i

aw xori ori

EE Ae 8 yorig+¥y

. move, clip.draw, <graphics>
>

The listing <graphics> under SEE ALSO above indicates a subject area instead of a
command, procedure, define, etc., and its help entry may still be obtained in the usual
way, Le., by typing help <graphics>.

DELIGHT For Intermediates (3/1/85) 7

The helpsubject command is set up so that from 1 to 8 subjects can be explored with
the same helpsubject command. The help entries listed are those having to do with
either the first subject or the second or the third, etc., as seen in the following:

-

1> helpsubject move

cliparove - Position beginning of a vector, ready for a clip.draw.
nove : - Position begimning of a vector, ready for a draw.

1> helpsubject move draw

clipove - Position beginning of & vector, ready for a ¢lip_draw.
move - Position begimning of a vector, ready for a draw.

clipvector - Draw vector between 2 coordinates, clipping to viewport.
clip.draw - Draw vector to x,y coordinate, clipping to stay in viewport.
clh'aw - Draw vector fram previous position to specified x,y coord.
>

To get more on how to use helpsubject, type help helpsubject. To see a list of all avail-
able online help entries, type halpsubject *,

Frequently an occasional DELIGHT user wishes to know what new commands or
features have been recently added to the system. The helpnewer command allows you
to see a list of all new help entries, i.e., of all entries that have been added to the online
help system since a specified date. If DELIGHT system personnel have been consistent
in creating or updating help entries, these entries should represent everything new
that has been added to DELIGHT since the given date. The date is specified as a
numeric month-year pair. For example, you can type helpnewer 884 to see all help
entries that were added from August, 1984 to the present (assumed to be October,
1984 in the following example). Note that the following output to this command has
been shortened. In fact, as new commands or features are added to DELIGHT and their
corresponding help entries added to the online help system, the output actually seen
when working through this guide may be considerably larger!

1> helmewer 8-84
SYSTEM, BASIC HELP (file "<HsBASICO"):

8-84:
printvs - Print the values of fran 1 to 8 expressions in colum formmt.
plot - (NEW OPTIONS)

~yerbose=YES 17 YES, causes the message "--- Caxpiling plot loop -=-"

~yorigin=0.0 Y world coordinate value that "~origin"” causes the axes
~zorigin=0.0 X world coordinate value that "~origin" causes the azes
output_end - (NEW OPTIONS)
~verbose=YES YES means print "Cutput is in FILENAME".

LINFROG - Solve a linear program.
dlfast_ - Turn ean or off "Fast Rattle” execution.
10-84:
- (NEW OPTIONS)
=YES I1 gset to YES, execution interrupts after NUMBER
printv - (NEW OPTIONS)
%+ ~laxNsig=8 The maximm mmber of significant figures printed,
%+ ~MinNsig=0 The minimm mmber of significant figures printed,
1>

The above output shows that helpnewer presents the new commands and features by
month and indicates that in August, 1984, the printvs command was created, the plot
command got three new options, and the oufpuf_end command got one new option.
Similarly, in September, 1984, the L/INPROG command and dlfast feature were created.

8 DELIGHT For Intermediates (3/1/85)

A common occurrence in working with a program containing many commands is the
need to review quickly the syntax of or see examples of how to use a command. Simi-
larly, the options and their default settings may need to be reviewed even though a
user is familiar with how to use a command. Of course, this information can be
obtained using the help command but kelp usually produces too much output. For this
reason, there are several commands that just print out certain fields of a help entry.
The helpezamples, helpoptions, and hslpusage commands display, respectively, the
EXAMPLES, OPTIONS, and USAGE fields of a help entry, as seen in the following:

1> helpexamples vector
EXAMPLES

vector .2 .51 1
vector xorig yorig Wx (2°Wy - 0.5)
1> helpusage plot

plot YEXPR1 [YEXPR2 ...] vs XVAR fram EXFR to EXFR
times]
oct |}
dec {
log

by]EXPRi
i

1> helpoptians catput_to
OPTIONS

~verbose=YES YES prints message about creation/overwrite/append of file.
1>

Another command that prints out just one fleld is helpnezt, which prints the NEXT field
of a help entry. This field could contain suggestions for the next thing to do after issu-
ing a command. This might be useful, for example, in a design procedure that con-
tained many steps.

2.3 Where Binary Help Files are Found

When one of the help commmands is executed, it must open and read from a binary
help file, containing help entries, that has already been set up. The system tries to
open four different files, if they exist. Assuming the DELIGHT version is XXXXX (BASIC
for the basic DELIGHT system, M/MO for DELIGHT.MIMO, SPICE for DELIGHT.SPICE
etc. —see section 7) the binary help files are tried in the order shown:

1. HROOOX - Private, élocal) version-specific help file
2. <HIXXX> - Shared, (local) version-specific help file
3. <HsXXXX> - System, version-specific help file

4. <HsBASIC> - System, basic help file

The first file tried exists in the user’'s current directory and is set up according to the
rules in [6]. It allows the user to have available help assistance that he created himself
for version XXXXX of DELIGHT. The second flle tried is for help assistance that is to be
shared by several users working with version XXXXX of DELIGHT. The third file tried is
for help entries that are to be shared by all users working with version XXXXX of
DELIGHT. Finelly, the fourth file tried contains help assistance that is basic to any
DELIGHT version. Since this flle is usually set up by system personnel, it is named
<HsBASIC>. For the time being, simply treat the brackets "<" and "“>" as part of the
filename. They indicate that the files are located in another directory and section 5.2.1
of this guide is explicitly directed towards filenames of this sort and where the files are
found. Notice the first line after typing a helpnewer command:

DELIGHT For Intermediates (3/1/85) 9

1> helmewer 10-84
fzsa‘m. BASIC HELP (file "<HsBASIC>"):
rm - (NEW CPTIONS)
~guspend=YES [f set to YES, execution interrupts after NUMBER
print’v“ o -ggEW OPI"}:gNS)
si e maximum murber of significant figures printed,
> % ~MinNsig=0 The minimm mxxber of significant figures I;x'imcd.

Th.is line indicates that the following entries are from file <HsBAS/C>. The system
ge%r‘x:o open the other three files in the table above but they did not exist. If they had,
e line

SYSTEM, BASIC HELP (file “<HsSPICE>"):

for example, might have been seen with all of its "newer" entries by month, followed by
the output above. ‘

Advanced users who wish to know more about help commands or wish to set up
their own binary help files (such as file HIXXXXX in the above table) should see the
document The Helper Facility [8], which describes a general purpose online help facil-
ity called helper that is not particular to DELIGHT. However, all of the help cormmands
in helper also exist in DELIGHT.

3 More Define Enhancements

This section begins with a review of the basic defines and enhancements discussed
in DELIGHT Far Beginners. This is followed by the more advanced no-guote and auto-
pushback conventions in sections 3.2 and 3.4, respectively. Section 3.3 introduces a
very important new feature of defines, define options. Section 3.5 then gives sugges-
tions regarding the creation of new commands with defines and Rattle procedures, one
of the cornerstone features of DELIGHT.

3.1 Review of Define Enhancements

This section reviews the basic define features presented in the Beginners Guide.
Recall that the simplest usage of defines is to substitute one piece of text for another.
For example, :

define (TWOPI,8.283185307)

allows you to easily use the value of 2 in expressions. Next we extended defines to
bave arguments such as z in

define (print_square x,print x°*°*2).

Then, to allow a define to be more readable, special keywords (literal strings) were
allowed in between arguments such as over in the define

define (print_ratio x ‘over' y,print x/y),
which, for example, could be invoked using print_ratio §aver 2.

The next important extension to deflnes was to allow optional arguments having

10 DELIGHT For Intermediates (3/1/85)

default values. These arguments come after a semicolon (";") and have their default
values following an equal sign such as zscale in the deflne

define (print_scaled x ; xscale=1 ,print x/xscale).

Another extension was multiline defines, which do not have leading left parentheses and
end with the keyword end. For example,

define Newt date x
x =x - 1(x)/derv(x)
print x
end

is a define whose definition consists of two lines of Rattle.

Finally, DELIGHT For Beginners demonstrated the double-guote convention in
which a define argument preceded by two consecutive single quotes means to quote the
substitution string for that argument before substituting it into the define definition.
For example,

detine(list ''npame,list_(nare))

causes list myfile to be substituted by list_{‘'myfile '} the name argument value myfile
has been quoted before being substituted where name occurs in the definition.

3.2 No-Quote Convention

There are several cases in which you may want to switch off the double-quote con-
vention in using a define which was originally created with an argument preceded by
two quotes. Suppose you want to create a d‘ather silly) procedure to list a file then
edit the file using the DELIGHT built-in editor. You could use the following:

1> define (ListEdit ’‘name, {nanc
1> proct;:m(—e LEproc (pmame) E »
1} list pnane

i fdit posame

b b

However, upon trying your ListEdit command (first, creating a dummy file as shown):

1> edit jumk
Unable to open "jiumk”

a
Inside file junk

g |

"junk” 1 lines

1> ListBdit junk

ERROR: list: Camnot open “pname"
Unable to open "pneme”

‘q

1>

DELIGHT For Intermediates (3/1/85) 11

you discover that the system thinks the file you want to list and edit is file prame
instead of file fjunk! The problem is that the list and edif commands are taking your
argument pname literally; list and edif, like most other "commands”, are actually
defines which, in this case have arguments that are preceded by two quotes, something
like define (list 'name,list _{nam.e%). What we want the lis¢ and edit in the above pro-
cedure LEproc to do is to take their arguments from variable pname instead of taking
pname literally. For this DELIGHT once again extends the list of define features with
the no-guote convention.

The convention is that a define argument originally to be quoted using the double-
quote convention may turn off the double-quote convention for a single use of the
define—the argument’s value may be substituted into the definition without surround-
ing quotes—by preceding the actual argument with the character "“<", meaning, take
the argument literal from the contents of the argument variable. Thus you could
redefine procedure LEproc and test ListEdit as follows:

1> procedurc LEproc (pmame) |

1>

This demonstrates that the no-quote convention applied to the two pname arguments
was successful.

3.3 Define Options

There are many types of commands for which it is quite natural to have choices that
are made optionally, i.e., that have things which you may or may not wish to set or
choose. For example, one can imagine many possibilities with a plot
command —whether or not to erase the screen, whether to use logarithmic axes, what
values to force the x and y axes limits to be, etc. Another example is having the possi-
bilities of turning on line numbers with the list command and turning on or off the rows
of dashes that begin and end the file listing. Using optional arguments (those following
the semicolon in a define declaration), you could define list as

define (list '‘neame ; linemnbérs=NO dashes=YES , ...

with one required argument (the fillename) and two optional arguments (the two
YES/NO choices). Then list could be used as any of the following ways:

list mytile

list myfile YES
list myfile YES NO
list myfile NO NO

Obviously, there are several objections that can be raised. One is that you will probably
forget the order of the two optional arguments and have to keep referring to online
help. Another is that this statement is not self-documenting —if one of the last three

12 DELIGHT For Intermediates (3/1/85)

lines above appears in a procedure, someone looking at the source code cannot easily
tell what the statement is supposed to do since the meaning of the YES/NO arguments
may be forgotten. Finally, to set the dashes argument, the linenumbers argument
must be set first, as in the last example above. In other words when using the define,
arguments must be specified in the same fixed order that they were specified when the
define was declared.

To allow greater flexibility in using a command with optional things that may be
specified, defines are hereby extended to allow options——not to be confused with
optional arguments. Option names are preceded by a tilde ("~") and must come
directly after the define name (before any arguments) in the define declaration.
Option names, just as for arguments, may appear anywhere in the definition and just
represent places where text gets substituted. Also, just as for optional arguments, the
default value of an option is placed after an equals sign ("'=") following the option name.
Recall the define declaration defins (%m'ld_scaled z ; zscale=1 ,print r/zscale) from
section 3.1. Try the following simple (though not very useful) redefinition and use of

prini_scaled:

1> define (print_scaled ~xscale=1 x,print x/xscale)
1> print_scaled S

5.000
1> print_scaled -10°°3
«1.000e+3

Notice that in the declaration the one option ~zscale comes directly after the define
name print_scaled, before the one required argument z. Also notice that zscale
appears in the definition (after the comma) in any manner just as = and that when the
command is used, zscale in the definition gets replaced by its default value of 1.

By the very nature of options, the ability to set their values is essential. This is done
when using a define by following the define name by tilde, the option name, an eguals
:ign. and the option's value. This can be seen in the following continuation of the

ove:

1; ggnmaled ~x3cale=2 5

1> print_scaled ~xscale=(-10) 5
-,.8000

1>

By looking at the definition for print_scaled above, it is clear that the second example
above gets substituted by print 5/(-10).

Let us try a more sophisticated example —one with more than one option:

DELIGHT For Intermediates (3/1/85) 13

1> define printfancy ~stars=YES ~line=ND X
1} if (stars=YES) printf ‘eeeees *
1 printf ‘value = Xr/m* X

1 it (line=YES) print? ° /a'
1 F

1) end

1>

This muitiline define is a print statement with options to place stars in front of or to
underline the printed output. By default, the stars are printed but the underline is
not. Recall from DELIGHT For Beginners that the go statement is needed to prevent
DELIGHT from awaiting a possible else clause to the last if-statement above. Below are
examples of the printfancy command:

1> printfancy S5

seeee yalue = 5.000

1> printfancy ~line=YES §
eeees yalye = 5.000

1> printfancy ~stars=NO §

value = 5.000

1> printfancy ~stars=N0 ~line=YE3 §
value = 5.000

1> printfancy ~1ine=YES ~stars=NO 5
value = 5.000

ceemevencccacwvecan

The last two examples show that the options can be specified in any order.

In the print_scaled define, the option zscale could take on any numeric value.
But in the prinifancy define, the two options could take on YES or NO values. It turns
out that there are many cases where options take on YES or NO values. To simplify set-
ting options to YES or NO when using a define the following conventions have been
adopted: %:_?sif the option name is NOT followed by an equal sign and value, its value
becomes ; (2) if the tilde is followed by an exclamation mark (") before the option
name (and also no equal sign), then the option value becomes NO. Thus, the last use of
the printfancy command above may be more easily written:

1> printfancy ~line ~tstara §
value = 5.000

cossecsescccanscsancve

This example shows how to switch on underlining just for a single use of a define.
You may, however, wish to always have underlines. This is equivalent to having the
default value for option ~line changed from NOto YES. With the sef_gption command,
DELIGHT allows you to change at any time the default value of any option of any define.
It has syntax

set_option DEFINE_NAME ~OPTIONNAME=NEW_VALUE

and can be used to change the default value for option ~line as follows:

14 DELIGHT For Intermediates (3/1/85)

1> set_option printfancy ~1ine=YES
1> printiancy 5
ev00e yalue = §,000

1> printfancy ~istars 5
value = 5.000

Even though the default value for option ~line is now YES you can still use printfancy
without underlines:

1> printfancy ~!line 5
seose yalue = 5.000
1>

To show what happens if you misspell the option name, try the following:

1> printfancy ~!lines 5

ERFOR: For define "printfancy”, option "lines” does not exist.
ERROR: [llegal statement: "S"

1

The ability to change the default values for options immediately brings with it the
need to be able to display the current default values of define options. For this, the
display command, first introduced in section 10 of DEL/GHT For Beginners, allows the
argument doptions (for define options) followed by a define name:

1> display doptians printfancy
1 define with options:

printfancy ~gtars YES
~line YES

1> set_option printfancy ~1ine=NO
1> display doptians printfancy

1 define with options:

print fancy ~gtars YES
~line NO

1>

Shown are the define name, the option names and their default values.

Let's consider one final example —the practical requirement of getting slightly
more information from the help command (see section 2.2). We can see what options
are available as follows:

DELIGHT For Intermediates (3/1/85) 15

1> helpoptians help
OPTIONS
The following options are YES/NO flags, along with their default values,
of whether to print the indicated help entry field:
~NAME=YES ~USAGE=YES @&CRIPTION:YES ~0RE_DETA[L=NO
~QPTIONS=YES ~EXAMPLES=YES ~SEE_ALSO=YES ~BUGS=YES
~SOURCE_FILE=NO ~AUTHOR=NO ~KEYWORDS=NO ~NEXT=YES
1>

The default values shown for the ~SOURCE_FILE and ~AUTHOR options are both NO as
seen in the following:

1> help enter
NAME
enter - Enter a procedure for examining local variables, etc.
enter [PROCNAME]
LES
enter algo
ALSO

leave
»

If you wanted to see these fields for the enter command you could type:

1> belp ~SRCE_FILE ~AUTHOR enter
NAME

enter - Enter a procedure for examining local variables, etc.

USAGE
enter [PROCNAME]
enter algo
SEE ALSO
leave
SOURCE FILE
<enter>
R
Bill Nye
1>

However, if you wanted to always see these fields for all uses of the help command, the
following would suffice:

set_option help ~SOURCE_FILE=YES
set.option help ~AUTHOR=YES

3.4 AutoPushback Convention

The auto-pushback convention—not a terribly important feature —has to do with
defines which are never issued as commands but whose only purpose is to have options
associated with thern so that the values of certain variables can be controlled by set-
ting the default values of the options. This might be useful when you are developing a
Rattle program consisting of subprocesses or substeps such as a simulator that have
variables or parameters whose values you would like to have a user set by setting the
defauit values of options. The convention simply says that if, in the define declaration,

18 : DELIGHT For Intermediates (3/1/85)

the define name is preceded by a tilde ("~") as in define(~flags...), then any set_option
on one of the options of this define will automatically push back the define name. (See
section 6.1 if you don't understand what is meant by "push back”.) Let’s first see what
this means with a simple (though not very useful) example:

1> define (~sinple ~junk=1 ,print -junk)
1> simple

-1.000

1> set option simple ~junk=2

-2.000

1> simple
-2.000
1>

Notice that after the sef_option command, the define name simple has been automati-
cally pushed back with the new default value for option ~junk, , causing print -2 to be
executed. As a check, when simple is typed, the same result is obtained.

To control important vaﬁables using options, as mentioned at the beginning of this
section, you simply have a define definition contain assignments that use the options.
Suppose you want to control two simulator flags using options. The following is a possi-
bility:

1> define ~sirmlator_flags ~Tlag1=0 ~flag2=0
1> variable_flagl = flagl

1> variable_flag2 = flag2

1> end

1> set_option simmlator.flags ~flagl=8

1> display variables var?

2 variables:

variable_flagl = 9.00000
variable.flag2 = 0.00000

1>

After typing the saf_option command, the define name simulator_flags was pushed
back causing variable variable_flag 1 to be assigned the value 9.

One benefit of using options instead of simply allowing users of your program to set
variables directly is the ability to use the display doptions command to see the current
option values:

1> display doptians siimlator_flags
1 define with options:

simulator_flegs ~1lagl 9
~1lag2 (o]

1>

This benefit is even more important when a second benefit of using cptions is also

DELIGHT For Intermediates (3/1/85) 17

considered. This is when the variables such as variable_flag! above are complicated
expressions of the option flags or when the option values are passed to another pro-
cedure, as seen in the following hypothetical example:

define sirmlator.options ~MaxIter=100 ~Algo=trapezoidal
;u:ﬂator.options_(ﬂaxlter. quote Algo§

procedure simulator.options— (MaxIter, Algo-string) §
import Tmax, Tduration, Vmx
Tduration = Tmax / MaxIter
Vmax = exp(-Tduration/70.5)
7et..algo {Algo_string)

In the above, simulator parameters Tduration and Vmax are expressions of the user-
settable option ~Max/ter, while user-settable option ~Algo is passed to procedure
set_algo.

3.5 Creating New Commands With Defines

One of the cornerstones in how we build up interactive DELIGHT design systems is
the idea of using defines and all their extensions to create new commands. While this
idea was alluded to in the Beginners Guide, this section will firmn up a few practical con-
siderations on the best use of this technique.

The steps a DELIGHT user should follow to create his own commands with defines
are:

1. Decide on a command name.

2. VWrite a procedure to do what the command is supposed to do. A good
idea is to have the procedure name be the command name followed by an
underscore ("'_") as in command showalgo and procedure showalgo_.

3. Vrite the define statement so that the definition simply invokes the pro-
cedure as in define (showalgo,showalgo_{)).

A good reason for making the procedure name similar in this way to the command
name is so that if an interrupt of some kind occurs while executing inside the pro-
cedure, it will be easy to determine what command/statement caused the error from
trace output. This idea is demonstrated further below.

Ini the following, we repeat the prin{fency command from section 3.3 by using the
above define/procedure paradigm instead of the muitiline define used before, which
was:"

define printfancy ~stars=YES ~line=NO X
if (stars=YES) printf 'e¢°eee !
printf! 'value = %r/m' X
if (1ine==YES) printf 'e-c<cececcccccccccns /'’

go
end

Fowever, to show the trace output that occurs during an interrupt of execution, we

18 DELIGHT For Intermediates (3/1/85)

print the reciprocal of the value given as argument.

1> procedure printfancy_(starsflag, lineflag, x) |
1} if (starsflag=—yYES) printf 'eeeee ®
1 print{ ‘value = Xr/n’ 1/x

1] if (lineflag=YES) printf ° /n’

1

1> define (printfancy ~stars=YES ~line=NO X,printfancy.(stars,line,X))
1>

As before, this command could be used in any of the following ways, which yield exactly
the same results (except for the reciprocal) as before:

1> printfancy S

eeeoe value = .2000
1> printfancy ~line $
e90ee yajue = .2000

1> printfancy 5
eseov value = ,2000
1> printfancy 0

00¢C0e

RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s).

Interrupt...
1> trace
Interrupted IN procedure

printfancy— (Input fram the terminal)
1> resect
1>

The major benefit of creating commands in this way —using procedures instead of mul-
tiline defines—is that the procedure body is Rattle compiled just once whereas the
definition of a multiline define must be recompiled every time you use the command.
As you might have noticed, the prinifancy command here is much much faster than
the one set up in section 3.3.

4 The New Plot Options

Both as an example of how define options have been used and as valuable examples
in their own right, this section demonstrates the new options associated with the plat
command. Since the simple usage of plot was already demonstrated in the Beginners
Guide, let us get directly to the heart of the issue by examining the plo¢ options using
helpoptions:

DELIGHT For Intermediates (3/1/85)

1> helpoptions plot

OPTIONS
~erase=YES
~intx]labels=NO
~§ntyl abels=NO
~logx=N0
~logy=NO
~axis=YES
~axisfirst=NO
~xmin=0.0

~xmax=0. 0
~ymin=0,0

~ymax=0.0
~y3expr=NO
~nident=4

~origin=NO

~xorigin=0.0
~yorigin=0.0

~verbose=YES

1

[f YES, erase screen before outputting plot.
It YES, use integers for the x-axis labels.
It YES, use integers for the y-axis labels.
If YES, use logarithmic x-axis.
It YES, use logarithmic y-axis.
[t YES, DO draw an axis for the plot.
[? YES; output the axis before the plot curves.
[f ~xnin and ~xrex are not both zero, use them as the
x-axis limits instead of using the minimm and meximm
bounds on the XVAR sweep variable.
See ~wmin.
{f ~ymin and ~ymax are not both zero, use them as the
y-axis limits instead of using the minimm and maxzimm
of all the y-expression values.
See ~ymin.
It YES, all but the last y-expression are plotted versus
the last y-expression as in the cammand:

plot ~vsexpr sin(t) cos(t) vs t fram O to TWOPI by .1
which produces a circle.
Nurber of smmll identifying triangles, squares, etc.,
used to identify different y-expression curves.
[? YES, forces the x and y axis intersection to go through
world coordinate (xorigin,yorigin) where ~xorigin and
~yorigin are options that have default value of zero.

- Thus, ~origin alone forces the axes to pass through (0,0).

By carbining ~wversus and ~ori§in. lar plots mmy be
produced; see (try) the example below.

X world coordinate value that "~origin" causes the azes
to pass through. See ~origin above.

Y world coordinate value that "~origin" causes the axes
to pass through. See ~origin above.

[? YES, causes the message "--- Carpiling plot loop ---"
to be output right after the plot macro has pushed back
its large loop statement.

19

In a nutshell, the important options are ones for whether the screen is erased, for
integer axis labels, for logarithmic axes, for even whether the set of axes are drawn, for
forcing the axes limits, for plotting one expression versus another, and for forcing the
axes to pass through an arbitrary (x,y) coordinate. Of course, as with all define
options, these can be used in any combinations.

To simplify the entry of the expressions used in many of the plot examples below,
we now declare two functions, yv and zv, of a single parameter £. Later you will see
that they represent a parameterized curve in two-space. Function yv is a sine wave
with a growing amplitude while zv is a cosine wave with the same amplitude growth but

a slightly different period:

1> funetion yv(t)
1} return (t**0.85 * =sin(t))
1> function xv(t)

1]
1>

return (t°*0.85 * cos(1.05%t))

First of all, let's set the viewport for the entire screen and see what the two waveforms
look like. (Be sure to first set the terminal type using, e.g., terminal hp2648a):

20 DELIGHT For Intermediates (3/1/85)

1> viewport 001 1

1> plot yv(t) xv(t) va t fran 0 to 12 by .1
; ----- Campiling plot loop ===---

>

The graphical output from this command is shown at the top of figure 4.1 for the
HP2648a terminal. Before proceeding, there is a system file that contains four defines
for setting the four viewports that we shall repeatedly use:

-------------------- Begin <vport4d> -e-e-ccecccccccccca.
vport4 - Camrands “vport1” through "vportd4” for entering four viewports.

define (vportl,viewport 0 0 .5 .8)
define (vport2,viewport .50 1 .5)
define (vport3,viewport .5 .5 1 1;
detine (vport4,viewport 0 .5 .51
--------------------- End <vport4> -----ccccccceccecncn-

These viewports are in the order lower left, lower right, upper right, and upper left, i.e.,
counterclockwise starting in the lower left quadrant. Now we are ready to begin the
demonstration.

1> wportl
1> plot yv(t) xv(t) vs t fran 0 to 12 by .1
------ Carmpiling plot loop =<=----

To avoid having the screen erased by each of the following plat commands, we can turn
off the ~erase option on the plot command. (Alternatively, we could just type ~‘erase
on every plot command.) We then proceed with demonstrating various plot options:

1> 'eLsptun plot ~erase=

vgo ~intxlabels yv(t) xv(t) v8 t fran 0 to 12 by .1
------ Catpllmg plot loop «-----

>
> pgot ~intxlabels ~intylabels yv(t) xv(t) vs t fran 0 to 12 by .1
------ Campiling plot loop =-----

4

> "ant
> plot ~xnin-2 ~xmx=20 yv(t) xv(t) vs t fran 0 to 12 by .1
------ Campiling plot loop -=----

These four plots are shown at the bottom of figure 4.1. To continue trying more
options, try the following:

DELIGHT For Intermediates (3/1/85) , 21

11 yvi(t)
21 xvit)

x
Pes
]

2.9'

I

eeseime me morers

LR IR IR LI

\

!

/
..(

™~

PRSI T » \
Pl -
@.9 - D e 2 >

S
b e 4)
.
L T - \
- . .
o e oe* \ «
S /.
o *
\ -- °. t
[o . 4
= - - .
b .. 4
100 4 2 3 443 s PR W S T ST G S T PENY T SR T WA W Y A PO S U W S T N 1 PRI O T WS W N W T 1 A NPT LT 3

«40 68 .80 1.0 1.2

[4]
.
o
.
18]
©

» 0,41@’ 21 awits 20 2 <t)
E i E v
= H i e i H i t H
3 i : 4 re 3 i i 3 r
1.0F : : InE H ! i :
3 b s T r
E S \'” : / 3 S R /
3) 3 R T N
V.GfF: . " * / Bbm s D2 ek W Y M ,/
::.'\ o T e \ * t 3 A ::~ .- 2' \j\ ‘i t
g) },‘ ’ 1 . 3 - : :)‘ R
,-lta-l 14t 9 41 4 1.1 . | l‘d{ 1.4 1 Ad it 1 1 1 2 1 xtu -10 :Illllllll INETREENT} ll'lLLlll’Lll_LLllLl::llltzllL ll‘lm.
20 .30 1.4 2.0 -} 2 4 6 8 - 18 12
12 yv(t) 12 yv(t)
2.0xt8) 23 xv(t) 2.0¢18) 21 xv(p)

e . ’ 1 —r” “ .
Jotl i L L ISR NERNEENN LA LA Ll 4 L 1l it it i g ‘le -l.e ISR I AU RSN IRE NI NN IS RS ISR RINARINNENIET AN ISEENINE]

.30 «60 .90 1.2

[]
-
oD

3 i1 E .
1] : 2
l.ﬂi — 1.'—1:—: [
E el o Oy E (1 . 's.
= \I' = . S "
0.9%.._ PX il - P / . \\ "‘. / a.0F PELI < P / . \‘ . /
~N=7 L N "/ ‘t ~=x_ .. L v t
0 o

2 4 6 8 19 12

Figure 4.1. Cutput From Various Plot Commands.

2 DELIGHT For Intermediates (3/1/85)

1> erase

1> wportl

1> plot ~logx ~xmin=2 ~wax=12 yv(t) xv(t) vs t fran 0 to 12 by .1
------ Carpiling plot loop «-----

1

1> plot ~vsexpr yv(t) xv(t) vs t fran 0 to 12 by .1
------ Campiling plot loop ee=---
1> vport3d

1> plot ~origin ~vsexpr yv(t) xv(t) vs t fran O to 12 by .1

------ Carmpiling plot loop ==----
1> vport4

1> plot ~intxlabels ~intylabels ~origin ~wvsexpr yv(t) xv(t) \
INva t fran 0 to 12 by .1
------ Carpiling plot loop ==-==--

In viewport 2 (from vportZ) we've just plotted function yu(t) versus function zv(t), over
independent parameter £. In viewport 3 we force the axes to pass through the origin
(coordinate 0,0) and in viewport 4 we add integer axis labels for neatness. These four
plots are shown at the top of figure 4.2

The following plots are shown at the bottom of figure 4.2:

1> erase
1> vportl
1> plot ~xoriginm=-5 ~arigin ~vsexpr yv(t) xv(t) va t fran 0 to 12 by .1

------ Campiling plot loop <=-<--

1> wport2

1> plot ~xorigin=-5 ~yorigin=-5 ~origin ~vsexpr yv{t) xv(t) \
N\Nwvat fran0 to 12 by .1

------ Carpiling plot loop ==----
1> wport3

1> plot ~iverbose ~axisfirst sin(t) va t fran 0 to 12 by .1
1> vport4

1> plot ~xorigin=5 ~origin yv(t) va t fran 0 to 12 by .1
------ Campiling plot loop -=----

In viewports 1 and 2, we specified the coordinate(s) through which the axes pass for the
~origin option. Viewport 3 demonstrates doing a plot in which the Compiling plot loop
message is turned off and the axes are drawn first (by default, they are drawn after the
y-expression curves). Finally, viewport 4 shows that the ~origin option can be used
without the ~vsezpr option.

5 Additional 1/0 Features

This section introduces several /0 features that were not discussed in the
Beginners Guide. Section 5.1 demonstrates how users can write interactive programs
using procedure answer._to_prompt. Section 5.2 addresses the subject of input and
output to and from flles. In particular, section 5.2.1 is directed towards the pesky
openhdtl file and the <FILENAME> convention. In Section 5.2.2 we explain various
built-in functions for opening and outputting to files. Sections 5.2.3 and 5.2.4 introduce
and apply the special built-in function opuniq for opening unique temporary (scratch)
files.

2.9

DELIGHT For Intermediates (3/1/85)

yvit)

oes =" *ee

xvi(t)

-
-
]

0.0

1.9

., =5 ~1d 3 L 4 1
“~ .. - \.’i . "-
A} LY -
s . -7E
hd '?? ’I'
-10;3 YTV cen eee eea #0°
12 yv(t)
x181 21 xv(t)
3 s1
§ \“\ I
3 , ®o®:te // Ih ’
:—h—.ﬂg i .
~i= ik
\‘il‘:
10? 10! 10
walt) 3 w’

°.990

(
AL

.
T
E:

~1l.

" ®ee oo

“.105

“ee

.

« 3w

’ o 190Q

®oe wes

LY

-
-
T ces cee eee °°

xlO1

1.10

’

o’

xv(t)

-,200

‘.:.500

«398

’ ‘?06

.anxle’ yvit)
P id re - X
- 2
b‘~
20 "
« "1 ®
\‘ .l. ot ‘.
- [N 4
-,40 ° Y b N id
- cee o=
. -. xvit
®ed . '4‘
.
-1.9 AETES NI CE TN N TR AV AR R T U AT A P LI TN NS R TR AN L N U xlB‘

-,908

-,.500

-,100

300

700

1.0

xlﬂl

‘.2

1
1
‘v t

snnlty
1.0
:‘ . : " x
5] S > ‘ M 3
t' .n " *
.20 1, M ¢ M
, ‘.
© <20 * . '
- '\ { "
'060 : 4 M
* v * .
1 OB gy Lll‘lLLl‘ll [N EEENRN! llll\l’_h['
0.9 .30 .68 .96
v {
.80 <lbm 2
'l‘ - s~.
. 1) 8 AN
. by . " o
A - 4 «? .
. ’ .
- Saal . e
.40* M e, " Py
. L
900 =S8 "~)00 300 .700 k.10
L3 T See %2 vee see .’ ‘

Figure 4.2. More Output From Plot Cornmands.

24 DELIGHT For Intermediates (3/1/85)

5.1 Writing Interactive Programs With Answer_to_prompt

In many situations, it is convenient to prompt the user for input to be entered
directly from the terminal. In the Beginners Guide, how to read input from the termi-
nal using readf was demonstrated. For prompting the terminal with a message or
request such as Enier number of items:, there is command prompt which automati-
cally flushes the output and insures that the next input comes from the terminal and
not from pushback (see section 8.1). Although a more powerful approach to prompting
the user is the subject of this section, let us first show how to use prompt and readf for
this purpose:

1> procedure testprampt |
1} prampt ‘Enter any

1 readf * %r/n’ x

1 ‘Nuxber read = ®r/n’ x

1}

1> testprampt()

Enter any mmber: 5.3
Number read = 5.300
1>

Procedure enswer_fo_prompt is a much more powerful way of prompting the user
for input and collecting one or more answers. The procedure is contained in a file
called <anspromp> which must be included before using the procedure since it is not
automatically built into DELIGHT. Let's illustrate how one may use answer_to_prompt
with a simple example: :

15> use <ansprammd>
1> array nane(MAXTOKSIZE)
1> answer_to_prampt(’Enter name: °, ARB, ARB, GET _NAME, na)
Enter neme: 687
§ILLEXLAL ANSWER) Enter name: °*°
ILLEGAL ANSWER) Enter nsme: R2D2
1> print! 'Nare is Xa/n’ name
Nare is R2D2
»

The prompt in quotes is a string that may, in fact, contain up to two printf-like "7%" fleld
descriptors that are associated with the next two procedure arguments. In the above,
these arguments are passed as ARB to indicate that they are arbitrary, i.e., just place-
holders that are not used since there are no "%" descriptors in the prompt string.
GET_NAME is the mode argument (of several possible modes) that requests
answer_tao_prompt to accept as answer only a name token (see section 8.1), i.e., only a
sequence of letters or digits beginning with a letter; as shown above, the prompt is
repeated until a valid name is entered. The valid name is returned in the array name,
as shown by the printf statement above.

There are many other modes besides GET_NAME. For example, answer_to_prompt
can return a single letter answer by using mode GET_LETTER as shown below:

DELIGHT For Intermediates (3/1/85) 2

1> array letter(2) ("Sex le. et): *, AR, AR,
1> answer_to_praxpt(’ (lmmle, amle): °
m_xm

1] letter)
Sex (M=male, F=femle):

(ILLEGAL ANSWER) Sex (lhmle. F=temle): M
1> printf 'Sex is Xs/n' letter
?ex is ¥

>

The GET_LETTER mode allows you to input only the letters a through z or 4 through Z.
For mode GET_LETTER, the function value returned by answer_fo_prompt also con-
tains the single character of the answer:

1> cletter = —ww_to_prqt(Sex (male, F<famle): °,
1} ARB, GEL_LEITER, letter)

Sex (lhmle. F‘-fennle) F

1> print? *Sex is Xe/n' cletter

Sex is F

b b4

In fact, all of the various modes return something as the function value and some char-
acter strmg in the last procedure argument (letter above). What is returned in each of
these is shown in the table at the end of this section.

To see how to use "%" flelds in the prompt string and their associated arguments,
try the following, which fills a two-by-two array:

1> array mmber_str (HAXTOKSIZE)
1> array A(2,2)
I>fori=1t02
1] for j=1to2 |
1 value = answer_ta_prampt(‘Bater A(Ri, Ri): °, i, j,
- GET_NIMBER, murber._str)
1 | A(i, j) = value
1
Enter A(1,1): 1
Enter A(1,2): 1.
Enter A(2,1): 2.
Enter A(2,2): 2
1> printv A
Hatrixz A(2,2):
1.1 1.2
2.1 2.2
1o

19 b 09

In this section we have covered the three modes GET NAME, GET _LETTER and
GET_NUMBER. All mode arguments available for answer_fo_prompt are listed in the
following table:

DELIGHT For Intermediates (3/1/85)

Procedure answer_to_prompt Modes
Mode Allowable User Answer | Function Value Returns Last Arg Retures
GETDIGIT Any digit from O to 9 The character digit String consisting of
just the character
digit
GETLETTER Any letter a-z or A-Z The character letter String consisting of
just the character
letter
GET.LCLETTER Any letter a-z or A-Z The character letter, | String consisting of
after converting it to | just the lower case
lower case character letter
GET.NAME Any sequence of | Length of name String containing
letters or digits be- the name
ginning with a letter
GETNUMBER Any real or integer { The numeric value of | String containing
number the number the number
GET_.NUMBERS Any sequence of real | The number of | Array containing
or integer numbers | numbers read the numbers (not a
up to the first non- string)
number token
GETLSTRING Absolutely anything | Length of string String containing
, up to the first blank the answer string
or to the end of the
line
GET_EXPRESSION | Any Rattle expression | Length of expression | String cortaining
(ending at the first | string returned in the | the expression
blank or tab following | last argument
balanced parenthesis)
GET_ANYTOKEN Absclutely any input | Length of token string | String containing
token including NEW- | returned in the last ar- | the token
LINE gument
There is one final feature of procedure answer_to_prompt: if a colon (":") alone is

given as an answer, Rattle execution is immediately suspended, just as if a hard inter-
rupt had been generated. Typing resume gets you executing inside enswer_to_prompt

again, which first reprompts you with the prompt string argument:

14
1
1
1
1

er

1> test;
rrocednre pr-wt t

vnlne ms-er_to.prupt ("Eater any mxber: °,
GET_NUMBER, muber_str)

ARB, ARB,
print! 'Noxber read =

|
1> testprampt()

any mxrber:

%r/n' value

>>>> Type "resure” to comtimue <<<<
2> print sin(5.3)

-.8323

DELIGHT For Intermediates (3/1/85) 27

2> resume

Enter any mumber: 5.3
Nurber read = 5.300
1>

5.2 File Input and Output

The four subsections in this section show how to use available built-in functions for
doing file I/0 (input/output).

5.2.1 The Openhdtl File

A very useful feature in any system which deals with files is to be able to open and

read flles which are not in your current directory! and which may not even be your
own! The convention adopted in DELIGHT is that any filename surrounded by triangular
brackets ("<" and "“>") such as <graphics> does not exist in the current directory but
instead, exists in one of several "standard places” in the operating system file struc-
ture, ie., it exists in another directory. The standard places are specified in the file
openhdtl, the subject of this subsection.

The purpose of the openhdtl file (standing for "open-head-tail”), is to locate files
whose names are surrounded by triangular brackets. If file openhdtl exists in the
directory in which DELIGHT is being run, it is used. Otherwise, a standard openhdtl file
is used.

This file consists of pairs of lines containing head and fail strings which are
appended before and after filenames surrounded by the brackets. Each head/tail pair
corresponds to one standard place in which to look for the file. The first place tried is
using the filename obtained by appending the first openhdtl head-string before the
specified file name and the first openhdtl tail-string after. If the file does not exist in
that location, i.e., this appended filename can not be -opened, then the second
head/tail pair is tried, and so on. Note that if either the head or tail string is to be
empty, then a blank line must be left in file openhdtl. All the pairs of lines in file
openhdtl are read once-—when the first filename surrounded by triangular brackets is
encountered internally by DELIGHT file-opening routine openp, discussed in the next
section.

The following example of file openhdtl is for UNK, in which flles in different direc-
tories can be accessed by preceding the filename with the directory name, i.e., the tail

strings are all null. ldentifying comments are shown in parenthesis and are not part of
the file:

/usr/optcad/nye/include/ (head 1)
tail ! ;

/usr/lecal /1ib/ head 2
tail 2)

/sharel/helper_tiles/ ghead 3;
tail 3,

/ghare2/helper_files/ haad 4)
(tail 4)

Based on what has been said above, to open, say, file <mouse>, DELIGHT would try to

1 By directory we mean the group of files with which you can work with and have control over directly by
gpecifying their unappended fllenames.

28 DELIGHT For Intermediates (3/1/85)

open the following files (and in the order shown) until one was found:

/usr/optcad/nye/include fmouse
/usr/local /1ib/mouse
/sharel/helper_files/mouse
/share2/helper_lilesAmouse

On some computer systems, however, the head strings might be null with the
directory specified in the tail string as in filename:directoryname. In this case file
openhdt! might appear:

head 1)
:sharel tail 1)
head 1
:share2 tail 2
head 3
:local:1lib (tail 3)

and to open file <mouse>, DELIGHT would try to open the files

mouse: sharel
oouse : share2
mouse:local:lib

Usually, the first couple of pairs in flle openhdtl are the standard places for the
DELIGHT library files. After these pairs, users may add their own head/tail pairs in
order to share files from common standard places. Currently, a maximum of 20 pairs
are allowed in file openhdtl.

</PATTERN/FILENAME> Convention. What happens if the same flle exists in direc-
tories from two or more different openhdt! head/tail pairs, for example, if, in the above
UNIX examnple, both of the files

/usr/optcad/nye/include /mouse
/usr/local /lib/mouse

exist, and you want to get at the second one using only the filename mouse and a little
extra hint to use the second head/tail pair? To do this there is a simple extension to
the <FILENAME> convention that allows you to choose which head/tail pair will be
used. It is called the </PATTERN /FILENAME> convention since a pattern is specified
inside the triangular brackets before the filename such as pattern lib in
< /lib/mouse>. The pattern is first searched for on the head/tail pairs lines. If the
pattern is found in a head or tail string, that pair is used to try to open the file, i.e.,
that pair is appended to the fllename as shown above.

Note that it is important not to introduce any machine-dependencies by use of this
feature. For example, suppose on UNKX that your openhdtl flle contained the pair

/usr/optcad/nye/include/
(blank lins)

Rattle procedures that opened, say, file </include/graphics>, might not run on
another computer since the pattern include might not exist in any of the head/tail
pairs in the other computer's openhdtl flle. For this reason, there is a way of placing
characters on a head or tail line that are not actually part of the head or tail string,
but whose purpose is simply to match the specified pattern specified in
</PATTERN/FILENAME>. These characters are placed after a backslash ("\"), which
in turn is placed afier the head or tail string on the same line as in

DELIGHT For Intermediates (3/1/85) 29

/usr/optcad/nye/include/\include
(blank ling)

Then, if on another computer the files in this directory get placed into a directory with
tail string -local.lib, the openhdtl lines would have to be

(blank ling)
:local:lib\include

so that the string include in the filename </include /graphics> would be found on this
openhdtl line. Note that file <graphics> would still be found in either file
/usr /optcad /nye finclude /graphics or graphics:local:lib for these hypothetical exam-
ples.

Modifying The Openhdtl File. To modify the openhdtl file, assuming you don't
already have one among your files in the directory in which you are running DELIGHT,
you could simply use the DELIGHT built-in editor by typing edi! <openhdtl>, make any
changes desired, then write out file openhdtl in your own directory using w openhdti.
Since DELIGHT only reads this file once —and it has already been read when DELIGHT
was started —there needs to be a command to tell DELIGHT that you want it to reread
file openhdtl.

Reset_openhdtl Command. The command "resef_openhdtl' resets an internal
DELIGHT flag that is set after the openhdt! file has been read. Thus, if you modify the
openhdtl file, you must then type resef_gpenhdtl so that the next attempt to open a file
with filename surrounded by triangular brackets (such as <graphics>) causes the
openhdt! file to be reread.

5.2.2 File 1/0 With Built-in Functions

In Rattle programs, input and output (1/0) may be performed to and from files as
well as to and from the terminal To perform 1/0 with a file, the so-called present input
or present output —where DELIGHT is currently reading input from or writing output
to —must be switched to a logical unit number which has been opened to the file. Usu-
ally this logical unit number is returned as function value of built-in function openp and
is then passed as an argument to built-in routine sochan ("set-output-channel”) caus-
ing all subsequent output to go into the file opened by openp. After outputting to the
file, the present output is restored to what is was previously —in the case of the exam-
ple below, to the terminal—by a call to built-in routine rochan ('reset-output-
channel”). If no further 1/0 to the file is required, the file can be "closed” by passing
its logical unit number to built-in routine cloze. All of this is demonstrated in the fol-

lowing example:

1> unit_mmn = openp(‘myfile’ ,(RBATEFILE)

1> sochan (wnit.mxm)

1> print? ‘This should be in file./n’

1> rochan()

1> cloze(unit_mn)

1> list nyfile

-------------------- Begin myfile ccecccccccencccacens
This should be in file,

--------------------- End myfile e--eccccccccocccccea-

When the file myfile was opened above, it was opened with mode CRZATLFILE, which

sSo DELIGHT For Intermediates (3/1/85)

means to create the file if it does not exist. If it does exist, it is simply opened, ready
to be written over. Alternatively, if the file exists or you do not want to create the file if
it does not, the mode can be passed as WRITEMODE, which opens the file ready to be
appended to. With this mode, if the file does not exist, ERROR (defined to be -1) is
returned as the function value by openp. Try the following:

1> wnit-num = openp(‘myfile’ ,MRITENODE)

1> sochsn (1mit_mm)

1> printf °‘Should be amother line./n’

1> rochmn()

1> cloze(unit.mmm)

1> list myfile

-------------------- Begin myfile seeeccecccccccocece-
This should be in file.

Should be another line.

--------------------- End oqyfile =-ee-ccccccccccccacn-
1>

1> uwnit.mm = openp('DoesNotExist * ,NRITEUMDDE)

1> print wmit.mm

-1.000

1>

Finally, if you just want to read from an existing file, READMODE can be passed to
apenp. As before, ERROR is returned as the function value by openp if the file does not
exist. For reading, built-in routines sichan (“set-input-channel”) and richan (‘reset-
input-channel”) are for dealing with the present input analogous to sochan/rochan for

resent output. So we can read a string from the first line of file myjfile using readf
fsee DELIGHT For Beginners section 7) as follows:

1> array string (MAXTOKSIZE)

1> n;nit_mln= openp(‘myfile’ ,REAINDDE)
>

1> sichan (unit_mum)

1> readf *Xs/n’ string

1> richan()

1}

1> print? °String = "%s"/n' string
String = "This”

D

A very important word of caution: if the three indented statements above had not been
in curly brackets, the sichan(unit_num) statement would have immediately switched
the present input to file myfile causing DELIGHT to start reading commands from that
file up to the EOF (end-of-file), in which case DELIGHT would get hung. Since a hard
interrupt somehow ends the state of being hung, you can try this. First, however you
must rewind the file so that reading will begin at its beginning:

DELIGHT For Intermediates (3/1/85) 81

1> rewind unit.mm

1> sichan (umit_mm)

ERROR on line 1: Camnand not found: “This”

ERROR on line 2: Camnand not found: "Should”
(Kere, DELIGHT is hung,; you)
(rust press the spscial)
(interrupt key twics)

[nterrupt...

1>

Finally, it a good idea to close all files that are opened as soon as you don’t need to use
them any longer:

1> cloze (umit_mxn)
1>

5.2.3 Opening Temporary Scratch Files With Opuniq

Besides the obvious need to open flles using openp, there is quite often a need to
create a temporary file, only to exist a short while, that is later eliminated. A Rattle
programmer developing commands and procedures for other DELIGHT users could
easily just create a file with name, say, temp in the user’s directory. But this raises
two serious questions. First, how does the procedure developer know that he is not
using the name of and thus overwriting an existing flle in the user’'s directory? Second,
what names should be used if several scratch files are needed simultaneously? Clearly,
using filenames like temp 1, templ, etc., only increases the chance of coinciding with an
existing user filename.

A rather elegant approach is to have DELIGHT generate the scratch file in another
directory —thus avoiding fllename conflicts—and also guarantee that the fillename is
unique, thereby allowing several scratch files to be open at the same time. This service
is provided in DELIGHT by built-in function opunig, which is used according to the syn-
tax

uni tumm = opuniq (NAME_FRAGUENT, ACTUAL.NAME.USED, MODE)

This function, just like openp of the previous section, returns as function value a logical
unit number that can be passed to sochan to direct subsequent output to this file. It
opens a unique, temporary file having a fillename that uses, if possible, the characters
in string NAME_FRAGMENT, returmng the actual filename used in string
ACTUAL_NAME_USED. The open mode is specifled in argument MODE and is passed
directly to the last argument of function openp.

To demonstrate how you may use opunig, an example template already exists in a

file called <Topunig> in a standard directory of the DELIGHT system!. All you need to
do is edit the file and modify it. First, lets list the file:

1 2 you have a openhdt! dle (see section 5.2.1), it must contain an eniry that can find 4le <Topunigd>. ¥
the following list command returns with ERROR: list: Cannot open "< Topunig>", see system perscnnel to up-
date your openhdii file or simple rename it to another name besides opentidii.

32 DELIGHT For Intermediates (3/1/85)

1> list ~mubers <Topunig

-------------------- Begin <Topunig> --=--e=scscccccccao-

1 ¥ This exmple creates a texporary file, prints sare cammnds into
2 ## it, puts e final cammand into it to exit and remove itself, then
S ## pushes back an include statement for the file,

4

§ array actual_name(40)

8 unit.nun = opuniq {'tempfile’, actual.name, CREATEFILE)

7 it (unit_mm == ERROR)

8 print{ 'ERROR: camrand: Cammot open or create temporary file
] printf '"%p”./n' actual_name

*

10 7uspend

1

12 sochan (umit.num) #% Set present output channel.
13 # .

14 # . (printf ...) ## Print cammnds into the file.
15 # .

18 print? ‘exit ; filprm("%p")/n' actual_namre

17 rochan () ## Reset present output chamel.
18 pbf ‘include %p/n' actual_name ## Push back the include statement.
--------------------- End <Topunig> ---=-+=-===ccccccccec-

1>

The pbf statement above (discussed in detail in section 6.1) pushes back an include
statement for the actual filename opened by opuniq, causing that statement to be the
next input read by DELIGHT. The 2p is for a packed string and follows the same con-
ventions as the "%" format control fields discussed in the Beginners Guide for printf.

In order to make this example really useful, we need to replace the three lines (13th
through 15th) with some real commands:

1> edit <Topuniqg>
"<Topuni@>” 18 lines
:18,15p

(printf ...) ## Print commands into the file.

B S S

:18,15¢
lines changed

printf °‘define (aa,5)/n’
print! ‘print aa/n’

~

w junk

"junk” 19 lines
:q

1> use jumk
5.000

1o

The 5.000 seen after use junk is due to writing print ca into the temporary flle, and
then including the fille (caused by the pbf line above). Other applications of opunig
include the creation of temporary files for use in including several other files. This will
be taken up further in the next section.

DELIGHT For Intermediates (3/1/85) 33

5.2.4 An Application of Opuniq

This section presents a very useful application of function opunig. A temporary file
is created by opunig and include statements are written into it so that including the
temporary file includes several arbitrary files. A Rattle procedure to achieve this is
already set up for you in file <incfiles>. List the file as follows, and we shall explain it
step by step. See the footnote in the previous section if the lisf command produces an
error message:

1> list <incfiles>
-------------------- Begin <incfilesd =-=-<-ceecccccccnaa-
#% inctiles - Ioplementation of "include_files” cammnd.

define include_files '‘f1='' ; '*f2='' ''#3='"' "'{4=""' ''{5='" ‘‘f8="'
iezcdlude_files_(fl.m.fs,f4.f$.f6)

Help file input.

%N include_files [nclude fran 1 to 6 files with a single conmand.
% include_files FILE1 [FILE2 FILES ... FILES]

%E include_files <plot> <plot3d> myplot

%3A include, use, include_and.print

%SF <incfiles>

%A Bill Nye

%K include file io

procedure include_files_ (f1, f2, 13, f4, 15, 18) |
array actual_neme(40)
unit-mun = opuniq ('incfiles’, actual_name, CREATEF!ILE)
if (unit.mm = ERRCR)
print? 'ERROR: include_files: Cannot create file "%p”./n' actual_name
suspend

sochan (umi # Set present output chamnel.

it E!eqsp‘piﬂ.") print! 'include %p/n' f1 # Print "include” lines

it (teqspp(f2,'')) print! 'include %p/n’' f2 §# into the terporary lile,

i? (teqspp(f3,'')) print? 'include %p/n' 3 # if the corresponding

i? (!eqgspp 14,"); print? ‘include %p/n' f4 §# lilename argument is given.

if (teqspp(!5,'')) print! 'include Zp/n' 15

if (leqspo(16,'')) print? 'include %p/n' 16

printf ‘exit ; 1ilprmm("%p")/n' ectual.name # Print tricky line to remove
the temporary file.

rochan () # Reset present output.
cloze (umit_mm) # Close the file.
pbf ‘'include %p/n' actual.neme # Push back the include state-
ment for the terporary file.
array actual_neme(0) # Zero out the local array.
--------------------- End <incfiles> ----ccccecccaccacceas

The define statement creates a new command called include_files which has the six
arguments f1 through f6 that represent the one to six flles to be included with one
include_files command. Following the defines statement are lines starting with % which
are the raw input to the DELIGHT online help system. See [6] for how such help entry
lines are set up. Procedure include_files_—which demonstrates the convention
explained in section 3.5 of making the procedure name the command name plus an
underscore —executes when the include_files command is issued. The body of the pro-
cedure is almost identical to the example of the previous section except for the printf
statements thal write the include slatements into the tempcrary file. To shew that

34

DELIGHT For Intermediates (3/1/85)

this program can be used to include several flles with just one command, we create

three durnmy flles and use the command as follow:

1> edit junkl
Unable to open "junk1l”

‘a
printf ’Inside junki/n’

‘w

*junk1” 1 lines

e junk2

Unable to open "junk2"
a

printf °Inside junk2/n’

w

”junk2” 1 lines

‘e j

Unable to open "junk3"

‘a
printf 'Inside junk3/n’

rwg
”junk3” 1 lines
1> liast jupk3

printf 'Inside junk3/n’

1> use <incfiles>

1> include_files junkl junk2 junk3
Inside jumkl

Inside junik2

Inside junk3

1>

As can be seen, the three dummy files have been included with just one include_files
command. You can turn on the echoing of DELIGHT input lines, if desired, to help you

debug a procedure that uses a temporary file:

1> echo

1> line

>> line
include_filelsmg‘tmkl junk2 junk3
>> include junkil

> printf 'Inside junki/n’
Inside junkl

>> include junk2

>> printf 'Inside junk2/n’
Inside junk2

>> include jumk3

>> print! '[ngside junk3/n’
[nside junk3

> exit ; filprm("/tmp/incfilesA29305")

1> noecho
>> noecho
D

The scratch flename shown as argument to built-in procedure filprm (for removing
files) is from running this example and creeting the temporary file on the UNY svstemn.
(Even if you are running on UNIX, however, the trailing digits in the scratch filename are

DELIGHT For Intermediates (3/1/85) 85

DELIGHT's process id and will surely be different from those above.)

6 Language Extensibility Using Macros

DELIGHT has extensibility needs that cannot be handled by the simple define substi-
tution mechanisms discussed in section 3 and in the Beginners Guide. These have to do
with making conditional substitutions, that is, substitutions that are based on the argu-
ments that are used with the define. For example, there is no way to make a define
called MatrizFPunc which allows the statement MatrizFunc A=inv(B) to substitute the
procedure call /nverse(A, B) but the statement MatrizFunc A=adj(B) to substitute
Adjugate(A,B). The definition substituted when a define is encountered in input source
is fixed in structure; only arbitrary argument values can be substituted into the
appropriate places in the deflnition. Section 6.1 introduces the concepts of tokens and
the push-back mechanism which are important in solving the above substitution prob-
lem using Rattle macros, presented in section 6.2

6.1 Tokens and Push-Back

Before we undertake one of the most important features of DELIGHT, namely, mac-
ros, it is essential that readers have some understanding of the Rattle compiler, the
push-back mechanism, and how they relate to a Rattle source program. In this section,
we shall discuss these basic concepts. Although all readers are encouraged to read it,
those familiar with compilers may wish to proceed directly to section 8.2.

A compiler takes as input a source program and produces as output an equivalent
sequence of instructions 1]. This process is so complex that it is not reasonable,
either from a logical point of view or from an implementation point of view, to consider
the compilation process as occurring in one single step. For this reason, it is cus-
tomary to partition the compilation process into a series of subprocesses called
phases, as shown in figure 8.1. The first phase, called the lezical analyzer or scanner,
separates characters of the source language into groups that logically belong together;
these groups are called tokens. Thus each token represents a sequence of characters
that can be treated as a single logical entity. The usual tokens are keywords, such as
while or if, identifiers, such as X, help, or vector, operator symbols such as <= or +,
and punctuation symbols such as parentheses or commas. The output of the lexical
analyzer is a stream of tokens, which is passed to the next phase, the syntax analyzer,
or parser.

As a simple example, let's consider the define define(PI, 3.1416). This define makes
PI get substituted by 3.1416 when a command such as print P/ is issued. To achieve
this, the Rattle compiler must have an internal mechanism for substituting P/ with
3.1416. The mechanism for allowing the Rattle compiler to "receive” input (i.e. 3.1416
in this case) which was not actually typed in by the user nor in a file being included is
called the push-back mechanism.

We begin our explanation or the push-back mechanism by introducing procedure
gtoken and command pbf. Recall that the lexical analysis phase of a compiler reads
the source program one character at a time, carving the source program into a
sequence of logical units called tokens. The built-in routine géoken (for "get-token") is
one way that this can occur; when called, it returns one token read from the input (or
from any characters presently pushed back—see the next paragraph). If the tokenis
a character string, it is returned in the first argument of gtoken; if the token is a
numker, gtoken's second argument contains the numeric value. The syntax of a call to

DELIGHT For Intermediates (3/1/85)

Code I

Code

- - oo-

Figure 6.1. Compilation Phases.

DELIGHT For Intermediates (3/1/85) . 87

gtoken is thus
gtoken (TokenString,Value)

To try a simple example of how gioken works, try the following:

1> ?rray name_str(BAXTOKSIZE), mmber_str(HAXTOKSIZE)
1>

1] prampt ‘Enter nane and mmber: °

1] gtoken (name str, dummy)

1% ’ gtoken (musber_str, value)

1 :

Enter nare and mxrber: hello 234

1> print! ‘nome="%s", muber="Xs", value=%r/n’ name_str mmber_str value
nane="hello”, mumber="234", value= 2,340e+2

1>

This shows that the first argument returns the characters of the input token even if it
is a number.

Characters can be pushed back onto the input so that they are the next to be read
by DELIGHT. This read can either be internal to DELIGHT in its reading of commands
from the terminal, or by Rattle execution of any means of reading input such as gto-
ken, readf, etc. (all DELIGHT input follows the same push-back mechanism). The push
back is performed using the pbf statement, having syntax

pbf 'CONTROL.STRING' [ARG1 ARG2 ... ARGS]

When a pbf statement is executed, it pushes back onto the input a formated control
string with optional 0 to 8 arguments with exactly the same control string meaning as
for printf. Let's use pbf to push back a Rattle statement which is then immediately
read by DELIGHT and executed:

1> pbt ‘primt i/’
1.000

>Dk=5

1> pb! ‘print Xi/m* k
$.000

1>

To understand conceptually how pushback works, consider the following table in
which the left column contains Rattle code executed, the middle column contains a
comment concerning the eflects of the execution, and the right column shows charac-
ters remaining to be read by the Rattle lexical analyzer, that were either typed in by
the user or previously pushed back. Here, as for the printf statement, /n indicates a
NEWLINE character, that is, the fictitious character at the end of an input line.

38 DELIGHT For Intermediates (3/1/85)

Rattle Pushback Mechanism
Remaining
: Input
Rattie Code Executed Effect of Execution Characters
m
1+Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "1" and Value
equals 1.
+Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "+".
Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "PI".
/n
pbf '3.1416' Push back the charac-
ter string "3.1418".
3.1416/n
gtoken(TokenString,Value) | TokenString now con-
tains "3.1416" and Value
equals 3.1418.
/n
gtoken(TokenString,Value) | TokenString now con-
tains "/n". .
Now, the next line of in-
put would be read in.

This example is actually how the definition for the define P/ would be substituted inter-
nally for the occurrence of the define name P/, This internal substitution process is
entirely invisible to the user, that is, all the get-token and push-back functions involved
in the above table need not be programmed by the user but are automatically exe-
cuted when a define name is encountered. However, the next section introduces mac-
ros, in which you are required to program using gtoken and pbf.

6.2 Language Extensibility Using Macros

As mentioned in the introduction to section 5, the DELIGHT extensibility needs that
cannot be handled by the deflne substitution mechanism have to do with making condi-
tional substitutions that are based on the arguments that are used with the define. The
way DELIGHT provides this language extensibility is through the procedure-like entity
called a Rattle macro. Macros are written in the Rattle language in exactly the same
way as procedures, except the keyword procedure is replaced by macro and they do
not have an argument list surrounded by parenthesis. Also, they do not execute at run
time (as procedures do), but rather when their name is encountered by the lexical
analysis phase during the compilation of Rattle statements. Macros can act as prepro-
cessors that modify the input character stream being passed through the lexical
analyzer on to the Rattle parser. For example, one can write a macro to scan the next
few input tokens —which may not even be valid Rattle code since they never reach the
parser but are only "seen” by the macro-—make decisions based on what is found, and
then push back valid Rattle code that eventually is passed tc the parser. Hence the
general process undertaken by a macro is:

DELIGHT For Intermediates (3/1/85) 39

1. Get the next few tokens,
2. Make decisions based upon these tokens, and
3. Push back substituted text that is usually valid Rattle code.

Let us now implement the simplest possible macro, in fact, so simple that it does
not even read any tokens or make decisions but just pushes back a single number
token:

1> mnero Five
1} pbf °5.0"
1> print Five
5.000

1>

Now let's put a print statement inside the macro so that we can see when the macro
actually executes:

1> mucro Five |

1} print{ °Inside mecro/n’
1} f °S5.0°

1}

1> print Five

Inside macro

5.000

1

To show that the macro actually executes when the statement using the macro is
compiled —when the macro name is detected —and not when the statement itself exe-
cutes, we place curly brackets around our print statement to prevent it from executing
until the closing bracket is given:

1> §

1] print Five Five
Inside macro

[?sgde macro

1

§.000 5.000

»

As you can see the macro Flive, by virtue of where you see the output /nside macro,
has executed before the print statement containing it executes.

We are now ready to implement a macro that does read input tokens and use them
to make decisions about what to push back. We will implement the MatrizFunc macro
mentioned in the introduction to section 8. The task of this macro is to the read input
tokens that make up the Matrizfunc statement and, depending on the which of the
keywords, inv or adj is read, push back the appropriate procedure call, either tnverse
or adjugate. In other words, the macro is to convert

Eatrixfume A=inv(B) into Inverse(A,B)

and

40 DELIGHT For Intermediates (3/1/85)

MatrixFune A=adj(B) into Adjugate(A,B)

(2

Since this macro is a little too long to have you type in, there is a file containing it,
listed below; all you have to do is use (include) it:

-------------------- Begin <Imatfuned --ceccsecccaccccnan.
mecro MatrixFunc
array OutputMatrix(MAXTOKSIZE), InputMatrix(MAXTOKSIZE),
Funct i on(MAXTOKSIZE), Dunmy (MAXTOKS I ZE)

define (EqualString,eqstp) # Logical function for string carparisonm.
gtoken {Outputﬁatrix.\falue) # Regd A", 8

gtoken (Dummy,Value) # Discard "=".

gtoken (Function,Value) # Read function.

gtoken (Dummy,Value) # Discard "(".

gtoken (InputMatrixz,Value) # Read "B".

gtoken (Dumwy,Value) # Discard ")”.

it (EqualString(Function,'inv'))

pb! ‘inverse(Rs,%s)/n' OutputMatrix InputMatrixz
else if (EqualString(Function,'adj'))
) pb! ‘Adjugate(%s,.%s)/n’' OutputMatrix InputMatrix
else

print? 'ERROR: Matrizfunc: Illegal function: "%s”/n’ Function

procedure Inverse (a,b)

print! ‘Inside procedure Inverse./n'
procedure Adjugate (a,b)

print! ’[nside procedure Adjugate./n’
--------------------- End <Tmatfunc> -«-----ccccecccecna-..

1> use <Imtimme>

1> MatrixFune A = inv(B)

Inside procedure Inverse.

1> NatrixFune A = adj(B)

Inside procedure Adjugate.

1> Hatrixfunc A = ®)

ERROR: MatrixFunc: [llegal fumction: “badguy”
D>

In file <Trnatfunc> above, the various arrays declared are each for holding a character
string containing an input token returned as the first argument of routine gtoken (see
section 6.1). When MatrizFunc is used above, the detection of the macro name by
DELIGHT causes DELIGHT to execute it immediately. Thus, gtoken reads the next few
items from the input, namely, tokens A = inv (B and). Then the macro pushes back
one of the two procedure calls, /nverse or Adjugate, based on which of the keywords
inv or adj was read by the macro.

That the DELIGHT macro feature presented in this section is certainly powerful is
substantiated by the fact that all of the matrix macros in section 13 of DELIGHT For

Beginners have been created using the same tools and techniques shown in this sec-
tion.

7 Debugging Rattle Programs

This section looks at several ways of debugging both compiler-reported errors such
as syntax errors as well as run-time errors. Debugging compiler eriors is discussed in
section 7.1 where we introduce ways of tracing what various macros push back. Sec-
tion 7.2.1 through 7.2.4 clarify what is meant by run-time errors and how you use

DELIGHT For Intermediates (3/1/85) 41

available commands such as trace, enter, display local variables, and suspend to locate
where the problem occurs. Section 7.2.5 demonstrates how you make DELIGHT abort
immediately upon an overflow. This is useful when you're trying to determine exactly
where an executing built-in routine overflows, assuming your operating system has a
way of revealing this information through messages on the screen or some kind of pro-
gram debugger. When in really deep trouble in DELIGHT, as a last resort, the command
hardreset, covered in 7.2.8, can be used to reset several internal states, buffers, ete., in
DELIGHT. Section 7.3 then discuss how to use the whatis and whereis commands for
debugging and, in general, for learning about details of how things have been imple-
mented in DELIGHT.

7.1 Debugging Compiler-Reported Errors

The Rattle parser reports syntax errors by printing the offending input line, pointing
to the approximate location of the error with a caret ("~"), and giving an error mes-
sage. For example:

1> print 1773
print 1//3

ERROR(1) Expression syntax error [rint 1 /3]
1>

The 10 characters in square brackets are, approximately (as can be seen), the last 10
characters read from pushback by an internal DELIGHT function that returns input
characters. Showing these sometimes helps in finding an error in a define definition as
shown:

1> define (PI,4%atan(]))
1> print =in(PI)
print sin(PI)

ERROR(1) Expression syntax error [4%atan |))]
1> define (PI,4%atan(1))

1> print PI

3.142

1>

Whether the 10 characters in square brackets above help you find the error in the
definition of P is unclear, but their being printed along with the error message is prob-
ably better than just having the caret symbol point at the input sin(P[), which "looks"
reasonable.

The following subsections are directed toward debugging errors reported by the
Rattle parser. In particular, section 7.1.1 shows how one can trace what various mac-
ros push back by setting the system variables trace_pushback_and frace_matop_.
Other debugging suggestions are given in section 7.1.2.

42 DELIGHT For Intermediates (3/1/85)

7.1.1 Tracing What is Pushed Back

Many commands in DELIGHT are macros that push back Rattle code as demon-
strated in section 5. In many of these, there is a call to a built-in routine called
pbdump (for "pushback dump") which prints to the screen everything that is presently
pushed back, i.e., that prints out the entire contents of the pushback stack. Further-
more, the call to pbdump usually occurs only if system variable frace_pushback__has
been set to YES (as opposed to NO, both Rattle defines). The output of pbdump is
sometimes useful in debugging certain types of errors reported by the parser. For
example, suppose you {(accidentally or otherwise) pass an expression to printv instead
of just a variable or array name:

1>a=2

1> printv a/3

Scalar a = 2.00000

ERROR: I[llegal statement: "/”
1

The error message above is not very clear. However, this situation can be mitigated by
setting trace_pushback_;

1> trace_ pushback =YE3
1> printv a/3

e==<- Push-Back-Durp fram "printv" =-<---
printf "Scalar a = %.5r /n" a
/ .

..

Scalar a = 2.00000
ERROR: I[llegal statement: "/”
1o

From the pushback dump, you can see how, after reading the prinff statement,
DELIGHT next reads a statement containing just a slash (*/"'). To show that this gives
the same error message, try the following:

1> 7

ERROR: [llegel statement: "/”
1§ reset

>4

The prompt changing to 1] usually means that the previous statement is incomplete.
Here, it has to do with the fact that an expression that ends in an operator is autormnati-
cally continued onto the next line (see the discussion of expression and assignment
continuation in section 4.5 of DELIGHT For Beginners). Although entering another
blank line when 1} is seen above will restore the prompt to 1>, just to be safe, reset was
typed above.

You should use trace_pushback__and pbdump in your own macros to aid in debug-
ging. For example, we can add their use to the trivial macro Five of section 5.2:

DELIGHT For Intermediates (3/1/85) 43

1> macro Five |

1] import trace_pushback
1} pbt *S.0°
ﬁ if (trece_pushback. = YES)

1 1

1> trace.pushback . = YES

1> print Five

--a-- Push-Back-Durp fram "Five” <----

......................................

The call to pbdump shows everything that is currently pushed back. If something else
such as a definition body is presently pushed back, it is seen also:

1> define(FiveS,print Five+3.000000)

1> Fived
----- Push-Back-Durp fram "Five” -----
5.0+3.000000
8.000
1> trace_pushback = NO
1

7.1.2 Other Debugging Suggestions

DELIGHT users, over the period of years since DELIGHT has existed, have come
across errors in their Rattle code which seem to defy rational explanation! For exam-
ple, sometimes you get an unexplainable error when compiling a procedure’s list of
arguments:

1> procedure SetArray(zary, clip)
procedure SetArray(xary, clip)

ERROR(1) Neme expected
1] reset
reset

ERROR(1) errcneous input token [q]
1>

In such cases, one thing you can do is check that each argument is not a define or
something else that already exists in DELIGHT. This can be done by using the whatis
command, briefly introduced in the Beginners Guide. Its use is as follows:

1> whatis xary

"xary” DOES NOT EXIST.

1> whatis clip

"elip” is a macro: Fram file "<Mclipmcd>”.
1>

44 DELIGHT For Intermediates (3/1/85)

Since the argument clip already exists as a macro, you should change the argument
name to something else (such as clipflag).

Another suggestion for debugging is to turn on the echoing of input lines as they are
read by DELIGET. This is important when a procedure exists in a file that is to be
included since the lines in the file are then echoed to the screen as they are read and
Rattle compiled. Echoing is turned on/off with the commands echo/noecho, already
demonstrated in the Beginners Guide.

7.2 Debugging Run-Time Errors

7.2.1 What Run-Time Errors Are

Certain errors which occur during Rattle execution are detected intermally by
DELIGHT and cause execution to suspend as if a hard interrupt (see section 5 of the
Beginners Guide) had occurred. These include:

Floating-point ezceptions: These are divide by zero, numerical overflow,
bad arguments to built-in Fortran-like functions such as taking the loga-
rithm of a negative number, etec.

Array out-of-bounds: This is when the "net” array subscript for an array
goes beyond the total array size or is less then one. For example:

1> array Y(3,2)
1> print Y(1,4)

RUN-TIME ERROR: Array subscript out of bounds: array "Y"
Net array subscript = 10

0.000

Interrupt...

2> reset
1>

The net array subscript is computed, using column-major array subscripting (storage
in column order), as

1 ¢+ (4-1)*3 = 1 + 9 = 10
and ten is beyond the total array size of 3*2=8.
To clear up the idea of net array subscript, here is an example in which the it is

less than the total array size (even though the first subscript is too large) so that the
program does not suspend:

> readmtrix Y
1.1 1.2
2.1 2.2
3.1 3.2

CON = =
b b b
LN -

DELIGHT For Intermediates (3/1/85) 45

1> primtv Y

Matrix Y(3,2):
1.1e+l 1.2e+1
2.1e+1 2.2e+1
S.1e+1 3.2e+l

1> print Y(4,1)
1.200e+1

1>

This statement program did not suspend since the net array subscript is computed as
4 + (1-1)°3 = 4 + 0 = 4

and 4 is within the total array size of 3*2=8§.

7.2.2 Review of Commands for Debugging Run-Time Errors

This section reviews DELIGHT features presented in the Beginners Guide that aid in
debugging run-time errors that occur in Rattle procedures. We discuss the frace and
enter commands.

The trace command is very useful for debugging DELIGHT run-time errors, as can be
seen in the following:

1> edit junki2
Unable to open “junki2”
:le

LWy

"junk12” 2 lines
1> use junki2
1> junk2 (0)

HgN-T!lE ERROR: 1 overflow(s) or other floating point exception(s).
.000

Interrupt...
2> trace .
Interrupted IN procedure
jumkl line 2 of file junki2
junk2 line 4 of file junkil2
2> reset
1>

The trace output shows that the run-time error occurred in procedure junkl, line 2 of
the file, which was called by procedure junk2 on line 4 of the fille. Obviously, it is due to
the division by z with = equal to zero . Using the editor, you could now examine the
source lines that lead to the RUN-TIME ERROR. Alternatively, you could list the file with
line numbers:

48 DELIGHT For Intermediates (3/1/85)

1> list ~mmbers junkl2

-------------------- Begin junk12 <<eccccccocccccnnaa.
1 procedure junki(x)

2 print 1/z

S procedure junk2(x)

4 junkl (x)

The trace command can be used whenever an interrupt has occurred, i.e., whenever

the interrupt level is greater than one thus causing the prompt to appear as 2>, 3>,
ete.

Another DELIGHT feature to aid in debugging is the enfer command for looking at
local arrays and variables of a procedure.. Let's create a simple procedure with three
local variables, a, b, and c:

}? procedure junkl (x) |

2.000 4.000 6.000
1>

After executing this procedure as above, you may enter junk! and look at the local
variables:

1> enter junkl
e> display local variables ¢

3 variables:

a = 1.00000
b = 2.00000
c = 3.00000
e> leave
1

Note that after entering a procedure with the enter command, the prompt changes to
e> to remind you that any variables you create or use are actually local to the entered
procedure.

7.2.3 Using Pdebug__ For Debugging

This section introduces a system variable called pdebug_, which prints parse or exe-
cution debug concerning built-in routines. To get this debug output, simply set pde-
bug__according to the {ollowing table:

DELIGHT For Intermediates (3/1/85)

Debugging With pdebug
Value What is Output

0 No debug output.

1 Much parser information plus built-in
function names and numbers of argu-
ments, right before each function is
called.

2 Just built-in function names and
numbers of arguments, and the values
of all arguments, right beforz each
function is called.

3 Same as pdebug_=2 except print the
values of all arguments right before and
right after each function is called.

For example:

> pdebug_. =
> printf w B==X.6r/n° 1.111111 2.222222

>> builtn: ENTERING "prinf8”, funcno=3 nargs=7
>> builtn: FIRST VALUE OF EACH (REAL) ARG:

MH

1= 1,376012e-2 2= 1.111111 3= 2.222222
5= 0.000000 6= 0.000000 7= 0.000000
a= 1.111 b= 2.222222

1>

47

4= 0.000000

The above shows the arguments to built-in routine prinfé, whose first argument is the
format control string and whose last six are the zero to six arguments in 1-1 correspon-
dence with the % fields of the control string. For more information, type help pdebug_,

As a second example, let's rerun procedure LEproc from section
modify to not print dashes:

1> define (ListBdit °‘name, L?roc(nm))

1> procedure LEproc (pmame

1] list ~idashes <pnane

1% ?dit <pnane

1

1> ListRdit oyfile

=——=>> builtn: ENTERING "openp”, funcno=10 nargs=2
>> builtn: FIRST VAIUE OF EACH (REAL) ARG:

1= 7.428055e¢+31 2= 1.000000

>> builtn: ENTERING "sichan”, funcno=20 nargs=1

>> builtn: FIRST VALUE OF EACH (REAL) ARG:

1= 1.200000e+1

3.2, which we first

48 DELIGHT For Intermediates (3/1/85)

=—=>> builtn: ENTERING "cpytoeof”, funcno=87 nargs=l
> builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 0.000000

This should be in file.

Should be another line.

=—=>> builtn: ENTERING “cloze”, funcno=5 nargs=l
5> builtn: FIRST VALUE OF EACH (REAL) ARG:

1= 1,200000e+1

>> builtn: ENTERING “richan”, funcno=15 nargs=0

>> builtn: ENTERING "exedit”, funcno=25 nargs=1

> builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 7.428055e+31

"oyfile” 2 lines

1

:1p
This should be in file.
‘q
1>

As can be seen above, the list command, the first statement inside procedure ListEdit,
calls five built-in routines: openp to open the file to be listed (see section 5.2.2), sichan
to set the present input to this file (see section 5.2.2), cpytoeof to copy present input
to present output up to the end-of-flle, cloze to close the logical unit number opened by
openp (see section 5.2.2), and richan to reset the present input to what it was before.
Finally, the edit statement simply calls built-in routine ezedit, to invoke the DELIGHT
editor. Before going on, you'd better turn off pdebug__:

1> pdetug—= 0

7.2.4 Debugging by Adding Print and Suspend Statements

A technique used heavily by programmers trying to debug a program is to add print
statements around the suspected causes of trouble. The ability in Rattle to recompile
a procedure without any load/linkage phase is very conducive to such an approach.
But an interactive program development environment such as that provided by
DELIGHT has another powerful debugging technique —that of placing suspend state-
ments around suspected trouble spots. This allow you to enter the procedure, display
local variables, leave, and resume execution, even after you have modified a local (or
nonlocal imported) variable.

We illustrate how adding print and suspend statements can aid the debugging eflort
in the following examples.

1> edit jumkxy
Unable to open "junkxy”
:a

ST |

g
*junkxy” 3 lines

DELIGHT For Intermediates (3/1/85) 419

1> use junkxy
1> loopjz fran 1 to 10k dec 1
1} print = xyinv(z,-1k)
1,000 -1.001e-3
1.000e+1 -1.010e-3
1.000e+2 -1.111e-3
1.000e+3
RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s).
1.000

Interrupt...
2> resect
1>

The overflow caused by the zero denominator halted the execution of procedure zyinv.
We now add a print statement to the procedure to help locate the problem. (Note that
the source of error for this particular run-time error is quite obvious; a general pro-
cedure is being demonstrated here so please do not jump to any hasty conclusions
about the authors’ mtelhgence')

1> edit junkxy
"J;xmhy" 3 lines
‘la
printf °* (xXi,y=x%xi) ' xy

v
"junkxy” 4 lines

1> use junkxy
1> tloo ## Re-issue previous command starting with loec
loop z fran 1 to 10k dec 1
1] print z xyinv(z, -1k)
1.000 (x=1,y=-1000) -1.001e-8
1.000e+1 Ex—lo , y=-1000) -1.010e-3
1.000e+2 (x=100,y=-1000) -1.111e-3
1.000e+3 (r’lOOO y=-1000)
mhoggm ERROR: 1 overflow(s) or other floating point exception(s).
1

Interrupt...
2> reset
1>

The print statement has helped us to find out that the overflow occurred when z=1000
and z=-1000 resulted in division by zero. Next we modify procedure zyinv by replacmg
the print statement by a suspend statement. Entenng the procedure and examining
its formal argument values ——generally not allowed in DELIGHT —is also demonstrated:

1> edit junkxy
"%gnkxy” 4 lines

suspend

iwg
"junkxy” 4 lines

50 DELIGHT For Intermediates (3/1/85)

1> print xyinv(ik,-1k)

Interruwpt...

2> enter xyinv

e> print xy
1.000e+3 -1.000e+3

e> leave

2> resume

HJN;&HE ERROR: 1 overflow(s) or other floating point exception(s).
1.

Interrupt...
2> reset
1

7.2.5 Aborting On Numeric Overflow

This section details how to make DELIGHT abort immediately when an overflow
occurs. By default, DELIGHT does not abort when a floating point exception such as an
overflow or a divide-by-zero occurs; Rattle execution simply suspends with a "RUN-TIME
ERROR". Sometimes, however, when, say, debugging a built-in Fortran routine, one
would like to abort immediately when the overflow occurs, in order to determine where
it occurred. To do this, all you need to do is set the following option:

1> set_option Dloptians ~AbortOnOver!low=YES

At this point we advise against trying a statement now such as print 1/0 since DELIGHT
will immediately abort and you will have to restart it. However, let us just look at what
might occur (shown below for the UNX operating system). Instead of a trivial divide-
by-zero as print 1/0, let's try causing an internal routine to overflow. We shall make
the built-in routine used to multiply matrices overflow by passing two one-by-one
matrices each having value MAXREAL, a DELIGHT define for the largest representable
floating point number. Then this routine overflows since MAXREAL squared is surely
not representable.

1> matop A = array(1) of MAXREAL (Don't actually typs any of this)
1> matop B = array(1) of MAXREAL

1> matop C = A’B

¢ee [l1legel instruction (This ocutput is for UNIX)
’Igllegal instruction (core dunped)

DELIGHT has aborted immediately upon the overflow. At this point, to determine where
the executing built-in routine overflowed, either you see an abort message on the
screen that reveals this or you would have to use some operating system utility such as
a program debugger.

DELIGHT For Intermediates (3/1/85) 51

7.2.6 DELIGHT Internal Aborts and the Hardreset Command

When serious internal DELIGHT problems occur that are generally impossible to
recover from, the infamous ABORT ABORT ABORT ... message appears on the screen
and you are asked whether you really want to abort out of DELIGHT or whether you
want to return to DELIGHT and "take your chances”. One example is when you try to
open too many (For UNKX, more than 7) files using openp (see section 5.2.2). Here, we
repeatedly open the existing flle junkzy that was created in section 7.2.4, noting that
the same file can be opened to several logical unit numbers:

1> printf *Xi/n’ opeup(® junkxy* ,EEAIMIDE)
11

1> 1

print openp(’ junkxy',READMDDE)

12

D> 1!

print openp(’ junkxy',READVODE)

138

>N

: g:int openp(’ junkxy' ,READVODE)

1

print openp(’junkxy',READMDDE)
15

> 1!

print openp(’ junkxy' , READMUDE)
18

1> 1 :

print openp(’ junkxy',READMODE)
17

1> 1t

print openp(’ junkxy',READMODE)

ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT A

Q0000000000000 9080 0000000000000 0000009098000000

® openp: Atterpt to open too many files (max=7) °

0000000000000 008080009000000050U00009C8ESC0CEIIOOOO0YS

Create "core” file?
Y.y = Yes, then leave program.
N,n = No core file; just leave program
R,r = Return to progrem execution.
Q.q = just like N: immediately Quit program.
? = repeat ABORT message and this prampt.
<CR> = repeat this prampt (xex 5 repetitions).
ir

NOTE: All open unit mubers have been closed and are being reused!

11
1> bhardreset
1>

The large prompt appearing on the screen after the abort message in the box is
machine dependent; the prompt shown above is for UNIX. After returning from an
ABORT ABORT ABORT ..., you should give a hardresat unless you know ezactly what the
implications of returning from the abort are (and believe us, you probably don't!). The
hardreset command is used as a last resort to reset all internal states, stacks, and
buffers in DELIGHT. In particular, the following are reset or cleared:

52 DELIGHT For Intermediates (3/1/85)

Any characters presently pushed back;

The input line buffer;

The output line buffer;

The input unit number stack set and reset by

sichan /richan

- The output unit number stack set and reset by
sochan/rochan

- The unit number being input or output echoed to, if
any;

- All open unit numbers opened by openp, opens,

tnput_from, include, etc.

[2N I I

For more information, type help hardreset.

7.3 General Use of Whatis and Whereis

In DELIGHT, all (both built-in and user-created) arrays, defines, functions, macros,
operators, procedures and variables are in one large symbol table. The command
whatis followed by an entry name shows the type of symbol table entry. The whereis
command shows the actual filename used —with the head and tail strings from your
openhdtl flle appended (see section 5.2.1)— for fllenames surrounded by triangular
brackets such as <graphics>. It can be used to help you find out about a command by
allowing you to look at the file containing the actual Rattle source code that imple-
ments the command (assuming you have file system permission to read the file). Below
are examples of the use of whatis and whereis. For the time being, ignore any @system

that appears on any name!:

1> whatis box

"box”" is a defime: "box_Bsystem()”.

1> whatis box_

"box. is a function or procedure: Fran file "<graphics>".
1> whereis graphics

File "<graphics>" fram "/ce/optcad/nye/include/graphics”
1>

The above example shows that boz is a define with definition boz_{) ,that boz_is a pro-
cedure from file <graphics>, and that file <graphics> is from the given filename {shown
here for UNKX on Esvax at Berkeley). We entered three commands to find out this infor-
mation about the item boz. This procedure of issuing two (or more) whatis and one
whereis commands for a particular item is so frequently used that there is sufficient
grounds to have a command called Whatis (with a capital “W") which performs the
three commands in one:

1> Whatis box

"box” is a define: “"boxBsystem()”.

"box Dsysten’ is a function or procedure: Fram file "<graphics>”.
File "<graphics>” fram "/oe/cptcad/nye/include/graphics”

1o

1 @systam bhas to do with environments, to be discussed in a future version of this document; you are
currently in environment system.

DELIGHT For Intermediates (3/1/85) 53

What Whatis really does is repeatedly call upon whatis as long as the first token of the
definition found by the previous whatis is a name (i.e. a sequence of letters or digits
beginning with a letter). One small nuisance is that you don't get the whereis call if the
last definition does not start with a procedure name, as shown in the following:

1> def ine(runprint, {algo();printv X])
1> Yhatis rumprint

“runprint” is a define: “falgo();printv x|".
1> :

Whatis has not reported on procedure algo since the definition started with character
“§". It does, however, in the following modification:

1> define(ruprint,algoe():printv X)
1> Whatis int

“runprint” is a define: "algo();printv x”".

"algo” is a function or procedure: Fram file "<Esetup>".
File "<Esetup>” fram “/ce/optcad/nye/] itxmke/Esetup”

»

This definition is OK if runprint is only given as an interactive command. But if it is the
single-statement body of an if statement as in:

it(...)
runprint

then only algo() will become the if statement body; the printv X will be outside,
equivalent to:

it (...
algo()
printv X

Conclusion: don't use defines whose definition consists of two statements unless you are
sure that the define will never be used inside Rattle procedures. If it might be used in
this way, keep the definition surrounded by curly braces as in either of the following:

define(runmprint, {algo();printv X})
define runprint

algo()
printy X

The whatis command also shows the positions of define arguments and define
options in the definition string. Arguments are shown with #1 for the first argument, #2
for the second, etc., and ~1 for the first option, ~2 for the second, etc. For example,
the define for the print{fancy command from section 3.5, which was

define (printfancy ~stars=YES ~1ine=NO X,printfancy_(stars,line,X))

produces the following output from whatis:

54 BELIGHT For Intermediates (3/1/85)

1> whatis printfancy
“printfancy” is a define: “printfancy.(~1,~2,#1)".
1>

which shows that procedure printfancy_has three arguments: the first option (stars),
the second option (line), and the first (and only) define argument (X).

8 Creating new DELIGHT versions

This section considers the entire process of creating new application-specific
DELIGHT versions. These are executable programs such as DEL/GHT.SPICE,
DELIGHT.MIMO, etc., which contain all of the basic DELIGHT software plus other rou-
tines to, say, interface to a simulator or other scientific software. For example, a ver-
sion interfaced to a simulator could allow results of simulations to be used in cost and
constraint procedures for DELIGHT optimization. Similarly, a version interfaced to a
matrix manipulation package could extend DELIGHT so that new matrix computations
could be performed interactively or inside Rattle procedures. Throughout the subsec-
tions of section 8, we refer to your DELIGHT version as DELIGHT.VNAME, VNAME, stand:
ing for "version name", will actually be the name you choose for your Version.

The nature of the material in this section and some of its machine-dependencies
dictate that this section break from the style of previous sections by not containing,
per se, interactive commands and responses for you to try out. For instance, com-
mands to link/load executable programs are usually very different on different operat-
ing systems. However, most of the material in this section does not depend on your
operating system; when it does, mention is made of that fact.

Sections 8.1 and 8.2 explain, respectively, the two most fundamental requirements
for creating new DELIGHT versions: how to add built-in routines that are callable from
Rattle, and how to declare variables for Rattle access. Section 8.3 discusses several
routines that are called internal to DELIGHT and that must be tailored to each particu-
lar DELIGHT version. How to load/link your DELIGHT version, how to make the required
memfile (see below), and the different ways of starting the program are the subjects of
sections 8.4, 8.5, and 8.8, respectively. To aid in debugging built-in routines added
according to section 8.1, section 8.7 gives some hints that can help pinpoint where the
trouble may lie. Finally, section 8.8 presents some general guidelines, successfully

used during the development of existing DELIGHT versions, for putting together your
new DELIGHT version.

Memfiles. A brief discussion of memfiles is necessary before proceeding with the fol-
lowing sections. A memyfile is a rather large binary file! which contains the values of
every DELIGHT internal variable that need be restored in value in order to bring
DELIGHT back to the exact state it was in when a store command was issued to create
the memflle. Memflles are read back by the restore command or when DELIGHT is
started normally. In other words if you set some variables and creates some Rattle
procedures, store into a memfile, quit DELIGHT, and restart it at a later time from your
memfile, then all of your variables and Rattle procedures will exist just as they did
before you stored into the memfile.

This ability to restore the state of DELIGHT to what it was when a memfile was stored

! On some computer systems, what we call binary flles are sometimes called direct access, rendom ac-
cess, ar noa-ASCII flles. They cannot be printed out or edited and are only accessed through internal DELIGHT
machine-dependent primitive rcutines.

DELIGHT For Intermediates (3/1/85) 55

has profound application. Since most DELIGHT commands are define/Rattle-procedure
pairs as illustrated in section 3 (recall, e.g., define (showalgo,showalgo_())), the ability
to use such commands requires that DELIGHT read their defines and compile their pro-
cedures. Without the ability to restore DELIGHT's state, every command that a user
wanted to use would have to be processed in this way every time DELIGHT was started,

a very time-consuming task to ponder®. But with the store command, all of the stan-
dard commands, the matrix macros, etc., can be processed just once and a standard
public memflle created by system personnel, a process referred to as "making a new
memfile”. Then, by having DELIGHT start from this memfile, everyone has access to all
the commands, macros, defines, procedures, and variables that existed just before the
memfile was stored, i.e., when the memfile was "made"”. Section 8.5 discusses further
the process of making a version-specific memfile that other users of your version of
DELIGHT can access.

8.1 Adding Built-in Routines

This section describes how to add existing Fortran® routines to DELIGHT so that they
are callable from Rattle procedures with exactly the same syntax as Rattle procedures
themselves are called. These routines might be simulation interface routines for a par-
ticular sirnulation program, utility routines, library routines, or routines containing
any computation whatsoever which needs the greater run-time efficiency of Fortran
over Rattle. Note that another option is to translate the Fortran routines into Rattle.
This translation could be computationally more costly since programs written in Rattle
usually run slower than their Fortran equivalents. In addition, translating a subroutine
into Rattle could be costly in terms of programmer time since Fortran routines are
often structureless and may be next to impossible to translate into-the structured,
"“goto-less” Rattle language. Thus, such translation should be avoided.

The addition of a new built-in routine to DELIGHT requires three operations:
1. make DELIGHT aware of the routine,

2. allow DELIGHT to call the routine, and

3. load/link the routine with DELIGHT.

To make DELIGHT aware of a new routine, a one line entry is added to file anames,
which should reside in the directory where your version-specific memfile is to be made
(see section 8.5—Making a Memfile). This entry associates a Rattle name with the rou-
tine and consists of the name by which the new routine is going to be known to Rattle
and the number of arguments to the routine. The Rattle name need not be the same as
the actual Fortran name. However in general, a good idea is to use either the Fortran
name (perhaps ending in an underscore thus making it a "system entity” to avoid name
clashes with names that might be used by users of your DELIGHT version) or a more
explanatory name. To allow DELIGHT to call a new routine, a call to the new routine is
added to Ratfor subroutine abuilt (for "application built-in”). All the calls in abuilt

® Historically, it was Tommy Essebo's furious assertion to Bill Nye one summer =—that it tock over 15
gnutes to start DELIGHT (just for the reason above) —that originalily led to the creation of the siore and re-
79 CO!

3 In this discusvion, we often use "Fortran” to indicate any languege whose normal programming cycle
congists of compile, link, and execute phases. In the context of DELIGHT, the language would probably be Rat-

1

for [2] or poszitly C {3] elthough we, in particular, usuelly aveid using the neme "Retfor” due o the possidie

56 DELIGHT For Intermediates (3/1/85)

must be in one-to-one correspondence with the entries in file anames. Finally, the pro-

cedure for load/linking a new routine with DELIGHT is highly system-dependent and will
be covered in section 8.4.

As an example of the first two operations, suppose we wish to build into DELIGHT the
two Fortran subroutines clrnum and cirden, each having no arguments. The names by
which these are known to Rattle can be arbitrary but in our case, we let them be known
by the self-explanatory names ClearNumerator and QearDenominator. Thus, in file
anamaes we would have

ClearNumerator 0
ClearDenaminator 0

while Ratfor subroutine abuwilt would simply require a computed goto entry (based on
argument funcno, the entry number) and a call statement for each. A "conceptual”
version of this subroutine would appear:

subroutine abuilt (fumcno)
go to (1,2), funcmo
1 call clrmm

return

2 call clrden
return
end

After this subroutine had been compiled and load/linked with DELIGHT, a memfile
created, and DELIGHT started from this memfile, a user could type ClearNumerator()
to have subroutine clrnum execute and Clear Denominator() to have clrden execute.

In reality, subroutine abuilt would be a bit more complex than this. Other things it
must handle include passing arguments to the built-in routines, returning a function
value from a built-in routine that is to act like a function in Rattle expressions, and
special considerations for passing and receiving back integer arguments. Integer argu-
ments are a consideration because all variables in Rattle are presently double-
precision floating-point numbers . Thus to pass integer arguments, the Rattle double-
precisions arguments must either be copied into temporary integers, copied back to
double from temporary integers, or both. For these purposes, there is a large work
array called iwork (see below) that can be used for this temporary copying. Subrou-
tine rcopyi (D, I, N) can be used to copy N items from double-precision array D to
integer array /. Similarly, subroutine icopyr (I, D, N) can be used to copy integers
back into double-precision arrays. When assigning to scalar integer temporaries from
double-precision arguments, DELIGHT function iround should be used to round the dou-
bles and avoid roundoff errors. These techniques are shown in the example below.

Inside subroutine abuilt, Rattle arguments are received via the Fortran double-
precision array rarray, with the first argument in rerray(el), the second in rarray(e2),
etc. For double-precision arguments of a built-in routine, rerray can be used to simply
"pass the Rattle arguments through"”, as shown in the example below. For integer argu-
ments, as mentioned in the previous paragraph, rerray entries must be copied into or
out of integer temporaries. To have a built-in routine return a function value,
rarray(retp) is assigned the vaiue to be returned.

confusion beiween "Ratfor” and "Rattle”.

DELIGHT For Intermediates (3/1/85) 57

To give a brief example of the other features of subroutine abuilt and the above
argument techniques, we now consider another example with two built-in routines. The
first is to be known as FuncExamp to Rattle, have Fortran name funcez, and return a
double-precision function value with one double-precision argument. The second is to
be known as ProcEzamp to Rattle, have Fortran name procez, and have the twelve
arguments shown below. These arguments consider all the various combinations of
argument types: input only (read from but never written onto), output only (only writ-
ten onto), and input/output (both read from and written onto), as well as scalars and
arrays, both integer and double-precision:

1 - double-precision scalar input
2 - double-precision scalar input/output
3 - double-precision scalar output
4 - double-precision array input size N.;;
5 - double-precision array input/output (size Nj
8 - double-precision array output size Ng)
7 - integer scalar input
8 - integer scalar input/output
9 - integer scalar output
10 - integer array input size ng
11 - integer array input/output (size N,
12 - integer array output size Nj2)
For this example, file gnames would contain
FuncEx 1
ProcExg 12
while, with " - - - " indicating other Ratfor code not shown here for clarity, subroutine
abuilt would contain
subroutine abuilt (tuneno, ..., retp, ..., iwork, ...)

é;'to (1,2), funcno

1 rarray(retp) = funcex (rarray(el))
return

2 i7 = iround (rarray(e?)) # Copy imputs.
i8 = iround rarrayEeB); # (i7, i8, i9, and iwork are tenporaries.)
call rcopyi (rarray(el0), iwork(1), Nio)
call rcopyi (rarray(ell), iwork(1#Nyg), Ny;)

call procex (rarray(el), rarrayEezg. rarray(e3), # 1 2 3
rarray(e4), rarray(e5), rarray(es8), # 4 5 8

' is, ig, # 7 8 9

fwork(1), iwork(1#Njp), iwork(1+Njo#Ny,)) # 10 11 12

58 ' DELIGHT For Intermediates (3/1/85)

rarrayEeB = i8 # Copy outputs.
rarray(e9) = i9

call icopyr éiwrk(l-bNm). rarray(el1), Ny)
call icopyr (iwork(14Njg+N,,), .rarrey(ei12), ngs
return

end

Because the arguments to built-in subroutines and functions can only be double-
precision or integer, modifications to the built-in routines themselves may have to be
made. In Fortran, any arguments that are of type real must be converted to double-
precision, to conform to the double-precision arguments which are passed from abuilt.
This is easily done in some cases by putting an implicit double precision (a-h,0-z) state-
ment at the beginning of each built-in Fortran routine, which will change the implicit
typing for all real variables to double-precision. Any explicit real declarations such as
real v(10) (as opposed to dimension ¥(10)) must be changed to double-precision as
- double precision v(10).

Calls to subroutines/procedures in languages such as C can also be added to sub-
routine abuilt. You should pay attention to any machine-dependent procedure naming
conventions that exist on your computer. For example, under UNIX, a Fortran routine
that calls, say, C procedure abc must be named abc__ in the C source code.

Before closing we mention that everything in this section also applies to the
subroutine/file pair ubuilt/unames, allowing ordinary users of any DELIGHT version to
add their own built-in routines.

8.2 Declaring Variables for Rattle Access

When using existing routines which have been incorporated into DELIGHT, it may be
necessary to access some of their variables. For example, many Fortran programs use
common blocks as a means of passing or receiving information. To avoid having to
make extensive modifications to these routines when they are built into DELIGHT (e.g.,
in order to set or get the value of these common block variables through subroutine
arguments), you need to be able to directly access the variables in Rattle statements.
This can be done by creating a special Fortran subroutine which contains calls to
DELIGHT variable-deciaration routines that asscciate each Fortran variable with a Rat-
tle variable name. For example, variable pdebug_, discussed extensively in section
7.2.3, is declared in this way; when pdebug_=1 is typed, a Fortran common block vari-
able is set which is tested by the Rattle parser to determine if debug printout is
desired. There can be any number of Fortran subroutines containing calls to the
variable-declaration routines. However, see the discussion of dvdecs in the next sec-
tion; basically, all calls to declare variables should be executed when dudecs is called
internally.

The Rattle and Fortran variable names need not be the same. However, as for built-
in routine names in the previous section, it is a good idea to use either the Fortran
name (perhaps ending in an underscore, to make it a ""system entity”) or a more expla-
natory name. Another idea is that the Rattle names end in "_J” or "_F_", for example,
to act as a reminder that they are Fortran declared variables.

The declaration subroutines are described in the following table. For each case, the
name in quotes, which must end in a dollar sign ("$") string terminator, is the Rattle
variable name. Scalar variables and arrays declared with these routines become

DELIGHT For Intermediates (3/1/85)

members of the pool of nonlocal Rattle variables.

DELIGHT Subroutines for Fortran Variable Declaration

Subroutine Call

Action

call deci ("NAME$',ivar)

Declares Fortran integer variable war.

call decial ("NAME$'.iary,N1)

Declares Fortran integer array iary,
having the one dimension N1.

call decia2 ('"NAME$' ,iary,N1,N2)

Declares Fortran integer array 1iary,
having the two dimensions N1 and N2.

call decia3 ('"NAME$',iary,N1,N2,N3)

Declares Fortran integer array iary,
having the three dimensions NI, N2
and N3.

call decr ("NAME$',rvar)

Declares Fortran real {double-precision)
variable rvar.

call decral ("NAME®',rary,N1)

Declares Fortran real {double-precision)
array rary, having the one dimension
N1.

call decra2 ("NAME$',rary,N1,N2)

Declares Fortran real (double-precision)
array rary, baving the two dimensions
N1 and Ne.

call decra3 ("NAME$',rary,N1,N2,N3)

Declares Fortran real (double-precision)
array rary, having the three dimensions
N1, N2, and N3.

In the array declarations above, the dimensions should be identical to those of the

actual Fortran array.

The following example of the special built-in Fortran subroutine needed to make

calls to the above declaration routines contains examples of those routines:

subroutine Vinit

double precision xvar, xarray

camon /cname/ ivar, iarray(zoog, xvar, zarray(10,29)

call deci ‘ivar.F.8', ivar

call decial ('iarray_F_$', iarray, 200)
call decr ‘xvar.F.$', xvar)

call decra2 ('xarray_F_$’, xarray, 10, 20)
return

end

Since declared Fortran variables exist in the pool of nonlocal variables, they are
accessed in Rattle procedures by importing them. For example, the following Rattle

procedure uses the variables declared above:

'

60 DELIGHT For Intermediates (3/1/85)

procedure SetFortranVars |
inport ivar.F_, iarray.F., xvar.f., xarray-fF—
ivar.F_= ...
for k =1 to 200
jarray.F(k) = ...

It it is desired to make a declared variable global so that it does not need to be
imported, the Fortran subroutine such as Vinit above can have a call decglo ("NAMES')
statement after the normal declaration call. In the above example, to make Rattle
variable iwar_J_ global, we would have:

call deci &'ivnr.F_S'. jvar)
call decglo ('ivar_F_3')

An important restriction on how declared Fortran variables can be used in Rattle
is that they cannot be passed as arguments to Rattle procedures. They should instead
be imported or made global, as shown above.

8.3 Version-Specific Routines Called by DELIGHT

There are several routines that get called by DELIGHT automatically when various
actions or operations occur. For example, when any DELIGHT version starts, subrou-
tine dwinit is called to allow any version-specific initialization to occur. All you (the
creator of the DELIGHT version) do is put into subroutine dvinit anything that must get
executed once when DELIGHT first starts up. This might include, for example, certain
variable initializations that might, say, read from a file, or the one-time setup of a run-
time dynamic memory manager. If there is no initialization of this sort, then subrou-
tine dvinit need not be defined; a dummy subroutine containing just a Fortran return
and end is used by default. This is true for all of the routines discussed in the
remainder of this section.

The version-specific routines and some version-specific files are summarized in the
following tables:

DELIGHT For Intermediates (3/1/85)

DELIGHT Version-Specific Routines

When called

Program
startup

What it should do

e |

All calls to declare variables for Rattle access (see
section 8.2) should be executed. Thus, as mentioned
in section B.2, if there are several Fortran subrou-
tines which contain calls to the variable-declaration
routines, each of them should be called inside your

subroutine dvdecs:
subroutine dvdecs
call Fdecs1
call Fdecs2

return
end

subroutine Fdecsl
call deci ('n_F-$'.n)
call decral ('zF.%',z, n)
“retwn
end

61

dvexit

Program ter-
mination

This is called right before DELIGHT finishes executing,
e.g. after a quit command is typed, and should con-
tain whatever cleanup or final screen messages are
necessary for the version.

dvinit

Program
startup

Whatever version-specific initialization is required
should be performed. There is an argument that is
YES (defined as 1 in file style) if the startup is forced
and you are making a new memflle. It is NO (defined
as 0) if you are simply starting DELIGHT normally
(unforced) from an existing memfile. By testing this
argument, you can have certain initializations occur
only for either type of DELIGHT startup. See section
8.5 for more on forced versus normal startups.

dvname

Program
startup

The name of this DELIGHT version should be returned,
i.e., the name to be appended to mem for default
memflles, to img for login messages, etc. For exam-
ple, if this routine returns M/MO, then this version is
DELIGHT.MIMO which starts up by reading memdfile
<memMIHMO> (see section B.5) and prints the “Wel-
come to DELIGHT.MIMO” login message contained in
file <IlmgMIMO>, etc.

memfio

During a
store or re-
store com-
mand

The name memfio is an acronym for "memfile-io”
since the purpose of this routine is to allow version-
specific internal (Fortran) variables to be written out
to and read in from a memfile. By using calls to the
routines shown in the next table, these variables'
values are stored in a memfile and can thus be re-
stored (when DELIGHT is started from the memfile) to
their exact state before the store command was is-
:iued.B This was explained in the introduction to sec-
on B.

82 DELIGHT For Intermediates (3/1/85)

DELIGHT Version-Specific Files

Name When read What it contains

<ImgVNAME> | After a 7e- | This flle, automatically printed on the terminal

store com- | screen after a restore command, usually con-
mand tains a “Welcome to DELIGHT.VNAME" message.
1t is your responsibility (as system personnel) to
insure that the system openhdtl file (see section
5.2.1) is set up so that users can access this file.

<memVNAME> | Program This is the default memfile that is read when
startup version DELIGHT.VNAME is started (see section
8.8). As above, the system openhdtl file must be
set up so that users can access this file.

<HsVNAME> During a help | When one of the help commands or section 2 is
command executed inside DELIGHT.VNAME, this binary
helper file is opened to look for the commmand or
topic requested. See The Helper Facility [8].

More on Subroutine Dvname. Subroutine dvname is probably the simplest routine
ever written in any programming language! All you have to do is return the version
.name in the (one) argument as done in the sample routine below:

subroutine dvneme (str)
integer str

call pcopys ('SPICES', str)
return

end

Of course, the above dvname would be for version DELIGHT.SPICE. Be sure to include
the dollar sign ("$") quoted-string terminator on the pcopys call.

More on Subroutine Memfio. Both output to and input from a memfile are per-
formed by subroutine memfio. It contains the single argument mode to indicate
whether the memfile is being written or read:

1 -_— Read in memfile variables.
2 — Write out manfile variables.

The basic format of subroutine memfio is:

subroutine memfio (mode)

integer mode

camon /BLOCKNAME1/ ivari, ivar2, ... (Comwon blocks coniaining
camron /BLOCKNAMER/ ... variables fo be uritten to
and read from ths memfile.)

DELIGHT For Intermediates (3/1/85) 63

if (mode .eq. 2) go to 2

eall rbini (ivarl) (Read in the variadlss, in
call rbini (ivar2) the sars order as below.)
g'c; .to)
2 call wbini (ivarl (Write out the variables, in
the same order as adovs.)

call wbini (ivar2

9 return
end

Routines rbini and wbini are for reading and writing a single integer to/from the
memfile, respectively. Real variables and arrays of both types can be handled with the
routines in the following table:

Memfio Subroutines For Reading and Writing To/From a Memfile

Subroutine Call Action
call rbini (ivar) Reads integer variable ivar from the
. memfile.
call rbinia (iary,size) | Reads integer array iary, of size size,
from the memfile.
call rbinr (rvar) Reads real (actually, double precision)

variable rvar from the memfile.

call rbinra (rary,size) | Reads real (actually, double precision)
array rary, of size size, from the

memfile.

call wbini (ivar) Writes integer variable iwar to the
memfile.

call wbinia (iary,size) | Writes integer array iary, of size size, to
the memflle.

call wbinr (rvar) Writes real (actually, double precision)

variable rvar to the memille.

call wbinra (rary,size) | Writes real (actually, double precision)
array rary, of size size, to the memfile.

Note that no separate routines are provided for arrays with more than one dimension;
the product of the dimensions can be passed as the size argument. For example, if you
t(md rea)l array rz(3,5) then you could use the calls call rbinra (rz,3*5) and call whinra
Tz, 3*5).

64 DELIGHT For Intermediates {3/1/85)

8.4 Loading DELIGHT

The commands required to load/link your DELIGHT version are highly machine-
dependent. However generally, after you have compiled: (1) any of the version-specific
routines detailed in section 8.3, (2) any routines to be considered built-in per section
8.1, and (3) any other routines that may be called by the ones just mentioned such as
the internal routines of a simulation program, you would then give a command similar
to the following:

LOAD nare=DEL[GHT.VNAME OBJECT1 OBJECT2 ... DLIB1 DLIB2 ...

where "DELIGHT.VNAME" is the name of your DELIGHT version's executable program
file, "OBJECT1", "OBJECT2", etc. are the names of all the object files produces by the
compilations mentioned above, and "DLIB1", "DLIB2", etc. are the names of DELIGHT
object file libraries that contain all of the "core" (non-version-specific) DELIGHT rou-
tines. After the executable program has been successfully loaded, the next step is to
make an associated memfile, the subject of the next section.

8.5 Making a Memfile

Memtfiles were briefly introduced at the end of section 8. It was pointed out that
they are created (and written) by the store command but read back by either the
restore command or when DELIGHT is started normally. To clarify, when DELIGHT is
started, a restore is (internally) performed automatically in order to restore all
DELIGHT internal variables and thus start the user off in the state in which all the stan-
dard commands, macros, etc., exist and are immediately ready for his use. This
restore is usually from a public memflle that is not in the user's directory. However, as
shown in section 8.6, a memfile can be specified as an argument on the command line
used to start DELIGHT.

If a user works in DELIGHT for a time, creating several commands, Rattle pro-
cedures, variables, and so on, he may wish to store into his own memfile so that he can
restore his current state on, perhaps, the following day. The format of the store com-
mand is

store [MEMFILENAME] [' IDENTIFIER']

where the optional MEMFILENAME argument is the name of the memfile (if unspecified,
the name "“memfile” itself is used) and IDENTIFIER is an optional identifier quoted
string which can serve to identify some characteristics of the current state being
stored into the memfile. For example, the following are all valid store commands:

store (This uses filenom ‘yemfile”.)

store mami.arp

store memdebug 'Partially debugged procedure mmteal()'

store menBASIC 'Standard Optimization Menfile with Matrix Macros’
store basicfile

The last command above would produce Lhe following warning message:

DELIGHT For Intermediates (3/1/85) 85
WARNING: Memfile filenames should start with “mem” by convention.

This convention exists because memflles can be very large and you probably don't want
to have large files "sitting around” when they are not needed; when you examine a
(hopefully alphabetized) listing of all your filenames, we want you to be able to spot
memfiles easily so that you can remove any that are not needed.

The IDENTIFIER string given on the store command gets printed to the screen
whenever a restore is performed. Also, there is a command called memdate that shows
the actual MEMFILENAME argument given on the store command, and the date the
command was given, for the memfile last restored from. Thus, your terminal screen

might appear:

% DELIGHT . VNAME
DELIGHT: Restoring from <memiVNAME> ...
Identifier: Standerd VNAME Memfile with Optimization

seoes Welcane to DELIGHT.VNAME eveee
A General Purpose [nteractive Carputing System with Graphics
for
Optimization-Based Camputer-Aided-Design of Engineering Systems.
Developed by the
Optimization-Based Camputer-Aided-Design Group
University of California
Berkeley, Ca. 84720,
Copyright 1883 by the Regents of the University of California.
All Rights Reserved.

1> history
2 store ../menfiles/memew 'Standard VNAME Memfile with Optimization'
1> memdate
Memfile "../memfiles/meamew” stored on 01/28/85 at 08:35:57
1> restore memiebug
Restoring fram memdebug ...
Identifier: Partially debugged procedure matecal()

¢voee Welcame to DELIGHT.VNAME eseseee

1> mendate
Yemfile “mermdebug” stored on 01/28/85 at 14:45:05
1> histaory
2 store memrdebug ‘Partially debugged procedure matcal()'
. 3 memdate
>

The above shows an identifier and the result of a memdate command for each of two
different memflles. You should also notice that the history command shows the store
command that was used to create the memfile. As shown in the first usage, this is true
even if you did not issue the store command yourself.

We now are ready to illustrate how system personnel make a new memfile. As stated
above, when DELIGHT is started "normally”, a restore irom a public memfile is per-
formed automatically. Also, we have shown how a user can create his own memfile with
the store command {after DELIGHT has been started normally). But how is the public
memfile created initially, when as yet no memfile exists? Equivalently, hcw can system

88 DELIGHT For Intermediates (3/1/85)

personnel start DELIGHT without the public memfile so that the store command can be
given to create the memflle? This is the purpose of the -force option to DELIGHT: If
DELIGHT is started with the (operating system) command

DELIGHT -force

then it will start up without any memfile whatsoever and begin in a state in which the
barest minimum of commands, macros, etc., existt. Before DELIGHT presents the "1> "
prompt to the terminal screen, however, it checks if a file exists called setup and if it
does, it is also automatically included.

The Setup File. Starting DELIGHT with the -force option and having an appropriate
setup file, then, is how a memfile can be created from scratch. Suppose you want to
create a memfile called memplo¢ which contains only the plot command (as well as the
minimum commands mentioned above). You would use the following setup file

include <plot>
store meplot
quit

and start DELIGHT with the -force option as seen below:

% DELIGHT.VNAME -force
DELIGHT.VNAME: Begimming forced startup ...
Almost ready ...

eoees YWelcare to DELIGHT.VNAME eseeee

Storing into memplot ...
Goodbye Whoever_You Are, [t is 18:12:11, Date 01/29/85.

After the "Welcome" message, DELIGHT automatically includes the setup file, which
includes system file <plot>, performs the store into memfile memplof, and exits
DELIGHT with the quit statement. If you (or another user of your DELIGHT version) now
start DELIGHT with this memfile by typing

DELIGHT. VNAME merrplot

then the plot command (as well as the minimum commands mentioned above) is avail-
able to you immediately.

Of course, the memfile that most users will start from should contain many more
commands than just plot. Either you (as the one making the public memflle) can
include all desired commands individually as in the example setup file:

4 To be precise, all of the defines and procedures in system Aies <standefs> and <stanstuf> erc avail-
able in this minimum state. ™ fact, DELIGHT, when sterted with the <force option, simpiy pushes back the
statement include <standefs> (which itse!? includes dle <stensty>).

DELIGHT For Intermediates (3/1/85) 67

include <call>

include <enter>
include <imput>
include <output>
include <printv>
include <whatis>

z.lt:o.re memfile
quit

or you can include one of a few standard system "setup” files that themselves include
all the standard DELIGHT commands, macros, etc. Including file <macdejfs> brings in
all the matrix macros such as matop, det, clip, fill, lineq, quadprog, etc. Including file
<Esetup> brings in the matrix macros, all other standard DELIGHT commands, and all
optimization-related commands such as solve, run, initprob, testgrad, etc.’ Hence the
simplest setup file for creating the public memfile would be:

include <Eset
store ‘Standard VNAME Memfile with Optimization'
quit

There are several other things that usually go into real setup files. These include:

¢ Includes for other flles besides <Esetup>. These might be necessary, for example,
to implement version-specific commands such as for running a simulator for a
particular type of engineering design.

¢ A terminal command to set the default graphics terminal type to the most com-
monly used terminal.

e Various store commands throughout the setup file that create incomplete
memfiles containing all that has been Rattle compiled up to that point. These
save you from having to remake the whole memfie in the event that DELIGHT
aborts; you simply restart DELIGHT from the latest successfully stored memfile
and include a scratch flle in which you place the unprocessed portion of the sefup
file. A good idea is to place identifiers on these store commands as in

store memtearp 'Finished <Simamds> (INCCMPLETE MEMFILE)®

* sel_option commands to set various DELIGHT options. Two of particular impor-
tance are set by the following commands:

sct_option DLoptions ~LineMurrace = YES
set_option DlLoptions ~Savelocals = YES

Throughout DELIGHT For Beginners [4] and this document, whenever an inter-
rupt in Rattle execution is shown to occur, you can always type frace and see
what procedures have been called on what flle line numbers. Since these line
numbers for every procedure take a bit of storage in a memfile, the default is to
no! store line numbers; the first sef_option above turns on their storage. Simi-
larly, local variables, arrays, etc., of procedures are by default, not stored in the
DELIGHT internal symbol table and hence into a memfile; the second setf_option

S There is no "setup” file for including just the matrix macros and ell standard commands since, after
all, DELIGAT is for optimization.

68 DELIGHT For Intermediates (3/1/85)

above turns on their storage. You would want to place these statements after an
tnclude <FEsetup> but before any includes of flles containing Rattle procedures
that need to be debugged.

® A solve command to presolve a particular optimization algorithm that will
definitely be used for all optimization in your DELIGHT version. An example of
this is shown below.

* A clear_time command, discussed in DELIGHT For Beginners, to reset all the
call-counts and the cpu time values to zero that are displayed by the display_time
command. This will avoid having the latter command display to an ordinary user
cpu times associated with things that occurred when the public memfile was
created; display_time should show the user’s own cpu time only.

e A "%Z" to close the helper binary file. This is explained in [8]. Suffice it to say
here that if you are not generating your own help entries, the "%Z" will not cause
any problem if it is there.

There are two other matters that concern including files. First, instead of just
unconditionally including a file, it is a good idea to test whether some entity (pro-
cedure, define, macro, etc.) created inside the file exists and include the flle if it does
not. This is done using if_NOTTHERE, which has the syntax shown by the following
example:

i?_NOTTHERE output_to then include <output>

By using if_NOTTHERE, you avoid having the same file included twice, since the first
inclusion would create the entity tested for. Second, files can be included with
tnolude_and_print instead of with include. This causes the fllename and the total
DELIGHT program execution time to be printed when the inclusion of the file first
begins. To determine how much cpu time was consumed during an include, this cpu
time would be subtracted from the next time. The include_gnd prinf statement also
indents the filename if this file is included by the previous. For example, suppose we
have the following three files:

File t: include.and_print t1
include_and_print t2

File t1: include_and print t11
inelude_and print t12

File t2: (empty)
Then if we typed include_and_print ¢, we would see (except for different cpu times):

1> include_snd_print t

including t zoasec;
including t1 208sec
including t11 211sec
including t12 212sec
including t2 215sec

DELIGHT For Intermediates (3/1/85) 89

From this output, you can immediately tell that file {1 includes flles £11 and £12 and
that file ¢ includes flles ¢! and £2 This knowledge can be important in tracing down
compiler error messages.

We now present a complete setup flle that includes several of the ideas discussed
above.

#3#4## DELIGHT.SPICE memfile setup #####
store mamfile 'The very begimming (INCOMPLETE MEMFILE)®

include_and print <Esetup> ## Standard DELIGHT optimization setup.
terminal hp ## Set default temminal.

set_option DLoptions ~mmkevhelp=YES ## If “-mekevhelp” option given,
turn on meking binary help file.

i NOTTHERE dslv then include.and.print <ddisplay>
i NOTTHERE interpolated_array then include_and print <itparray>

store memterp ‘'Everything up to "use <Simmll>" (INCOMPLETE MEMFILE)’

include_and print <Simall> ## DELIGHT.SPICE Simulation Interface.
include_and print <Simsckt> ## setckt cammnd.
include_and print <Simtryv> ## tryv cammnd.

store memtarp ‘'Before algorithm (INCOMPLETE MEMFILE)'

set_option DLoptions ~LineNurlrace = YES
set_option DLoptions ~Savelocals = YES

solve using Afdmifd ## Peasible-direction-multicost algorithm
with lurped finite differences.

clear_time ## Clear times for "display-time”.
b4 ## Close help file.

store <enSPICE> 'Spice Basic Memfile with Precarpiled Phase [-II-III Algorithm'
quit

One final reminder: as pointed out in section 8.1, to make DELIGHT aware of new
routines being made built-in, file anames is used. Since this file is read by DELIGHT
during a forced startup, it should reside in the same directory where you run DELIGHT
to make you memtfile.

8.6 Starting DELIGHT

As covered in the previous section, when DELIGHT is started with the <force option,
it automatically includes a file called sefup. Similarly, when DELIGHT is started nor-
mally (i.e., without the -force option), it automatically includes file stertup if it exists
just after the '"Weicome to DELIGHT" message. This allows you to have commands exe-
cute automatically which you would otherwise have to type when first starting DELIGHT.
One common entry in the startup file is a line such as user_name_is Pokey which tells
DELIGHT your name.

Another property of how DELIGHT is started has been alluded to in earlier subsec-
tions of section 8. This concerns which memfile is used during a normal startup. The

70

rule is simple. First, if you specify a memfile as in

DELIGHT memfilename

DELIGHT For Intermediates (3/1/85)

then DELIGHT will read from the specified memfile. If you don't specify any memfile,

then DELIGHT will read from file memyile if it exists; if it does not exist, then DELIGHT

reads from file <memVNAME> where VNAME is substituted by the version name
declared in subroutine dvname (see section 8.3), e.g., SPICE for DELIGHT.SPICE. For
this purpose, the basic DELIGHT version has version name BASIC. Thus, typing
DELIGHT alone, if there is no file memfile, will restore from memfile <memBASIC>

(and print the login message from file <lmgBASIC>).

All of the preceding is summaried in the following table:

Starting DELIGHT

Command Option File Automati-. Memfile Used
cally Included
f—t——————————_
Forced startup | DELIGHT.VNAME -force setup (none)
DELIGHT.VNAME MemFileName | startup MemFileName
or
<memVNAME>

There are several other options that can be used when starting DELIGHT. These are
explained in the options sections of the help entry for DELIGHT (which may be obtained
by typing helpoptions DELIGHT while in DELIGHT) and are summarized below:

-echo Immediately turn on the echoing of all lines read by DELIGHT.

-force Start DELIGHT without any memfile, and automatically include file
setup (unless changed by the -I option below).

-fix If the message "Bad file memfile” is seen, restarting DELIGHT with
this option will attempt to fix the bad addresses stored in the

memtflle (see below).

-verbose

or normal startup.

-makehelp

Print out chatter showing what is going on during either a forced

Cause "%N", "%U", help lines in file setup (or a file included by it) to

generate the binary help flle; without this option, these lines are
simply ignored.

DELIGHT For Intermediates (3/1/85) 7

-makevhelp Set an internal DELIGHT flag so that turning on help via

setoption DLoptions ~makevhelp='
say, in a setup flle, causes succeeding "%ZN", "%ZU", help lines to gen-
erate a binary help flle—just as if you had started DELIGHT with
the -makehelp option or did a

setoption DLoptions ~makehelp=YES
Thus, if set_option DLoptions ~makevhelp=YES appears in a setup
flle, it turns on the generation of a binary help file only if DELIGHT

was started with -makevhelp.

~trsorc Print the source directory for all <FILENAME> files opened, pro-
ducing the same output as the whereis command presented in sec-
tion 7.3.

-DOXX Substitute filename XXXXX for setup during a forced startup or for

startup during a normal startup.

The -echo, -verbose, and -frsorc options are useful for debugging a forced DELIGHT
startup. The -echa option will cause every single line read by DELIGHT to be echoed to
the screen; try it if you want to see and understand why making a memfile takes so

long!

The -verbose option is much less "verbose"” than -echo; it simply prints out what is
going on internally during either type of DELIGHT startup. Below is shown its output for
a forced startup:

DELIGHT.VNAME ~-force -verbose

DELIGHT.VNAME: Begimning forced startup ...
-verbose: Reading files <exops> and <ex!uns>.
-verbose: Reading file <rrdata>.
-verbose: Reading file <rrfums>.
-verbose: Declaring Rattle-access variables.
-verbose: Version-specific Rattle-access vars.
-verbose: Including file <standefs>.

Almost ready ...
-verbose: Including file <stanstuf>
Making public: stackf
Making public: pb.stack!
Making public: clear_stack?
-verbose: Including file <helpracs>

soeee YWelcare to DELIGHT.VNAME ¢eeee

1> quit
Goodbye Whoever You.Are, [t is 18:34:32, Date 02/03/85.

The fact DELIGHT comes back with its prompt above implies that there is not a setup
file in the present directory (or at least, the setup flle does not contain its own gquit
command).

Before the addition of the -fiz option to DELIGHT, almost every time you relinked the
DELIGHT executable, you needed to make a new memfile. This is because a memfile
has Fortran addresses from an internal dynamic memeory manager stored into it and
when you relink, these stored addresses of fixed DELIGHT internal variables probably
change. Hence, when you try tc start DELIGHT from the bad memfile, you see some-
thing like the following:

2 DELIGHT For Intermediates (3/1/85)

DELIGHT . VNAMR
DELIGHT.VNAME: Restoring from <yend/NAME> , ..
DELIGHT.VNAME: BAD file <memiVNAME> ! (1027 more)

The number 1027 is not important but shows the difference between the new address of
a particular DELIGHT variable and its address as stored in the memfile. The word
"more” above means that the new address is greater, i.e., that the DELIGHT executable
grew by 1027 integer "words".

With the -fix option, however, DELIGHT attempts to fix (update) the addresses
stored in the memfile as they are read. Thus, after seeing the "BAD file <memVNAME>"
message, you can try to fix the memfile by using

DELIGHT. VNAEE -fix

DELIGHT.VNAME: Restoring from <men¥NAME> ...

DELIGHT: "<mexiVNAME>" is BAD (1027 more). Beginning fix ...
Identifier: Standard VNAME Memfile with Optimization

o999 VWelcare to DELIGHT.VNAME ¢veee
1> T

If after this, DELIGHT either does not give a prompt or it does but aborts immediately
or otherwise acts strangely, then the -fiz option has failed and a new memfile must be
made. This occurs, for example, if the basic DELIGHT common blocks change or if you
add or remove variables from your subroutine memfio (see section 8.3).

The -JXXXXX option, for including another file other than file sefup during a forced
startup, allows you to have several different setup files. One could create a complete
memflle while others, to decrease the time required to make the memflle, could create
only partial memfiles, that is, without all the necessary files included. These partial
memfiles would usually be for debugging (a built-in routine, for example). The -JXXXXX
option is also useful during a normal startup to simulate "batch-like" operation of
DELIGHT. For example, suppose file {emp5 contained some sequence of commands
whose execution could occur non-interactively such as:

echo_io_to tempSoutput
read_matrix ...

matop ...

printv ...

echo_io.snd

quit
Then starting DELIGHT using
DELIGHT -I[temp5

would cause flle femp5 to be included automatically. If your operating system allowed
this command to be entered into a “batch” queue, then DELIGHT would execute the
commands in file {empS without user interaction.

DELIGHT For Intermediates (3/1/85) (C)

8.7 Debugging Added Built-in Routines

After you've linked your new DELIGHT version together and created a memfile
according to sections 8.1 and 8.5, you are ready to see if your new built-in routines
work. For the example shown in section 8.1, they could be called directly as in either
of the following:

1> FuncEzmp(5)
1> print FuncErarp(7)

If your built-in routines did not print anything to the screen, the only way to tell if they
were working would be to check the values of any arguments or the function value
returned. As detailed in section 7.2.3, you can set variable pdebug_to aid in the debug-

ging process:

1> pdebug_=3

1> FuncRxavp(7)

=====>> builtn: ENTERING "FuncExarp”, funcno=1001 nargs=1
> builtn: FIRST VALUE OF (REAL) ARG:
1= 7.000000

------ << builtn: RETURNING FROM "FuncExerp”, funcno=1001
<< builtn: RETURNED first value of each arg:
1= 7.000000

In a real debugging situation, you would examine carefully the values returned above.
Function number 1001 tells you that this is the first function in abuilt. (Similarly, 2001
would be for the first function in ubuilt, mentioned at the end of section 8.1.)

A very important problem when debugging built-in routines is what to do when one
of them gets "hung”, i.e., goes into an infinite loop and does not return to Rattle execu-
tion. In this case, pressing the special interrupt ("break”) key twice to generate a hard
interrupt (see [4]) will not suspend ezecution in the built-in routine. Basically, there is
no way to suspend such infinite loops; DELIGHT must be aborted in some manner, addi-
tional print statements added inside the culprit routine, DELIGHT relinked, and possi-
ble a new memfile created. However, to aid in tracing down the bug, the hard interrupt
does execute a frace command so you can at least see what Rattle routines are
involved and where the problem is in terms of Rattle execution. This is shown in the
following trivial example in which built-in function sdeley has been used to simulate a
hung built-in routine by delaying execution for 10 seconds:

1> functian immer

1 sdelay(10)

1> functian cuter

1} immer()

1> aater() (brrediately press the "break” key tuics)

WARNING: A second interrupt has been received before DELIGHT
bas detected the first ... DELIGHT is possibly hung
in a built-in routine. A "trace” follows:

T4

DELIGHT For Intermediates (3/1/85)

Interrupted IN prbcedure
inner Input fram the terminal)
Called by cuter Input from the terminal)

CONTINUING EXECUTION ...
Interrupt...

1> reset
1>

If these procedures had been Rattle compiled by including them from a file, then the
trace above would have shown the usual statement line numbers in the procedures.

8.8 General Guidelines for Creating a DELIGHT Version

This secticn contains a set of stylistic guidelines that have proven themselves well in

creating new DELIGHT versions as well as in implementing the original DELIGHT system.

1. When creating Rattle procedures for various version-specific needs, make all

related procedures have names that begin with a 2- or 3-letter (unused) acro-
nym such as M7X_for matrix routines, GX_for extended graphics routines, etc.
For example, you might have graphics procedures GX_addbox , GX_painiscreen_,
etc. These names make it highly unlikely that your new names will clash with
any existing procedure names or with names used by a user of your DELIGHT
version.

Avoid global variables when possibie since they increase the possibility of name
clashes with local variables of procedures created by users of your DELIGHT ver-
sion.

For arrays and variables that are to be shared among several procedures in
different files, set up a separate file containing a definition of this "data base”,
along with complete documentation in comments. This file is then included first
in your setup file. For example, part of the data base associated with the Phase
I-1I-II1 Method of Feasible Directions optimization algorithm appears:

FHREHIAEASE3#E# DATA BASE RE4FHAGHAFIHHES

array X_nsme_(0,0), X scale(0), X variation{0), X init.(0),
#nin_good_{0), ¥min b 0), ¥mintype(0),
Yrex_good(0), Y¥max b 0), Xmx_type_{0),
Mcost.good(0), Heost bad (0), Meost.name (0,0),
Mcost.min or omx_(0)

Used in <usrdefs2> and <Simov>.

Maximm of the initially murber meshes.

TRUE if the mesh points in arrays

Finequmeshpts_() or Fmcost_meshpts_() have
been updated (variable grid spacing);

used and reset in <Egbmupdt>

create Q_count_
create WMax[nitNmesh_
ereate Meshpts_updated_

DELIGHT For Intermediates (3/1/85) Y i3

array present.proc(PMAXTOKSIZE) # Packed string: present procedure namre.

ereate mchan. # Output logical unit nurber for temporary file
shared by ob;eetivc_(). for_every.(), and
constraint_(

define (HARD,1) # Possible values for Xmin.type_{), ¥mx type (),
define (SOFT,2) # Ineq-type_(), and Fineq-type{).

define (MINDIIZE,1) # Possible values for Mcost_min or max ().

define (MAXIMIZE,2)

define (LINEAR,1) # Possible values for WFMspacing_(), WFlspacing_{)

define (LOGARITHMIC,2) # for functiona] constraints.

4. When expanding an array dynamically, use an increment greater than one for
efficiency. For example, suppose you are reading in a system description from a
user and you don't know a priori how many "blocks” he will enter. Then an
inefficient piece of Rattle code might appear

blockcount = blockcount + 1
array BlockPtr(blockeount)
BlockPtr(bleckecount) = ...

while it would be far more efficient to use

blockcount = blockcount + 1

it (blockcount > arydim(BlockPtr))
array BlockPir(blockcount+20)

BlockPtr{blockeoaunt) = ...

Here, by expanding array BlockPfr by 20 instead of by 1, there are 20 times
fewer expansions of the array then before (though there might possible be 19
wasted array elements at worst case).

5. Always zero the size of temporary local arrays at the bottom of a procedure, as
shown in the following:

procedure exarp |
array work(100)

;z:r.ay work(0)

This avoids having these arrays stored into a memfile if the memfile is stored
after a procedure without the last array statement above executes.

8. Do not declare formal arrays that are never accessed with subscripts since it
creates unnecessary run-time overhead. For example in the following, even
though Need and NoNeed are both arrays when passed, the latter does not need
to be declared since it is never subscripted in the body of the procedure:

procedure proc {Need, nl, NoNeed, n2) |
array Need(nl)
array NoNeed(n2) {THIS DECLARATION IS NOT NEEDED.)
for i =1 to nl
otherproc (Need(i), NoNeed, n2)

7. Never remove (see DELIGHT For Beginners [4] for a discussion of the remove

DELIGHT For Intermediates (3/1/85)

command) a buggy procedure before recompiling it since this will distroy all
calls to it in other procedures. This is because the other procedures will, of
sorts, still be calling the removed procedure’'s Rattle intermediate code. For
example, if you had the two procedures:

procedure procl

pro;:e.d'ure proc2
proeci()

and you found bugs in procedure procl, removing it with the remove command
and then redeclaring it would leave procedure proc2 still calling the removed
version of procl.

. For portability reasons (assuming that some day you might want to port your
DELIGHT version to another computer), always limit your filenames to a max-
imum of eight characters. Moreover, the names should not contain any special
characters other than letters and digits and should begin with a letter. If your
operating system requires, for example, all filenames to contain, say, a dot and
a flletype extension, you can still use in your setup file the filenames without the
dot and extension; a DELIGHT internal machine-dependent primitive should have
been set up so that the required dot is added automatically. Thus, having

include_and print clrdata
in your setup file might actually cause file clrdata.ascii to be included.

. To give you an idea of a good directory structure for setting up your DELIGHT
version, here is one that has been used for DELIGHT.SPICE:

doc/ (Docurentation dirsctory)
Guide (Beginnars Quide)
meke/ (Directory where DELIGHT
is loaded and memfils rmade)
DELIGHT . VNALE (Ezecutable fils)
Hakefile (Uniz Makefile)
anames (Abuilt.r Rattle names)
mantile (Created mamfile)
openhdtl {Openhdtl filae)
setup (Setup file)
src/ (Direciory containing all source)
src/display/ (Subdirectory for display camwund)
Hakefile (Uniz Makefile)
displa.o (Carpiler culput object file)
displa.r (Ratfor scurce file for display
caomrand)
src/includes (Subdirectory for shared
“included” filss.)
csharel (First shared file)

cshare2 (Second shared fils)

o0

DELIGHT For Intermediates (3/1/85) 44

src/interface/ (Subdireciory for inierface to
stnulator,
Makefile (Uhiz Maksfile)
output.?! (Interface Fortran sourcs file)
output.o (Carpilsr cutput object file)
rusim ! (Interface Fortran source file)
runsim o (Carpiler output object fils)
sre/min/ (Subdirectory for rain wersion-
specific source files)
Make?ile (Uhiz Makefils)
abuilt.o (Files discussed in this document)
abuilt.r
dvdecs.o
dvdecs.r
dvexit.o
dvexit.r
dvinit.o
dvinit.r
dvnare.o
dvnare.r
memfio.o
manfio.r
src/simulator/ (Subdirectory for actual svrulator
source files
Makefile (Uniz Maksefile)
excute.? (Sitrulator Fortran sourcs fils)
excute.o (Compiler output object fila)
(Bore source/cbject pairs)
test/ (Directory of Rattle test files
Jor testing DELIGHT version)
testtilel (First test file)
testfile2 (Second test file)
Epilogue

Before setting this guide aside, you should be reminded of what temporary files have
been created in your current directory (and thus can be removed) throughout the
course of performing the boldface commands in this guide. They are files funk, funkl,
Junkl, junkd, junk 12, junkzy, and myfile.

Acknowledgements

For their tremendous assistance in reviewing this user's guide, we give special
thanks to Mark Austin, Andrew Heunis, Elijah Polak, Alberto Sangiovanni Vincentelli,
and Stephen Wuu.

This work was supported by the National Science Foundation (NSF) under grant
ECS-8121149, by the Air Force Office of Scientific Research (AFOSR) United States Air
Force Contract No. AFOSR-83-0361, by the Office of Naval Research (ONR) under con-
tract NOO014-83-K-0802, by Microelectronics Innovation and Computer Research Oppor-
tunities (MICRO) under contract N00039-83-C-0107, and by a grant from the Semicon-

(] 'DELIGHT For Intermediates (3/1/85)
ductor Products Division of the Harris Corporation.

References

{1] A V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Read-
ing, Mass. (1977).

[2] B. W. Kernighan, “RATFOR—A Preprocessor for a Rational Fortran,"
Software — Practice and Ezperience, {October 1975).

[3] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

[4] W. T. Nye and A. L Tits, “DELIGHT for Beginners,” Memo No. UCB/ERL M82/55,
Electronics Research Laboratory, University of California, Berkeley, California
(July 1982).

[5] W. T. Nye, DELIGHT: An Interactive System for Optimization-Based Engineering
Design, Ph.D. Dissertation, Department of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, California (June 1983).

[6] W. T. Nye, The Helper Facility, Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, California (June 1984).

DELIGHT For Intermediates (3/1/85) ' ¥e)

Index
@SYSLBINL ..cvunerericieccrnrecscossnseasacrannaansasnseensssnns ceesssnessatsesesssensnsssssersrannosssasnaes 52
ABORT ABORT ABORT MESSAZE ..c...ceveerrereesseessereesseseessosessssssssssssssassosssssesessssassasssase 51
aborting on NUMETrIC OVETHIOWcciiiiiiiieeiiscecisnisnensssnnernassesssssensensassssssssnnesssesssses 50
GDUIL SUDTOULINIE ...cuueeiiiieiccrnniatnicrsniiniccnaniressanneressssseesessannssssaesassssssssasssasersssssnsnnanes 56
accessing Fortran variables in Rattleccccccicecencinincscnnicseneccssnesssassossesssnnensans 58
adjugate keyword to Matrizfunc commandcccecceeeeesseeecssssaseessssseeecssnnsssessnnnes 39
BRATNES M1 ...ccueiieeiiiiinineeenncrenreriiisssusscnssrsaecsnnnareesssnssesessassassasessssasssssssnesssssrasssnsaases 58, 69
KBRSPTOMPD fIl@ ...cuuureirecrisritnireiscseiieneieniecscsaessosessesecssssranesasessssssasssssassssssssnnnsasassens 24
aNSwWer_£0_DrompPt PrOCEAUIEicciiiirceencrsiecnssressneeesssasesssssssesasssssassssssnsassssssaasss 24
aRSWeET_L0o_Prompt MOGEScicimscreieiceciescnmassaneassresssansresssnsasasssssessessasnsessssnsssasasases 26
array out-of-bounds run-time erroriiieciciicinnneenieceenreeienetteiieesseeeeasensenen 44
Assignment Continuation CONVENIONc.cieeerrrreresssssrerereereresennereseesssssssnssaesseseessane 42
Auto-Pushback CONVENLIONccuieirrrmrarererssrerssnressseesessseesessennsssssesssessssanssesserasssssene 15
backslash character Geeeaseesanoennisssnsnentsrenessteseesenetstntinetrneetnatstntssssrssssncannartrananne 4, 28
BASIC DELIGHT VEISION ..c.cccecesercsrrecssassascasssrassessnssssressnsessssesssnsssssssssssssssssssessanesssasess 8
batch mode operation of DELIGHTccccccceeeermtreecnrareceecsssensensesessssssnssssessesssnsensananes 73
bInary help fAlesciiiiieriiriciinienieriereeeresessesessessssasssnssscosas resesneseessecsasesnnssscnsenanannase 58
DOZT COMMANAccciiieeireiineninieieieniecensanasessssasesessseessessssssssseesssasssssssassseessssnsssnssnenss 52
CIANGUAGE ...cccvemeeiiiintieiiceicnicastiesaeessstnsnsnrrssnseesssasesssssessssssacssssnssesssrsnsesssssasesassansens 58
clear_time COMMANTccciceiiiieiisnreneeeeeaiessssneereesssssssssasssssssessasssssesssasesseesesssesenses 68
€022 DUIlL-iN FOULIME ..ucecuiniiiiiciiiicnteeaeeecccereterteeneceessessnannsanssssnsesssesssssassessassasenees 29, 48
Colon Convention in routine answer_to_promptcceeeeerreeerersecscseesseeassssenenns 28
COMMANAS: ...ccienrenrerennetersecsssssissssssssesssssesssnseesssesasssnsssnssssesssnsesssensssamssassensessassesassss
DOZ ..ccuenrrirerreeisnnnenntesnieitssssaeassscsnesssssssnsssssessenssssasssesssanesaressnsnnsensesassssasensnsensnns 52
CLEAT_BIINEuueiiieneirninneinntiisssnsnsaseessanssssnsesassessssaseesasssnsesssssnessssssnsessesssnsesss 88
QHSPLAY AOPLIGMS c.onevieeriicneiiiienssirisancsrmrasiesaseessasssnsesssssssssessnsassassassssssassassessnsessen 14
QASPLAY FUITIE ..ccevvererreririinineiissnnissssssscsaseasnsesssnsessssessssesesssssrassesssssessssssssessassasassas 68
BCRO oiaeereriiecnisnisniiesissannetisssssesenennnaaces cesteststenssnnsseraasantteteratasnstastsasaatas 33, 43
BIURT connrereierrneeisineeissenesistetiiseseessessssessasstasessamnsnastasstnsesssneesansansessessssreessnnnneese 48
hardreset ceneseeeetssentsttanaaestarttaettstasttattesetae eeteenteessessestnttetssratsossraassnsasensesesnes o1
RBIP .nenriiecitietnnetcsetentecsneecae s sae e saeesresesessasaeesaee s s aessnaaeessses s b sasnssanesasanens 5
RGIPALLcaueneerireinteiercseicnteisnccsaecsntessesssessssnasssessssessssassassessessesesssasessansensanenn 5
REIPEZATNDIESccceeeveeeineeennerrnenreareecsansonnsanenas erteressenenaessstnteasanstasntonrnssisarsserssescns 58
REIDMLBWIET ..o.neeiitieiicrieccseeecereseneseeceescsestessesessssessesssasasssssssessossraressssasanesnns 57
ReIpnezluuveeeiiiiiicnnnnnenereeniennseeenns eeeseatsessnssasisssestatesstraseasessetsststastesesntente 58
REUDOPEIOTUS acceeeeennvnniiniciiartisninneiarsannstaeessssseessssseseessasssnseesssssassssssssssasassnsssssanses 58
Relpsubject ®veeiiiirecneieennneiececssesecesssnnensenes ersressteestnttttesternonssssenrestoesattansnse 7
REIDSUDFBCEoucueereecriiniiineinanascnarssntesessssesseressasesessssesssssnresssssassessssssasesssssssnasses 56,7
REIPUSTGEcuourieiiriiririiiinrenrareerseerecsaeesanseesieesssseasssssssesssassssaessssssenesasnansesannaas 58
Cinclude QNRA_DIINLceiiiiiiieieeicceeensssseccssssssessssssasesssssssssasasasesssssssssssssessssassnns 88
include_files teeeeeeereetietesetseteetitae et esesesssestestssastttettetesisesteseseasatnrasasssnns 33
LASEEQL ...ocuneeveeveriariiiiennrisnecssescssesssanesseesstesssessssnesseesssstessssasesssasesnsssensssasesaaans 10

DELIGHT For Intermediates (3/1/85)

80
HatrizFPuncceeeeioess eseeessnses e eeeseereieeetteettsesesesssrteseeetsteesetnnsseresteserrateressrentenas 39
TNEINABLLcooreeneenricerieiicennternsrmssserssersessssestsassessstasssssssssessssessssssssassesossesssssssssses 85
j<1-) - eesestenesssrnnsansseseetetesessnnebttststetsstetesntersntettesestrestesssnettnanestnstecesennraniesanntssen 32,37
PLOL .coovrannneteiiirnennntaatsanaes teeeetsasssntestrerttsesesresssaesestsssaenssannnttsarettanestrssrssranranesas 18
PrTLfanNCY .ueeeeeeeesennces teesersersertarans ceteetseetisesesesanenssensnesisisesanessstressssnatantessransasenass 13
PTINL_SCALEA ...ecceeieiriiiionssassassesssessesiasasessnsessossassessssessssnsanesnnnsase ceseseascserensenssseses 12
prompt eeesttsetstnsetstsststtstarensrartastatsatrerersIssesetennesaressstnssestanstsans 24
TESCL_OPCNRALLccocoeeeririiinerncsisiesssssssssnssnstessesssssnsasssessesssssssssssasssssossssasssssasnssssss 29
SEOTE uoeeeeeiiieneienseinieieetssisisscessssssssesttnssstnassssssssstsssssssssssssesssnassossssessesessssassrsssssasss 54, 84
TRINOVE .cccecrenercensrsasasases eeeeenetaresesestnsseserstttsnssseserasasasetsatstesntsossnssnnistesansssansesssanse 76
TBSLOTE .eveenvrereresrinirnsnencrerssresssoscssane reestettrtsetsstettattetttastissentassrestasresssnastesenssressasee 54, 64
TESUINL ..cvereecierccssesscostusssssnsssssssessorssssssassssssssssrossssssssasssssssssssssseressssrsssassasssassanssss 28
TRUIATU ...eieeecrionmninensianinisenssansorsarssasesseestorsesssssessstssesessssssesssssssiesesssssssesseasssssasssen 30
TUTPTITUL cceveeererennnncocssoscssseccsssscsossossaccrsssorsosssssssssse eserereasanse avesaas cerestseensacsnaranssien 53
SBL_OPLIOTL ..ceanieriiicoeeitrstnensesnenanseseseessasnnssesssssesasessssserasassanaranns teeeresrceneeressecenananas 13
SEOTE cuneeeciiiirirrreccrcsesssisscssseinsstesnsasennnnenee etasmssssesssetsetanssrassittrsestrearsesssssansasansranes 54
SUSPETUL .cuuuueeeriarssioressccssaressssasestsatsossossssssstsssssssenssesassoressssesssssassessassssrsssssssssssses 48
ERTMINGLceveeiiiiiriniiivniiiastenencnecsossssessescsserserasnennanses ressssrntrastssranianesssenansssanasnsne 87
BPOCE ucecrcerreencieincsnsiinsnctsesssnmencescnsesaneessassassssens tesssssasasesseresastesnessnssssassanes srnsoenes 45, 67, 73
USCT_TUAINLE_IS cuuieieecrereacncersescesesssassensastossenssssessessesessssssssssssesssssssssessesssennsesasensans 70
WRALLS a.eoenrereneiiiinannnnnernirssincueienissiisssssnnersessssssssnasassnssstereasossssssssssssssanssssssssanssses 43, 52
ITRALLS ceeeeicinnnaonnnnieneesisissionaranieertisssasosssssssssossanssssenseassrsansans rernnsteeneesesasasenes 52
WHREBTBLS cceeeiieinreieneeniiinsesanirietrestatasssnettsessnesesstsesssstasetnassessresessssssssssssronssssssensesne 52
cormnmands, creating Newc.ceeceieenes ctesesesestaesnsnastnansasarassatsressntasestasosararasnsrranens 17
compiler, What IS @ .cuccvcirinirimecccinnecinimmniciininniicicinieiserenecsssesmenessinsessssssrarenserasesess 35
compiler-reported BITOISccccciiicciiemimreccireciseniimetiescssecerssassssessassesessassssseasssrncnes 41
COnVENtion,ccccccececeereeeersrssensnessness eeeesesseesseasensersasassnaeeennesnterasesateeeasesraesteanstentans
Auto-Pushbackcccceemeceecnneene easestetenestesntertesetetenseretttanttanssstenetentatesratistanassnassssn 15
DOUDIE-QUOLEcuiiiimeirieiccienreceressreseresessessensssnnsasnsssnssssssssesssanassessnsansssnssnnssassass 10
CFILENAMEDocvurrennscnnsessineisieccannenssnessanssssessasssssssensanssssssasssasssssasssssasessssessssassss 27
NO=QUOLE cecuieeeiiiieitneiiesitnrinsescscoraansssssssessssstssaststsssssosssasssarsosassssssssssssscsasansasasene 10
</PATTERN/FILENAMEDceeeeeereeernnernnerncssassnsresssnssssessssasssssnssssassessssasaasssas 28
procedure NAMUNG .cceceeereeeeeeesenesessssesesssosssnssanee eetesseeresennstinetssttnssseneraresiasaeranerne 17
cpytoeof built-in FOULINE ..icccicicceciiinneniciiietineneeernronsnnecieiesetnssessssassessessansssassasasesnasses 48
CREATEFILE define eetteseustesernnnesitrersisasesesetneseeresattttasasitenssstenasresens 30
creating commands ceeasasssessssessnssssestansrsessensrtsnssassasases cesesssesesasanens 17
creating new DELIGHT versions Creeesseeretessssessssssasessesesssetatstessanasisnsisastasasnsnreesans 54
data base of variable declarationscccccccieceeeeciermenncansennccnesscnccrscsssnressesssescssseceneses 74
QEDUBZET ciereccieeniirinieenttiiitieteiinciesereasessessssessesassnsensanssssssnenssasessannssassanssssnsssassoscane 50
debugging Rattle eXeCutionccccccmmeneineiicneeninintiecsesiecicisssinrsimsssesssescssenansenes 40
AeCGlo SUDIOURINE ..ceceeeeriiereiiennecsesienninnnneeirostessarissstosescessisssennsssesssnsesssssesssasesnsssssnenes 80
20T SUDFOULIME .cvueiiiirirnnrncernrnccncrscetrenersncnesnnessessisserassstessessnsenssesroasessosnessssssassssssas 58
decial subroutine tesestaatestsarnesesrarttttettetnesesinatsesareresetseststassttasstrarestenesseresss 59
deciaZ SUDPOULINE .icveceeeeirieicreensnciesinniensesisniiosssnsorsseressossssassessnsasrasersansasssesssssssssase 59
daCiQ3 SUDTOULINE ..ciiiimircrnieriacaerioserssieeeremmarmnnassssisssrsensonessssseamssassnsnssesssesnsarssssssnases 59

DELIGHT For Intermediates (3/1/85)

decr subroutineccccceececeeccnnes eeentrestecentaneteseretaiesriertocestientersetsnereseresesestestesestserent
d3C7Q 1 SUDIOULINE ..cccreeereencencecnesensncsintincsasssssnnssessssesnssesarassnssasansssnsasnsssnsssensssassnsesnns
decral subroutine eeteverecanssnresssrssersensserasseennsesanes eesserrrssarsetsesasnasnsessrrererasanssnsresas
deCTE3 SUDTOULINE .c.ccvceereercrccercanncraccronsroscascocnsocsosssssansessosesesses seersensssesecancssesresansone
define eNhANCEIMENLS .c.vcerrcrerreeccerenceerercrrsccerseiossessossasessesssrssssssssessesssssssessassassssssons

define options

oooooooooo 000000000000 00000000000000000000000000000000I0TI0I0R 000000 0I0000000000000000000000000000

DELIGHT For Beginnerscccccceeeceseneenneees teesessnsesssensasssssestsssesessettsresnatsssssssssssrsnssnes

DELIGHT versions
DELIGHT.MIMO
DELIGHT.SPICE ...
DELIGHT . VNAME

--

ooo

...

directory, meaning ofc..cccccieieiiiieenniiniiiccnseissssansenneens teeetteeeseersnsesansrieraeseeasenensens
display doptions COMMANGcceeerieiiniiiiiiiiieetieiinnsnntnsanessessssssasssssesssssssssssssssssssses
displey_time command Geeteseiteetnannnaensentenseseentatsarannsssesatarnsrassstnsanssensensrnsetonsanes
divide-by-zero run-tiIme errorc.ccccccicieeiimiceiiesectencsissiisesscssessnossssesssssoscssenssossaes

DLoptions define .

...

DLoptions option ~ABOTEOROUETSIOWccireeeceneneniisccisssscntensesessscsecnssessssasssssssssssssses
Double-Quote CONVENELION ...cicceniciciceernrmenonnesstesscsceccerasnasassescssessssssassssasssssesssansesesnss
double-precision arguments to built-in routinescc...ccciviimnniiiiinniieiniriiicennenaan
double-precision floating-point NUMDErSc..cccciriaesrraneciisissiicsinnisasennnersissenis
dudecs SUDIOULINE ...cciveeccisressiserinisiioniinsiiecicsssssssssssesessssosssssssssssosssssensssassssssnnensassanes

dvezit subroutine
dvinit subroutine

--

--

GUNAME SUDIFOULINE .ivuireereceriereerencieecrsreisanteeeirssiesessssesssssessssssasssssessssassssessscssssessonsans .

echo command ...
echoing input line
enter command ..
environments
ERROR define
escape character
<FEsetup> fie

...
S terertatataenitaitatcestecierttrtctceritetttettanittitaceiatiectatenteststerettassetetetesnataaes
...
...
...
..

ezedit built-in routine ereteesnsrieetatattseeetestresssesesttssisttarserastantsetttnesttentatansstrasones
expression continuUAationcecneieieniiieiteeraeieere e enersaese e neaenaens
extensibility of DELIGHTcccciirmmuummiiniisniinnienincnnnieniismscississssesssesensessmessnesssssssssssns
field descriptors in answer_to_prompt first argumentc.ccccvvvverciccsncriienicseceenns
file input and output cesessaessesssaneans eoettsteieeasieteesstsnssnnnsssnsinnirieeatteesnnnnsnnsenitareiass

fles: cevereeeceenecneens

<HsBASIC> ...
<HsVNAME> ..
<ingfiles>
<lmg VNAME>

<macdefs>
<memVNAME>

oooooooooooooo 960 0600000000000r0000000000000000000000000000000000000400000000000009900000000000000000

ooo 9000000000ac0cs0cscsortcstscscrsntsornsane

oooooooooo 000000 erererrerrestecrerrntniriesesrisiersretiterscreenesesertarsteneisceteetsenenesessse

@
p=ry

S EE8BRYIFXREE A0 BEES

[IS
(o2 T e]

81
61
61
61
43

52
30

NBSEI~

27

87

82
33
62
87
62

82 ' DELIGHT For Intermediates (3/1/85)

CTINALIUTICD ovvvevneriiisincnsssssaemsisnssssnasssiossssnssssonssnsassasnsnnsesssesssssssansssesessnsnnnanssesses 40
KTopunig>ceeeeeeeeenan cersssstsansessssanesss erensseesssestsenesstestsestettestrestesntutensiesettirassastren 32
<vport4> ceeeerttenettetetteaasuatsnertettatisetttatntetess et et eetasant st nraenaaaRRsseesaseresenasienesntess 20
1, cieiiiiiitenreneeitt ettt et ressa e e sanan s e s e s e e sasassraaseassseaesasasessnentrantasarnassseran
binary helpcceceeeees cesecssenanes . eeaseesnestarttnestsitinencarsssastestttessrasaststennnsane veee: 5, 8
help ...cccccennenne eeertaeteestetestasntettasesratenseesesetatniestasesttiantnnieneerEerrTantterstarersnsntsrnssnrensns 8
ODERRALL ..iiiriiiiniiirietiititineteenmectersememtosseramertonsersnsarensareassesssesensessssastasosssasesasessases 27, 52
serateh ..eeeeecreeciennanne eesserensinnaseeneetttsansetsiransenessanniresatserenssesssrestasannessestressusenes 31
temporary, SCrateh .iiciiiciiiciniiiiiinniieiiieesersneesesesesanstorasnoanasesans 31
unique, temporary, SCratthc.cccceeccverersicssemiiscnnsisssssensnsissssssansesssssassssanasssse 31
<FILENAMED> CONVENONcoviersrenssnsesessssnssscssossssnsresiessesssssssssssenssassssnssssmassosssssees 27
filenames, portability considerations forceirieiincsmceciocoiosanesssaossnssens 78
Jilprm built-in routine ...cccccceeevenneenneennn.. reesteeesesetetearestitetnssesatasetarasestsrassantasesnisnsens 34
floating-point €XCePLIoNSvcciereineiniiinicnieien ettt s seas 44
Fortran languagecuuiiciieiiereincniesinnsiiesissinsessssmssneessssrsssssnssssssssnsessasssessssnsessssasens 55
GET_LETTER QEfiINE ..cuveeieriirseiiainnnaneniasonsnnnnccsassanmsssonsassssssssssssassssssssnsassssssnrsssanasssss 24
GET_NAME QEfiNE ...cccovveriisriesessasssonnsossssssssnssossasssssssssssstassssessasssansassassasaasssssssssnasenns 24
GET_NUMBER GEMINE .uucoeeecreicscanmsrscncessnesissssssaressassssssssssassasesssssssnassssssssssssssssssssassssns 25
gtoken BUilt-in FOULNEc.iiierriiiecriiiisnnniccsissnnienesionsnssssinenencssscsssenienssnsssnsassessssasens 35
hardreset COMMANGcccvcverrirereeiscrsenrarsesiessnssieisssnssessossssssssssnssssssssssssassessssssasnanes 51
Relp COMMANG ..occiiiieiiineienreeetniiiescrenanecessassnntesssssssassssssssssssssssseassssssssnanssessssssnnansssss 5
BEID fIl@ cuiiieuiuiiiinineiirennsenittaeenenaseneentieststsatiisssassstetetestincssassasasnssssasseananstsssasasaseass '8
helpall COmMMANGciiieuiiiccieimnsssicsnesssassasnesssocsnesssessanssassssnrasssesscssssssssssssansancen 5
2 T2 1o T o eerreeserertaressetarensettasessasassienrasstartassesrosastas 4,9
helpezamples commandccccireersnrnncseeannees cereresrasensenes cessessssserararnsnssanenerssnsteneran 58
helpnewer COMIMANTccccccveeescrcrnccrsrenssensnssossssissssssanssesssssssssssscsssessssssnsarssssssassssss 57
helpnezt command creeerarassnncnanes eesectensenenserenresans cesesssssasaes rescesataesaeisannsnnennsss 58
helpoptions command eesenessesenetertrensstanisisetesesesserstninsestttestenessetrtestesessnerarosasares 58
helpsubject * COMIMANG ..c.cciciirrarerssrsesmessessensesssssnsssssssssssssossassrsssssssssnssesssssssssssassssse 7
helpsubject cOMMANGcccuiiiieiinieiiiiieicicsssninsisneesiiiissiesossissssssesssssasssesssssssnsessssne 58,7
helpusage commandccceceicnecnces corsevaness esesene ceseserrastesssssstsssenssssessassensanssnsnsannas 58
SHSBASICS> BElPEr flleccccccciriiecscccresanensnueniscccsssssssssssstessssssssssssssossassassansensssansasses 8
<HsVNAME> version-specific flleccccveeceicvrasenns restsesessanesessssarnanserons ceseseniesisennanes 62
teopyr built-in routinecccceeeeeereane creeresaranesonss consennse cressnessenestressessanertssaseressrrssaranes 56
If_NOTTHERE Statementcccimeiciiniiiiiiiimmmeiiiiesssisssssimmessssssssssssssssses 68
1/0 (input/output) cesermaressassanersese ceetesssnsesnnaesonne ceerareenes eeerteressnnesssssaresasensrassnne 22
<incfiles> file coreesasranserenss crveses coresesernerne ceeesessseanstrerarsrttssrrsasestarssssssereesnarasanns 33
cinclude_gnd print cOMMANA ...ccciieiieiionicrtsmsimmcesmnssnssssmsesssssssssssnssoassssasanassase 68
tnclude_files COMMANG ...ccccccieeisseccoscsssnnsssssnsscossossssessssmosessssssssesssssensassssssssssessssnases 33
inverse keyword to Malrizfunc cOmMmMandc.eemmeessercimsimsscerssmmsssassnssenes 39
Hround BUilt-in FOULINE ...uccciiiiiiiiiimcintiiineneecisesinsisssisnesssssssssssassssssssrenssssessesssass 58
lexical analyzer part of COMPILETcciiiiiniiiiiitinnninintiomenmenrmisisissiscsisisaesssssmssses 35
libraries, DELIGHT object flleccccitieincrciicssnmssnenemisessassannsnseesissscsssssesnesssssssasassnsases 64
Line Continuation Convention ersecurarssssesarstonanteransessssansanensinises erscessessersnnseenss 4

LASEEQIL COMUIMATNA ..ouueieeeirerenerereserenseorerrsserssnssssssssessiessssssssssssssenss srssssnstasssessssssnnnnsas

-
o

DELIGHT For Intermediates (3/1/85) 83

list OPLION “MRUIMBETS ...c.vcimiiiiiiiiiniiiiineeireretisesitintiiretinecsisssssssanssnstsnsnessesseserasssancasens 48
<ImgVNAME> version-specific filecceicenrccneecssnee eessesersenssesennes cessereseasarinssssssssasnne 82
load/linkage phase tereessrerestesesaressteasasarssesssattaesstessatesearesssnatesaeesssessansssresarans 48
load/linking DELIGHT ereeeesatenstatestttettetattieetstetestsessasesttessnsssrasssssraressnsasassan 64
local procedure variables eessessrasassessarnesettrreensenases resssscsssessasssssnnnsace 48
logical unit number Ceeeseeteeieeettebarnnaseteteetstnesestintsetatstsraetetsetneasasesnessatannssretasnas 29
KMACALSSD fll ..ccuiiiiiiiiisciineriniisnnnernesssessrsisnesesessssessesssssnsssssosssassensssssssssassssasasassase 87
MACTOS .ccceenmeisiesrennsassassareossssssssansene ceassesssesnnrsasesrersensane eeressesnsestsnasresssassatetsasessasces 34, 37
making a new MEeMUIlEcc.eeieiiiiiscssriarsssssnsissssnsnesssssesnsnssssssssntsssssssssensessassanansssnns 55, 84
MALOP COMIMNANG ..ccoeverierrenieissessssessosecsssansassssnsssasassassssesssssssstssssassasssessassasssasssssnsnanas 50
MatrizPunc commandccceeeerevneeencnnnes eressssesssasanne ceerevesees ceserrencersansstassarssttrasessssrene 39
MAXREAL define ereeesnnsresens . teesecrsestensattnstnntnsnnsnssnsasnneressrnrane 50
memdate commandeceecieieneiieceecssnneeeens eseeeesstessessattanaserannmeasarrensnrasssneserasrasasnnnns 85
memfllescccoreeneenceranrannensiniesaces aeseesseseetenettranentrnnetetetttnstssteestatatsesastssettatessressane 54
MEMLSI0 SUDFOULINE ..cevvrereererieeiteeeceieesiessrsnssemeeseesesessassassmsresnssnsesasesssssnsssssasasanssases a1, 62, 72
memflo routines for reading /writing to/from a memfile:cccceevecrceercccereraneennens 83

POV cciieneriicccsnnntniciestssstssenesssnsassssassaneasesssssssssssenaasans . 83

rbinia eereeeteteneeeitettaeteteneteettttatatstsstsetstasnsassrererrresnransnersranes 83

roinr eeeteretaettettentssrsnettentitetiteetttsttttanstantssassetsetenretersestatsaerntan 63

TOUUTQ c.oerrnneenenareeeeeniniieiiiitieecenenassnsensenseesessssssenens eerssceressessesssassesensasascanssansnnnes 63

WHITL ...onveennertiiniteiitretieinintisesssstiessstssnsesesssssssssnsesssnassesseteessssnesassesesssnassssensas 83

WYINIR ..oueccvcensiiiinnnsnnnne ceeeteerieeisettsttsareieetsertatstonassstentettn i taretsnnriesetretatetsrestatearen 63

WBETLT coeieeiinieniiiiiicnintancsssssennetrenssssnaanessssssaasssssasssessssasenassessassasesessessuasssssansasanas 63

WML ..oeeeecnnticsetttennnineasseessssssssestessstsssssessssnsenensssssasssneesessessssssnesnssansnsenes 83
<memVNAME> version-specific fllec.iciiccnsirismcscsrisssessssessonsaesasnnnennnsesansesnesns 62
multiline defiNescccccicceiiieeerereeeeenneeeneeeeneeeereaneanes terevssssssessannenrasans resessssessssssrnransans 10
NEWLINE CRAFACLET ..cuceeereiriiiiiiiiiiiiciiiccnnnentatiessisecsisanstasnesecsessensesssensansannansesssessasssnes 4
NEWLINE (Character) defiNeccccecrreernnsnessaesnesssesssassseesssssnsesssassssssesssessasssssne 37
No-QUOte CORVENLION ...cceiviereirrrrcenririasstieeececsrnenenssseessssssssnssansessssssassesssssonsssssssasssssne 10
NUMETIC OVELHOW ...uueueeneeneerreeteetnienienieiisecsessassansssessssssnsessssnsenssnsassssnmasassssssssssessesnsns 50
ObjeCt flle LIBPAIES ..uiiceeeiciranrereecnerssseeecsssseserasessansessasesessesasssssnsesessessasasassssansssssssasase 84
online help SYSEemL ...cciiiiiiiiiiiciiiieiiianinentiicnnecanenncnasasesssssssseresesssessnsasssssaseassessannes 5
OPENNALL e ..ottt sestssaassssssates s st sassessssnsessnnsessasanssnnsanans 26, 51
openp built-in routineccvceiiiinnnniininsniniininiineeiesicsiieeacecnsneenrenssessessses 28,.28, 47, 50
optional define ArgUMENLScccoieiiiiiciiisciinsccieiiinssssnnsssssnnrassenssessassssssssssonansasssans 10
0puUnig DUIlt-in FOULINEccviiiiiicrnenrinncrinercrccssentsssessesaecsssssssnssssesssnssasesssnsessssssannas 31
overflow, aborting On NUITIELIC .c...c.ecreceeseeriereeeieersesnessasseessessanssesseessessassessessasssssesans 50
PAESEL ..ccueuereeiereestsneensarmaessnsssssarsesssssssssantsnsssnssersnssssnssssassesassesasaassesssssossassonsnsansssnssns 35
passing arguments to built-in routinesceiiciciniiiieiineniieccnieeieeniennneencneeerecens 58
</PATTERN/FILENAMED CONVENLION ...cocuverererersressecsssnesessosssessesesssssssnsssnssssnsesssones 28
POAUMD DUILL-IN FOULINE .uvviccciierieecinrneeeeccseneieesseneeecesssssssssassssssssssesssssssasssssssasssess 42
POJ COMMANT .uoeriiiiiircrartemncnesrssreeeressrssseersessanaesssssanssoessssssassanssssssssasesssssssssssessresesses 32, 37
PABBUG_VATIADIEceeerecrerreererreresesesseserescaresessessesssssasessssssestssssssssorsssnsassssessstes 48, 58, 73
Phase I-II-1Il Method of Feasible DIrectionscccceecerecressuecserseesascnessessesasseessessenses 74

PIAEINE ..ciieeiveeereeireieeeeresieseereeetarssssessoseetssesssssosseressssassessssssssnsnserassanesssesseessens eeves 35

84 DELIGHT For Intermediates (3/1/85)

PLot COMIMANG ...cievviiiiieccccssrnneeenusrernsssensssossssssssssssssesssssssssssssssssssssssssssssssnsssasssssssennss 18
Plot OPLIONS:ccceerretiiecieccnsissiisccsnntaaninnietiiesissssssessasssssassesanssssesnss ceeesnessansssacsansrarnnes
~erase easnssessrsstasssestnsstaransnsssensertnntsistasattnstasaseesessnatatesestserttnntitestansianstesnranines 20
~intzlabels and ~intylabelsc.ccvcecieccrreenennes tecesvssnessarnastensereesnasrencnsnssersnerenans 20
NlOGT cocericcsrrnneereressnsessecssrssessnsssssses teteesessasesnartnasenserensranne . 22
PUOTEGITL veeveeeereneseessessssessssosanressesssensessesssssanasssessossessarsssasssassssessssaassesssnessnsssessersases 22
~yerbose and ~aTISATSLceeiriiiierenans erseresatertsnrassnssrasssnsesassnnsassanasisasannarsnnen 22
POUSBIPT .ocvcreerossonsresssscesssssssssosssssssssssssssasstsanessssssssssssssssssassosssssssssasassvassesassaressases 22
NITRAN QNG NIINAT .occeuiiieiiranenenieerascnsesiossarsanssiosstsrssssssssssasssssstsssssasssassssassasonsenss 20
~zorigin and ~yorigin tesesressessossrenes Ceeessessisetarneresttaanssssssasatsnsatrsnannesasrananans 22
pool of nonlocal Rattle VAriablesecccceiericseersnesseessaecsessssesssassessosassassssssesse 59
position of deflne arguUMENtSc.ccccieiieiieiieniiicrinnisessiieieiceiirmteesessesssssssassssssssanense 53
position of define Oplionsccciceciinininieeienisneeniisnecisseersnns resesessannosasarasresennans 53
Present Inputcvcvivreeeiiniecciieiniccscesccsnnnneceennns reereeteeternataeseasatesseteraansnansrtenassensanares 29
Present QULPULccciieiiinemiiesiniiiniianmniiisissiniisssisssmiesissssssssassesssssssssssssarsseonsssssanse 29
Prinf6 built-in FOULINE ..ttt st csae st 47
printf-like field descriptors aeeserseseasesens reeteeeereeneatasssnsstsssenstaasasannsaonsssstrraseres 24
PrintfanCy COMIMANGccuiieeceeceereasensencneniessesssessasssssssesstnsssssassssssesssssasssasnsrarosavass 13
print_scaled commangccccoereeeeanans eaeestteternresrasssstntssetarsetststessaaserrenesansasaranasninanee 12
procedure naming CONVENLIONScccccceeereeeceniineessssiesiersssnserasnsinsonssessesstssesserasnsanans 17
procedures vs multiline defiNesccceriieiiiiiiiiiiciinnicineeeiieitaretenntieieeanee. 18
Programm debUGEED ..cccccieciaireeucriereeneesirionsmnniisireseatessesistsiassioasestsssstasssesssessssensssssass 50
PTOMPL COMIMANT ...cveeernrruernssorarsesecorarsersosseresstssassssssssssssssssassassassssasssssssassnnssessansanes 24
Push-back MeChaniSIM ...cccecucritciertnnieereniiiieeieionienmeicrteicictsscsistnsessectesssessenssansencsssras 35
TOINL SUDFOURINE .iouveeiinirremeeeiiemniiicnneietueneiiieneereeniissnrsecioesesarescssssssossesssssosscasssnsnsenses 63
THINIR SUDIOULINE ..iciiiniaiiriciinninnniiisininieesssninsiiessossossssssssssrsastssssrsssssasssssssasssssasianes 63
TOINT SUDTOULINE .c.iiiieiriesiiisniinnmnnenisrmmitiieiinniereeicsisoreenseseessestsssstsasesssssssssssssessssanne 683
THINTE SUDBLOULINE 1uiiicirmniiniiniinnttiuiiieiietiniisiicietionsssiotsionssissasiasesssasenssessensassansssane 83
READMODE QEfiNE .cvvireeeeresiieimenierieronesssiresmtasncsseressesassssssssssosssisnssessasanssssssssannnnssns 30
resel_openRALl COMMANG ..ccieruernerreeiriiesririeranersertatsesessssmmennnsnsmssssssssersssnsssssssssosassssss 29
STOTE COMMIANG ..iuirirrresreresseasssersosranstserseisesnssasssssssossasssrsrassarsnsrsssssassssssansesessvosansenaas 54, 64
rarray Fortran double-precision arrayceecccccceeceeeieeicsesessencseresnencsseecsnsassscassennes 58
rarray(retp) for returning function ValUesc.ccicemeicieinseioioiiosneesiaises 568
7CoPYi DUILL-IN FOULINE ...ceneieeerriiiriiietitiiiciiiiinninetnticceieertenccscssessnasenssssnesssesrasesesessanes 56
TEINOVE COMMIATIA ..revreceeneeresasaessssssseranasesinnnsissasenssssesnssssssnassssstesssssssosssassssssasssssassasse 78
7eS10Te COMIMANG ...ccecreersarssssssssssssesssonsnnasannases teerersessereasesatseserasnssiisentasasteransreessrenns 54, 64
TESUMNE COMITIANGA .eccveicrrrariesrseccssrassorssassostosssssrsessssssssssoransseassasssassssssassassssasnnsssnsnsass 26
TBWING COMIMANG .cvvuirintmsemirmmmsnecnncissiorissmaressmeererstnmemsesssssssssssstsssrsssssmsosossssssassossasasne 30
TIchan built-in FOULINE ..iieeiiieeiiiiceiisiiinniineiiiiiiiinanimieereessesccsisiesersssssnsnsassessassssassesess 29, 47
70chan bUilt-in FOULINE .uuuceriieeiiiiiiiitiiicniitniiieriiieaieietiiitsseernsarensarmsnsssermasersasesesses 29
RUN-TIME ERROR IESSAZE .ccveeremerterecsenrecisorsreseosaseesossessessessssssosssssassasssnessnsssssssses 50
FUN-LIIIIE BITOTS tuivicrniiiniiretecsnnsereicterensestsmerenmesssnecssssssssosassorascrssssnsstensserasnsnosasssananas 44
TUNPTINE COMMANG .ecoicirrenernnmsnaneesattamirsisserennssessseeesssersssessssssrssssassssssssssass ereennnnenne 53
scanner part of compilerccccccineeens teererarenereertrenitastsirasntanssasssnnsastostanrasasaersenisasens 35

scratch files and routine OPUNIGciiiiimmiiiiniiiiniiiniiiii et e eneens 31

DELIGHT For Intermediates (3/1/85) 85

sdelay built-in routinecceeeeeeecciciniciancenes eteetastttsserersaattrnnessnaresaasanareane creeaveseasensen 30, 48
set_option command tossesssenessssentessniasessissenterase ceseessescssasees 13
SEEUD fHIE cucvrrereeicicisrennrirsnaneenssssancessssanssssssstssssensrassssssnsessssessesessssssssesssasssansnsssansassnne 86
sichan built-in routine ... ceeereseseesttssessrestssresssasassrseseanes 30, 48
simulator_flags define o 16
sochan built-in routineccicvicicininneeeeeacieerianeeaisccesntenineccnsesasne centressaseessessenaaranee 29
source program to a compilerc..cee.e. teeresressesssensesstsastnctasanrtesisssesessstrnsssnsseanaranne . 35
standard places for file locationscccceeeeseccccisacsanaas tnnsessressnstnsassanessesssnsnsesseenerssnee 27
starting DELIGHT cesssasesessersseansaseanaee cevestsntesasssansansennee 70
startup flle Cresesessessssesetnesessitssesstsseratererertaenntreetettetttttetensitenssesttrentesansisessssnarenens 70
SEOT2 COMMANG ..ievcicieaeecssussocassressencessssessessssssscessoncncsasssese eaerseseesssressesasssaensssnes coanese 54
<subject> help entry . ceovaceres 8
suspend command etaetssessesssssssssenssssassssessaranssnances reseseasussassasesssransas 48
symbol table of DELIGHTcccoeererrneresescrsccsessssscsansanncane teessssssssasesessennossanasansesease 52
syntax analyzer part of COMPILErcccciiiiicininiicicieiieniiisnnneeisicscnaes cresrasesasasssassesaree 35
temporary, scratch flles and routine OPURIGcccciereirnerirciinssiisisiississncsnanessanee 31
terminal command teeeesrstrensetsasetasasesttsesssassasssessssssssasanarne sessnsesssssanssnsssnansesnsses 87
terminal type teeressensrensatesetasttosesesstirnnsasssnsnssnrranasesananserente 19
<Tmatfunc> filecccoueeeeicrvnneennnee everesesesesintsasastteasteettasteteessessanannonranrassseeans 40
token ...cceceeeneenanee eesesseccessasasransanas 35
KTOPUTIGD fI1@ ...uueeereereecrrnrsaressnsaraessnasneasnassanssssmsstesssssssssessssssssssssesanasnsssnsnssnsssassns 32
trace output and debuggingcceeeecicsnereiinicisccsssrneasaasoeasanas cerressassesnanserane 17
trace commandccceeeennae Ceersesearanasienttetanestessanntsottesnisteastnssttssesanentaranesersenannasatese 45, 87, 73
trace_pushback_variableccccciiinmeniciencinnnneiinicssocssssnnessnsensceosesene crerssasessesanenanas 42
unique, temporary, scratch files and routme OPUNLG ccerrerncmmnmeencessasssearsessosnsosaranans 31
UNIX, references L0 .cicasmmssiosmcceisesiesasessensasscssseessassssnsessansanssesss 4,.28.34,.50,.51, 52, 58
user_name_is commandcceeee. oasesssesesenresesesasnnsssassstasessitatetearessesstenettsnsasanatsennass 70
variable declaration routines: eetestesesseenssseesectusesensasanensnasonses ceeveseasassanssansnanns 59
ABCGLO ..ucviiinrnrennrnieneiiiiieciienraeeteneeranenntassssssssssrannennsnsis cevsestssensnsnsnesasasessasesasesans 80
Q8O ceveerneeresrrerencosasssesrensanensenns ceereeseessesssissseesessestssasisninssasortaerenersnssiestaseannanasnatasses 59
decial cvaremescasasnsesses cesssaseesstessssssessareeserastessasasssnessarense crerssesssessssrseans 59
BBOIEL ..eeeecrccrerreeeereesnnsectrsstssmeesssessosssasssssssssssessssessasssosssssesesessanesssnsaraassansssssssasss 59
BBCIAS ...oeeeeeeeeenecsraereetieesisssssssnsnnescssssnsestmesssssssssassssssasssssssssssesssnasessansanasssssrsaassans 59
decr teresnasessreuserasesreresteserresreesttsstoNbeseatatNaatieststeasEssanssrerasessststenasseseasarnassates 59
decral evesesrrcntseseenererensrnererneettttsesasesstetasastieseeetatetesensrensasestiaeesaretenstostettseree 59
decral eveeeseteteeteeettttINeteINaNIIeIestesiseseseetttteseesestieterasttraestesaeasntanssssssssarttenne 59
ABOTAY aaeeeeeereveererreeeeeesessssessonstasesssssestssasessssssessonsssasssssssssssssrsnssssasnsssssssassnssasassssss 59
version-Specific flles:cccccrriiiiiniecnitecsessiaeisisneassssssstissasisssssssnseitaisesssiesessasaaes 62
KUIMGVNAMEDccoeeeeerrenscsiisnincsirnanssnsssnsssossasssensanse retesetesssessensnesistnrnanenessntananes 82
<memVNAME> eeveverenntasettestttataeerastetesessesaasssserees eetesatesseessestseseranrateeenatrinanes 62
KHSVNAMED ..ceeeeeeessaaarnsssssasssssassossosssssssnsassssseassssssssssasssassssssonasnsssssssssssssssssaossass 82
Version-specific Foutines:ccccceeeireicraressisennenesscseniossssnticsssssssansnsnssesessesssssssssssananes 61
dvdecs eeceseesatieetsesetsestettatisssssnsesttetsestessessesestnsssattetesestersesessseeseseatestnetes 58, 61
duezit eesnsserenassuanesaseteenansnasnsansieretedsetsseatisssnsessentinaranratnesssseseranaserastrasetererenas 81

88 DELIGHT For Intermediates (3/1/85)

dunameeeeeee eeseesensennsseessestensessssesastesansssnasssseareatenseres eranusssnnnssnsrssacesssonenses 61

TRATNSIO ..cvvrrnnenncererereennosenseascsssssas coseersensasetsessnvassurssansasessnnessenssunesss 81, 82, 72
VIEWPOTt ..cceeecreeecseennnonans conne essesessesennensessssansssasansaresessanee 20
<yport4> flleccccceeeciecniiinnnne ceoresaresrsrsssane OO . .- 20
wbini subroutinecccueeeees cereseracens eesevesseanasssans eessncansace essasnssinnnesassserssensee eeeavessases 63
wbinia subroutine everesseneresssransssastssessssaesasssnssarersesessasess ceeteetranasnrasssssnsannsenses 83
wbinr subroutine ceeestassasstsaseeseterasarssssasesesises sessessusesssnssassnseseranarsers 63
wbinra subroutine tesssneertansaseneneanseasasese creessensasee 83
whatis command erasusesnsnnansnsacenssnsasasersrenne cesrensnssannsenesasisnansssnuseees 43, 52
Whatis command resssevaneesnassannsesstsesssesernssasassessananennsntieesssns censessrassssmnsresestesane 52
WheTeiS COMUMANA ..cicecirecrscicstarensscisstonsssesessesisssrnrestasesssesssarssssessasesssscstsssssssassrssssses 52
woTk WOrk arraycoeeeeee cssassssssacreseas eresssersrasssssansennsnes cresseesesnsasmsassnsans 58
WRITEMODE defineccccnscersencenssseasoscnce craserenas cernsesssesssensans cesesennes ceessssrearressssansenee 30
Zyinv routine ..c..eeeceene cersresaescsnestenneasarsenans ceateesstesaresersssneassessones etecssancanansasassasnaossoany 48
-echo DELIGHT option .. . reveeenrestteresnsossessarasananaseenes 71
-fiz DELIGHT optioncccee cersereneseeansarnestttnattestesstsnessesesssessesnansesetrsets ceeessassrrsssssstenee 71, 72
~force DELIGHT optionc.cc.. . ceseeeasearsnrassanes eeeeaserenssssrasassersssnsasasene veees 86, 71
«[XXXXX DELIGHT option reressssastararesetessssennttsesassssenenserasertiterastararanastttaransesttes 71, 72
-makehelp DELIGHT optionc..c..... teeresssereeeesssssstttseseetsssssssessanasnsastesseassssrranssseranes 71
~makevhelp DELIGHT optionccccccueiiccccnincnanes eessevesesssessisastsatarssssnsaseteensnarerisgesess 71
~£7507C DELIGHT OPLiON .cccecieenerirserecsiniennessaniesuesanesessssseseniassssssssnannsssasssssnsasasssossenens 71
~Abort OnOverflow DLoptions option ceeerasransrrnanseneanan eseseeenerannsesrsssasessasansasararanes 50
~erase PIOt OPLION .civiiiisiimseersrensnissreisnnenenersississsissssesantsssssansassesssassnsessnsastessasssosess 20
~intzlabels and ~intylabels plot options reteeteesetucssstsrraessesataantsssannanessaresrens 20
~10gZ plot OPLION ..eeeeieiiicnmnicnniccnciisisinnssiensisinsicianstisnses ceesssasserencesasenernens ressrasenanes 22
~nubers List OPHION ccccicciiciccctensrnieniseeeissstssessssonnesssteossantessssnssesesssansesssstnessssassanes 46
~origin plot optionccccececicicncnceees tesereernaeneetntsssssssenatisnnasssnsasnasanaettteses cereesennsanes 22
~yerbose and ~azisfirst plot optionscccvecenen. ettesesssesstrestnssastarnassasereanesnaranases 22
~ysezpr piot optionccccecccuneeanee teevesmtesvessesnsseettsttestranesesstsraniarettesesressansarestensasasess 22
~zmin and ~zmaz plot options tesesesecsssesserurasasnsesnrnesssistsssartnasanretsossesssssertanes 20
~zorigin and ~yorigin plot options cesssarstennrsssescaraserenen revesnsssersesetsssrsssnsssaserane 22

ZZ helper Macrocccceeeersscssenoses eeeresseestrerteeettenttateissssaserasetenastttsttearessisatiestatarsesaans 68

	Copyright noticE 1985
	ERL-85-32

