

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT FOR INTERMEDIATES

by

B. Nye and D. Wang

Memorandum No. UCB/ERL M85/32

26 April 1985

DELIGHT FOR INTERMEDIATES

by

B. Nye and D. Wang

Memorandum No. UCB/ERL M85/32

26 April 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DELIGHT FOR INTERMEDIATES

by

B. Nye and D. Wang

Memoranduin No. UCB/ERL M85/32

26 April 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DELIGHT For Intermediates (3/1/85)

BUI Nye

Deborah Wang

Department of Electrical Engineering and Computer Science
University of California

Berkeley, Ca. 94720

Abstract

The purpose of this guide is to provide additional information for users
already familiar with the basic DELIGHT features covered in DELIGHT For
Beginners. DELIGHT, an interactive optimization-based computer-aided
design system designed to provide a friendly and flexible environment for
designers working in a multitude of disciplines, has evolved greatly since
the publication of the Beginners Guide. The most notable of sections
included here are one discussing the online help system, a thorough sur
vey of debugging techniques, and one documenting how new application-
specific DELIGHT versions are created and tested. Throughout this guide
references to additional information available using this online help sys
tem have also been included. Through judicious use of this guide,
DELIGHT users should be able to take advantage of this accrual of prag
matic and productive computer-aided design diversity.

2 DEIiGHT For Intermediates (3/1/85)

Table of Contents
4

1 Introduction

2 Online Help System
2.1 Introduction

2.2 Using the Help Commands jj
2.3 Where Binary Help Files are Found 8

3 More Define Enhancements
3.1 Review ofDefine Enhancements 9
3.2 No-Quote Convention
3.3 Define Options
3.4 Auto-Pushback Convention 15
3.5 Creating New Commands "With Defines 17

4 The New HotOptions 18
5 Additional I/O Features 22

5.1 Writing Interactive Programs With Answer_to_prompt 24
5.2 File Input andOutput 27

5.2.1 The Openhdtl File 27
5.2.2 File I/O With Built-in Functions 29
5.2.3 Opening Temporary Scratch Files With Opuniq 31
5.2.4 An Application of Opuniq 33

6 Language ExtensibilityUsing Macros 35
6.1 Tokens and Push-Back 35
6.2 Language Extensibility Using Macros 38

7 Debugging Rattle Programs 40
7.1 Debugging Compiler-Reported Errors 41

7.1.1 Tracing What is PushedBack 42
7.1.2 OtherDebugging Suggestions 43

7.2 Debugging Run-Time Errors 44
7.2.1 What Run-Time Errors Are 44
7.2.2 Review of Commands for DebuggingRun-Time Errors 45
7.2.3 Using Pdebug_ For Debugging 46
7.2.4 Debugging by Adding Print and Suspend Statements 48
7.2.5 Aborting On Numeric Overflow 50
7.2.8 DELIGHT Internal Aborts and the Hardreset Command 51

7.3 General Use of Whatis and Whereis 52
6 Creating New DEIiGHTVersions 54

8.1 Adding Built-in Routines 55
8.2 Declaring Variables forRattle Access 58
8.3 Version-Specific Routines Called by DELIGHT 60
8.4 Loading DELIGHT 64
8.5 Making a Memfile 84
8.6 Starting DELIGHT • • 69
8.7 Debugging Added Built-in Routines "73
8.8 General Guidelines for Creating a DELIGHT Version 74

DEUGHT For Intermediates (3/1/85) 3

Epilogue 77
Acknowledgements ; 77
References 78
Index 79

4 DEUGHT For Intermediates (3/1/85)

1 Introduction

The DELIGHT For Intermediates guide has two purposes. One is to point out more
advanced features for users who are already familiar with the basic ideas presented in
the DELIGHT ForBeginners guide [4]. The second is to present several important new
features that have come into being since the publication of the Beginners Guide. For a
complete discussion ofmanymore technical details than presented here, see the Ph.D.
Dissertation of W.T. Nye [5].

This guide makes liberal use of examples, presented in the form of terminal dialo
gue. In this dialogue user input is in boldface for clarity. Also, blank lines have been
occasionally inserted at various places in the terminal dialogue to separate groups of
statements, and will not appear on the terminal screen1.

As a reminder, a backslash ("\") at the end of a line indicates that the line is to be
continued onto the next—that the fictitious newtine character at the end of the line
has been "escaped" (had its meaning changed) so that it no longer terminates the line
containing it. The DEUGHT prompt for the continued line changes to "1\", "2\" etc. as
seen in the following examples:

1> print l.Z\,
1\ 34

1.234
1> •uspeud
2> print l.SPv
2\ 34
1.234

2> reset
1>

The plan of this guide is as follows. We begin with the usage, descriptions and
examples of the online help facility commands in section 2. Section 3 discusses
enhancements to Rattle defines. After a review of defines, it then proceeds to the vari
ous enhancements including, probably the most important, define options. Finally, the
last subsection illustrates the general idea of creating new commands using defines,
define options, and Rattle procedures. Section 4 shows the power of define options by
demonstrating all the nifty new options associated with the plot command. Additional
I/O features are covered in section 5. One, for example, is an easy way to write Rattle
procedures that interact with the user through question/answer dialogue. Another
topic addressed is how file input/output (I/O) is accomplished in DEUGHT. Just as the
Beginners Guide showed how defines are used for Rattle extensibility, section 6
presents extensibility using Rattle macros by first explaining the concepts of tokens
and the DEUGHT push-back mechanism. Debugging facilities for compile-time and
run-time bugs are introduced in section 7. Finally, section 8 considers the entire pro
cess of creating new application-specific DEUGHT versions. It explains how to add
built-in routines, declare variables for Rattle access, load/link the executable program,
make a new metafile, and start the new DEUGHT version.

1When -using DELIGHT on the Unix (a trademark of Bell Laboratories) operating system (andpossibly on
other systems), there is a command called halpvr which may be used to obtain the same on-line assistance
available in DELIGHT ^and with exactly the same command syntax. These commands will be explained in
section 2 of this guide; additional information is available in [6].

DEUGHT For Intermediates (3/1/65) 5

2 Online Help System

2.1 Introduction

This section introduces users to the help facility available inDEUGHT. Through vari
ous easy-to-use commands, quick on-line assistance is made available for DEUGHT
commands, features, topics, tutorials, etc.—basically, for whatever information has
been set up by system personnel or even by other users. Moreover, this on-line assis
tance is obtained quickly—even if there are many help entries available—since the
large binary help files read by the help commands are "hashed" for relatively rapid
table lookup.

The help commands fall into four categories: (l) the basic help command for
displaying all the standard parts (fields) of a help entry and the helpall command for
displaying all fields, (2) the helpsubject command for showing a brief description of all
help entries having to do with a specified subject, (3) the helpnewer command for
displaying commands newer than a specified date, i.e., according to when they were
created, and (4) several commands for displaying certain fields of a help entry quickly.
These commands are briefly summarized in the following table:

Online Help Commands

Command What is Displayed

help
helpall

All standard help entry fields.
Ml help entry fields.

helpsubject A brief description of all entries
having to do with a given subject.

helpnewer All commands or options newer
than a given month-year.

helpexamples
helpnext
helpoptions
helpusage

Just the EXAMPLES field.

Just the NEXT field.

Just the OPTIONS field.

Just the USAGE field.

The remainder of this section consists of two subsections: 2.2 gives the usage,
description and examples of help commands while 2.3 shows where the binary help files
reside that the help commands open and read.

2.2 Using the Help Commands

To get assistance on commands, features, topics, tutorials, etc. while inside
DEUGHT* type help, followed by the particular command or topic name of interest. For
example you can get information on the DEUGHT output^o command by typing help
output_to:

6 DEUGHT For Intermediates (3/1/85)

1> help ontpat-io
NAME

output-to - Hake all following DELIGJT output go to a file.
USAGE

output-lo FILENAME
OPTIONS

~verbo3e=YES YES prints message about creation/overwrite/append of file.
EXAMPLES

output^o diary
output-lo ~Jverbose diary

SEE ALSO
output-onto, output-end, echo-o-io, ?

1>

If you do not know what help entries (by name) are available, the help command is set
up so that typing help alone has the same effect as typing help help and shows how to
use online help. Don't worry about the OPTIONS field above if you don't understand
what they are; they will be explained in detail later in section 3. Suffice it to say that in
the above example, the "verbose option is shown followed by -YES, indicating that the
option has a default setting of YES and that thus, the messages are printed. How to
turn off this option for a particular use of the command is shown in the second example
above.

As just mentioned, one of the problems with an online help facility which provides
help by command or topic name is that users do not know what commands or topics
are available. For this reason, DEUGHT provides the helpsubject command for showing
a brief description of all help entries having to do with a given subject. For example,
try the following:

1> helpanbject draw
clip-jrector - Draw vector between 2 coordinates, clipping to viewport,
clip-draw - Draw vector to x,y coordinate, clipping to stay in viewport,
clip-move - Position beginning of a vector, ready for a clip-draw.
draw - Draw vector from previous position to specified x,y coord.

In the above, you have been presented with four commands that are related to the sub
ject of drawing graphics vectors. After seeing this output, one would probably pursue
additional information on one of the commands as in:

1> help draw
NAME

draw - Draw vector fran previous position to specified x,y coord.
USAGE

drawXY
EXAMPLES

draw .2 .5
draw xorig-rtfe yorig-ffly

SEE ALSO
move, clip-draw, <graphics>

1>

The listing <graphixss> under SEE ALSO above indicates a subject area instead of a
command, procedure, define, etc., and its help entry may still be obtained in the usual
way, Le., by typing help <graphics>.

DEUGHT For Intermediates (3/1/85) 7

The helpsubject command is set up so that from 1 to 6 subjects can be explored with
the same helpsubject command. The help entries listed are those having to do with
either the first subject or the second or the third, etc., as seen in the following:

*

1> helpsubject move
clip-move - Position beginning of a vector, ready for a clip-draw.
move - Position beginning of a vector, ready for a draw.
1> helpsubject move dranr
clipun>ve - Position beginning of a vector, ready for a clip-draw.
move - Position beginning of a vector, ready for a draw,
clip-yector - Draw vector between 2 coordinates, clipping to viewport,
clip-draw - Draw vector to x,y coordinate, clipping to stay in viewport,
draw - Draw vector franprevious position to specified x.y coord.
1>

To get more on how to use helpsubject, type help helpsubject. To see a list of all avail
able online help entries, type helpsubject *.

Frequently an occasional DEUGHT user wishes to know what new commands or
features have been recently added to the system. The helpnewer command allows you
to see a list of all new help entries, i.e., of all entries that have been added to the online
help system since a specified date. If DEUGHT system personnel have been consistent
in creating or updating help entries, these entries should represent everything new
that has been added to DEUGHT since the given date. The date is specified as a
numeric month-year pair. For example, you can type helpnewer 8-84 to see all help
entries that were added from August, 1984 to the present (assumed to be October,
1964 in the following example). Note that the following output to this command has
been shortened. In fact, as new commands or features are added to DEUGHT and their
corresponding help entries added to the online help system, the output actually seen
when working through this guide may be considerably larger!

1> helpnewer 8-84
SYSTEM, BASIC HELP (file "<HsBASlO"):
8-84:
printva - Print the values of from 1 to 6 expressions in coluxn format.
plot - (NEW OPTIONS)

~verbose=YES If YES, causes the message "— Compiling plot loop —-"
•»yorigin=0.0 Y world coordinate value that ""origin" causes the axes
~xorigin=0.0 X world coordinate value that """origin" causes the axes

output-end - (NEW OPTIONS)
~verbose=YES YES means print "Output is in FILENAME".

9-84:
LIKPROG - Solve a linear program.
dlfast— - Turn on or off "Fast Rattle" execution.
10-84:
run - (NEW OPTIONS)

~BUspend=YES If set to YES, execution interrupts after NUMBER
printv - (NEW OPTIONS)

JW-~HaxNsig=8 The maximum,number of significant figures printed,
*• *ffinNsig=0 The minimum number of significant figures printed,

1>

The above output shows that helpnewer presents the new commands and features by
month and indicates that in August, 1984, the printvs command was created, the plot
command got three new options, and the outputmend command got one new option.
Similarly, in September, 1984, the LINPROGcommand and dlfast feature were created.

B DEUGHT For Intermediates (3/1/65)

A common occurrence in working with a program containing many commands is the
need to review quickly the syntax of or see examples of how to use a command. Simi
larly, the options and their default settings may need to be reviewed even though a
user is familiar with how to use a command. Of course, this information can be
obtained using the help command but help usually produces too much output. For this
reason, there are several commands that just print out certain fields of a help entry.
The helpexamples, helpoptions, and helpusage commands display, respectively, the
EXAMPLES, OPTIONS, and USAGE fields of a help entry, as seen in the following:

1> helpexrnples vector
EXAMPLES

vector .2 .5 1 1
vector xorig yorig Wx (2#Wy - 0.5)

1> helpusage plot
USAGE

plot YEXPRl I YEXPR2 ...] vs XVAR frcm EXPR to EXPR [{by | EXPR]
(times) 1
joct j J

1> helpoptions output-lo
OPTIONS

~verbose=YES YES prints message about creation/overwrite/append of file.
1>

Another command that prints out just one field is helpnext, which prints the NEXT field
of a help entry. This field could contain suggestions for the next thing to do after issu
ing a command. This might be useful, for example, in a design procedure that con
tained many steps.

2.3 'Where Binary Help Files are Found

When one of the help commands is executed, it must open and read from a binary
help file, containing help entries, that has already been set up. The system tries to
open four different files, if they exist. Assuming the DEUGHT version is XXXXX (BASIC
for the basic DEUGHT system, MIMO for DEUGHT.MIMO, SPICE for DEUGHT.SPICE
etc. —see section 7) the binary help files are tried in the order shown:

1. HLXXXXX - Private, (local) version-specific help file
2. <HLXXXXX> - Shared, (local) version-specific help file
3. <HsXXXXX> - System, version-specific help file
4. <HsBASIC> - System, basic help file

The first file tried exists in the user's current directory and is set up according to the
rules in [6]. It allows the user to have available help assistance that he created himself
for version XXXXX of DEUGHT. The second file tried is for help assistance that is to be
shared by several users working with version XXXXX of DEUGHT. The third file tried is
for help entries that are to be shared by all users working with version XXXXX of
DEUGHT. finally, the fourth file tried contains help assistance that is basic to any
DEUGHT version. Since this file is usually set up by system personnel, it is named
KHsBASIO. For the time being, simply treat the brackets "<" and ">" as part of the
filename. They indicate that the files are located in another directory and section 5.2.1
of this guide is explicitly directed towards filenames of this sort and where the files are
found. Notice the first line after typing a helpnewer command:

DEUGHT For Intermediates (3/1/85) g

1> helpnewer 10-64
SYSTEM, BASIC HELP (file "^BASIO"):
10-64:

run - (NEW OPTIONS)
~suspend=YES If set to YES, execution interrupts after NCfflBER

printv - (NEW OPTIONS)
%¥ *4laxHsig=8 The naximm muter of significant figures printed,
**• "4IinNsig=0 The nrinimm nuxber of significant figures printed,

This line indicates that the following entries are from file <HsBASIO. The system
tried to open the other three files in the table above but they did not exist. If they had,
the line

SYSTEM, BASIC HELP (file "<HsSPICE>"):

for example, might have been seen with all of its "newer" entries by month, followed by
the output above.

Advanced users who wish to know more about help commands or wish to set up
their own binary help files (such as file HIXXXXX in the above table) should see the
document The Helper Facility [6], which describes a general purpose online help facil
ity called helper that is not particular to DEUGHT. However, all of the help commands
in helper also exist in DEUGHT.

3 More Define Enhancements

This section begins with a review of the basic defines and enhancements discussed
in DELIGHT For Beginners. This is followed by the more advanced no-quote and auto-
pushback conventions in sections 3.2 and 3.4, respectively. Section 3.3 introduces a
very important new feature of defines, define options. Section 3.5 then gives sugges
tions regarding the creation of new commands with defines and Rattle procedures, one
of the cornerstone features of DEUGHT.

3.1 Review of Define Enhancements

This section reviews the basic define features presented in the Beginners Guide.
Recall that the simplest usage of defines is to substitute one piece of text for another.
For example,

define (TTOPI,8.283185307)

allows you to easily use the value of 2rr in expressions. Next we extended defines to
have arguments such as x in

define (print—square z,print x**2).

Then, to allow a define to be more readable, special keywords (literal strings) were
allowed in between arguments such as over in the define

define (print-ratio z 'over' y,print z/y),

which, for example, could be invoked using prvnt_ratio 5 over 2.

The next important extension to defines was to allow optional arguments having

10 DEUGHT For Intermediates (3/1/85)

default values. These arguments come after a semicolon (";") and have their default
values following an equal sign such as xscale in the define

define (print-scaled z ; zscale=l ,print z/zscale).

Another extension was multiline defines, which do not have leading left parentheses and
end with the keyword end. For example,

define NewtonUpdate x
x = x - f(x)/derv(x)
print z
end

is a define whose definition consists of two lines of Rattle.

Finally, DELIGHT For Beginners demonstrated the double-quote convention in
which a define argument preceded by two consecutive single quotes means to quote the
substitution string for that argument before substituting it into the define definition.
For example,

define(list "none,list—(nose))

causes list myfile to be substituted by ttst^myfile'}, the name argument value myfile
has been quoted before being substituted where name occurs in the definition.

3.2 No-Quote Convention

There are several cases in which you may want to switch off the double-quote con
vention in using a define which was originally created with an argument preceded by
two quotes. Suppose you want to create a (rather silly) procedure to list a file then
edit the file using the DEUGHT built-in editor. You could use the following:

1> define (ListEdit '*none,IJBproe(none))
1> procedure LEproc (pnone)\
lj Hat pnone
I edit psoas
II }
1>

However, upon trying your ListEdit command (first, creating a dummy file as shown):

1> edit junk
Unable to open "junk"
:a

Inside file junk

"junk" 1 lines
1> ListEdit jusk
ERROR: list: Cannot open "pnone"
Unable to open "pnenoe"

1>

DEUGHT For Intermediates (3/1/65) 11

you discover that the system thinks the file you want to list and edit is file pname
instead of file junk] The problem is that the list and edit commands are taking your
argument pname literally; list and edit, like most other "commands", are actually
defines which, in this case have arguments that are preceded by two quotes, something
like define (List 'nametistjfnamej). "What we want the list and edit in the above pro
cedure LEproc to do is to take their arguments from variable pname instead of taking
pname literally. For this DEUGHT once again extends the list of define features with
the no-quote convention

The convention is that a define argument originally to be quoted using the double-
quote convention may turn off the double-quote convention for a single use of the
define —the argument's value may be substituted into the definition without surround
ing quotes—by preceding the actual argument with the character "<", meaning, take
the argument literal from the contents of the argument variable. Thus you could
redefine procedure LEproc and test ListEdit as follows:

1> procedure USproc (pnone) \
lj list <pnane
lj edit <nnane
1))
1> UstBdit junk
.................... Begin junk ----—--———--—-
Inside file junk
..............^...... g^ jixnk —...
"junk" 1 lines
:q
1>

This demonstrates that the no-quote convention applied to the two pname arguments
was successful.

3.3 Define Options

There are many types of commands for which it is quite natural to have choices that
are made optionally, Le., that have things which you may or may not wish to set or
choose. For example, one can imagine many possibilities with a plot
command—whether or not to erase the screen, whether to use logarithmic axes, what
values to force the x and y axes limits to be, etc. Another example is having the possi
bilities of turning on line numbers with the list command and turning on or off the rows
of dashes that begin and end the file listing. Using optional arguments (those following
the semicolon in a define declaration), you could define list as

define (list "nans ; 1inemnbers=NO dashes=YES , ...

with one required argument (the filename) and two optional arguments (the two
YES/NO choices). Then list could be used as any of the following ways:

list nyfile
list nyfile YES
list nyfile YES NO
list nyfile NO NO

Obviously, there are several objections that can be raised. One is that you will probably
forget the order of the two optional arguments and have to keep referring to online
help. Another is that this statement is not self-documenting —if one of the last three

12 DEUGHT For Intermediates (3/1 /B5)

lines above appears in a procedure, someone looking at the source code cannot easily
tell what the statement is supposed to do since the meaning of the YES/NO arguments
may be forgotten. Finally, to set the dashes argument, the linenumbers argument
must be set first, as in the last example above. In other words when using the define,
arguments must be specified in the same fixed order that they were specified when the
define was declared.

To allow greater flexibility in using a command with optional things that may be
specified, defines are hereby extended to allow options—not to be confused with
optional arguments. Option names are preceded by a tilde ("~") and must come
directly after the define name (before any arguments) in the define declaration.
Option names, just as for arguments, may appear anywhere in the definition and just
represent places where text gets substituted. Also, just as for optional arguments, the
default value of an option is placed after an equals sign ("=") following the option name.
Recall the define declaration define (prmt_scaled z ; xscale-1 print x/xscale) from
section 3.1. Try the following simple (though not very useful) redefinition and use of
print_scaled:

1> define (print-scaled ~xscale=l x, print x/xscale)
1> print-scaled 5
5.000

1> print—scaled -10«*3
•1.000e+3

Notice that in the declaration the one option ~xscale comes directly after the define
name print.scaled, before the one required argument x. Also notice that xscate
appears in the definition (after the comma) in any manner just as x and that when the
command is used, xscale in the definition gets replaced by its default value of 1.

By the very nature of options, the ability to set their values is essential. This is done
when using a define by following the define name by tilde, the option name, an equals
sign, and the option's value. This can be seen in the following continuation of the
above:

1> print-scaled ~xscale^2 5
2.500

1> print-scaled ~xscale=(-10) 5
-.5000
1>

By looking at the definition for print_scaled above, it is clear that the second example
above gets substituted by print 5/ (-10).

Let us try a more sophisticated example —one with more than one option:

DEUGHT ForIntermediates (3/1/85) 13

1> define printfancy ~»tars=3ES ~line=HD X
lj if (stars=3ES) printf •••••• •
1j printf 'value = %r/n* X
I if (line=9ES) printf ' /a*
II «©
lj end
1>

This multiline define is a print statement with options to place stars in front of or to
underline the printed output. By default, the stars are printed but the underline is
not. Recall from DELIGHT For Beginners that the go statement is needed to prevent
DELIGHT from awaiting a possible else clause to the last if-statement above. Below are
examples of the printfancy command:

1> printfancy 5
•«•«« value = 5.000
1> printfancy ~line=fES 5
••••• value = 5.000

1> printfancy ~stars=W0 5
value = 5.000
1> printfancy ~stars=W) ~linc=3TES 5
value = 5.000

1> printfancy ~line=7ES ~star3=ii0 5
value = 5.000

1>

The last two examples show that the options can be specified in any order.

In the printmscaLed define, the option xscale could take on any numeric value.
But in the printfancy define, the two options could take on YES or NO values. It turns
out that there are many cases where options take on YES or NO values. To simplify set
ting options to YES or NO when using a define the following conventions have been
adopted: (l) if the option name is NOT followed by an equal sign and value, its value
becomesYES; (2) if the tilde is followed by an exclamation mark ("!") before the option
name (and alsono equal sign), then the option value becomes NO. Thus, the last use of
the printfancy command above may be more easily written:

1> printfancy "'line ~! stars 5
value = 5.000

1>

This example shows how to switch on underlining just for a single use of a define.
You may, however, wish to always have underlines. This is equivalent to having the
default value for option ~line changed from NO to YES. With the set_gptzon command.
DEUGHT allows you to change at any time the default value of any option of any define.
It has syntax

set-option DEFINELNAHE MPTrON_NAME=NEW_yALUE

and can be used to change the default value for option '"line as follows:

14 DEIiGHT For Intermediates (3/1/85)

1> set-option printfancy ~line=3ES
1> printfancy 5
••••• value = 5.000

1> printfancy ~!stars 5
value = 5.000

1>

Even though the default value for option ~line is now YES you can still use printfancy
without underlines:

1> printfancy ~!line 5
••••• value = 5.000
1>

To show what happens if you misspell the option name, try the following:

1> printfancy ~! lines 5
ERROR: For define "printfancy", option "lines" does not exist.
ERROR: Illegal statement: "5"
1>

The ability to change the default values for options immediately bringswith it the
need to be able to display the current default values of define options. For this, the
display command, first introduced in section 10 of DELIGHT For Beginners, allows the
argument doptions (for define options) followed by a define name:

1> display doptions printfancy

1 define with options:

printfancy ~stars YES
"•line YES

1> set-option printfancy ~line=$D
1> display doptions printfancy

1 define with options:

printfancy ~stars YES
~line NO

1>

Shown are the define name, the option names and their default values.

Let's consider one final example—the practical requirement of getting slightly
more information from the help command (see section 2.2). We can see what options
are available as follows:

DEUGHT For Intermediates (3/1/85) 15

1> helpoptions help
OPTIONS

The following options are YES/NO flags, along with their default values,
of whether to print the indicated help entry field:

~NAME=YES HJSAGE=YES RESCRIPTION=YES ««QRE_DETAtL=NO
<*0PT10NS=YES ~EXAMPLES=YES ~SEE_ALSO=YES ««IGS=YES
~SOURCE_FILE=NO ~AUTB3R=N0 ~KEYWORDS=NO ~NEXT=YES

1>

The default values shown for the ~SOURCE_FILE and "AUTHOR options are both NO as
seen in the following:

1> help enter
NAME

enter - Enter a procedure for examining local variables, etc.
USAGE

enter [PROCNAHE]
EXAMPLES

enter algo
SEE ALSO

leave
1>

If you wanted to see these fields for the enter command you could type:

1> help ~SGEBCS_FILB "AUTHOR enter
NAME

enter - Enter a procedure for examining local variables, etc.
USAGE

enter [PROCNAHE]
EXAMPLES

enter algo
SEE ALSO

leave
SOURCE FILE

<enter>

AUTHOR
Bill Nye

1>

However, if you wanted to always see these fields for all uses of the help command, the
following would suffice:

set-option help ~5CURCEL_FILE=YES
set-option help ~AUTBDR=YES

3.4 Auto-Pushback Convention

The auto-pushback convention—not a terribly important feature—has to do with
defines which are never issued as commands but whose only purpose is to have options
associated with them so that the values of certain variables can be controlled by set
ting the default values of the options. This might be useful when you are developing a
Rattle program consisting of subprocesses or substeps such as a simulator that have
variables or parameters whose values you would like to have a user set by setting the
default values of options. The convention simply says that if, in the define declaration,

16 DELIGHT For Intermediates (3/1/65)

the define name is preceded by a tilde ("~") as in define("flags...), then any set_gptu>n
on one of the options of this define will automatically push back the define name. (See
section 6.1 if you don't understand what is meant by "push back".) Let's first see what
this means with a simple (though not very useful) example:

1> define (~shnple ~junlc=l .print -junk)
1> sinple
-1.000
1> set-option sinple ~junk=2
-2.000
1> sinple
-2.000
1>

Notice that after the set^gption command, the define name simple has been automati
cally pushed back with the new default value for option "junk, , causing print -2 to be
executed. As a check, when simple is typed,, the same result is obtained.

To control important variables using options, as mentioned at the beginning of this
section, you simply have a define definition contain assignments that use the options.
Suppose you want to control two simulator flags using options. The Following is a possi
bility:

1> define ~aimilator_flag3 ~flagl=0 ~f lag2=0
1> variable-flagl = f lagl
1> variable-ilag2 = f lag2
1> end
1> set-option shmlatar-ilags ~f lagl=8
1> display variables var*

2 variables:

variable-f lagl = 9.00000
variable-flag2 = 0.00000

1>

After typing the setjjption command, the define name simulator_fiags was pushed
back causing variable variablemfiag1 to be assigned the value 9.

One benefit of using options instead of simply allowing users of your program to set
variables directly is the ability to use the display doptions command to see the current
option values:

1> display dopti<ns shmlator-flaga

1 define with options:

sixxulator-ilags "flagl 9
~flag2 0

1>

This benefit is even more important when a second benefit of using options is also

DELIGHT For Intermediates (3/1 /B5) 17

considered. This is when the variables such as variable_fiag1 above are complicated
expressions of the option flags or when the option values are passed to another pro
cedure, as seen in the following hypothetical example:

define simulator-options *»41axlter=100 ~Algo=trapezoidal
simulator-apt ions—(Haxlter, quote Algo)
end

procedure simulator-options— (MaxIter, Algo-string) {
import Tfanax, Tduration, Afcnx
Tduration = Tbaax / Haxlter
"Vfanx = exp(-Tduration/70.5)
set-algo (Algo-string)

In the above, simulator parameters Tduration and Vmax are expressions of the user-
settable option "Maxlter, while user-settable option "Algo is passed to procedure
setjxlgo.

3.5 Creating New Commands With Defines

One of the cornerstones in how we build up interactive DELIGHT design systems is
the idea of using defines and all their extensions to create new commands. While this
idea was alluded to in the Beginners Guide, this section will firm up a few practical con
siderations on the best use of this technique.

The steps a DELIGHT user should follow to create his own commands with defines
are:

1. Decide on a command name.
2. Write a procedure to do what the command is supposed to do. A good

idea is to have the procedure name be the command name followed by an
underscore ("_!') as in command showalgo and procedure showalgo_.

3. Write the define statement so that the definition simply invokes the pro
cedure as in define (showalgo,showalgoJ()).

A good reason for making the procedure name similar in this way to the command
name is so that if an interrupt of some kind occurs while executing inside the pro
cedure, it will be easy to determine what command/statement caused the error from
trace output. This idea is demonstrated further below.

In the following, we repeat the printfancy command from section 3.3 by using the
above define/procedure paradigm instead of the multiline define used before, which
was:

define printfancy "*stars=YES ~line=NO X
if (stars=YES) printf •••••• '
printf 'value = %r/n' X
if (line=YES) printf ' /n'

end

However, to show the trace output that occurs during an interrupt of execution, we

18 DELIGHT For Intermediates (3/1/85)

print the reciprocal of the value given as argument.

1> procedure printfancy—(starsflag, lineflag, z) |
l\ if (starsflag=*ES) printf •••••• *
1 printf 'value = Xr/n' 1/x
1 if (lineflag=TfES) printf • AT
1))
1> define (printfancy ~atars=YES ~line=N) X,printfancy-j(stara,line,X))
1>

As before, this command could be used in any of the following ways, which yield exactly
the same results (except for the reciprocal) as before:

1> printfancy 5
••••• value = .2000
1> printfancy "line 5
••••• value = .2000

1> printfancy ~! stars 5
value = .2000
1> printfancy 5
••••• value = .2000
1> printfancy 0

RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s).

Interrupt...
1> trace
Interrupted IN procedure

printfancy— (Input from, the terminal)
1> reset

1>

The major benefit of creating commands in this way—using procedures instead of mul
tiline defines—is that the procedure body is Rattle compiled just once whereas the
definition of a multiline define must be recompiled every time you use the command.
As you might have noticed, the printfancy command here is much much faster than
the one set up in section 3.3.

4 The New Plot Options

Both as an example of how define options have been used and as valuable examples
in their own right, this section demonstrates the new options associated with the plot
command. Since the simple usage of plot was already demonstrated in the Beginners
Guide, let us get directly to the heart of the issue by examining the plot options using
helpoptions:

DEUGHT For Intermediates (3/1/85)

1> helpoptions plot
OPTIONS

*«rase=YES
"intxlabels=NO
"intylabels=ND
"logx=ND
"logy=NO
"axis=sYES
"axisfirst=NO
"smin=0.0

1>

"^nnnsO.O

«^nnx=0.0
"vsexpr=NO

"indent=4

*wigin=NO

"xorigin=*).0

*yorigin=0.0

"verbose=YES

If YES, erase screen before outputting plot.
If YES, use integers for the x-axis labels.
If YES, use integers for the y-axis labels.
If YES, use logarithmic x-axis.
If YES, use logarithmic y-axis.
If YES, DO draw an axis for the plot.
If YES-, output the axis before the plot curves.
If ~nmn and ~amx are not both zero, use then as the
x-axis limits instead of using theminimm and Tmximum
bounds on the XVAR sweep variable.
See "xmin.
If "^min and "jmax are not both zero, use then as the
y-axis limits instead of using the minimm and maximm
of all the y-expression values.
See "ymin.
If YES, all but the last y-expression are plotted versus
the last y-expression as in the ccnmand:

plot "vsexpr sin(t) cos(t) vs t frem 0 to TTOPI by .1
which produces a circle.
Nunber of small identifying triangles, squares, etc.,
used to identify different y-expression curves.
If YES, forces the x and y axis intersection to go through
world coordinate (xorigin.yorigin) where "xorigin and
~yorigin are options that have default value of zero.
Thus, "origin alone forces the axes to pass through (0,0).
By combining "versus and ""origin, polar plots any be
produced; see (try) the example below.
X world coordinate value that ""origin" causes the axes
to pass through. See "origin above.
Y world coordinate value that ""origin" causes the axes
to pass through. See "origin above.
If YES, causes the message "--- Compiling plot loop ---"
to be output right after the plot macro has pushed back
its large loop statement.

19

In a nutshell, the important options are ones for whether the screen is erased, for
integer axis labels, for logarithmic axes, for even whether the set of axes are drawn, for
forcing the axes limits, for plotting one expression versus another, and for forcing the
axes to pass through an arbitrary (x,y) coordinate. Of course, as with all define
options, these can be used in any combinations.

To simplify the entry of the expressions used in many of the plot examples below,
we now declare two functions, yv and xv, of a single parameter t. Later you will see
that they represent a parameterized curve in two-space. Function yir is a sine wave
with a growing amplitude while xv is a cosine wave with the same amplitude growth but
a slightly different period:

1> function yv(t)
lj return (t*«0.89 • sin(t))
1> function xv(t)
lj return (t**0.9S • cos(1.05*t))
1>

First of all, let's set the viewport for the entire screen and see what the two waveforms
look like. (Be sure to first set the terminal type using, e.g., terminal hp2648a):

20 DEUGHT For Intermediates (3/1/85)

1> viewport 0 0 11
1> plot yv(t) xv(t) va t from 0 to 12 by . 1
...... Compiling plot loop —----
1>

•

The graphical output from this command is shown at the top of figure 4.1 for the
HP2648a terminal. Before proceeding, there is a system file that contains four defines
for setting the four viewports that we shall repeatedly use:

1> list <vport4>
.................... Begin <vport4> —-—---—--
vport4 - Ccomands "vportl" through "vport4" for entering four viewports.

define (vportl,viewport 0 0 .5 .5)
define (vport2,viewport .5 0 1 .5)
define ivport3,viewport .5 .5 1 1)
define (vport4,viewport 0 .5 .5 1)
... . End <vport4>
1> use <vport4>
1>

These viewports are in the order lower left, lower right, upper right, and upper left, i.e.,
counterclockwise starting in the lower left quadrant. Now we are ready to begin the
demonstration.

1> vportl
1> plot yv(t) xv(t) vs t fromO to 12 by .1
...... Compiling plot loop —----
1>

To avoid having the screen erased by each of the following plot commands, we can turn
off the ~erase option on the plot command. (Alternatively, we could just type "'.erase
on every plot command.) We then proceed with demonstrating various plot options:

1> set-option plot "erasc=W0
1> vport2
1> plot "intxlabels yv(t) xr(t) vs t franO to 12 by .1
—-— Compiling plot loop ------
1> vportS
1> plot "intxlabels "intylabela yv(t) xv(t) vs t franO to 12 by .1
...... Compiling plot loop —-—-
1> vpart4
1> plot "xmin=2 ~xmx=20 yv(t) xv(t) vs t fran 0 to 12 by . 1
...... Compiling plot loop —
1>

These four plots are shown at the bottom of figure 4.1. To continue trying more
options, try the following:

2.*ii°i

1.8

DEUGHT For Intermediates (3/1/65)

lz yv(t)
21 xv(t)

21

n

/
/

/
X_i

/
/

a.a /

7/ \

t
\ /r.

-1.8 t • . t i i • i t . t t « ♦ « t ; • • . . • • • t • s i i i i* i.t i t. xl

e.a .48

?.0
i©' 2» <vm

4
1 .0

* 'Br t l i t t i i i i : i i t i .1 i i i i •• i i i i i t i i

.68 .88 1.8 1.2

20
2 i iwl n

;*:i

H2

8

-18

j ! < i : 3

•«*&

j
j

./*

e

/

/
t

J_I.11,

i

inn

! N /?
• . . • l • n l . t l • l i l . • . : . . .-. . . . • i

.28 .30 1.4 2.8 18 12

1: yv(t)

1.0

;:i

H2

It yv(t)

J.9:

/

!-/^--\
V z

K ,-' r- /

\ 1 1 I./fl.PL a.*:

\i V
* 1̂ -~^mi 11

'^y-

? ! f 8 —^ ! - .
tint hi: nil ill II- tit t nut: mi inn in 'n.ti.H•i.e

8.8

l_l l l i t i i i : t t i • t i t • t - . • t j f , xie1 -i.e&
.38 .68 .98 1.2

Figure 4.1. Output From Various Plot Commands.

^Vi —•r-

1 *
8 18 12

22 DEUGHT For Intermediates (3/1/85)

l>

1> vportl
1> plot "logx ~-anin=2 "xnax=12 jv(t) xv(t) vs t from0 to 12 by .1
...... Coxpiling plot loop
1> vport2
1> plot "vsexpr yv(t) xv(t) vs t from0 to 12 by .1
...... Coxpiling plot loop ------
1> vport3
1> plot "origin ~?acxpr yv(t) xv(t) vs t from0 to 12 by .1
...... Coxpiling plot loop -----
1> vport4
1> plot "intxlabels "intylabels "wigin "vsexpr yv(t) xv(t) \
1\ vs t franO to 12 by .1
...... Coxpiling plot loop ------
1>

In viewport 2 (from vpartg) we've just plotted function yv(t) versus function xv(t), over
independent parameter t. In viewport 3 we force the axes to pass through the origin
(coordinate 0,0) and in viewport 4 we add integer axis labels for neatness. These four
plots are shown at the top of figure 4.2.

The following plots are shown at the bottom of figure 4.2:

1> erase

1> vportl
1> plot ~xorigin=-5 "origin "vsexpr yv(t) xv(t) vs t from 0 to 12 by .1
...... Coxpiling plot loop —
1> vport2
1> plot ~xorigin=-5 "yorigin=-5 "origin "vsexpr yv(t) xv(t) \
1\ vs t from 0 to 12 by .1
...... Coxpiling plot loop
1> •porta
1> plot "!verbose "axisfirst sin(t) vs t franO to 12 by .1
1> Tport4
1> plot "zorigin=5 "origin yv(t) vs t from 0 to 12 by .1

Coxpiling plot loop
1>

In viewports 1 and 2, we specified the coordinate(s) through which the axes pass for the
"origin option. Viewport 3 demonstrates doing a plot in which the Cbmpiling plot loop
message is turned off and the axes are drawn first (by default, they are drawn after the
y-expression curves). Finally, viewport 4 shows that the "origin option can be used
without the "vsexpr option.

5 Additional I/O Features

This section introduces several I/O features that were not discussed in the
Beginners Guide. Section S.l demonstrates how users can write interactive programs
using procedure answer_£ojprompt. Section 5.2 addresses the subject of input and
output to and from files. In particular, section 5.2.1 is directed towards the pesky
openhdtl file and the <FILENAME> convention. In Section 5.2.2 we explain various
built-in functions for opening and outputting to files. Sections 5.2.3 and 5.2.4 introduce
and apply the special built-in function opuniq for opening unique temporary (scratch)
files.

DELIGHT For Intermediates (3/1/85) 23

yv(t)

, J -
4 .ao*19

I ...
lllllllllllllllllMIHifnilllMlllllllllMIIMIIH

-9 -5 » -1 * U
111 f11111111111 n 11111

.9eo %.-.sue *-.l
aiiiiiiiiiiiiiiiiiiiiniiiii

x)8

-ioir %-*

lx yvCr)
? axle ' 2t xv(r)

1.8

8.8

1.8 =

> § I
i i *•

i

t

1 MilNl;

I I • i
! I I Ml!
>.. i.. t n> i»i

! I ! I li

I !

xv(t)

8*:
be:

-1.0J

.388 ' .708 1.18

xv (t

,88*19
j yvtt)

r,i

m
.?*=-i

: *

:
-.48:

-1.8j

i '--.J

I I II t l n I • n i i n i i .: i t T t*r. • l
*••-• "-'" """"

xv it

xie1
1818 18 18' -.988 -.588 -.188 .388 .788 J

\ 4

i i 111111 ri 11 u 11 ij 1111111111 ii i h 11111111
8.8 .30* j£ .o'O .90* 1.2

± • .t

-l.«

,- f - -.
'MlH+rt -hi 11£ 111 •. fIiM11 MII111111 HI 1HI III1111 Ml I

x)0

1.0

.6-0

1 .£0

J
• .28-

.CO i

*in(tJ

3

-1 .OE • , . . • . Lt • i •' i . t • I I I I I LU L. xlO

8.8 .38 .68 .98 1.2

.88i<l»

xieJ

.988 *-.J#e *r.iow .30* » .V88 1.18

XV (t)

•*• t ' -
-.>©!; • *. ..' ai

1111111111111 li 111 m mirrn mi 111111111111111111i? v*t
-.988 -.PP8 *--^)08 .388 .788 V•10

...I •l.l

figure 4.2. More Output From Plot Commands.

24 DELIGHT For Intermediates (3/1 /B5)

5.1 "Writing Interactive Programs "With Answer-tCLprompt

In many situations, it is convenient to prompt the user for input to be entered
directly from the terminal. In the Beginners Guide, how to read input from the termi
nal using readf was demonstrated. For prompting the terminal with a message or
request such as Enter number of items:, there is command prompt which automati
cally flushes the output and insures that the next input comes from the terminal and
not from pushback (see section 6. l). Although a more powerful approach to prompting
the user is the subject of this section, let us first show how to use prompt and readf for
this purpose:

1> procedure testproxpt f
1] prompt 'Enter any matter:
1 readf * Xr/n* x
1 j nrintf 'ttnfeer read = Xr/n' x
U I
1> testproxpt()
Enter any mrriber: 5.3
Nunber read = 5.300
1>

Procedure answer^tojprompt is a much more powerful way of prompting the user
for input and collecting one or more answers. The procedure is contained in a file
called <anspromp> which must be included before using the procedure since it is not
automatically built into DELIGHT. Let's illustrate how one may use answerJo_prompt
with a simple example:

1> use <anspranp>
1> array naneOIAXTOffilZE)
1> answer-to_proxpt('Enter name: \ ABB. ABB, GBLXUU&, naxe)
Enter name: 687
(ILLEGAL ANSWER) Enter naxe: •♦

(ILLEGAL ANSWER) Enter nans: R2D2
1> printf 'None is Xs/n' naxe
Naxe is R2D2
1>

The prompt in quotes is a string that may, in fact, contain up to two printf-like "%" field
descriptors that are associated with the next two procedure arguments. In the above,
these arguments are passed as ARB to indicate that they are arbitrary, Le., just place
holders that are not used since there are no "%" descriptors in the prompt string.
GET^fAME is the mode argument (of several possible modes) that requests
answer_to_prompt to accept as answer only a name token (see section 6.1). Le.. only a
sequence of letters or digits beginning with a letter; as shown above, the prompt is
repeated until a valid name is entered. The valid name is returned in the array name,
as shown by the printf statement above.

There are many other modes besides GET_tfAME. For example, answer^o^prompt
can return a single letter answer by using mode GET_LETTER as shown below:

DEUGHT For Intermediates (3/1/65) 25

1> array letter(2)
1> ansver-louproxpt('Sex (female. EMTeonle): ', ABB, ABB,
1] GELLBTTER, letter)
Sex (M=raale, F=femle): 2
(ILLEGAL ANSWER) Sex (JNmle, F=fenale): H
1> printf 'Sex is Xs/n' letter
Sex is M
1>

The GET_J*ETTER mode allows you to input only the letters a through z or A through Z.
For mode GETmJJSTTER, the function value returned by answerJ;o_prompt also con
tains the single character of the answer:

1> eletter = aasser-tQ-proxpt(*Sex (It=zmle, F=foxnle): *,
li ABB, ABB, GEILLETTER, letter)
Sex (H=nale, F=fmBle): F
1> printf 'Sex is Xc/n' eletter
Sex is F
1>

In fact, all of the various modes return something as the function value and some char
acter string in the last procedure argument (letter above). What is returned in each of
these is shown in the table at the end of this section.

To see how to use "%" fields in the prompt string and their associated arguments,
try the following, which fills a two-by-two array:

1> array mnber_str(HAXTCKSIZE)
1> array A(2,2)
1> for i = 1 to 2

1 j for j = 1 to 2 i
lj value = ensser-la-proxpt(* Eater A(Zi,Xi): *, i, j,
1 GET-AUGER, mxnber-str)
lj A(i, j) = value
l! I
Enter Afl.l): 1.1
Enter All,2): 1.2
Enter A(2,l): 2.1
Enter A(2,2): 2.2
1> printT A
Hatrix A(2,2):

1.1 1.2
2.1 2.2

1>

In this section we have covered the three modes GETJIAME, GETJJ5TTER and
GETJ1UMBER. All mode arguments available for answerjLojprompt are listed in the
following table:

28 DELIGHT For Intermediates (3/1/85)

Procedure answer to prompt Bodes

Mode Allowable User Answer Function Value Returns Last Arg Returns

GETLDIGIT Any digit from 0 to 9

Any letter a-z or A-Z

The character digit

The character letter

String consisting of
just the character
digit

String consisting of
just the character
letter

GET LETTER

GET-LCLETTER Any letter a-z or A-Z The character letter,
after converting it to
lower case

String consisting of
just the lower case
character letter

GET-NAME Any sequence of
letters or digits be
ginning with a letter

Length of name String containing
the name

GET-NUMBER Any real or integer
number

The numeric value
the number

of String containing
the number

GET-NUMBERS Any sequence of real
or integer numbers
up to the first non-
number token

The number
numbers read

of Array containing
the numbers (not a
string)

GETLSTRING Absolutely anything
up to the first blank
or to the end of the

line

Length of string String containing
the answer string

GETLEXPRESSION Any Rattle expression
(ending at the first
blank or tab following
balanced parenthesis)

Length of expression
string returned in the
last argument

String containing
the expression

GET-ANYTOKEN Absolutely any input
token including NEW-
LINE

Length of token string
returned in the last ar
gument

String containing
the token

There is one final feature of procedure answer_£o_prompt: if a colon (":") alone is
given as an answer, Rattle execution is immediately suspended, just as if a hard inter
rupt had been generated. Typing resume gets you executing inside answerJtomprompt
again, which first reprompts you with the prompt string argument:

1> procedure testproxpt {
u
1
1

1

lj

import umber.str
•aloe = answer—touproxpt ('Eater any muter:

ABB, ABB, GETJftlEER, nuxeer_str)
printf 'lfaflber read = Xc/n' value

1> testproxpt()
Enter any mrrfcer: :
»» Type "resum" to continue ««
2> print sin(5.3)
-.8323

DEUGHT For Intermediates (3/1/85) 27

2>

Enter any mrrier: 5.3
Nirdber read = 5.300
1>

5.2 Pile Input and Output

The four subsections in this section show how to use available built-in functions for
doing file I/O (input/output).

5.2.1 The Openhdtl File

A very useful feature in any system which deals with files is to be able to open and
read files which are not in your current directory1 and which may not even be your
own! The convention adopted in DELIGHT is that any filename surrounded by triangular
brackets ("<" and ">") such as <graphics> does not exist in the current directory but
instead, exists in one of several "standard places" in the operating system file struc
ture, Le., it exists in another directory. The standard places are specified in the file
openhdtl, the subject of this subsection.

The purpose of the openhdtl file (standing for "open-head-tail"), is to locate files
whose names are surrounded by triangular brackets. If file openhdtl exists in the
directory in which DEUGHT is being run, it is used. Otherwise, a standard openhdtl file
is used.

This file consists of pairs of lines containing head and tail strings which are
appended before and after filenames surrounded by the brackets. Each head/tail pair
corresponds to one standard place in which to look for the file. The first place tried is
using the filename obtained by appending the first openhdtl head-string before the
specified file name and the first openhdtl tail-string after. If the file does not exist in
that location, Le., this appended filename can not be opened, then the second
head/tail pair is tried, and so on. Note that if either the head or tail string is to be
empty, then a blank line must be left in file openhdtl. All the pairs of lines in file
openhdtl are read once—when the first filename surrounded by triangular brackets is
encountered internally by DELIGHT file-opening routine openp, discussed in the next
section.

The following example of file openhdtl is for UNIX, in which files in different direc
tories can be accessed by preceding the filename with the directory name, Le., the tail
strings are all null. Identifying comments are shown in parenthesis and are not part of
the file:

/usr/optcad/nye/include/ (/wad /)
(tail 1)

Aisr/local/lib/ (head 2)
(tail 2)

/sharel/helper-files/ (Twod 3)
(tail 3)

/share2/helper_files/ (/wad 4)
(tail 4)

Based on what has been said above, to open, say, file <mouse>, DELIGHT would try to

1By directorywe mean the group of files withwhich you can work with and have control over directly by
specifying their unappended filenames.

26 DEUGHTFor Intermediates (3/1/85)

open the following files (and in the order shown) until one was found:

/usr /optcad/nye /i nc lude Arouse
/usr/local/lib/mouse
/sharel/helper_files/raouse
/share2/helper_ii les/nxrase

On some computer systems, however, the head strings might be null with the
directory specified in the tail string as in filename:ofoectoryname. In this case file
openhdtl might appear:

(/wad i)
:sharel (tail 1)

(/wad 1)
;ahaxe2 [tail 2)

(/wad 3)
:local:lib {tail 3)

and to open file <mouse>, DELIGHT would try to open the files

mouse:share1
mouse:share2
mouse:local:lib

Usually, the first couple of pairs in file openhdtl are the standard places for the
DELIGHT library files. After these pairs, users may add their own head/tail pairs in
order to share files from common standard places. Currently, a maximum of 20 pairs
are allowed in file openhdtl.

</PATTERN/rTLENAME> Convention, What happens if the same file exists in direc
tories from two or more different openhdtl head/tail pairs, for example, if, in the above
UNIX example, both of the files

/usr/opt cad/nye /i nc lude /mouse
/usr/local/lio/touse

exist, and you want to get at the second one using only the filename mouse and a little
extra hint to use the second head/tail pair? To do this there is a simple extension to
the <FILENAME> convention that allows you to choose which head/tail pair will be
used. It is called the </PATTERN'/FILENAME> convention since a pattern is specified
inside the triangular brackets before the filename such as pattern lib in
<Aib/mouse>. The pattern is first searched for on the head/tail pairs lines. If the
pattern is found in a head or tail string, that pair is used to try to open the file, i.e.,
that pair is appended to the filename as shown above.

Note that it is important not to introduce any machine-dependencies by use of this
feature. For example, suppose on UNIX that your openhdtl file contained the pair

/usr /opt cad/nye /inc lude /
(blank Una)

Rattle procedures that opened, say, file </include /graphics>, might not run on
another computer since the pattern include might not exist in any of the head/tail
pairs in the other computer's openhdtl file. For this reason, there is a way of placing
characters on a head or tail line that are not actually part of the head or tail string,
but whose purpose is simply to match the specified pattern specified in
</PATTERN/FILENAME>. These characters are placed after a backslash ("\"), which
in turn is placed afi&r the head or tail string on the same line as in

DELIGHT For Intermediates (3/1/B5) 29

/usr/optcad/nye/include Ainc lude
(blank Una)

Then, if on another computer the files in this directory get placed into a directory with
tail string :local:lib, the openhdtl lines would have to be

(blank Una)
: local: 1 ibMnclude

so that the string include in the filename </include/grophics> would be found on this
openhdtl line. Note that file <graphics> would still be found in either file
Susr/optcad/nye/include/graphics or graphics.local.iib for these hypothetical exam
ples.

Modifying The Openhdtl File. To modify the openhdtl file, assuming you don't
already have one among your files in the directory in which you are running DELIGHT,
you could simply use the DELIGHT built-in editor by typing edit <openhdtl>, make any
changes desired, then write out file openhdtl in your own directory using w openhdtl.
Since DELIGHT only reads this file once—and it has already been read when DELIGHT
was started—there needs to be a command to tell DELIGHT that you want it to reread
file openhdtl.

Reset_ppenhdtl Command. The command "resetjspenhdtl" resets an internal
DELIGHT flag that is set after the openhdtl file has been read. Thus, if you modify the
openhdtl file, you must then type reset_gpenhdtl so that the next attempt to open a file
with filename surrounded by triangular brackets (such as <graphics>) causes the
openhdtl file to be reread.

5.2.2 File I/O With Built-in Functions

In Rattle programs, input and output (I/O) may be performed to and from files as
well as to and from the terminaL To perform I/O with a file, the so-called present input
or present output"—where DELIGHT is currently reading input from or writing output
to—must be switched to a logical unit number which has been opened to the file. Usu
ally this logical unit number is returned as function value of built-in function openp and
is then passed as an argument to built-in routine sochan ("set-output-channel") caus
ing all subsequent output to go into the file opened by openp. After outputting to the
file, the present output is restored to what is was previously—in the case of the exam-
pie below, to the terminal—by a call to built-in routine rochan ("reset-output-
channel"). If no further I/O to the file is required, the file can be "closed" by passing
its logical unit number to built-in routine cloze. All of this is demonstrated in the fol
lowing example:

1> unit_mm = openp("nyf ile* .CBEATEFILE)
1> sochan (unit-mm)
1> printf 'This should be in file./n'
1> rochanO
1> close(unit_nun)
1> list nyfile
..............—.— Begin myfile —-
This should be in file.
.—........—...—.. End myfile
1>

When the file myfile was opened above, it was opened with mode CREATEFIjJS, which

30 DELIGHT For Intermediates (3/1 /B5)

means to create the file if it does not exist. If it does exist, it is simply opened, ready
to be written over. Alternatively, if the file exists or you do not want to create the file if
it does not, the mode can be passed as WRITEMODE, which opens the file ready to be
appended to. With this mode, if the file does not exist, ERROR (defined to be -i) is
returned as the function value by openp. Try the following:

1> unit-sums openpCnyfile* .1BIT3BDG)
1> sochan (unit-nun)
1> printf 'Should be another line./n*
1> rochan()
1> cloze(unit-nun)
1> liatt nyfile
.............. Begin myfile — --
This should be in file.
Should be another line.
—. Endnyfile
1>
1> unit-mm = openp("Dc*3NbtRriat\lR[T3EDe)
1> print unit mm
-1.000
1>

Finally, if you just want to read from an existing file, READMODE can be passed to
openp. As before, ERROR is returned as the function value by openp if the file does not
exist. For reading, built-in routines sichan ("set-input-channei") and richan ("reset-
input-channel") are for dealing with the present input analogous to soc/ion/roc/ion for
present output. So we can read a string from the first line of file myfile using readf
(see DELIGHT For Beginners section 7) as follows:

1> array string(HAXTCKSIZE)
1> mut-nnn= openpCnyfile',HEAOEDB)
1> f
1> sichan (unit-nun)
1> readf 'Xs/n' string
1> richanO
1> !
1> printf 'String = •W/n* string
String = "This"
1>

Avery important word of caution: if the three indented statements above had not been
in curly brackets, the sichan(unitmnum) statement would have immediately switched
the present input to file myfile causing DELIGHT to start reading commands from that
file up to the EOF (end-of-file), in which case DELIGHT would get hung. Since a hard
interrupt somehow ends the state of being hung, you can try this. First, however you
must rewind the file so that reading will begin at its beginning:

DEUGHT For Intermediates (3/1/65) 31

1> rewind unit ram
1> sichan (unit-nun)
ERROR on line 1: Ccnmand not found: "This"
ERROR on line 2: Contend not found: "Should"

(Hire, DELIGHT is hung; you)
(rwst press tha special)
(interrupt key twice)

Interrupt...
1>

Finally, it a good idea to close all files that are opened as soon as you don't need to use
them any longer:

1> close (unit-nun)
1>

5.2.3 Opening Temporary Scratch Files With Opuniq

Besides the obvious need to open files using openp, there is quite often a need to
create a temporary file, only to exist a short while, that is later eliminated. A Rattle
programmer developing commands and procedures for other DELIGHT users could
easily just create a file with name, say, temp in the user's directory. But this raises
two serious questions. First, how does the procedure developer know that he is not
using the name of and thus overwriting an existing file in the user's directory? Second,
what names should be used if several scratch files are needed simultaneously? Clearly,
using filenames like tempi, temp2, etc., only increases the chance of coinciding with an
existing user filename.

A rather elegant approach is to have DELIGHT generate the scratch file in another
directory—'thus avoiding filename conflicts-—and also guarantee that the filename is
unique, thereby allowing several scratch files to be open at the same time. This service
is provided in DELIGHT by built-in function opuniq, which is used according to the syn
tax:

unit-nun = opuniq (NAHE-ERAQENT, ACTUAL-NAMEJBED, HDDE)

This function, just like openp of the previous section, returns as function value a logical
unit number that can be passed to sochan to direct subsequent output to this file. It
opens a unique, temporary file having a filename that uses, if possible, the characters
in string NAMEJTRAGMENT, returning the actual filename used in string
ACTUAL_NAME_USED. The open mode is specified in argument MODE and is passed
directly to the last argument of function openp.

To demonstrate how you may use opuniq, an example template already exists in a
file called <Topuniq> in a standard directory of the DELIGHT system1. All you need to
do is edit the file and modify it. First, lets list the file:

1 If you have a openhdtl file (see section 5.2.1), it must contain an entry that can find file <Topunig>. If
the following List command returns with ERROR: list: Cannot open "<Topuniq>", see system personnel to up
date your openhdtl file or simple rename it to another name besides openhdtl.

32 DELIGHT For Intermediates (3/1 /65)

1> list 'Tiunbera <Topuniq>
— Begin <Topuniq>
1 ## This example creates a temporary file, prints some canmnds into
2 ## it, puts a final ccnmand into it to exit and remove itself, then
3 ## pushes hack an include statement for the file.
4

5 array actual-name(40)
8 unit-nuns opuniq ('tenpfile', actual-name, CREATEFILE)
7 if (unit-nun = ERROR) j
8 printf 'ERROR: ccnmand: Cannot open or create temporary file *
9 printf "•%£"./n' actual-name
10 suspend
11 i
12 sochan (unit-nun) ## Set present output channel.
13 # •
14 # . (printf ...) ## Print cannsnds into the file.
15 # .
16 printf 'exit ; filp^m(',%p',)/n, actualjums
17 rochan () ## Reset present output channel.
18 pbf 'include %p/n' actualjiame ## Push back the include statement.

— End <Topuniq>
1>

The pbf statement above (discussed in detail in section 6.1) pushes back an include
statement for the actual filename opened by opuniq, causing that statement to be the
next input read by DELIGHT. The %p is for a packed string and follows the same con
ventions as the "%" format control fields discussed in the Beginners Guide tor printf.

In order to make this example really useful, we need to replace the three lines (13th
through 15th) with some real commands:

1> edit <Topuniq>
"<Topuniq>" 18 lines
:13,lSp
| .
. (printf ...) ## Print comnands into the file.
•
:13.15c
3 lines changed

printf 'define (aa,5)/n*
printf 'print aa/n'

:w junk
"junk" 19 lines

:q . ,1> use junk
5.000

1>

The 5.000 seen after use junk is due to writing print aa into the temporary file, and
then including the file (caused by the pbf line above). Other applications of opuniq
include the creation of temporary files for use in including several other files. This will
be taken up further in the next section.

DEUGHT For Intermediates (3/1/85) 33

5.2.4 An Application of Opuniq

This section presents a very useful application of function opuniq. Atemporary file
is created by opuniq and include statements are written into it so that including the
temporary file includes several arbitrary files. A Rattle procedure to achieve this is
already set up for you in file <incfiles>. List the file as follows, and we shall explain it
step by step. See the footnote in the previous section if the list command produces an
error message:

1> list <incfiles>
.................... Begin <incfiles> ------------------
incfiles - Implementation of "include—files" ccnmand.

define include-files "tl=" ; "f2=" "f3=" •' f4=' * "15=" "f8="
include-files_(f1,f2,f3,f4.f5,f8)
end

Help file input.
%tf include-files Include from 1 to 8 files with a single ccnmand.
%LI include-files FILEl [FILE2 FILE3 ... PILES]
%E include-files <plot> <plot3d> myplot
55SA include, use, include-ancLnrint
5ESF <incfiles>
XABill Nye
%K include file io

procedure include-files— (fl, f2, f3, f4, f5, f6) \
array actual-name (40) ^^
unit-nun = opuniq ('incfiles', actual-name, CREATEFILE)
if (unit-nun = ERROR) |

printf 'ERROR: include-files: Cannot create file "5$>"./n' actual-nans
suspend
I

sochan (unit-nun)
if (jeqspptfl,"))
if (!eqspp(f2,"))
if f!eqsppff3,"))
if (!eqspp(f4,''))
if (!eqspp(f5,*'))
if (!eqspp(f6,''))

rochan ()
cloze (unit-nan)
pbf ' include %p/n'

array actual-name(0)

1>

printf 'include %p/n' f1
printf 'include Xp/n" f2
printf 'include %p/n' f3
printf 'include Xp/n* f4
printf 'include %p/n* f5
printf 'include %p/n' f6

printf''exit ; filprm("%p")/n' actual-name

actual-name

End <incfiles>

Set present output channel.
Print "include" lines
into the temporary file,
if the corresponding
filename argument is given.

Print tricky line to remove
| the temporary file.
Reset present output.
Close the file.
Push back the include state-
ment for the temporary file,
Zero out the local array.

The define statement creates a new command called include_files which has the six
arguments fl through f6 that represent the one to six files to be included with one
include_files command. Following the defines statement are lines starting with %which
are the raw input to the DELIGHT online help system. See [6] for how such help entry
lines are set up. Procedure include_files_—which demonstrates the convention
explained in section 3.5 of making the procedure name the command name plus an
underscore—executes when the include-files command is issued. The body of the pro
cedure is almost identical to the example of the previous section except for the printf
statements that write the include statements into the temporary file. To show thdt

34 DEUGHT For Intermediates (3/1 /65)

this program can be used to include several files with just one command, we create
three dummy files and use the command as follow:

1> edit junkl
Unable to open "junkl"
:a

printf 'Inside junkl/h'

:w

"junkl" 1 lines
:e junk2
Unable to open "junk2"
:a

printf 'Inside junk2/n*

:w

"junk2" 1 lines
:e junlc3
Unable to open "junk3"
:a

printf 'Inside junkS/h'

"junk3" 1 lines
1> list juokS
.. — Begin junk3
printf 'Inside junk3/n*
——— End junk3 --------
1> use <inofiles>
1> include—files junkl junk2 junkS
Inside junkl
Inside junk2
Inside junk3
1>

As can be seen, the three dummy files have been included with just one include_files
command. You can turn on the echoing of DELIGHT input lines, if desired, to help you
debug a procedure that uses a temporary file:

1> echo
1> Sine
» line

include-files junkl junk2 junk3
» include junkl
» printf 'Inside junkl/n'
Inside junkl
» include junk2
» printf 'Inside junk2/n*
Inside junk2
» include junk3
» printf 'Inside junk3/n'
Inside junk3
» exit ; filprm("/tmp/incfilesA29305")
1> noeeho
» noeeho
1>

The scratch filename shown as argument to built-in procedure filprm (for removing
files) is from running this example and creating the temporary file on the Vxy system.
(Even if you are running on UN'DC, However, the trailing digits in the scratch filename are

DELIGHTFor Intermediates (3/1/85) 35

DEUGHTsprocess id andwill surely be different from those above.)

6 Language Extensibility Using Macros
DEUGHT has extensibility needs that cannot be handled by the simple define substi

tution mechanisms discussed in section 3 and in the Beginners Guide. These have to do
withmaking conditional substitutions, that is, substitutions that are based on the argu
ments that are used with the define. For example, there is no way to make a define
called MatrixFunc which allows the statement MatrixFunc A=inv(B) to substitute the
procedure call Inverse(AB) but the statement MatrixFunc A-adj(B) to substitute
Adjugate(AB). The definition substituted when a define is encountered in input source
is fixed in structure; only arbitrary argument values can be substituted into the
appropriate places in the definition. Section 6.1 introduces the concepts of tokens and
the push-back mechanism which are important in solving the above substitution prob
lem using Rattle macros, presented in section 6.2

6.1 Tokens and Push-Back

Before we undertake one of the most important features of DEUGHT, namely, mac
ros, it is essential that readers have some understanding of the Rattle compiler, the
push-backmechanism, and how they relate to a Rattle source program. In this section,
we shall discuss these basic concepts. Although all readers are encouraged to read it,
those familiar with compilers may wish to proceed directly to section 6.2.

A compiler takes as input a source program and produces as output an equivalent
sequence of instructions [l]. This process is so complex that it is not reasonable,
either from a logical point of view or from an implementation point of view, to consider
the compilation process as occurring in one single step. For this reason, it is cus
tomary to partition the compilation process into a series of subprocesses called
phases, as shown in figure 6.1. The first phase, called the lexical analyzer or scanner,
separates characters of the source language into groups that logically belong together;
these groups are called tokens. Thus each token represents a sequence of characters
that can be treated as a single logical entity. The usual tokens are keywords, such as
while or if, identifiers, such as X, help, or vector, operator symbols such as <= or +,
and punctuation symbols such as parentheses or commas. The output of the lexical
analyzer is a stream of tokens, which is passed to the next phase, the syntax analyzer,
or parser.

As a simple example, let's consider the define define(PI, 3.1416). This define makes
PI get substituted by 3.1416 when a command such as print PI is issued. To achieve
this, the Rattle compiler must have an internal mechanism for substituting PI with
3.1416. The mechanism for allowing the Rattle compiler to "receive" input (Le. 3.1416
in this case) which was not actually typed in by the user nor in a file being included is
called the push-back mechanism.

We begin our explanation or the push-back mechanism by introducing procedure
gtoken and commandpbf. Recall that the lexical analysis phase of a compiler reads
the source program one character at a time, carving the source program into a
sequence of logical units called tokens. The built-in routine gtoken (for "get-token") is
one way that this can occur; when called, it returns one token read from the input (or
from any characters presently pushed back—see the next paragraph). If the token is
a character string, it is returned in the first argument of gtoken; if the token is a
number, gtoken's second argument contains the numeric value. The syntax of a call to

36

Table
Managonent

DEUGHT For Intermediates (3/1/85)

Source Progran
I

V

Lexical
Analysis

Syntax
Analysis

Intermediate
Code

Generation

I
V

Code

Optimization

Code

Generation

V

Object Code

figure 6.1. Compilation Phases.

Error
Handling

DEUGHT For Intermediates (3/1/85) 37

gtoken is thus

gtoken (TokenString.Value)

To try a simple example of how gtoken works, try the following:

1> array nnme_str(IttXT0K3IZE), mnfcer-strflttXrOtSIZE)
1> i
1{ prompt 'Enter name and nutnber:
lj gtoken (nane-str, dunny)
lj gtoken (nunber_str, value)

Enter nans and nuhber: hello 234
1> printf 'notnc="JCs", nanber="%3'', Talue=%r/n' name-str mxnber-str ralue
nane^'hello", nunber="234", value= 2.340e+2
1>

This shows that the first argument returns the characters of the input token even if it
is a number.

Characters can be pushed back onto the input so that they are the next to be read
by DEUGHT. This read can either be internal to DEUGHT in its reading of commands
from the terminal, or by Rattle execution of any means of reading input such as gto
ken, readf, etc. (all DEUGHT input follows the same push-back mechanism). The push
back is performed using the pbf statement, having syntax

pbf 'CONTROL-STRING' [ARGl ARK ... ARG6]

"When a pbf statement is executed, it pushes back onto the input a formated control
string with optional 0 to 6 arguments with exactly the same control string meaning as
for printf. Let's use pbf to push back a Rattle statement which is then immediately
read by DEUGHT and executed:

1> pbf 'print 1/n'
1.000

1> k = 5
1> pbf 'print Xi/n' k
5.000

1>

To understand conceptually how pushback works, consider the following table in
which the left column contains Rattle code executed, the middle column contains a
comment concerning the effects of the execution, and the right column shows charac
ters remaining to be read by the Rattle lexical analyzer, that were either typed in by
the user or previously pushed back. Here, as for the printf statement, /n indicates a
NEWLINE character, that is, the fictitious character at the end of an input line.

36 DEUGHTFor Intermediates (3/1/85)

Rattle Pushback Mechanism

Remaining
Input

CharactersRattle Code Executed Effect of Execution

1+PI/n
gtoken(TokenString.Value) TokenString now con

tains "1" and Value
equals 1.

+Pl/n
gtoken(TokenString.Value) TokenString now con

tains "+".
Pl/n

gtoken(TokenString.Value) TokenString now con
tains "PI".

/n
pbf'3.1416' Push back the charac

ter string "3.1416".
ai416/n

gtoken(TokenString,Value) TokenString now con
tains "3.1416" and Value
equals 3.1418.

/n
gtoken(TokenString,Value) TokenString now con

tains "/n".
Now, the next line of in
put would be read in.

This example is actually how the definition for the define PI would be substituted inter
nally for the occurrence of the define name PI. This internal substitution process is
entirely invisible to the user, that is, all the get-token and push-back functions involved
in the above table need not be programmed by the user but are automatically exe
cuted when a define name is encountered. However, the next section introduces mac
ros, in which you are required to program using gtoken and pbf.

6.2 Language Extensibility Using Macros

As mentioned in the introduction to section 5, the DELIGHT extensibility needs that
cannot be handled by the define substitution mechanism have to do with making condi
tional substitutions that are based on the arguments that are used with the define. The
way DEUGHT provides this language extensibility is through the procedure-like entity
called a Rattle macro. Macros are written in the Rattle language in exactly the same
way as procedures, except the keyword procedure is replaced by macro and they do
not have an argument list surrounded by parenthesis. Also, they do not execute at run
time (as procedures do), but rather when their name is encountered by the lexical
analysis phase during the compilation of Rattle statements. Macros can act as prepro
cessors that modify the input character stream being passed through the lexical
analyzer on to the Rattle parser. For example, one can write a macro to scan the next
few input tokens —which may not even be valid Rattle code since they never reach the
parser but are only "seen" by the macro—make decisions based on what is found, and
then push back valid Rattle code that eventually is passed tc the parser. Hence the
general process undertaken by a macro is:

DEUGHT For Intermediates (3/1/85) 39

1. Get the next few tokens,
2. Make decisions based upon these tokens, and
3. Push back substituted text that is usually valid Rattle code.

Let us now implement the simplest possible macro, in fact, so simple that it does
not even read any tokens or make decisions but just pushes back a single number
token:

1> macro Five

1) pbf '9.0'
1> print Five
5.000

1>

Now let's put a print statement inside the macro so that we can see when the macro
actually executes:

1>micro Five {
1) printf 'Inside mtcro/n1
lj pbf '5.0'
H r
1> prist Five
Inside macro
5.000

1>

To show that the macro actually executes when the statement using the macro is
compiled—when the macro name is detected—and not when the statement itself exe
cutes, we place curly brackets around our print statement to prevent it from executing
until the closing bracket is given:

lj print Five Five
Inside macro
Inside macro

li i
5.000 5.000

1>

As you can see the macro Five, by virtue of where you see the output Inside macro,
has executed before the print statement containing it executes.

We are now ready to implement a macro that does read input tokens and use them
to make decisions about what to push back. We will implement the MatrixFunc macro
mentioned in the introduction to section 6. The task of this macro is to the read input
tokens that make up the MatrixFunc statement and, depending on the which of the
keywords, inv or adtj is read, push back the appropriate procedure call, either inverse
or adjugate. In other words, the macro is to convert

HatrixFunc A=inv(B) into Inverse(A.B)

and

40 DEUGHT For Intermediates (3/1/65)

HatrixFunc A^adj(B) into Adjugate(A.B)

Since this macro is a little too long to have you type in, there is a file containing it,
listed below; all you have to do is use (include) it:

.................... Begin <Tmatfunc> -—--———---—--
macro MatrixFunc \

array OutputBatrix(HAXTOKSIZE), InputHatrix(HAXTOKSIZE).
Function(HAXTOKSIZE), Oumny(UAXTOKSIZE)

define fEqualString.eqstp) # Logical function for string comparison,
gtoken (OutputHatrix,Value) # Read "A",
gtoken (Dmmy,Value) § Discard "=".
gtoken {Function,Value) # Read function,
gtoken (Dimny,Value) # Discard "(".
gtoken (InputMatrix,Value) # Read "B".
gtoken (Dixnny, Value) # Discard ")*'.
if (EqualString (Function.'inv'))

pbf *Inverse(%s,%s)/n* OutputHatrix InputKatrix
else if (EqualString(Function,'adj'))

pbf 'Adjugate^.RsJ/n' OutputHatrix InputKatrix
else

printf 'ERROR: HatrixFunc: Illegal function: M%s"/n' Funct'ion

procedure Inverse (a,b)
printf 'Inside procedure Inverse./n'

procedure Adjugate (a,b)
printf 'Inside procedure Adjugate./n'

gad <Tmatfunc>

1> use <3hntfanO
1> IfatrixFanc A = inv(B)
Inside procedure Inverse.
1> IfatrixFanc A = adj(B)
Inside procedure Adjugate.
1> HatrixFunc A = badguy(B)
ERROR: HatrixFunc: Illegal function: "badguy"
1>

In file <Tmatfunc> above, the various arrays declared are each for holding a character
string containing an input token returned as the first argument of routine gtoken (see
section 6.1). When MatrixFunc is used above, the detection of the macro name by
DEUGHT causes DEUGHT to execute it immediately. Thus, gtoken reads the next few
items from the input, namely, tokens A = inv (B and). Then the macro pushes back
one of the two procedure calls, Inverse or Adjugate, based on which of the keywords
inv or adj was read by the macro.

That the DEUGHT macro feature presented in this section is certainly powerful is
substantiated by the fact that all of the matrix macros in section 13 of DELIGHT For
Beginners have been created using the same tools and techniques shown in this sec
tion.

7 Debugging Rattle Programs

This section looks at several ways of debugging both compiler-reported errors such
as syntax errors as well as run-time errors. Debugging compiler errors is discussed in
section 7.1 where we introduce ways of tracing what various macros push back. Sec
tion 7.2.1 through 7.2.4 clarify what is meant by run-time errors and how you use

DEUGHT For Intermediates (3/1/85) 41

available commands such as trace, enter, display local variables, and suspend to locate
where the problem occurs. Section 7.2.5 demonstrates how you make DEUGHT abort
immediately upon an overflow. This is useful when you're trying to determine exactly
where an executing built-in routine overflows, assuming your operating system has a
way of revealing this information through messages on the screen or some kind of pro
gram debugger. When in really deep trouble in DEUGHT, as a last resort, the command
hardreset, covered in 7.2.6, can be used to reset several internal states, buffers, etc., in
DEUGHT. Section 7.3 then discuss how to use the whatis and whereis commands for
debugging and, in general, for learning about details of how things have been imple
mented in DEUGHT.

7.1 Debugging Compiler-Reported Errors

The Rattle parser reports syntax errors by printing the offending input line, pointing
to the approximate location of the error with a caret ("~"), and giving an error mes
sage. For example:

1> print 1//S
print 1//3

ERROR(l) Expression syntax error [rint 1 /3]
1>

The 10 characters in square brackets are, approximately (as can be seen), the last 10
characters read from pushback by an internal DEUGHT function that returns input
characters. Showing these sometimes helps in finding an error in a define definition as
shown:

1> define (PI,4*atan(D)
1> print sin(PI)
print sin(PI)

ERROR(l) Expression syntax error [4*atan |))]
1> define (PI,4*atan(l))
1> prist PI
3.142

1>

Whether the 10 characters in square brackets above help you find the error in the
definition of PI is unclear, but their being printed along with the error message is prob
ably better than just having the caret symbol point at the input sin(PI), which "looks"
reasonable.

The following subsections are directed toward debugging errors reported by the
Rattle parser. In particular, section 7.1.1 shows how one can trace what various mac
ros push back by setting the system variables tracempushback_ and trace^rnatop^
Other debugging suggestions are given in section 7.1.2.

42 DEUGHT For Intermediates (3/1/65)

7.1.1 Tracing TOiat is Pushed Back

Many commands in DEUGHT are macros that push back Rattle code as demon
strated in section 5. In many of these, there is a call to a built-in routine called
pbdump (for "pushback dump") which prints to the screen everything that is presently
pushed back, i.e., that prints out the entire contents of the pushback stack. Further
more, the call to pbdump usually occurs only if system variable tracejpushback_has
been set to YES (as opposed to NO, both Rattle defines). The output of pbdump is
sometimes useful in debugging certain types of errors reported by the parser. For
example, suppose you (accidentally or otherwise) pass an expression to printv instead
of just a variable or array name:

1> a = 2

1> printv a/3
Scalar a » 2.00000
ERROR: Illegal statement: "/"
1>

The error message above is not very clear. However, this situation can be mitigated by
setting trace_pushback_i

1> printv a/3

. Push-Back-Durp from "printv" --—
printf "Scalar a = 55.5r /n" a
/

Scalar a = 2.00000
ERROR: Illegal statement: "/"
1>

From the pushback dump, you can see how, after reading the printf statement,
DEUGHT next reads a statement containing just a slash ("/'). To show that this gives
the same error message, try the following:

l> /

ERROR: Illegal statement: "/"
li reset
1>

The prompt changing to 1} usually means that the previous statement is incomplete.
Here, it has to do with the fact that an expression that ends in an operator is automati
cally continued onto the next line (see the discussion of expression and assignment
continuation in section 4.5 of DELIGHT For Beginners). Although entering another
blank line when 1j is seen above will restore the prompt to 2>, just to be safe, reset was
typed above.

You should use trace_pushback_mand pbdump in your own macros to aid in debug
ging. For example, we can add their use to the trivial macro Five of section 5.2:

DEUGHT For Intermediates (3/1/65) 43

1> macro Five {
lj import tri
lj pbf '5.0*
lj if (tract* pnshhnrV = YBS)
lj pUsmp('Five')
1) I
1> trnce_pusnback_ = YES
1> print Five

Push-Back-Dump from. "Five"
5.0

5.000

1>

The call to pbdump shows everything that is currently pushed back. If something else
such as a definition body is presently pushed back, it is seen also:

1> def ine(Five3(print Five+3.000000)
1> FiveS

Push-Back-Dump from "Five"
5.0+3.000000

8.000

1> trace_pushback_- = NO
1>

7.1.2 Other Debugging Suggestions

DEUGHT users, over the period of years since DEUGHT has existed, have come
across errors in their Rattle code which seem to defy rational explanation! For exam
ple, sometimes you get an unexplainable error when compiling a procedure's list of
arguments:

1> procedure SetArray(xary, clip)
procedure SetArray(xary, clip)

ERR0R(1) Name expected
1] reset
reset

ERR0R(1) erroneous input token [(]
1>

In such cases, one thing you can do is check that each argument is not a define or
something else that already exists in DEUGHT. This can be done by using the whatis
command, briefly introduced in the Beginners Guide. Its use is as follows:

1> Aatis xary
"xary" DOES NOT EXIST.
1> ^iatis clip
"cliu" is a macro: Fran file "^fclipmO".
1>

44 DEUGHT For Intermediates (3/1/85)

Since the argument clip already exists as a macro, you should change the argument
name to something else (such as clipfiag).

Another suggestion for debugging is to turn on the echoing of input lines as they are
read by DEUGHT. This is important when a procedure exists in a file that is to be
included since the lines in the file are then echoed to the screen as they are read and
Rattle compiled. Echoing is turned on/off with the commands echo/noecho, already
demonstrated in the Beginners Guide.

7.2 Debugging Run-Time Errors

7.2.1 What Run-Time Errors Are

Certain errors which occur during Rattle execution are detected internally by
DEUGHT and cause execution to suspend as if a hard interrupt (see section 5 of the
Beginners Guide) had occurred. These include:

Floating-point exceptions: These are divide by zero, numerical overflow,
bad arguments to built-in Fortran-like functions such as taking the loga
rithm of a negative number, etc.

Array out-of-bounds: This is when the "net" array subscript for an array
goes beyond the total array size or is less then one. For example:

1> array Yf3,2)
1> print Y(l,4)

HUN-TIHE ERROR: Array subscript out of bounds: array "Y"
Net array subscript = 10

0.000

Interrupt...
2> reset
1>

The net array subscript is computed, using column-major array subscripting (storage
in column order), as

1 + (4-1) «3 = 1 + 9 = 10

and ten is beyond the total array size of 3*2=6.

To clear up the idea of net array subscript, here is an example in which the it is
less than the total array size (even though the first subscript is too large) so that the
program does not suspend:

1> readmtrix Y
1: 1.1 1.2
2: 2.1 2.2
3: 3.1 3.2

DEUGHT For Intermediates (3/1/65) 45

1> printvY
Matrix Y(3,2):

l.le+1 1.2e+l

2.1e+l 2.2e+l

3.1e+l 3.2e+l

1> print Y(4,l)
1.200e+l

1>

This statement program did not suspend since the net array subscript is computed as

4 + (l-l)*3 = 4 + 0 = 4

and 4 is within the total array size of 3*2=6.

7.2.2 Review of Commands for Debugging Run-Time Errors

This section reviews DEUGHT features presented in the Beginners Guide that aid in
debugging run-time errors that occur in Rattle procedures. We discuss the rroce and
enter commands.

The trace command is very useful for debugging DEUGHT run-time errors, as can be
seen in the following:

1> edit junkl2
Unable to ooen "junkl2"
:1c

procedure junkl(x)
print 1/x

procedure juuk2(x)
junkl (x)

"junkl2" 2 lines
1> use junkl2
1> junk2 (0)

RUN-TIHE ERROR: 1 overflow(s) or other floating point exception(s).
0.000

Interrupt...
2> trace

Interrupted IN procedure
junkl line 2 of file junk12
junk2 line 4 of file junkl2

2> reset
1>

The trace output shows that the run-time error occurred in procedure junkl, line 2 of
the file, which was called by procedure junk2 on line 4 of the file. Obviously, it is due to
the division by z with x equal to zero . Using the editor, you could now examine the
source lines that lead to the RUN-TIME ERROR. Alternatively, you could list the file with
line numbers:

46 DEUGHT For Intermediates (3/1/65)

1> list "Timbers junkl2
Begin junkl2 —

1 procedure junkl(x)
2 print 1/x
3 procedure junk2(x)
4 junkl (x)

gnd junkte
1>

The rroce command can be used whenever an interrupt has occurred, Le., whenever
the interrupt level is greater than one thus causing the prompt to appear as 2>, 3>,
etc.

Another DEUGHT feature to aid in debugging is the enter command for looking at
local arrays and variables of a procedure.. Let's create a simple procedure with three
local variables, a, 6, and c:

1> procedure junkl (x) \
1) a = 1
1! b = 2
lj c = 3
lj print a*x b*x c*x
*l * , .1> junkl(2)
2.000 4.000 6.000

1>

After executing this procedure as above, you may enter junkl and look at the local
variables:

1> enter junkl
e> display local variables *

3 variables:

a = 1.00000

b = 2.00000
c = 3.00000

e> leave
1>

Note that after entering a procedure with the enter command, the prompt changes to
e> to remind you that any variables you create or use are actually local to the entered
procedure.

7.2.3 Using Pdebug_ For Debugging

This section introduces a system variable called pdebug^ which prints parse or exe
cution debug concerning built-in routines. To get this debug output, simply set pde-
6t«0_according to the following table:

DEUGHT For Intermediates (3/1/85)

Value

For example:

Debugging With pdebug_

What is Output

No debug output.

Much parser information plus built-in
function names and numbers of argu
ments, right before each function is
called.

Just built-in function names and
numbers of arguments, and the values
of all arguments, right before each
function is called.

Same as pdebug_=2 except print the
values of all arguments right before and
right after each function is called.

1> pdebug_ = 2
1> printf 'a=%r b=S.6r/n* 1.111111 2.222222

» builtn: ENTERING "prinf8", funono=3 nargs=7
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 1.378012e-2 2= 1.111111 3= 2.222222
5= 0.000000 6= 0.000000 7= 0.000000

a= 1.111 b= 2.222222
1>

47

4= 0.000000

The above shows the arguments to built-in routine prinf6, whose first argument is the
format control string and whose last six are the zero to six arguments in 1-1 correspon
dence with the %fields of the control string. For more information, type help pdebug^

As a second example, let's rerun procedure LEproc from section 3.2, which we first
modify to not print dashes:

1> define (ListEdit "nans. LEproc(none))
1> procedure LEproc (pnone)]
1] list ~idasb.es <pxume
lj edit <pnane
li i
1> ListEdit nwfile

» builtn: ENTERING "openp". funcno=10 nargs=2
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 7.42S055e+31 2= 1.000000
» builtn: ENTERING "sichan", funcno=20 nargs=l
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 1.200000e+l

48 DEUGHT For Intermediates (3/1/85)

=» builtn: ENTERING "cpytoeof", funcno=67 nargs=l
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 0.000000

This should be in file.
Should be another line.

» builtn: ENTERING "cloze", funcno=5 nargs=l
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 1.200000e+l
» builtn: ENTERING "richan", funcno=15 nargs=0
» builtn: ENTERING "exedit", funcno=25 nargs=l
» builtn: FIRST VALUE OF EACH (REAL) ARG:
1= 7.429055C+31

"ayfile" 2 lines
:lp
This should be in file.

:q
1>

As can be seen above, the list command, the first statement inside procedure ListEdit,
calls five built-in routines: openp to open the file to be listed (see section 5.2.2), sichan
to set the present input to this file (see section 5.2.2), cpytoeof to copy present input
to present output up to the end-of-file, cloze to close the logical unit number opened by
openp (see section 5.2.2), and richan to reset the present input to what it was before.
Finally, the edit statement simply calls built-in routine exedit, to invoke the DEUGHT
editor. Before going on, you'd better turn off pdebug_:

1> pdffbng = 0

7.2.4 Debugging by Adding Print and Suspend Statements

A technique used heavily by programmers trying to debug a program is to add print
statements around the suspected causes of trouble. The ability in Rattle to recompile
a procedure without any load/linkage phase is very conducive to such an approach.
But an interactive program development environment such as that provided by
DEUGHT has another powerful debugging technique—that of placing suspend state
ments around suspected trouble spots, finis allow you to enter the procedure, display
local variables, leave, and resume execution, even after you have modified a local (or
nonlocal imported) variable.

We illustrate how adding print and suspend statements can aid the debugging effort
in the following examples.

1> edit junkxy
Unable to open "junkxy"
:a

function xyinv(x, y) {
return(1/(2*7))

:-«q
"junkxy" 3 lines

DEUGHT For Intermediates (3/1/85) 49

1> use junkxy
1> loop s from 1 to 10k dee 1
1} print %xyinT(x.-lk)
1.000 -1.001e-3

1.000e+l -1.010e-3

1.000e+2 -l.llle-3
1.000e+3

RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s).
1.000

Interrupt...
2> reset
1>

The overfiow caused by the zero denominator halted the execution of procedure xyinv.
We now add a print statement to the procedure to help locate the problem. (Note that
the source of error for this particular run-time error is quite obvious; a general pro
cedure is being demonstrated here so please do not jump to any hasty conclusions
about the authors' intelligence!)

1> edit junior/
"junkxy" 3 lines
:1a

printf • (x=Xi,y=Xi) • xy

"junkxy" 4 lines

1> use junkxy
1> !loo ## Re-issue previous comrnnd starting with ioo
loop z from 1 to 10k dec 1
1] print s xyinr(s(-Ik)

1.000 (x=l,y=-1000) -1.001e-3
1.000e+l fx=10,y=-1000) -1.0l0e-3
1.000e+2 (x=100,y=-1000) -l.llle-3
1.000e+3 (x=1000,y=-1000)

RUN-TIME ERROR: 1 overflows) or other floating point exception(s).
1.000

Interrupt...
2> reset

1>

The print statement has helped us to find out that the overfiow occurred when 2=1000
and £=-1000 resulted in division by zero. Next we modify procedure xyinv by replacing
the print statement by a suspend statement. Entering the procedure and examining
its formal argument values—generally not allowed in DEUGHT—is also demonstrated:

1> edit junkxy
"junkxy" 4 lines
:2c

"junkxy" 4 lines

50 DEUGHT For Intermediates (3/1/85)

1> print xyinr(lk.-tk)

Interrupt...
2> enter xyixrr
e> print x y

1.000e+3 -1.000e+3

e> leave
2> resume

RUN-TIME ERROR: 1 overflow(s) or other floating point exception(s).
1.000

Interrupt...
2> reset

1>

7.2.5 Aborting On Numeric Overflow

This section details how to make DEUGHT abort immediately when an overflow
occurs. By default, DEUGHT does not abort when a floating point exception such as an
overflow or a divide-by-zero occurs; Rattle execution simply suspends with a "RUN-TIME
ERROR". Sometimes, however, when, say. debugging a built-in Fortran routine, one
would like to abort immediately when the overflow occurs, in order to determine where
it occurred. To do this, all you need to do is set the following option:

1> set-option DLoptiona ~Abort0n0verflov=YES

At this point we advise against trying a statement now such as print 1/0 since DEUGHT
will immediately abort and you will have to restart it. However, let us just look at what
might occur (shown below for the UNIX operating system). Instead of a trivial divide-
by-zero as print 1/0, let's try causing an internal routine to overflow. We shall make
the built-in routine used to multiply matrices overflow by passing two one-by-one
matrices each having value MAXREAL, a DEUGHT define for the largest representable
floating point number. Then this routine overflows since MAXREAL squared is surely
not representable.

IMmtop A » array(l) of IftXREAL (Don't actually type any of this)
1> matop B = array(l) of MAXREAL
1> matop C ~ A#B
••• Illegal instruction (This output is for UNIX)
Illegal instruction (core duxped)
%

DEUGHT has aborted immediately upon the overflow. At this point, to determine where
the executing built-in routine overflowed, either you see an abort message on the
screen that reveals this or you would have to use some operating system utility such as
a program debugger.

DEUGHT For Intermediates (3/1/65) 51

7.2.6 DELIGHT Internal Aborts and the Hardreset Command

When serious internal DEUGHT problems occur that are generally impossible to
recover from, the infamous ABORT ABORT ABORT ... message appears on the screen
and you are asked whether you really want to abort out of DEUGHT or whether you
want to return to DEUGHT and "take your chances". One example is when you try to
open too many (For UNIX, more than 7) files using openp (see section 5.2.2). Here, we
repeatedly open the existing file junkxy that was created in section 7.2.4, noting that
the same file can be opened to several logical unit numbers:

1> printf 'Xi/n' openp(*junkxy* .BEAEUXE)
11

1> !!

print openpC junkxy' .READHDDE)
12
1> I!

print openpCjunkxy' .READHDDE)
13
1> !!

print openp(' junkxy',REA1SDDE)
14

1> I!
print openpCjunkxy'.READSDDE)
15
1> !!

print openpC junkxy'.READH3DE)
16
1> !!

print openpC junkxy'.BEAD&ODE)
17
1> !!

print openpCjunkxy' .REAKDDE)

ABORT ABORT ABORT ABORT ABORT ABORT ABORT ABORT A

* openp: Attempt to open too many files (nsx=7) *

Create "core" file?
Y,y = Yes, then leave program.
K,n = Mb core file; just leave program.
R,r = Return to program execution.
Q,q = just like K: inmediately Quit program.
? = repeat ABORT message and this prompt.
<CR> = repeat this prompt (max 5 repetitions).

:r

NOTE: All open unit numbers have been closed and are being reused!

11

1> hardreset
1>

The large prompt appearing on the screen after the abort message in the box is
machine dependent; the prompt shown above is for UNDC After returning from an
ABORT ABORT ABORT.... you should give a hardreset unless you know exactly what the
implications of returning from, the abort are (and believe us, you probably don't!). The
hardreset command is used as a last resort to reset all internal states, stacks, and
buffers in DEUGHT. In particular, the following are reset or cleared:

52 DEUGHT For Intermediates (3/1/85)

Any characters presently pushed back;
• The input line buffer;
- The output line buffer;
• Hie input unit number stack set and reset by

sichan/richan
- The output unit number stack set and reset by

so chan/rochan
- The unit number being input or output echoed to, if

any;
All open unit numbers opened by openp, opens,
xnputmfrom, include, etc.

For more information, type help hardreset.

7.3 General Use of Whatis and "Whereis

In DEUGHT, all (both built-in and user-created) arrays, defines, functions, macros,
operators, procedures and variables are in one large symbol table. The command
whaiis followed by an entry name shows the type of symbol table entry. The whereis
command shows the actual filename used'—with the head and tail strings from your
openhdtl file appended (see section 5.2.1)— for filenames surrounded by triangular
brackets such as <graphics>. It can be used to help you find out about a command by
allowing you to look at the file containing the actual Rattle source code that imple
ments the command (assuming you have file system permission to read the file). Below
are examples of the use of whaiis and whereis. For the time being, ignore any ©system
that appears on any name1:

1> shotis box
"box" is a define: "boxJBsystem()".
1> vbatis box—
"box-T is a function or procedure: From file "<graphics>".
1> -whereis graphics
File "<graphics>" from "/oe/optcad/nye/include/graphics',
1>

The above example shows that box is a define with definition boxJ) .that 6oz_is a pro
cedure from file <graphics>, and that file <graphics> is from the given filename (shown
here for UNKon Esvax at Berkeley). We entered three commands to find out this infor
mation about the item box. This procedure of issuing two (or more) whaiis and one
whereis commands for a particular item is so frequently used that there is sufficient
grounds to have a command called Whaiis (with a capital "W") which performs the
three commands in one:

1> Hhatis box
"box" is a define: "boxJBsystemO".
"box-flsystem" is a function or procedure: From file "<graphics>".
File "^graphics^ from "/oe/optcad/nye/include/graphics"
1>

1 Osystem has to do with environments, to be discussed in a future version of this document; you are
currently in environment system.

DEUGHT For Intermediates (3/1 /85) 53

What Whaiis really does is repeatedly call upon whaiis as long as the first token of the
definition found by the previous whatis is a name (Le. a sequence of letters or digits
beginning with a letter). One small nuisance is that you don't get the whereis call if the
last definition does not start with a procedure name, as shown in the following:

1> defue(runprmt,falgo();printv X])
1> Ihatis runprint
"runprint" is a define: "falgo();printv xj".
1>

Whatis has not reported on procedure algo since the definition started with character
"\". It does, however, in the following modification:

1> define(runprint,algo();printv X)
1> Ihatis runprint
"runprint" is a define: "algo();printv x".
"algo" is a function or procedure: From file "<Esetup>".
File "<Esetup>" from "/oe/optcad/nye/libmake/Esetup"
1>

This definition is OK if runprint is only given as an interactive command. But if it is the
single-statement body of an if statement as in:

if (...)
runprint

then only algoQ will become the if statement body; the printv X will be outside,
equivalent to:

if (...)
al«o()

printv X

Conclusion: don't use defines whose definition consists of two statements unless you are
sure that the define wUl never be used inside Rattle procedures. If it might be used in
this way, keep the definition surrounded by curly braces as in either of the following:

define(runprint,ialgo();printv XJ)

define runprint

al«o()
printv X

The whatis command also shows the positions of define arguments and define
options in the definition string. Arguments are shown with #f for the first argument, #<?
for the second, etc., and ~1 for the first option, ~2 for the second, etc. For example,
the define for the printfancy command from section 3.5, which was

define (printfancy **stara=YES ~line=NO X,printfancy-(stars, line,X))

produces the following output from whatis:

54 DEUGHT For Intermediates (3/1/65)

1> '•hatis printfancy
"printfancy" is a define: "printfancy_(~l,~2,#l)".
1>

which shows that procedure j>rini/anci/_.has three arguments: the first option (sfars),
the second option (line), and the first (and only) define argument (X).

8 Creating new DELIGHT versions

This section considers the entire process of creating new application-specific
DEUGHT versions. These are executable programs such as DELIGHT.SPICE,
DELIGHT.MIMO, etc., which contain all of the basic DEUGHT software plus other rou
tines to, say, interface to a simulator or other scientific software. For example, a ver
sion interfaced to a simulator could allow results of simulations to be used in cost and
constraint procedures for DEUGHT optimization. Similarly, a version interfaced to a
matrix manipulation package could extend DEUGHT so that new matrix computations
could be performed interactively or inside Rattle procedures. Throughout the subsec
tions of section 8, we refer to your DEUGHTversion as DELIGHT. VNAME; VNAME, standr
ing for "version name", will actually be the name you choose for your Version.

The nature of the material in this section and some of its machine-dependencies
dictate that this section break from the style of previous sections by not containing,
per se, interactive commands and responses for you to try out. For instance, com
mands to link/load executable programs are usually very different on different operat
ing systems. However, most of the material in this section does not depend on your
operating system; when it does, mention is made of that fact

Sections 8.1 and 8.2 explain, respectively, the two most fundamental requirements
for creating new DEUGHT versions: how to add built-in routines that are callable from
Rattle, and how to declare variables for Rattle access. Section 8.3 discusses several
routines that are called internal to DEUGHT and that must be tailored to each particu
lar DEUGHTversion. How to load/link your DEUGHTversion, how to make the required
memfile (see below), and the different ways of starting the program are the subjects of
sections 8.4, 8.5, and 8.6, respectively. To aid in debugging built-in routines added
according to section 8.1, section 8.7 gives some hints that can help pinpoint where the
trouble may lie. Finally, section 8.8 presents some general guidelines, successfully
used during the development of existing DEUGHT versions, for putting together your
new DEUGHT version.

Hemfiles. A brief discussion of memfiles is necessary before proceeding with the fol
lowing sections. A memfile is a rather large binary file1 which contains the values of
every DEUGHT internal variable that need be restored in value in order to bring
DEUGHT back to the exact state it was in when a store command was issued to create
the memfile. Memfiles are read back by the restore command or when DEUGHT is
started normally. In other words if you set some variables and creates some Rattle
procedures, store into a memfile, quit DEUGHT, and restart it at a later time from your
memfile, then all of your variables and Rattle procedures will exist just as they did
before you stored into the memfile.

This ability to restore the state of DEUGHT to what it was when a memfile was stored

1 On some computer systems, what we call binary flies are sometimes called direct access, random ac
cess, or non-ASCII flies. They cannot be printed out or edited and are only accessed through internal DELIGHT
machine-dependent primitive routines.

DEUGHT For Intermediates (3/1/65) 55

has profound application. Since most DEUGHT commands are define/Rattle-procedure
pairs as illustrated in section 3 (recall, e.g., define (showalgo,showalgo_0)), the ability
to use such commands requires that DEUGHT read their defines and compile their pro
cedures. Without the ability to restore DEUGHT's state, every command that a user
wanted to use would have to be processed in this way every time DEUGHT was started,
a very time-consuming task to ponder2. But with the store command, all of the stan
dard commands, the matrix macros, etc., can be processed just once and a standard
public memfile created by system personnel, a process referred to as "making a new
memfile". Then, by having DEUGHT start from this memfile, everyone has access to all
the commands, macros, defines, procedures, and variables that existed just before the
memfile was stored, Le., when the memfile was "made". Section 8.5 discusses further
the process of making a version-specific memfile that other users of your version of
DEUGHT can access.

8.1 Adding Built-in Routines

This section describes how to add existing Fortran3 routines to DEUGHT so that they
are callable from Rattle procedures with exactly the same syntax as Rattle procedures
themselves are called. These routines might be simulation interface routines for a par
ticular simulation program, utility routines, library routines, or routines containing
any computation whatsoever which needs the greater run-time efficiency of Fortran
over Rattle. Note that another option is to translate the Fortran routines into Rattle.
This translation could be computationally more costly since programs written in Rattle
usually run slower than their Fortran equivalents. In addition, translating a subroutine
into Rattle could be costly in terms of programmer time since Fortran routines are
often structureless and may be next to impossible to translate into the structured,
"goto-less" Rattle language. Thus, such translation should be avoided.

The addition of a new built-in routine to DEUGHT requires three operations:

1. make DEUGHT aware of the routine,

2. allow DEUGHT to call the routine, and

3. load/link the routine with DEUGHT.

To make DEUGHT aware of a new routine, a one line entry is added to file anames,
which should reside in the directory where your version-specific memfile is to be made
(see section 8.5—Making a Memfile). This entry associates a Rattle name with the rou
tine and consists of the name by which the new routine is going to be known to Rattle
and the number of arguments to the routine. The Rattle name need not be the same as
the actual Fortran name. However in general, a good idea is to use either the Fortran
name (perhaps ending in an underscore thus making it a "system entity" to avoid name
clashes with names that might be used by users of your DEUGHT version) or a more
explanatory name. To allow DEUGHT to call a new routine, a call to the new routine is
added to Ratfor subroutine abuilt (for "application built-in"). All the calls in abuilt

* Historically, it wasTommy Sssebo's furious assertion to Bill Nye one summer—that it took over 15
minutes to start DELIGHT (just for the reason above) —that originally led to the creation of the store and re
store commands.

9 In this discussion, we often use "Fortran" to indicate any language whose norma] programming cycle
consists of compile, link, and execute phases. In the context of DELIGHT, the language would probably be Rat
for [2] or possibly C [3] although we, in particular, usually avoid using the name "Ratfor" due to the possible

56 DEUGHT For Intermediates (3/1/85)

must be in one-to-one correspondence with the entries in file anames. Finally, the pro
cedure for load/linking a new routine with DEUGHT is highly system-dependent and will
be covered in section 8.4.

As an example of the first two operations, suppose we wish to build into DEUGHT the
two Fortran subroutines clrnum and clrden, each having no arguments. The names by
which these are known to Rattle can be arbitrary but in our case, we let them be known
by the self-explanatory names CZearNumerator and ClearDenominator. Thus, in file
anames we would have

ClearNumerator 0
ClearDenominator 0

while Ratfor subroutine abuilt would simply require a computed goto entry (based on
argument funcno, the entry number) and a call statement for each. A "conceptual"
version of this subroutine would appear

subroutine abuilt (funcno)
go to (1,2), funcno

1 call clrnum
return

2 call clrden
return

end

After this subroutine had been compiled and load/linked with DEUGHT, a memfile
created, and DEUGHT started from this memfile, a user could type ClearNumeratorQ
to have subroutine clrnum execute and ClearDenominatorQ to have clrden execute.

In reality, subroutine abuilt would be a bit more complex than this. Other things it
must handle include passing arguments to the built-in routines, returning a function
value from a built-in routine that is to act like a function in Rattle expressions, and
special considerations for passing and receiving back integer arguments. Integer argu
ments are a consideration because all variables in Rattle are presently double-
precision floating-point numbers . Thus to pass integer arguments, the Rattle double-
precisions arguments must either be copied into temporary integers, copied back to
double from temporary integers, or both. For these purposes, there is a large work
array called iwork (see below) that can be used for this temporary copying. Subrou
tine rcopyi (D, I, N) can be used to copy N items from double-precision array D to
integer array /. Similarly, subroutine icopyr (I, D, N) can be used to copy integers
back into double-precision arrays. When assigning to scalar integer temporaries from
double-precision arguments, DEUGHT function iround should be used to round the dou
bles and avoid roundoff errors. These techniques are shown in the example below.

Inside subroutine abuilt, Rattle arguments are received via the Fortran double-
precision array rarray, with the first argument in rarray(el), the second in rarray(e2),
etc. For double-precision arguments of a built-in routine, rarray can be used to simply
"pass the Rattle arguments through", as shown in the example below. For integer argu
ments, as mentioned in the previous paragraph, rarray entries must be copied into or
out of integer temporaries. To have a built-in routine return a function value,
rarray(retpJvs assigned the value to be returned.

confusion between "Ratfor" and "Rattle".

DEUGHT For Intermediates (3/1/85) 57

To give a brief example of the other features of subroutine abuilt and the above
argument techniques, we now consider another example with two built-in routines. The
first is to be known as FuncExamp to Rattle, have Fortran name funcex, and return a
double-precision function value with one double-precision argument The second is to
be known as ProcExamp to Rattle, have Fortran name procex, and have the twelve
arguments shown below. These arguments consider all the various combinations of
argument types: input only (read from but never written onto), output only (only writ
ten onto), and input/output (both read from and written onto), as well as scalars and
arrays, both integer and double-precision:

1 - double-precision scalar
2 - double-precision scalar
3 - double-precision scalar
4 - double-precision array
5 - double-precision array
6 - double-precision array
7 - integer scalar
8 - integer scalar
9 - integer scalar
10 - integer array
11 - integer array
12 - integer array

For this example, file anames would contain

FuncExamp 1
ProcExamp 12

input
input/output
output
input
input/output
output
input
input/output
output
input
input/output
output

size

size

size Ns)

N»)

size Nio)
size Nn)
size N12)

while, with " • • • " indicating other Ratfor code not shown here for clarity, subroutine
abuilt would contain

subroutine abuilt (funcno,

go to (1,2), funcno

, retp, iwork, ...)

1 rarray(retp) = funcex (rarray(el))
return

2 i7 a iround (rarray(e7)) # Copy inputs.
i8 = iround (rarrayfeB)) # (i7, i8, i9, and iwork are temporaries.)
call rcopyi (rarray(elO), iwork(l), N10)
call rcopyi (rarray(ell), iwork(l+N10), Nu)

call procex (rarray(el), rarray(e2),
r(e5),

rarray(e3), #12 3
rarray(e4), rarray(e5), rarray(e8), #458
i7, i8, i9. #789
iwork(l), iwork(14tf10), iwork(l4tf104tfu)) # 10 11 12

58 DEUGHT For Intermediates (3/1/85)

rarray(eS) = i8 # Copy outputs.
rarray(ed) = i9rarray(ed) = i9
call ieopyr (iwork (1+N10) • rarray(ell), Njj)
call ieopyr (iworkO-tffig+Nii)' -rarray(e12), N^)
return

end

Because the arguments to built-in subroutines and functions can only be double-
precision or integer, modifications to the built-in routines themselves may have to be
made. In Fortran, any arguments that are of type real must be converted to double-
precision, to conform to the double-precision arguments which are passed from abuilt.
This is easily done in some cases by putting an implicit doubleprecision (a-h,o-z) state
ment at the beginning of each built-in Fortran routine, which will change the implicit
typing for all real variables to double-precision. Any explicit real declarations such as
real v(10) (as opposed to dimension v(10)) must be changed to double-precision as
double precision v(10).

Calls to subroutines/procedures in languages such as C can also be added to sub
routine abuilt. You should pay attention to any machine-dependent procedure naming
conventions that exist on your computer. For example, under UNDC, a Fortran routine
that calls, say, C procedure abc must be named aoc_ in the C source code.

Before closing we mention that everything in this section also applies to the
subroutine/file pair ubuilt/unames, allowing ordinary users of any DELIGHT version to
add their own built-in routines.

8.2 Declaring Variables for Rattle Access

When using existing routines which have been incorporated into DEUGHT, it may be
necessary to access some of their variables. For example, many Fortran programs use
common blocks as a means of passing or receiving information. To avoid having to
make extensive modifications to these routines when they are built into DEUGHT (e.g.,
in order to set or get the value of these common block variables through subroutine
arguments), you need to be able to directly access the variables in Rattle statements.
This can be done by creating a special Fortran subroutine which contains calls to
DEUGHT variable-declaration routines that associate each Fortran variable with a Rat
tle variable name. For example, variable pdebug^ discussed extensively in section
7.2.3, is declared in this way; when pdebug_=l is typed, a Fortran common block vari
able is set which is tested by the Rattle parser to determine if debug printout is
desired. There can be any number of Fortran subroutines containing calls to the
variable-declaration routines. However, see the discussion of dvdecs in the next sec
tion: basically, all calls to declare variables should be executed when dvdecs is called
internally.

The Rattle and Fortran variable names need not be the same. However, as for built-
in routine names in the previous section, it is a good idea to use either the Fortran
name (perhaps ending in an underscore, to make it a "system entity") or a more expla
natory name. Another idea is that the Rattle names end in "_F" or "_F_L\ for example,
to act as a reminder that they are Fortran declared variables.

The declaration subroutines are described in the following table. For each case, the
name in quotes, which must end in a dollar sign ("$") string terminator, is the Rattle
variable name. Scalar variables and arrays declared with these routines become

DEUGHT For Intermediates (3/1/65) 59

members of the pool of nonlocal Rattle variables.

DEUGHT Subroutines for Fortran Variable Declaration

Subroutine Call Action

call deci ONAMES'.ivar) Declares Fortran integer variable war.

call decial ('NAMES'.iary.Nl) Declares Fortran integer array iary,
having the one dimension Nl.

call decia2 ('NAMES',iary,Nl,N2) Declares Fortran integer array iary,
having the two dimensions Nl and N2.

call decia3 (•NAMES',iary,Nl,N2,N3) Declares Fortran integer array iary,
having the three dimensions Nl, N2,
an&N3.

call deer ('NAMES'.rvar) Declares Fortran real (double-precision)
variable rvar.

call decral ONAMES\rary,Nl) Declares Fortran real (double-precision)
array rary, having the one dimension
Nl.

call decra2 ("NAMES'.rary.Nl,N2) Declares Fortran real (double-precision)
array rary, having the two dimensions
NlandNZ

call decra3 (•NAME$\rary.Nl.N2,N3) Declares Fortran real (double-precision)
array rary, having the three dimensions
N1,N2, andJVS.

In the array declarations above, the dimensions should be identical to those of the
actual Fortran array.

The following example of the special built-in Fortran subroutine needed to make
calls to the above declaration routines contains examples of those routines:

subroutine Vinit
double precision xvar, xarray
coamon /cname/ ivar, iarray(200), xvar, xarray(10,20)
call deci ('iver-P-i', ivar)
call decial f'iarray-F-S*, iarray, 200)
call deer ('xvar-F-J', xvar)
call decra2 ('xarray_F_l', xarray, 10, 20)
return

end

Since declared Fortran variables exist in the pool of nonlocal variables, they are
accessed in Rattle procedures by importing them. For example, the following Rattle
procedure uses the variables declared above:

60 DEUGHTFor Intermediates (3/1/85)

procedure SetFortranVars \
import ivar-F_, iarray-F-, xvar_F_ xarray_F_
ivar-F—= ...
for k = 1 to 200

iarray_F_(k) = ...

If it is desired to make a declared variable global so that it does not need to be
imported, the Fortran subroutine such as Vvnit above can have a caU decglo ('NAMES')
statement after the normal declaration calL In the above example, to make Rattle
variable vuar^f^ global, we would have:

call deci ('ivar-F-J', ivar)
call decglo ('ivar_F-S')

An important restriction on how declared Fortran variables can be used in Rattle
is that they cannot be passed as arguments to Rattle procedures. They should instead
be imported or made global, as shown above.

8.3 Version-Specific Routines Called by DELIGHT

There are several routines that get called by DEUGHT automatically when various
actions or operations occur. For example, when any DEUGHT version starts, subrou
tine dvinU is called to allow any version-specific initialization to occur. All you (the
creator of the DEUGHT version) do is put into subroutine dvinii anything that must get
executed once when DEUGHT first starts up. This might include, for example, certain
variable initializations that might, say, read from a file, or the one-time setup of a run
time dynamic memory manager. If there is no initialization of this sort, then subrou
tine duinit need not be defined; a dummy subroutine containing just a Fortran return
and end is used by default. This is true for all of the routines discussed in the
remainder of this section.

The version-specific routines and some version-specific files are summarized in the
following tables:

DEUGHT For Intermediates (3/1/85) 61

DEUGHT Version-Specific Routines

Name When called What it should do

dvdecs Program
startup

All calls to declare variables for Rattle access (see
section 8.2) should be executed. Thus, as mentioned
in section 8.2, if there are several Fortran subrou
tines which contain calls to the variable-declaration
routines, each of them should be called inside your
subroutine dvdecs:

subroutine dvdecs subroutine Fdecsl
call Fdecsl call deci ('n-F_S',n)
call Fdecs2 call decral fz_F-S',z, n)

return return
end end

dvexit Program ter
mination

This is called right before DELIGHT finishes executing,
e.g. after a quit command is typed, and should con
tain whatever cleanup or final screen messages are
necessary for the version.

dvinit Program
startup

Whatever version-specific initialization is required
should be performed. There is an argument that is
YES (defined as 1 in file style) if the startup is forced
and you are making a new memfile. It is NO (defined
as (?) if you are simply starting DEUGHT normally
(unforced) from an existing memfile. By testing this
argument, you can have certain initializations occur
only for either type of DEUGHT startup. See section
8.5 for more on forced versus normal startups.

dvnarne Program
startup

The name of this DEUGHT version should be returned,
Le., the name to be appended to mem for default
memfiles, to Img for login messages, etc. For exam-
pie, if this routine returns MIMO, then this version is
DEUGHT.MIMO which starts up by reading memfile
<memMIMO> (see section 8.5) and prints the "Wel
come to DEUGHT.MIMO" login message contained in
file <lmgMIMO>, etc.

memfio During a
store or re
store com
mand

The name memfio is an acronym for "memfile-io"
since the purpose of this routine is to allow version-
specific internal (Fortran) variables to be written out
to and read in from a memfile. By using calls to the
routines shown in the next table, these variables'
values are stored in a memfile and can thus be re
stored (when DEUGHT is started from the memfile) to
their exact state before the store command was is
sued. This was explained in the introduction to sec
tion 8.

62 DEUGHT For Intermediates (3/1 /B5)

DEUGHTVersion-Specific Files

Name When read What it contains

<lxngVNAME> After a re
store com
mand

This file, automatically printed on the terminal
screen after a restore command, usually con
tains a "Welcome to DEUGHT.VNAME" message.
It is your responsibility (as system personnel) to
insure that the system openhdtl file (see section
5.2.1) is set up so that users can access this file.

<memVNAHE> Program
startup

This is the default memfile that is read when
version DEUGHT.VNAME is started (see section
8.6). As above, the system openhdtl file must be
set up so that users can access this file.

<HsVNAME> During a help
command

When one of the help commands or section 2 is
executed inside DEUGHT.VNAME, this binary
helper file is opened to look for the command or
topic requested. See 77ie Helper Facility [6].

More on Subroutine Dvname. Subroutine duname is probably the simplest routine
ever written in any programming language! All you have to do is return the version
name in the (one) argument as done in the sample routine below:

subroutine dvname (str)
integer str
call pcopys ('SPICES', str)
return

end

Of course, the above duname would be for version DELIGHT.SPICE. Be sure to include
the dollar sign ("$") quoted-string terminator on the pcopys call.

More on Subroutine Memfio. Both output to and input from a memfile are per
formed by subroutine memfio. It contains the single argument mode to indicate
whether the memfile is being written or read:

mode = 1
mode = 2

Read in memfile variables.
Write out memfile variables.

The basic format of subroutine memfio is:

subroutine memfio (mode)
integer mode
cannon /3L0CKNAME1/ ivarl, ivar2,
cannon /BL0CKNAHE2/ ...

(Canxnon blocks containing
variables to be written to
and read from the mmfile.)

DEUGHT For Intermediates (3/1/85)

if (mode .eq. 2) go to 2
call rbini (ivarl)
call rbini (ivar2)

go to B
2 call wbini fivarl)

call wbini (ivar2)

9 return
end

(Read in the variables, in
the same order as below.)

(Write out the variables, in
the same order as above.)

63

Routines rbini and wbini are for reading and writing a single integer to/from the
memfile, respectively. Real variables and arrays of both types can be handled with the
routines in the following table:

Memfio Subroutines For Reading and Writing To/from a Memfile

Subroutine Call Action

call rbini (ivar)

call rbinia (iary.size)

call rbinr (rvar)

call rbinra (rary,size)

Reads integer variable iuar from the
memfile.

Reads integer array iary, of size size,
from the memfile.

Reads real (actually, double precision)
variable rvar from the memfile.

Reads real (actually, double precision)
array rary, of size size, from the
memfile.

call wbini (ivar)

call wbinia (iary.size)

call wbinr (rvar)

call wbinra (rary.size)

Writes integer variable iuar to the
memfile.

Writes integer array iary, of size size, to
the memfile.

Writes real (actually, double precision)
variable rvar to the memfile.

Writes real (actually, double precision)
array rary, of size size, to the memfile.

Note that no separate routines are provided for arrays with more than one dimension;
the product of the dimensions can be passed as the size argument. For example, if you
had real array rx(3,5) then you could use the calls call rbinra (rx,3*5) and call wbinra
(rx,3*5).

64 DEUGHT For Intermediates (3/1/85)

8.4 Loading DELIGHT

The commands required to load/link your DEUGHT version are highly machine-
dependent. However generally, after you have compiled: (l) any of the version-specific
routines detailed in section 8.3, (2) any routines to be considered built-in per section
8.1, and (3) any other routines that may be called by the ones just mentioned such as
the internal routines of a simulation program, you would then give a command similar
to the following:

LOAD name=DELKHr.VNAME OBJECTl 0BJBCT2 ... DLIBl DLIB2 ...

where "DEUGHT.VNAME" is the name of your DEUGHT version's executable program
file, "OBJECTl", "0BJECT2", etc. are the names of all the object files produces by the
compilations mentioned above, and "DUB1", "DUB2", etc. are the names of DEUGHT
object file libraries that contain all of the "core" (non-version-specific) DEUGHT rou
tines. After the executable program has been successfully loaded, the next step is to
make an associated memfile, the subject of the next section.

8.5 Making a Memfile

Memfiles were briefly introduced at the end of section 8. It was pointed out that
they are created (and written) by the store command but read back by either the
restore command or when DEUGHT is started normally. To clarify, when DEUGHT is
started, a restore is (internally) performed automatically in order to restore all
DEUGHT internal variables and thus start the user off in the state in which all the stan
dard commands, macros, etc., exist and are immediately ready for his use. This
restore is usually from a public memfile that is not in the user's directory. However, as
shown in section 8.6, a memfile can be specified as an argument on the command line
used to start DEUGHT.

If a user works in DEUGHT for a time, creating several commands, Rattle pro
cedures, variables, and so on, he may wish to store into his own memfile so that he can
restore his current state on, perhaps, the following day. The format of the store com
mand is

store [HEMFILENAHE] [' IDENTIFIER']

where the optional MEMFILENAME argument is the name of the memfile (if unspecified,
the name "memfile" itself is used) and IDENTIFIER is an optional identifier quoted
string which can serve to identify some characteristics of the current state being
stored into the memfile. For example, the following are all valid store commands:

store (This uses filename "memfile".)
•tore UHiiLemp
store memdebug 'Partially debugged procedure matcal()'
store msxBASIC 'Standard Optimization Memfile with Matrix Macros'
store basicfile

The last command above would produce the following warning message:

DEUGHT For Intermediates (3/1/85) 65

WARNING; Memfile filenames should start with "mem" by convention.

This convention exists because memfiles can be very large and you probably don't want
to have large files "sitting around" when they are not needed; when you examine a
(hopefully alphabetized) listing of all your filenames, we want you to be able to spot
memfiles easily so that you can remove any that are not needed.

The IDENTIFIER string given on the store command gets printed to the screen
whenever a restore is performed. Also, there is a command called memdate that shows
the actual MEMFILENAME argument given on the store command, and the date the
command was given, for the memfile last restored from. Thus, your terminal screen
might appear:

% DELIGHT.VNAME
DELIGHT: Restoring from <memVNAHE> ...
Identifier: Standard VNAME Memfile with Optimization

Welcome to DELIGHT.VNAME

A General Purpose Interactive Computing System with Graphics
for

Optimization-Based Ccmputer-Aided-Design of Engineering Systems.

Developed by the
Optimization-Based Ccmputer-Aided-Design Group

University of California
Berkeley, Ca. 94720.

Copyright 1963 by the Regents of the University of California.
All Rights Reserved.

1> history
2 store .. /memfiles/uauiew 'Standard VNAME Memfile with Optimization'

1> mandate

Memfile n../mamfiles/memew" stored on 01/28/85 at 06:35:57
1> restore memdebug
Restoring frommemdebug ...
Identifier: Partially debugged procedure matcalQ

Welcome to DELIGHT.VNAME

1> nxmdate

Memfile "memdebug" stored on 01/28/65 at 14:45:05
1> history

2 store memdebug 'Partially debugged procedure matcalQ'
3 memdate

1>

The above shows an identifier and the result of a memdate command for each of two
different memfiles. You should also notice that the history command shows the store
command that was used to create the memfile. As shown in the first usage, this is true
even if you did not issue the store command yourself.

We now are ready to illustrate how system personnel make a new memfile. As stated
above, when DEUGHT is started "normally", a restore from a public memfile is per
formed automatically. Also, we have shown how a user can create his own memfile with
the store command (after DEUGHT has been started normally). But how is the public
memfile created initially, when as yet no memfile exists? Equivalently, how can system

88 DEUGHTFor Intermediates (3/1/65)

personnel start DEUGHT without the public memfile so that the store command can be
given to create the memfile? This is the purpose of the 'force option to DEUGHT: If
DEUGHT is started with the (operating system) command

DELIGHT -force

then it will start up without any memfile whatsoever and begin in a state in which the
barest minimum of commands, macros, etc., exist4. Before DEUGHT presents the "1> "
prompt to the terminal screen, however, it checks if a file exists called setup and if it
does, it is also automatically included.

The Setup Tile. Starting DEUGHT with the 'force option and having an appropriate
setup file, then, is how a memfile can be created from scratch. Suppose you want to
create a memfile called memplot which contains only the plot command (as well as the
minimum commands mentioned above). You would use the following setup file

include <plot>
store memplot
quit

and start DEUGHT with the -force option as seen below:

X DELIGHT.VNAIE -force
DELIGHT.VNAME: Beginning forced startup ...
Almost ready ...

Welcome to DELIGHT.VNAME

Storing into memplot ...
Goodbye Whoever-You_Are, It is 18:12:11, Date 01/29/85.

After the "Welcome" message, DEUGHT automatically includes the setup file, which
includes system file <plot>, performs the store into memfile memplot, and exits
DEUGHT with the quit statement. If you (or another user of your DEUGHT version) now
start DEUGHT with this memfile by typing

DELIGHT.VNAME memplot

then the plot command (as well as the minimum commands mentioned above) is avail
able to you immediately.

Of course, the memfile that most users will start from should contain many more
commands than just plot. Either you (as the one making the public memfile) can
include all desired commands individually as in the example setup file:

4 To be precise, all of the defines and procedures in system files <standpfs> and <stanstvf> arc avail
able in this miTOTmim state. In fact, DELIGHT, when started with the 'force option, simply pushes back the
statement include <siandefs> (which itself Includes file <stanstvf>).

DEUGHT For Intermediates (3/1/85) 67

include <call>
include <enter>
include <input>
include <output>
include <printv>
include <whatis>

store memfile
quit

or you can include one of a few standard system "setup" files that themselves Include
all the standard DEUGHT commands, macros, etc. Including file <macdefs> brings in
all the matrix macros such as matop, det, clip, fill, lineq, quadprrog, etc. Including file
<Esetup> brings in the matrix macros, all other standard DEUGHT commands, and all
optimization-related commands such as solve, run, initprob, testgrad, etc.8 Hence the
simplest setup file for creating the public memfile would be:

include <E3etup>
store <nemVNAME> 'Standard VNAME Memfile with Optimization'
quit

There are several other things that usually go into real setup files. These include:

• Includes for other files besides <Esetup>. These might be necessary, for example,
to implement version-specific commands such as for running a simulator for a
particular type of engineering design.

• A terminal command to set the default graphics terminal type to the most com
monly used terminal.

• Various store commands throughout the setup file that create incomplete
memfiles containing all that has been Rattle compiled up to that point. These
save you from having to remake the whole memfile in the event that DEUGHT
aborts; you simply restart DEUGHT from the latest successfully stored memfile
and include a scratch file in which you place the unprocessed portion of the setup
file. A good idea is to place identifiers on these store commands as in

store memtemp 'Finished <Simcmds> (INCOMPLETE MEMFILE)'

• set^gpHon commands to set various DEUGHT options. Two of particular impor
tance are set by the following commands:

act-option DLoptions "LineNunTrace = YES
set-option DLoptions -SaveLocals = YES

Throughout DELIGHT For Beginners [4] and this document, whenever an inter
rupt in Rattle execution is shown to occur, you can always type trace and see
what procedures have been called on what file line numbers. Since these line
numbers for every procedure take a bit of storage in a memfile, the default is to
not store line numbers; the first set^gptian above turns on their storage. Simi
larly, local variables, arrays, etc., of procedures are by default, not stored in the
DELIGHT internal symbol table and hence into a memfile; the second setjgption

5 There is no "setup" file for including just the matrix macros ar<d all standard commands since, after
all, DELIGHT is for optimization.

88 DEUGHTFar Intermediates (3/1/85)

above turns on their storage. You would want to place these statements after an
include <Esetup> but before any includes of files containing Rattle procedures
that need to be debugged.

• A solve command to presolve a particular optimization algorithm that will
definitely be used for all optimization in your DEUGHT version. An example of
this is shown below.

• A clearJime command, discussed in DELIGHT For Beginners, to reset all the
call-counts and the cpu time values to zero that are displayed by the display^time
command. This will avoid having the latter command display to an ordinary user
cpu times associated with things that occurred when the public memfile was
created; display_time should show the user's own cpu time only.

• A "%Z" to close the helper binary file. This is explained in [6]. Suffice it to say
here that if you are not generating your own help entries, the "%Z" will not cause
any problem if it is there.

There are two other matters that concern including files. First, instead of just
unconditionally including a file, it is a good idea to test whether some entity (pro
cedure, define, macro, etc.) created inside the file exists and include the file if it does
not. This is done using ifJfiOTTHERE, which has the syntax shown by the following
example:

if«NOTTHERE output-lo then include <output>

By using ifJflOTTHERE, you avoid having the same file included twice, since the first
inclusion would create the entity tested for. Second, files can be included with
vnclude_andjrint instead of with include. This causes the filename and the total
DEUGHT program execution time to be printed when the inclusion of the file first
begins. To determine how much cpu time was consumed during an include, this cpu
time would be subtracted from the next time. The includejmdjrint statement also
indents the filename if this file is included by the previous. For example, suppose we
have the following three files:

File t: include-and-print tl
include mv\ print t2

File tl: include .and ...print til
include„rmt\ -print tl2

File t2: (empty)

Then if we typed includejmdjnint t, we would see (except for different cpu times):

1> includr, and print t
including t (208sec)
including tl (209sec)
including til fellsec)
including tl2 (2l2sec)
including t2 (215sec)

DEUGHT For Intermediates (3/1/85) 69

From this output, you can immediately tell that file tl includes files til and tl2 and
that file t includes files tl and tZ This knowledge can be important in tracing down
compiler error messages.

We now present a complete setup file that includes several of the ideas discussed
above.

DELIGHT.SPICE memfile setup

store memfile 'The very beginning (INCOMPLETE MEMFILE)'

include-and-print <Esetup> ## Standard DELIGHT optimization setup,
terminal hp ## Set defaul t terminal.

set-option DLoptions "nnkevhelp=YES ## If "-nnkevhelp" option given,
turn on making binary help file.

ifJiOTTHERE dslv then include-and-print <ddisplay>
if-NOTTHERE interpolated-array then include-and-print <itparray>

store znsntemp 'Everything up to "use <3imall>" (INCOMPLETE MEMFILE)'

include-and-print <Sinaall> ## DELIGHT.SPICE Simulation Interface,
include-and-print <Simsckt> ## setckt ccnmand.
include-and-print <Simtryv> #£ tryv ccmmnd.

store memtemp 'Before algorithm (INCOMPLETE MEMFILE)'

set-option DLoptions ~LineNumTrace = YES
set-option DLoptions ~SaveLocals = YES

solve using Aidmlfd ## Feasible-direction-multicost algorithm
with lumped finite differences.

clear-lime ## Clear times for "display—lime".
SZ ## Close help file.

store <nsxSPICE> 'Spice Basic Memfile with Precompiled Phase I-11-III Algorithm'
quit

One final reminder, as pointed out in section 8.1, to make DEUGHT aware of new
routines being made built-in, file anames is used. Since this file is read by DEUGHT
during a forced startup, it should reside in the same directory where you run DEUGHT
to make you memfile.

8.6 Starting DELIGHT

As covered in the previous section, when DEUGHT is started with the -force option,
it automatically includes a file called setup. Similarly, when DEUGHT is started nor
mally (Le., without the -force option), it automatically includes file startup if it exists
just after the "Welcome to DEUGHT" message. This allows you to have commands exe
cute automatically which you would otherwise have to type when first starting DEUGHT.
One common entry in the startup file is a line such as usermname_is Pokey which tells
DEUGHT your name.

Another property of how DEUGHT is started has been alluded to in earlier subsec
tions of section 8. This concerns which memfile is used during a normal startup. The

70 DEUGHT For Intermediates (3/1/85)

rule is simple. First, if you specify a memfile as in

DELIGHT memfilename

then DEUGHT will read from the specified memfile. If you don't specify any memfile,
then DEUGHT will read from file memfile if it exists; if it does not exist, then DEUGHT
reads from file <memVNAME> where VNAME is substituted by the version name
declared in subroutine dvname (see section 8.3), e.g.f SPICE for DEUGHT.SPICE. For
this purpose, the basic DEUGHT version has version name BASIC. Thus, typing
DELIGHT alone, if there is no file -memfile, will restore from memfile <memBASIO
(and print the login message from file <lmgBASIO).

All of the preceding is summaried in the following table:

Starting DEUGHT

Command Option File Automati
cally Included

Memfile Used

Forced startup DEUGHT.VNAME -force setup (none)

Normal startup

DEUGHT.VNAME MemFileName

DEUGHT.VNAME

startup

startup

MemFileName

memfile

(or)
<memVNAME>

There are several other options that can be used when starting DEUGHT. These are
explained in the options sections of the help entry for DEUGHT (which may be obtained
by typing helpoptions DELIGHT while in DEUGHT) and are summarized below:

-echo Immediately turn on the echoing of all lines read by DEUGHT.

-force Start DEUGHT without any memfile, and automatically include file
setup (unless changed by the -1 option below).

-fix If the message "Bad file memfile" is seen, restarting DEUGHT with
this option will attempt to fix the bad addresses stored in the
memfile (see below).

-verbose Print out chatter showing what is going on during either a forced
or normal startup.

-makeheip Cause "%N", "%U", help lines in file setup (or a file included by it) to
generate the binary help file; without this option, these lines are
simply ignored.

DEUGHT For Intermediates (3/1/65) 71

-makevhelp Set an internal DEUGHT flag so that turning on help via
set-option DLoptions "makevhelpsYES

say, in a setup file, causes succeeding "%N", "%U", help lines to gen
erate a binary help file—just as if you had started DEUGHT with
the -makehelp option or did a

set-option DLoptions ~xnakehelp=YES
Thus, if set_gption DLoptions ^makevhelp- YES appears in a setup
file, it turns on the generation of a binary help file only if DEUGHT
was started with -makevhelp.

-trsorc Print the source directory for all <FILENAME> files opened, pro
ducing the same output as the whereis command presented in sec
tion 7.3.

-LXXXXX Substitute filename XXXXX for setup during a forced startup or for
startup during a normal startup.

The -echo, -verbose, and -trsorc options are useful for debugging a forced DEUGHT
startup. The -echo option will cause every single line read by DEUGHT to be echoed to
the screen; try it if you want to see and understand why making a memfile takes so
long!

The -verbose option is much less "verbose" than -echo; it simply prints out what is
going on internally during either type of DEUGHT startup. Below is shown its output for
a forced startup:

DELIGHT.VNAME -force -verbose
DELIGHT.VNAME: Beginning forced startup ...

-verbose: Reading files <ezops> and <exfuns>.
•verbose: Reading file <rrdata>.
-verbose: Reading file <rrfuns>.
-verbose: Declaring Rattle-access variables.
-verbose: Version-specific Rattle-access vars.
-verbose: Including file <standefs>.

Almost ready ...
-verbose: Including file <stanstuf>
Making public: stackf
Making public: pb-stackf
Making public: clear-stackf
•verbose: Including file <helpmaca>

Welcome to DELIGHT.VNAME

1> quit
Goodbye Whoever-You-Are, It is 18:34:32, Date 02/03/85.

The fact DEUGHT comes back with its prompt above implies that there is not a setup
file in the present directory (or at least, the setup file does not contain its own quit
command).

Before the addition of the -fix option to DEUGHT, almost every time you relinked the
DEUGHT executable, you needed to make a new memfile. This is because a memfile
has Fortran addresses from an internal dynamic memory manager stored into it and
when you relink, these stored addresses of fixed DEUGHT internal variables probably
change. Hence, when you try to start DEUGHT from the bad memfile, you see some
thing like the following:

72 DEUGHT For Intermediates (3/1 /85)

DELIGHT.VNAHE
DELIGHT.VNAME: Restoring from omemVNAME> ...
DELIGHT.VNAME: BAD file <nanVNAME> ! (1027 more)

The number 1027 is not important but shows the difference between the new address of
a particular DEUGHT variable and its address as stored in the memfile. The word
"more" above means that the new address is greater, i.e.. that the DEUGHT executable
grew by 1027 integer "words".

With the -fix option, however, DEUGHT attempts to fix (update) the addresses
stored in the memfile as they are read. Thus, after seeing the "BAD file <memVNAME>"
message, you can try to fix the memfile by using

DELIGHT.VNAME -fix
DELIGHT. VNAME: Restoring f rem 4nsmVNAME> ...
DELIGHT: "<nanVNAMB>" is BAD (1027 more). Beginning fix ...
Identifier: Standard VNAME Memfile with Optimization

••••• Welcome to DELIGHT.VNAME •••••

1>

If after this, DEUGHT either does not give a prompt or it does but aborts immediately
or otherwise acts strangely, then the -fix option has failed and a new memfile must be
made. This occurs, for example, if the basic DEUGHT common blocks change or if you
add or remove variables from your subroutine memfio (see section 8.3).

The -IXXXXX option, for including another file other than file setup during a forced
startup, allows you to have several different setup files. One could create a complete
memfile while others, to decrease the time required to make the memfile, could create
only partial memfiles, that is, without all the necessary files included. These partial
memfiles would usually be for debugging (a built-in routine, for example). The -IXXXXX
option is also useful during a normal startup to simulate "batch-like" operation of
DEUGHT. For example, suppose file temp5 contained some sequence of commands
whose execution could occur non-interactively such as:

echo-io-to temp5output
reaxLmatriT ...
matop ...
printv ...
echo-io-end
quit

Then starting DEUGHT using

DELIGHT -Itemp5

would cause file temp5 to be included automatically. If your operating system allowed
this command to be entered into a "batch" queue, then DEUGHT would execute the
commands in file temp5 without user interaction.

DEUGHT For Intermediates (3/1/85) 73

8.7 Debugging Added Built-in Routines

After you've linked your new DEUGHT version together and created a memfile
according to sections 8.1 and 8.5, you are ready to see if your new built-in routines
work. For the example shown in section 8.1, they could be called directly as in either
of the following:

1> FuncExamp(5)
1> print FuncExanp(7)

If your built-in routines did not print anything to the screen, the only way to tell if they
were working would be to check the values of any arguments or the function value
returned. As detailed in section 7.2.3, you can set variable pdebug^to aid in the debug
ging process:

1> pdrhng = 3
1> FuncBnnp(7)
«-i » builtn: ENTERING "FuncExamp", funcno=1001 nergs=l

» builtn: FIRST VALUE OF EACH (REAL) ARG:
Is 7.000000
« builtn: RETURNING FROM "FuncExamp", funcno=1001
« builtn: RETURNED first value of each arg:
1= 7.000000

In a real debugging situation, you would examine carefully the values returned above.
Function number 1001 tells you that this is the first function in abuilt. (Similarly, 2001
would be for the first function in ubuilt, mentioned at the end of section 8.1.)

A very important problem when debugging built-in routines is what to do when one
of them gets "hung", Le., goes into an infinite loop and does not return to Rattle execu
tion. In this case, pressing the special interrupt ("break") key twice to generate a hard
interrupt (see [4]) will not suspend execution in the built-in routine. Basically, there is
no way to suspend such infinite loops; DEUGHTmust be aborted in some manner, addi
tional print statements added inside the culprit routine, DEUGHT relinked, and possi
ble a new memfile created. However, to aid in tracing down the bug, the hard interrupt
does execute a trace command so you can at least see what Rattle routines are
involved and where the problem is in terms of Rattle execution. This is shown in the
following trivial example in which built-in function sdelay has been used to simulate a
hung built-in routine by delaying execution for 10 seconds:

1> function inner
1) •delay(lO)
1> function outer

1] inner()
1> outer() (bnmdiately press the "break" key twice)

WARNING: A second interrupt has been received before DELIGHT
has detected the first ... DELIGHT is possibly hung
in a built-in routine. A "trace" follows:

74 DEUGHT For Intermediates (3/1/85)

Interrupted IN procedure
inner (Input from the terminal)

Called by outer (Input from the terminal)

CONTINUING EXECUTION ...

Interrupt...
1> reset

1>

If these procedures had been Rattle compiled by including them from a file, then the
rroce above would have shown the usual statement line numbers in the procedures.

8.8 General Guidelines for Creating a DELIGHT Version

This section contains a set of stylistic guidelines that have proven themselves well in
creating new DEUGHT versions as well as in implementing the original DEUGHT system.

1. When creating Rattle procedures for various version-specific needs, make all
related procedures have names that begin with a 2- or 3-ietter (unused) acro
nym such as MTX_for matrix routines, ©Cfor extended graphics routines, etc.
For example, you might have graphics procedures GKjsddbox^ GX^paintscreen^
etc. These names make it highly unlikely that your new names .will clash with
any existing procedure names or with names used by a user of your DEUGHT
version.

2. Avoid global variables when possible since they increase the possibility of name
clashes with local variables of procedures created by users of your DELIGHT ver
sion.

3. For arrays and variables that are to be shared among several procedures in
different files, set up a separate file containing a definition of this "data base",
along with complete documentation in comments. This file is then included first
in your setup file. For example, part of the data base associated with the Phase
I-IMQ Method of Feasible Directions optimization algorithm appears:

tmwm&mm data base mummm*

array Xjoame_(0,0), X_scale-(0), Xjrariation_(0), X_init^0),
Smn_good_f0),)farin_bad_/0), Xmn_type—fO),
%BX_good_(0), XsaxJsad-lO), Xmx_type_(0),
Ifcost-good-jO), Ifcost-badL(0), lfcost_name-(0,0),
Hcost min r>r mnr (0)

create 0Lcount_ # Used in <usrdefs2> and <Sin»v>.
create wMaxInittfoesh- # Haximm of the initially number meshes.
create Heshpts_updated_ # TRUE if the mesh points in arrays

Fineq-msshpts—0 or Fbrost-msshpta—O have
been updated (variable grid spacing);
used and reset in <Egbmupdt>

DEUGHT For Intermediates (3/1/85) 75

array present^roc-JPMAXPOKSIZE) # Packed string: present procedure name.

create mchan— # Output logical unit number for temporary file
| shared by objective-^), for-every-j(), and
constraint-^).

define (HARD.l) # Possible values for Xnin-Jtype-O, Xmac_iype-(),
define (S0FT.2) # IneqJtypM)• and Fineq_iype_().

define (MINIMIZE, 1) # Possible values for Hcost_min_or_nHi__().
define (MAXIMIZE, 2)

define (LINEAR, 1) # Possible values for WFMspacing_(), 19FIspacing_()
define (LOGARITHMIC,2) # for functional constraints.

4. "When expanding an array dynamically, use an increment greater than one for
efficiency. For example, suppose you are reading in a system description from a
user and you don't know a priori how many "blocks" he will enter. Then an
inefficient piece of Rattle code might appear

blockcount = blockcount + 1
array BlockPtr(blockcount)
BlockPtr(blockcount) = ...

while it would be far more efficient to use

blockcount = blockcount +• 1
if (blockcount > arydim(BlockPtr))

array BlockPtr(blockcount+20)
BlockPtr(blockcount) = ...

Here, by expanding array BlockPtr by 20 instead of by 1, there are 20 times
fewer expansions of the array then before (though there might possible be 19
wasted array elements at worst case).

5. Always zero the size of temporary local arrays at the bottom of a procedure, as
shown in the following:

procedure ezamp (
array nork(lOO)

array nork(0)
1

This avoids having these arrays stored into a memfile if the memfile is stored
after a procedure without the last array statement above executes.

8. Do not declare formal arrays that are never accessed with subscripts since it
creates unnecessary run-time overhead. For example in the following, even
though Need and NoNeed are both arrays when passed, the latter does not need
to be declared since it is never subscripted in the body of the procedure:

procedure proc (Need, nl, NoNeed, n2) (
array Need(nl)
array NoNeed(n2) (THIS DECLARATION IS NOT NEEDED.)
for i s 1 to nl

otherproc (Need(i), NoNeed, n2)

7. Never remove (see DELIGHT For Beginners [4] for a discussion of the remove

78 DEUGHT For Intermediates (3/1/85)

command) a buggy procedure before recompiling it since this will distroy all
calls to it in other procedures. This is because the other procedures will, of
sorts, still be calling the removed procedure's Rattle intermediate code. For
example, if you had the two procedures:

procedure procl

procedure proc2
procl()

and you found bugs in procedure procl, removing it with the remove command
and then redeclaring it would leave procedure proc2 still calling the removed
version of proc1.

8. For portability reasons (assuming that some day you might want to port your
DEUGHT version to another computer), always limit your filenames to a max
imum of eight characters. Moreover, the names should not contain any special
characters other than letters and digits and should begin with a letter. If your
operating system requires, for example, all filenames to contain, say, a dot and
a filetype extension, you can still use in your setup file the filenames without the
dot and extension; a DEUGHT internal machine-dependent primitive should have
been set up so that the required dot is added automatically. Thus, having

include-and-print clrdata

in your setup file might actually cause file clrdata.ascii to be included.

9. To give you an idea of a good directory structure for setting up your DEUGHT
version, here is one that has been used for DEUGHT.SPICE:

doc/

make/

Guide

DELIGHT.VNAME
Makefile
anames

memfile
openhdtl
setup

src/

src/display/
Makefile
displa.o
displa.r

arc/include/

cshare1
cshare2

(Docummtation directory)
(Beginners Ouide)

(Directory uhere DELICUT
is loaded end memfile wade)

(Executable file)
(Unix Makefile)
(Abuilt.r Battle rurms)
(Created memfile)
(Openhdtl file)
(Setup file)

(Directory containing all source)
(Subdirectory for display comnand)
(Unix Makefile)
(Compiler output object file)
(Batfor source file for display
catutand)

(Subdirectory for shared
"included" files.)

(First shored file)
(Second shared file)

DEUGHT For Intermediates (3/1/85)

src/interface/ (Subdirectory for interface to
simulator.)

Makefile (Unix Makefile)
output. f (Interface Fortran source file)
output.o (Compiler output object file)
runsim.f (Interface Fortran source file)
runs into (Compiler output object file)

src/main/ (Subdirectory for main version'
specific source files)

Makefile (Unix Makefile)
abuilt.o (Files discussed in this document)
abuilt.r
dvdecs.o
dvdecs.r
dvexit.o ,

dvexi t.r
dvini t.o
dvinit.r
dvnams.o
dvname.r
memfio.o

memfio.r
src/similator/ (Subdirectory for actual simulator

source files
Makefile (Unix Makefi le)
excute.f (Sxnulator Fortran source file)
ezcute.o (Compiler output object file)
... (More source/object pairs)

test/ (Directory of Battle test files
for testing DELIGHT version)

testfilel (First test file)
testfile2 (Second test file)

77

Epilogue

Before setting this guide aside, you should be reminded of what temporary files have
been created in your current directory (and thus can be removed) throughout the
course of performing the boldface commands in this guide. They are files junk, junkl,
junk2, junk3, junk 12, junkxy, and myfile.

Acknowledgements

For their tremendous assistance in reviewing this user's guide, we give special
thanks to Mark Austin, Andrew Heunis, Elijah Polak, Alberto Sangiovanni Vincentelli,
and Stephen Wuu.

This work was supported by the National Science Foundation (NSF) under grant
ECS-8121149, by the Air Force Office of Scientific Research (AFOSR) United States Air
Force Contract No. AF0SR-83-0361, by the Office of Naval Research (ONR) under con
tract N00014-83-K-0602, by Microelectronics Innovation and Computer Research Oppor
tunities (MICRO) under contract N00039-83-C-0107, and by a grant from the Semicon-

78 DEUGHT For Intermediates (3/1/85)

ductor Products Division of the Harris Corporation.

References

[1] A. V. Aho and J. D. UUman. Principles of Compiler Design, Addison-Wesley, Read
ing. Mass. (1977).

[2] B. W. Kernighan, "RATFOR—A Preprocessor for a Rational Fortran,"
Software—Practice and Experience, (October 1975).

[3] B. W. Kernighan and D. M. Ritchie, 77ie CProgramming Language, Prentice-Hall,
Englewood Cliffs, NewJersey (1978).

[4] W. T. Nye and A. L Tits, "DEUGHT for Beginners," Memo No. UCB/ERL M82/55,
Electronics Research Laboratory, University of California, Berkeley, California
(July 1982).

[5] W. T. Nye, DELIGHT: An Interactive System for Optimization-Based Engineering
Design, Ph.D. Dissertation, Department of Electrical Engineering and Computer Sci
ences, University of California, Berkeley, California (June 1983).

[6] W. T. Nye, The Helper Facility, Department of Electrical Engineering and Com
puter Sciences, University of California, Berkeley, California (June 1984).

DEUGHT For Intermediates (3/1 /85) 79

Index

©system 52
ABORTABORTABORTmessage 51
aborting on numeric overflow 50
abuilt subroutine 56

accessing Fortran variables in Rattle 58
adjugate keyword to MatrixFunc command 39
anames file 56, 69
<anspromp> file 24
answer_to_prompt procedure 24
answerJtojprompt modes 26
array out-of-bounds run-time error 44
Assignment Continuation Convention 42
Auto-Pushback Convention 15

backslash character 4, 28
BASIC DEUGHT version 8

batch mode operation of DEUGHT 73
binary help files 5, 8
bos command 52

C language 58
clearmtime command 68
cloze built-in routine 29, 48
Colon Convention in routine answer^tojprompt 26
commands:

box 52

clearmJime 88
display doptions 14
display time 68
echo 33, 43
enter 46

hardreset 51

help ; 5
helpall 5
helpexamples 5, 8
helpnewer 5, 7
helpnext 5, 8
helpoptions 5, 8
helpsubject * 7
helpsubject 5, 6, 7
helpusage 5, 8
cinclude^gndjprint 68
include-files 33
ListEdit 10

matop 50

80 DEUGHT For Intermediates (3/1/85)

MatrixFunc 39

memdate 65

pbf 32,37
plot 18
printfancy 13
print_scaled 12
prompt 24
reset_gpenhdtl 29
store 54, 64

remove 76

restore 54, 64

resume 26

rewind 30

runprint 53
setjfption 13
store 54

suspend 48
terminal 67

trace 45,67, 73

userjnamejjs 70
whatis 43, 52

Whatis 52

whereis 52

commands, creating new 17
compiler, what is a 35
compiler-reported errors 41
Convention

Auto-Pushback 15

Double-Quote 10
<FILENAME> 27

No-Quote 10
</PATTERN/FILENAME> 28
procedure naming 17

cpytoeof built-in routine 48
CREATEFILE define 30

creating commands 17
creating new DEUGHT versions 54
database of variable declarations 74

debugger 50
debugging Rattle execution 40
decglo subroutine 60
(feci subroutine 59

decial subroutine v 59

deciaJS subroutine 59

decia3 subroutine 59

DEUGHT For Intermediates (3/1/85) 81

deer subroutine 59

dacral subroutine 59

decraJS subroutine 59

decra3 subroutine 59

define enhancements 9

define options 11
DEUGHT For Beginners 4
DEUGHT versions 54

DEUGHT.MIMO 8,54

DEUGHT.SPICE 8,54

DEUGHT.VNAME , 54
directory, meaning of 27
display doptions command 14
display_time command 68
divide-by-zero run-time error 50
DLoptions define 50
DLoptions option ~Abort OnOuerfiow 50
Double-Quote Convention 10
double-precision arguments to built-in routines 58
double-precision fioating-point numbers 56
dvdecs subroutine 58, 61

dvexit subroutine 61

duinii subroutine 60, 61

duname subroutine .". 61

echo command 33, 43

echoing input lines 44
enter command 46

environments 52

ERROR define 30

escape character 4
<Esetup> GLe 67
exedit built-in routine 48

expression continuation 42
extensibility of DEUGHT 35
field descriptors in answerJtoprompt first argument 24
file input and output 27
files:

<anspromp> 24
<Esetup> 67
KHsBASIO 8

<HsVNAME> 62

<incfiles> 33
<lmgWAME> 62
<macdefs> 67
<memVNAME> 62

82 DEUGHT For Intermediates (3/1/65)

<Tmatfunc> 40
<Topuniq> 32
<vport4> •. 20

file

binary help 5, 8
help 8
openhdtl 27, 52
scratch 31

temporary, scratch 31
unique, temporary, scratch 31

<FILENAME> Convention 27

filenames, portability considerations for 76
filprm built-in routine 34
fioating-point exceptions 44
Fortran language 55
GETJ.ETTER define 24

GETJfAME define 24
GETJIUMBER define 25
gtoken built-in routine 35
hardreset command 51

help command 5
help file 8
helpall command 5
helper 4, 9
helpexamples command 5, 8
helpnewer command 5, 7
helpnext command 5, 8
helpoptions command 5, 8
helpsubject * command 7
helpsubject command 5, 8, 7
helpusage command 5, 8
<HsBASIO helper file 8
<HsVNAME> version-specific file 62
ieopyr built-in routine 56
ifJiOTTHERE statement 68
I/O (input/output) 22
<incfiles> file 33
cinclude_gnd^frint command 68
include-files command 33
inverse keyword to MatrixFunc command 39
iround built-in routine 56

lexical analyzer part of compiler 35
libraries, DEUGHT object file 64
Line Continuation Convention 4

ListEdit command 10

DEUGHT For Intermediates (3/1/85) 83

list option '^numbers -. 46

<lmgVNAME> version-specific file 62
load/linkage phase 48
load/linking DEUGHT 64
local procedure variables .«. 46
logical unit number « 29
<maccfe/5> file 67
macros „ 34, 37

making a new memfile « 55, 64
mofop command 50
MatrixFunc command .. 39

MAXREAL define 50

memdate command 65

memfiles 54

memfio subroutine 61, 62, 72
memfio routines for reading/writing to/from a memfile: 63

rbini 63
rbinia 83

rbinr 63

rbinra , 63
wbini 83

wbinia 63

wbinr 63

wbinra 83

<memWAME> version-specific file 62
multiline defines 10

newline character 4

NEWUNE(character) define 37
No-Quote Convention 10
numeric overflow 50

object file libraries 64
online help system 5
openhdtl file 26, 51
openp built-in routine 26,.28, 47, 50
optional define arguments 10
opuniq built-in routine 31
overflow, aborting on numeric 50
parser 35

passing arguments to built-in routines 56
</PATTERN/FILENAME> Convention 28
pbdump built-in routine 42
pbf command 32, 37
pde6uo-.variable 48, 58, 73
Phase I-II-m Method of Feasible Directions 74
PI define 35

64 DEUGHT For Intermediates (3/1/85)

plot command 18
plot options:

"-erase 20

intxlabels and ~intylabels 20
~logx 22
^origin 22
^verbose and ~axisfirst 22
^vsexpr 22
~xmin and ~xmax 20

~xarigin and ~yorigin 22
pool of nonlocal Rattle variables 56
position of define arguments 53
position of define options 53
Present Input 29
Present Output 29
prinfd built-in routine 47
printf-like field descriptors 24
printfancy command 13
print_scaled command 12
procedure naming conventions 17
procedures vs multiline defines 18
program debugger 50
prompt command 24
push-back mechanism 35
rbini subroutine 63

rbinia subroutine 63

rbinr subroutine 63

rbinra subroutine 63

READMODE define 30

reset-openhdtl command 29
store command 54, 64

rarray Fortran double-precision array 55
rarrayfretp) for returning function values 56
rcopyi built-in routine 56
remove command 76

restore command 54, 64

resume command 26

rewind command 30

richan built-in routine 29, 47

rochan built-in routine 29

RUN-TIME ERROR message 50
run-time errors 44

runprint command 53
scanner part of compiler 35
scratch files and routine opuniq 31

DEUGHT For Intermediates (3/1 /85) 85

sdelaybuilt-in routine 30, 48
setjtption command 13
setup file 86
sichan built-in routine 30, 48
simulator_flags define 16
sochan built-in routine 29
source program to a compiler 35
standard places for file locations 27
starting DEUGHT TO
startup file 70
store command 84
<subject> help entry 8
suspend command 48
symbol table of DEUGHT 52
syntax analyzer part of compiler 35
temporary, scratch files and routine opuniq 31
terminal command 67
terminal type 19
<7>7uxf/unc>file 40
token ~ 35
<Topuniq> file 32
rroce output and debugging 17
rroce command 45, 67, 73
iroce<j3Us/ibacfc_variable 42
unique, temporary, scratch files and routine opuniq 31
UNK. references to .4,28^34,.5Q,.51, 52. 58
user_name.js command 70
variable declaration routines: 59

decglo 60
deci 59
decial 59

deciaJS 59
deciaS 59
deer 59
decral 59
decraS 59
decra3 59

version-specific files: 62
<lmgVNAME> 62
<memVNAME> 62
<HsVNAME> 62

version-specific routines: 61
dvdecs 58, 61
dvexit 61

dvinii 60, 61

66 DEUGHT ForIntermediates (3/1 /85)

duname 61
memfio •*&• 62, 72

viewport ^°
<vport4>file 20
wbini subroutine • 63
wbinia subroutine 63
wbinr subroutine 63
wbinra subroutine 63
whatis command 43, 52
Whatis command 52
whereis command 52
work work array 56
WRITEMODE define 30
xyinv routine 48
-echo DEUGHT option 71
-fix DEUGHT option 71, 72
-force DEUGHT option 66, 71
-IXXXXX DEUGHT option 71. 72
-makehelp DEUGHT option 71
-makevhelp DEUGHT option » 71
-trsorc DEUGHT option 71
~AbortOnOuerfiow DLoptions option 50
~erose plot option 20
^intxlabels and ~intylabels plot options 20
~logx plot option 22
"-numbers list option 46
^origin plot option 22
"-verbose and ~axisfirst plot options 22
"vsexpr plotoption 22
"xmin and ~xmax plot options 20
"xorigin and"yorigin plot options 22
%Z helper macro 68

	Copyright noticE 1985
	ERL-85-32

