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Abstract

Several interactive graphics routines have been developed that enhance the
routing capabilities of the Hawk/Squid package. The Hawk editor and underly
ing Squid database are suited for the design and development of custom
integrated circuits. Hawk supports multiple windows for the editing and
representation of multiple views of a circuit. Interactive routing routines have
been added to the Hawk/Squid package to automate time consuming routing
tasks typical in IC layout. These routines are described in this report. In addi
tion to three bus-oriented routers, an interface to the channel router YACR2 was
implemented to provide interactive channel routing in Hawk. The routing rou
tines used by the routers are parameterized so that layout design rules are
satisfied and specified at run time. Each routing routine is described in this
report. One of the routines is presented in complete detail as an example for
future integration of tools within the Kawk/Squid framework.
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CHAPTER 1

Introduction

Several interactive routing routines are described in this report. These routers are

designed to speed up the floor-plan level physical routing of integrated circuits, a

bottleneck in custom and semi-custom IC design. Different aspects of the routers and

details of their development are presented.

First, the CAD tool environment will be examined as it applies to the tool users

and the tool developers. The routing tools were installed into the Hawk/Squid[l]

package, an IC CAD framework. They were developed in close conjunction with IC

designers working in the Hawk/Squid framework to develop and complete a chip

design. This provided valuable input and feedback to tool development from the users

of the tools. Each router was designed to automate a recurrent routing chore in chip-

level layout, as evident in the routing of the CMOS implementation of the SOAR

(Smalltalk on a risc)[2.3]. In Chapter 2. the CAD environment surrounding the routers

is described.

In Chapter 3. the requirements of the routers are presented. Each router is

described functionally. Three of the routers are designed to automate bus routing, and

a fourth interactive routine provides an interface to the channel router YACR2[4]. The

routing design rules used by the routines are parameterized so that the routers may be

invoked with a set of design rules for almost any technology. The rules file that con

tains the design rule specifications is also described.

In Chapter 4. the mechanism of installing a routine into the Hawk/Squid frame

work is described. One of the routing routines is used as a detailed example for the

future integration of CAD tools into Hawk/Squid. In addition, the Hawk/YACR2



interface is described and hints for writing and debugging these client routines are

delineated.

Before concluding in Chapter 6, comments on the Hawk/Squid framework are

given in Chapter 5.



CHAPTER 2

Routing Problem Definition and Analysis

As the scale of integration of VLSI circuits increases, the physical layout of a chip

at a graphics editor becomes an increasingly unmanageable task. Many routing tasks

that are repetitive are well suited for automation but editing tools often do not satisfy

the needs of the custom IC designer. Large regions in a custom or semi-custom IC layout

contain bus and signal routing. When routing an entire chip, the capabilities of the

layout editor must exceed that of placing one geometry at a time, because the layout

must frequently be updated to reflect the revisions inherent in a maturing design.

Layout and design verification can be accelerated with computer aids; the guided rout

ing toolbox was developed to assist in this floorplan layout of integrated circuits. In

this chapter, the issues effecting the development of the guided routers are studied

including:

(1) the Hawk/Squid layout environment.

(2) the motivation behind the project: the routing problem

(3) the alternatives considered for its solution.

(4) the design loop that uses chip-level layout, and

(5) the layout of SOAR.

2.1. Hawk and Squid.

The Hawk viewport graphics editor and underlying Squid database comprise an IC

design jramework upon which both CAD engineers and IC designers can build design

systems. The package enables editing and management of the many different circuit

representations, or circuit views of a design such as the physical and schematic views of



a cell. The design is entered and edited at a graphics terminal by invoking Hawk. The

Squid database manages the underlying storage and retrieval of the hierarchical design

being constructed.

In a hierarchical design, cells may be embedded in larger cells to reflect design

partitioning. For example, several copies, or instances, of a nand gate may be called or

placed, in an ALU cell. In the Squid database, the IC design is stored in the UNIX file

system as described in [lj. In addition to circuit representations, non-circuit represen

tations of a design may also be created and managed in the Hawk/Squid framework.

The non-circuit representations, or stranger views, are not regulated or supported

directly by the package, but may be manipulated by client routines that reside inside

the Hawk/Squid framework. An example of a stranger view is a simulation view of a

design, such as a textual SPICE input file that is derived from the extraction of a physi

cal layout description or from the Squid netlist data structure.

The focus of this project has been on the enhancement of the physical layout

capabilities of the Hawk graphics editor through the installation of the routing rou

tines as client routines in the framework. Hawk/Squid supports physical layout with

the following features: invocation of commands via keyboard and graphical input,

pop-up windows, hierarchical menus, and multiple windows displaying multiple

objects. From the menu or key commands, the user can create, edit, and save the cells

being displayed in Hawk's multiple windows. In those windows, he can place, stretch,

copy, and move geometries on different layers of a physical view to produce the mask

layout of a chip. The system provides the access routines to manipulate geometries and

cells. If a client routine is not linked to the Hawk load module prior to execution

time, then during execution, the object file is dynamically linked and loaded when a

command in the object file is invoked. A client tool is implemented with one of these

subroutine commands. Tools may be integrated with the system through interface rou-



tines supplied by the package. The routers were added to the system using the inter

face routines.

2.2. Project Motivation.

At the cell level, the ability to place and edit geometry rectangles is satisfied by

the Hawk editor with such commands as the rectangle, terminal, move, copy, and place

commands[5]. Above the cell level, there were no tools integrated with the package to

reduce the magnitude of time needed to complete the placement and routing of those

circuit cells at the floorplan level. There is a general need in IC design for simple and

incremental routing tools to ease the bottleneck that floorplan-level routing imposes on

VLSI design. The layout and simulation of the CMOS SOAR chip was undertaken to

drive the development and refinement of Hawk's layout facilities and test the

effectiveness of a unified circuit design framework. Before a complex chip floorplan

layout could be performed in a reasonable amount of time in the Hawk 'Squid frame

work, chip-level routing tools had to be added. The routing needs were ranked by

priority. The SOAR project's immediate need for routers prohibited the development of

a full place and route system: the tools created were those that automated low-level

commonly repeated tasks and required a short design and development period. A com

plete routing system would be useless to the SOAR project if the tool took a year to

develop because chip routing would already have been completed. In a dynamic design

loop, incremental routers are favored.

23. Design Loop.

To understand how the layout effort fits into the process of executing a VLSI

design, one must look at a design loop of an IC:
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In industry, design verification is often performed before the chip is committed to

a specific layout. High performance industrial IC's such as Hewlett-Packard's FOCUS[6]

chip are completely designed and simulated at the cell layout level before floorplan

layout is performed. When a tradeoff is made between high performance and a short

design time, designs may be assembled from pre-designed and pre-simulated cell

libraries into either standard cell or gate array layouts.

In UC Berkeley's IC design environment, layout-verification and design-verification

is performed after physical circuit cells are designed and placed in a layout. In SOAR,

no cell library existed from which to select pre-designed and pre-simulated cells. Cells

such as latches, nand gates, nor gates, and registers were built up in a SOAR library

and used in the chip design wherever possible. After cell design, placement and rout

ing was complicated by the irregular shape of circuit modules typical in a full-custom

design like SOAR. Circuit extractors, layout rule checkers and other simulation tools

use the circuit description derived from this physical layout. The results of these

simulation and verification tools reveal layout errors and design flaws that require

changes in the layout. The errors are then fixed and the design is resimulated. The

design loop of "layout, simulation, layout. . . ." when fixing an error in the SOAR chip

includes:

(1) approximately 100 CPU minutes for converting Squid to the intermediate format

CIF[7]. (This step is a historical artifact of working with CIF in earlier designs.

When all of the simulation tools work directly with Squid, this step will be

reduced significantly.)

(2) 100 minutes of CPU time for circuit extraction.

(3) approximately 15 CPU minutes on a VAX 11/780 running a 40 cycleESI.m[2] simu

lation.
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(4) time spent finding an error and its solution.

(5) and time spent making the layout change.

The designer iterates in this verification loop until the design is error free. In

SOAR, approximately 30 of these verification iterations were performed, each requiring

changes in the circuit layout. The routers help minimize design verification time by

providing the ability to make incremental changes in a layout easily. The designer

should be encouraged to make performance enhancement changes based on the results

of simulation: it should not be a painful task to alter a layout. If it were necessary to

re-run a global place and route program just to alter one region of a chip, the

verification loop would be lengthened considerably. It is desirable to have the ability

to interactively and incrementally change only certain regions of a layout.

2.4. Alternatives.

Given sufficient development time, however, it is difficult to create a place and

route package that captures the intents and intelligence of the custom IC designer.

Expressing electrical and circuit constraints to a global router is difficult. For example,

routing heuristics may split a bus and route its sub-busses differently. The designer

knows that the resulting signal timing skew is unacceptable. Global routers may not

allow the designer the freedom to alter regions in a routing solution or they may slow

down a critical clock signal with routing runs on the slow layer. When control of a

router is only through initial circuit placement, it is not always obvious how altering

one circuit's placement at the input will impact a router's solution. Changing a

module's size or placement may change the entire route, creating routing problems else

where in the chip. When the designer can express layout specifications in a rule-based

or constraint-oriented format, the router must internally rank the priority of those

constraints. There is no guarantee that the router will satisfy them acceptably or at

all. In very large designs, a limit on chip area may impose a hard constraint on routing



area: global routers may be simply unable to solve the routing problem in the space

allotted.

If automatic routing tools were integrated into the package, yet unable to com

plete a route given the routing constraints, routing would have to be performed incre

mentally by the designer. The designer then needs a set of tools to assist in custom

routing. The routines in the routing toolbox provide the intermediate routing capabil

ity between placing the routing geometries one at a time and routing the entire chip

automatically.

2.5. Routing for SOAR.

The CMOS SOAR floorplan-level routing effort drove the development of the guided

routing commands. SOAR's chip dimensions are 0.8cm. x 0.9cm. It contains roughly

34.000 transistors. It was through extensive interaction with the CMOS SOAR team that

the tools were developed. Complaints about tedious tasks prompted the design of the

several of the commands and feedback about developing tools were essential to the

evolution of a tool's features. The tools were created in response to the designers using

the system to maximize the utility of the tools being developed.

SOAR routing involves bus routing and a considerable amount of random signal

routing. Commonly repeated tasks in the SOAR layout were automated in the routing

toolbox to expedite chip layout. The line command was developed first. This com

mand enables the user to draw a Manhattan-jogged wire by pointing to the succession

of jog points. The wire command cuts the layout time of wires by significantly reduc

ing the pointing events needed to place a wire. An extension of the wire command is a

pitch change command that automates a change in the pitch between the wires in a

bus. By hand, this is an error-prone and time-consuming task. The pitch change,

cable and LTurn commands allow the user to manipulate busses of geometries

quickly.
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The routing tools influenced the SOAR chip floorplan. The interface to the YACR2

channel router provided fast rip-up and re-route capability, encouraging its use when

routing control and logic regions: a channel area provides a good medium to route this

random logic which is subject to change and whose nets are varied in destination.

Many PLA's and NAND gates in the control section were placed on the border of rec

tangular channel regions and routed using the YACR2.

The tools in the routing toolbox do not perform the entire routing task. They are

designed to fit into the layout environment by replacing some commonly-repeated

routing event sequences with menu-driven routines. The layout artist guides the rou

tines by interactively relaying his intent to the tools. It is therefore the designer, not a

heuristic algorithm that is architecting the interconnection topography.



CHAPTER 3

Routers in the Toolbox

In this chapter, the routers in the toolbox are described from the user's perspec

tive. First the routing requirements are reviewed. Then each router is described with

example routes, and finally the design rule file is described. In this file, the routing

design rule parameters used by the routines are specified.

3.1. Requirements of the Routers.

The routers described in this chapter fulfill the requirements of the designer for

interactive layout. They are invoked via menu selection from the Hawk viewport

graphics editor. The commands are highly-interactive: the editor prompts the designer

throughout the routing process. L'pon completion of the route, the solution that the

router returns is usually the route that the designer would have drawn himself had he

placed every rectangle. The intent of the routing tools is to help produce an efficient

layout quickly by automating repetitive steps in the layout process. The designer

guides routes by specifying "control points" when prompted.

The routers exploit the interactive Hawk environment by reporting pertinent

diagnostics and routing information to the user. The YACR2 channel router interface

reports such information as the name of the channel's longest net, any signal pin that

does not have a matching pin in the channel, and whether the channel width should be

grown or shrunk based on the channel's density. In the cable route, the user is notified

if there is not a one-to-one correspondence between the initial and final terminals in

the cable route. Pertinent information is reported during the course of the route and

saved in a file for later reference. In the past, some CAD routing tools would just say

"sorry" when a route was in error or could not be completed by the algorithm. The

11
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purpose of the routing toolbox is to help the layout artist in every possible way. The

detailed and informative diagnostics produced by the routers described here help keep

the designer on the right track.

The routers emulate the designer's routing strategies. The cable and channel

routers have a preferred routing layer and maximize runs on that preferred layer.

While making jogs, the pitch change and the cable commands route wires at the

minimum design rule spacing. The routing routines essentially return the route that

the designer would have constructed had he routed the region rectangle by rectangle.

Each routing routine creates a cell master filled with the routing solution's

geometries. A pitch change. LTurn. cable route, or channel route instance of the master

is placed in the cell being edited in Hawk. Placing the geometries hierarchically as a

cell, rather than placing fiat geometries saves the context of the route. The entire rout

ing cell may then easily be manipulated or deleted as routes are re-run. Selecting and

deleting flattened geometries slows down the design verification loop.

The Hawk viewport manager may be invoked under various layout technologies.

Current technologies in use at UC Berkeley are the CMOS-PW and the NMOS fabrication

technologies. Each technology has its own layout design spacing rules and routing

layers. The routing routines are not constrained to a particular technology-dependent

set of rules and layers. They are flexible enough to route between any two layers of a

particular technology. The spacing rules and routing layers are assigned at run time

rather than at the compile time of the routers. While a particular layout and design

style may employ only a subset of allowed routing strategies, the routers provide the

mechanism to route in any number of ways.

The ".cadre" file resides in the user's home directory and stores tool-specific

information in the UC Berkeley CAD environment. Each ".cadre" file is divided into

several sections. The HAWKROUTERS section of this file contains routing information
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that tunes the routers to a particular routing policy. Some fabrication lines support

routing only in first-layer metal and in polysilicon. UC Berkeley's CMOS fabrication

process recently introduced second layer of metal to its line. Via the rules file, the

routers can make the transition from routing channels in polysilicon and metal1 to

routing them in metal 1 and metal2.

3.2. Routers.

3.2.1. Bus Routing.

Often in a bus oriented architecture like the SOAR 32-bit microprocessor, the lay

out artist thinks of a bus of nets and its associated route as one entity, but is forced to

route each net in that bus individually. For example, it is necessary to bring the n

output signals of a PLA from their wide output spacing to a minimum spacing in order

to squeeze the bus through a tight routing region. The user typically routes one net at

a time, performing wire jogs at minimum spacing. Routing a bus element by element is

a tedious chore. The algorithm that the layout artist is performing when he lays down

each geometry in the bus is easily encoded. The pitch change and L Turn commands

were written to capture the layout engineer's intent and automate bus routing.

3.2.2. Pitch Change.

The pitch change command enables the user to direct a change in the pitch of a

bus of nets from any regular or irregular spacing to a user-specified regular spacing.

Here a bus of nets is defined as a parallel set geometries on the same layer ending

roughly at the same edge as illustrated in Figure 3.1. The pitch change command may

be used to fan out a minimally-spaced group of geometries to a contact-to-contact

spacing or squeeze an irregular spacing down to a minimum spacing. In a pitch change,

there is no order change in the bus's nets. The bus elements are simply river-routed to

a new pitch.
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3.2.2.1. Supporting Rule File;

To perform a pitch change, it is necessary to specify the design rules associated

with the layout routing layers with the inclusion of the HAWKROUTERS section of the

".cadre" file. The pitch change may be performed on one of the two routing layers

specified in that HAWKROUTERS section. Four ".cadre" design rule parameters are neces

sary to perform a pitch change. These are the two possible routing layers' names and

their minimum spacing. Here is an example for the mosis CMOSJPW technology:

/* ".cadre" parameters for the pitch change command */
begin HAWKROUTERS

NAME LAYER1_NAME "CP"
NAME LAYER2_NAME "CM"
VALUE LAYER 1_MINSPACING 3

VALUE LAYER2_M1NSPACING 4
end

The two routing layers are "CM**. CMOS metal, and "CP\ CMOS polysilicon. A CMOS

polysilicon geometry must be spaced at least 3 lambda from another polysilicon
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geometry, while a CMOS metal geometry must be at lease 4 lambda from another metal

geometry. Please refer to the ".cadre" section of this chapter for more details on this

design rule file.

3.2.2.2. Majority Selection.

A pitch change is performed on only one routing layer. If the program's database

search returns geometries on two layers, a pitch change is performed on the layer with

the majority count in the bus. For example, the pitch change selection region in Fig

ure 3.1 has six polysilicon and two metal elements. The pilch change is performed on

the six polysilicon elements. Majority rule is used because the objects on the other

layer are usually not intended to be in the bus: they are unavoidably in the selection

region.

3.2.2.3. Invoking the Pitch Change.

The pitch change command is found in Hawk's Routing sub-menu. Upon

pitchChange menu selection, the user must specify which geometries he wishes to

include and extend in the pitch change. He is prompted to cut across the bus of nets

where he wants to start the pitch change, by pointing at the bottom and top of the bus.

The top and bottom points are the endpoints of a cut line across the pilch geometries.

The program performs the database search to find the geometries under that cut line on

layers LAYERi_NAME and LAYER2.NAME: it decides which geometries to include in the

pitch change by the majority rule. The user is then prompted to mark the point where

he wants the bottom bus element to route to (final pitch point), and type the new

pitch or separation of the wires of the bus in lambda units. The layout is then deter

mined by the bottom point and the new pitch. Each geometry is extended in the pitch

change at its original width. The new geometry spacing is the user-specified pitch. Jogs

in the pitch change are performed at the routing layer's minimum spacing. A pitch

change of the initial geometries of Figure 3.1 is shown in Figure 3.2 with the control



16

points marked.

3.2.2.4. Squid data storage.

The pitch change is stored in its own cell and a copy of that cell is placed in the

Hawk view being edited. This eases changes in the layout. When the route is complete,

the user is prompted to type a cell-name and cell-view identifying that routed cell.

The cell is created in the Squid database and an instance of the cell is placed in the

Squid cell from which the pitch change was invoked. The Hawk screen is redisplayed

showing the newly routed pitch change.

3.2.2.5. Errors.

Any of several errors prohibit the completion of a pitch change. In case on an

error, the user is notified what is preventing the pitch change and that error informa

tion is stored in the route_error file. The pitch change is not performed when no
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Figure 3.2. Pitch change with control points marked.
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geometries are found under the cut line. The routine also aborts when the required

".cadre" parameters are absent from the HAWKROUTERS section of the ".cadre" file.

Similarly, the pitch change is not performed when the user does not provide enough

room between the initial cut-line and the final pitch point. The user is told how much

more space is needed in lambda units to perform the jogs of the pitch change.

The pitch change command is described in more detail later in this report. It is

used to review and describe the Hawk and Squid routines used in the guided routers,

providing a working template for application programming in the Hawk/Squid frame

work.

3.2.3. LTurn.

The L-Turn router is very similar to the pitchChange router. It enables the user

to perform an L-Turn on a bus of nets from any regular or irregular spacing to a user-

specified regular spacing. Once again, a bus of nets is defined as a set of parallel

geometries on the same layer ending roughly at the same edge, (see Figure 3.1.) Exam

ples of the usage is routing a bus of nets around a circuit module, or routing the inputs

to a PLA. The LTurn command may be invoked when there is no order swap in the

geometries of the bus: therefore, no layer changes have to be made and no terminals are

needed to imply routing connectivity. Geometries are extended around one turn in

their original order and with their original widths as illustrated in Figure 3.3.

An "L-turn" may be performed on either of the two layers specified in the HAWK

ROUTERS section of the ".cadre" file. but. as with the pitch change command, it is only

performed on one of those layers. The program searches for geometries on the layers

LAYERl_NAME and LAYER2_NAME. The L-Turn command requires only that the two

routing layers be present in the HAWKROUTERS section of the ".cadre" file.

/* " .cadre" parameters for the LTurn routine */
begin HAWKROUTERS

NAME LAYER] NAME "Cr"
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NAME LAYER2_NAME"CM"
end

notifying the routine which of two possible layers the L-Turn may be performed on.

An L-Turn routine is aborted if the two routing layers are not included in the ".cadre"

file.

Upon LTurn menu selection the user is prompted to cut the bus of nets where he

wants to start the L-Turn by pointing to the left and right of the bus. The user would

typically point to the left and right edges of the bus: he may alternatively point before

the edge to do an L-Turn on geometries whose ends do not line up. The user is then

prompted to point to where he wants the bottom of the L-Turn to begin and type the
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new spacing of the wires in lambda units. The L-Turn command is then executed. The
width of each geometry is extended in the L-Turn. The user is prompted to type acell
name and view name to give the L-Turn. That cell is created and placed in the current

Hawk cell from which the L-Turn was called.

The pitch and LTurn commands are interactive incremental bus routing tools that

have proven very useful in the layout of the CMOS SOAR 32 bit microprocessor. The

pitch change command was used in approximately 40 places and the LTurn command
was used in approximately 20 places in the layout of the CMOS SOAR chip. The routines

were run many more times than that, accommodating changes in the layout. In Fig

ure 3.4. SOAR bus routing is illustrated where pitch changes and LTurns are used.

Figure 3.4. SOAR pitch change and LTurn.
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3.2.4. Cable Router.

The cable command is used to route a bus of nets around obstacles. It is not a

general river router: it routes each signal in a bus between one source terminal and one

destination terminal. Like the pitch change and L turn routers, there must be a one to

one correspondence between connections in the bus. Unlike those commands, the cable

routine allows the signals to switch physical order from the source to the destination.

If a switch in signal order is needed, the command performs the order change at the

last jog in the bus's path. In the interactive cable command, bus specification is simple.

Terminals specify:

(1) signal connectivity.

(2) cable layer, and

(3) the width of wires in the cable.

3.2.4.1. Signal Connectivity.

Because the physical signal order may be permuted from the initial to the final

terminals, signal connectivity is specified with terminals at the beginning and end of

the cable. Matched terminal names imply connectivity. Each signal in the cable has a

terminal in the initial terminal set and in the final terminal set. It is necessary to place

these terminals before running the cable command. Note that when there is no swap

in signal order from the initial to the final terminals, it is easier to use the pitch and L

turn commands, because in those commands it is not necessary to place signal termi

nals.

3.2.4.2. Routing Layer.

The designer selects the routing layer with the terminal layer. The initial and

final terminal layers and the associated layer parameters must be specified in the

HAWKROUTERS section of the user's ".cadre" file. All of the initial terminals must be on
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the same layer and all of the final terminals must be on the same layer.

(1) Case A. The initial terminal and the final terminal sets are on the same layer and

that layer is described in the rules file. At the last jog in the cable, a via route

onto an alternate routing layer is made to accommodate any signal order change.

The design rules for the routing layers are described in the rules file. The layer

shared by the initial and final terminals is maximized as shown in Figure 3.5.

(2) Case B. The initial and final terminal sets are on the two different layers specified

in the rules file. In this case, the initial terminal set's layer is maximized as

shown in Figure 3.6. The layer change from the initial terminal set's layer to the
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Figure 3.5. Cable Route. Same terminal layers at ends.
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final terminal set's layer is made at the final jog.

In both cases. Squid instances of a contact master are automatically placed at layer

changes in the cable solution. As with the channel routing command, it is necessary

that the user have a Squid file describing the physical view of a via connecting the two

routing layers.

3.2.4.3. Cable Path Specification.

The cable command allows the user to guide the bus's route around obstacles

through a variable number of jogs. In the cable command, the user is prompted

through the command as he guides the route. First the user points to the initial

Patb-Point-#l
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Figure 3.6 Cable Route. Different terminal layers at ends.
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terminals, one at a time. Then he points to the final terminals, one at a time. He then

specifies the path that he wants the route to take from the initial to the final terminals

by pointing to jogs on one side of the cable's path. One side of the path is illustrated

in Figure 3.6.

3.2.4.4. Wire Widths.

Wire widths of signals in the cable are determined as follows. There are two

different cases to consider.

(1) Case A. When the initial and final terminals sets are on the same routing layer, a

layer change is performed only where necessary to execute a swap in signal order.

When there is no layer change in a wire, as in net 4 of Figure 3.5. the wire width

is set to the width of the signal's initial terminal. Net 3 has a layer change, so

the initial wire width is determined by the width of the signal's initial terminal:

the final wire width is determined by the width of the signal's final terminal. The

via layer's width is the minimum width for that layer as specified in the rules

file.

(2) Case B. In the case where the initial and final terminals sets are on different rout

ing layers, each terminal's width determines its wire's size as illustrated in Fig

ure 3.6.

3.2.4.5. Space conservation.

The route is grown from the user-supplied jog points. The spacing of the wires in

the initial and final cable segments is determined by the terminals. Initial terminals in

the cable may be placed at minimum spacing. If they are not at at least this minimum

spacing, the user is notified. Final terminals are placed at at least geometry to contact

spacing, because changes in signal order are made at the last jog. Geometry spacing is

widened to accommodate contact vias at a layer change. Spacings are widened from

minimum only when a contact dictates. Notice that in Figure 3.5. the spacing between
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net 1 and net 2 in segment 4 of the cable is at a minimum spacing because there is no

order change in nets 1 and 2 at the last jog. The spacing between net 2 and net 3 is

wider in segment 4 to accommodate the layer and order change in net 3.

3.2.4.6. Necessary Supporting Files.

The contact/physical Squid file must reside in the current directory at the time

Hawk is invoked. This is the physical view of a contact connecting the two routing

layers in cable solution. In addition, the two routing layers must be set in the HAWK

ROUTERS section of user's ".cadre" file. The parameters necessary to run the cable com

mand are:

/* ".cadre" parameters necessary for the cable routine */
begin HAWKROUTERS

NAME LAYER1_NAME "CP"
NAME LAYER2_NAME "CM"
VALUE LAYER1_MINWIDTH 3

VALUE LAYER2_MINWIDTH 3

VALUE LAYER]_MINSPACING 3

VALUE LAYER2_MINSPACING 4

VALUE CONT_SIZE 7

end

The layer definitions are described in the ".cadre" section of this report.

Execution errors. The cable command flags an error when two initial terminals

are not at at least the minimum spacing for that layout layer or when two final termi

nals are not at at least a geometry-lo-contact spacing. It flags an error when there is

not a one-to-one match between initial and final terminals.

3.2.5. Channel Routing.

The Horizontal Channel command implements a two-layer horizontal channel

route by providing an interactive interface between the Hawk graphics editor and the

YACR2 channel router. This interface was written in conjunction with Rick Rudell and

Jim Reed. A channel is a rectangular routing region. Terminals, or pins, mark signals

on the channel periphery that are to be connected. The routing interface is divided into
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three parts, the pre-processor. YACR2. and the post-processor. The pre-processor collects

the information that YACR2 expects as input from the Hawk cell being edited and calls

YACR2. The post-processor translates YACR2*s output into Hawk geometries, redisplays

the routed solution, and reports useful routing information.

YACR2 was chosen as the channel routing algorithm for several reasons. YACR2

usually routes channels in less area than other channel routing algorithms. It typi

cally uses far fewer routing vias than other algorithms such as Burstein's Hierarchical

Channel Router or Deutsch's Dogleg channel router[8]. It can route channels with

cyclic constraints, and it maximizes routes on a preferred layer.

The channel routing interface provides fast rip-up and re-route capability on a

per-channel basis. Channel routing is effective when routing large amounts of

"spaghetti" logic that is prone to error and change. YACR2 and its interface guarantee

that all terminals of the same name in the channel are connected. In the CMOS SOAR

layout there are seven channels: two of these channels are very large (158 nets and 74

nets). Each were re-routed approximately ten to fifteen times due to changes and fixes

in the design and layout. By hand, this would certainly have been a nightmare because

changes were usually to more than one or two of the nets in the channel.

3.2.5.1. Channel Definition.

Terminals specify the connectivity or net-list to be routed. The terminals are

fixed along the two opposite channel lengths, and are floating on the remaining

channel-ends.

(1) Fixed terminals along the length of the channel determine exact signal location.

Top and bottom terminals must both be colinear.

(2) Floating terminals designate signals that must exit the channel from an end.

The signal order of the floating terminals in the solution is determined by YACR2.

not by the initial floating pin order. Side terminals must be colinear.
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Figure 3.7. SOAR channel route.

Floating and fixed terminals are placed before running the channel router by

using the terminal command in the Hawk graphics editor. The YACR2 algorithm con

nects all terminals in the channel of the same name. Terminals must be placed at at

least the minimum user-defined spacing of LAYERi_GRIDSPACING and be on one of the

two routing layers. Terminals on any other layer in the channel will be ignored by the

interface. To avoid layer change in the top and bottom tracks of the channel solution,

fixed terminals should be on LAYER1_NAME. the layer that runs vertically across the

channel width. This layer is polysilicon the routing example. Figure 3.8 illustrates

channel definition.
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3.2.5.2. Necessary Supporting Files.

There are two necessary files to include in order to run the channel router. A

Squid cell named contact with the view physical must reside in the designer's file

system in the same place where the Hawk file path is and where Hawk is invoked from

the user's project directory. This file is of the form:

SQUID

PUT view "contact" "physical" "w" "squidNextObjectID" INT 4
MK RECT 1 ACTIVE LAYER "CP" FILL LB -60 -60 RT 80 80

MK RECT 2 ACTIVE LAYER "CM" FILL LB -60 -60 RT 80 80

MK RECT 3 ACTIVE LAYER "CC" FILL LB -20 -20 RT 40 40

This contact master file is placed as an instance at every layer via in the channel rout

ing solution.
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In the .cadre file, the user defines the two routing layer names and the associated

design rule parameters.

/* ".cadre" parameters necessary to run the channel router */
begin HAWKROUTERS

NAME LAYER1_NAME "CP"
NAME LAYER2_NAME"CM"
VALUE LAYER]_MINWIDTH 3

VALUE LAYER2_MINWIDTH 3

VALUE LAYER 1_GRIDSPACING 8

VALUE LA YER2_GRIDSPAGING 9

VALUE CONT_SIZE 7

end

The two routing layers are LAYERi_NAME and LAYER2JJAME, "CP" and "CM".

LAYERl_NAME is the "slower" routing layer (higher RC time contstant per unit length).

This layer is used for routing signals on the shorter vertical channel runs across the

width of the channel. LAYER2_NAME is the preferred routing layer: it makes the longer

channel track runs and has lower RC per unit length and is maximized in the channel

by YACR2. as illustrated in Figure 3.9; when there is not another signal's route blocking

the LAYER2 continuation of a net into a column, the signal stays on the preferred layer

rather than switching to the column layer. LAYERl.

The LAYER]_MINwidth and LAYER2_MINWIDTH parameters determine the width of

signal runs in the channel. In the above rule specification, both metal and polysilicon

runs are drawn at a width of 3 lambda. The CONT_SIZE parameter specifies the size of

the contact that connects the two routing layers at signal vias.

The grid spacing parameters determine row and column channel pitch.

(1) Column. Placement of column geometries is pre-determined by the fixed signal

terminals along the top and bottom of the channel. LAYER ]_GRIDSPACING is the

minimum pitch of two terminals in adjacent columns of the channel. Typically,

this parameter is set to a contact-to-contact pitch to accommodate instances in the

channel where contacts are in neighboring columns. As described later in the
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rules file section of this report. LAYER] J3RIDSPACING may be tightened to a smaller

pitch.

(2) Row. The rows of the channel solution are grown from the bottom row of termi

nals. The LAYER2.GRIDSPACING parameter sets the pitch spacing of the solution's

tracks. The post-processor minimizes horizontal track placement. Track grid

pitch. LAYER2_GRIDSPACING. should be set to contact-to-geometry pitch in the

".cadre" rule file. When there is an instance of a contact directly above another

contact in the channel solution, the post-processor automatically widens from the

tighter row spacing to contact-to-contact spacing to accommodate the adjacent

contacts.

The channel routing routines minimize channel width in two ways, with YACR2*s algo

rithm and with the post-processor's track placement. Refer to the ".cadre" section of

this document for more specific details about all these parameters.

3.2.5.3. Program Details.

After selecting HorzChannel on the routing sub-menu, the user identifies the

channel interactively by pointing to two opposite corners of the rectangular channel.

Horizontally, channel pins must be colinear. Vertically, the channel definition is grid-

less: top pins do not have to line up directly over bottom pins. The pre-processor

marches across the channel and creates the net list grid that YACR2 is expecting as

input. This YACR2 input file is called .chan.route.in. It is created in the directory

where Hawk is invoked. The file contains the top and the bottom fixed net lists from

left to right, and the left and the right floating net lists from bottom to top. Each net

name is translated into an integer in this file because YACR2 expects integer net names

as input. Here is xhan.route.in for the channel shown in Figure 3.8:
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5 #five nets in channel

10 #ten columns in channel

5042100354 #top net list
0301202540 #bottom net list

2 #two left nets

2 4 #the two left nets

The pre-processor calls YACR2 with this input file and YACR2 returns the output file

called .chan.route.out. Here is the .chan.route.out. solution for the above input:

5 #there are 5 tracks in the solution

10 #lhere are 10 columns in the solution

0333333354 #metal row 1

2222222054 #metal row 2

5 0 0 1112 0 5 4 #metal row 3

555555555A #metal row 4

4444444444 #metal row 5

5342110354 #poly row 1
5342210000 #polv row 2
5341212000 #poly row 3
0341202500 #j?olv row 4
0341202540 #poly row 5
4 15 7 #longest net is net 4. 15 metal units. 7 poly units

The post-processor maps the solution back into the particular Hawk channel. The

routed geometries are stored in their own cell. The user is prompted to name the cell

for identification and placement in the design hierarchy: an instance of the channel

solution is placed in the Hawk physical layout being edited. The routing solution to

the channel defined in Figure 3.8 is shown in Figure 3.9.

3.2.5.4. Diagnostics.

Like all the routers in the routing toolbox, the channel router reports information

and diagnostics to the user. When the allocated channel width is too narrow for the

actual solution, the user is told how much larger he must make the channel. If too

much track space has been allocated in the layout, the user is notified how much extra

space he has allocated. Information on the channel's longest net may be used to

hand-calculate signal delays. The routine reports the name of any terminal that does

not have at least one partner connection in the channel. This error often is the result
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metal

poly

of a error when typing the terminal name. If the ".cadre" file is not present or any of

the design rule parameters are uninitialized in that file, the program will not run; the

user is notified, however, which parameters are missing. Here is the listing of the

routejerror file for the channel route is illustrated in Figure 3.9:

longest_net_jndex: 4 net_name: t2
CM net length: 135
CP net length: 63
Allocated channel width: 59
The channel is 7 lambda wider than necessary.
Routed channel width = 59
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3.2.5.5. Vertical Channel Routing.

The VertChannel command is identical to the HorzChannel command except that

it implements a vertical channel route. In the vertical case, the long channel tracks are

vertical: the preferred routing layer is used to route tracks.

33. Design Rule Independence.

The spacings used by the routing routines have been parameterized. This gives

the user the design rule independence to route in any technology between any two

routing layers. The user tunes the routers to his particular routing policy by assigning

values to the parameters. This section describes the routing parameters, where they

are stored, and where they are used by the routing routines. In addition, an example

of their usage is described.

The ".cadre" file is the standard file that holds parameters specific to CAD tools at

UC Berkeley. This file was chosen to also hold layout design rules, enabling the user to

set his own spacing rules for the Hawk routers. In the ".cadre" file there are sections

for particular CAD applications. A Hawk-specific section sets key aliases for Hawk

menu selections. This section is read when Hawk is first invoked. The routers are

dynamically linked into Hawk upon their invocation, so another section called HAWK

ROUTERS was added into the ".cadre" file. The HAWKROUTERS section is read when a

router is invoked. The section contains the assignment of the design rule parameters

needed by the routers.

The HAWKROUTERS section is as follows for the CMOS-PW rules:



begin HAWKROUTERS
NAME LAYER1_NAME "CP"
NAME LAYER2JJAME "CM"
VALUE CONT_SIZE 7

VALUE LAYER1_MINSPACING 3

VALUE LAYER2_MINSPACING 4

VALUE LAYER] _MINWIDTH 3

VALUE LAYER2_MINWIDTH 3

VALUE LAYER 1_GRIDSPACING 8

VALUE LAYER2_GRIDSPACING 9

end
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The NAME lines specify the two routing layers. In the above example, the layers

are CM and CP. p-well CMOS metal and p-well CMOS polysilicon. LAYERi_NAME is the less

desirable layer given whatever metric with which the designer judges a layer desirable.

LAYER2_NAME is the more desirable layer and will be maximized in the cable and chan

nel routing commands.

One dimension of the square contact is specified in lambda with the C0NT_SIZE

parameter. In the CMOS-PW case, a contact via between metal and polysilicon is 7

lambda by 7 lambda. The two routing layers' spacing rules are then specified.

The _MINSPACING parameter is the minimum distance that a geometry must be

from another geometry on the same layer. In the CMOS-PW technology, the minimum

spacing for CM is 4 lambda; the minimum spacing for CP is 3 lambda. This parameter

is used by the pitch change and cable routers to perform minimally spaced jogs.

The _MINWIDTH parameter is the minimum allowable drawn width of a geometry.

In the CMOS-PW case, this parameter is 3 lambdas for CM and CP. This is used by the

channel router to draw minimum width geometries in the routing solution. It is also

used by the cable command to draw minimum width geometries on the via layer when

a layer change is made to switch the order of the cable signals.

The _GRIDSPACING parameter is used exclusively by the channel router to specify

the virtual grid that the channel router observes when searching for terminals and
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placing tracks. In a channel route, the faster layer (low RC per unit length) makes the

runs along the length of the channel while the slower layer brings the signals into the

channel, running the channel width. Connections between the two layers are made

with contacts. In a channel solution, a contact may be adjacent to a contact in another

column in the worst-case grid pitch.

LAYERIJSRIDSPACING, the pitch of the LAYER] terminals at the top and bottom of

the channel, should be at contact to contact spacing. For the CMOS-PW case above:

LAYER 1_GRIDSPACING = CONT_SIZE -

MAX (LAYER1_MINSPACING. LAYER2_MINSPACING.)
= 7 * MAX (3.4)

= 11.

In a YACR2 channel solution, there are sufficiently few places where there is a con

tact next to another contact on a horizontal track. Signal terminals may then be spaced

closer than at contact to contact spacing. LAYER 1J3RIDSPACING may be tightened to a

smaller number; it is set to 9 lambda for the CMOS-PW case:

LAYER1_GR1DSPACING = LAYER1_MINWIDTH

* MAX (LAYER1_MINSPACING. LAYER2_MINSPACING)
* (CONT_SIZE - LAYERl_MINWIDTH)/2

= 3 t MAX(3.4) ♦ (7-3)/2

= 9.

The resulting routed solution contains design rule errors only where there is a contact

next to another contact on a channel track. Reducing the pitch of the terminals saves

considerable channel length, at the expense of having to edit the solution where the

few contact spacing errors occur. For example, there are 72 nets and 169 columns in

Deutsch's difficult channel routing example [4]. Of the 287 contact vias in YACR2*s

channel solution, there are only six instances where a contact is adjacent to another

contact on a channel track. Routing at a tighter pitch reduces each column width by

two lambda for a total length reduction of 2 lambda/column x 169 columns = 338

lambda. The user may choose whether to route at wide spacing or tight spacing.
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While reducing LAYER1J3RIDSPACING may require hand editing of a channel solution, it

can reduce channel length significantly.

LAYER2_GRIDSPACING is the minimum distance that two horizontal tracks are

spaced. This parameter is minimized to a pitch of geometry-to-contact spacing. The

channel router places tracks at this tight GRIDSPACING unless there are two vertically

adjacent contacts. It then automatically widens the track spacing from this contact-to-

geometry spacing to a contact-to-contact spacing. In the CMOS PW case, this parameter

is 9 lambda:

LAYER2_GR1DSPACING = LAYER2_MINWIDTH

* MAX {LAYER1_MINSPACING. LAYER2_MINSPACING)
- (CONT_SIZE - LAYER2_MINWIDTH )/2

= 3 - MAX(3.4) - 17-3V2

= 9.

The design rule file must be included to run any router. If the HAWKROUTERS file

is not included, or a routing parameter is missing, the user is notified and the route is

aborted.



CHAPTER 4

Programming in the Hawk/Squid Environment

In Hawk and Squid, a skeleton framework is provided for client programmers to

add features to the package. The package was designed to make the process of adding a

client tool as easy as possible, by providing clean database access routines such as those

used in the pitch change command. A client programmer, therefore, does not need to

worry about parsing a Squid file to stage it into memory or explicitly walking through

a linked list of structures. The interface routines mask such details. Pointers are

passed to the data access routines, returning handles to Squid objects such as cells,

geometries, and terminals. This "open system" approach enables client programmers to

interface other CAD tools like the channel router YACR2 into Hawk and Squid without

having to learn the internal details of both packages.

In this chapter, several aspects of programming in the Hawk/Squid environment

are presented. First, the pitch.c program is explained in detail. This program may be

used as a template for adding client commands to Hawk. The Hawk and Squid rou

tines are summarized and then hints for debugging in the Hawk/Squid environment are

given. The pitch code is included in Appendix A for reference. Then, the YACR2/Hawk

interface is reviewed. Many of the descriptions in this chapter are intentionally quite

specific to the UC Berkeley environment since this chapter is intended as a detailed

guide for Berkeley students. In Appendix C. a glossary of programs and files is

included to help users locate files and programs described in this section.

4.1. Flow of the router. Pitch Change.

The general flow of a router is:
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(1) Invoke command.
(2) Read design rules.
(3) Input user points.
(4) Extract information from Squid database.
(5) Solve routing problem.
(6) Report diagnostics.
(7) Convert solution to Squid and redisplay Hawk.
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4.1.1. Invoking a command.

Menu Selection. When a routing command is selected from the routing menu, a

symbolic view of the routing sub-menu identifies the code associated with the menu-

selection. This menu view is named "symbolic". In Figure 4.1. the portion of that file

pertaining to the pitch change command is illustrated.

It is created using the "src" view of the routing menu as input and running the

"menuview" program. If the selected routine is not currently linked to the Hawk pro

cess upon invocation, the appropriate object code is linked dynamically to the Hawk

process. In the case of the pitchChange menu selection, the pitchChangeO routine in

pitch object file is invoked. In execution. HACurrentWindoO returns the current win

dow selected in Hawk. The structure HAWindo identifies the current cell being edited

in Hawk.

PUT LABEL 5 "hawkHelp" STRING " Invoke a pitch change."
MK LABEL 4 FRAME LAYER "hawk" JUMM FT "std" LABEL pitchChange"

PS 100 ANGLE 0 POS 0 -400

PUT LABEL 4 "hawk.o" STRING "Pitch"
PUT LABEL 4 "hawkRoutine" STRING "pitchChange"
PUT LABEL 4 HhawkHelp" STRING " Invoke a pitch change."

Figure 4.1. Menu view of Pitch change command.
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4.1.2. Reading Design Rules.

As described in the ".cadre" section of this report, the design rules are specified in

the HAWKROUTERS section of the user's ".cadre" file. This enables the user to invoke

the routers with the appropriate technology. In the pitch code. RouterCadrcReadO

calls the routines InitCadrcO. NameCadrcO. and KeyCadrcO with the parameters

NAME and VALUE to input the LAYER1_NAME. LAYER2_NAME. LAYER1_MINSPACING and

LAYER2_MINSPACING parameters. In these routines, the user's ".cadre" file is opened, the

HAWKROUTERS section is found and the design rules parameters are read. If any of

these parameters are missing from the ".cadre" file, the missing parameter will be writ

ten to the "route_error" file and reported to the user.

In the ".cadre" routine, design rule values are obtained from in two places, first

from the general "/cad/.cadrc" file, then from the user's ".cadre" file. Any default

values in the "/cad/.cadrc" file are overwritten by the user's personal " /.cadre". If

there are errors in the .cadre file because routing parameters have not been properly

specified or have been left out. the route is aborted. If there are no errors, the route

proceeds by prompting the user to input control points.

4.1.3. Get User Control Points.

For interactive routines, it is important to capture the designer's intent. In the

pitch change command, it is assumed that the designer has laid out a bus of geometries

that he wants to extend on the same layer. These geometries are colinear and terminate

roughly in the same region. The user is prompted to point to the bottom of the

geometries that he wants to extend and point to the top. Essentially, he is prompted

to draw a line that "cuts" the bus. The third point selection sets where the bottom

geometry should extend to. In detail, the user is prompted through the

HATypescriptO routine that prints a string in the Hawk typescript window. Hawk

listens through HAListenO to find out if the user hit escape. HAESC. to exit from the
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routine, or selected another menu item. HAMenuSelectionPO, instead of pointing to

that third and final point. If the user did point, then the point is retrieved through

HACursorPositionlX). Figure 4.2 contains a code fragment of inputing a user point.

Checking for another menu selection enables the user to invoke another Hawk

command, then return to the routing routine. For example, the user may invoke

HAZoomin to zoom into a routing control point in a Hawk window, then return to the

routing routing by escaping from the zooming routine and pointing to the routing con

trol point.

The pitch change command extends geometries at their current widths. After

pointing to the third point, the user types the new uniform spacing between

geometries. The pitch solution is determined from the final point, the widths of the

geometries in the cable, and the new geometry pitch.

4.1.4. Squid data retrieval.

After the control points have been successfully specified, it is necessary to

retrieve the geometries from the Squid database that the user wants to extend. A data

base query routine is called to find geometries on either the LAYERi_NAME or

LAYER2_NAME layers. The region is the area underneath the line that the user cuts

across the cable of geometries. Details of Squid's private database are invisible to the

user: communication is performed through the query routines.

HATypescript(sqTrue."POINT to the bottom (left) of the cable."):
HAListenO;
if (HAKeyTypedO == haesc II HAMenuSelectionPO)

return(sqFalse):
bottom = *HACursorPositionL();

Figure 4.2 Input Control Point.
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Squid's special geometry generator[9] retrieves pertinent geometries from the

Squid database. In SQSpecialBeginGenO. the user specifies the area and depth of search

as well as the type of geometries to be included in the search. The geometries are

returned one by one in the SQSpecialGenC) routine. Figure 4.3 contains an excerpt

from the pitch code.

The SQSpecialBeginGenO routine initializes the geometry query. The necessary

arguments are area, mask, depth, and generatorlD pointer.

area = initLineBB;
mask[0][0] = SQLayerNameToNumber(LAYERi_NAME):
mask[0][l] = (int)sqActiveArea;
mask[l][0] = SQLayerNameToNumber(LAYER2_NAME):
mask[l][l] = (int)sqActiveArea:
mask[2][0] = SQLayerNameTo.\umber(LAYERi_NAME);
mask[2][l] = (int)sqlnterconnect:
mask[3][0] = SQLayer.\'ameTo\umber(LAYER2_NAME):
mask[3][l] = (int)sqlnterconnect:
mask[4][0] = -l:

if((int)SQSpecialBeginGen(area.mask.SQMAXDEPTH,&genID)<0)
HATypescript(sqTrue.SQDiagnosticO);
return(-l);

}
for(;:) {

status = SQSpecialGenCgenlD. &geo, integerPath. nlntegerPath.
NULL.O.instlDs .nlnstlDs);

if Cstatus == sqEndGen) break:
if CCint)status <0) {

HATypescript(sqTrue.SQDiagnostic());
return(-l);

}
ifCgeo.geoType == sqRect) {

extractRectlnfoCgeo):
} else if Cgeo.geoType == sqLine) {

extractLinelnfo(geo):

Figure 4.3 Squid Geometry Retrieval.
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The area argument specifies the rectangular area in the Squid circuit view that the

user wants to query. In the channel router commands, terminals along the channel

perimeter are extracted. The search area is a rectangle. In the pitch change command,

the line that the user cuts across the initial geometries serves as the degenerate rectan

gle area to be searched. All geometries intersecting the cut line and satisfying the mask

requirements are extracted from the Squid physical view.

The mask parameter specifies what geometries the user is searching for. The mask

argument is a two dimensional array. The first dimension increments the different

type of geometries that are queried. The second dimension's zero-th element is the

layer being searched: its first element specifies the geometry's function. For example,

in the channel router commands, necessary geometries are of function sqTermArea

(terminals) on layers LAYERl_NAME and LAYER2_NAME. In the pitch change command,

pertinent geometries are of function sqActiveArea and sq Interconnect on either

LAYERi_NAME or LAYER2_NAME. The mask array is terminated with the -1 as the Oth

element of the second dimension of the last mask entry.

The depth parameter sets the depth of search in the design hierarchy. A depth of

one searches only the current level of hierarchy. A depth of two searches the current

level of hierarchy and all instances called in the top level of the current hierarchy. The

depth SQMAXDEPTH searches all the way down the design hierarchy, provided that all

instances called in the hierarchy have been staged into Squid's virtual memory. If a

cell is only represented by its bounding box in the Hawk viewport, then the instance

has not been staged into memory and the cell will not be searched in the geometry

query. The channel router searches only the top level of the hierarchy. The pitch

change command searches all the way down the hierarchy (sqmaxdepth).

The generator parameter is a pointer to a SQID (SQuidlDentifier). The routine

passes this pointer back to the top of the list of geometries found that match the area.
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mask and depth constraints. This parameter is the first one used in the SQSpecialGenC)

routine.

The SQSpecialGenC) routine marches through the list of geometries satisfying the

specifications set in the SQSpecialBeginGenO routine. As shown in the routine

extractGeosO in the pitch code, the generator resides in a "forever" loop (for(;;)) which

terminates at the end of the list of geometries returned by SQSpecialBeginGenO. The

special generator returns a status variable. The status value sqEndGen signals the end

of the list of geometries found in the geometry query and breaks the "forever" loop.

The first argument in the SQSpecialGenC) is the genID returned in the SQSpecial

GenC). The second argument is a pointer to a Squid geometry structure. SQGeo. The

variable integerPath[] is the array of SQIntegerPoint's in a geometry's path in the case

when a geometry is a line or polygon. The generator fills the integerPath[] array with

the control path points if the geometry is a line or polygon. The variable nlntegerPath

is the length of the array integerPath[]. In the pitch command, the integerPath variable

is set to twelve, because that is the estimated upper bound on a line's length in vector

points. A polygon may easily have more points that twelve, but the pitch command is

only interested in geometries of shape rectangle or line.

The null. 0 parameters do nothing but must be included. The instIDs[] argument

is an array of SQlD's which points down the cell hierarchy to the geometry found.

When a geometry is found, this tells the user which instance the geometry is from.

The length on the array is given in nlnstlDs. which is set to SQMAXDEPTH.

4.1.5. Solving the routing problem.

This section of the code is specific to the pitch change code and is not particularly

helpful toward learning about Squid: most of the code was omitted and only one

interesting routine will be noted. Geometries are retrieved in the extractGeosO routine

of the pitch code. Geometries at the same level of hierarchy and on the same layer
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may be superimposed in Squid. That is. there is no merging of coincident geometries.

For example, if five rectangles on the metal layer are resident in a physical cell view

between the coordinates (0.0) and (100.100). then the geometry generator will return

all five geometries. The user must check for geometry coincidence to avoid redundancy

and errors in an applications solution.

4.1.6. Reporting Diagnostics.

In the course of the pitch command, errors and diagnostics are written to the

route_error file with the logErrorO routine. The route may not be completed if there is

not enough room to perform the pitch change. Before the route is redisplayed or

aborted, the route_error file is printed line by line in the Hawk's typescript window.

If the route is completed successfully, then there may be no diagnostics. If unsuccess

ful, the route_error routine will tell the Hawk user what prevented the pitch change.

The route_error file remains in the user's Hawk directory for later reference.

4.1.7. Convert the solution to Squid.

The final portion of the pitch change routine converts the routing solution to

Squid geometries. The pitch-changed geometries are stored in their own master file. An

instance of that cell is placed in the Hawk cell being routed. When converting the

solution to Squid, it is necessary to:

(a) open routed cell
(b) place geometries in cell
(c) save routed cell
(d) place instance of cell in Hawk view being routed

4.1.7.1. Open routed cell.

The user is prompted to input a name for the routing cell. A new Squid view

stack is created to work independently of the Hawk viewport. This view stack is

created with the call:

SQPushViewStk (SQCreateViewStkO).
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Once this view stack has been created, the cell named by the user is entered in the rou

tine:

SQ(sqPush, sqView, sqCircuit, view, &stream).

This establishes the current Squid view being edited as the routing cell. The cell has

now been opened on its own view stack and is ready for cell elements. Figure 4.4 con

tains a code fragment which illustrates this process.

4.1.7.2. Place geometries in cell.

Lines are created in the pitch change solution. Lines are defined by a line width

and a path of jog points. Refer to the structure SQGeo of geoType sqLine. Once the

SQGeo structure has been filled in. the geometry is added to the Squid view of the

routed cell with the call:

SQ(sqCreate, sqGeo, &currLine).

This routine is called successivelv to create manv lines.

SQView view;

view.cell = instanceCell:
view.view = instanceView;

view.mode = "w":

SQPushViewStk(SQCreateViewStk);
if (Cint) SQCsqPush. sqView. sqCircuit. view. &stream) <0)

HATypescriptCsqTrue. SQDiagnostic()):
return (-1);

Figure 4.4. Pushing into a cell.



currLine.geoType = sqLine:
currLine.function = sqActiveArea;
currLine.def.line.nPath = PTSINLINE:

currLine.filledP = sqTrue;
currLine.layer = cableLayer: /* LAYERl_NAME or LAYER2_NAME */

for (i=0:i<:ableWidth:++i) { /* for each line in solution */

currLine.def.line.width = initPts[i].width; /* assign line width */
currLine.def.line.path = linePts: /* assign jog points */

if (Gnt) SQ(sqCreate. sqGeo, &currLine) <0) { /*create line in squid*/
HATypescriptCsqTrue. SQDiagnosticO):
returnC-1);
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Figure 4.5. Creating geometries.

4.1.7.3. Save routed cell.

Once the routed view is filled, it is ready to be saved. This is performed using the

Squid call:

SQCsqSave, sqView, sqFast, view).

View is the structure which designates which view is to be saved. In this case, it is the

view of the routed solution. After saving, the view is popped from the view stack and

staged into memory. Popping removes the cell from the stack of cells being edited.

Staging the view keeps the geometries and solution in current Squid data space. This is

done with the command:

SQCsqPop, sqView, sqStage).

The Hawk view being routed is returned to by popping the created view stack. Fig

ure 4.6 contains a the code excerpt.



if (Cint) SQCsqSave. sqView. sqFast. view) <0) {
HATypescriptCsqTrue. SQDiagnosticO);
returnC-1):

}
if (Cint) SQCsqPop. sqView. sqStage) <0) {

HATypescriptCsqTrue. SQDiagnosticC)):
returnC-l):

}
SQPopViewStkO.

Figure 4.6. Saving and popping view.

46

4.1.7.4. Place instance of route in Hawk view.

The routed cell has been created. It is necessary to place that cell in the current

Hawk view. Back in the Hawk circuit view, an instance of the routed master is placed

in the current Hawk view with the call in Figure 4.7. The bounding box of this

created instance is retrieved with the call:

SQCsqGet, sqlnst, &inst).

To save Hawk redisplay time, only the changed parts of the Hawk screen are

inst.masterCell = instanceCell:
inst.masterView = instanceView;

inst.name = "";
sprintfCstring," T 0 0"):
inst.cif = string;

if (Cint) SQCsqCreate. sqlnst. &inst) <0)
HATypescriptCsqTrue.SQDiagnosticC));
return(-l):

Figure 4.7. Creating the routed cell in Squid.
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redisplayed. When the routine is first invoked, the routine:

SQEmptyBBSet(HAChangedRectO)

is called to empty out the set of bounding box areas that have been altered in the

current view. In the pitch change case, the only changed area is the area enclosed by

the bounding box of the routed instance. This area is added to the bounding box set of

changed areas in the Hawk view with the routine:

SQAddToBBSet(&bb, HAChangedRectO).

The cell's Hawk view is redisplayed as shown in Figure 4.8. The pitch change is now

complete.

4.2. Debugging Hawk/Squid Routines.

It is much easier to write and debug Hawk routines at an ASCII terminal than at a

graphics terminal. Running a code debugger like dbx is impossible in the middle of

graphics routines. Consequently, when debugging new client code, it is advisable to

"fake" Hawk routines at an ASCII terminal. In the pitch template, any code that is

within #ifdef BATCH . . . #endif delimiters is the code necessarv to simulate Hawk

SQPushViewStk(windo.editStk): /* push into current Hawk window */
i = rePitchC&bb): /* call pitch routines, return instance's bb */
SQPopViewStkO; /* pop Hawk view stack V
if(i<0){

HATypescriptCsqTrue. "Unable to do pitch change"):
} else {

SQAddToBBSetC&bb. HAChangedRectO):
/* add bounding box to list of changed geometries */

}
/* redisplay Hawk */
HADisplayViewCwindo.windoID. *HAChangedRectO. sqFalse. sqFalse)

Figure 4.8 Updating Hawk.
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routines. Code within #ifndef BATCH . . . #endif delimiters is the code unique to

Hawk.

The mainO routine in the batch version of the pitch code simulates routines

called in Hawk initialization and termination. When Hawk is first invoked. SQBeginO

is called to initialize Squid. Then, a Hawk view stack is created and the current Hawk

cell being edited is pushed into. By selecting the defined menu selection in the WIN

DOWS sub-menu of Hawk, the user is opening and staging all instances in the current

Hawk view. The batch version of the code simulates the staging by calling SQOpen-

MastersO, which opens and stages the entire Hawk cell. Then client packages may be

invoked. The client package in the pitch code is rePitchO. After successful comple

tion. rePitchO returns, and the current window is saved and popped from the Hawk

view stack. The view stack is then popped and SQEndO is called to power down

Squid. A fragment from the pitch code is contained in Figure 4.9.

Several Hawk routines are called within the body of the client pitch change code

that must be faked when debugging at a terminal. Example routines are HACursorPo-

sitionLO, HAKeyTypedO, and HATypescriptO. In normal Hawk mode, these rou

tines are linked with the client code when the routing routine is dynamically linked to

Hawk. These Hawk routines must be faked at an ASCII terminal because only Squid

routines are linked to the terminal version of the code. Refer to the pitch code for

example substitutions for these Hawk routines. For example. HACursorPositionLO,

which gets coordinates that the user points to in the Hawk typescript window, is

rewritten to scan/ two integers from terminal keyboard input. HADisplayViewO,

which prints a string in Hawk's typescript window, does nothing at an ASCII terminal.

HATypescriptO performs a printf of the string that is passed to it in terminal mode.

A terminal version of the pitch change command may be compiled with BATCH

defined. It may be run at an ASCII terminal by typing "termPitch cellname cellview" in



mainCargc. argv)
int argc;
char *argv[];

FILE *stream:

sqbb bb;

if (argc != 3) {
printf(" usage: re-pitch cellname and cellviewO):
exit(-l);

)
if CCint)SQBeginO<0) {

HATypescriptCsqTrue.SQDiagnosticC)):
exit(-l):

}
changedRect.l = changedRect.b = changedRect.t = changedRect.r = 0:
bb.l = bb.b = bb.t = bb.r = 0:

/* Fake out a current window — push into view given on command line */
currentWindow.view.view = argv[2]:
currentW'indow.view.cell = argvfl];
currentWindow,view.mode = "w":
currentWindow.windoID = 3;
SQPushViewStkCcurrentWindow.editStk = currentWindow.displayStk =

SQCreateViewStkO);
if CSQCsqPush. sqView, sqCircuit. currentWindow.view. &stream) != sqOK)

HATypescript(sqTrue.SQDiagnostic());
exit(-l):

}
if CrePitchC&bb) <0) {

exit(-l):
}
/* Fake out popping current window */
if (Cint) SQ(sqSave.sqView.sqFast.currentWindow.view) <0) {

HATypescript(sqTrue.SQDiagnosticO):

if ((int) SQ(sqPop. sqView. sqUnstage) <0) {
HATypescript(sqTrue.SQDiagnosticO):

SQPopViewStkO:
if ((int)SQEndO <0) {

HATypescript(sqTrue.SQDiagnosticO);

Figure 4.9. Faking Hawk initialization and termination.
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the directory holding the cellname directory and the terminal version of pitch execut

able code. termPitch. Control points are entered as (x.y) coordinates. Squid creates

the pitch change master cell, and calls an instance of that master in the physical cell.

Providing "dummy" Hawk routines is valuable when debugging new code. Later

in the code's development, when Hawk is introduced, other debugging tricks are use

ful. Debugging information may be recorded by using the HAErrorO or

HATypescriptO routine. For example. HAErrorO prints a string in the user's hawk-

log file and HATypescriptO prints a string in Hawk's typescript window.

4.3. YACR2/Hawk Interface.

4.3.1. Operation and Description.

Currently, the channel routing interface in Hawk is set up to interface to any

channel router that can:

(1) accept .chan.route.in as the input created by the interface engine and.

(2) output .chan.route.out as needed by the engine.

The contents of these two files are described in the channel routing section of

Chapter 3. The default channel router is YACR2 as set in the interface with the assign

ment chan_router = "yacr -H". The "-H" flag alerts YACR2's input routines that the

Hawk YACR2 input is being used, not the default YACR2 input. YACR2 is called by the

interface with a system call. Overwriting YACR2 as the default channel router may be

done by creating a menu selection routine in the routing sub-menu that overwrites the

interface's static variable "chan_router". Here is the routine (invoked by selecting the

menu selection Foo) that overwrites "yacr -H" with the channel router foo:

void FooO
{

chan router = " foo";
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Reselecting YACR2 as interface's channel router is done with the menu selection. YacrO:

void YacrO
{

chan router = " vacr -H":

If other channel routers were added to Hawk, the user could try several of the algo

rithms and choose the most efficient route. The only restriction to interfacing other

routing algorithms is that they must be able to accept .chan.route.in and

.chan.route.out as input and output, respectively.

4.3.2. Suggestions for interface to YACR2.

Here are some suggestions for the Hawk/YACR2 interface:

(1) Extend YACR2 and its interface to avoid obstacles. This would be useful when

pre-placing power, ground, and critical nets. YACR2 and its interface would have

to be rewritten to accommodate this. The preprocessor would report preplaced

nets as input to the obstacle avoiding channel router.

(2) Turn off metal maximization in YACR2/Hawk interface. If YACR2 were used as the

initial router, but signals were to be added to the channel later, then it would be

helpful to be able to turn off metal maximization. Metal maximization can block

later routes because the row layer bends around onto the column layer. The

absence of metal maximization mandates that the channel observe the routing

policy that column geometries are on a different layer from the layer of the row

geometries. The absence of metal maximization and the presence of extra tracks in

a channel makes it easy to add routes to a channel.

With the use of the interface routines, any number of CAD tools may be

tegrated into the Hawk/Squid design framework. This "open system" CAD approachin

enables the framework to grow with the changing developments and needs of IC design.



CHAPTER 5

Evaluation of the Hawk/Squid Programming Environment

The Hawk/Squid system is designed to provide a unified framework for IC design

and development. The Squid database maintains and manipulates hierarchical circuit

designs, supporting multiple circuit views, such as the simulation, schematic, documen

tation, and physical views of a design. The Hawk graphics editor supports overlapping

multiple windows for editing either multiple circuits or multiple views of a circuit. In

this project, interactive routers were developed to enhance the Hawk graphics editor.

The development of the routers proceeded in close conjunction with an IC designer

working in the framework. While the focus of the routers was primarily on physical

circuit views, their development provided insights into the package in general.

5.1. Documentation.

Unfortunately, some useful Hawk and Squid functions are not documented in the

package literature and may be found only by looking through the program source.

This problem is being solved incrementally. As client programmers learn about useful

routines, they are added into the Squid and Hawk documentation. One such routine is

SQOpenMastersO which stages the masters of all instances called in a design hierar

chy. This routine is necessary when using Squid without Hawk; Hawk menu selections

such as denned currently handle the staging of a design that SQOpenMastersO per

forms without Hawk. A useful, but undocumented Hawk routine is HALastCursor-

PositionLO which returns the last point that Hawk user pointed to. This is helpful in

Hawk applications, but only if the client programmer knows that it is available.
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5.2. Learning to program in Hawk and Squid.

A good way to start programming in Hawk and Squid is to read the package

documentation. While the documentation serves as a good reference, it is not always

apparent how the Hawk and Squid routines should be used. An efficient way to get a

feel for programming in Hawk and Squid is to study a working client program. In

Chapter 4 of this report, a routing routine is used as a template for Hawk and Squid

programming and the Hawk and Squid calls made by a specific router are described.

5.3. Debugging Hawk and Squid routines.

Another difficulty in programming in Hawk and Squid is the program debugging

process. Often programs fail due to a misunderstanding of the Hawk or Squid routine

that is called. Here again, looking at a working template helps the user understand the

required parameters. Hints for debugging Hawk and Squid routines were described in

Chapter 4. Hawk client programs are developed most easily when they are debugged

initially at an ASCII terminal.

5.4. The Path Mechanism.

The path mechanism enables the user to work in a current project directory and

access Squid files relative to that directory. This mechanism has some difficulties when

working on a chip design that is resident in a number of user's directories. It is not

always clear, as a Hawk user, where a file will be created when rooted in a remote

directory. There should be a way to override the relative path mechanism and access

files with a "" user" root, or call a routine "openDirectory" with a desired file name

passed to it. While this is possible with some Squid "sqPush" and "sqCreate" routines,

a is not always expanded as anticipated, resulting in files being created in unex

pected places.
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5£. Exploiting Properties and Parameters.

Squid objects may have properties attached to them. While properties are not

used in the routing routines, this capability could be exploited in client routines to ease

object identification and manipulation. For example, a circuit compacting routine could

check to see if a cell instance were eligible for compaction before trying to perform

compaction. As another example, a cell instance could have a property associated with

hierarchical design rule checking: if a cell had been design rule checked previously,

then the instance would have the property "designRuleChecked" equal to "true".

Only peripheral geometries would have to be checked in the design rule checking rou

tine and the property. "peripheralGeo". could identify those geometries in the instance.

If an instance had been altered, then the "designRuleChecked" property could be

changed to "false". The next time that a design rule checker was run on the circuit,

that instance would be re-checked for design rule errors, and the instance's new peri-

pheral geometries could be identified.

5.6. Wish list of features for Hawk and Squid.

Other features might be useful in the package. For example, it is useful to be able

to place an instance of a master and then "flatten" that instance into the hierarchy.

This would enable a designer to quickly place template instances of a cell for altering

and customizing the design. Additionally, to speed up the Hawk initial display and

re-display of a design, coincident Squid geometries at the same level of the hierarchy

could be merged at some step in Squid's power-up or power-down. Currently, merging

of coincident geometries may be done explicitly in Hawk with the merge command,

but the geometries must be added to Hawk's selected set of geometries. Of course, this

process could be turned off for design styles which depend on particular geometries

places by the user.
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There is a mechanism in place to "frame" the physical cells of a design. The fra

mer replaces a detailed physical representation of a cell with a symbolic representation

of that cell, called protection frames[lO]. The framer can be programmed to return the

peripheral extents of the cell's metal and polysilicon layers, or it alternatively can be

programmed to return the extents of all layers in a cell along with the terminal infor

mation. The "programmability" of the framer needs to be extended. The framer

currently does not enable the user to flag the inclusion or exclusion of terminal infor

mation: terminal information is retained from all levels of hierarchy. When used by

designers, the terminal information may be of no interest: only the extents of the phy

sical geometries may be of interest. It would help to be able to eliminate the terminal

search in this case. For routing purposes, it is useful to request that only peripheral or

highest level terminals be included in the framed representation of a cell for use in a

global router.

From a design perspective, the Hawk and Squid package would strengthen consid

erably if the package's schematic capture capabilities could be enhanced. Currently.

Hawk is geared toward the physical view of circuit design. Many design simulation

and verification tools require as input the circuit description derived from the physical

view. It is more expedient to verify a circuit's functionality from a schematic descrip

tion, because the designer is not yet committed to a physical description; the schematic

description can change more easily than a physical description. Later, when functional

ity is verified, synthesis tools can assemble the physical mask description, assuming

that adequate synthesis tools exist. With a sufficient schematic capture mechanism and

net list generator. IC designers could verify their designs earlier in the design process

and change circuit descriptions quickly without altering the physical mask description.

This introduces the need for a consistency checker between the the schematic and phy

sical representations of a circuit. Both physical and schematic circuit representations

could build the net list of a circuit for cross check.
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A useful connectivity tool to add to the routing toolbox for physical views would

be one that enabled a user to find out what was connected to a geometry by pointing to

a geometry and selecting a "connected?" menu entry. The "connected?" routine could

highlight all of the geometries connected to that geometry even those connected

through through layer contacts.

Overall, programming in the Hawk and Squid environment is easy once the sys

tem is understood; the initial familiarization, however, is difficult. Efforts are being

made by all of the users of the package to ease the problem of learning about Hawk

and Squid by improving the documentation and fixing bugs. From the user's perspec

tive, the continued addition and integration of new tools to the framework insures

that the package will continue to improve.



CHAPTER 6

Conclusion

In this project report, the steps taken to install an incremental routing system together

for custom IC layout are described. The tools were developed to solve the immediate

needs of the local IC designers. By providing interactive assistance, the guided routing

toolbox eases the bottleneck that routing imposes on the design verification loop. The

routines help the designer complete his layout so that the circuit may be simulated and

verified. The Hawk/Squid package was designed to enable CAD tool builders to

integrate tools into the package easily. Any problems encountered in tool integration

are addressed and solved by the users of the package. As other tools are tied into

Hawk/Squid, the IC design framework will improve.

In this project, the effects of a close interaction between the CAD tool developer

and the tool users was explored. The most successful tools in the routing toolbox

resulted from the dedicated cooperation and communication between the CAD tool

designers and their "customers." the IC designers. The pitch and LTurn commands

solve a simple, recurrent problem. These tools were created in direct response to the

SOAR project's bus routing problem and were examples of the IC designer driving the

CAD tool designer. The channel router, on the other hand, is an example of the CAD

tool designer driving the IC designer. The users of the toolbox did not appreciate the

utility of a channel router for custom design until the YACR2 interface was tried and

proven effective.

As VLSI designs continue to become larger and more dense, designers will continue

to need the guided routing capabilities of the routing toolbox. The routers have been

designed to accommodate the changing specifications of IC technologies while satisfying
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routing needs common to both structured-custom and semi-custom design. The

routers provide the flexibility to quickly alter routing at the floorplan level.
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include <stdio.h>

include <cad/sq.h>
include <cad/ha.h>

#ifdef BATCH

include "tech.h"

#else

include "extern.h"
FILE *fperr;

#endif BATCH

Mefine MAX(dragon,eagle) ((dragon) > (eagle) ? (dragon) : (eagle))
^define MIN(dragon,eagle) ((dragon) < (eagle) ? (dragon) : (eagle))
^define HORIZONTAL 'H'
#define VERTICAL 'V
#define MAXNUMINCABLE 100

#define PTSINLINE 4

struct initialPti
hit

int

int

hit

char
i.

topOrRight;
bottomOrLeft;
edge;
width;
*geoLayer;

/»

static struct

static char

static int

static int

static bit

static char

initialPt initPts[MAXNUMINCABLE];
HorV;
minSpace;
minWidth;
cableWidth = 0;
*cableLayer;

static void openMaster(s)
char *s;

HATypescript (sqTrue,s );

SQBool .
getInitPts(initLineBB,finalLinePts,pitch) getlmtPtS

SQBB *initLineBB;
SQIntegerPoint finalLinePts[];
int *pitch;

HAWindo windo;
SQIntegerPoint top.bottom;
SQIntegerPoint doublePoint[2];
int dx,dy;

windo = HACurrentWindoO;

HATypescript(sqFalse,"POINT to the bottom(left) of the cable ");
HAListenO;
if(HAKeyTyped() = HAESC fl HAMenuSelectionPO)

return( sqFalse);
bottom = *(HACursorPositionL());

HATypescript(sqFalse,"POINT to the top(right) of the cable to be re—pitched");

Mar 2 J5:28 J985 Page 1 of pitch.c



pitch.c pitch.c

...getlnitPts
HAListenO;
if(HAKeyTyped() = HAESC II HAMenuSelectionPO)

return( sqFalse);
top = *(HACursorPositionL());

dx = ABS(top.x — bottom.x);
dy = ABS(top.y — bottom.y);

if (dx < dy) { /* draw vertical line from bottom to top */
if (bojtom.y < top.y) {

doublePoint[0] = bottom;
doublePoint[l].x = bottom.x;
doublePointflj.y = top.y;

} else {
doublePoint[0] = top;
doublePoint[l].x = top.x;
doublePointflj.y = bottom.y;

HorV = VERTICAL;
} else /* (dx < dy) */ { /* draw horizontal line from left to right */

if (bottom.x < top.x) {
doublePointfO] = bottom;
doublePoint[l].x = top.x;
doublePointflj.y = bottom.y;

} else {
doublePoint[0] = top;
doublePointflj.x = bottom.x;
doublePointflj.y = top.y;

}
HorV o HORIZONTAL;

}
initLineBB->1 = doublePoint[0l.x;
initLineBB->b = doublePoint[0].y;
initLineBB—>r = doublePoint[l].x;
initLineBB->t = doublePointflj.y;

HATypescript(sqFalse,"POINT to where the bottom(left) of the cable is to go");
HAListenO;
if(HAKeyTyped() = HAESC II HAMenuSelectionPO)

return(sqFalse);
finalLinePtsfO] = *(HACursorPositionL());

HATypescript(sqFalse,"Please TYPE in the new pitch of the cable in LAMBDAS.");
sscanf(HAKeyboard(),"%d",pitch);
retnrn(sqTrue);

/* extractRectlnfo gets the pertinent edge coordinates of a rectangle
and loads them into the initPts array. Geometry width and edge
coordinates are stored for later use when extending the cable
element in the pitch change.

Called By: extractGeos.
Calls: none.

Returns: filled initPts array element at the index count.
*/

extractRectInfo(geo,count,finalPt,initLineBB) extractRectlnfo
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.. .extractRectlnfo
SQGeo geo; /* geometry in initial cable */
int count; /* index in the initPts array */
SQIntegerPoint finalPt; /* point to determine cable direction */
SQBB initLineBB; /* line cutting initial cable */

if (HorV = HORIZONTAL)!
initPtsfcount—lj.topOrRight = geo.bb.r,
initPts[count—l].bottomOrLeft = geo.bb.l;
initPtsfcount—l].width = ABS(geo.bb.r — geo.bbd);
if (finalPt.y > initLineBB.t) {

initPtsfcount—ll.edge = geo.bb.t;
} else {

initPtsfcount— lj.edge = geo.bb.b;

return(O);
} else if (HorV = VERTICAL) {

initPtsfcount—l].topOrRight = geo.bb.t;
initPtsfcount—lj.bottomOrLeft = geo.bb.b;
initPtsfcount—lj.width = ABS(geo.bb.t — geo.bb.b);
if (finalPt.x > initLineBB.r) {

initPtsfcount—ll.edge = geo.bb.r,
} else {

initPtsfcount—ll.edge = geo.bb.l;

return(O);
}
return(—1);

}

/* extractLinelnfo gets the pertinent edge coordinates of a line
and loads them into the initPts array. Geometry width and edge
coordinates are stored for later use when extending the cable
element in the pitch change.

Initial and final line segments in the line are tested to
see which segment cuts the initial cable cut—line, and line
information is extracted for the proper segment.

Called By: extractGeos.
Calls: none.
Returns: filled initPts array element at the index count.

*/

extractLineInfo(geo?nIntegerPath,integerPath,count,initLineBB) CXtVClCtLjiYielTtfO
SQGeo *geo; /* geometry in the initial cable */
int nlntegerPath; /* number of points in the line geo */
SQIntegerPoint integerPathf]; /* path of points in the line geo */
int count; /* index in the initPts array */
SQBB initLineBB; /* line cutting initial cable */
{
SQIntegerPoint segment[2][2]; /* array holding the 1st and last

line segments in the line
int

integerPath = geo—>def.line.path;
segment[0][0] = integerPathfO]; /* endpoint in line */
segment[l][0j = integerPathfl];
segmentfojflj = integerPathfgeo— >def.line.nPath — l];
segmentfllfl] = integerPathfgeo—>def.line.nPath — 2];
initPtsfcount—lj.width = geo—>def.line.width;

for(i=0;i<=l;++i){
if (HorV « VERTICAL) {

if ((segment[0j[i].y == segmentfl][i].y)&&.(segment[0j[ij.y >= initLineBB.b)
&& (segment[0][i].y <= initLineBB.t)){
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...extractLinelnfo
if(((segment[0][i]jc <=initLineBB.l)&&(segment[l][ij.x >= initLineBB.r))

II((segment!ljfijjc <= initLineBB.l)
&& (segment[0][ij.x >= initLineBB.r))){

initPtsfcount—lj.bottomOrLeft = segmentfOlfij.y — geo—>def.line,width/2;
initPtsfcount—lj.topOrRight = segmentfojfij.y + geo—>def.line.width/2;
initPtsfcount—lj.edge = segment[Olfij.x;
return(O);

}

} else /* HorV - HORIZONTAL */ {
if ((segment[0][i]jc = segment[l][i].x)&&(segment[OJ[i].x >= initLineBB.l)

&& (segment[0][i].x <= initLineBB.r))!
if(((segmentfojfij.y <= initLineBB.b)&&(segment[lj[i].y >= initLineBB.t))

ll((segment[l][ij.y <= initLineBB.b)
&&(segment[0j[i].y >= initLineBB.t)))!

initPtsfcount—lj.bottomOrLeft = segmentfOJfij.x — geo—>def.line,width/2;
initPtsfcount—lj.topOrRight = segment[OJ[i].x + geo—>def.line,width/2;
initPtsfcount—lj.edge = segmentfojfij.y;
return(O);

}
}

}
}
return(—1);
}

/*************:£#******************************************************* /

/* eliminateGeos eliminates the elements of the initPts array that
are on the wrong layer.

Called By: checkLayer.
Calls: none.
Returns: initPts array with geometries of the wrong layer eliminated.

*/
/***«************«*****************************************************/

eliminateGeos(elimLayer,totalCt,elimCt) elimitiateGeOS
char *elimLayer; /* layer to eliminate from initPts array */
int totalCt; /* total array count */
int elimCt; /* number of array elements to eliminate */
{ }

y**********************************************************************^

/* checkLayer calculates the layer count for each geometry layer
represented in the cable. The layer with the majority count
becomes the cable layer. eliminateGeos is called to eliminate
the elements in the initPts array that are of the minority layer.
Cable layer is established and design spacing rules may be set.
Cable width is also set.

Called By: extractGeos.
Calls: eliminateGeos.

Returns: cable Width, cableLayer, layer spacing, layer width,
trimmed initPts array.

*/
/*****♦*♦****♦*********************************************»*:<c********* /

checkLayer(count) CheckLayer
int count; /* elements in the initPts array */
{ }
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/* sortlnitPts sorts the initPts array in ascending order by the
bottomOrLeft element in the initialPt structure.
Occasionally, 2 geometries may be superimposed. These geometries
must be merged into one geometry that the pitch change may be
performed on.

Called By: extractGeos.
Calls: none.
Returns: sorted initPts array with merged geometries.

/*****:Mc*************************************************************** /

void .
sortInitPts() SOrtlnitPtS

{ }

/* extractGeos performs a squid database search to find all geometries
intersecting the init line that the user specifies in setlnitPts.
This line cuts the initial cable section that is to be extanded with

a pitch change. Open Masters opens all instances and children of
instances in the current view. NOTE: openMasters opens only physical views.
Geometries of Layerl and Layer! rectangles and lines are found and
increment the "geos found" count. extractRectlnfo or extractLinelnfo
are called. If geos are found, checkLayer is called to choose the
layer that the pitch change will use. SortlnitPts is called to
sort the cable element array. Cable width is returned.

Called By: rePitch.
Calls: extractRectlnfo,extractLinelnfo,checkLayersortlnitPts.
Returns: sorted initPts array , cableWidth .cableLayer.

*/

"it r>
extractGeos( initLineBB.finalPt) eXtr<2CtGeOS

SQBB initLineBB;
SQIntegerPoint finalPt;

SQBB area;

SQID genID;
SQID *instIDs[SQMAXDEPTH];
HAWindo windo;
int maskf5][2];
int nlnstlDs = 100;
int count = 0;
int nlntegerPath = 12;
SQStatus status;

SQIntegerPoint integerPathf 12];
SQGeo geo;

windo = HACurrentWindoO;

#ifdef BATCH

SQOpenMastersC physical" ,openMaster);
#endif

area = initLineBB;
mask[0][0] = SQLayerNameToNumber(LAYERl_NAME);
maskfOlflj = (int)sqActiveArea;
maskfljfoj = SQLayerNameToNumber(LAYER2_NAME):
maskfljfl] = (int)sqActiveArea;
mask[2][0] = SQLayerNameToNumber(LAYERl_NAME);
mask[2][l] = (int)sqlnterconnect;
mask[3]f0] = SQLayerNameToNumber(LAYER2_NAME);
mask[3j[l] = (int)sqlnterconnect;
maskf4Jf0] = -1;
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...extractGeos

if((int)SQSpecialBeginGen(area,mask,SQMAXDEPTH,&genID) <D) {
HATypescript(sqTrue,SQDiagnostic());
return(—1);

}
for(;;) {

status = SQSpecialGen(genID,&geo,integerPath,nIntegerPath,
NULL,0,instIDs,&nInstIDs);

if (status = sqEndGen) break;
if ((int)status < 0) {

HATypescript(sqTrue,SQDiagnostic());
return(—1);

}
if (geo.geoType = sqRect) {

++count;

if (extractRectlnfo(geo,count,finalPt.initLineBB) <0){
count;

} else!
initPtsfcount — ll.geoLayer = geo.layer;

} else if (geo.geoType = sqLine) !
++count;

if(extractLineInfo(&geo,nIntegerPath,integerPath,count,initLineBB)
<0)!

count;

} else!
initPtsfcount — ll.geoLayer = geo.layer;

if (count = 0) !
return(—1);

} else !
checkLayer(count);
sortlnitPtsO;
return(cableWidth);

/* setFinalLine sets the finalLinePts end points. It starts at the
user inputted point and calculates the endpoint of that final line
in the pitch—changed bus.

Called By: rePitch.
Calls: none

Returns: endPoints of cut line of final cable points, and the cable
sum of widths of the lines in the cable

*/
/********************************************************************** /

setFinalLine(finalLinePts,pitch) SetFinalLine
SQIntegerPoint finalLinePtsfj;
int pitch;
!
int sumOfWidths = 0;
int i;

for (i=0;i<rable\Vridth;++i) !
sumOfWidths += initPts[i].widlh;

}
if (HorV == HORIZONTAL) {

finalLinePts! l].y = finalLinePts[0].y;
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...setFinalLine

finalLinePts[l].x = finalLinePtsfOJ.x + sumOfWidths
+ ((cableWidth-1) * pitch);

} else /* HorV - VERTICAL */ {
finalLinePtsflj.x = finalLinePtsfOJ.x;
finalLinePtsflj.y = finalLinePtsfOJ.y + sumOfWidths

+ ((cableWidth-1) * pitch);
}
re turn(sumOfWidths );

}

/* findlnflectionPoints determines the areas in the pitch change where
the problem may be split into sub—problems. Inflections in the
end points of the cable solution are detected when an ith element's
two endpoints are both under or both above the (i+l)th element s two
pitch change endpoints. If such an inflection point is found, the
initPts array element index is stored in the inflection array and
the inflCnt is incremented.

Called By: solve.
Calls: none

Returns: inflCnt filled inflection array.
*/

findInflectionPoints(lines,inflection) findlnflectionPoints
SQIntegerPoint linesfjfMAXNUMINCABLEJ;
int inflectionfj;
!
return(O);
}

/* solveSubProblem is called for each sub—problem inflection area of
the cable to be re—pitched. It makes the pitch change by hugging
the larger line segment — initial sub—segment or final sub—segment,
logs are offset by one min spacing from the selection end points
and are placed at min spacing. Cable element width is determined
by the width if the initial geometry.

Called By: solve.
Calls: none

Returns: jog coordinates in the lines array
*/
/♦♦♦♦^♦^♦^♦♦^^♦^♦♦♦♦*^*#*^***^*ji♦̂***♦***♦*♦**♦ /

void

solveSubProb(lower,upper,lines) SOtveSlibProb
int lower,upper;
SQIntegerPoint linesfjfMAXNUMINCABLEJ;
{ }

/* checkForFit finds the pitch change can fit in the channel area
provided. The routine searches for the widest sub problem of the
cable pitch change. It calculates what width is necessary to perform
the appropriate jogs of the pitch change. It checks to make sure
that the pitch change fits. Ifit fits the routine returns a 0 value.
If the cable cannot fit, the user is notified what cable width is
needed and how much wider the channel must be made. If the cable
cannot fit, a —1 value is returned and the program does not continue.

Called By: solve.
Calls: none

Returns: status 0 okay. —1 no fit.
/
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/*****t^***********^****************n***************-******;*****^ /

checkForFit(inflCnt,lines,inflection,cableWidth,sumOfWidths) CheckForFit
int inflCnt;
SQIntegerPoint linesfjfMAXNUMINCABLEJ;
int inflection!!];
int cableWidth;
int sumOfWidths;

! }

/* solve sets up the lines array and loads the initial and final points
of each lines in the pitch changed cable. FindlnflectionPoints
returns the array values where the solution may be broken up into
similar sub—solutions. It returns the inflection count which specifies
how many sub solutions there are to solve. CheckFotFit is then called
make sure that the channel area is wide enough to proceed with a
pitch change solution. Then solve sub problem is called successively
on the broken down problem.

Called By: rePitch.
Calls: findlnflect ionPoints.checkForFit .solveSubProblem.
Returns: filled lines array to convert to squid solution.

*/

SQBool
solve(finalLinePts,pitch,lines,sumOfWidths,initLineBB) SOlVe

SQIntegerPoint finalLinePtsfj;
int pitch;
SQIntegerPoint linesfjfMAXNUMINCABLEJ;
int sumOfWidths;
SQBB initLineBB;
!
int i;
int inflectionfMAXNUMINCABLE];
int inflCnt;
int lower,upper;
int partSum = 0;

if (HorV = VERTICAL) !
for (i=0;i<cableWidth;++i) !

lines[0][i].x = initLineBB.r;
lines[0][i].y = (initPts[i].topOrRight + initPts[i].bottomOrLeft)/2;
lines[l]fi].y = lines[0][i].y;
lines[3]fi].x = finalLinePtsfOJ.x;
lines[3][i].y = finalLinePtsfoj.y + partSum + (0.5 * initPtsfij.width) +

(i*pitch);
lines[2j[i].y = lines[3][ij.y;
partSum += initPtsfij.width;

else /* HorV — HORIZONTAL */ {
for (i=0;i<cableWidth;++i) {

HnesfOjfij.y = initLineBB.t;
linesfojfij.x = (initPtsfiJ.topOrRight + initPts[i].bottomOrLeft)/2;
linesflj[i].x = lines[0][i].x;
lines[3][ij.y = finalLinePtsfOJ.y;
lines[3][i].x = finalLinePtsfOJ.x + partSum + (0.5 * initPtsfij.width) +

(i*pitch);
lines[2][i].x = lines[3]fij.x;
partSum += initPtsfij.width;

for (i=0;i<cableWidth;++i) inflectionfi] = 0;
inflCnt = findlnflectionPointsdines.inflection);
if (checkForFit(inflCnt,lines,inflection,cableWidth,sumOfWidths) < 0) !
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...solve
return(sqFalse);

if (inflCnt == 0) !
lower = 0;
upper = cableWidth — 1;
solveSubProb(lower,upper,lines);

} else ! /* at least one inflection point in the cable */
for (i=0;i<=inflCnt;++i) !

if (i=0) !
lower = 0;
upper = inflectionfij;

} else if (G > 0) && (i < inflCnt)) !
lower = inflectionfi—l] + 1;
upper = inflectionfij;

} else if (i==inflCnt) {
lower = inflectionfi—lj + 1;
upper = cableWidth — 1;

solveSubProb(lower,upper,lines);
}

)
rerum(sqTrue);

/*:&********t********tt^***********************tt

/* convertSolnToSquid is called to convert the pitch change solution to
squid. The pitch change is performed with a cableWidth number of
lines. These lines are deposited in an instance. The instance's
view is pushed into and cableWidth number of lines is created in
that view. the view is then saved and then an instance of that
view is placed in the current view on the screen.

Called By: rePitch.
Calls: none.

Returns: bounding box of the created instance.
Squid Interaction: Push into an instance and place lines in that

instance, create that instance.
*/
/**************^**««(**********♦**<n»r***************************^

int

convertSolnToSquid(lines,bb) COrlVertSolnToSquid
SQIntegerPoint lines[][MAXNUMINCABLEJ;
SQBB *bb;

HAWindo windo;
SQView view;
SQInst inst;
FILE *stream;
char string[256j;
char instanceCell[256];
char instanceView[256J;
SQGeo currLine;
SQIntegerPoint linePtsfPTSINLINE];
int i;
int j;

HATypescript(sqFalse,
"Type re—pitched area's view's name as VcellsName viewsNameV"');

#ifdef BATCH

sscanf(H AKeyboardO," %s" ,instanceCell);
sscanf(HAKeyboardO," %s" ,instanceView);

#else

sscanf(HAKeyboard( ),"%s%s" ,instanceCell,instanceView);
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...convertSolnToSquid
#endif

sprintf(string, "Saving re—pitched area as cell: \"%s\" view \"%s\H",
instanceCellinstanceView);

HATypescript(sqFalse,string);

view.cell = instanceCell;
view.view = instanceView;
view.mode = "w";

SQPushViewStk(SQCreateViewStkO);
if (((int) SQ(sqPush,sqView,sqCircuit, view, &stream)) < 0) !

HATypescript( sqTrue,SQDiagnostic() );
retnrn(— 1);

}

currLine.geoType = sqLine;
currLinefunction = sqActiveArea;
currLine.def.line.nPath = PTSINLINE;
currLineiilledP = sqTrue;
currLinclayer = cableLayer;

for (i=0;i<fcableWidth;++i){
for(j=0;j<PTSINLINE;++j) !

linePtsfjj = linesfjjfij;

currLine.def.line.width = initPtsfij.width;
currLine.def.line.path = linePts;
if ((int) SQ(sqCreate,sqGeo,&currLine) < 0) !

HATypescript(sqTrue, SQDiagnostic());
return(—1);

}
)

if ((int) SQ(sqSave,sqView,sqFast, view) < 0) !
HATypescript(sqTrue, SQDiagnostic());
return(— 1);

I

if ((int) SQ(sqPop,sq\'iew,sqStage) < 0) {
HATypescript(sqTrue, SQDiagnosticO);
return(—1);

}
SQPopViewStkO;

inst.masterCell = instanceCell;
inst.masterView = instanceView;
inst.name = "";
sprintf(string,"T %d %d", 0, 0);
inst.cif = string;

if ((int) SQ(sqCreate,sqInst, &inst) < 0) !
HATypescript(sqTrue,SQDiagnosticO);
return(—1);

}
^fndef BATCH

switch(SQPushMaster(&inst/'physical")) !
case sqViewAlreadyStaged:
case sqOK:

if((int)SQ(sqPop,sqView,sqStage) < 0) {
HATypescript(sqTrue,SQDiagnostic());

}
break;

default:

sprintf(string," Can't push master %s/%s. %s",inst.masterCell,
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inst.masterView.SQDiagnosticO);
HATypescript(sqTrue^string);
break;

}
if ((bit) SQ(sqGet,sqInst,&inst) < 0) {

HATypescript(sqTrue,SQDiagnostic());
return(—1);

}

*bb = inst.bb;
#endif

return(O);

.convertSolnToSquid

/***********************************************#&

/* rePitch calls the main sections of the pitch change code.

Called By: pitchChange.
Calls: getlnitPts,extractGeossetFinalLine,solve,convertSolnToSquid.
Returns: bounding box of the created instance.

*/
/**************************************tt

int

rePitch(bb)
SQBB

SQBB
SQIntegerPoint
SQIntegerPoint
int

int

'bb;

initLineBB;
finalLinePts[2J;
HnesfPTSINLINEJfMAXNUMINCABLE];
pitch;
sumOfWidths;

if (! getInitPts(&initLineBB,finalLinePts,&pitch))
return(— 1);

if(extractGeos(init LineBB.finalLinePtsfOJ) O) !
HATypescript(sqTrue,"No geometries found for cable. ");
retum(—1);

}
sumOfWidths = setFinalLine(finalLinePts, pitch *= HASQUNITSPERLAMBDA);
if (! solve(finalLinePts,pitch,lines,sumOfWidths,initLineBB)) !

return(—1);
}
if (convertSolnToSquid(lines,bb)<D) !

HATypescript(sqTrue,"problem in convert soln to squid routine.");
return(— 1);

return(O);

#ifndef BATCH

/**********************************************************************/

/* pitchChange checks that the hawk window is selected. It pushes
into it for editing, emptys the boundig box set, calls rePitch
and redisplays if the pitch change is performed successively.

Called By: PitchChange.
Calls: rePitch

rePitch

Mar 2 15:28 1985 Page 11 of pitch.c



pitch.c pitch.c

z ************************************«

pitchChangeO ptichCfwrige
HAWindo windo;

int i;
SQBB bb;

bb.l = 0;
bb.r = 0;
bb.b = 0;
bb.t = 0;

windo = HACurrentWindoO;
if (windo.windoID = NULL) !

HATypescript(sqTrue,"Current window not selected.");
return;

}
fperr = fopenCroute error","wM);
if (fperr== NULL) "f

HATypescript(sqTrue, "Unable to open error file");
return;

}
if (IRouterCadrcReadO) !

HATypescript( sqTrue,
"Problem reading .cadre rules, check route_error file.");

fclose(fperr);
showfile(" route_error" );
return;

}

SQPushViewStk(windo.editStk);
SQEmptyBBSet(HAChangedRect());
i=rePitch(&bb):

SQPopViewStkO;

if (i < 0) !
HATypescriptCsqTrue,"UNABLE to do pitch change.");

} else {
SQAddToBBSet(&bb, HAChangedRect());

fclose(fperr);
showfile(" route_error");

HADisplayView(windo.windoID,*HAChangedRect(), sqFalse, sqFalse);

/**********************************************************************/

/* PitchChange invokes the pitch change from the hawk layout editor.
Called By: symbolic hawk menu selection /lib/hawk/menus/userCommand/

routing.
Calls: pitchChange

*/
/**********************************************************************/

void

PitchChangeO PitchChange
pitchChangeO;

#endif BATCH

#ifdef BATCH

Mar 2 15:28 1985 Page 12 of pitch.c



pitch.c

SQIntegerPoint
*HACursorPositionL()

!
int xx.yy;
SQIntegerPoint readVals;

scanf("%d %d" ,&xx,&yy);
readVals.x = xx;
readVals.y = yy;
return(&readVals);

}

static void

HAListenO
i)

SQBool
HAMenuSelectionP()

return(sqFalse);

char
HAKeyTypedO

return(2);

static char

*HAKeyboardO
!

}

static char s[256j;
scanf("%s", s);
return(s);

static void

HATypescript(moreP, s)
SQBool moreP;
char *s;
!printf("%s\ n" ,s);}

SQBB changedRect;

SQBB
♦HAChangedRectO

return(&changedRect);

static SQStatus
HADisplayViewO

! }

HAWindo currentWindow;

HAWindo

HACurrentWindoO
! return(currentWindow);

Mar 2 15:28 1985
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HACursorPositionL

HAListen

HAMenuSelectionP

HAKeyTyped

HAKeyboard

HATypescript

HAChangedRect

HADisplayView

HACurrentWindo
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pitch-c pitch.c

main(argc, argv) TYlxlVn
int argc;
char *argv[];

FILE *stream;
SQBB bb;

if (argc != 3) !
printf(" usage: re—pitch cellname and cellview\n");
exit(-l);

}

if ((int) SQBegin()<0) !
HATypescript(sqTrue,SQDiagnosticO);
exit(-l);

}

changedRect.l = 0;
changedRect.b = 0;
changedRect.t = 0;
changedRect.r = 0;
bb.l = 0;
bb.b = 0;
bb.t = 0;
bb.r = 0;

/* Fake out a current window push into view given on command line */
currentWindow.view,view = argv[2j;
currentWindow.view.cell = argvfl];
currentWindow.view.mode = w";
currentWindow.windoID = 3;
SQPushViewStk(currentWindow.editStk = currentWindow.displayStk =

SQCreateViewStk());

if (SQ(sqPush, sqView, sqCircuit, currentWindow.view, &stream) != sqOK) {
HATypescript(sqTrue,SQDiagnostic());
exit(—1);

}

if (rePitch(&bb) < 0) !
exit(-l);

}

/* Fake out popping current window */
if ((int) SQ(sqSave,sqView,sqFast,currentWindow.view) < 0) !

HATypescript(sqTrue,SQDiagnostic());

if ((int) SQ(sqPop, sqView, sqUnstage) < 0) {
HATy pescript(sqTrue,SQDiagnost ic());

SQPopViewStkC);

if ((int) SQEndO < 0) !
HATypescript(sqTrue.SQDiagnosticO);

exit(O);
}
#endif BATCH
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1. Introduction

The Hawk graphics editor provides interactive and incremental routing rou
tines that automate the routing of integrated circuits. These routers were
developed in close conjunction with a designer laying out a custom IC. There
fore, the facilities they provide fulfill the requirements of custom layout, easing
incremental changes to layout. Hawk's routers are invoked via menu selection.
The commands are highly-interactive; the editor prompts the designer through
the route. Upon completion, the solution is usually the route that the designer
would have drawn himself had he placed every rectangle. The tools' help produce
an efficient custom layout by automating repetitive steps in the layout process.
The designer guides routes by specifying control points when prompted.

Five routers are described in this user's guide. The routers may be invoked
from the ROUTING sub-menu of Hawk. The first three routers are bus oriented
routers, the pitch change, 'T'-turn, and cable routers. The pitch change and
lturn routers are simple river routers that enable incremental bus routing when
there is no swap in signal order. The cable command enables the routing of a
bus of signals when there is a switch in signal order from source to destination.
The last two routers are channel routers for the routing of horizontal and verti
cal channels. The two channel routers interface Hawk to the YACR2 channel
router.

The routers report diagnostics and routing information to the user. For
example, the channel router reports such information as the channel's longest
net-name, any pin that does not have a matching pin in the channel, and
whether the channel width be grown or shrunk based on the routing density
result. Pertinent information is reported during the course of the route and
saved in an error file for later reference. The diagnostics help keep the designer
on the right track.

Because the routers were developed for custom design and layout, the
routers emulate the designer's routing strategies. The cable and channel
routers have a preferred routing layer, and maximize runs on that preferred
layer. While making jogs, the pitch change and the cable commands route wires
at the minimum design rule spacing. The routing routines essentially return the
route that the designer would have constructed had he routed the region rec
tangle by rectangle.

Each routing routine creates a cell filled with the routing solution. A pitch
change, LTurn, cable route, or channel route instance of the master cell filled
with routing geometries is placed in the cell being edited in Hawk. Placing the
geometries as a cell instance, rather than placing flat geometries saves the con
text of the route. The entire routing cell may then easily be manipulated or
deleted as routes are re-run.

Hawk may be invoked under various layout technologies. Technologies used
at UC Berkeley are CMOS-PW and NMOS fabrication technologies. Because each
technology has its own layout design spacing rules and routing layers, the rout
ing routines are parameterized and not constrained to a particular technology-
dependent set of rules and layers. They route between any two layers of a partic
ular technology as specified by the user. The ".cadre" file resides in the user's
home directory and stores tool-specific information in the UC Berkeley CAD
environment. Each ".cadre" file is divided into several sections. The HAWKROUTERS
section of this file contains routing information that tunes the routers to a par
ticular routing policy. The routing parameters are described at the end of this
document.



Routing Toolbox User's Guide

Abstract.

The routers in Hawk's routing sub-menu are described in this document. It is
assumed that the reader is familiar with the Hawk/Squid package. The routers
enable the user to interactively guide the routing process. There are six sec
tions in this user's guide:

(1) Introduction to the routers.
(2) Pitch Change Router. This is a bus oriented router. It enables the user to

change the pitch in a bus of geometries.

(3) LTurn Router. Enables the user to guide a bus of geometries around one
turn.

(4) Cable Router. Enables the user to guide a cable of geometries around
several jogs and with a permutation in signal order.

(5) Channel Router. This router enables the user to interactively invoke the
channel router YACR2.

(6) Rules file. The file in which the layout design rules that are used by the
routers are specified.



2. Routers.

2.1. Bus Routing.

The pitch change and L Turn commands automate bus routing when there is
no switch of signal order in the bus.

2.2. PitchChange.

The pitch change command enables the user to direct a change in the pitch
of a bus of nets from any regular or irregular spacing to a user-specified regular
spacing. Here a bus of nets is defined as a parallel set geometries on the same
layer ending roughly at the same edge as illustrated in Figure 1. The pitch
change command may be used to fan out a niinimally-spaced group of
geometries to a contact to contact spacing or squeeze an irregular spacing down
to a minimum spacing. In a pitch change, there is no order change in the bus's
nets. The bus elements are simply river-routed to a new pitch.
2.2.1. Invoking the Pitch Change.

The pitch change command is found in Hawk's Routing sub-menu. Upon
pitchChange menu selection, the user is prompted to cut across the bus of nets
where he wants to start the pitch change, by pointing to the bottom and top of
the bus. These points are endpoints of a cut line across the pitch geometries,
(see Figure 1). The user is then prompted to mark the point where he wants the
bottom bus element to route to (final pitch point), and type the new pitch or
separation of the wires of the bus in lambda units. Each geometry is extended in
the pitch change at its original width. Jogs in the pitch change are performed at
the routing layer's minimum spacing. A pitch change of the initial geometries is
shown in Figure 2 with control points marked.
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Figure 1. Initial Bus Geometries.
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Figure 2. Pitch change with control points marked.

2.2.2. Squid data storage.

The pitch change is stored in its own Squid file; a copy or instance of it is
placed in the Hawk view being edited. When the route is complete, the user is
prompted to type a Squid cell-name and cell-view identifying that routed cell.
The Hawk screen is redisplayed showing the new pitch change. If unhappy with
the route, the user may select the instance layer on the Hawk layer window,
addPtSel or put the instance in the selected set, and delete the routed instance.
2.2.3. Errors.

Any of several errors prohibit the completion of a pitch change. In case on
an error, the user is notified what is preventing the pitch change; that error
information is stored in the route__error file. The pitch change is not performed
when no geometries are found under the cut line. The routine aborts when the
required ".cadre" parameters are absent from the HAWKROUTERS section of the
".cadre" file. The pitch change is not performed when there is not enough room
in the layout region to squeeze the jogs of the pitch change; Le., there is not
enough room between the initial cut-line and the final pitch point. The user is
told how much space is needed in lambdas to perform the jogs of the pitch
change.

2.2.4. Rule File Parameters.

The pitch change may be performed on one of the two routing layers
specified in that HAWKROUTERS section of the user's ".cadre" file. Four ".cadre"
design rule parameters are necessary to perform a pitch change. The two possi
ble routing layers' names and their minimum spacing. Here is an example for
the mosis CMOS_PW technology.

begin HAWKROUTERS
NAME LAYER1_NAHE "CP'
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Figure 3. LTurn with control points marked.

switch physical order from the source to the destination. If a switch in signal
order is needed, the command performs the order change at the last jog in the
bus's path. In the interactive cable command, bus specification is simple.
2.4.1. Signal Connectivity.

Because the physical signal order may be permuted from the initial to the
final terminals, signal connectivity is specified with terminals at the beginning
and end of the cable. Matched terminal names imply connectivity. Each signal
in the cable has a terminal in the initial terminal set and in the final terminal
set. It is necessary to place these terminals before running the cable command.
Terminals are shown in Figure 4. Initial terminals may be at a minimum spac
ing; final terminals must be at a geometry-to-contact spacing to accommodate
any change in signal order.

Note that when there is no swap in signal order from the initial to the final ter
minals, it is easier to use the pitch and LTurn commands, because in those com
mands it is not necessary to place signal terminals.
2.4.2. Routing Layer.

The routing layer is selected by the terminal layer. All of the mitial termi
nals must be on the same layer and all of the final terminals must be on the
same layer. Cable layer is determined as follows:



NAME LAYER2-NAME "CM"

VALUE LAYERL-HINSPACING 3

VALUE LAYER2_MINSPACING4

end

The two routing layers are "CM", CMOS metal, and "CP". CMOS polysilicon. A CMOS
poly geometry must be spaced at least 3 lambda from another poly geometry,
while a CMOS metal geometry must be at lease 4 lambda from another metal
geometry.

2.2.5. Majority Selection.

A pitch change is performed on only one routing layer. If geometries under
the cut line are on two different routing layers, a pitch change is performed on
the layer with the majority count in the bus. For example, the pitch change
region in Figure 2 has six polysilicon and two metal elements. The pitch change
is performed on the six poly elements. Majority rule is used because the objects
on the other layer are usually not intended to be in the bus; they are unavoid
ably in the selection region.

a3. LTurn.

The LTurn router is similar to the pitchChange router. It enables the user
to perform an l-turn on a bus of nets from any regular or irregular spacing to a
user-specified regular spacing. Once again, a bus of nets is defined as a set of
parallel geometries on the same layer ending roughly at the same edge, (see
Figure 1). The LTurn command may be invoked when there is no order swap in
the geometries of the bus; no layer change is made and no terminals are needed
to imply routing connectivity. Geometries are extended around one turn in
their original order with their original widths.

An 'T'-turn may be performed on either of the two layers specified in the
HAWKROUTERS section of the ".cadre" file, but, as with the pitch change command,
it is only performed on one of those layers.

begin HAWKROUTERS
NAME LAYERl-NAME "CP"

NAME LAYER2.NAME "CM"

end

An LTurn routine is aborted if the two routing layers are not included in the
".cadre" file.

Upon LTurn menu selection, the user is prompted to cut the bus of nets
where he wants to start the l-turn by pointing to the top and bottom of the bus.
The user would typically point to the top and bottom edges of the bus; he may
alternatively point before the edge to do an l-turn on geometries whose edges do
not line up. The user is then prompted to point to where he wants the most
negative point of the l-turn to begin and type the new spacing of the wires in
lambda units. Each geometry's width is extended in the l-turn. The user is
prompted to type a Squid ceil name and view name for the 1 turn. That cell is
created and placed in the current Hawk cell from which the l-turn was called. An
LTurn is illustrated in Figure 3 with the appropriate control points marked.
2.4. Cable Router.

The cable command routes a bus of nets around obstacles. It is not a gen
eral river router; it routes each signal in a bus between one source terminal and
one destination terminal. Cable enables the user to guide a bus of nets around
obstacles and through a variable number of jogs. like the pitchChange and
LTurn routers, there must be a one to one correspondence between connections
in the bus. Unlike those commands, the cable routine allows the signals to
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(1) Case A. The initial terminal and the final terminal sets are on the same
layer. At the last jog in the cable, a via route onto the alternate routing
layer is made to accommodate a change in signal order. The layer shared
by the imtial and final terminals is maximized as shown inFigure 5.

(2) Case B. The initial and final terminal sets are on the two different layers
specified in the rules file. In this case, the initial terminal set's layer is
maximized as shown in Figure 6. The layer change from the initial terminal
set's layer to the final terminal set's layer is made at the final jog.

2.4.3. Cable Path Specification.
The cable command allows the user to guide the bus's route around obsta

cles through a variable number of jogs. First the user points to the initial termi
nals, one at a time. Hits ESC. Then he points to the final terminals, one at a time.
Hits ESC. He then specifies the path that he wants the route to take from the mi
tial to the final terminals by pointing to jogs on one side of the cable's path, and
terminates by hittingESC. Jog pointsare illustrated in Figure 6.
2.4.4. Signal Wire Widths.

Wire widths are determined as follows. There are two different cases to con
sider. Jogs are performed in the cable at minimum spacing unless a contact
necessitates the widening of the spacing.
(1) Case A. When the initial and final terminals sets are on the same routing

layer, a layer change is performed only where necessary to execute a swap



begin HAWKROUTERS
NAME LAYERUfAME "CP'

NAME LAYER2JJAME "CM"

VALUE LAYERl-MINWTDTH 3

VALUE LAYER2_MINWIDTH 3
VALUE LAYERL-HINSPACING3

VALUE LAYER2-MINSPACING 4
VALUE CONT-SEE 7

end

The layer definitions are described in Section 2 of this document, the Design
Rule File. *
2.4.6. Execution errors.

The cable command flags an error when two initial terminals are not at at
least the minimumspacing for that layout layer. It flags an error when two final
terminals are not at at least a geometry-to-contact spacing. It flags an error
when there is not a one-to-one match between initial and final terminals. Errors
are stored in the route_error file for later reference.

2.5. Channel Routing.

The Horizontal Channel command implements a two-layer horizontal chan
nel route by providing an interactive interface between the Hawk graphics editor
and the YACR2 channel router. Achannel is a rectangular routing region. Termi
nals, or pins, mark signals on the channel periphery that are to be connected.
The interface collects the information that YACR2 expects as input from the Hawk
cell being edited and calls YACR2. It then translates YACR2's output into Hawk
geometries, redisplays the routed solution, and reports useful routing informa
tion.

The channel router provides fast rip-up and re-route capability. It is useful
when routing large amounts of "spaghetti" logic that are prone to error and
change. Re-running the channel router is easy. YACR2 and its interface guarantee
that all terminals of the same name in the channel are connected.
2.5.1. Channel Definition.

Terminals specify the connectivity problem. The terminals are fixed along
the two opposite channel lengths, and are non-fixed on the remaining channel-
ends.

(1) fixed terminals along the top and bottom lengths ofthe channel determine
exact signal location. Top terminals must be colinear. Bottom terminals
must be colinear.

(2) floating terminals designate signals that must exit the channel from an
end. The signal's order inYACR2's solution may not be the same as the order
of the floating pins.

Floating and fixed terminals are placed before running the channel router
by using the terminal command in the Hawk. Fixed terminals must be placed at
at least the minimum user-defined spacing of LAYERUGRIDSPACING and be on one of
the two routing layers defined in the rules file. Terminals on any other layer in
the channel will be ignored by the interface. To avoid layer change in the top
and bottom tracks of the channel solution, fixed terminals should be on
LAYERl_NAME, the layer that runs vertically across the channel width. This layer is
polysilicon the routing example. Top pins do not have to line up directly over
bottom pins. Figure 7 shows a channel.
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in signal order. When there is no layer change in a wire, as in net 4 of Fig
ure 5, the wire width is set to the width of the signal's initial tenninal. Net 3
has a layer change, so the initial wire width is determined by the width of
the signal's initial terminal; the final wire width is determined by the width
of the signal's final terminal. The via layer's width is the minimum width for
that layer as specified in the routing rules file.

(2) Case B. In the case where the initial and final terminals sets are on
daffererd routing layers, each terminal's width determines its wire's size as
illustrated in Figure 6.

2.4.5. Necessary Supporting files.

(1) The contact/physical Squid file must reside where Hawk is invoked. This is
the physical view of a contact connecting the two routing layers in cable
solution. See Figure 9 for the contact between metal and polysilicon in the
CMOS-PW technology.

(2) The HAWKROUTERS section of ".cadre" file specifies the two routing layers. The
necessary routing parameters associated with these layers are:



called .chan.route.out. Here is the .chan.route.out solution for the above input:

5 #there are 5 tracks in the soln
10 #there are 10 columns in the soln
0333333354 #metal row 1
2222222054 #metal row 2
5001112054 #metal row 3
5555555554 #metal row 4
4444444444 #metal row5
5342110354 #poly row 1
5342210000 #poly row 2
5341212000 #poly row 3
0341202500 #poly row 4
0341202540 #poly row 5
4 15 7 ^longest net is net 4, 15 metal units, 7 poly units

The post-processor maps the symbolic solution back into the particular Hawk
channel. The routed geometries are stored in their own cell. The user is
prompted to name the cell for identification and placement in the design hierar
chy; an instance of the channel solution is placed in the Hawk physical layout
being edited. An example name would be "route6" "physical". The routing solu
tion to the channel defined in Figure 7 is shown in Figure 8.
2.5.3. Necessary Supporting files.

There are two files necessary to run the channel router. A Squid cell named
contact with the view physical must reside in the designer's file system in the
same place where the Hawk file path is and where Hawk is invoked from the
user's project directory. This contact master file is placed as an instance at
every layer via in the channel routing solution. This file is of the form:

SQJUID

PUT VIEW "contact" "physical" 'V "squidNextObjectID" INT 4
MK RECT 1 ACTIVE LAYER"CP" FILL LB -60 -60 RT 80 80
MK RECT 2 ACTIVE LAYER "CM" PILL LB -60 -60 RT 80 B0

MK RECT 3 ACTIVE LAYER "CC" FILL LB -20 -20 RT 40 40

Note by the Squid coordinates of the contact rectangles that the center of the
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Figure 7. Channel definition.

2.5.2. Program Details.
After selecting HorzChannel on the routing sub-menu, the user identifies

the channel interactively by pointing to two opposite corners of the rectangular
channel. Figure7 marks these points. The interface requires that the top and
bottom terminals line up on the same lambda grid and that the user point to
that particular lambda when specifying the channel periphery. The pre
processormarches across the channel and creates the net list grid that YACR2 is
expecting as input. This YACR2 input file is called .chan.route.in. It is created in
the directory where Hawk is invoked. The file contains the top and the bottom
fixed net lists from left to right, and the left and the right floating net lists from
bottom to top. Each net name is translated into an integer in this file because
YACR2 expects integer net names as input. Here is an example of .chan.route.in:

5 #five nets in channel
10 #ten columns in channel
5042100354 #top net list
0301202540 ^bottom net list
2 #two left nets
2 4 #the two left nets

The pre-processor calls YACR2 with this input file and YACR2 returns the output file



In the .cadre file, the user defines the two routing layer names and the asso
ciated design rule parameters.

begin HAWKROUTERS
NAME LAYERl_NAME "CP"

NAME LAYER2-NAME "CM"

VALUE IAYERL-HINWIDTH 3

VALUE LAYER2-MINWIDTH 3

VALUE LAYERL-GRIDSPACING 8

VALUE LAYER2-GRIDSPAGING 9

VALUE CONT-SIZE 7

end

The two routing layers are LAYERL-NAME and LAYER2-NAME, "CP" and "CM".
LAYEROfAME is the slower routing layer. This layer is used for routing signals on
the shorter vertical channel runs across the width of the channel. LAYER2_NAME is
the preferred routing layer; it makes the longer channel track runs and is the
faster layer. LAYER2 is maximized in the channel by YACR2, as illustrated in Fig
ure 8; when there is not another signal's route blocking the LAYER2 continuation
of a net into a column, the signal stays on the preferred layer rather than
switching to the column layer, LAYERl.

The LAYERl-MINWIDTH and LAYER2-HINWIDTH parameters determine the width of
signal runs in the channel. In the above rule specification, both metal and
polysilicon runs are drawn at a width of 3 lambda. The CONT-SIZE parameter
specifies the size of the contact that connects the two routing layers at signal
vias. The CMOS-PW contact is seven lambda by seven lambda.
2.5.4. Channel-grid parameters.

The grid spacing parameters determine row and column channel pitch.
(1) Column Pitch. Placement of column geometries is pre-determined by the

fixed signal terminals along the top and bottom of the channel.
LAYERL-GRIDSPACING is the mininium spacing between two terminals in adja
cent columns of the channel. Typically, this parameter is set to a contact
to contact pitch to accommodate instances in the channel where contacts
are in neighboring columns.

(2) Row Pitch. Before the router is run there is no way to tell how many chan
nel rows, or tracks, will be in the solution. After YACR2 is run, the rows of the
channel solution are grown from the bottom row of terminals. The
LAYER2-GRIDSPACING parameter sets the pitch spacing of the solution's tracks.
The post-processor minimizes horizontal track placement. Track grid
pitch, LAYER2.GRIDSPACING, should be set to contact-to-geometry pitch in the
".cadre" rule file. When there is an instance of a contact directly above
another contact in the channel solution, the post-processor automatically
widens from the tighter row spacing to contact-to-contact spacing to
accommodate the adjacent contacts.

2.5.5. Errors and Diagnostics.

like all the routers in the routing toolbox, the channel router reports infor
mation and diagnostics to the user. When the allocated channel width is too nar
row for the actual solution, the user is told how much larger he must make the
channel. If too much space has been allocated, the user is notified how much
extra space he has allocated. Information on the channel's longest net may be
used to hand-calculate signal delays. The routine reports the name of any ter
minal that does not have at least one partner connection in the channel. This
error often is the result of a error when typing the terminal name. If the
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minimum spacing for CM is 4 lambda; the minimum spacing for CP is 3 lambda.
This parameter is used by the pitch change and cable routers to perform
minimally spaced jogs.

The JUNUDTH parameter is the minimum allowable drawn width of a
geometry. In the CMOS-PW case, this parameter is 3 lambdas for CM and CP. This
is used by the channel router to draw minimum width geometries in the routing
solution. It is also used by the cable command to draw ininimum width
geometries on the via layer when a layer change is made to switch the order of
the cable signals.

The -XSHEDSPACING parameter is used exclusively by the channel router to
specify the virtual grid that the channel router observes when searching for ter
minals and placing tracks. In a channel route, the faster layer makes the runs
along the length of the channel while the slower layer brings the signals into the
channel, running along the channel width. Connections between the two layers
are made with contacts. In a channel solution, a contact may be adjacent to a
contact in another column in the worst-case grid pitch. LAYERl-GRIDSPACING, the
pitch of the LAYERi terminals at the top and bottom of the channel, should be at
contact to contact spacing. For the CMOS-PW case above:

LAYERL-GRIDSPACING = contact size + max ( layer spacings );
= CONT-SIZE +

MAX(LAYERL_MINSPACING, LAYER2-HINSPACING)
= 7 + MAX (3,4)
= 11.

In a YACR2 channel solution, there are sufficiently few places where there is a
contact next to another contact on a horizontal track. Signal terminals may
then be spaced closer than at contact to contact spacing. LAYERL-GRIDSPACING may
be tightened to a smaller number; it is set to 9 lambda for the CMOS-PW case:

LAYERL-GRIDSPACING = vertical track geometry width
+ max ( routing layer's min spacing )
+ ( contact overlap ) / 2;

= LAYERL-MINWIDTH

+ MAX ( LAYERL-MINSPACING, LAYER2-MINSPACING )
+ ( CONT-SIZE - LAYERL-MINWIDTH ) / 2;

= 3 + MAX(3,4) + (7-3)/2;
= 9.

The resulting routed solution has design rule errors only where there is a con
tact next to another contact on a channel track. Reducing the pitch of the ter
minals saves considerable channel length, at the expense of having to edit the
solution where the few contact spacing errors occur. For example, there are 72
nets and 169 columns in Deutsch's difficult channel routing example. Of the 287
contact vias in the channel solution, there are only six instances where a con
tact is adjacent to another contact on a channel track. Routing at a tighter
pitch reduces each column width by two lambda for a total length reduction of
21ambda/column x 169 columns = 338 lambda. The user may choose whether to
route at wide spacing or tight spacing. While reducing LAYERL-GRIDSPACING may
require hand editing of a channel solution, it can significantly reduce channel
length.

IAYER2-GRIDSPACING is the minimum distance that two horizontal tracks may
be spaced. This parameter is minimized to a pitch of geometry-to-contact spac
ing. The channel router places tracks at this tight GRIDSPACING unless there are
two vertically adjacent contacts. It then automatically widens the track spacing



minimum spacing for CM is 4 lambda; the minimum spacing for CP is 3 lambda.
This parameter is used by the pitch change and cable routers to perform
minimally spaced jogs.

The JUNWIDTH parameter is the minimum allowable drawn width of a
geometry. In the CMOS-PW case, this parameter is 3 lambdas for CM and CP. This
is used by the channel router to draw rninimum width geometries in the routing
solution. It is also used by the cable command to draw minimum width
geometries on the via layer when a layer change is made to switch the order of
the cable signals.

The -GRIDSPACING parameter is used exclusively by the channel router to
specify the virtual grid that the channel router observes when searching for ter
minals and placing tracks. In a channel route, the faster layer makes the runs
along the length of the channel while the slower layer brings the signals into the
channel, running along the channel width. Connections between the two layers
are made with contacts. In a channel solution, a contact may be adjacent to a
contact in another column in the worst-case grid pitch. LAYERL-GRIDSPACING, the
pitch of the LAYERi terminals at the top and bottom of the channel, should be at
contact to contact spacing. For the CMOS-PW case above:

LAYERL-GRIDSPACING = contact size + max ( layer spacings );
= CONT-SIZE +

MAX (LAYEROKNSPACING, LAYER2-HINSPACING)
= 7 + HAX(3,4)
= 11.

In a YACR2 channel solution, there are sufficiently few places where there is a
contact next to another contact on a horizontal track. Signal terminals may
then be spaced closer than at contact to contact spacing. LAYERL-GRIDSPACING may
be tightened to a smaller number; it is set to 9 lambda for the CMOS-PW case:

LAYERUGRIDSPACING = vertical track geometry width
+ max ( routing layer's min spacing )
+ ( contact overlap ) / 2;

= LAYERL-MINWIDTH

+ MAX (LAYERL-MINSPACING, LAYER2LHINSPACING )
+ ( CONT-SIZE- LAYERL-MINWIDTH ) / 2;

= 3 + HAX(3,4) + (7-3)/2;
= 9.

The resulting routed solution has design rule errors only where there is a con
tact next to another contact on a channel track. Reducing the pitch of the ter
minals saves considerable channel length, at the expense of having to edit the
solution where the few contact spacing errors occur. For example, there are 72
nets and 169 columns in Deutsch's difficult channel routing example. Of the 287
contact vias in the channel solution, there are only six instances where a con
tact is adjacent to another contact on a channel track. Routing at a tighter
pitch reduces each column width by two lambda for a total length reduction of
2iambda/column x 169 columns = 338 lambda. The user may choose whether to
route at wide spacing or tight spacing. While reducing LAYERL-GRIDSPACING may
require hand editing of a channel solution, it can significantly reduce channel
length.

LAYER2_£RIDSPACING is the minimum distance that two horizontal tracks may
be spaced. This parameter is minimized to a pitch of geometry-to-contact spac
ing. The channel router places tracks at this tight GRIDSPACING unless there are
two vertically adjacent contacts. It then automatically widens the track spacing



from this contact-to-geometry spacing to a contact-to-contact spacing. In the
CMOS-PW case, this parameter is 9 lambda:

LAYER2-GRIDSPACING = routing geometry's min width
+ MAX ( layers' minimum spacing )
+ ( contact overlap ) / 2;

= LAYER2-MINWIDTH
+ MAX (LAYERL.MINSPACING, LAYER2JHINSPACING )
+ ( CONT-SIZE - LAYER2J1INWIDTH) / 2;

= 3 + HAX(3,4) + (7-3)/2;
= 9.

The design rule file must be included to run any router. If the HAWKROUTERS
file is not included, or a routing parameter is missing, the user is notified and
the route is aborted.
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